
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Data Assimilation and Precision Annealing Monte Carlo Method in Nonlinear Dynamical
Systems

Permalink
https://escholarship.org/uc/item/20t7q2cq

Author
Hao, Kangbo

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20t7q2cq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Data Assimilation and Precision Annealing Monte Carlo Method in Nonlinear Dynamical
Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Physics

by

Kangbo Hao

Committee in charge:

Professor Henry D. I. Abarbanel, Chair
Professor Philip E. Gill
Professor Ken Intriligator
Professor Gabriel A. Silva
Professor Congjun Wu

2020

Copyright

Kangbo Hao, 2020

All rights reserved.

The dissertation of Kangbo Hao is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2020

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 A Brief Overview of Data Assimilation 3
1.2 Overview of the Dissertation . 4

Chapter 2 Problem Formulation . 6
2.1 Nonlinear Systems and Chaos . 8

2.1.1 Trajectory and Phase Space 8
2.1.2 Chaotic Systems . 10
2.1.3 An Simple Example: the Lorenz 63 System 11

2.2 Probabilistic Approach . 17
2.3 Evaluating the Path Integral . 20
2.4 Data Assimilation Methods . 22

2.4.1 The Nudging Method . 22
2.4.2 Ensemble Kalman Filter 23
2.4.3 4-Dimensional Variational (4D-VAR) Method 27

2.5 Twin Experiments . 29

Chapter 3 Precision Annealing Method . 31
3.1 Variational Annealing . 31
3.2 Precision Annealing Monte Carlo (PAMC) 33

3.2.1 Initialization of Paths for PAMC 33
3.2.2 R f = R f 0, the First Step Using Monte Carlo Method 35
3.2.3 R f = R f 0αβ, Continuing the Annealing Procedure 36
3.2.4 Change in Action as R f Increases 37
3.2.5 Summary of the PAMC Procedure 38

3.3 Improve PAMC Using Hamiltonian Monte Carlo 39
3.3.1 Introduction to HMC . 39
3.3.2 Implementation of HMC 40

iv

Chapter 4 Lorenz 96 Model . 43
4.1 Model Description . 43
4.2 Twin Experiments Setup . 45
4.3 Results Using PAMC . 46

4.3.1 D=20, L=12 . 46
4.3.2 D=20, L=9 . 51
4.3.3 D=20, L=5 . 54
4.3.4 Summary of the Results 58

Chapter 5 Other Models with More Complicated Features 60
5.1 Shallow Water Model . 60

5.1.1 Model Description . 60
5.1.2 Twin Experiment Setup . 61
5.1.3 Results using Precision Annealing HMC Method 64
5.1.4 Discussion on the Computing Issue of High-Dimensional

Models . 69
5.2 Regional Ocean Modeling System 70

5.2.1 Model Description . 70
5.2.2 Twin Experiment Setup . 72
5.2.3 Results Using the Nudging Method 77

Chapter 6 Conclusions and Future Works . 79

Appendix A Details in the Shallow Water Model Implementation 82
A.1 Staggered Grid Points . 83
A.2 Average and Derivatives . 83
A.3 Dynamical Equations . 83

Bibliography . 85

v

LIST OF FIGURES

Figure 2.1: A illustration of the problem setup. 7
Figure 2.2: The trajectory of Lorenz 63 system.σ = 10, b = 8/3, r = 10. 13
Figure 2.3: The trajectory of Lorenz 63 system.σ = 10, b = 8/3, r = 300. 14
Figure 2.4: The trajectory of Lorenz 63 system.σ = 10, b = 8/3, r = 28. 15
Figure 2.5: Comparison between two time series of x for r = 300 and r = 28. 16
Figure 2.6: Distance between the two trajectories in Fig. 2.5 when r = 28 and r = 300. 17
Figure 2.7: Nudging results on Lorenz 96 model . 24

Figure 4.1: Times series of Lorenz 96 model with different forcing parameters. 44
Figure 4.2: Action curves when D = 20, L = 12. 47
Figure 4.3: Action, measurement error, and model error of one randomly chosen initial

condition, L = 12, D = 20. 48
Figure 4.4: Estimation of the forcing parameter, L = 12, D = 20. 49
Figure 4.5: Measurements, estimates and predictions of an observed and an unobserved

variables, L = 12, D = 20. 50
Figure 4.6: Action curves when D = 20, L = 9. 52
Figure 4.7: Estimation of the forcing parameter, L = 9, D = 20. 53
Figure 4.8: Measurements, estimates and predictions of an observed and an unobserved

variables, L = 9, D = 20. 54
Figure 4.9: Action curves when L = 5, D = 20. 55
Figure 4.10: Action, measurement error, and model error of one randomly chosen initial

condition, L = 5, D = 20. 56
Figure 4.11: Estimation of the forcing parameter, L = 5, D = 20. 57
Figure 4.12: Measurements, estimates and predictions of an observed and an unobserved

variables, L = 5, D = 20. 58

Figure 5.1: Initial conditions of shallow water model in the twin experiment setup. . . 62
Figure 5.2: Action, measurement error, and model error of the shallow water model,

L = 588, D = 768. 65
Figure 5.3: Measurements, estimates and predictions of an observed and an unobserved

variables, L = 588, D = 768. 66
Figure 5.4: Action, measurement error, and model error of the shallow water model,

L = 550, D = 768. 67
Figure 5.5: Action, measurement error, and model error of the shallow water model,

L = 512, D = 768. 68
Figure 5.6: Measurements, estimates and predictions of an observed and an unobserved

variables, L = 512, D = 768. 69
Figure 5.7: Initial conditions of temperatures in ROMS twin experiments setup. 73
Figure 5.8: Initial conditions of velocities in x direction in ROMS twin experiments setup. 74
Figure 5.9: Initial conditions of velocities in y direction in ROMS twin experiments setup. 75
Figure 5.10: Nudging results on ROMS model with different number of measurements. . 77

vi

Figure A.1: Staggered grid points for shallow water model. 82

vii

LIST OF TABLES

Table 4.1: A table to summarize the setup of twin experiments for Lorenz 96 model. . 46

Table 5.1: A table to list the parameters of shallow water model. 63
Table 5.2: A table for the hyperparameters of shallow water model, using precision

annealing HMC method. 64
Table 5.3: A table to summarize the variables and parameters in the equations of ROMS

model. 71
Table 5.4: A table to summarize the configurations of the twin experiments on ROMS. 76

viii

ACKNOWLEDGEMENTS

I want to thank my advisor, Henry Abarbanel, for his tremendously helpful insight, advice

and support. Henry has always been guiding me through this long journey of graduate study and

providing valuable feedbacks. Without his guidance, I can never accomplish what I did.

I want to thank my committee member: Professors Philip E. Gill, Ken Intriligator, Gabriel

A. Silva, and Congjun Wu, for their time and effort.

I would like to thank Chris White and his team at Microsoft for their support.

I would also like to thank Zhe An, Zheng Fang and Adrian Wong for the inspiring

discussions and collaborations. Many thanks to all other colleagues in the group for the stimulating

discussions, questions and comments. You all together made my 4 years in the group a really

enjoyable experience.

Finally, I want to thank all my families and friends, for their endless support. I cannot be

who I am now without any of you.

Chapter 2-4, in part, has been adapted from Z. Fang, A. S. Wong, K. Hao, A. J. Ty, and

H. D. Abarbanel. Precision annealing monte carlo methods for statistical data assimilation and

machine learning. Physical Review Research, 2(1):013050, 2020 and A. S. Wong, K. Hao, Z.

Fang, and H. D. Abarbanel. Precision Annealing Monte Carlo Methods for Statistical Data

Assimilation: Metropolis-Hastings Procedures. arXiv preprint arXiv:1901.04598 (2019). The

author of this thesis was a co-first author of these papers.

ix

VITA

2014 B. S. in Physics magna cum laude, University of Illinois at Urbana-
Champaign, Urbana

2014-2019 Graduate Teaching Assistant, University of California San Diego

2020 Ph. D. in Physics, University of California San Diego

PUBLICATIONS

Z. Fang, A. S. Wong, K. Hao, A. J. Ty, and H. D. Abarbanel. Precision annealing monte
carlo methods for statistical data assimilation and machine learning. Physical Review Research,
2(1):013050, 2020.

A. S. Wong, K. Hao, Z. Fang, and H. D. Abarbanel. Precision Annealing Monte Carlo Methods for
Statistical Data Assimilation: Metropolis-Hastings Procedures. arXiv preprint arXiv:1901.04598
(2019).

x

ABSTRACT OF THE DISSERTATION

Data Assimilation and Precision Annealing Monte Carlo Method in Nonlinear Dynamical
Systems

by

Kangbo Hao

Doctor of Philosophy in Physics

University of California San Diego, 2020

Professor Henry D. I. Abarbanel, Chair

In the study of data assimilation, people focus on estimating state variables and parameters

of dynamical models, and make predictions forward in time, using given observations. It is a

method that has been applied to many different fields, such as numerical weather prediction and

neurobiology.

To make successful estimations and predictions using data assimilation methods, there are

a few difficulties that are often encountered. First is the quantity and quality of the data. In some

of the typical problems in data assimilation, the number of observations are usually a few order

of magnitude smaller than the number of total variables. Considering this and the fact that almost

xi

all the data gathered are noisy, how to estimate the observed and unobserved state variables and

make good predictions using the noisy and incomplete data is one of the key challenge in data

assimilation. Another issue arises from the dynamical model. Most of the interesting models

are non-linear, and usually chaotic, which means that a small error in the estimation will grow

exponentially over time. This property of the chaotic system addresses the necessity of accurate

estimations of variables.

In this thesis, I will start with an overview of data assimilation, by formulating the

problem that data assimilation tries to solve, and introducing several widely used methods. Then

I will explain the Precision Annealing Monte Carlo method that has been developed in the

group, as well as its variation using Hamiltonian Monte Carlo. Finally I will demonstrate a few

example problems that can be solved using data assimilation methods, varying from a simple

but instructional 20-dimension Lorenz 96 model, to a complicated ocean model named Regional

Ocean Modeling System.

xii

Chapter 1

Introduction

Systems with complex dynamical behaviors have gained interest in physics over the last

century. A well-known example is numerical weather predictions (NWP), the results of which can

be found probably every day on TVs or in the weather app on our phones. In order to describe the

system and solve some interesting problems, we will formulate a model with a set of mathematical

equations, usually a set of differential equations, to represent the evolution of the system and the

interactions between variables in the model. However, in many of these systems, our knowledge

is still limited and therefore a model representing the real system perfectly is not available. In

other cases, we may already know most details of a system from the studies over centuries, but

due to constraints like numerical instability or computing time, not all the knowledge can be

included in the model. As a result, in most of the study, if not all, we need to exclude the some

details of the system that are believed to be less important to the problems we focus on.

Now we have a model of the real system, although a imperfect one, but we are not done

yet. Most likely, people are interested in estimating the state of the system and making predictions.

Surely we can start at any point within the reasonable dynamical range, and integrating the model

forward will give us a path. But we have infinite many possible paths and we do not know which

1

one is the accurate predictions. To make good predictions, besides a relatively good model, we

also need to measure the state variables of the model at different time as our data. Then, using

these measurements, we can predict forward in time.

Unfortunately, additional problems arises in regard to the data. First, as one can imagine,

whatever equipment we used to measure the data, it is almost guaranteed that the data is inaccurate

with a certain level of noise. In some cases, as long as the noise is within the tolerance, we can still

use the noisy measurements along with the model to make decent predictions. However, when

facing a model with complex dynamical behaviors, usually the model is chaotic, and the presence

of noise will significantly hinder our ability of predicting, as the error will grow exponentially

fast. The properties of chaotic systems will be discussed in more details later in Chapter 2.

Another issue is that the measurements may be incomplete. For example, in a multi-layer

ocean model, after discretizing the 3-dimensional space, we usually need the two component of

horizontal velocities u, v, the pressure P, the temperature T and the salinity S at each grid point.

However, the sources of measurements greatly limit the accessibility of the data. One of the easily

accessible data is the satellite data, but it can only provide data at the surface of the ocean. If

this is the only source available, then before making predictions, we need to first have a fairly

accurate guess to the state variables from the layers in deep ocean, which is often very challenging.

We have gathered two key ingredients of the problem: a imperfect model and a set of noisy,

incomplete data within a time window. If our goal is to make predictions after the measurement

window, we need to first have good estimates of the state parameters at least at the end of the

measurement window, as well as all the unknown or inaccurate parameters in the model.

2

1.1 A Brief Overview of Data Assimilation

Data assimilation is a field originated from the study of NWP, which could solve the

problem we have stated above. Given the estimate of all the necessary state variables at a given

time, the study of NWP would use these estimates along with the model to predict the model’s

evolution in the future. Estimating the current state itself, however, is indeed a complicated

problem. In 1963, Lorenz [17] found that the model describing atmosphere is very sensitive

to initial conditions, which means the forecast error will grow in time and predictions will fail

eventually. This finding gives more importance to the study of state and parameter estimation,

as more precise estimations in initial conditions will result in reliable predictions for a longer

period of time. In order to find a better initial condition for forecast, people started to incorporate

observed data within a time window, and developed a variety of techniques, which are now known

as data assimilation, to estimate all the state variables and parameters as accurate as possible.

Then forecast can be made after the end of observation window.

The Cressman algorithm [3], a simple interpolation algorithm, is one of the earliest

attempt in data assimilation. Since then, benefiting from the progress in both theory and comput-

ing capability, many different data assimilation methods have been developed. These methods

all fall into two different main categories: sequential assimilation and variational assimilation [29].

In sequential assimilation, starting from the beginning of the observation window, the

state variables will be updated as moving towards the end of the window, using the measurements

and estimations at current time and from the past. In other words, no measurements will be used

to estimate the variables from the time before. The Cressman algorithm mentioned above is an

example of sequential assimilation. Other examples of commonly used ones are nudging [10],

Kalman filter [11], and ensemble Kalman filter [5].

3

Variational assimilation, on the other hand, takes a different approach. It will update

variables on all the measurements within the observation window, usually by minimizing a

cost function or action. In this case, the information from measurements can be carried both

forward and backward in time, but the computation cost would typically be higher than sequential

assimilation methods. An example of variational assimilation is four dimensional variational

(4D-VAR) [21]. In Chapter 3, I will discuss about the precision annealing method, which is

another example of variational assimilation methods.

1.2 Overview of the Dissertation

This dissertation contains 6 chapters. This first chapter is a brief introduction to the

problems we are trying to solve, with the attempts to address why data assimilation is important.

A brief overview of data assimilation is also provided.

The second chapter will explain in detail, the setup of the problems that data assimilation

tries to solve. An overview of nonlinear system and chaos is also discussed in this chapter, since

it is critical in understanding why we even need data assimilation. Then we will explain several

well formulated methods in data assimilation, as well as a probabilistic point of view of data

assimilation and its relation to path integrals, which provides some insight to the formulations of

the method we will describe in Chapter 3.

Chapter 3 will present the annealing method that has been developed over the past few

years within the group, starting with a brief introduction of already established variational an-

nealing method. Then we will discuss in detail of the Precision Annealing Monte Carlo (PAMC)

method, and its improvement by replacing Metropolis-Hastings algorithm with Hamiltonian

Monte Carlo.

4

Chapter 4 will introduce an instructional model in data assimilation, the Lorenz 96 model,

explain the setup and show the results using PAMC on the model.

Chapter 5 will discuss two of the more complicated model, the shallow water model and

Regional Ocean Modeling System (ROMS), as well as some results on those two models, using

PAMC method with Hamiltonian Monte Carlo and nudging method respectively.

Chapter 6 is the conclusion chapter, explaining the difficulties we have encountered when

moving to the models with higher dimensions and more complicated features, and discuss about

some possible improvements in the annealing methods we can explore in future work.

5

Chapter 2

Problem Formulation

To start describing the problem we are trying to solve in data assimilation, we first need a

model for the dynamical system, which usually consists of some differential equations.

dxa(t)
dt

= Fa(x(t),p) (2.1)

x(t) is a vector of state variables at time t, and p is a set of parameters. The subscript

a = 1,2, ...,D, where D is the number of dimensions of the model. In practice, we would usually

discretize the model into a finite number of time steps, {t0, t1, . . . , tF}. Then the discretized version

of equations 2.1 is

xa(n+1) = fa(x(n),p) (2.2)

where n = 0,1, . . . ,F representing the time step tn.

Along with the model, we also have a set of measurements Y≡ {y(τ1),y(τ2), . . . ,y(τM)}

within the time window, at time t0 ≤ τk ≤ tF for k = 0,1, . . . ,M. This setup is illustrated in Figure

2.1 For the rest of the chapter, if the model is discretized in time, we shall denote y(τk) as y(k),

6

and x(tn) as x(n) for simplicity. The goal of data assimilation is to transfer information from

measurements Y to the model, or in other words, to synchronize the model to the measurements,

so that we could estimate the state variables x(t) and parameters p.

Figure 2.1: A illustration of the problem setup during the time window t0 ≤ t ≤ tF . Measure-
ments are made in L dimensions at times t = τk, where 0≤ k ≤M and t0 ≤ τk ≤ tF . The model
in D dimension is integrated forward following equations 2.2.

As we have already introduced in Chapter 1, there are a few issues about the model and

measurements I would like to address again here:

1. Among all the parameters in p, some of them may be unknown. Also the model can

be inaccurate and has errors itself. One of the typical sources of error would be the

discretization in time or space.

2. The measurements are noisy, from the equipment we use to take measurements. Usually, as

a reasonable approximation to simplify the problem, we would assume the noise follows

Gaussian distribution.

7

3. The measurements are incomplete. For each y(τk), there are only L variables measured,

where L < D and often L� D. For example, in a typical meteorology model dealing with

real data, the number of measurements is typically two order of magnitude smaller than the

total number of variables [12].

Taking these constraint into consideration, we will make a slight modification to Eq. 2.2:

xa(n+1) = fa(x(n),p)+η (2.3)

where η represents the error in the model. Similarly, we can write the measurements y(k) as

y(k) = Hx(k)+ ε (2.4)

H is the observation matrix and ε is the noise in measurements. In many cases, the

observation matrix H is simply a projection matrix, and is very likely not a full rank matrix since

the measurements are incomplete.

2.1 Nonlinear Systems and Chaos

In most of the interesting problems, the underlying models are nonlinear, which means

that the Eq. 2.1 is a set consisting of non-linear differential equations. To better discuss the

behaviors and properties of nonlinear dynamical systems, I will first start explaining some basic

concepts.

2.1.1 Trajectory and Phase Space

In general, the state of a nonlinear model at time t can be determined by its state variables

x(t) and their time derivatives ẋ(t). The {x, ẋ} space is called the phase space.

8

Starting from a position in the phase space as the initial condition, integrating the dynami-

cal equations Eq. 2.1 over a time period, we will find a solution x(t) as well as ẋ(t), which forms

a line in the phase space. Since usually the model has a large number of state variables, the phase

space is a high dimensional space. In practice, however, it is useful to project the trajectory down

to a two dimensional space {xi, ẋi}. The plot of the trajectory in such space can tell us its behavior

even though it may not represent all of its structure in the whole phase space.

If the trajectory passes a point in the phase space where ẋi(t) = 0 for all i, then we will

call the point as a fixed point. Once the system is at the fixed point, it reaches the equilibrium

state and will not move away, since the time derivative is 0 for all state variables.

Fixed points can be classified into two categories based on the behavior of the system in

its vicinity. If the trajectory starts near a fixed point and converges to the fixed point, we will say

the point is attracting. This point is also stable, because if we make a small perturbation away

from the point, the trajectory tends to move back close to the fixed point. On the other hand, if

the trajectory diverges from a fixed point nearby, the point is said to be repelling. It is a unstable

fixed point as well, since a small perturbation will drive the trajectory away from the point.

Sometimes the trajectory performs a periodic behavior, which falls into the category of

limit cycles. A limit cycle is defined as an isolated closed trajectory [28]. Isolated refers to the

fact that there are no nearby closed trajectories. As a result, by this definition, a limit cycle

will only appear in non-linear systems, even though a linear system can still have closed orbits.

Similar to the fixed points, we can say a limit cycle is attracting or repelling, if all trajectories

close to the limit cycle are moving towards or away from it.

9

Attractor is another useful concept. Usually, in a non-linear system, the trajectory will

only travel in a small subset of the whole phase space. This small subset is intuitively called an

attractor. As in [28], a attractor is defined to be a minimal invariant set that attracts an open set

of initial conditions. Here, attracting an initial condition means that if we start from that initial

condition x(0), the distance between the attractor and the point on the trajectory x(t) goes to 0

as t→ ∞. Moreover, if an attractor has sensitive dependence on the initial condition, it will be

defined as a strange attractor [28], a concept closely related to chaotic systems.

2.1.2 Chaotic Systems

In many situations, in fact, probably most of the interesting cases, the system cannot be

described by the motion around a fixed point. Instead, the trajectory will exhibit a structured yet

aperiodic behavior. It is worth noting that this aperiodic behavior is not due to any noisy inputs,

but arises from the nonlinearity of the system itself. In this case, the system will be defined as a

chaotic system.

The chaotic behavior has another important property: the sensitive dependence on the

initial conditions. It means that, given two initial conditions, x1(0) and x2(0), with a very small

difference in the state variables, the distance between the two trajectories will grow linearly in

time:

|x2(t)− x1(t)| ∼ |x2(0)− x1(0)|eλt (2.5)

To explain the role of λ here, let’s imagine a infinitesimal sphere around an initial con-

dition in the phase space. As moving along the trajectory, the sphere will change its shape to

a D-dimensional ellipsoid, where D is the number of state variable in the system. There are D

principle axis of the ellipsoid, which are named as Lyapunov exponents. λ in Eq. 2.5 is therefore

10

the largest Lyapunov exponent, and it has to be positive in this case, since we know the error is

growing exponentially in a chaotic system.

It is also worth pointing out that the distance between two trajectories will not grow

exponentially forever. The limit of the distance is the diameter of the attractor. After it reaches

the limit, the distance will saturate and stay at that level.

The sensitive dependence on the initial condition dooms our ability to predict the behavior

of any chaotic system. As one can easily imagine, no matter how accurate we can estimate the

initial condition, there will always be error in the estimations due to the measuring method and

equipment. The error, however small it is, will grow exponentially fast and eventually cause

any prediction to fail. Therefore, if we have a time window with measurements, and want to

predict how the system will evolve later, all we can do is to estimate the variables and parameters

as accurate enough as we can during the measurement window, so that the predictions can be

relatively good for a long enough period that we care about.

2.1.3 An Simple Example: the Lorenz 63 System

The well-known Lorenz 63 system is a perfect example to illustrate the ideas in nonlinear

systems that we have seen above. As the name suggested, the model is proposed by Edward

Lorenz in 1963, in order to describe the atmospheric convection [17]. It contains three ordinary

differential equations:

dx
dt

= σ(y− x)

dy
dt

= x(r− z)− y

dz
dt

= xy−bz

(2.6)

11

where x, y and z are variables proportional to the intensity of the convective motion, the tempera-

ture difference and the distortion of the vertical temperature respectively [17]. The parameter σ is

the Prandtl number, r is the Rayleigh number, and b is a dimensionless constant [27].

This system shows several interesting properties. One of these that has been studied a

lot in the past is the fact that it behaves significantly differently with different parameters, and

therefore could be used here to demonstrate the different behaviors of the nonlinear systems that

we discussed above. For convenience, we will keep σ = 10, b = 8/3, and vary r for the following

discussion.

When r is small but larger than 1, the system will have two stable fixed points. In Fig.

2.2, r is equal to 10, The trajectory starts from the initial condition at (x,y,z) = (1,1,1), and is

integrated for 40 unit time with a integration time step of 0.001 using the fourth order Runge-Kutta

method. The top left figure shows the trajectory in the x-ẋ space. It is clear from this graph that

the trajectory is attracted to one of the fixed point, and the graph on the top right, which is the

zoom-in trajectory of the last 10 unit time, further confirms it. The graph on the bottom shows the

time evolution of the x variable. We can see that the value oscillates first, but eventually converges

asymptotically to the fixed point.

In the opposite regime where r is large, the behavior of the system is quite complicated. It

has been shown that there are some range of r that could result in a periodic trajectory [28]. In Fig.

2.3, we selected r = 300 and integrated again for 40 unit time. The trajectory seems to fall into a

limit cycle after some time. To further show this, the trajectory of last 30 unit time is plotted on

the top right, and it is evident that the system is already in the limit cycle after the first 10 unit time.

For some other choice of r, the system becomes chaotic. In Fig. 2.4, we have chosen

12

Figure 2.2: The trajectory of Lorenz 63 system.σ= 10, b= 8/3, r = 10. Top left is the trajectory
in x-ẋ space for 40 unit time. Top right is the same trajectory, but only shows for the last 10
unit time. Bottom is the graph of variable x over time. For this set of parameter, the trajectory
converges to a fixed point.

13

Figure 2.3: The trajectory of Lorenz 63 system.σ = 10, b = 8/3, r = 300. Top left is the
trajectory in x-ẋ space for 40 unit time. Top right is the same trajectory, but only shows for the
last 30 unit time. Bottom is the graph of variable x over time. In this case, the trajectory moves
in a limit cycle.

14

Figure 2.4: The trajectory of Lorenz 63 system.σ= 10, b= 8/3, r = 28. Top left is the trajectory
in x-ẋ space for 40 unit time. Top right is the same trajectory, but only shows for the last 10
unit time. Bottom is the graph of variable x over time. The system is chaotic for this set of
parameters.

15

Figure 2.5: Comparison between time series of x for r = 300 and r = 28. Top: r = 300. Bottom
28. The two trials differ by 0.0001 in each plot.

r = 28, which is the value used in the original paper written by Lorenz [17]. For this set of

parameters, the system is in the chaotic regime. As we can see in the top left and top right, which

is the trajectory of 40 unit time and the last 10 unit time respectively, during the whole period

of time that we simulated, the trajectory is highly structured and moves around two attractors,

but it does not orbit in a periodic behavior, which is clear from the top right graph: the trajectory

never really overlap like it does in a periodic behavior in Fig. 2.3. The x vs time graph at bottom

can also be an evidence to this fact. We can see that the trajectory first takes about 13-14 unit

time orbiting around the attractor in the negative x region. Afterwards, when it reaches some

critical distance from the attractor, it leaves the attractor, and starts to moves between the two

attractor in a chaotic behavior, as there is apparently no periodic cycle shown from 14-40 unit time.

Fig. 2.5 shows the time plot for two different initial conditions, differing by 0.0001, in

both cases when r = 300 and r = 28. As expected, when the trajectory is periodic when r = 300,

the error between two trials stays at a constant level, and the two trajectories almost overlap with

each other on the plot. On the other hand, in the chaotic regime, as it is sensitively dependent on

the initial condition, we can find that, after the trajectories start to move around the two attractors,

16

Figure 2.6: Distance between the two trajectories in Fig. 2.5 when r = 28 and r = 300. Y axis
is in log scale.

the distance between the two trajectory diverges very fast and start to be distinguishable after

about 20 unit time.

Fig. 2.6 plotted the distance between the two trajectories over time in both cases. When

r = 300, it oscillates at the level around 10−3 to 10−2, due to the periodic behavior. When r = 28,

it is clear that the distance starts to grow rapidly from 13 unit time, which coincide with the time it

leaves the initial attractor it orbiting around. Then the distance fluctuates and grows exponentially,

as the expected behavior of a chaotic system, until it reaches the level close to the size of the

attractor at around 10 to 50.

2.2 Probabilistic Approach

Another way of solving the problem is from probabilistic perspective. For convenience,

we shall define the following notation: Y(k)≡ {y(0),y(1), . . . ,y(k)} as the measurement from

17

the beginning of the measurement window to time τk and X(k)≡ {x(0),x(1), . . . ,x(k);p} as the

set of parameters and state variables starting from t0 to tk. In order to transfer information from

measurements to the model, we need the conditional probability distribution P(X |Y).

Now, leveraging the Markov property of equations 2.2, we could write down the condi-

tional probability P(X(k+1)|Y(k+1)) as [1]

P(X(k+1)|Y(k+1)) =
P(x(k+1),y(k+1),X(k)|Y(k))

P(y(k+1)|Y(k))
·

P(x(k+1)|x(k))P(X(k)|Y(k))
P(x(k+1),X(k)|Y(k))

(2.7)

If we use Shannon’s conditional mutual information, which is defined as CMI(a,b|c)≡

log
[

P(a,b|c)
P(a|c)P(b|c)

]
[7], then CMI(y(k+1),x(k+1),X(k)|Y(k)) is:

CMI(y(k+1),x(k+1),X(k)|Y(k))≡ log[
P(x(k+1),y(k+1),X(k)|Y(k))

P(y(k+1)|Y(k))P(x(k+1),X(k)|Y(k))
] (2.8)

Shannon’s conditional information tells us how much information we obtain about a when

b is measured conditioned on c. In this context, it shows that the information can be transferred

from the measurements Y(k+1) to the state variables and parameters x(k+1).

Using Eq. 2.8 we can simplify Eq. 2.7 as

P(X(k+1)|Y(k+1)) = exp[CMI(y(k+1),x(k+1),X(k)|Y(k))]·

P(x(k+1)|x(k))P(X(k)|Y(k))
(2.9)

The recursion relation that we have derived in Eq. 2.9 can help us write down a expression

for P(X|Y):

18

P(X|Y) ∝

{
F

∏
k=1

P(y(k) |X(k) ,Y(k−1))
F

∏
n=1

P(x(n)|x(n−1))

}
P(x(0)) (2.10)

Eq. 2.10 can also be written as P(X|Y) ∝ exp[−A(X)], where A(X), the negative log

likelihood, is the definition of the action. Derived from Eq. 2.7,

A(X) =−
F

∑
k=1

{
log [P(y(k) |X(k) ,Y(k−1))]−

N

∑
n=0

log[P(x(n+1)|x(n))]

}

− log[P(x(0))]

(2.11)

To simplify the expression for A(X) in Eq. 2.11, we will assume that the noise in the

model and measurements are Gaussian noise with zero mean and diagonal precision matrix R f

and Rm respectively. Then Eq. 2.11 can be further written as

A(X) =
F

∑
k=1

L

∑
l=1

Rm(l)
2

(xl (k)− yl (k))
2 +

N−1

∑
n=0

D

∑
a=1

R f (a)
2

(xa(n+1)− fa(x(n),p))2 (2.12)

where Rm(l) represents the lth diagonal elements of the precision matrix Rm, and R f (a) represents

the ath diagonal elements of R f . The two terms will be referred to as measurement error and

model error respectively. Here, the term − log[P(x(0))] is omitted because it actually does not

affect any result, as we will see soon.

Suppose we now have a function of interest G(X). Its expected value along the path X

given measurements Y is

19

E[G(X)|Y] = 〈G(X)〉=
∫

dXG(X)e−A(X)∫
dXe−A(X)

(2.13)

where dX = ∏
N
n=0 dDx(n) and all other parts in the action cancel out in the denominator and

numerator. If we replace G(X) with xa(n) or a single parameter p, then Eq. 2.11 will give us the

expected value of the state variable or the parameter, which is important in data assimilation.

2.3 Evaluating the Path Integral

Now our goal becomes evaluating the path integral in Eq. 2.13. There are a few challenges

in doing that. One of them is the large number of dimensions in X space. For example, in

Lorenz 96 model that we typically used to test our methods, a normal setup we will choose is 20

variables with 200 time steps. Then the number of dimensions in X space is 4000. In a model

that describes the underlying dynamics more accurately but also more complicated, the number is

usually several order of magnitude higher.

Another challenge is the non-linearity of A(X). While both terms in A(X) are quadratic,

the model fa(x(n),p) is non-linear in most interesting problems, and therefore the integral in Eq.

2.13 is not Gaussian.

In general, there are two useful methods to evaluate this integral, which is high dimen-

sional and non-linear: Laplace’s method [14] and Monte Carlo sampling [13] [22] [34].

The Laplace’s method states that

20

∫ b

a
h(x)eMg(x)dx≈

√
2π

M |g′′ (x0)|
h(x0)eMg(x0) as M→ ∞ (2.14)

where x0 is the global minimum of function g(x).

Applying the approximation to the integral 2.13 and canceling out the identical terms, we

can find 〈G(X)〉 ≈ G(X0), where G(X0) corresponds to the path that gives the global minimum

of the action.

Laplace’s method turns the integral into a problem of finding the global minimum, which

can be solved by some well-developed optimization routine such as L-BFGS [16], but it has

several drawbacks.

The first disadvantage is that most optimization methods require calculating or approx-

imating Hessian matrix, which needs a large number of computing time and memory space.

The amount of memory and computing time required is reasonable for a problem that has 4000-

dimension variable space, like the Lorenz 96 model I mentioned before. When the number of

dimension grows larger, the requirement will increase drastically and become unrealistic at larger

scales.

Another drawback is that, while we find the global minimum of A(X) as the dominant

contribution to the integral, the conditional probability distribution around the minimum is not

sampled. If we want to evaluate the corrections to this dominating contribution, the perturbation

methods are in need. the convergence rate of such methods, however, is very sensitive to the form

of A(X).

Monte Carlo sampling provides another way to evaluate the integral 2.13, which has been

21

utilized for decades [19] [8] [22]. The well-developed Metropolis-Hastings Monte Carlo method

[19] [8] can estimate the conditional probability distribution P(X|Y) by starting from a random

place in X space, making random walk proposals, and accepting or rejecting the proposals with a

probability based on detailed balance:

π
(
s′
)

P
(
s′,s
)
= π(s)P

(
s,s′
)

(2.15)

Here, π is a stationary distribution, and P(s,s′) is the transition probability from state s

to state s′. This detailed balance condition assures the Markov chain to be reversible. After a

sufficient number of proposals, we will have a good estimation on the expected value 〈G(X)〉, and

the corresponding error will be proportional to the inverse square root of the number of proposals.

2.4 Data Assimilation Methods

In this section, I will talk about a few well established and widely used data assimilation

methods, including two of the mostly discussed methods: the Ensemble Kalman Filter, and the

4-Dimensional Variational method.

2.4.1 The Nudging Method

In order to achieve the synchronization between the model and the measurements, an

intuitive way would be to modify our model by adding a term that couples the estimated variables

with the observed data. This is the basic idea of a commonly used method, nudging or Newtonian

relaxation [10]. Using the nudging method, the equation of the model will be modified as

xa(n+1) = fa(x(n),p)+δalδkng(t)(yl(k)− xa(n)) (2.16)

22

l denotes the index of measured L variables. The two Kronecker delta indicates that we

only apply nudging when there is a measurement. g(t) is the nudging coefficient to control the

strength of the nudging terms, which is usually chosen empirically. If it is too small, then the

error in the estimates would become too large before the nudging is effective. On the other hand,

if g(t) is too large, then the estimates would be driven too rapidly to the measurement, and the

model may not have time to adjust [12].

If there is enough measurements, then the synchronization between the model and the

measurements will be achieved in all dimensions, despite being observed or not, under the effects

of nudging. Fig. 2.7 is a demonstration of the nudging results on Lorenz 96 model [18], a

instructional model in meteorology that I will discuss more in detail in Chapter 4. We can see that

all the variables shown are synchronized to the measurements, even for the unobserved variables,

where the initial guesses are far from the actual values.

2.4.2 Ensemble Kalman Filter

Ensemble Kalman Filter, first proposed by Evensen [5], is a widely-used data assimilation

methods in the study of meteorology. It is a Monte Carlo approach developed based on the

Extended Kalman Filter, which is easier to implement and more computationally efficient.

We will still write the system in the way we wrote Eq. 2.3 and 2.4, but specify the error in

each time step here:

x(n) = F(x(n−1))+ηn

y(n) = Hx(n)+ εn

(2.17)

Both the dynamical equation and the equation for measurements above are written in the

vector form. Therefore, the matrix form F is used to represent the dynamics of the system. n

23

Figure 2.7: Nudging results on Lorenz 96 model, with 14 out of 20 variables measured.
Black lines are the estimated paths, yellow lines are the actual paths, and blue dots are the
measurements with noise on the actual paths. x6 and x9 are unobserved variables, while the
other three are observed. It is clear that the synchronization is achieved on all variables at the
end of measurement window.

24

denotes the nth time step. ηn and εn denote the error or noise in the measurements and model

respectively at time step n.

The traditional Kalman Filter involves two steps: predicting the current state variables

and covariance matrix based on the past analysis, and updating the current state variables and

covariance matrix following the analysis scheme, which will be described soon. In this section, I

will use the similar notation as in [6]. x f and C f are the variables and covariance matrix of the

predicted or first guess values.xa and Ca are the corresponding updated or analyzed values. Then

the prediction step can be formulated as

x f (n) = F(xa(n−1))

C f
x (n) = FCa

x(n−1)FT +Cε(n−1)
(2.18)

where Cx(n) and Cε(n) are the covariance matrix of the variables and error in model respectively

at time step n.

After the prediction step, we need to update the variables and covariance matrix:

K = C f
x (n)H

T (HC f
x (n)H

T +Cε(n))−1

xa(n) = x f (n)+K(y(n)−Hx f (n))

Ca
x(n) = (I−KH)C f

x (n)

(2.19)

In Eq. 2.19, I is the identity matrix, and matrix K is called the Kalman gain. This regular

Kalman Filter method, nevertheless, only works for linear models. In order to apply to the

nonlinear systems, we need to use the extended Kalman Filter.

If we denote the Jacobian of F at time t as F′t , neglecting higher order terms, the extended

Kalman Filter will just have a different prediction step, which can be written as

25

x f (n) = F(xa(n−1))

C f
x (n) = F′n−1Ca

x(n−1)F′Tn−1 +Cε(n−1)
(2.20)

The implementation of Extended Kalman Filter has a few disadvantages that people have

encountered. One of them is the huge amount of computation time and space required to do

the integration of the covariance matrix related to the Jacobian of the model, which is a large

matrix multiplication in a high-dimensional space. The Ensemble Kalman Filter method is thus

developed to solve this issue.

In the Ensemble Kalman Filter method, we need to first form an ensemble of measurement

with N members.

y j = y+ ε j (2.21)

where j = 1,2, ...,N, and ε j is random noise with mean equal to 0 and covariance equal to Cε.

The ensemble covariance matrix for the measurement noise therefore is

Ce
ε = εεT (2.22)

The prediction step of x f is still the same for each ensemble member. Then, instead of

calculating the covaraince matrix C f
x (n) at each time, we use an ensemble estimation:

Ce f
x = (x f −x f)(x f −x f)T (2.23)

Now, the update steps are

26

Ke = Ce f
x HT (HCe f

x HT +Ce
ε)
−1

xa = x f +Ke(y−Hx f)

Cea
x = (I−KeH)Ce f

x

(2.24)

In the equations above, the time label is omitted for simplicity, since in the analysis step,

the time step is the same for all the matrices and vectors.

2.4.3 4-Dimensional Variational (4D-VAR) Method

In the previous sections, I have introduced several sequential data assimilation methods

that are commonly used. Now, I would like to discuss about a variational method, the 4D-VAR

method.

The 4D-VAR data assimilation has been applied extensively in the study of meteorology

[21]. In general, it seeks to optimize a cost function which represents the error in the measure-

ments and the model.

In the formulation of 4D-VAR, the assumption of Gaussian noise is assumed. Therefore,

the cost function is similar to Eq. 2.12:

A(X) ∝ Rb|x0−xb|2 +
N

∑
n=0

Rm|Hx(n)−y|2 +
N−1

∑
n=0

R f |x(n+1)−Fx(n))|2 (2.25)

In the equation above, there is one more term compared to Eq. 2.12: Rb|x0−xb|2. This

term, the ’background’ term, represents the deviation from the estimated initial condition xb.

Now that we have a cost function, what is left is to minimize it with respect to x(n), for

27

n = 0,1, ...,N, and there are a variety of methods for this purpose. For example, the conjugate

gradient descent with Lanzcos algorithm is used in [21].

The use of Eq. 2.25 without any further assumption is usually referred to as the weak

constrained 4D-VAR method. the term ”weak” is simply stating the fact that we allow our model

to have error. In other words, we have a finite value of R f . However, this approach cannot be

applied to high dimensional problems, as the memory required is O((N +1)D), which makes it

impractical for some real applications, such as weather forecasts where D can be over 106 [12].

In such cases, a further simplification to Eq. 2.25 can be used. If we assume that the model is

almost perfect, then in the limit of R f → ∞, the cost function becomes

A(X) ∝ Rb|x0−xb|2 +
N

∑
n=0

Rm|Hx(n)−y|2 (2.26)

under the constraint x(n+1) = Fx(n).

In this formulation, the cost function is then only a function of the initial condition, which

reduces the memory usage to O(D). This method is called the strong constrained 4D-VAR

method, as it makes an assumption that the model is perfect, thus acts as another set of constraints

to the cost function.

Even though we can barely propose any perfect model, the strong constrained 4D-VAR

method usually performs reasonably well, and therefore has an extensive use in the study of

meteorology [21] [24].

28

2.5 Twin Experiments

While we are developing methods and algorithms for experimental data, it is usually not

effective to test and improve the methods themselves using real experimental data. The reason is

that the real world is usually much more complicated than we could describe using models, and

there are always unknown underlying dynamics that are not accounted by models. If we use real

data and our technique fails, we are not able to know if it is due to the technique we use, or from

the wrong or incomplete model. Therefore, an idea called twin experiments can be used to test

our data assimilation methods [1].

To do twin experiments, we will first generate a true path by integrating forward using

the underlying dynamical model, Eq. 2.1. By tuning the initial conditions and parameters in the

model, we can conveniently generate a true path in the regime that we are interested in. Then

random noise, usually Gaussian, will be added to the true path as our measurements. Lastly,

we will use part of these ”measurements” to test our data assimilation methods as the available

incomplete and noisy data.

The twin experiments will not only test the effectiveness of our methods, it will also

provides important information of the model itself, like how many measurements are necessary in

order to make good predictions. After validating the model using the twin experiments, it is then

ready to work on the real experimental data, which is generally much more complicated. This

workflow from the twin experiments to real experiments has been used and succeeded [20].

29

acknowledgements

Chapter 2, in part, has been adapted from Z. Fang, A. S. Wong, K. Hao, A. J. Ty, and H. D.

Abarbanel. Precision annealing monte carlo methods for statistical data assimilation and machine

learning. Physical Review Research, 2(1):013050, 2020 and A. S. Wong, K. Hao, Z. Fang, and

H. D. Abarbanel. Precision Annealing Monte Carlo Methods for Statistical Data Assimilation:

Metropolis-Hastings Procedures. arXiv preprint arXiv:1901.04598 (2019). The author of this

thesis was a co-first author of these papers.

30

Chapter 3

Precision Annealing Method

In this chapter, I will discuss about the precision annealing method. The idea is to do

annealing on R f of the model error term in Eq. 2.12. As we have mentioned in Chapter 2, either

Laplace’s method or Monte Carlo sampling can be combined with precision annealing. I will first

briefly talk about variational annealing, which uses Laplace’s method. Variational annealing is

first proposed in [23] and has succeeded in several different problems [31] [32]. Then I will focus

on Monte Carlo precision annealing (PAMC) method, which, as the name suggests, uses Monte

Carlo sampling instead of Laplace’s method.

3.1 Variational Annealing

For the problem setup we have introduced in the previous chapter, it is shown that the

expected value of a function 〈G(X)〉 can be approximated as G(X0) where X0 is the path in which

the action A(X) defined in Eq. 2.12 takes its global minimum. Now the problem is converted to

an optimization problem, where the global minimum needs to be found, but the non-linear model

fa(x(n),p) makes this task very difficult, as it may contain several or many local minima, and

therefore is hard for any optimization algorithm to find the global minimum.

31

Variational annealing is a method that would alleviate this issue. By starting from a

small value of R f , the measurement error will dominant in the action. Since the measurement

error is quadratic, the optimization algorithm can easily find the global minimum near the mea-

sured values. However, as we have a small coefficient in the model error, the square error

(xa(n+1)− fa(x(n),p))2 may be relatively large, meaning that the estimated path does not fol-

low the dynamical model well.

Then, the value of R f will be adiabatically increased, while the optimization routine keeps

tracking the minimum of the action. Eventually, when R f is large enough, for instance, a few

order of magnitude larger than Rm, the model error will dominant in the action, and the minimum

we arrive at should contain a very small model error, which means that the path is now strictly

following the model within the tolerance.

The whole procedure of variational annealing can be summarized as below:

1. Initialize the path X0 in the following way: For the measured variable xl , set the value to

the measurement, xl(t) = yl(t). For the unmeasured variable, initialize its value randomly

from a uniform distribution within the dynamical range of the variable. The action A(X0)

on this initial path is calculated.

2. Starting from a small value R f = R f 0, the optimization procedure is performed on the

initial path X0, to minimize the action. Typical values we use for R f 0 are usually 2-3 order

of magnitude smaller than the Rm value. We will call the resulting path as X1, and the

corresponding action A(X1) is recorded.

3. The value of R f is then increased from R f 0 to R f 0α, where α > 1 is a constant. The

optimization procedure is again performed on X1, leading to a new path X2, with the

minimized action A(X2).

32

4. R f is increased in the same manner until to R f 0αβ for a large enough β. Each path Xβ and

its action A(Xβ) are stored. Empirically, the final value of R f is several order of magnitude

larger than Rm, to ensure we find a solution with small model error.

We shall note that, the variational annealing method inherits all the disadvantages of the

Laplace’s method we have mentioned in Chapter 2. As a result, it is not suitable for problems with

large number of dimensions, which is the motivation of developing its Monte Carlo alternatives,

the precision annealing Monte Carlo method.

3.2 Precision Annealing Monte Carlo (PAMC)

As shown in Chapter 2, Monte Carlo method could replace Laplace’s method in evaluating

the path integral, which is the basic idea of PAMC. The procedure of PAMC is similar to the

variational annealing, but I will go into more details at each step.

3.2.1 Initialization of Paths for PAMC

When the path is initialized, we would like it to represent the minimum of action at R f = 0,

since that is the actual starting point of the annealing procedure. When R f = 0, the only term

in the action is the measurement error. As a result, the path X0 to minimize the action need to

satisfy xl(t) = yl(t) for a measured variable xl . For unmeasured variables, because they do not

appear in the measurement error, the action level is degenerate in those directions and any choice

would minimize the action. This is the reasoning behind the initialization of variational annealing.

In PAMC we would slightly revise this initialization process.

33

Even though we can start anywhere using the Monte Carlo method and eventually it will

give a good estimate on the expected value, the time it takes may be undesirably long if we

are unfortunate and start from a position far away from the dominating peak in the distribution.

Initializing the observed variables to the measurements will guarantee that we start from a position

close to the region that will contribute most to the path integral. Random choices of unobserved

variables, nevertheless, are usually not the best options. Hence in practice, we will use the

following way to initialize the path.

First, we still choose randomly from a uniform distribution at the beginning of the mea-

surement window, construct a D-dimensional vector in the way we have described above, where

D is the number of state variables in the model. We denote this vector as x(0).

Then, we integrate the model forward as f (x(0),p) and replace the measured variables

with yl(1) to get the state variables x(1). The same step is repeated: integrate forward for one

time step, and replace observed variables with measurements, until the end of the time window.

These vectors x(0),x(1), . . . ,x(n) together form the initial path X0.

Instead of randomly choosing the unobserved variables, the above method constructs a

path that has 0 model error for those unobserved variables even if R f is not 0, and thus would

have a higher probability to be close to the dominating part of the path integral.

Another thing worth noting is that, for both variational annealing and PAMC in practice,

we would choose NI different initial paths rather than just one, which will be written as X (i)
0 , for

i = 0,1, . . . ,NI . The reason for this will be explained later in this chapter.

34

3.2.2 R f = R f 0, the First Step Using Monte Carlo Method

Now we begin with a small R f 0. In PAMC, practically we use a larger R f 0 value than that

is used in variational annealing, usually about 0.1Rm. There are two reason for this choice. First,

we have already initialized the path in a way to minimize the action. So the initial path X0 ideally

should be close to the final path at large R f . Thus a very small R f 0 to reduce the non-linearity

is not necessary. Second, because the Metropolis-Hastings Monte Carlo algorithm uses random

proposal to choose a new path, if R f 0 is very small, in the direction of unobserved variables, there

is a decent probability that the proposal will wander off from the region around the dominating

peak, and therefore lead to difficulty in estimating the path integral when we increase the R f

value later.

At this point, we will use the Metropolis-Hastings procedure to propose new paths. The

changes ∆x from the old path to the new path are chosen uniformly from [−δa,δa], where δa

is the random proposal step size for state variable xa. To achieve a higher acceptance rate and

therefore faster run time, the proposed changes are made one variable at a time. After the change

is proposed, namely to replace xa with x′a = xa +∆xa, the new action is calculated and so does

the difference in action dA = A(Xnew)−A(Xold). This change is then accepted with a probability

P = min(1,exp(−dA)). If it is accepted, the variable xa will be updated to x′a. Otherwise it will

stay as xa. After all components in path X0 are updated, we arrive at a new path, which shall be

labeled as X1,1.

The same procedure will be repeated until we have Nit different new paths, X1,i for

i = 0,1, . . . ,Nit . The value of Nit is chosen empirically for different problems, so that we have

enough paths to estimate the expected value, and not too many to result in unnecessarily long

computing time. Then the path X1 to start the next step of annealing procedure is calculated as

35

X1 =
1

Nit

Nit

∑
i=0

X1,i (3.1)

The step size for random proposal δa is also a crucial choice in our Monte Carlo procedure.

If it is too large, then the acceptance rate will be very low near the global minimum of the action,

and results in overly high contribution from the path near this region. If it is too small, the number

of paths Nit needed will be very high and cause a longer computing time. A solution to this issue

is described in [23]. The idea is to add a initialization phase before the Nit proposals. During this

time, the updated paths will not be counted into the calculation of X in Eq. 3.1. The paths will be

divided into smaller blocks during the initialization phase. Within each block, the acceptance rate

faccept for each variable is calculated, and the step size will be updated at the end of the block

using the following update rule.

δa← δa(1+ γ(faccept− f0)) (3.2)

γ is a constant to control how drastic we want to adjust the step size, and f0 is the ideal

acceptance rate we aim for, which is usually set to be 0.5. If the ideal acceptance rate is reached,

at the end of initialization phase the change in step size should be small.

3.2.3 R f = R f 0αβ, Continuing the Annealing Procedure

After we find X(i)
1 for each of the distinct initial paths, the same Monte Carlo procedure is

applied after we increase R f to R f 0α, and we will get X2 after another Nit updates. we continue

in this manner, until β is large enough. The final average path we will use is then

Xβ =
1

Nit

Nit

∑
i=0

Xβ−1,i (3.3)

For any quantity G(X) of out interest, we can find its expected value in the same way

36

〈G(X)〉= 1
Nit

Nit

∑
i=0

G(Xβ−1,i) (3.4)

3.2.4 Change in Action as R f Increases

A natural question to ask is, how we will know that β is large enough. Some evidence can

be found in the change in action. At the beginning, since we do not force the model strictly, the

model error is comparable to the measurement error or even larger than the measurement error.

Later when we increase the value of R f , the model error starts to play a more and more important

role in the action. The paths that contribute most to the path integral will then be those near the

global minimum of the action, where the model error is zero. As a result, while the model error

decrease as increasing R f , the total action will increase and asymptotically reach a constant value.

The expected asymptotic value that is independent of R f can be calculated. At large R f , as

the model error essentially goes to zero, the remaining part in the action is then the measurement

error

A(X) =
F

∑
k=1

L

∑
l=1

Rm(l)
2

(xl(k)− yl(k))
2 (3.5)

Because Rm is set to be the precision matrix of the measurements, it will follow a χ2-

distribution. Therefore, the expected value of the action will be

〈A(X)〉= 1
2

FL (3.6)

However, if the number of measurements L is not enough, not all initial paths will find

the global minimum. Some may actually sampling around a local minimum and is stuck there.

Then during the transition from the situation where we have enough measurements to where

we do not, we will see the actions from NI different initial conditions start to split, and reach

37

different asymptotic level. In some other cases, some of those trials may not even find a local

minimum with zero model error. Then those actions will grow exponentially as β increases. Both

of these behaviors indicate that we need more measurements to perform better estimations and

predictions.

3.2.5 Summary of the PAMC Procedure

To summarize, the PAMC method works as follows:

1. Initialize NI different initial paths X(i)
0 for i = 0,1, . . . ,NI , using method described in section

3.2.1.

2. Starting from a small value R f = R f 0, after the initialization phase to determine a good step

size δa for each variables xa, a proposal to change one variable xa at a time by δx is made,

where δx is drawn from a uniform distribution [−δa,δa].

3. The change in action dA is evaluated, and the proposal to update xa is accepted with

probability Paccept = min(1,exp(−dA)).

4. After all variables at all time steps are updated, we get a new path X(i)
1,1.

5. Repeat steps 2-4 Nit times, we will find Nit different paths X(i)
1, j, for j = 0,1, . . . ,Nit . The

average paths X(i)
1 for the next annealing step are then calculated as the average of the Nit

paths.

6. Increase R f from R f 0 to R f 0α. Starting from X(i)
1 , repeat steps 2-5, and find the average

paths X(i)
2 .

7. Continue in the same manner as increasing R f to R f 0αβ.

38

8. At the last annealing step, which we will note as βmax, we found the average paths X(i)
βmax

,

which are our final estimates on the expected paths. Any expected value 〈G(X)〉 of our

interests can then be calculated.

3.3 Improve PAMC Using Hamiltonian Monte Carlo

Since the PAMC method uses the Metropolis-Hastings algorithm, which essentially makes

random walk proposals, it also inherits the drawbacks of random proposals. This procedure is

ergodic in theory, which means that, if a sufficient number of steps is given, the path following

the proposals we have made can reach any region. Nevertheless, the convergence is usually slow

in problems containing high dimensional X [2]. One of the reason is that, when making random

proposals, the perturbations is chosen randomly from any possible magnitude and direction

uniformly. As a result, the acceptance rate will be very low in high-dimensional problems.

3.3.1 Introduction to HMC

One solution to the issue described above is to use Hamiltonian Monte Carlo (HMC)

methods, which takes a different path from the traditional Metropolis-Hastings Monte Carlo

methods. HMC adds a set of variables P to the path X, which preserves some invariants in the

{X,P} space. By introducing P and a invariant U(X,P), we are able to make large moves in X

space with high probability of acceptance, as staying on the surface U(X,P) = const. In this case,

we can sample exp(−A(X)) much more efficiently than random proposal MC.

As [4] suggests, an intuitive way of choosing P is to select a set of canonically conjugate

variables. Then the proposals can be made by canonical transformation preserving the quantity

H(X,P), where

39

H(X,P) = A(X)+h(P) (3.7)

This is a problem very familiar to physicist for centuries, as H(X,P) is simply the Hamil-

tonian and P is the canonical momentum of X. Then we can just use the rules learnt from classical

mechanics to move in H(X,P) space.

If we label the movement of X and P by a scalar s, which plays the role of time in classical

mechanics, then the proposals should be made following Hamilton’s equations:

dX(s)
ds

=
∂H(X(s),P(s))

∂P(s)
;

dP(s)
ds

=−∂H(X(s),P(s))
∂X(s)

(3.8)

We can now propose movements following Eq. 3.8 with an appropriate s. After enough

proposals are made, we can calculate the expected value of any variable or parameter the same

way as in the PAMC method.

3.3.2 Implementation of HMC

In the HMC procedure discussed above, we have introduced the canonical momentum

P and a function h(P) acting as the kinetic energy in classical mechanics. Therefore, h(P) =

P2/(2m) is a natural choice which also results in a Gaussian distribution of exp(−h(P)). m is a

chosen constant as an analogy to the mass in classical mechanics. The Hamiltonian becomes

H(X,P) = A(X)+
1

2m
P2 (3.9)

Then, starting from an initial condition {X(0),P(0)}, we can find {X(s),P(s)} by inte-

grating Eq. 3.9. Similar to PAMC, this proposed move is then accepted with a probability

40

P = min(1,exp[−H(X(s),P(s))+H(X(0),P(0))]) (3.10)

which theoretically should be equal to 1, since by following Eq. 3.9, H(X,P) is conserved.

In practice, however, we need to discretize s in order to perform the integration. Previous

study by Zhong and Marsden [33] has shown that, when we use a symplectic integrator as de-

scribed in [15], the symplectic form and Hamiltonian cannot be both preserved [33]. As a result,

we could expect H(X(s),P(s))≈ H(X(0),P(0)), but not equal exactly. Then the real acceptance

rate will be close to, but not equal to 1.

In the actual implementation of HMC that we have used, among all the symplectic

integrator available [22] [15], we chose the commonly used leapfrog integrator, due to its

simplicity and accuracy. To integrate from {X(0),P(0)} to {X(s),P(s))}, we need to choose an

integration step size ε and number of steps Ns, so that εNs = s. Using the leapfrog symplectic

stepping rule, we can move to {X(ε),P(ε)}:


P(ε/2) = P(0)− ε

2
∇A(X(0))

X(ε) = X(0)+ εP(ε/2)

P(ε) = P(ε/2)− ε

2
∇A(X(ε))

(3.11)

Subsequently, we can continue moving to the next position {X(2ε),P(2ε)}. After Ns

steps, we will move to the desired point {X(s),P(s))}.

acknowledgements

Chapter 3, in part, has been adapted from Z. Fang, A. S. Wong, K. Hao, A. J. Ty, and H. D.

Abarbanel. Precision annealing monte carlo methods for statistical data assimilation and machine

41

learning. Physical Review Research, 2(1):013050, 2020 and A. S. Wong, K. Hao, Z. Fang, and

H. D. Abarbanel. Precision Annealing Monte Carlo Methods for Statistical Data Assimilation:

Metropolis-Hastings Procedures. arXiv preprint arXiv:1901.04598 (2019). The author of this

thesis was a co-first author of these papers.

42

Chapter 4

Lorenz 96 Model

4.1 Model Description

Lorenz 96 model is an atmospheric model formulated by Lorenz in 1996 [18]. A D-

dimensional Lorenz 96 model satisfies following equations:

dxa(t)
dt

= xa−1(t)(xa+1(t)− xa−2(t))− xa(t)+F (4.1)

where a = 1,2, . . . ,D for any D > 3. This model is a simplified version to simulate some quantity

in the atmosphere of a latitude circle. The quadratic term and linear term represent advection

and dissipation respectively [18]. The model follows periodic boundary conditions, which means

xa+D(t) = xa−D(t) = xa(t), since it is on a circle. F is the constant forcing parameter of the model.

Lorenz 96 is a very good instructional model to test data assimilation method because of

the following properties.

1. While the form of the equations is simple, it simulates the three essential parts of physics

in the atmosphere: advection, dissipation and external forcing.

43

Figure 4.1: Times series of Lorenz 96 model with different forcing parameters. In the first
two graphs, F = 0.5 and the model decays to the equilibrium positions. In the third and fourth
graphs, F = 3 and the model shows a periodic behavior. In the last two graphs, F = 8 and the
model is in chaotic regime.

44

2. Its dimension D is adjustable, as we can arbitrarily divide the circle into as many different

sections as we want. So we can start with a small value to validate the method, then

increasing D to easily evaluate how well the method scales as the dimension of the model

increases.

3. By tuning the parameter F , the model will exhibit different behavior. When F is very small,

all the state variables will decay to the equilibrium position Xa = F for all a = 0,1, . . . ,D.

As F becomes large, the model will have periodic solutions. When F is large, roughly

F ≥ 8, the model is chaotic. An illustration of the three different behaviors is shown in Fig.

4.1.

4. All the variables are on the same scale. As a result, there is no need to tune any hyper-

parameter for each individual variable.

4.2 Twin Experiments Setup

In this chapter, I will discuss the results of twin experiments on Lorenz 96 model using

PAMC. The parameters used for PAMC and the model in the twin experiments are summarized

in Table 4.1.

The actual paths for twin experiments is generated by integrating forward using the 4th

order Runge-Kutta method. Then the Gaussian noise with 0 mean and 1.0 standard deviation is

added to the paths, and these noisy variables are partly taken, based on the number of observed

variables L, as the measurements. Then the PAMC is performed using the measurements and the

model we have seen in section 4.1, with the listed hyper-parameters in Table 4.1.

45

Table 4.1: A table to summarize the setup of twin experiments for Lorenz 96 model.

Parameter Value Description
D 20 Dimension of the model
L 12, 9, 5 Number of observed dimensions
F 8.17 Forcing parameter of the model
Rm 1.0 Rm(l) in Eq. 2.12. Same for every l
R f 0 1.0 R f 0 as used in Chapter 3. Same for every

dimension
δt 0.025 Integration time
M 200 Number of time steps in the measurement win-

dow
α 1.2 R f = R f 0αβ as described in Chapter 3
β 50 R f = R f 0αβ as described in Chapter 3
NI 50 Number of different initial conditions
Ninitial 1000 Number of iterations during the initialzation

phase in each annealing step
Nit 5000 Number of iterations in each annealing step
γ 0.3 γ in Eq. 3.2
f0 0.5 f0 in Eq. 3.2

4.3 Results Using PAMC

4.3.1 D=20, L=12

When 12 variables out of 20 are observed, Fig. 4.2 shows the action curves as beta

increases for 50 different initial conditions. we can find that, no matter where we start within

the dynamical range ([−10,10] for all variables in Lorenz 96 model) as the initial condition, the

action approaches the same level asymptotically, which is the theoretical value of the action as

R f → ∞.

In order to show the change in measurement error and model error, the total action,

measurement error and model error is plotted in Fig. 4.3 for a randomly chosen initial condition.

when beta is small, measurement error and model error are approximately the same order of

magnitude, because we start with R f = Rm, and thus the paths found for each annealing step do

not follow the model strictly, but stay in a middle ground between matching the measurement

46

Figure 4.2: Action curves when D = 20, L = 12. Ni = 50 different initial conditions are used.
All different initial conditions reach the same asymptotic level as β increases.

47

Figure 4.3: Action, measurement error, and model error of one randomly chosen initial condi-
tion, L = 12, D = 20. As β increases, measurement error increases, while model error decreases,
until they become independent of beta or R f .

perfectly and fitting to the model completely.

As beta increases, R f becomes larger, since R f = R f 0αβ. The expected paths found after

the annealing procedure will then fit to the model more and more strictly and the decrease in

model error is therefore observed. Eventually the model error reaches a value that it cannot

decrease anymore due to numerical stability. As a result, we will find that both measurement error

and model error become independent of R f , and the model error is about 2-3 order of magnitude

smaller even though R f is much larger than Rm now. This is an evidence showing that we are

sampling from the dominating region in calculating the expected value.

48

Figure 4.4: Estimation of the forcing parameter, L = 12, D = 20. Light red area is the error in
the estimation, which is the standard deviation of the estimates from Ni = 50 different initial
conditions. As beta increases, the parameter estimates get closer to the actual value, and the error
in the estimates, which is the standard deviation calculated from 50 different initial conditions,
becomes smaller.

Fig. 4.4 shows the estimation of the forcing parameter F for all β. The error, which is

the light red area, is calculated as the standard deviation from different initial conditions. At the

beginning, because we initialize the values of the parameter randomly , the error is large, and the

expected value is off from the actual value. The annealing procedure will not help to bring the

expected value closer to the real value, since R f is small, and we are not forcing the estimations

strictly to the model. Then as beta increases and the constraint from the model gets larger, similar

to the behavior of the actions, our estimation of the parameter becomes closer to the actual value,

and the error is getting smaller as well.

49

Figure 4.5: Measurements, estimates and predictions of an observed and an unobserved vari-
ables, L = 12, D = 20. Black lines in first 5 unit time are the estimations using weighted
averages of paths we get from different initial conditions. Red lines are the predictions given
the estimations of variables and forcing parameters. Light red areas represent the error in
variables, which are the standard deviations from the paths. blue dots are the measurements.
The measurements are plotted for all variables at all times as a comparison to the estimations
and predictions, but they are not known in the PAMC procedures for unobserved variables and
when making predictions.

After the PAMC procedure is done, we have an estimated path for each initial conditions.

Using exp(−A) as weights, we can then find the weighted average as the expected value for any

variable. In this case, since the actions for all initial conditions converge to the same level, it

indicates that we end up with paths that are very close to each other. This can also be verified in

Fig. 4.5.

Fig. 4.5 contains graphs for 2 of the 20 variables, one observed and one unobserved. The

error on the graph is the standard deviation calculated from all the estimated paths. During the

measurement window, which is the first 5 unit time, the error is very small. This further proves

that all the paths converges to the same region that minimizes the action. Also we achieved

accurate estimations with small error in both observed and unobserved variables, meaning that

12 measured variables are enough to transfer information from measurements to the model and

estimate all the variables and parameters in a 20-dimension Lorenz 96 model.

50

In the prediction window, we are able to predict fairly close to the actual observations

within about 1.5 unit time. Inevitability, the error keeps growing exponentially and predictions

fail because of the chaotic nature given the model and forcing parameter we used.

4.3.2 D=20, L=9

When L = 9, Fig. 4.6 shows the actions for all 50 initial conditions. In this situation,

instead of converging to the same action level, we can find that the actions from different initial

conditions split into several different levels. Some of them are sill able to reach the region where

action is the lowest. For those curves, the behavior of measurement error and model error are still

similar to Fig. 4.3. For other curves, it is clear that the actions are increasing exponentially as beta

increases, which suggests that they are trapped in a local minimum where the model error is not 0.

The slope of the action curve near the end is proportional to the value of remaining model error.

The estimation of the forcing parameter is plotted in Fig. 4.7. The error here is much

greater than the case we have seen previously where L = 12, because many of the paths we get

do not reach the region with the minimum of action and as a result, the parameter estimates are

far off from the actual value for those paths.

Fig. 4.8 shows plots for an observed and an unobserved variables. Compared to 4.5, when

we only have 9 measurements, even during the measurement window, the uncertainties in the

estimations are large sometimes. During predictions, the average value is still close to the actual

value for about 0.5 to 1 unit time, because the dominant contribution to the average values is from

those paths that have lowest actions. The error, however, grows much more rapidly than the case

where L = 12.

51

Figure 4.6: Action curves when D = 20, L = 9. Actions from different initial conditions split
into different levels. Ni = 50 different initial conditions are used. Some initial conditions reach
the level with lowest action value as beta increases, while others are in levels with significantly
higher action values.

52

Figure 4.7: Estimation of the forcing parameter, L = 9, D = 20. Light red area is the error in
the estimation, which is the standard deviation of the estimates from Ni = 50 different initial
conditions. The parameter estimates at large beta is still close to the actual value. However, the
error in the estimates is much larger than the case where L = 12.

53

Figure 4.8: Measurements, estimates and predictions of an observed and an unobserved vari-
ables, L = 9, D = 20. Black lines in first 5 unit time are the estimations using weighted averages
of paths we get from different initial conditions. Red lines are the predictions given the estima-
tions of variables and forcing parameters. Light red areas represent the error in variables, which
are the standard deviations from the paths. blue dots are the measurements. The measurements
are plotted for all variables at all times as a comparison to the estimations and predictions,
but they are not known in the PAMC procedures for unobserved variables and when making
predictions.

4.3.3 D=20, L=5

Finally, we encountered the problem where very few measurements are taken, L = 5 in

this case. Fig. 4.9 is the action plot for 50 different initial conditions. Since all the curves increase

exponentially as beta increases, we can conclude that none of the 50 trials find and sample around

the global minimum of the action.

This conclusion can be further supported by Fig. 4.10, where the action, measurement

error, and model error are plotted on the same graph for a single initial condition. We can find

from the graph that the measurement error and the model error are about the same level. The

exponential increase of the model error confirms that the PAMC procedure is sampling around

a local minimum, instead of the global minimum as in Fig. 4.3, where the model error become

independent of beta at large beta value.

54

Figure 4.9: Action curves when L = 5, D = 20. Actions from different initial conditions split
into different levels. Ni = 50 different initial conditions are used. The actions for all initial
conditions grows exponentially as beta increases.

55

Figure 4.10: Action, measurement error, and model error of one randomly chosen initial
condition, L = 5, D = 20. As beta increases, both the measurement error and the model error
increases exponentially.

56

Figure 4.11: Estimation of the forcing parameter, L = 5, D = 20. Light red area is the error in
the estimation, which is the standard deviation of the estimates from Ni = 50 different initial
conditions. The parameter estimates are not accurate, the error in the estimates is large.

Considering that all the trials are sampling around local minimums, it is reasonable that

estimations of the parameter and state variables are not accurate. As shown in Fig. 4.11, the

parameter estimates have even larger errors than the case where L = 9. and the actual value of the

forcing parameter does not fall within the range of uncertainty even at large beta.

Now we can pay our attention to the estimations of state variables, which are plotted in

Fig. 4.12. The error is consistently large for L = 5, as most of the initial conditions end up in the

region where the model error is large. As expected, both estimates and prediction are off from the

actual value most of the time.

57

Figure 4.12: Measurements, estimates and predictions of an observed and an unobserved
variables, L = 5, D = 20. Black lines in first 5 unit time are the estimations using weighted
averages of paths we get from different initial conditions. Red lines are the predictions given
the estimations of variables and forcing parameters. Light red areas represent the error in
variables, which are the standard deviations from the paths. blue dots are the measurements.
The measurements are plotted for all variables at all times as a comparison to the estimations
and predictions, but they are not known in the PAMC procedures for unobserved variables and
when making predictions.

All the above plots for actions, estimated parameters, and state variable estimations and

predictions are strong pieces of evidence that 5 observed variables are not enough for successful

estimations and predictions.

4.3.4 Summary of the Results

In this section, The results of applying PAMC method on a 20-dimension Lorenz 96 model

are shown. We have examined the cases for different number of measurements: L = 12,9,5.

When L = 12 where a adequate number of variables are observed, it can be shown that no matter

where we start as the initial condition within the dynamical range, the PAMC procedure will

sample around the global minimum. Thus the model error term in the action will become 0, and

the action will be independent from the value of beta. Consequently, good estimates of the forcing

parameter and state variables can be found.

58

When the number of observed variables decrease to 9 or 5, at the end of the PAMC

procedure, more and more likely it will be trapped in a local minimum instead of sampling around

the global minimum. A strong indicator is the exponential increase of the action and the model

error as beta increases. As a result, the estimates will be off from the actual values, and the

uncertainty in the estimates will be larger as well. Then we can conclude that we do not have

enough measurements to successfully transfer the information from the measurements to the

model, and make accurate estimations and predictions in these situations.

acknowledgements

Chapter 4, in part, has been adapted from Z. Fang, A. S. Wong, K. Hao, A. J. Ty, and H. D.

Abarbanel. Precision annealing monte carlo methods for statistical data assimilation and machine

learning. Physical Review Research, 2(1):013050, 2020 and A. S. Wong, K. Hao, Z. Fang, and

H. D. Abarbanel. Precision Annealing Monte Carlo Methods for Statistical Data Assimilation:

Metropolis-Hastings Procedures. arXiv preprint arXiv:1901.04598 (2019). The author of this

thesis was a co-first author of these papers.

59

Chapter 5

Other Models with More Complicated

Features

5.1 Shallow Water Model

5.1.1 Model Description

Shallow water equations are approximations of Navier-Stokes equations when the hori-

zontal scale of the fluid is much larger than the vertical scale. Since the height of the ocean (1-10

km) is much smaller than the earth’s radius (about 6000 km), this is a good approximation when

studying a large area of ocean, for example, the current in the whole Pacific ocean.

Following [30], the Coriolis force, bottom friction and surface wind stress are included in

the model. Therefore, the shallow water equations shall be written as:

∂h(~r, t)
∂t

+∇[h(~r, t)~u(~r, t)] =−ẑ ·∇× [
τ(~r)

ρ f (~r)
] (5.1)

60

∂~u(~r, t)
∂t

+~u(~r, t) ·∇~u(~r, t) =−g∇h(~r, t)+ν∇
2~u(~r, t)− ε~u(~r, t)+~u(~r, t)× [ẑ f (~r)] (5.2)

Here~r is the horizontal coordinate (x,y), h(~r, t) is the height, and~u(~r, t) is the 2-D hori-

zontal velocity. f (~r) is the Coriolis parameter and is approximated as f (~r) = f0 +βy. ε is the

Rayleigh friction coefficient related to the friction at the bottom. ν is the kinematic viscosity. τ is

the surface stress.

The actual integration and discretization of the grid points follows the procedure in [26],

which uses staggered grid to reduce two-grid interval noise, and involves the calculation of mass

fluxes and a quantity related to local pressure. The details of this integration scheme will be

discussed in the Appendix.

5.1.2 Twin Experiment Setup

To prepare for the twin experiment, we first starting from a random initial condition that

obeys the physics laws, then integrated for 500 hours as the spin up period. Then the model is

integrated for another 10 hours as the actual solution of the system. Afterwards, the Gaussian

noise, which is about 2% of the fluctuation of variables, is added to the actual solution, to be used

as our measurements during the time window. The initial conditions of the measurement window

are shown in Fig. 5.1.

The model is integrated using second order Runge-Kutta method, with a time step of 9

second. This choice of integration time step is almost the largest we found which will guarantee

that the integration is numerically stable. However, this choice in deed limits the length of the

61

Figure 5.1: Initial conditions of shallow water model in the twin experiment setup. Arrows
represent the initial velocities at each grid points, and the color bar shows the pressure, which is
proportional to the surface height via equation p = ρgh.

62

measurement window due to the availability of computing resource. We will talk about this in

more detail later in the chapter.

As for the parameters of the model, τ is taken in form τ = (τ0cos(2πy/Ly),0), where

Ly is the total length in north-south direction. Table 5.1 summarizes the meaning of all the

parameters in Eq. 5.1 and 5.2 as well as other relevant parameters, including their values used in

our simulation.

Table 5.1: A table to list the parameters of shallow water model.

Parameter Value Description
D 16 Dimension of the system in each horizontal di-

rection
dt 9s Integration time step

dx/dy 50km East-West/North-South grid spacing
h0 5.1km Equilibrium Depth
f0 5×10−5s−1 f0 in Coriolis parameter f
β 2×10−11(s ·m)−1 β in Coriolis parameter f
ν 1×10−4m2s−1 Kinematic viscocity
ε 2×10−8s−1 Rayleigh friction coefficient
τ0 0.002m2s−3 Amplitude of the surface stress

The 10-hour measurement window is used for the data assimilation procedure. The

measurements are observed every 9 second, which is the same as the integration time step. This

choice of time interval between measurements is necessary, because in the model error term in

Eq. 2.12 requires integrating from a time step to the next time step of measurements. Then if

the time interval between measurements is longer, due to the numerical issue, the model error

term will not go to zero in the annealing method, and the action will increase exponentially as we

increase the R f value, which may lead to bad estimations and predictions.

63

5.1.3 Results using Precision Annealing HMC Method

For the shallow water model, the precision annealing HMC method is used instead of

the PAMC method, due to the high-dimensional nature of the model. As we have mentioned in

Chapter 3, when the dimension gets higher, the acceptance rate will become lower in the PAMC

method. In this case, we have tested the PAMC method on the model, and concluded that it is not

realistic to finish the procedure in a reasonable time.

The HMC method introduces several extra hyperparameters, which in this case, needs to

be tuned for each annealing step. Table 5.2 lists the values or the ranges of all the hyperparameters

that are used.

Table 5.2: A table for the hyperparameters of shallow water model, using precision annealing
HMC method.

Hyperparameters Values Description
Rm 100, 0.25 Rm(l) in Eq. 2.12. 100 for velocities and 0.25

for pressure.
R f 0 50, 0.125 R f 0 as used in Chapter 3. 50 for velocities and

0.125 for pressure.
M 4000 Number of time steps in the measurement win-

dow
α 2 R f = R f 0αβ as described in Chapter 3
β 18 R f = R f 0αβ as described in Chapter 3
Ns 200−500 Number of integration steps for each proposal
ε 7.0×10−4−1.0×10−2 integration step size

Niter 200−500 Number of proposals in an annealing step

Unlike our results in Chapter 4, where 50 different initial conditions were used, we only

did experiment with a single initial condition for the shallow water model, due to the limit of

computing time and resource. However, the results is similar to those in Chapter 4.

When we observed 75% of the total variables, the action plot is shown in 5.2. Note that in

64

Figure 5.2: Action, measurement error, and model error of the shallow water model, L = 588,
D = 768. As β increases, measurement error increases as well, while the model error decreases,
until about 2 order of magnitude smaller than the measurement error in the end.

the setup of the precision annealing HMC method, the measurement error and model error are

normalized so that the expected value is independent from the number of dimensions.

In the case of approximately 75% of the variables observed, the measurement error in-

creases as the R f increases with larger β, and asymptotically reaches the expected value 0.5.

Meanwhile, the model error keeps decreasing, becoming 2 order of magnitude smaller than the

measurement error at the end of the annealing procedure, which means that there are enough

observations to successfully estimate the state variables.

65

Figure 5.3: Measurements, estimates and predictions of an observed and an unobserved vari-
ables, L = 588, D = 768. Black lines are the estimations during the measurement window. Red
lines are the prediction after the measurement window. Blue dots are the measurement for the
entire period.

Fig. 5.3 shows the estimated and predicted paths for two state variables, one measured,

one unmeasured. Since we have enough measurements, as indicated in Fig. 5.2, The estimations

and predictions are accurate for both variables. However, because no standard deviation of the

estimations are calculated during the HMC procedure for memory efficiency and we only use one

initial condition, we are therefore not able to find the error in the estimations and predictions and

show the accuracy of the estimated and predicted paths.

When the number of measurements deceases to about 70% of all the variables, the graph

for actions is presented in Fig. 5.4. We can see that the model error increases in the middle of our

annealing steps, which means that it is likely to be trapped in a local minimum during those steps.

However, since HMC can make large moves in the variable space between proposals, eventually

it escapes from the local minimum and reaches to the point where model error is much smaller

than the measurement error. Then the estimations and predictions are still accurate at the end of

our annealing procedure.

66

Figure 5.4: Action, measurement error, and model error of the shallow water model, L = 550,
D = 768. As β increases, measurement error increases, but the model error increases in the
middle of the procedure, but eventually reaches a low level.

67

Figure 5.5: Action, measurement error, and model error of the shallow water model, L = 512,
D = 768. As β increases, measurement error increases, but the model error increases in the
middle of the procedure, but eventually reaches a low level.

For the last case, 66% of the variables are measured. The action, measurement error and

model error are plotted in Fig. 5.5. The behavior is similar to the situation where we have 70%

measurements, but at the end the model error is not as small.

Fig. 5.6 shows the paths of an measured and an unmeasured variables with 66% observa-

tions. As we can see, even though the model error is still small compared to the measurement

error, because it does not reach the same level as when we have 70% and 75% of measurements,

the predictions diverges from the observations in about 5-10 hours after the measurement window.

It indicates as well that our annealing procedure has not found good enough estimations of the

variables at the end.

68

Figure 5.6: Measurements, estimates and predictions of an observed and an unobserved vari-
ables, L = 588, D = 768. Black lines are the estimations during the measurement window. Red
lines are the prediction after the measurement window. Blue dots are the measurement for the
entire period.

5.1.4 Discussion on the Computing Issue of High-Dimensional Models

In the shallow water model, the dimension of the model is 768, and the number of time

steps we used is 4000. Compared to the Lorenz 96 model we have seen in Chapter 4, where

the numbers are 20 and 200 respectively, the total number of variables is roughly 800 times

larger. This difference is one of the main motivation for us to choose the HMC method. For the

implementation of the HMC method, the PyTorch library in Python is used for two reasons. First

it supports the use of GPU to speed up the calculation, and second it has an Autograd module that

can calculate the gradient given the function, which is a convenient tool as the gradient is needed

in the HMC method.

However, with the current implementation of the HMC method, the computing time is

still long. In general, the time it takes to finish a single annealing step varies between 3-10 hours,

69

depending on the specific hyperparameters of the setup. Therefore, only a single trial of initial con-

dition was performed in this section, as a demonstration to show the effectiveness of the method

on a more complicated model. If more GPUs are available, similar to the experiment in Chapter

4, a study with many different initial conditions can be done, and we may have a better idea

on how the action plots look like and when the split among action levels of different trials happens.

Moreover, the limited memory of GPU is also a problem. A GeForce GTX 1080 graphic

card is used for the calculation, which has 8 GB of memory. With this amount of memory

available in GPU, we can only do calculations on the shallow water model with a time window of

4000 steps. Otherwise the GPU will run out of memory and raise an error after exiting the code.

5.2 Regional Ocean Modeling System

5.2.1 Model Description

Regional Ocean Modeling System (ROMS) is an ocean model that has a wide range of

applications. Its governing dynamical equations are three-dimensional, free-surface, Reynolds-

averaged Navier-Stokes equations [9]:

∂u
∂t

+~v ·∇u− f v =−∂φ

∂x
− ∂

∂z

(
u′w′−ν

∂u
∂z

)
+Fu +Du (5.3)

∂v
∂t

+~v ·∇v+ f u =−∂φ

∂y
− ∂

∂z

(
v′w′−ν

∂v
∂z

)
+Fv +Dv (5.4)

∂φ

∂z
=−ρg

ρo
(5.5)

as well as the transports equation for tracers like temperature, salinity:

70

∂C
∂t

+~v ·∇C =− ∂

∂z

(
C′w′−νθ

∂C
∂z

)
+FC +DC (5.6)

The model also satisfies the continuity equation:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (5.7)

The variables and parameters appeared in Eq. 5.3 - Eq. 5.7 are listed in Table 5.3

Table 5.3: A table to summarize the variables and parameters in the equations of ROMS model.

Variables/Parameters Description
u,v,w Velocity components in x, y, z directions
C The tracer of interest
u′,v′,w′,C′ Turbulent fluctuations of u, v, w, and C
φ Dynamic pressure, φ = P/ρ0, where P is the

pressure
f Coriolis parameter
Fu,Fv,FC Forcing or source terms for u, v, and C
Du,Dv,DC Diffusion terms for u, v, and C
ρ0 +ρ Total in situ density
ν Molecular viscosity
νθ Molecular diffusivity

In these equations we have also made a few assumptions and approximations:

• Time-averaged equations. The idea is based on Reynolds decomposition, where a variable

is decomposed into a time-averaged term and a fluctuating term [25]. For example, we can

decompose the horizontal velocity into u = ū+ u′ and v = v̄+ v′, where ū and v̄ are the

time-averaged terms, u′ and v′ are the fluctuating terms. The decomposition also assumes

that u′ = 0 and u′q̄ = 0 for each time step. In other words, the fluctuating terms are sub-grid

behavior and has zero average in each grid of time step. In the equations the bar notations

in the time-averaged terms are dropped for simplicity.

71

• The hydrostatic approximation is used, since the horizontal scale is usually larger than the

vertical scale. Under this approximation, all the terms including the vertical velocity w are

ignored except for the turbulent term.

• The Boussinesq approximation is applied, which is valid when the temperature varies little

in the model. Using this approximation, the density is assumed to be constant except in the

buoyancy term −ρg
ρo

.

• Turbulence closure. In the equations, there are still terms including the fluctuations, such

as u′w′, resulting in the more unknown variables than the number of equations. Therefore,

parameterization is needed for those fluctuating or turbulent terms. A commonly used

method to parameterize the turbulent terms is a first order closure that approximate the

terms with the gradient of time-averaged variables. For example:

u′w′ =−KM
∂u
∂z

(5.8)

where KM is called the eddy diffusivity.

5.2.2 Twin Experiment Setup

The twin experiments we studied with ROMS model are performed on a rectangular

region with 200× 100 grid points. The initial condition for the actual solution is set to have

an temperature gradient and 0 initial velocity. The model is integrated forward for 57600 time

steps with a step size of 600s. Then Gaussian noises have been added on temperature and

velocities every 144 time steps, which is equal to the time of one day, as the measurements. The

initial conditions of temperature and horizontal velocities for both the actual solutions and the

measurements are plotted in Fig. 5.7 - Fig. 5.9.

The model uses periodic boundary conditions on left and right sides, and closed boundary

72

Figure 5.7: Initial conditions of temperatures in ROMS twin experiments setup. Top: The
initial condition of the actual temperatures with a gradient in the y direction. Bottom: the
measurements with Gaussian noise added on the actual values.

73

Figure 5.8: Initial conditions of velocities in x direction in ROMS twin experiments setup.
Top: The initial condition of the actual velocities which are zero everywhere. Bottom: the
measurements with Gaussian noise added on the actual values.

74

Figure 5.9: Initial conditions of velocities in y direction in ROMS twin experiments setup.
Top: The initial condition of the actual velocities which are zero everywhere. Bottom: the
measurements with Gaussian noise added on the actual values.

75

conditions on top and bottom sides in the horizontal direction. No-slip boundary condition is

used at the bottom, assuming a layer of constant Reynolds stress near the bottom. The vertical

coordinates uses vertical S-coordinate instead of uniformly spaced coordinate points. There are

several choices of vertical S-coordinate in the ROMS model. We chose to use the default option,

the detail of which can be found in [9].

In addition, a wind force in x direction is added with the form τu(i, j)=−0.1cos(2πy(i, j)/L)m2/s2,

where i, j are the coordinates in x, y direction. Table 5.4 summarizes all the configurations of the

twin experiments.

Table 5.4: A table to summarize the configurations of the twin experiments on ROMS.

Parameters Value Description
Ni 200 Number of grid points in x direction
N j 200 Number of grid points in y direction
Nσ 20 Number of vertical layers.
dt 600s (10min) Step size in time
Nt 57600 (400 days) Number of time steps
Nob 144 (1 day) Number of time steps between observations
Zob 0.02m Bottom roughness
θs 7 Parameter for vertical S-coordinate
θb 0.1 Parameter for vertical S-coordinate

In this experiment, the number of variables is significantly larger than previous Lorenz 96

model and shallow water model. In ROMS model, the state variables are: horizontal velocities

u and v, temperature T , and surface elevation ζ. So the number of model dimension D is

Ni×n j× (3Nσ +1)∼ 106. Considering the run time of HMC on shallow water model, it would

be impractical to apply HMC or PAMC on ROMS model, as it would take too long to finish.

Therefore, the following results on ROMS model are based on the nudging method, which is

described in section 2.1 of Chapter 2.

76

Figure 5.10: Nudging results on ROMS model with different number of measurements. Esti-
mation errors in temperature T and horizontal velocity u with 100%, 90%, 80%, 75%, 66% of
variables observed, as well as the error without nudging are plotted.

5.2.3 Results Using the Nudging Method

To study the properties of ROMS model, we did twin experiments on a time window of

400 days. Nudging is applied on the model from day 71 to day 140 using different number of

measurements, ranging from 100% to 66% of the total number of variables. We use the root

mean square error as the estimation error to quantify the results of nudging method. The errors in

temperature T and velocity u over the 400-day period are plotted in Fig. 5.10.

The estimation errors in T and u show similar behavior. As the nudging starts to be

used on day 71, the errors drop significantly despite the different number of variables observed.

However, when there is only 66% of variables measured, the estimation error is not decreased to

the same level when we have more measurements. Then at day 140, when we start the predictions

without nudging, the estimation error begin to increase. As shown in the plot, the error grows

77

fastest with only 66% of variables observed, which indicates that the number of measurements is

not enough to make good predictions. When we have more than 80$ of variables observed, there

is no significant difference in the growth of error, while in the case where we measured 75% of

variables, although the estimation error at the end of the nudging window is roughly the same

as those of the experiments with more measurements, the error in the prediction window grows

faster with only 75% of measurements. Therefore, we know that in this setup of ROMS model,

we need about 75% to 80% of measurements in order to successfully synchronize between the

model and the measurements and make predictions.

78

Chapter 6

Conclusions and Future Works

Estimations and predictions may be one of the fundamental and mostly discussed prob-

lems people have encountered. The study of data assimilation provides a systematic way to tackle

these problems using the noisy, incomplete data, as well as a proposed model, which is most

likely imperfect.

In this work, we first described the problems that data assimilation tries to solve, as well

as the probabilistic formulation of data assimilation scheme. Then a set of data assimilation meth-

ods were discussed, from the nudging method, to two of the recently commonly used methods,

the Ensemble Kalman Filter and the 4D-VAR method. We also discussed the precision anneal-

ing method in detail, as it will be the main method used in the twin experiment results in this thesis.

In the twin experiment results, we have mainly focus on the problem of the observabil-

ity, namely how many measurements are required in order to make successful estimations and

predictions of a system. We have performed studies on the Lorenz 96 model and the shallow

water model, using PAMC and its improvement using HMC respectively. We have found that

the Lorenz 96 model needs about 60% measurements to perform well. It is in agreement with

79

previous work [23], which also validates the PAMC method. In Chapter 5, we have also studied a

twin experiment setup using ROMS model, which has the number of variables similar to some

real applications. Due to the large number of dimension, we have only applied the nudging

method to the model, and found out that we need about 75% to 80% measurements to estimate

and predict well.

During the implementations of the PAMC method, we have also run into its limitation

of computing and memory efficiency. In the originally proposed PAMC method, which uses the

Metropolis-Hastings algorithm, the low acceptance rate in high dimensional problems is a sig-

nificant bottleneck that limits its usage. As a result, the improved method using HMC is developed.

However, the HMC method is also facing the issue of scalability when applying it to some

more complicated models such as the shallow water model. In the actual implementation, we have

used the autograd package in PyTorch to compute the gradient of action with respect to the state

variables and parameters. In this case, even if the GPU is used to parallelize the computation, it

still requires more than 5 days to finish the whole annealing method. Furthermore, after tracking

the time elapsed at each stage, we found that more than 70% of the time were spent in calculating

the gradient. Therefore, some future investigation in the improvement of the method is needed in

order to make it capable of large scale problems.

One of the obvious direction is to find a faster method of calculating the gradient. One

way is to calculate the form of gradient manually and hand code it into the program, then it would

require much less time to evaluate. While this may work in some cases, there are also many

models which are hard to calculate the gradient of action due to the complexity of the dynamical

equations. So this solution could only have limited usage.

80

Another option is to find out an alternative formulation of the annealing method, so that it

scales better with the increase in the number of state variables and time steps. An example of this

is discussed in Chapter 2, which is the development of strong constrained 4D-VAR from weak

constrained 4D-VAR method. In this example, the non-linearity of the action or cost function

does increase even though the memory and computing time required decrease. However, with

the annealing method, the non-linearity may not be a serious drawback, and we can still find the

global minimum of the action in many situations.

81

Appendix A

Details in the Shallow Water Model

Implementation

As we have mentioned in Chapter 5, the integration and grid point setup used for the

shallow water model follows [26] with a few extra terms such as bottom friction. Here the details

of the implementation will be discussed.

Figure A.1: Staggered grid points for shallow water model.

82

A.1 Staggered Grid Points

The staggered grid points used in shown in Fig. A.1. For all the state variables, the

horizontal velocities, u and v, are defined at the north-south and east-west edges of the grid

respectively. The pressure P is defined at the 4 corners. The center of the grid is where an

intermediate variable, potential vorticity η, is located at.

A.2 Average and Derivatives

Since now the variables are located at different positions of the grid, in the dynamical

equations, the average of a variable needs to be calculated if it is defined at a different location

from the other variables included. For example, if the calculation of η(n,n) includes the horizontal

velocity u and pressure p, then we need to use their averaged forms:

u =
u(n,n)+u(n,n−1)

2

P =
P(n,n)+P(n−1,n)+P(n,n−1)+P(n−1,n−1)

4

(A.1)

Similarly, taking the horizontal velocity u as an example, the derivatives can be written as

∂u
∂x

=
u(n,n)−u(n,n−1)

dx
(A.2)

where dx is the length of the grid in north-south direction.

A.3 Dynamical Equations

First, we need to calculate a few intermediate variables: the mass fluxes U and V in both

horizontal directions, a pressure related quantity H, as well as the potential vorticity η.

83

U = Pu

V = Pv

H = P+
1
2
(u2 + v2)

η = (
∂v
∂x

+
∂u
∂y

)/P

(A.3)

In the equations above and all other equations following in this section, we have omitted

the average sign for simplicity, which is needed when variables defined at different positions are

included.

Then, the dynamical equations for state variables, u, v and P can be written as follows:

∂u
∂t

= ηV − ∂H
∂x

+ν(
∂2u
∂x2 +

∂2u
∂y2)− εu+(f0 +βy)v+F

∂v
∂t

=−ηU− ∂H
∂y

+ν(
∂2v
∂x2 +

∂2v
∂y2)− εv− (f0 +βy)u

∂P
∂t

=−∂U
∂x
− ∂V

∂y

(A.4)

where we added a few extra terms same as in Eq. 5.1 and 5.2, except that F is used to represent

the surface wind stress term instead of −ẑ ·∇× [τ(~r)
ρ f (~r)] for convenience.

84

Bibliography

[1] H. Abarbanel. Predicting the future: completing models of observed complex systems.
Springer, 2013.

[2] M. Betancourt. The convergence of markov chain monte carlo methods: from the metropolis
method to hamiltonian monte carlo. Annalen der Physik, 531(3):1700214, 2019.

[3] G. P. Cressman. An operational objective analysis system. Mon. Wea. Rev, 87(10):367–374,
1959.

[4] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics
letters B, 195(2):216–222, 1987.

[5] G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using
monte carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans,
99(C5):10143–10162, 1994.

[6] G. Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business
Media, 2009.

[7] R. M. Fano and D. Hawkins. Transmission of information: A statistical theory of communi-
cations. American Journal of Physics, 29:793–794, 1961.

[8] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
1970.

[9] K. Hedstrom. Technical manual for a coupled sea-ice/ocean circulation model (version
4). us dept. of the interior, bureau of ocean energy management, alaska ocs region. ocs
study boem 2016-037. 176 pp. This document was prepared with LATEX xfig, and inkscape,
page 4, 2016.

[10] J. E. Hoke and R. A. Anthes. The initialization of numerical models by a dynamic-
initialization technique. Monthly Weather Review, 104(12):1551–1556, 1976.

[11] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of basic
Engineering, 82(1):35–45, 1960.

85

[12] E. Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge univer-
sity press, 2003.

[13] M. Kostuk, B. A. Toth, C. D. Meliza, D. Margoliash, and H. D. Abarbanel. Dynamical esti-
mation of neuron and network properties ii: path integral monte carlo methods. Biological
cybernetics, 106(3):155–167, 2012.

[14] P. S. Laplace. Memoir on the probability of the causes of events. Statistical Science,
1(3):364–378, 1986.

[15] B. Leimkuhler and S. Reich. Simulating hamiltonian dynamics, volume 14. Cambridge
university press, 2004.

[16] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

[17] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,
20(2):130–141, 1963.

[18] E. N. Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,
volume 1, 1996.

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of
state calculations by fast computing machines. The journal of chemical physics, 21(6):1087–
1092, 1953.

[20] A. Miller, D. Li, J. Platt, A. Daou, D. Margoliash, and H. Abarbanel. Statistical data assimi-
lation: Formulation and examples from neurobiology. arXiv preprint arXiv:1809.05196,
2018.

[21] A. M. Moore, H. G. Arango, G. Broquet, B. S. Powell, A. T. Weaver, and J. Zavala-Garay.
The regional ocean modeling system (roms) 4-dimensional variational data assimilation
systems: Part i–system overview and formulation. Progress in Oceanography, 91(1):34–49,
2011.

[22] R. M. Neal. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

[23] J. C. Quinn. A path integral approach to data assimilation in stochastic nonlinear systems.
PhD thesis, UC San Diego, 2010.

[24] F. Rabier, H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons. The ecmwf operational
implementation of four-dimensional variational assimilation. i: Experimental results with
simplified physics. Quarterly Journal of the Royal Meteorological Society, 126(564):1143–
1170, 2000.

86

[25] O. Reynolds. Iv. on the dynamical theory of incompressible viscous fluids and the deter-
mination of the criterion. Philosophical transactions of the royal society of london.(a.),
(186):123–164, 1895.

[26] R. Sadourny. The dynamics of finite-difference models of the shallow-water equations.
Journal of the Atmospheric Sciences, 32(4):680–689, 1975.

[27] C. Sparrow. The Lorenz equations: bifurcations, chaos, and strange attractors, volume 41.
Springer Science & Business Media, 2012.

[28] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. CRC Press, 2018.

[29] O. Talagrand. Assimilation of observations, an introduction (gtspecial issueltdata assimila-
tion in meteology and oceanography: Theory and practice). Journal of the Meteorological
Society of Japan. Ser. II, 75(1B):191–209, 1997.

[30] W. G. Whartenby, J. C. Quinn, and H. D. Abarbanel. The number of required observations
in data assimilation for a shallow-water flow. Monthly Weather Review, 141(7):2502–2518,
2013.

[31] J. Ye, N. Kadakia, P. Rozdeba, H. Abarbanel, and J. Quinn. Improved variational methods
in statistical data assimilation. Nonlinear Processes in Geophysics, 22(2):205–213, 2015.

[32] J. Ye, D. Rey, N. Kadakia, M. Eldridge, U. I. Morone, P. Rozdeba, H. D. Abarbanel, and
J. C. Quinn. Systematic variational method for statistical nonlinear state and parameter
estimation. Physical Review E, 92(5):052901, 2015.

[33] G. Zhong and J. E. Marsden. Lie-poisson hamilton-jacobi theory and lie-poisson integrators.
Physics Letters A, 133(3):134–139, 1988.

[34] E. Ziegel. Numerical recipes: The art of scientific computing, 1987.

87

