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PREFACE

The following is a slightly edited version of- lecture notes on traffic flow theory
composed originally between about 1964 and 1966.

Modeling of highway traffic had progressed at a rapid pace during the late 1950s and
early 1960s. In 1963, I gave a short course on traffic flow theory for honours mathematics
students at the University of Adelaide in Australia at the invitation of Professor Renfrey Potts.
The following year I gave a more extensive special topics course for graduate students in
applied mathematics at Brown University. Most of these lecture notes were written for the
latter course.

In 1965 I came to the University of California, Berkeley to teach in the transportation
engineering graduate program. Although I taught courses on "traffic flow theory" and
"highway traffic control" a few times in the early 1970s, the former based mostly on these
lecture notes, enrollment in both of these classes was small and these courses were
discontinued in the mid 1970s. An "advanced course” in traffic flow theory has not been
given at UC Berkeley since then (as of 1994). At no time since 1965 have I supervised any
students doing research on traffic flow theory and, until recently, very little of my own

research was directed toward this subject.

students doing research on traffic flow theory and, until recently, very little of my own
research was directed toward this subject.

Not only did I abandon these subjects, but so did most of the other people who had
contributed to their development in the 1950s and 60s. The journals, Transportation Science
and Transportation Research, which were both initiated by people who were active in the

development of traffic flow theory and which were expected to be a vehicle for publication of



new developments in transportation theory, did not start until 1967. Most of the key literature
on traffic theory, which appeared before 1967, is scattered over a variety of journals,
symposium proceedings, and books. Much of this literature has been ignored by newcomers
to the transportation field.

My own attempt to revive some of the lost theory started in 1984 when some students
asked me to teach a special topics course on highway traffic control (after about a 10 year
lapse). Although there had been little improvement in the theory (particularly on highway
traffic signals) during the previous 10 years, there had been substantial advances in techniques
for approximating queueing delays, and the analysis of queueing delays did not depend on an
accurate theory for the dynamics of traffic flow (the delay to a driver caused by a traffic
signals does not depend on where the driver waits). It was possible not only to revive some of
the older works on traffic signals, but to write a fairly comprehensive analysis. This
culminated in publication of a 450-page treatise, "Theory of Highway Traffic Siénals," UCB-
ITS-CN-89-1 in 1989.

Publication of the prcé‘ent notes was also inspired by a proposal to give a special
topics course on fraffic ﬂéw theory (after about a 20 year lapse). As compared with the
theory of highway traffic signals, the status of traffic flow theory is quite different. There

have been few significant developments over the last 20 years and much of what has been

theory of highway traffic signals, the status of tratfic tlow theory 1S quite QiTIerent. lnere
have been few significant developments over the last 20 years and much of what has been
done is even less realistic than the theories which existed 30 years ago. Many attempts to
"improve"” the theories have only made them worse.

The modeling of light traffic for which cars interact only occasionally and, at most,

only two at a time, is fairly straightforward but of little concern to practical traffic engineers.
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A theory of light traffic was essentially complete 30 years ago, to the extent that ope would
care to analyze it. If traffic is so congested that cars can seldom pass each other, 4 theory of
traffic flow should, in principle, be straightforward if one knew precisely how one drjver
follows another. Unfortunately, we still do not know how drivers behave well enough 1o
construct realistic models of "car-following.” Indeed, we do not seem to understand it myc},
better now than 30 years ago. The modeling of moderately dense traffic with clusterg of cars,
lane changing, etc. is extremely difficult and attempts to do so have not been very succegsfy].

In contrast with the theory of highway traffic signals, there is not really much that |
can add to what was written 30 years ago even though these notes end very abruptly. | Wrote
what I knew at the time expecting that new experimental observations would soon resojve
some of the deficiencies of existing theories, and that I could add a concluding chapter 1o the
part on dense traffic. The chapter on moderately dense traffic ends abruptly because I Jogt
interest in pursuing something that appeared to be going nowhere.

Chapter I Introduction is mostly some commentary on the connection betweep
highway traffic and statistical mechanics or the kinetic theory of gases. It is this similarity
which attracted physicists and chemists to model traffic behavior in the 1950s. Chapter Iy

deals with very light traffic in which interactions between cars are neglected completely.

Traffic is represented simply as the superposition of independent vehicle trajectories, The key

deals with very light tratfic in which interactions between cars are neglected Completely.
Traffic is represented simply as the superposition of independent vehicle trajectories, The key
result here is the tendency of traffic to behave like a Poisson process (in either space or time)
with statistically independent velocities. Chapter Il treats weak interactions, the first order
effects of interactions between cars when they are close together. The key conclusion here is

that, in this second approximatjon, traffic has a tendency to behave like the superposition of
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independent Poisson processes of single cars and interacting pairs (if one can neglect
interactions involving three or more cars). The treatments in Chapters II and II are very
detailed and describe just about everything one would care to say about light traffic
approximations. Any extension of this theory to involve interactions among three or more
cars, however, would be very tedious.

Chapter IV on dense traffic gives an exhaustive analysis of models of car-following in
which every driver chooses a velocity dependent only on the spacing between himself and the
car he is following (possibly with a delayed response). This class of models includes or is
equivalent to most of the car-following or (first order) fluid models of traffic flow at high
density which had been proposed during the 1950s.

Chapter V describes some theories related to moderately dense traffic, but it does not
include all the things promised in the introductory section. This chapter was never completed.
The main topic here is an introduction to the theory of stationary stochastic point processes, a
subject which is described in much more detail in the literature on applied probability
(aithough mostly in books written after these notes were first written).

In the original notes, the present Chapter V was labeled Chapter V1. Chapter V had
not been written. It was to have been a follow-up to Chapter IV containing more realistic

theories of dense traffic explaining instability, "stop and go" driving, etc. I had already

not been written. It was to have been a follow-up to Chapter 1V containing more realistic
theories of dense traffic explaining instability, "stop and go" driving, etc. I had already
proposed a possible structure for such a theory by 1962, but it was still rather speculative and
lacking quantitative verification. I expected then (in 1965) that a more refined theory would

soon emerge to complete the story (but it still has not happened).
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The original notes also contained the start of a Chapter VII dealing with delays at an
isolated fixed-cycle traffic signal, but the theory of highway traffic signals was in an early
stage of development then. Anything of value contained in this chapter of the notes has since
been absorbed in the above mentioned treatise on traffic signals.

To close out the present notes I have added a new Chapter VI “postscript”
commenting on some things which I might explain differently today, some things that have
happened during thé last 30 years, and some theories old and new which I believe have
failed( even more so than those described in the previous chapters). I have also attached a
chronological bibliography on car-following and continuum theories which, I believe, is
nearly complete to 1972. This at least illustrates the rapid rise and decline of activity during
the 1950s and 60s.

The reproduction of these notes would not have happened without considerable
prodding from Carlos Daganzo who offered some hope that new experimental techniques may
soon resolve some of the deficiencies of existing theories.

Most of the huge job of typing equations was done by Ping Hale. Nadine Zalinsky

typed much of the text. Reinaldo C. Garcia proofread the entire text.
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I. INTRODUCTION

1. Structure of mathematical equations. If it were possible to construct a complete theory of

traffic flow which in principle predicts the motion of each and every car on the highway, the
equations describing this motion would probably be too difficult to solve and if solved would
only produce a library of figures most of which would be of no practical value. Nevertheless
the gross features of traffic flow that we do consider to be important must be a result of the
collective behavior of individual cars.

Although we lack a complete theory of the motion of individual cars, there are many
simple facts that even the most inexperienced driver knows and thcrc.ars others which we
could determine through experiment if we thought these facts were worth the effort required
to find them. The lack of such a theory however, should not deter us from constructing a
framework of possible theories consistent with what is known and seeing if such an incom-
plete theory can give any useful information about the gross aspects of traffic. Also by
considering various hypothetical motions of individual cars one may draw conclusions
regarding what features of the motion of single cars are relevant to the large scale behavior of
traffic.

The above sifuation is similar to that which faced physicists almost a century ago. They
traffic.

The above situation is similar to that which faced physicists almost a century ago. They
knew many laws regarding the bulk properties of matter. They were also convinced that
matter was composed of atoms and that there were certain laws of motion for the individual

atoms. The problem was to find the connection between one set of laws and the other and to



use experimental results obtained on large systems to infer properties of small systems or vice
versa. The study of these problems generated the branch of physics called statistical mechan-
ics.

Cars are driven by people and do not satisfy the laws of classical mechanics or
quantum mechanics as do atoms, but in constructing any theory of traffic one must start from
the conjecture that drivers do behave according to some pattern. It would be incorrect to
assume that all drivers behave in the same way or that even a single driver will always react
the same in a given situation but we will assume that there exists some probability distribu-
tion of behaviors. If a single driver or different drivers with similar desires are repeatedly
confronted with the same surroundings, they will respond in a given way a certain fraction of
the time. Whether or not we actually find these pfobabilities is not at issue. We only assume
that they can in principle be found or inferred if we were willing to expend sufficient effort to
find them.

Despite the fact that statistical mechanics deals with large aggregates of particles which
specifically obey equations of particle dynamics, much of the mathematics or logic of
statistical mechanics can be translated into a corresponding theory of traffic flow, namely
those parts of statistical mechanics that deal only with the interrelation between macroscopic

and microscopic laws. The similarity, however, goes even further than this. One important

those parts of statistical mecnanics that aeal only witn i€ INEIMeIauvll DELWETIL HI1aULusLupIL
and microscopic laws. The similarity, however, goes even further than this. One important
feature of atomic forces is that they are usually of "short range,” i.e., two atoms which are
sufficiently far apart do not influence one another. The same feature is true of the interaction
between cars. Two drivers who are out of visible range of each other are not expected to

influence one another. In statistical mechanics this fact that there are short range forces is the
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key to the theory of an ideal gas and in traffic theory one can construct simple models of
flow at arbitrarily low density in an analogous way.

In physics the behavior of bulk systems changes drastically as one varies the density of
atomns from the ideal gas limit where the average distance between atoms is large compared
with the range of force to the limit of close packed structures (solids) where the distance
between atoms is comparable with or less than the range of force. The corresponding situation
is true of highway traffic also.

The development of traffic theory is even following a pattern similar to the historical
development of statistical physics. In physics the theory of gases based upon nearly indepen-
dent motions of atoms developed early and has advanced rapidly, as has the theory of solids
based upon a highly ordered motion of atoms, but the theory of intermediate systems,
particularly the theory of the liquid state, has progressed very slowly. In traffic also, a thecry
for low density and a theory for high density are off to a good start but the intermediate
densities present difficult problems.

Despite the similarities between traffic and statistical physics, there are obvious
differences in addition to the fact that cars do not satisfy the laws of dynamics. Cars are
constrained to move on highways which are parts of a two-dimensional space and in most

cases can be considered essentially networks of one-dimensional spaces. This should be a

constrained to move on highways which are parts of a two-dimensional space and 1n most
cases can be considered essentially networks of one-dimensional spaces. This should be a
simplification over the inherently three-dimensional nature of particle motion. On the other
hand the most annoying difference is that one seldom has the occasion to consider more than
a relatively small number of cars at a time, perhaps 10 or 100 or even 1000 and the drivers of

these cars are not all the same. Statistical fluctuations in observations are therefore quite



large. In physics a typical system is likely to contain something like 10% or 10* particles all
with identical properties. Whereas typical fractional fluctuations in density for example of a
physical system are of order 10, those of traffic may be anything from a few percent to 30
or 40 percent.

The logical foundations of statistical mechanics have been the subject of heated debate
for more than 75 years. In developing the mathematical formalism one still must make
heuristic arguments, try to argue away certain paradoxes and finally say that despite the
loopholes in the arguments, the theory must be correct most of the time because it gives the
answers we wanted. Unfortunately the parts of statistical mechanics which we wish to mimic
in traffic theory are just those which are so controversial. We can only hope that what seems
plausible will again prove to be correct most of the time. For example, in studying the
behavior of 100 drivers on the road, can one give some logical argument for selecting these
100 cars at random from a population of possible drivers when it seems clear that the
behavior of these cars does depend upon which drivers are selected and there is no grand
roulette machine in nature which picks the drivers which are to drive on the highway each
day?

The development of statistical mechanics usually starts from consideration of a system of

N particles with known properties (mass, electric charge, etc.) and with known equations of

‘I'ne development of statistical mechanics usually starts from consideration of a system of
N particles with known properties (mass, electric charge, etc.) and with known equations of
motion (the laws of classical mechanics, for example). If at time t = O one specifies the
positions and velocities of all particles, then the laws of motion determine, in principle, the
positions and velocities at any later time. One is immediately confronted with the following

fact. For "most" initial states, the macroscopic behavior of the system depends only upon a
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few macroscopic properties of the initial state, but if one tries to choose an initial state so as
to make the solution of the dynamical equations simple (for example if one takes all particles
in a gas to have velocities along coordinate directions), one is likely to be unlucky enough to
pick one of the rare initial states that is not "typical” in its macroscopic behavior. To avoid
this difficulty one introduces some probability distribution over the initial states and investi-
gates only the average behavior of this ensemble of initial states. This is done in such a way
that the anomalous initial states have probability zero and give no contribution to the average
behavior. Many of the controversies in statistical mechanics (the famous ergodic hypothesis,
etc.) deal with the arguments from which one selects a reasonable probability distribution
over the initial states.

The above picture literally relates only to a physical system that is closed and jsolated,

i.e., there is a fixed set of particles in the system, and they do not interact with other physical
systems. Actually the physical systems to which one applies statistical mechanics are never
really isolated and are seldom closed but one can imagine a hypothetical physical system
which differs from the real one only in that the hypothetical one is put in a box with perfectly
reflecting walls. For sufficiently large systems, the effect of a box upon the physical proper-
ties of interest is usually small (it varies like the ratio of the area of the box to its volume).

There are, however, extensions of statistical mechanics to open systems in which particles

ties of interest is usually small (it varnies like the ratio of the area oI tne DOX IO 1S VOIUMmE).
There are, however, extensions of statistical mechanics to open systems in which particles
leave and enter the system usually according to some stationary probability law.

Traffic systems which are either completely or nearly isolated do exist. An ideal
example is a collection of cars on a circular track or a collection of cars trapped between two

trucks. A city or metropolitan area is also nearly isolated in the sense that most traffic is



local. One would not change the pattern of traffic very much if each car leaving the city is
replaced by another car entering (a reflecting wall for cars). On a larger scale, the traffic on
the continents of the world is nearly closed—and certainly the world itself is closed. Most
traffic systems which we will want to study, however, are not even approximately closed. To
study the traffic on a single road, for example, or a simple network one seldom can avoid
considering the traffic entering and leaving the boundaries of the system.

In statistical mechanics it is common practice to consider a physical system which is a
small subsystem of a large isolated system (the so-called thermal bath). In dealing with traffic
it is also appropriate to consider traffic on a simple highway as a small subsystem of the
traffic in an entire city or continent. The city becomes the "thermal bath" with which the
subsystem exchanges cars. It is worth noting that even if we included all cars in the world as
our system we would have only of the order of 10® cars (few cities have more than 10°)
which from the point of view of statistical mechanics would be a relatively small system.

In physics the information necessary to describe a physical system can be separated
into the following categories: 1. a description of the particles in the system, their mass,
electric charge, spin, etc.; 2. the forces acting in the system including forces between particles
and external constraints. (This is usually described through the Hamiltonian and in a certain

sense includes 1.) and 3. a specification of the initial conditions necessary to uniquely define

and external constraints. (I'his 1s usually described through the Hamiltonian and in a certain
sense includes 1.) and 3. a specification of the initial conditions necessary to uniquely define
the solution of the equations of motion. One thinks of the initial conditions as a point in a
multi-dimensional space of all possible initial conditions, the state space or phase space. The
motion of the system is then represented by a trajectory, the path in the state space defined by

the parameitric representation of the state of the system as a function of time. A theory, in this




case the laws of dynamics, is simply a proposal that one collection of data can be inferred
from another; here the state at time t is deduced from the state at time zero, if one is given
all the other data above.

In an attempt to construct theories of traffic one should keep in mind that theories are
not formulas that describe everything one wishes to know. One tries to find as many relations
as one can between observable quantities but we would have a theory even if we could find
only one relation among a very large number of things. Certainly for the dynamical system
described above there is a tremendous number of physical quantities the values of which one
must find from observation. We have no theory yet which tells us what the masses of
particles must be. Neither is it likely that we will find any satisfactory theory which will tell
us how fast a driver wants to drive. If we know how fast a driver drives and where ke is,
however, we can say something about where he will be a short time later.

Because of various structural similarities between traffic and particles, one can also
classify much of the data relating to traffic in categories analogous to those listed above even
though as yet we have not proposed a theory which will be the analogue of the laws of
dynamics.

In the first category belong properties associated with an individual car or driver

which are more or less independent of time. There are potentially so many of these that one

In the first category belong properties associated with an individual car or ariver
which are more or less independent of time. There are potentially so many of these that one
would not want to list all that one can imagine. The object is rather to list as few as are
necessary to describe any particular theory. Some properties which will enter into theories
discussed here are the origin, destination, possible routes and starting times of a driver’s trips

(these properties which indicate an objective have no obvious counterpart in particle physics),



nis desired speed on various highways, his notion of safe driving distance behind another car, .
pis willingness to accept passing opportunities, etc.

In the second category belong the "forces” of interaction between cars if not already
jncluded in the first category. The external forces or constraints of a physical system,
powever, have an obvious analogue in the geometry of the road system, traffic lights, etc.
ginally in the third category belong the time dependent state variables such as the positions of
¢pe cars at any time whose evolution we hope to describe by some theory analogous to the
equations of dynamics.

Although we have given only a very fuzzy indication of what might enter into a
rﬂicrosc0pic theory, we turn now to some of the statistical questions. Since we know that for
physical systems much of the microscopic behavior is irrelevant to the macroscopic behavior,
we postpone any further discussion of the microscopic behavior of traffic unti] we have some
petter indication of what features of the microscopic behavior have the greatest influence on
{he Bross properties.

In statistical mechanics there are three types of arguments used to explain why certain
Jetails of the microscopic motion are irrelevant.

1. Most physical measurements can be made only in a time which is large compared

with the time interval between microscopic events. For example, a measurement of tempera-

1. Most physical measurements can be made only 1n a time which 1s large compared
with the time interval between microscopic events. For example, a measurement of tempera-
gure with a thermometer takes several seconds during which time many particles collide with
gach other and with the thermometer. In effect one is measuring a time average property of
¢pe system. If the time of measurement is large compared with the time for the system to

geach "thermodynamic equilibrium,"” then for all practical purposes the time average over a




finite time is equivalent to an average over an infinite time. Mathematically one can represent
this in the following way. If the coordinates of the state space are represented by a collection
of numbers or vectors {x;}, then a trajectory of the system is a set of functions {x;(t)} that
gives the state of the system at time t. If an instantaneous measurement would give a
quantity £(x,(t), X,(t), * * -) some function of the state of the system at time t, then the

quantity which one actually observes is

%j’ dt flx, (), 3,0, - ) - (1.1)

We expect that this will be much less sensitive to the initial state {x,(0)} than the instanta-
neous value of f at any time t.

2. The physical quantities one thinks of as macroscopic variables all seem to have the
form

Zifi(x) or X filux) (1.2)

where here the x; stands for some possibly vector valued property associated with the i
particle and the sums are over all particles or pairs of particles respectively. Furthermore if all
particles are identical as in a monoatomic gas then the functions f; do not depend upon the
particle number j. For example, the total momentum of the system is the sum of the momenta

of all the particles and the total potential energy is usually the sum of the energies of

particle number j. For example, the total momentum of the system 1s the sum of the momenia
of all the particles and the total potential energy is usually the sum of the energies of
interaction between pairs. The number of particles in a region D is obtained by choosing f;
to be 1 if x; is a point in D and zero otherwise. The average density in D is then defined as
this number divided by the volume of D. Since the sums extend over a very large number of

particles one expects considerable cancellation of the fluctuation and a value for this sum



which is not very sensitive to the state of the system. The above sums are in effect averages
over all particles.

3. If the above arguments fail and the physical observations do depend upon certain
detailed properties of the microscopic state, it is likely that these observations are so sensitive
to small changes in this state that it is impossible in practice to reproduce the same state with
sufficient accuracy to guarantee the same outcome of an experiment. A coin, for example, is a
rigid body that supposedly obeys the laws of classical dynamics. If we specify the initial
velocity, angular velocity, position etc. of the coin and describe the geometry of the region
into which it is thrown, we should be able to determine with certainty whether the coin will
land heads or tails. Whether a coin lands heads or tails after spinning many times, however, is
so sensitive to these initial conditions that is practically impossible to set the initial conditions
accurately enough to predict the outcome. The fact that a coin lands heads about half the time
is not simply because the coin is symmetric but because the uncertainty in selecting the initial
conditions is such that about half the time we choose the initial conditions from the set of all
possible initial conditions that leads to heads.

A similar argument may apply to radioactive decay of nuclei. We do not know enough
about the states of nuclei to predict under what conditions a nucleus will radiate. If we

observe enough decays, however, one can say something about the average rate. This average

about the states of nuclei to predict under what conditions a nuclens will radiate. If we
observe enough decays, however, one can say something about the average rate. This average
rate is then considered as the effective macroscopic observable rather than the non-reproduce-
able number of decays observed in a single experiment.

The mathematical formulation of this we obtain by introducing a probability distribu-

tion of possible initial conditions. If {x(t)} is the state of the system at time t, then x(t) is
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also a function X1, x,(0), %,(0),) of the initial state x,(0), x,(0), = If we assume that the
initial states are chosen at random with a probability density p(x,;(0), x,(0), *-) and we are
concerned with a function f (x,(t), x,(t),*), then the macroscopic quantity of interest is the
expectation or average value of f over the probability distribution of initial states, i.e..

-] dx(0)ax,(0) o Ohp(xi 0 x(0), Wk 62,0} x40), ), 2l 9, ) (1:3)
where if x,(0) is a vector, dx;(0) represents a volume element in the space of x;(0) values.
Fortunately the three types of averages described above, complement each other in that by
using one of them we do not destroy the possibility of using another. Furthermore the result
of successive averages is independent of the order in which they are done. For most
macroscopic quantities one can in fact argue that what one observes involves all three
averages i.c. a time average of a particle average of an average over some distribution of
initial states. If, as one often hopes, the time average of some function f is independent of
the initial state and independent of permutations of the particles or the particle average is
independent of the initial state and time or the average over initial states is independent of
time and permutations of the particles, then the use of more than one type of average is
redundant because the second or third average becomes the average of a constant which
always yields this same constant independent of the distribution over which one averages.

Each of the above arguments has an obvious application to traffic since we have

always yields this same constant independent of the distribution over which one averages.
Each of the above arguments has an obvious application to traffic since we have

nowhere used any properties of the state space or the equations of motion. We have assumed,

however, that the equations are deterministic, i.e. {x,(t)} is uniguely determined from {xj(O)},

but we could have assumed that for any initial state {x,(0)} there is a probability distribution

11



for the states {x;(t}}. In the latter case one could perform still a fourth average over all .

possible motions of the system.

Unfortunately the above ideas which are so effective in describing mass phenomena in
physics will never give more than a very crude description of highway traffic. In physics one
is interested in time averages over times which are in effect very large but in traffic there is
little interest for example in flow on a highway averaged over a year’s time in which one
averages out hourly variations, seasonal variations, etc. but to average only over a few
minutes is usually not very effective in smoothing out random fluctuations. In physics a
particle average is typically over enormously many particles but in traffic the number of cars
one observes at any time is quite small. In physics the laws of nature are assumed to be
valid for an indefinite length of time and one can repeat an experiment as many times as one
wishes under what seem to be equivalent conditions. If the outcome of an experiment is
random one can find the average behavior by repeated trials. In traffic one is never quite sure
if one is repeating an experiment under nearly equivalent conditions, and furthermore one
cannot repeat the experiment indefinitely because the traffic behavior is known to vary from
year to year. The "laws" of traffic are not valid for all times in the future. In traffic one will
always be confronted with the problem of not having as much data as one would like.

These inherent limitations on the accuracy of any theory of traffic flow are things that

always be confronted with the problem ot not having as much data as one would like.

These inherent limitations on the accuracy of any theory of traffic flow are things that
one must learn to accept. Certainly a traffic engineer is not concerned about the detailed
behavior of each and every driver in a city; he is only interested in the typical or the average.
That the latter is only very crudely defined cannot be remedied by better theory or more

accurate data. A theory that gives predictions to an accuracy of 25% or even a factor of 2 is
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better than nothing and perhaps in some cases the ultimate accuracy of any prediction. That it
does not give the 10% or the 1% accuracy that engineers are accustomed to expect in
engineering applications of physics is not always a reflection of a poor theory but more likely

a crudely stated but nevertheless relevant question.
Bibliographical Notes

There is no published literature in which statistical mechanics and highway traffic are
compared although the papers listed below by Cohen, Newel], and Prigogine were obviously
motivated by similarities in the two subjects and other works to be discussed later certainly
mimic many of the techniques of statistical mechanics even if it was not intended. There is a
very large number of books on statistical mechanics but most of the modern textbooks
emphasize the methods of applying the conclusions to current physical problems. The )
references given below contain the most thorough discussion of foundations. The review |
paper by P. and T. Ehrenfest is a classic and gives a thorough history of the early develop- {
ments of the kinetic theory of gases and a penetrating analysis of the controversies. Despite
the early date, much of the discussion is as relevant today as then. The book by Tolman is

also quite old in terms of the developments in physics but it is still one of the best books

the early date, much of the discussion is as relevant today as then. 1he book by lolman is
also quite old in terms of the developments in physics but it is still one of the best books
available. The book by Khinchin treats the subject from a rigorous mathematical point of

view (to the extent that such is possible).
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II. LOW DENSITY TRAFFIC (NO INTERACTION)

1. Introduction. Since any realistic mathematical description of traffic flow is certain to be so
complicated that we would have great difficulty in analyzing it, the main object at the present
state of development of traffic theory is to construct models which are as simple as possible
but still contain some similarity with certain aspects of real traffic. We shall therefore begin
by considering what seem to be the crudest possible models and then gradually add
refinements to thern.

The three basic ingredients of any theory are 1. a description of the population of
drivers. 2. a description of the road network and 3. some equations of motion with an
appropriate specification of an initial state. The simplest population of drivers is a population
of identical drivers. The simplest road network is a homogeneous highway of length L say
with one entrance at x = 0 and one exit at x = L. The simplest equations of motion are that
each driver travels at a constant velocity v. We represent the highway as a one-dimensional
line and a car by a point (the position of its center for example). If x;(t) is the position of

the j* car at time t then the equations of motion are

SO L 0 <x(h <L (L.1)
At I
Z0 v fro<xmp <1 (L)

the solution of which is
xft) = x{0) + vt fO<x(t)< L
or
x(t) = v(t-1;,) forO < t-t, < Lo
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if t,, is the time the car enters the highway at x = 0.

This system of equations is so simple that it seems hardly necessary to say more. To
lay the groundwork for future refinements, however, it is convenient to use this model as a
means of illustrating some of the dynamical and statistical concepts that will be necessary in
the treatment of more complicated models and also to see how some of the ideas of chapter 1
relate to this model.

Unlike classical mechanics in which the equations of motion are second order
differential equations and therefore require a specification of both initial positions and
velocities, (1.1) is a system of first order equations. Even for more general models it seems
reasonable to assume for traffic flow that the desired speed of a driver is a property of the
individual driver (analogous to the mass of a particle), something which the driver retains for
all time. For a system in which a driver deviates from his desired speed to stop for a traffic
signal or to slow down as he overtakes another car, etc. it is still reasonable to assume that
the driver’s behavior at any time depends only (or at least mainly) upon his position on the
highway and the positions of other cars. We might therefore postulate for a fairly general
class of models that the state space of the system is the space of position coordinates only,
but not also velocities (although the description of the population of drivers implies a

specification of the properties of the j™ driver including his desired speed).
but not also velocities (although the description of the population ot drivers implies a

specification of the properties of the j™ driver including his desired speed).
The state space of the system under discussion thus consists of spatial coordinates x; ,
j=1,2..., Nfor which N represents the total of all cars which may use this highway

during any specified time of observation. Those cars which are not on the road at any
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particular time can be assigned any coordinates not in (0,L). They may be in parking lots or
on other highways.

The equations of motion of our system consist of some rule whereby we can deter-
mine the position x,(t) at any time t if we know the corresponding positions at any earlier
time. In the present situation we determine x,(t) of the cars in (0, L) at time t from the
positions at an earlier time for the cars in (O,L) at the earlier time through (1.1), otherwise
from the times at which they enter (0, L). The entering times can be considered as properties
of the population or as part of the equations of motion not covered by (1.1). Thc evolution of
our system is then represented by a trajectory (x,(t), x,(t), - ) in the space of coordinates
(X,, X3, - *). If cars not in (0, L) are assigned the coordinates O or L, this trajectory is a
piece-wise linear curve in the N dimensional space which changes direction each time a car
etther enters or leaves (0, L).

One can also represent trajectories as a curve in an N+1-dimensional space (t, x,,
Xp.Xy). The N-dimensional curve is then the projection of the N+1 M¢nsionﬂ curve onto
the N-dimensional space with the parameter t represented as a parameter along the latter
curve.

Because of the difficulty in visualizing trajectories in an N or N+I1-dimensional

space, it is more usual to draw two-dimensional projected (x;,t) graphs. On the same graph of

Because of the difficulty in visualizing trajectories in an N or N+I1-dimensional
space, it is more usual to draw two-dimensional projected (x;t) graphs. On the same graph of
position vs. time we draw each single car trajectory .x;(t). This has the obvious advantage of
simple geometric representation but, if there is an interaction between cars, it has the
disadvantage that the trajectory of one car depends upon those of other cars whereas in N or

N+1 dimensions there is just one trajectory which describes all cars simultaneously.

17



For the particular model proposed here, all cars travel at the same velocity. The single

car trajectories are all straight lines of slope v as shown in figure II.2 rather than the more
realistic type of picture such as in figure II.1. The spacing between the cars is fixed and there

is no passing. Furthermore if the spacing between cars is larger than the range of influence

between cars, the velocity v can be interpreted as some average free speed or desired speed E
of the drivers. r

The most important feature of this model that makes the equations of motion
manageable is that there are no interactions and so the trajectory of one car is functionally 7
independent of any other car. Although we really have a system of N simultaneous
equations, these equations are uncoupled and equivalent to the superposition of N indepen- i

dent one car systems.

L

////'

O t 0 t

Fig. Il 1 Fig. 1l 2
Typical trajectories of cars Trajectories for cars all traveling at the same velocity

@
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2. Macroscopic quantities. Three quantities that experimentalists frequently measure are the

density of cars on the highway, k, the mean velocity, v, and the flow, q. The flow, also
called the volume of traffic, is, roughly speaking, the number of cars crossing a fixed point
on the highway per unit time. In the present model in which all cars travel at the same
velocity, the mean velocity must be v but the precise definitions of k and q are less
obvious.

Density of cars, k, should represent the number of cars per unit length of highway.
Unfortunately the number of cars in any section of highway must be integer and if we take an
arbitrarily small interval about some point x, as would be usual in defining a density, it will
contain either O or 1 cars. The density is either O or oo in the limit of zero length of highway.
A similar problem arises, however, in fluid dynamics. The density of mass is defined as the
mass per unit volume but since mass is atomic one cannot take an arbitrarily small volume to
define density at a point.

There are two approaches to this problem. By analogy with the usual procedure in
physics, one can imagine a length of highway sufficiently long as to contain many cars but
sufficiently small that the gross aspects of the system can be considered constant over this
section of highway. This scheme Works well in physics because any element of volume that 1s

small in terms of visible dimensions of length usually still contains an enormous number of

section of highway. 'I'his scheme works well 1n physics because any element OI VOIUINE tnaL 1y
small in terms of visible dimensions of length usually still contains an enormous number of
particles. Also it is the nature of the physical laws that local concentrations of particles
diffuse very rapidly. Even though there will be fluctuations in the number observed in volume
elements of the same size, these fluctuations will be small compared with the number of

particles observed. In traffic there are serious problems in observing a density because the
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lengths of highway one would like to use in evaluating a density seldom contain very many

cars but if one increases the length one 1s apt to exceed the range of highway over which
traffic can be considered more or less homogeneous. Nevertheless this is the only practical j
way of evaluating a density unless one makes repeated observations and computes an average,
but then one has the problem of ascertaining if the different observations were done under 1
equivalent conditions.
The second approach to defining a density is mathematically more satisfactory but 4
experimentally impractical. One first defines a joint probability distribution over the possitle
states of the system. Suppose F (x;,X,, - - - ,Xyt) is the probability that car I has coordinate
less than x,, car 2 less than x,, etc. for 0 < x < L at time t. Any car not in (0,L.) can be put )

at O or L. The marginal probability that car j has coordinate less than x; is

J

FI_(xj;t)=F(oo,°0,..,x.,oo..;t). (2.1) |

IfF (x; 2)is differentiable then there is a probability density for the coordinate x(t) of car j

£ 0 = ZF (6 9) 2.2)
i X 7

0

o

which is interpreted to mean that for small dx, f_(x; #)dx is the probability that x;(t) lies
/)

between x and x + dx. The density of cars at x is then

between x and x + dx. The density of cars at x is then

N
k(x, ) =Y fx; 0. (2.3)
=
The connection between the two interpretations of density arises as follows. Let x;(t)
be the random position of car j and for any small interval (a,b) in (O,L) let %, (x) be the set

characteristic function of (a,b) i.e.,
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_Jlifa<x<bd
Aap®) = {0 otherwise _ (2.4)

Xa(X()) is a random variable with value 1 if the j* car is in (a,b) at time t and zero

otherwise.

N
I MEI0) (2.5)
=l
is the number of cars in (ab) at time t. If we divide this by (b-a) we obtain what is
experimentally evaluated as the density.

We hope that the stochastic structure of the {x,(t)} is such that a law of large
numbers applies, which in the present context would imply the value of (2.5) divided by the
expectation of (2.5) would be nearly equal to one for almost all realizations of the random
variables x;(t). For this to be true, however, we must choose (b-2) sufficiendy large that many

X(X;(t)) are non-zero. The second definition of density (2.3) is equivalent to

kK(x, £) = lim :

a3 b-ox (b = (1)

N
E(Y %, &)} (2.6)
j=1

in which E{x} represents the expectation or average of x.
The interpretation of the flow q has similar problems, in fact the only difference

between k and q is that k is the spatial density, the number per unit length of road, while

‘The interpretation ot the Ilow ( [ias SIMUAr ProbIeIns, 11 FdCL LIE UILY WLCICULG
between k and q is that k is the spatial density, the number per unit length of road, while
q is the "time density." In the (x,t) space, k is the density of crossings of the x axis at
fixed t and q is the density of crossings of the t axis for fixed x by the trajectories x(t).
Furthermore for the case of equal velocity v for all cars, the q and k are simply related

by the equation
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g = kv. 2.7)
This one can see from the fact that if at any instant there are n = kx cars on an interval of
highway (0,x), then these n cars traveling at velocity v will all pass the position x ina
time x/v. Thus n = kx = q x/v.

Edie [1] has suggested another interpretation of q and k which is in practice
somewhat easier to apply. Consider any area A (which for convenience we choose as a
convex set) in the (x,t) plane (see figure I1.3). Let Ax; be the distance traveled in A by car j
and At be the time traveled in A by car j. Now define the density of cars k and the flow

of cars q in A by

SA, g=LF A @8

|
|
l
|
|

L—Atj—-l

Fig. 11 3 Fig. Il 4
Sections of trajectories enclosed by area Equivalence of definitions
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The k and q so defined are random variables and if A is too small we again have
difficulties analogous to those described above because A may be empty or contain only one
non-zero Ax;. We can formally avoid this problem by defining k and q by

k(x, 1) = lim ;11_2 E(A 1} ; qix,) = lim = % E{Ax) . (2.9)
A—0 J J

A—>0

in which A->0 implies that the largest distance or time interval in A vanishes while A
converges on the point (x,t).

If all relevant functions of x and t are continuous functions of x and t, then the
definition of k(x,t) in (2.9) is equivalent to (2.3) or (2.6). To show that this is true, divide the
region A into narrow vertical strips as shown in figure II 4, the k™ strip A, including
times t, < t < t,,,. The time A t; which the j* car spends in A can be written as the sum of
the times spent in each of the A,. Since the velocity v is finite (the trajectories are not
vertical) most trajectories which enter A, will spend a time t,,,-t, in A,. The only exceptions
are those trajectories which enter or leave through the upper or lower ends of A, near the
positions b, or a, respectively. These latter, however, will contribute nothing in the limit of
arbitrarily narrow strips if f(x,t) is continuous and the boundary of A is smooth.

It follows then that

E{A t} = % E{time spent in A, by car j}
It follows then that

E{A t} =« %E{time spent in A, by car j}

.1 — L) P{j* car is in A at time t )

~2 (t
k
b,

=T G, - 1) [, @ tax

In the limit ¢,,, - t, = O, this last sum is itself an integral over the time and we have
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Eas) = [[draf @ o
A

This relation can be proved more rigorously and is in fact valid for any region A such that
" the integral over the region A is mathematically well-defined.

If we now let A be an arbitrarily small region about some point (X, t) and assume

f,(x, 1) is continuous and therefore essentially a constant over A, we have

p)

. E{ary _
lim = lim fAfdx dtf, (1) = f,06 D)

4a>0 A A0
The terms of (2.9) and (2.3) are all equal.

Since in practice one usually infers the values of k(x,t) or q(x,t) from a single
observation, the usual measurement of k(x,t) as the actual number of cars in an interval of
highway about some position x attime t is essentially equivalent to (2.8) when A is
chosen to be an arbitrarily narrow vertical slit of the (x,t) plane, an A, of figure II 4.
Similarly the usual direct observation of q(X,t) is equivalent to (2.8) when A is chosen to
be an arbitrarily narrow horizontal slit of the (x,t) plane. It is not obvious what shape or size
of A leads to the most accurate estimates of k(x,t) or q(x,t) for a single observation
particularly if k(x,t) and q(x,t) are not constant functions of x and t but (2.8) at least gives

nne the ontion of chnnsine whatever shanes of A micht seem most snitable in anv situation.

particularly if k(x,t) and q(x,t) are not constant functions of x and t but (2.8) at least gives
one the option of choosing whatever shapes of A might seem most suitable in any situation.
As yet very little has been done to determine "best” statistical estimates of parameters
occurring in traffic models. Actually most models that exist now do not describe the statistical
aspects of traffic flow in sufficient detail as to admit the possibility of one even posing such

problems.
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3. Stochastic description. So far we have avoided any detailed discussion of what sort of

arrival pattemn is reasonable in this problem of traffic flow on a homogeneous section of
highway although in the definitions of macroscopic quantities it was necessary to have some
fairly well behaved probability structure in order that these things have any meaning at all.

There is inherent in almost any traffic situation some uncertainty. One cannot predict
exactly when or how many cars will enter a highway, for example. In principle, probability
distributions can be determined experimentally by repeated observation but sometimes one
can deduce certain features of them from plausible assumptions about uncertainties in human
behavior.

One important human limitation, for example, is that people can not judge time with
split-second precision, in fact most people cannot éredict when they will depart on a journey
to an accuracy better than one minute. If there is a probability density for a given driver’s
departure time, it should therefore be nearly constant over small times of the order of a
minute perhaps. Furthermore the uncertainty of departure time for one driver should be
statistically independent of the uncertainty for another driver.

To exploit this suppose that the section of highway under discussion is fed by a very
large parking lot representing an idealized source of cars from which drivers start their

Journey. There is to be no interference between the cars in leaving the lot and there are to be

large parking lot representing an idealized source of cars from which drivers start thewr
Journey. There is to be no interference between the cars in leaving the lot and there are to be
no traffic signals or other external influences that would cause statistical correlations in the
departure times of the cars. We will therefore assume that the departure times i.e., the times
at which drivers enter the highway at x = 0 are subject to the statistical uncertainties

described above.
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Consider a short (perhaps a minute) interval of time between some arbitrarily selected
time t and time t+T. Any " driver has a certain probability density associated with his
random departure time and by hypothesis this density is essentially constant over the time
(t,t+7). If the density at time t is oy(t) then the probability that the j® driver leaves in this
time interval is approximately oy(t)t. It is to be implied also that this T is sufficiently small
that o,(t)t is small compared with 1 for all j and t.

This oy(t) is closely related to the probability density for the position of the j® car x(t)

at time t, the f (x, ) of the last section. If the j™ car crosses x = 0 in the time interval (t, t

+ T) and travels with velocity v, it is certain to lie in the spatial interval (0,vt) at time t+7.

Thus oy(t) = v fo(O,t).

Suppose we now choose t as a time when some car has entered the highway and we
ask what is the probability, P, (T, t), that no cars enter the highway during the time interval (t,

t + 7)? Since the departure times of different cars are assumed to be statistically independent,

P(t, 1) = ; [1 - o 1],

J=1

if there are M cars still in the parking lot at time t and we label them with the index j. If

if there are M cars still in the parking lot at time t and we label them with the index j. If
oy ()t is sufficiently small we can write l-oy(t)T as exp[-0(t)t] and obtain

P,(1t) ~ exp[-a(t)T] 3.

with
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o) =% o) (32
=

In this formula, the oy(t) and consequently also the o(t) were to be nearly constant
over the time interval t to t+T. Equation (3.1) admits the possibility of slow varations of
P, (tt) with t caused for example by hourly variations in demand but it is the more rapid
exponential dependence upon T which is of primary concern here. The quantity 1-P (T.t)
considered as a function of 1 represents the distribution function at time t for the random
time interval between departures, the probability that this interdeparture time has a value less
than T.

To derive (3.1) as an exact limit distribution one would imagine that the o(t)
depended upon M in such a way that for M — o we have oy(t) = o4(t, M) — O for all ]
and t , while ot, M) — o(t). In practice we do not have an arbitrarily large M and it is
not natural to think of the ¢ (t) being dependent upon the size of the parking lot. We can,
however, treat (3.1) as a plausible conjecture which is subject to experimental confirmation.
We can also define roughly the sort of experimental conditions under which one might expect
(3.1) to be a reasonable approximation.

The conditions under which (3.1) is plausible are: (1) 1(t), being a measure of the

average time between departures, should be appreciably larger than about 3 seconds, three

I'ne conditions under which {3.1) 1S plausible are: (1) L/Qi(t), being a measure oI tne
average time between departures, should be appreciably larger than about 3 seconds, three
seconds being a typical time headway for congested traffic where the statistical independence
assumptions are not expected to be valid, (2) T must be small enough (a few minutes
perhaps) so that we cannot single out any particular driver as having a significant probability

of departing between time t and t+t;, and (3) o(t) is nearly constant over a time <. The last
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condition is the least critical because on the one hand it is usually true (typically traffic
demands or average headways should be nearly constant over about 10 to 20 minute intervals)

and on the other hand if it is not true we can modify (3.1) accordingly. In the above

derivation the o4(t)t was used as an approximation to f T o (z)dz . Similarly (3.1) is used
i

as an approximation for a more general expression

P (T, 1) ~ exp

- f T @ dz] (3.3)

where the o(z) is still as given in (3.2).

We can now go one step further and ask: what is the probability that j cars enter the
highway between time t and t+t. To simplify nétation we will delete for now the
dependence of P (T,t), a(t), etc. upon t and take P (T,t)=P (T)=e"

To evaluate the probability P,(T) that one car enters between time t and t+T, we note
first that for any z, O<z<T, the probability that no car enters between t and t+z, that one
enters between t + z and t + z + dz is -P(z + dz) + P (z) = ¢ adz.

The probability that there is one car in the above interval dz and no others in (t, t + T)
is the above probability multiplied by the conditional probability that there is also none in the

interval (t + z + dz, t + T) given that there is none in (f, t + z) and one in the interval dz. If

IS (e apove propavility IMUIOplIEd DY INEe CONAIlOoNal propapuity [nal were 1S also none 1n e
interval (t + z + dz, t + T) given that there is none in (f, t + z) and one in the interval dz. If
M is very large, the fact that one car has already been removed from the parking lot does not
significantly alter the probability of no entrances in the final interval fromt+z +dztot + .

We therefore conclude that the probability of one car in dz and no others in (t, t + T) is
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e 'uzadze -(t - z - dz) ~e —a't(xdz

and
P (1) = f ‘ dz0e ™ = Qte ™™

Similarly one can argue that the probability of one car in (t, t+z), a second car in (t+z,

t+z+dz) and no others is approximately
oze ®otdze ™™ = o’zdze™

and so the probability of two cars in (t, t+7) is
P(1) = j " dre 0y = _;_(ar)ze ot

More generally the probability of j cars in (tt+1T) is

P = (foy e (3.4)
J:

This is the famous Poisson distribution for the number of events j. It arises in a wide
variety of applications. Typically the Poisson distribution arises in any situation where one
asks for the probability that j events will occur (an event here is the entrance of some
specified car onto the highway) when there is a very large number of independent events that

~oaild necnr (here there are manv cars in the lot that could enter the highway) but the

specified car onto the highway) when there is a very large number of independent events that
could occur (here there are many cars in the lot that could enter the highway) but the
probability that any specified event occurs is very small (there is a small probability that any
specified car will enter the highway during the time T).

The fact that the Poisson distribution like the exponential distribution of (3.1) can be

derived as an exact limit distribution is again somewhat academic because the appropriate
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mathematical limit cannot be physically realized, but one can describe roughly the conditions
under which (3.4) is plausible. One certainly would not use (3.4) for example to calculate
P(t) for j so large that j cars entering the highway during a time interval would necessari-
ly imply some congestion.

If o is a slowly varying function of t, the corresponding form for P;(7,t) is obtained
by the substitution of a(t) for o in (3.4). If o varies more rapidly (3.4) can be further

generalized to the form
Pt 0 = [ o expl-["" ooyl it - 2.5)

Since we have already defined q(0,t) as the expected number of cars that enter the
highway per unit time we can now identify the a(t) in the above formulas as the observed
flow since

g0, = lim 2 TP, 0 =0 . (3.6)

1250 T g

For the model considered here in which all cars travel at the same constant velocity
v, the position of any car at time t is uniquely determined by the time at which it enters the
highway at x = 0. A specification of the probability distribution for all entrance times, such as

the ores described above, therefore implies a specification of the probability distributions for
highway at x = 0. A specification of the probability distribution for all entrance times, such as

the ores described above, therefore implies a specification of the probability distributions for
any events whatsoever that may occur on the highway (insofar as the event in question is

determined by the positions of cars at various times).
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If j cars enter the highway at x = O between time t and t+t, the same j cars must
cross a position x during the time interval t+ x4 and t + x4 +7. Thus if P,(t,t,x) represents
the probability of j cars crossing x during a time ttot+7

P(t, 1, x) = P(1, t - xlv, 0) (3.7
identically for all j,t, t and x. It follows also that
q(x, t) = q(0, t-x%) (3.8)
and k(x, t) = k(0, t - xV).
If the traffic entering the highway has a Poisson distribution in time at x = 0, it must also
have the same Poisson distribution of crossing the position x at a time x/v late;.

The spatial distribution of cars at a fixed time will also be Poisson distributed because
there can be j cars in an interval of highway between x and x+{ at time t if and only if
these j cars entered at x = O during the time interval t-x/v and t-(x+&)/v. If the latter has the
Poisson distribution (3.4) with parameter q7 for a time interval 7, the probability of j cars in

an interval of highway of width & is

P(E) = (’;,Y e

a Poisson distribution with parameter g€~ = k& i.e., the Poisson distribution which has a

mean spatial density of cars k. If the q and k vary with x and t one must of course use

a Poisson distribution with parameter q&v = k& i.e., the Poisson distribution which has a
mean spatial density of cars k. If the q and k vary with x and t one must of course use

the appropriate values of q and k as given by (2.18).

4. Poisson distributions and Poisson processes. The Poisson distdbution arises in a wide

variety of traffic situations besides the one mentioned above. For future reference, we review
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here a few of its properties and origins. For a more complete discussion of some of the
following, see the book by Feller [2] or the review by Gerlough [3].

In most text books on probability theory, the Poisson distribution is derived as a limit
of a binomial distribution. Suppose an experiment results with probability p in the event E,
sometimes called “success" in the context of Bernoulli trials but in the present context the
event that a driver enters the highway during the time (t,t+ T ). If we make M
statistically independent trials of the same experiment, the probability of j occurrences of E

in the M trials is
P = (M] pi(l - pyi (4.1)
where
1
(M) - _ M! .
il JM - )
If we keep A =pM fixed while p = 0 and M — | then

L, Ne (4.2)
p; 5

This method of derivation of the Poisson distribution is certainly simpler than the one

described in the last section, but it is not quite as general. We could use this simple

This method of derivation of the Poisson distribution is certainly simpler than the one
described in the last section, but it is not quite as general. We could use this simple
derivation to show the following: If the parking lot contains M cars and each has a probabili-
ty oy(t)dt,

o) = otyM
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of entering the highway between t and t + dt, independent of the entrance times of any other

cars, then the probability of its entering between t and t+ T is

_ e _ 1 L+ T
p=["" awa ”M‘f: an)dt

and P;(t, t) is as given by (3.5). To derive (3.5) in the last section, we did not, however, need
to assume that the oy(t) were all equal. Different drivers could have different distributions for
entrance times. The assumption that one driver’s entrance time is statistically independent of
any other .is, however, basic to both derivations.

In deriving the Poisson distribution, we have already made use of the fact that the
number of cars entering during one interval of time (t, t+ 7,) is (for M — o and oyt) —
0) statistically independent of the number entering during any non-overlapping interval (t +

T, t + T, + T,) say. It follows that the probability, P(j,, j,, ..., ji), that j; cars enter during (t,

t+7T)j, MEA+T,t+7T, +7T), ..., andj, in (t+ T, + T, t+T +°T)is
kj' e™ A e ™ N e ™
PGy, Jyo e 0 J)) = —— X Me % £ (4.3)
Jl! J2' Jk!
where

A, = f’ Mondr , A, = J;:T‘ "R ot ..

! 1

1 +7T

A, = J;' Mondr , A, = J; R aqndt

+‘[I

This is the multiple-Poisson distribution which in most textbooks is derived as a limit of the
multinomial distribution in the special case of repeated trials of the same experiment. From

this we can define a Poisson process.
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In the general theory of random processes [4], a random process is a family of random .

variables X(t), parametrically dependent upon some parameter t which takes values in some
arbitrary space. The parameter space will usually be the real numbers, —eo <t < +e , having
the physical interpretation of time. For any values of t;¢t,,t,, .., ¢t , X() , X(t,) , ..., X(t)
are random variables. A point process is a special case of a random process for which X(t)
assumes only the values 0 or 1, I if an event happens at time t, O otherwise. In the present
‘context an event is the entrance of a car onto the highway, and the point process the process
of entrances. In describing the probability structure of a point process, it is sometimes more
convenient to specify the joint probabilities for the times t, , t,, ... at which events occur,
rather than the joint probabilities associated with the X(t) at various arbitrary times.

The probability distributions of entrance times were originally defined here by specifica-
tion of the probability densities oy(t) for the entrance time of each i™ car, along with the
assumption that these entrance times were statistically independent. This description not only
defines the probabilities for the times at which cars enter the highway (the process of entrance
times) but also which car enters at any time. Equation (4. 3) represents first of all only a limit
distribution or an approximate property of the entrance times but secondly does not include a
description of which cars enter during any time intervals. A process which satisfies (4. 3) for

all values of t, T,, T,, - - -is called a Poisson process with rate 0(t).

description of which cars enter during any time intervals. A process which satisiies (4. 3) tor

all values of t, 1, T,, - - - is called a Poisson process with rate o(t).

Most elementary texts on probability theory treat only Poisson processes for which
o(t) = ¢, a constant independent of t. The term "Poisson process" is also used frequently to
imply that o(t) is constant. We shall use the term here usually in this more restricted sense,

but in cases where there may be some confusion we shall use the more specific expression
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"homogeneous Poisson process” to refer to this special case. The non-homogeneous processes
will arise in some discussions of traffic flow. It is obvious that they are relevant to the study
of flows in which q(x, t) varies with time because of rush hour traffic, etc.

Homogeneous Poisson processes have certain special stochastic properties not shared
by non-homogeneous processes. For a homogeneous Poisson process, the probability of no
events during (t, t + 1),

Pft,t)=¢e™" , (4.4)
is independent of t. In particular, this is true even if t is the time at which an event has
occurred. If in this case, we let T be the time of the first event after t, given that there is
one at t, then

Pyt,t) = P{T>1} =1-Fq1)
Fft)=1-e™
Thus F; is the distribution function for the time between the event at t and the next event.
If welet T, , T, , - - - be the time intervals between successive events, it follows also
that T; has a distribution function
P(T, > 1} =¢™ (4.5)
independent of the values of any other T,, k #J. The set of random variables {T;} are

mutually independent. A homogeneous Poisson process is also uniquely defined by saying

independent of the values of any other T,, k #j. The set of random variables {!;} are
mutually independent. A homogeneous Poisson process is also uniquely defined by saying
that the times T, are independent random variables with a distribution function (4.5), and
that the (marginal) probability of finding some event during a time interval (t, t + dt) is audt.

The process is also uniquely defined if we say that there is a probability o dt of an event
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during (t,t+ dt) for any t, independent of the times of any other events outside this
interval.

The latter interpretation has an obvious generalization to non-homogeneous processes. A
non-homogeneous Poisson process is one for which there is probability o(t)dt for an event
occurring during (t, t + dt) for any t, independent of the times of any other events outside
this interval. The former interpretation of a Poisson process in terms of the times T; between
events, does not however have a simple generalization. The times T; for a non-homogeneous
Poisson process are not statistically independent.

A homogeneous Poisson process is also a special case of another well-known type of

point process known as a renewal process. A renewal process is one for which the times T;
between events are independent identically distributed random variables with some general
distribution function, not necessarily exponential. As a special case of a renewal process, the
most important property of the exponential distribution for the T; is the following. If we
know that T, > a;ie., atime a has already elapsed since the last event occurred, then

P{T,>1 +a} gtra
P(T, > a} e™

P{T, ~a > 1T, > a} = e ™ (4.6)

Thus the distribution of time until the next event, T, - a, given that there has been none for

atime a,isalso e, independent of a . The time until the next event is independent of

'I'hus the distribution of time until the next event, T, - a, given that there has been none for
atime a,isalso e, independent of a . The time until the next event is independent of
how long it has been since the last event.

A non-homogeneous Poisson process is not in general a renewal process. The non-homo-
geneous Poisson process is a different type of generalization of a homogeneous Poisson

process. It is, in fact, a simpler type of process to treat than the renewal process. It is always
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possible to map a non-homogenous process into a homogeneous Poisson process. If we define

anew time t by
ﬂﬂ=£a@ﬂ (4.7)

then t (t) is a monotone increasing function of t if o(t) > 0. There is a one-to-one
correspondence between t and t. As a function of t” , however, the Poisson process is
homogeneous.

If real traffic were known to conform with a homogeneous Poisson process of unknown
flow g (i. e, o) the estimation of q from a single observation of the number of cars
which enter the highway during a time 7T is a classic problem in parameter estimation. It is
discussed in most books on mathematical statisticé as the problem of estimation of the mean
for a Poisson distribution.

If j cars are observed in a time T, the usual estimate of q is

g =jn |
The § is a random variable. If the experiment were repeated under identical conditions (same
q), § would have a probability distribution of possible values determined by the fact the

number of cars observed in a time T has a Poisson distribution with parameter qt.

2 T (O
number of cars observed in'a time T fas a Poison distribition with parameter qft.

k
mq=M}a%?ewuk=mLm

The estimate of § is unbiased: i.e.,
Efg) =q .

The standard deviation of § is
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n 12
E{@ - 94" = [%]

The standard deviation divided by the mean is a measure of fractional deviation one would
expect between the estimate and the actual value of q. This ratio is (gT)™* ~j~

Even if the traffic is not Poisson distributed, it is generally a "good rule of thumb" to say
that if one is using some count of events as an estimate of some parameter, the fractional
error in the estimate will be of the order of magnitude of (number of events) .

Unfortunately in most traffic counts, the value of 7 and corsequently qt is limited by
the desire to have q nearly constant over the time T . Even under the most favorable
conditions, one cannot usually expect flows to remain constant for more than 15 minutes or
perhaps an hour. On the other hand, if the hypothesis of a Poisson distribution is to apply, we
should have average time headways, 1/q , of the order of 10 seconds or more (otherwise there
will be some interactions between cars). Typically, the best one can do is qt in the range of
10* to 10* , (qT)™* is then of the order 10" or 10%.

It is rather difficult to devise a meaningful statistical test for the hypothesis that a traffic
stream is Poisson distributed. Cars have finite size and interact strongly at close headways.

The Poisson process is certainly not an exact representation of traffic, and one can devise

statistical tests (sensitive to short headways) which would almost always lead one to reject the

The Poisson process is certainly not an exact representation of traffic, and one can devise
statistical tests (sensitive to short headways) which would almost always lead one to reject the
hypothesis that the traffic is a Poisson process. The conventional theory of statistical testing is
not ideally suited to the rather poorly defined question: is a hypothesis (known to be false)
approximately correct? It would be possible to devise some suitable tests, but the logic would

become rather involved.
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5. Velocity distributions. The model just discussed in which all cars travel at the same

velocity gives only a rather crude description of the way cars actually behave. It is one which,
however, is very useful in estimation of the proper synchronization of traffic signals or the
description of flows on networks in which the network aspect of the problem is of main
concern and further refinements of the detailed behavior of traffic on single highways adds
little insight but considerable complication.

The most obvious fault of this model is that it does not permit passing nor the natural
spreading of a platoon due to variations in the speed of the cars. To incorporate this into the
model we will simply assign to each j* driver his own free speed v; which may be
different for different drivers. Since different single car trajectories will have different slope,
some trajectories will intersect (the cars will pass each other). Depending upon the nature of
the highway a passing may or may not produce a significant delay to the driver who wishes
to pass. We will assume for the present that there is no interaction between cars. This will be
valid if either the passings can be executed with negligible change in velocity or if passings
are so rare that one can neglect their consequences (the density is very low).

Again the detailed dynamics is simple. The trajectories are given by

x(t) = x(0) + vt (5.1)

but certain modifications must now be made in the definitions of the macroscopic variabies

X{t) = X{U) + v Ny
but certain modifications must now be made in the definitions of the macroscopic variabies
and the stochastic description of the system.

A density k and a flow q can still be defined as the number of cars per unit length of

highway and the number passing a fixed point per unit time respectively. Since there are
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many different velocities, however, the simple relation q = kv no longer has an obvious
meaning.
Suppose we have only finitely many possible velocities vV, v, - - -, v™ and for
each velocity v® there is a density k® of cars with this velocity and a flow q®. For these
cars alone, all with the same velocity, it is true that
g = VKD or KD = g@p0, (5.2)
Since cars do not interfere with one another, the complete set of trajectories is simply a
superposition of trajectories corresponding to the different velocities. Therefore
g=2q9" and k=% K (3.3)
which with (5.2) gives _
g=kX K"VY% or k =q X, ¢V g). (5.4)
To define an empirical probability distribution of velocities one might quite naturally
proceed in either of two ways. If we take an aerial photograph and count the fraction of cars
with velocity v®, we might consider

@ 0fy ®
ko athT (5.5)
k Y q Wy
J
as the velocity distribution. But if we stood at a fixed point on the highway and counted the

fraction of cars with velocity v* that passed this point, we might consider

as the velocity distribution. But if we stood at a fixed point on the highway and counted the
fraction of cars with velocity v* that passed this point, we might consider

g® _ yO0

q O (5.6)
J

as the velocity distribution. These two distributions are clearly not the same. The extreme

example is when some v® is zero. These cars would be observed from an aerial photograph to
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have density kX but since they have zero rate of passing a fixed point, a stationary observer
would see none of them.
If we define a spatial mean velocity as
Efv} = Z vk (5.7)
then (5.4) gives
q =k E{v}, {(5.8)
the analogue of the equation q = kv in the case of equal velocities. If one wishes to use the
time distribution q%/q then
k=qEf') (5.9
with
E{v7) = Z(167) (q1). (5.10)

In terms of the time distribution, one can define a harmonic mean velocity as

_ 1
Ef{v'}

E{v}
which is the same as E {v}.
If one uses the technique of defining q and k from segments of trajectories

contained in an area A of the x-t plane as in figure 3, one again obtains (2.8), which does

not contain the velocities of the cars. It follows then that the spatial mean velocity is

contained in an area A of the x-t plane as in figure 3, one again obtains (2.8), which does

not contain the velocities of the cars. It follows then that the spatial mean velocity is

This along with many other similar type relations are contained in [1]. The recognition that

the velocity distribution of cars observed per unit time at a fixed position is different from
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that observed at a fixed time per unit length of highway seems to have originated with .
Wardrop [5], although analogous situations were known in the kinetic theory of gases.

In the previous discussion of cars leaving a parking lot, we were only concerned with
how mény cars left during any time interval since all cars had identical behavior. We must
now construct a model giving not only departure times but also speeds. In the absence of any
specific knowledge indicating that high velocity cars are more likely to depart at one time
than another or more likely to leave after a fast car than a slow car, etc., the only reasonable
postulate we can make is the following. The parking lot contains so many cars that we can
define a velocity distribution

F(v) = fraction of cars in the lot with velocity less than v (5.11)
which can be approximated by some continuous distribution function. Any car which is due to
depart from the parking Iot is now sampled at random from this distribution independent of
any previous departures.

There are a number of equivalent descriptions of the complete stochastic structure of
the departing cars, for example:

1. The time intervals between successive departures are independent identically distribut-
ed random variables with an exponential distribution

P{ time interval <1} =1-¢€7.

ed random variables with an exponential distribution

P{ time interval <1} =1-¢€7.
The velocities of successive cars are independent random variables with a distribution
function F(v) independent of the departure times. (For a discrete velocity distribution

the distribution function F,(v) corresponds to the frequency distribution q /g of

(5.6).)
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The probability of j departures in a time interval of duration T with the first car
having a velocity less than or equal to v, the second car a velocity less than or equal

to v ,, etc., is

(q._"c)f e ™ Fv) Fv,) . Fv(vj) ) (5.12)
J:

This event is also statistically independent of the number or velocities of any depar-
tures during times outside the time interval T.
The cars with velocity less than any given value v also define a Poisson process. The

probability that j cars with velocity less than or equal to v depart during a time 7T is

[qTF"',(V)]’ exp [-gvF, ()] (5.13)
J!

This event is statistically independent of the number or the velocities of the cars
having a velocity larger than v that depart during the time T and is independent of the
number or velocities of departures during times outside the interval T.

We will leave it to the reader to prove the equivalence of the above or to formulate

other descriptions.

One of the main objections to the above postulates about the stochastic properties is

that it is very difficult to test experimentally and it is also difficult to justify on theoretical

One of the main objections to the above postulates about the stochastic properties 1s

that it is very difficult to test experimentally and it is also difficult to justify on theoretical

grounds alone. Before we divided the population of drivers according to their velocities, we

had some hope that the flow would remain constant long enough (half an hour perhaps) so

that we would obtain large enough samples to test the Poisson nature of the traffic. Now with

the same amount of data we want to separate drivers into various ranges of velocities and
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then test not only that the number of cars in each velocity range has a Poisson distribution but .
that they are also statistically independent. This is more than one can do in a satisfactory
way.

If we try to take larger times we must expect not only that the flow may change but
also the distribution of velocities. Certainly the five o’clock rush of commuters is likely to
have a different distribution of desired speeds than the midday shoppers and commercial
traffic.

As regards the justification from postulates about uncertainties in departure times of
individuals we have previously argued that uncertainties in the departure time of an individual
should be a few minutes perhaps, during which time many drivers were likely to depart. If,
however, we take a subpopulation of drivers in some narrow velocity range, it is no longer
plausible that many such drivers are likely to depart during a time of the order of the
uncertainty in the departure time of a single driver. Indeed if we take an arbitrarily small
velocity range, the times between departures of cars with velocities in this range can be made
as large as we please and any fluctuations in individual departure times will be negligible by
comparison. The whole picture begins to look more like a deterministic one than a stochastic

one.

one.

6. Time dependent flow. One important consequence of distributed velocities is that a

concentration of cars on the highway tends to disperse. To investigate this and related
problems we consider a joint density of both position and velocity. Let

p(x, v, t)dx dv = E {number of cars between x and (6.1)




x + dx with velocity between v and v + dv at time t}.
This is the two dimensional density in the space of position x and velocity v at time t.
Correspondingly we define a joint density of flow and velocity
px, v, t)dt dv = E{ number of cars crossing the position x between time t and
t + dt with velocity between v and v+dv) . (6.2)
The p,(x,v.t) is the analogue for a continuous velocity distribution of the k and p,(x,v,t)
is the analogue of the g of equations (5.2) and (5.3) except that we are now admitting the
possibility that these quantities may vary with position and time. If these functions are
continuous in x and t, they are related by the equations
Plx, v, 1) = vp(x v (6.3)
analogous to the equation q® = vWk® of (5.2) .

The time dependence of p, and p, is dictated by the equations of motion for the
individual cars. Any car of velocity v that lies between x and x+dx at time t will lie
between X + vT and X + vT + dx at time t + 1. Thus

p(x, v, 1) = pfx+ VI, v, t+7T)foral T, (6.4)
and in particular
p,(xv,t) = p 0, t-x/v)

= p,(x-vi,v,0)
ps(x'vlt) = ps(O,V,t'X/V)

= p,(x-vi,v,0)
gives p, at x,v,t in terms of its values at the origin x = O or at some initial time t = 0.
These equations are the generalizations of (3.8) for distributed velocities.

The density of cars k(x.t) 1s given by
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k(x, 1) = f” dv p(x, v, 1) = f dv p, (x - vt, v, 0), (6.5)

and the flow is

gx, 1) = L’" dv p,(x, v, 1) = f dvvop (x,v, 1) . (6.6)
It is important to observe that one cannot evaluate the density at time t from only the
density k(x,0) at time 0. One must know the distribution of velocities also. The distribution of

velocities, however, is not constant but is given by

p(x, v, 1)
- s (6.7)
1 v, 0 k(x, 9
and
Fo v, 8 = Pl v. B (6.8)
g(x, 1)

respectively for the spatial and time distributions.

The above equations can be used to describe the diffusion of cars due to a distribution
of velocities. Suppose, for example, that initially we know that the density of cars i$ non-zero
only at x = x, but the expected number of cars at x, is 1. We represent this by

P(x.v,0) = d(x-x,) f(v)
in which &8(x-x,) is the Dirac 8-function and f; (v) is the spatial density of velocities taken

from the parking lot population for example i.e.,
in which &(x-x,) is the Dirac 0O-function and f; (v) is the spatial density of velocities taken

from the parking lot population for example i.e.,

v~ dF (v)idv

vy s —
Lw Tt dFVl{“’\)

(6.9)

The Dirac 8-function is, in the modern mathematical literature, called a "generalized

function.” It is a mathematical notion by which a concentrated unit mass at a single point X,
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. is represented as if it had a density. Loosely speaking 0(x-x,) is a function that is zero
everywhere except at x, but at x, is infinite in such a way that the integral of d(x-x,) is one.

The key property of 8(x-x,) is that for any function ¢(x) continuous at x,

[ 86 - x) 400 ax = oz
The integral of a function ¢(x) with d(x-x,) is thus a linear mapping of the function ¢(x)
into itself, the identity operator on (continuous) functions.

The density at any later time, is given by (6.5)

k(x, ) = L"" dv 8(x - pt - x)f(V)

1 X - X 6.10
1 ]x-n (6.10)
L L
t
= 21
[ ==
s
41
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Dispersion of traffic due to distributed velocities

The spatial density is for all times given by the same function f; except for a rescaling of the

spatial coordinates measured from x, by a factor t and a rescziling of the density itself by a

’
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factor t. This is shown in figure (II.5) for some typical shape for f(v). Similarly the flow is

given by

4, ) = x - X x - X, . (6.11)

As another interesting example suppose that at x = 0 we have a fixed cycle traffic signal
fed by a time homogeneous traffic source. The flow leaving the traffic signal will then be a
periodic function of time, i.e.,
q(0,t) = q(0, t + T) (6.12)

if T is the cycle time. If we choose the velocity distribution independent of t at x = 0, then

PO, v, 1) = fv) g (0, 1), (6.13)
with

JAv) = dF\(v)/dv,

is a product of the time independent probability density for the velocities and the periodic
time-dependent flow.

The flow at some x > 0 is given by

g(x, #) = fo”dv p(x, v, 1) = L“’ dv p(0, v, t - x)
- L"" dv £,(v) 0, t - xtv) . (6.14)

Tha ~Antnot fram anv ~ygla Af tha cional wil], Aiffiica and wa avnact that far enffiriantlhr

- L“' dv £,09) 900, t - xiv) . (6.14)
The output from any cycle of the signal will diffuse and we expect that for sufficiently
large x the pulses of traffic created by the signal will overlap i.e., fast cars from one cycle
will overtake slower cars from the previous cycles. Eventually so many pulses will overlap
that the flow should become nearly constant. This effect can be deduced from (6.14).

If we let u = 1/v in (6.14) then
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qglx, ©) = fd_L;fv [l} g, t — ux) . (6.15)
U

u

We can decompose this integral into the contributions coming from successive cycles.
Formally

R 2
j=0 JTix u

o (j+1)T/x d 1
glx, ) = X f —uf{;] q(0, t - ux)
in which the argument t-ux of q increases by T in each range of integration (jT/x , (j+1)T/X)
For x — oo , the range of integration of each integral goes to zero and if f(1/u)/u? jg

continuous for O < u < oo this factor is essentially constant over the range of integration

Thus
= I G+DTix
g, ) > T f~ j du g0, t - w0
J=0 uj j JTix
with
u, = jTix

The remaining integrals are integrals of a periodic function,

G + DIix G+1T T
x f du g0, t - ux) = fdyq(O,t-y)=fdyq(0,y),
JTix i 0

which is independent of both t and x. If the traffic signal is fed by a homogeneous streay,

T JT 0
which is independent of both t and x. If the traffic signal is fed by a homogeneous strey,
with flow ¢, then we can interpret this integral as the average number of cars leaving pe;

cycle or qT. Thus
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g,y > % Lyp |11
o y? u | x
J J

But now for x — o the u; become uniformly dense with spacing T/x so this sum becomes a

Riemann integral
< du 1 w
- = « 6
qlx, 1) = ¢q _J; Ff{;] q .L av f,(v) =q . (6.16)

The time dependent flow at x = 0 thus returns to the constant flow q that exists before the
signal as x — oo .

This represents only one special case of a much wider class of possible flow patterns
p(0,v,t) which will give rise to a flow q(x,t) that converges to a constant q for x—eo.
Similarly there is a wide class of possible initial spatial distributions p(x,v,0) which give rise
to a density k(x, t) that converges to some constant k for t — oo. Note that any flow pattern
of the former type can be mapped into a flow pattern of the latter type if we simply inter-
change the roles of x and t. Any set of straight line trajectories with x plotted vs t, remains a
set of straight line trajectories if we plot t vs x.

For the flow to approach a constant g one must impose certain conditions on p,(0,v.t),
however. If there is a discrete component of the velocity distribution, i.e., some single

velocity v appears with non-zero probability, than any irregularities in the starting flow

however. 1 there 1s a discrete component ot the velocity distribution, i.e., some single
velocity v appears with non-zero probability, than any irregularities in the starting flow
pattern of this velocity will propagate with no dispersion and will exist for arbitrarily large x.
We have avoided this in the above example by having a continuous density f,(v). If for very
high velocities v—eo, the f,(v) does not go to zero fast enough some irregularities in the

starting flow may reach x almost instantaneously. In practice this of course cannot happen
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because velocities are bounded. Here we avoided this problem by choosing f(1/u)/u? continu-
ous at u = 0. Finally, this dispersion only smooths local variations in flow. One must be able
to define some long time average flow q over a time interval (t,t+T*) for some sufficiently
large T.* One must also have some long range uniformity over t of the velocity distributions
to avoid "focusing." These properties are satisfied in the above example by the periodic flow
and time-independent velocity distribution but they would obviously also be true of a more

general class of flows.

7. The Poisson tendency of traffic and reversibility.

In the last section we considered only the densities of position and velocity or
expectations for the number of cars. We made use of the fact that these expectations at some
position x and time t are related to similar quantities at other values of x and t. To study the
probabilities for various events we must, however, consider the evolution of stochastic
properties of the system other than just these expectations.

If in the present model we specify the entrance times at x = 0, or the positions of the
cars at t = 0 and the velocities of all cars, the positions and velocities of the cars are
uniquely determined for all time. Similarly if we specify the joint probability distributions of

all entrance times at x = 0 or positions at t = 0 and all velocities, the complete probability

uniquely determined for all time. Similarly if we specity the joint probabiluty distributions ox
all entrance times at x = 0 or positions at t = 0 and all velocities, the complete probability

structure of all trajectories is uniquely defined. In particular the joint distribution of positions
and velocities of cars at time t and the joint distribution of the times at which cars cross some

point X and the velocities are both uniquely determined.
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If positions and velocities have a joint probability density and we number the cars in
some way, let
P(X Xy o Yy, Vg oy DdxdX,. 0 dvydy,..
be the probability that the j™ car has a position in (x;%+dx;) and a velocity in (v;,v;+dv;) for
all j at time t. The equations of motion then require that (if p is continuous in all its
arguments)
P(x; + VT, X5, + VT, .SV, Vy s+ T) 7.1
= PdX, X5 o SV, Vp o5 t)
for all T since, if car j is at x; at time t, it is certain to be at x; + ;T at time t+1, Similarly if
PAx; Vi, Vo o 5t by ) dvidy, L dtdt,
is the probability that car j has a velocity in (v, v;+dv;) and crosses a position x during the
time interval (tj,tj+dtj), then
p(x+ & vy, vy s i+ EN 8 + E,y, L) (7.2)
=PV, Vg sty by ) forall €.
The Poisson distribution with statistically independent velocities described earlier as a
reasonable model for the entrance time distribution plays a unique role in the present theory
as does the Poisson distribution of position of cars with independent velocities. We shall see

later that a wide class of possible distributions for velocities and starting times at x = 0

as does the Poisson distribution of position of cars with independent velocities. We shall see
later that a wide class of possible distributions for velocities and starting times at x = 0
should for x — <= converge to this distribution in some sense. Correspondingly a wide class
of possible initial spatial distributions of cars will under the dynamical motion of the system

approach a Poisson spatial distribution with independent velocities for t—ee.
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To prove this and investigate the nature and rate of convergence is one of the key
problems in the logical foundations of this theory. Although we have argued that this Poisson
distribution is a reasonable model for entrance times from a highly idealized parking lot, the
usefulness of this distribution in practical applications would be severely limited if one could
not also show that it had some stability; that initial deviations from this distribution or any of
a wide variety of disturbances caused by traffic signals, occasional interactions between cars,
etc., would cause only transient effects and the distribution would eventually return to the
Poisson distribution.

The problem under consideration is almost identical to one which occurs in statistical
mechanics and is the origin of many famous paradoxes and controversies. The controversy in
statistical mechanics centers around the question of how one can deduce the irreversibility of
thermodynamic systems (the second law of thermodynamics says that the entropy of an
isolated system never decreases with time) from the equations of dynamics which are
invarjant to changing time to the negative of the time i.e., for any motion of a dynamical
system there is another one that will exactly reverse it. If one is not very careful in
defining the entropy in statistical mechanics one will usually come to the conclusion that the
entropy of a system cannot change at all with time.

In physics, as in the present model of traffic flow, we can define a state of the system

entropy of a system cannot change at all with time.

In physics, as in the present model of traffic flow, we can define a state of the system
by specifying the positions and velocities of all particles or cars. In both cases we have
equations of motion which determine the state at time t from the state at time O and vice
versa i.e., the state at any time uniquely determines not only the future but also the past. If

we define entropy as
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S() = —f.. fdxl R R I N ¢ SIS S () .

then here, as in physics, the equations of motion as expressed by (7.1) are such that S(t) is

independent of t. To prove this, substitute (7.1) with T = -t into (7.3):
S@) = —f . J-dxl wdvy Lp (X m vt X, - VL L VLY, . OOX

log p{x;-v, 8, X -V b, .5 vy, Vy, .y O0)
Now change the variables of integration. Let
’ t —
X =X Y=Y
The Jacobian of this transformation is 1. Equivalently if we integrate with respect to x; or x;,
j=1.2,., for fixed values of the v;, then integrate with respect to the v;, the integral over all
X; , -0 < X; < + oo, is the same as an integral over all x’j, - < x’j < + o, for any fixed v;.

Also ax’jlaxj = 1 for all fixed v;.

Thus

S(8)

[ e x5 v L 0) X

log p,(x[,7 xz,r - V,, v, . y O)

S0) . for all t
Entropy has been used to define a measure of the amount of information we have

ahnmit the exretarm 71 That tha antrany 160 canetant Aram alen ha Aacamihad e ¢tha ctabrcnnnt that

Entropy has been used to define a measure of the amount of information we have
about the system [7]. That the entropy is constant can also be described by the statement that
since there is a one-to-one correspondence between the distribution at time t and time O, the
specification of this distribution at one time gives exactly the same information as at any

other time.
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Some attempts have been made to show that the Poisson distribution with independent
velocities has some aspects of stability [8~14], but this is a rather delicate problem. One
should always keep in mind the negative aspect of it, that for this model with deterministic
equations of motion there can be one and only one spatial distribution at time O that can give
exactly the Poisson distribution of cars with independent velocities at any finite time t.

Indeed we shall see later, that this Poisson distribution is time invariant and consequently the
only one that can reproduce this distribution.

Despite this discouraging note, there are some positive aspects to the problem. First of
all, one can show, even for this deterministic model, that certain coarse features of the
distributions do change with time and may converge to the corresponding features of the
Poisson distribution. This happens because the existence of a probability density at time t = 0,
although it implies the same for any finite t, does not guarantee that the probability density
has a limit for t — oo. If in describing the behavior for t — o, we interchange limiting
processes, we might, for example, find that a probability density has no limit for t — oo but a
distribution function does have a limit and that the limiting distribution function has a density.
This limiting distribution function may also define an entropy which is not the same as that
for any finite t, i.e., the limit of the entropy for t — e is not the same as the entropy of the

limit distribution.
for any finite t, i.e., the limit of the entropy for t — oo is not the same as the entropy of the

limit distribution.

Whether or not the above type of mathematical procedure is meaningful or not
depends upon the physical context in which the mathematical problem was posed. We should
first recognize that even if drivers could maintain a velocity which is exactly constant with

infinite precision one could not experimentally estimate a probability density without
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appealing to some smoothness on a scale of measurement having only a finite accuracy.
Secondly, and probably much more important, is the fact that drivers cannot maintain a
constant velocity exactly and any fluctuations in velocity are likely to give rise to increasing
uncertainties in the future position of a car.

In physics, the equations of motion, the laws of classical dynamics, quantum mechan-
ics or whatever, are not customarily considered as approximations to something inherently
stochastic, and the reversibility vs. irreversibility paradox has never been completely resolved.
Here, however, we have a natural way out of this trap in that the above deterministic
equations of motion are only a mathematical idealization to something that is stochastic and
inherently irreversible.

Some of the odd effects described here appear even in the simple examples of the last
section. If there is only one car in the system, then the densities (6.1) and (6.2) have the
interpretation of probability densities for the one car and are, therefore, special cases of (7.1)
and (7.2).

For the initial 6-function spatial distribution of (6.9) we know at t = O exactly where a
car is located but know only the probability distribution of velocity. At any later time we
know less about where the car is located but if we observe where the car is we will know its

velocity exactly. If the car is at x at time t and started at x, at time 0, it must have velocity

know less about where the car is located but if we observe where the car is we will know its
velocity exactly. If the car is at x at time t and started at x, at time 0, it must have velocity
(x-X,)/t. Information about position at time 0 is thus transformed into information about
velocity at some later time.

If, in this example, we wish to consider the future distribution of cars with the

distribution at time t, > O taken as a new "initial state”, we must not now claim ignorance of
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the existing correlations between position and velocity by reassigning to each car a velocity at
time t, taken at random from the distribution of velocities that existed at t = Q. Here lies one
of the interesting qualitative differences between diffusion of cars and the diffusion of
molecules in the kinetic theory of gases. In the diffusion of gases, molecules undergo
collisions and, after a few collisions, a molecule more or less forgets what its velocity may
have been originally. Here one can reasonably reassign the molecules new velocities chosen at
random from some distribution of velocities. The result of this is that the mean dispersion in
distance traveled by a molecule in time t increases proportional to ¥t whereas that of cars
increases proportional to t.

The other example of the traffic signal illustrates some other points. We started at x =
0 with a fairly general periodic flow q(0,t} and a time-independent velocity distribution but at
any finite non-zero distance x from the signal both the velocity distribution and the flow will
be periodic and non-constant. As X increases the flow g(x,t) becomes smoother but the
velocity distribution becomes more irregular. For very large x, after many platoons have
overlapped, the velocity distribution becomes highly oscillatory because if one observes cars
crossing x at some time t, one will find certain velocities are absent entirely because cars
with these velocities would have to have left x = O during a red time in order to reach x at

the time t. Cars which leave x = O during the subsequent green time, however, with only

with these velocities would have to have left x = O during a red time 1n order to reach x at
the time t. Cars which leave x = O during the subsequent green time, however, with only
slightly high velocities will appear. The velocity distribution at any finite but large x may
have a density but it is one that oscillates with v between zero and some non-zero values. In

the limit X — oo, the velocity distribution has no limiting density but the distribution function
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does have a limit and the limit distribution function has a derivative. In fact the derivative of
the limit distribution function is the probability density for velocities at x = 0.

To see that this last statement must be true, suppose we extract from the flow at x = 0
only those cars with velocity in some range v to v + Av with Av > 0. These cars will them-
setves define a new periodic flow at x = O with a time independent velocity distribution in the
range Av. This flow also satisfies the condition that q(x,t) — q, (6.15), where the q(x,t) is
now only the flow in this velocity range and the q is now the original time-average flow q
multiplied by Fy(v + Av) - F,(v), the total fraction of cars in this velocity range. The smailer
Av, the longer it takes for platoons from different signal cycles to overlap, and the slower the
rate of convergence to the constant flow. If, however, we Jet x — oo and then let Av — oo
we will conclude that the flow in each velocity range Av becomes constant, the total flow is
also constant, and the fraction of cars in (v,v + Av) is F,(v + AV)-Fy(v) independent of t. This
in turn defines for Av — 0 the density f, (V).

The above arguments can be ranslated into mathematical theorems but this is perhaps
academic. We shall see later that, despite the implications of such theorems, this model with
constant velocities does lead to some unrealistic predictions relating to the motion of cars
through synchronized traffic signals.

If it is meaningful to discuss the behavior of traffic for x —ee even though highways
through synchronized trattic signals.

If it is meaningful to discuss the behavior of traffic for x —ee even though highways
are always of finite length, one could also imagine that one places another traffic signal at x
with a fixed synchronization relative to the signal at x = 0. Whether or not a car is stopped at
x by a red signal phase in some j® cycle is now very sensitive to the velocity of the car. If

the velocity were only slightly different, it would pass in a neighboring green phase or in
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some different cycle. The delay at the second signal is thus particularly sensitive to any rapid
oscillations in the velocity distribution at x = O similar to those which we smoothed out by
using the distribution function in the above arguments. To discuss such problems of synchro-
nized signals one must use more realistic models with stochastic rather than deterministic
equations of motion.

As regards the more general problem of showing when and how a rather general initial
distribution of positions and velocities will approach the Poisson distribution with independent
velocities, Weiss and Herman [8] and Miller [9] have shown that if, at t = 0, the cars are
distributed along the highway so that the spacings x;(0)-x,,(0) are independent identically dist-
ributed random variables and the velocities v; are also independent identically distributed
random variables, independent also of the spacings, then for t — o= the spacings between
adjacent cars become exponentially distributed. Breiman [10,11] and Thedéen [13] consider
the same problem with a much more general initial distribution of cars. Any of these results
can, of course, be translated into corresponding behavior of the distnibution of velociiies and
crossing times for x —eo given these distributions at x = 0.

Here again we will be content to give heuristic arguments and explanations rather than
proofs.

Breiman assumes that for t = 0 the positions x,(0) are random but restricted only by

proofs.
Breiman assumes that for t = 0 the positions x,(0) are random but restricted only by

the conditions that (a) with probability one an average density exists in the sense that

lim [number of cars in (-x, 0))/x =k

(b) the expected number of cars in any finite interval of highway is bounded by some number

depending only upon the length of the interval. The conditions which he imposes on the
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velocities are much more severe. He assumes that the {v,} are independent identically ’
distributed random variables having a density f(v) independent of the positions x,(0). The

f(v) must also be reasonably smooth (continuous almost everywhere and bounded in every

finite velocity interval). The key assumption, however, is the statistical independence.

From these assumptions Breiman proves that in the limit t — oo, the number of cars in
any interval of highway of length y has a Poisson distribution with mean ky. It follows also if
we extract from these cars only those with velocity in some range v to v + Av with Av > 0,
these cars by themselves satisfy the same conditions and consequently the number of cars in y
with velocity in Av has a Poisson distribution with mean

ky[F (v+Av)-F (v)], fi(v) = dF(v)/adv.

As a heuristic argument one can say first that under the above conditions we should
expect that if a density k(x,t) of cars is defined in the sense of (2.3) at t = 0 then k(x,t) > k
for t — o= . Here the problem is essentially the same as the traffic signal problem discussed
above, which suggests that time-dependent flows at x = O approach a constant flow for x —
oo, The existence of the spatial density k(x,t) is obviously not essential, however, if one only
counts cars in non-zero length intervals of highway.

That the number of cars should have a Poisson distribution, however, is a consequence

of the independence of the velocities. If we were to specify the positions of all cars at t = 0,

That the number of cars should have a Poisson distribution, however, is a consequence
of the independence of the velocities. If we were to specify the positions of all cars at t = 0,
then the condition that some j" car appear in an interval y of the highway at time t is a
condition imposed upon the velocity of that car. The velocities of cars, however, are assumed
to be independent and consequently the probability that some j* car appear in this interval at

time t is statistically independent of whether or not any other cars may be there. As t
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becomes large, the probability of any given j" car being in this interval of highway is very
small. Again we have the typical sitnation that leads to a Poisson distribution. We ask how
many events occur (how many cars are in the y-interval at time t) when there are infinitely
many possible events to choose from (infinitely many cars) but the probability of any one
occurring is very small and they are independent. A rigorous proof of this is straightforward
but requires some care.

Although Breiman showed only that the number of cars in any interval of highway of
length y approaches a Poisson distribution with mean ky for t — oo, Thedéen [13] pointed
out that the numbers of cars in disjointed sections of highway are also asymptotically
independent for t — . Consequently the positions of cars define a Poisson process for t —
oo, The same is also true of only those cars haviné velocities in some range of velocities v to
v + Av. Furthermore for t—eo, the Poisson limit process for cars of velocity between v and
v + Av is statistically independent of the process of cars with velocities not in this range. It
would seem then that for t—eo, we are obtaining a Poisson process with statistically
independent velocities. One should note, however, that this result can be derived only if we
let t — oo for y > 0 and Av > 0. Then perhaps let y = 0 or Av — 0. We do not lety — 0 _
and/or Av—0 first and then let t — oo .

Actually it is possible to relax considerably the assumptions concemning the stochastic

[P T ] - .. v vy + . . o . M ~ 1 3 IR, P

Actually it is possible to relax considerably the assumptions concerning the stochastic
structure of the velocities and still obtain the same result. Suppose for example that the
velocities of cars are independent only if they are initially sufficiently far apart, but some
restriction is imposed to prevent most neighboring cars on the highway from having almost

equal velocities. It seems plausible perhaps that if cars are far enough apart they will be
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independent. If now two or more cars appear in the y interval at time t it is almost certain ’
that they were far apart at t = O and consequently independent. Otherwise these cars would

not only have to be near each other at t = O but also have nearly identical velocities in order

still to be within a distance y of each other at time t.

There are limits on how much one can relax the conditions on the initial distribution
and still prove a convergence of some sort to a Poisson distribution. If one analyzes the
distribution in too much detail one runs into contradictions from the reversibility arguments.
The entropy does seem to be increasing and in fact this Poisson distribution with independent
velocities is the distribution with the maximum entropy per unit length of highway among all
distributions with the same average density of cars in every velocity range [15],[15a].

To see how the entropy or information changes, suppose that initially the x,(0) are
fixed (not random) but satisfy (a) and (b) above. We then have complete information about
the positions at t = 0. At any later time, one can find at any point x only cars with certain
discrete velocities determined by the condition that the velocity must have the value [x-

X (Ot for some k. In the above argument for the approach to a Poisson distribution we did
not, of course, look at a point x; we looked at an interval of highway and in an interval we
obtain a continuous range of velocities. Part of the information at t = O thus goes into rapid

variations of the velocity distribution. In addition to this some other information which one

obtain a continuous range of velocities. Part of the information at t = O thus goes into rapid
variations of the velocity distribution. In addition to this some other information which one
has for finite t is Jost in the limit t — oo,

If for any finite t we observe a car at x, we know that the same car cannot also be
observed somewhere else at time t. This implies some statistical dependence between the

number of cars observed in one interval of highway and the number observed in other
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intervals. There will in fact be situations such that if some car is observed in one interval
some other interval must have no cars. As t increases, however, this correlation becomes
spread over longer and longer distances. The probability that a given car appears in any given
interval of the highway becomes very small anyway. Once we observe a car in one interval,
the small probability that it would have been seen in some other interval must be changed to
zero. This information is again lost through a mathematical scheme where we evaluate in the
limit t —e mathematical quantities which are not sensitive to these weak long range
correlations. This does not mean, however, that these correlations might not be significant to
the evaluation of some other quantities than those considered here.

Finally, we conclude the discussion of this model by showing that the Poisson
distribution with independent velocities either for the crossings at x = O or the positions at t =
0 gives the same for the crossings at any x or the positions at any t. This follows almost
immediately from the following more general property of these distributions: If at t = 0 we
have this distribution for initial positions and velocities and we take any (measurable) set of
points A, in the two dimensional (x,v) space of positions and velocities, then the number of
cars with position and velocity in A, at time t = Q will have a Poisson distribution.

If A, is a rectangle then we are asking for the distribution of the number of cars at t =

0 in some interval of highway with velocities in some specified range. That this is Poisson

It A, is a rectangle then we are asking tor the distribution ot the number ot cars at t =
0 in some interval of highway with velocities in some specified range. That this is Poisson
distributed and independent of the number of cars in any non-overlapping rectangle can be
interpreted as the given hypothesis. The sum of independent random variables each with a
Poisson distribution, however, is itself Poisson distributed. Consequently the statement is also

true if A, is the union of non-overlapping rectangles. If A/ is the limit of the union of
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recfangles, the probabilities on A, will be defined as the corresponding limits of the probabili- .
ties on approximating unions of rectangles. This implies that the statement is also true for
limits of sets generated from the rectangles, which include all sets of interest here.

Any car that has position x(t) and velocity v in some set A, at time t, i.e., (x(t),v)eA,,
must have been in a set A, at time 0 where A, is the set of points (x(0),v) such that
(x(0)+vt,v)e A,. The probability that there are n cars in A, at time t is therefore equal to the
probability that these n cars are in A, at time 0. The latter, however, has a Poisson distribu-
tion, independent of the number of cars in any non-overlapping set. The same must therefore
also be true for time t.

If we were to ask instead how many cars cross some point X with times and velocities
in some point set B, of the (t,v) space, we can also determine a unique set of initial conditions
A, that these cars must satisfy at time O in order to cross x with coordinates in B,. Since the
number in any A is Poisson distributed the number of crossings in B, is also Poisson
distributed. Actually one can take essentially any property at all for positions, velocities or
crossing times of fixed or moving points and conclude that the number of cars with this
property will be Poisson distributed and independent of the number of cars having any other
exclusive property. For example the number of cars passing a given car in some time interval

will be Poisson distributed [12].

exclusive property. For example the number of cars passing a given car in some time interval

will be Poisson distributed [12].

8. Velocity fluctuations. We saw in the last section that any theory with completely

deterministic equations of motion can lead to incorrect conclusions. If some of the controver-

sies appear academic, some consequences to be described later are less so.
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. Very little is known about the stochastic properties of individual drivers but certain
rather obvious qualitative features of human behavior do severely limit the range of accept-
able models. We wish to retain the concept that different drivers have different behavior ﬁnd
in particular each driver is labeled with a desired speed \/ which, however, we now interpret
as some type of average speed for this j* driver when uninhibited by other cars, traffic
signals, etc.

In addition to the probability distribution associated with the selection of different
drivers with different v;, which stll conforms more or less with the pattern described
previously, the actual velocity vi(t) of a driver with given desired speed shall be now
interpreted as a random function of t. In the absence of any interaction between cars the
time-dependence of one of the vi(t) should be statistically independent of the velocity
fluctuations of any other driver. The stochastic nature of the vi(t) is assumed to arise from
human or mechanical fluctuation, for example, chance fluctuations in the pressure a driver
exerts on the accelerator pedal.

If the highway is spatially homogeneous and there are no external time-dependent
influences, the velocity v(t) should be a stationary process in the sense that for any set of
time points t,,t,, .., t,, the joint probability distribution of vi(,), .., v;(t,) should be invariant to

simultaneous translations of ty,t,, .. t,, 1.e. the joint distribution is the same as that for v;(t,+1),
tirme points t.t,, .., t,, the joint probabihty distribution ot vi(ty), -, Vj(t,) should be invariant to

simultaneous translations of ty,t,, .. t,, l.e. the joint distribution is the same as that for v;(t,+1),
» Vi(t,+7) for any T and any choice of n, t, t,, .. , t,.

There is a tremendous literature on the theory of stationary stochastic processes
including several books [16-18}. Much of this theory deals with the analysis of the covariance

E{v{(t)v,(t+1)} and its Fourier representations much of which is potentially relevant to traffic
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theory, and the extrapolation or prediction problems which are probably of less practical
interest in relation to the subject discussed in this chapter.

We will assume that time averages can be evaluated over sufficiently long times that
we may idealize to infinite time averages, and that the process vi(t) for a given driver is
ergodic, which by definition means

T
E(y®) = lim 'IT f v (Bt (8.1)
0
i.e. the long time average of vi(t) is (with probability one) equal to the expectation for any
fixed t. For a stationary process E{v;()} must, of course, be independent of t and we shall
now identify this as the desired speed for this model with random velocities
v; = Efv{1)}. (8.2)
It is also convenient to consider the mean and the fluctuations separately. Let
AL = viL) - v, (8.3)
so that
Efn(9)} = 0
and
vt} = v; + MN{1).

All of the expectations here are conditional expectations given the particular driver.
v{t) = v; + N1

All of the expectations here are conditional expectations given the particular driver.
If a driver is chosen at random from some population, the velocity v(t) of the
randomly selected car will also define a stationary stochastic process but it will not

necessarily be ergodic. The time average speed will be the desired speed v; of whatever driver
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happened to be selected but the selected driver does not necessarily have a desired speed
equal to the mean E{v) of all desired speeds from the population.

Ergodic processes play an important role in the theory of stationary stochastic
processes and in this theory the value of v; would be described as belonging to the "determin-
istic part" of the process v(t). This terminology is motivated by the fact that in predicting the
future behavior of the process v(t), the value of v; can be inferred from observation on the
past behavior.

The stochastic properties of m,(t) will in general also be different for different drivers
and perhaps different even for different drivers with the same v;. There are, no doubt, other
parts of v(t) which in a realistic theory would be considered as deterministic. It is perhaps
sufficient at this stage in the development of traffic theory to disregard this, however, and
imagine that the stochastic properties of 1;(t) are the same for all drivers or at least for all
drivers with the same v;.

If the velocity of a car is random, so is its position which is determined from the

equation
x(®) = %) + vt + [n@adr. | (8.4)
0

For the conditional expectation given j, we have
J o JT 0 J J vt
0

For the conditional expectation given j, we have
Efx{1)} = E{x{0)} + vit (8.5)

thus the mean position is determined by the desired or mean speed v;.
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We can anticipate the probable existence of two qualitatively quite different types of
behavior for vi(t) and x;(t). Mathematically one could have many others but the following
seem most natural.

1. A bus driver is expected to maintain a fixed schediile and knows at what time he
should arrive at various points along his route. If chance fluctuations cause him to get ahead
or behind schedule, he will decrease or increase his speed accordingly. His goal is to keep the

fluctuations in distance traveled within certain limits independent of the time. In this case it

1s reasonable to assume that J(;' m,;(T)dt approaches a stationary process for large t, or
perhaps, for all t, it is a process obtained from a stationary processes conditional that the
processes have the value O at t = 0.

A similar example is furnished by an alert driver traveling through a sequence of
synchronized traffic signals. If he gets a little ahead or behind the ideal speed he can perhaps
correct for his errors early enough to keep in phase i.e. he will correct before the errors are so
large that he is stopped by some signal. In effect, his observations of the signals give him a
measure not of his instantaneous velocity but of his accumulated errors in velocity or his
travel distance relative to what it should be to keep in phase.

2. In the absence of clocks or other means of measuring and correcting errors in distance

traveled, a driver will observe only his velocity and make occasional corrections for deviation

L. Ll UIE dUSCHUE U1 CIOCKS O OLRCT 1CdIlS UL HICESULlIly d1td ﬂCOITCCU.Ilg CITOIS 1Nl Ai1Siance

traveled, a driver will observe only his velocity and make occasional corrections for deviation

from the speed he wishes to maintain. With this type of control f’ n,(T)dt is not necessarily
0

bounded for t — oo ; it is not a stationary process. In the terminology of the theory of random

time series, it would be classed as a process of stationary increments, if 1;(t) is a stationary

process.
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If a significant fraction of the traffic behaves in a manner analogous to (1) above, the
traffic is not likely to be Poisson distributed even in any limiting sense. The population of
buses on a given route, scheduled so they do not pass each other and perhaps do not even get
very close, certainly is not Poisson distributed. The arguments of the last section about the
approach to a Poisson distribution break down mainly because the probability distribution of
desired speeds should not be considered as continuous. All bus drivers are constrained to
maintain nearly the same long time average speed. In effect the distribution of speeds is
nearly discrete and even fluctuations in velocity will not smear the ordered state of flow
enough to create a completely random situation. Actually scheduled buses form a part of
traffic with highly predictable behavior which violates almost any of the stochastic assump-
tions used for other types of traffic. If it forms a significant part of the total traffic flow, it
must be considered separately.

Cars that can pass through long sequences of synchronized signals also have effective-
ly a discrete velocity distribution. The spatial distribution or distribution of arrivals for these
cars will not become Poisson either.

If the desired speeds did have a continuous probability distribution, then even
fluctuations of type 1 would remove some of the reversibility paradoxes of the deterministic

models and give a continuous increase in entropy approaching that for a Poisson distribution,

fluctuations of type 1 would remove some of the reversibility paradoxes of the determimstc
models and give a continuous increase in entropy approaching that for a Poisson distribution,
but it is not obvious where such a model would be applicable.

For the second type of velocity fluctuations it is reasonable to assume that for
sufficiently large 7, mM;(t) and m;(t+T) are statistically independent. There should in fact be

some characteristic time T, say, that gives a measure of the relaxation time for fluctuations.
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If T << 1, then m;(t) and T;(t + 1) should be nearly equal i.e. the time T is too short for any
driver to change his speed significantly. But if T >> 7, memory of the fluctuation m(t) at
time t has been lost by time t + 7. We will not make any further speculations on the
probability structure of the 1j;(t).

Over short time intervals (T << 1,), the velocity of a car is nearly constant and there is
no real distinction between a car having desired speed v; plus a fluctuation m(t) at time t and
some other car having a desired speed v; + M;(f) at that time but no fluctuations. In effect we
have a motion equivalent to that given by the model with constant velocities except that the
distribution of speeds is that of v, + ().

The long time behavior is more interesting, however. The distance traveled is
essentially a Brownian motion about the mean [19] and any model with the stochastic
properties described above behaves in a manner very similar to the following rather artificial
prototype. Suppose that at each integer time point measured say in units of T, a driver
suddenly selects a new velocity fluctuation. At time k1, he chooses a velocity v;+1;(kt,) with
the ;(kt,),k=0,1, -~ independent identically distributed random variables with E{n(kt,)}=0.

The distance traveled in time Nt~ is then
= 0> 8.6
xj(n'co) = xJ.(O) + VNt + ’cokz n; [k‘co) . (8.6)

n-1
x(ntg) = x(0) + vty + TOEO n, (kt,) - (8.6)

The last term is the fluctuation. It is the sum of random variables, and according to the
central limit theorem, the distribution for this sum will be asymptotically normal for large n

with a mean given by (8.5) and variance

Var({x(n1,)} = nt, Var(n(0)} .
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The standard deviation of the x,(t) thus increases proportional to 2 = (n1,)"2

For any more realistic models with continuously varying m,(t) but statistical depen-
dence that decays rapidly enough with time, x(t) will be asymptotically normal with again the
same mean as given by (8.5) but with a variance which is some constant (not necessarily 1)
times Tt Var{n,(0)}.

This behavior relates to the motion of a given j* car with specified desired speed v;.
Over a long period of time t, this car travels to a first approximation a distance vt but
then in the next approximation we must add to this the relatively much smaller normally
distributed fluctuations with a standard deviation that increases only as t'2 This motion is
exactly the same as the much studied one-dimensional Brownian motion of a particle except
that it is supertimposed upon a particle (car) traveling with some speed v;. The probability
density for x(t) satisfies the usual diffusion or heat conduction equation having as its initial
value Green’s function the normal distribution described above.

If we were to choose a driver at random from some population, then the desired speed
v is also a random variable. If, in addition, each car behaves according to (8.6) for exarnple,
we take x;(0)=0, and assume that all cars have identically distributed 1;(k<,), then the distance
traveled in time nt, has a variance Var{x(nt,)} = n’t,*Var v + nt.? Var{1(0)}, the sum of

the variance due to the distribution in desired speeds and that due to the Brownian motion. As

traveled 1n ume nT, Nas a vanance var{x{nt,);} = 0T, var v + 0T, varyij\v}}, e sui oL
the variance due to the distribution in desired speeds and that due to the Brownian motion. As
noted previously the fluctuations in travel distance due to differences in desired speed
increase as t (the variance as t%) whereas that of the Brownian motion grows only as t*2 For
large t, the former, of course, dominates the latter (provided Var v # Q) but this does not

necessarily mean that the latter can be disregarded.
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For this model with velocity fluctuations of the second type, one can now prove a
much stronger type of convergence to a Poisson process than that given in section 7. The
heuristic argument for the case of no fluctuations was that if we pick an interval of highway
of length y , the probability of finding in y any specified j™ car goes to zero for t—ee, and
the probability of the j* car being in y is (asymptotically) independent of whether or not any
other car is in y. These are the key stochastic properties that give rise to a Poisson distribu-
tion for the number in y. The probability structure in this case was derived in section 7 from
the assumption that at time zero each car had a desired speed statistically independent of any
other, and that the speed distribution had a continuous probability density. The argument fails,
however, if, for example, all cars have exactly the same velocity (or any discrete velocity
distribution) because cars with exactly the same velocity maintain for all time the spacing
they had at time 0. There is no tendency for the spacing distribution, arbitrarily specified at
time 0, to approach an exponential distribution.

Suppose now we add the velocity fluctuations and reconsider even this extreme case in
which all cars have the same desired speed (now interpreted as the time average speed), plus
specified positions at time 0. The position of a car at time t has a variance now (due to the
fluctuations) that increases linearly with time. The distcibution of the position of any j* car at

time t becomes spread over a distance of order t““. This spread becomes infinite for t—eo

tluctuations) that increases linearly with time. The distribution of the position of any j car at
time t becomes spread over a distance of order t"2. This spread becomes infinite for t—eo
and the probability of finding this car in any given finite interval of length y goes to zero
like t'2, Since the fluctuations in velocity of one car are assumed to be statistically
independent of those of any other car, it follows also that the probability for one car to be in

y 1s statistically independent of whether or not any car is in y. We have the same basic
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properties that give rise to a Poisson distribution for the number in y, but they arise from a
different mechanism. The convergence to the Poisson distribution is, in some sense, slower
than before since the probabilities for a car being in y go to zero only as t*# whereas for a
distribution of desired speeds these probabilities go to zero as t.

The entropy now increases continuously with time due to the inherently irreversible
features of the velocity fluctuations and there are no tricks such as interchange of limits. The
fluctuations also destroy correlations between velocity and positions that appear in the
determninistic model.

As a simple illustration one could reconsider the flow from a fixed cycle traffic signal
as iq (6.12) assuming now that all cars have exactly the same desired speed but independent
velocity fluctuations. The flow g(x,t) will again approach a constant for x — oo. The scale of
distance on which this takes place is again the distance x which cars must travel before the
uncertainty in arrival times at x are comparable with the cycle time T, so that cars from
one cycle overtake those from other cycles. The mechanism and the rate of spreading are
different, however. The present mechanism should be much slower on two accounts. First we
would expect Var 1 to be much smaller than Var v, the errors of an individual in selecting
his velocity should normally be much less than the differences in desired speeds of different

drivers. Secondly the variance increases with time or distance traveled at a slower rate.

his velocity should normally be much Less nan the airrerences 1n aesired Speeas O ulllerellt

drivers. Secondly the variance increases with time or distance traveled at a slower rate.

9. Further notes. Most of the techniques and arguments used in this chapter originated in
fields other than traffic theory and are in some cases more than 100 years old. Application of

probability models to traffic problems dates from the 1930s. Some of the early contributions
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were by Kinzer (1934)[20], Adams (1936)[21], and Garwood (1940)[22]. In particular the use .
of the Poisson distribution in highway traffic originates with Kinzer and Adams.
The use of the velocity distribution of cars to describe the dispersion of a pulse was
apparently suggested first by Pacey [23] who also did some crude experiments to check the
validity of the theory.
Grace and Potts [24-25] have evaluated the spatial density k(x,t) from (6.5) explicitly
for a number of special initial distributions k(x,0) other than the §-function distribution of
(6.10) and for a normal distribution of velocities f,(v). They point out that if £(v) is normal
then k(x,t) satisfies a partial differential equation of the type
okk, t) _ A k(x, 1) ©.1)

a(t?) o(x - mt)?
where A and m are constants depending upon the variance and mean of the distribution f(v).
This is the diffusion equation relative to the independent variables t and x-mt (instead of the
more usual variables of the diffusion equation t and x). This equation is valid, however, only

if the initial velocity distribution is normal and also independent of x.

Y S W W .

For a mode] with all cars traveling with the same desired speed v and with a
Brownian motion for velocity fluctuations, one also obtains an equation like (9.1) in terms of

the variables t and x-vt but for quite different reasons. That there is a t* in one equation

Brownian motion for velocity tluctuations, one also obtains an equation like (Y.1) 1n terms ot

the variables t and x-vt but for quite different reasons. That there is a t* in one equation

where there is a t in the other is, of course, associated with the fact that in one model a pulse

spreads linearly with t but as t'? in the other. .
Other experimental studies of platoon spreading have been done by B.J. Lewis [26],

Graham and Chenu [27], and Herman, Potts, and Rothery [28]. These experiments all agree
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. qualitatively with the constant velocity model but none are sufficiently detailed to distinguish
between various similar theories. No experiments have been done to investigate the distinction

between time average speeds and fluctuations.
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III. LOW DENSITY TRAFFIC (WEAK INTERACTIONS)

1. Introduction. In the theory described in chapter II, interactions between cars were neglected
completely. The inclusion of interactions makes the theory drastically more complicated
because one cannot follow the motion of one car without considering simultaneously the
motion of other cars. Furthermore, if passing is allowed, a car will, over a long period of
time, interact with many other cars. It appears that one must consider simultaneously the
motion of virtually all cars.

The theory to be described in this chapter is essentially a "perturbation theory"” in
which we try to estimate the lowest order effects of weak interactions. To a large extent the
theory mimics the treatment. of transport phenomena (heat conduction, diffusion, etc. ) in the
kinetic theory of gases. In the theory of gases, a molecule is assumed to travel at constant
velocity until it collides with another molecule. A collision occurs only if the molecules come
sufficiently close together and for rarefied gases lasts only for a time which is short
compared with the mean time between collisions. The analogue of a molecular collision is not
interpreted here as a collision of two cars in the usual sense, but rather some short range
interaction, the end result of which is that a faster car passes the slower one after suffering

some delay. One important difference between cars and molecules, however, is that after two

interaction, the end result of which is that a faster car passes the slower one after suffering
some delay. One important difference between cars and molecules, however, is that after two
cars interact, they each return to approximately the same speed they had before the interaction
whereas two molecules will exchange energy during the collision and acquire new velocities.
This exchange of energy during collision is crucial in the argument for the existence of such a

thing as a diffusion or a heat conduction equation for gases. Although there are certain
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similarities in the approach to the treatment of low density traffic and a nearly ideal gas, this
preservation of desired speeds by drivers will soon cause a divergence in the type of
development and lead to a macroscopic theory for cars quite different from that of a gas.

The theory of chapter IT can be interpreted here either as an idealization for traffic
situations in which cars do not interact very strongly with each other as for example on a
muitilane highway at low density, or it can be considered as an exact theory for the limit
behavior on essentially any homogeneous highway for k —0, because for k —0 cars hardly
ever meet each other anyway. The theory to be considered in this chapter is an extension of
the previous theory in the sense of the latter interpretation. If the density of cars, k, is small
but nonzero, the probability that a given car is within some finite distance d of some other car
should be approximately of order kd. The probability that there are two cars within a distance
d of a given car should be of order (kd)? for k —0.

If d is chosen to be a measure of the range of interaction within which one might
expect some deviations from the constant velocity trajectories of chapter 2, then the theory of
chapter 2 is correct "most of the time," except possibly during a fraction of the time of order
kd. The theory to be considered now is directed toward an investigation of the first order
effects of interactions, the effects of relative order kd. This includes the effects of interactions

between pairs of cars. But we will systematically neglect all effects of order (kd)’, which
effects of interactions, the effects of relative order kd. This includes the effects of interactions

between pairs of cars. But we will systematically neglect all effects of order (kd)’, which
will mean that we neglect the consequences of simultaneous interactions between three cars.
The purpose of the theory, however, is two-fold. First it is an end in itself, a description of

traffic at low densities, but secondly it is a source of suggestions regarding the properties of

80

P




traffic at moderate densities, the mathematical analysis of which is certain to be very
complicated.

In section 3.2 we determine the effect of interactions on the long time average speed
of a car with given desired speed. This is a very simple calculation, but it gives little insight
into the stochastic structure of the traffic. In a subsequent section, we détermjnc how the
interactions distort the Poisson process of steady flow for non-interacting cars. This is

followed by some discussion of time-dependent flows and flows on expressways.

2. Average speed. Consider a long homogeneous section of highway with a uniform flow of

traffic which, in the absence of any interactions, would have a homogeneous Poisson
distribution of cars of spatial density k and independently distributed velocities with a
spatial velocity probability density f(v). On a typical rural highway most drivers when
overtaking a slower car will slow down and look for an opportunity to pass. Once they pass,
they return to essentially the same speed as before. The net effect of this is that the faster
driver has lost some time or equivalently his time average velocity is less than if he could
pass without slowing down. If the density of cars is very low, the frequency of passing will
be low and the loss in average speed will also be small. To estimate this loss, however, we

must know the rate at which our reference car overtakes other cars. This, in turn, depends

be low and the loss in average speed will also be small. To estimate this loss, however, we
must know the rate at which our reference car overtakes other cars. This, in turn, depends
upon the velocity and spatial distribution of the other cars which have also been perturbed by
interactions amongst themselves. The basic idea in the perturbation scheme is that to calculate

the first order effects of interactions we will use the lowest order (no interaction) approxima-

81



tion to the distribution of positions and velocities; i.e., we assume a Poisson distribution with .
independent velocities.

If we have a Poisson distribution of cars of density k, velocity distribution f(v) and no
interaction between cars, then a car of velocity v passes cars of velocity between v’ and v’ +
dv’, v < v, at arate

(v - V)Ef(V')dV'. 2.1)

For each such passing, we assume that the car of velocity v suffers a loss either in travel time
or distance traveled. Suppose we let d(v, v’) be the average loss in distance traveled for each
passing of a car of velocity v’ by a car of velocity v. Figure Il 1 shows the space-time

trajectories of two cars. The faster car, velocity v, has the same velocity before and after

Fig. I 1
Space and time loss due to passing
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passing. The distance d(v, v’) is the distance between the real trajectory and the corresponding
trajectory (broken line) with no delay, or the extrapolation of the trajectory before passing.

Fortunately, the properties of the flow which are of practical interest are not very
sensitive to the detailed form of this function d(v, v’). One can propose various mechanisms
for the loss, none of which is very realistic in detail but any one of which will give approxi-
mately the same order of magnitude for the avérage delays in practical applications. A small
value of d(v , v’) results if we assume that the loss is due only to the fact that the path of
travel into the passing lane and back is longer than the direct path that one would have if cars
could pass through each other. A larger value results if we assume that the fast car starts to
decelerate when it is a "safe driving distance” behind the slower car and gradually decelerates
until it is at the speed v’. The fast car then returns to the velocity v as it passes. Finally, we
may consider that to pass on a typical rural road, a driver must find a gap in the traffic using
the second lane. The fast car is forced to travel at the speed v’ until it finds an acceptable
gap. We do not atterpt here to calculate d(v , v’); we assume it is "given."

The total average loss of distance traveled per unit time by a car of velocity v due to

passing slower cars of any velocity v/ < v is

v
kf av'dv , v)(v - V)f (V) .
Tha tima avarama valanito af a nnl§1'c the averace dictance traveled ner nnit time Tf we call
k f av'dv , V(v - V)f(V) .
0
The time average velocity of a car is the average distance traveled per unit time. If we call

this u(v) then

u(v) = v -k f d'dw , VI - VIEG) + OK?) . (2.2)
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We have added a term O(k?), which will be justified later, as a reminder that we have made
many approximations in the derivation of (2.2) and that the formula is valid only for small k.
This formula already displays the obvious facts that for small k the decrease in
velocity is linear in k and is largest for the highest velocities v (provided one uses some
reasonable form for d(v, v’)). From (2.2) we can also evaluate the average velocity for all

cars.

E{u} = E{v} - k jdng(v)j ddw , VI - V)EW) + 0(k?) (2.3)
0 0

If we knew d(v, v') and f(v), we could evaluate the integral here but in any case we see that
E{u} decreases linearly with k for small k. This prediction that a curve of average velocity
E{u}vs. k has a negative slope at k = 0 is confirmed for most rural roads [1]. Not enough is
known about d(v, v’), however, to make quantitative comparisons of theoretical and experi-
menta] values for the slope. Crude models for the passing maneuver do give values of d
which are at least in qualitative agreement (within a factor of two perhaps) with experimental
measurements of E{u}. For practical purposes it suffices at present to say that there is some
effective average loss d for all passings, that the integral in (2.3) which contains the velocity

difference (v - v") as a factor in its integrand is also roughly proportional to the standard
Aaxiiatinn v AF tha vralanitr Aintrilhritian AamAd thacafaca I DY e 6l L

difference (v - v*) as a factor in its integrand is also roughly proportional to the standard
deviation ¢ of the velocity distribution, and therefore (2.3) has the form

Efu} = E(v} - kd 6C + 0(i%) (2.4)
in which C is some dimensionless constant, the value of which depends upon the functional

form of d(v, V") and f(v).




The method of computation for passing rates and the perturbation scherme used here
are patterned after a similar method used by Maxwell for computing collision rates in the
kinetic theory of gases a hundred years ago. These procedures, which will be analyzed more
carefully in the next section, were first applied to the study of low density traffic by Newell
[2], Bartlett [3], and Carleson [4]. The theory of Carleson, however, is somewhat more
elaborate and has potential application to moderately dense traffic. It will be discussed in
more detail in chapter 5 along with some other extensions éf the theory by Miller [5].

Since this derivation of the first order effects of the density on the average velocity
was so simple, one might be tempted to extend the perturbation scheme and evaluate the
second order terms proportional to k?, Although we have as yet only computed the first order
changes in the average velocities, we could, by methods to be described in section 3, also
evaluate the first order changes in the distribution of velocities, etc. From this one might
expect that, following the usual iteration of perturbation techniques, we could evaluate the
average velocity u to second order in k. Unfortunately this procedure suddenly becomes
quite tedious due to a number of new phenomenon that enter into the second order theory, a
few of which are listed below.

a. In the above derivation, we considered passings involving only two cars at a tume. The

density of interacting pairs of cars, however, should be proportional to k* and so the rate at

a. In the above derivation, we considered passings involving only two cars at a time. The
density of interacting pairs of cars, however, should be proportional to k> and so the rate at
which a car overtakes such pairs is also proportional to k*. Three car interactions must,
therefore, be considered in any second order theory. Very little is known about the form of
d(v, v) above. Even less is known about the queueing phenomenon that exists when two cars

wish to pass a third car.
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b. In the first order theory we used a Poisson distribution of cars (or at least certain prop-
erties of the Poisson distribution) in order to estimate passing rates. This is no longer valid
for the next approximation. First of all, the delays give rise to a higher probability of finding
cars close together particularly a fast car behind a slow one because the interactions cause
cars to stick together for a while. Although one could estimate to first order in k the
difference between the conditional density of cars given the position of one car and the corre-
sponding expression for a Poisson distribution (for which the given position of one car is
irrelevant), the necessary use of the distributions for pairs of cars in the second order theory
adds complications. This, however, is not as annoying as the consequences of the fact that
these interactions also give rise to correlations between velocities and positions. Suppose, for
example, we know that three cars have interacted simultaneously. The two fastest cars pass
the slowest one; but if the fastest of the three cars is the last to pass, then we know for
certain that this fastest car will soon want to pass the car of intermediate speed. We can no
longer say that the expected rate of passings in the future is independent of the past. Alrsady
in the second order theory we are beginning to see some of the complications inherent in a
general exact theory.

c. In the first order theory it is assumed that the distribution of desired speeds on the

highway f(v) is the same as the unperturbed distribution. It is clear that the interactions cause
c. In the first order theory it is assumed that the distribution of desired speeds on the

highway f(v) is the same as the unperturbed distribution. It is clear that the interactions cause
deviations between the desired speeds and the actual speeds but they can also cause a change
in the observed distribution of desired speeds. Suppose, for example, we consider again the
highway of length L which is fed by a parking lot in which the velocities have a distribution

function Fy(v). It is perhaps reasonable to assume that the manner in which cars are selected
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from the parking lot does not depend upon the rate at which they leave; ie., f(v) is still the
probability density of desired speeds observed per umit time at the entrance. The car of
desired speed v, however, actually travels at a time average speed u(v). The number of cars
per unit length of highway with desired speed between v and v + dv is gf(v)dv/u(v) rather

than qf(v)dv/v. Thus the probability density of desired speeds per unit length of highway is

[u(v)]"'dF (v)/dv
JEORT

) = (2.5)

and this depends upon k through the u(v). The probability density of fast cars is increased due
to the interactions because their time average speed is reduced most and so their time required
to traverse the highway is increased. The longer cars of any velocity v stay on the highway,
the larger is their density at any given time.

No one has tried to formulate a second order theory correctly, but it is clear from the
above description of what has been neglected in the first order theory that the errors in (2.2)
are of order k* for k —0 as already indicated. From a practical point of view, a second
order theory would probably not be of great value since it will on the one hand contain so
many unknown parameters that one could not evaluate very much; and on the other hand,

there is probably only a rather narrow range of densities in which the second order theory

A ~iva enn ~h irmmraveamant avar tha firet arder thenrv hefare ane wanld need alco to

there is probably only a rather narrow range of densities in which the second order theory
could give much improvement over the first order theory before one would need also to
include the third, fourth, etc., order terms as well. Various extensions of the theory to higher '
densities will be considered in chapter 5, but the object will then be to treat simplified models

or obtain incomplete information without perturbation type arguments.
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3. Equilibrium distbutions. The derivations in the last section were quite insensitive to the
detailed features of the model. Before we can study probability distributions of the traffic, it
is desirable to define the model more carefully.

We will assume first that there is some finite zone of interaction around each car. Any
driver who is not in the zone of interaction of any other car will travel at his desired speed
just as in chapter II. We are not interested in following the detailed behavior of cars within
the zone of interaction. It is convenient, therefore, to idealize all trajectories by piecewise
linear curves. When a driver enters the zone of interaction of another car,' we will imagine
that this driver continues to travel at his desired speed until he actually coincides with the car
he wishes to pass. He then instantaneously assumes the speed of the latter and keeps this
speed for some non-zero length of time, after which he returns to his desired speed to
complete the passing. The time spent in passing is to be so chosen that the idealized trajecto-
ry coincides with the true one outside of the zone of interaction. Thus in figure III 1 the
correct trajectory is replaced by the dotted curve. This approximation will have no effect upon
the calculation of car positions outside the zone of interaction. Cars which are interacting with
each other will be identified by the coincidence of two cars.

Each i" car is permanently assigned a desired speed. He is also assigned a set of

distances d,, the loss in distance traveled when the i® car passes the j" car. In the stochastic

ijo
Each i car is permanently assigned a desired speed. He is also assigned a set of

distances d,, the loss in distance traveled when the i® car passes the j" car. In the stochastic

ij>
treatment of this model, we will, however, assume that the i driver with velocity v does not
identify other drivers by their number, but only by their velocity v’. For fixed v and v/, the d;

will be considered as identically distributed random variables. It is also reasonable to assume,

at least for very light traffic, that all the d; are statistically independent. The justification for
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this is that in the light traffic two passings are not expected often to occur close enough to
each other in both space and time so as to influence one another. Furthermore, if one driver
passes another, he is not likely ever to encounter the same driver again and thereby be
influenced by his past associations.

Throughout this section low density traffic shall be interpreted to mean that the zones
of interaction or the d;; are small compared with the average distance between cars; i.e., d; <<
1/k. Any calculation will include only first order effects, i.e., terms linear in the
dimensionless parameter kd;.

If again we consider the finite section of highway having length L with entrance at x
= 0 as discussed in chapter II and we specify (a) the starting time of each j™ car, (b) the
velocity of each j" car, (c) the values of the d;; , and (d) if two cars coincide at x = 0, the
remaining distance lost or remaining time needed before the compietion of the passing that is
in progress, then the future behavior of each car is uniquely defined. The actual computation
or graphical construction of the trajectories is straightforward, although not nearly as simple
as with no interaction. In figure III 2, for example, we show a series of trajectories starting at
x = 0 with no coincidences (no passings already in progress).

Trajectories can be constructed by at least three types of iterative schemes.

I. Start at x = 0 and draw straight line trajectories with the assigned velocities. Observe

Trajectories can be constructed by at least three types of iterative schemes.

I. Start at x = 0 and draw straight line trajectories with the assigned velocities. Observe
the first position where any two trajectories meet (point a of figure III 2). Put a jog in the
trajectory of the faster of the two cars with the appropriate d;. Now look for the next
smallest x at which two trajectories meet (point b) and put another jog in the trajectory of the

faster of these two cars. Continue this procedure. If per chance three cars should interact
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Fig. 1 2
Construction of trajectories
simultaneously, one can introduce some more or less arbitrary finite delays. We assume that
these will occur so rarely as to be of little consequence in any quantitative calculation. To
keep the mathematics as simple as possible, however, it is convenient to imagine that the
delays suffered in a three car interaction are the same as those that would have occurred had
each passing taken place without interference with a third car; i.e., the total loss in distance

traveled by car is the sum of the d; for all cars j that have been passed.

each passing taken place without interference with a third car; i.e., the total loss in distance
traveled by car is the sum of the d;; for all cars j that have been passed.

I1. Draw the trajectory of the slowest of all the cars. This car will never pass any other
cars, and its trajectory will therefore be a straight line (car 3 of figure III 2). Next dr;w the
trajectory of the second slowest car. If this trajectory intersects that of the slowest car, insert

the appropriate jog. Continue to add trajectories of the faster cars. At each stage the trajectory
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that is added will depend only upon the trajectories of the slower cars which have already
been determined in previous steps.
II. If at x = O there is a first car to leave, number the cars so that t,<t,<t, - at x = 0. (If

we have an initial value problem with positions x; specified at t = 0 and there is a largest x,
number the cars so that x,2x,>x, --). Car 1 will never pass any other car (although others may
pass it) and we can draw its straight line trajectory. Car 2 can only pass car 1 and so we can
now draw its trajectory knowing that of the first car. At each stage the j® car can pass only
cars k<j whose trajectories are determined in previous steps.

Some of the definitions and relations discussed in Chapter IT are still valid for this
more general model. The definitions of density and flow k (x , t) and q(x , t) equations (II
2.3) to (II 2.9), are still meaningful. Although the existence of coincidences implies that the
joint probability distribution for positions and velocities will not have a joint probability
density (the conditional distribution of x; given x, will have a discrete component at x; =
X,), it is still reasonable to assume that the marginal distributions for a single car have
densities.

The relations between k(x , t) and q(x , t) at the same x and t asin (IT 5.2) to (IT
5.10), or between p,(x, v, t) and py(x, v, t), equation (II 6.3), are also valid provided we

interpret all velocities to be the actual velocities of cars at any instant rather than the desired
5.10), or between p,(x, v, t) and py(x, v, t), equation (1l 6.3), are also valid provided we

interpret all velocities to be the actual velocities of cars at any instant rather than the desired
speeds and all velocity distributions to be the distributions of the actual velocities at the point
(x, 0. It might even be reasonable to postulate that cars leaving an ideal parking lot at x = 0

have a Poisson distribution (no coincidences) with independent desired (or actnal) speeds.
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This could be true if there were no interference between cars in leaving the lot; ie., the lot is
like a highway with free passing.

Any equations describing the evolution of k(x , t), q(x,t), p(x,v, t), etc. will be
changed, however, because the equations of motion are now different. The Poisson distribu-
tion, for example, is no longer invariant since for any x > O there will be coincidences
between single cars. The equations describing the evolution are structurally much more
complicated. The py(x, v, t) is no longer determined by its values at t= 0 in (II 6.4). To
follow the motion of even a single car for a time t one must know at least the number of
passings in time t which in turn is not uniquely determined by the average densities for
single cars, but must be determined from the joint distribution for positions of all slower
vehicles which the one in question must pass.

If a system contains only a few cars, we can follow in detail the motion of each car. If
the system contains a very large (infinite) number of cars and we observe it over very long
periods of time, we can also apply some asymptotic approximations to obtain equilibrium
distributions. An exact analysis of any large but finite system, however, is very tedious. The
evaluation of the equilibrium distributions for an infinite system [6] is easier than the analysis
of distributions for small numbers of cars (even two), so we will consider the equilibrium

distributions first.

of distributions for small numbers of cars (even two), so we will consider the equilibrium
distributions first.

As a preliminary exercise to illustrate the type of arguments to be used, we consider
first the following very artificial situation. Along a highway at stations with positions y, , ¥,

.., we place some stationary cars. A second set of cars, all with the same velocity v , now

92

. S N W

[ -




enter the highway at x = 0 and at times t, , t,, ... (see figure III 3). When the i® moving

car reaches the stationary car at the j™ station, it is delayed a time Ty

L L
s

v

f, t, t

Fig. lll 3
Fast cars pass stationary cars
We assume that the average interdeparture times E({t,, - t;} is large compared with
the average delay E{t;}. Occasionally two or more cars will be at the j* station simulta-
neously but such events will produce no first order effects as long as the delays resulting

from such interactions are finite. It may, however, be convenient to imagine that when such

~oo Ll .1 1 . a1 a1 PR L Pl B -at o o

from such interactions are finite. It may, however, be convenient to imagine that when such
multiple interactions do occur, each of the cars is delayed at the jth station as if the others
were not there. {(In the terminology of queueing theory, each station acts like an e -channel
server for the moving cars).

For the present model, the delays suffered by- car j are statistically independent of

those by car k, k #j. The arrival time of car i at station y; is
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Jj-1
t, =t ) + E T, >

its departure time from x = 0, plus the travel time to the j" station, plus the sum of all
delays at stations 1 to j - 1. For large j, the distribution of t; for fixed y; and t; should,
according to the central limit theorem, be approximately normal with mean

Efty) = t.+ (y/) + (j - DE{1,)
and variance

Var t; = (j - 1) Var {1,].

This model is very similar to that discussed in sections II.8. There is little difference
between the random velocity fluctuation discussed there and the random delays due to
passing. The joint distribution of arrival times t; at y;, given the t; , is asymptotically joint
normal for j — oo with independent t;. For a fairly general class of distributions for the
initial times t, such as discussed in sections II.7 and IL.8, the process of arrival times at station
J will for j — o approach that of a homogeneous Poisson process. The heuristic argument is
that in any finite interval of time T, there is a small probability for any given i® car to
arrive at station j during the time 7 (the standard deviation of t; will be large compared
with 1) but the probability of one car arriving in T is essentially independent of any others

because of their independent Brownian motions generated by the T; .

with 1) but the probability of one car arriving in 7T is essentially independent of any others
because of their independent Brownian motions generated by the T; .

Although the equilibrium process of arrivals at station j or in fact any position x will
be a homogeneous Poisson process, the spatial distribution of cars is not exactly a homoge-
neous Poisson process because they tend to cluster at the points y;, The number of cars in

any spatial interval (x, x + &) which does not contain any of the y; will have a Poisson
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distribution according to the same argument used near the end of section 11.7. If the mean
flow of cars is g, the mean number in (x, x + &) will be q&/v. The number of cars at y;
will also have a Poisson distribution. This one can prove directly by actually computing from
the Poisson distribution of arrivals and the independent delay times, the probability that k
cars arxives at y; at such times as to still be at y; at some time t. The simplest argument,
however, is to appeal again to the origin of the Poisson distribution. If we have a large (o)
number of cars in the system, the probability of any specified cars being at station y; at time t
is small (zero) and independent of whether there are any others there. These are just the
circumstances under which a Poisson distribution arises for the number of such events. The
spatial process of all cars is a non-homogeneous Pojsson process.

Each station y; acts like an <o - channel service facility with Poisson arrivals. That the
equilibrium queue length for such a system has a Poisson distribution has been derived before
in many different ways [7 - 10] in many different contexts. The mean of the Poisson
distribution is most easily calculated from the observation that over a long period of time the
average total delay per unit time to all cars at the j* station is given by

total delay per unit time = mean number of cars at the j* station

= average delay per car X number of arrivals per unit time (3.1)
= qE{Tij}'
= average delay per car X number of arrivals per unit time (3.1)
= qE{Tij}'

This relation is also valid for much more general queueing systems [11].
Our interest in this queneing problem is, however, confined mainly to the case qE{'cij}

<< 1 because the model of an - channel server at each station is realistic only if the
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probability for more than one car to be at a station is negligibly small. The Poisson distribu-

tion of cars at y; is, to first order in g, a distribution on just 0 or .

I - QE{TU} + 0(‘72)

P{no car at y;}

P{one car at y;}
P {more than one car aty} = 0(q’)
for g = 0.
It also follows from the Poisson limit theorem of section II.4 that the number of cars

at stations y;, Y, ... , _for given values of the y;, are independent of each other with a

multiple Poisson distribution and independent of the Poisson process of cars not at points y; .

These are all conditional distributions, however, for given y; and these conditional distribu-
tions depend upon the y; through the fact that there is a nonzero probability of a fast car
being at points y;. If the y; are themselves random, the complete distribution of all cars is
obtained by multiplying these conditional distributions with the distribution for the y;.

Of particular interest is the case in which the points y; themselves define a Poisson

process of density k,. The equilibrium spatial distribution of all the cars with desired speed v

will at any time t consist of the superposition of two statistically independent processes (1) a

Poisson process of free cars with spatial density g/v, and (2) a Poisson process of points y;

at each of which there is a random Poisson distributed number of cars trying to pass the
Poisson process of free cars with spatial density g/v, and (2) a Poisson process of points y;

at each of which there is a random Poisson distributed number of cars trying to pass the
stationary ones, the number at each y; being statistically independent of the numbers
elsewhere. The superposition of these two processes is not a Poisson process because of the
possible multiple occurrences of cars at the y; points (the sum of a Poisson distributed

number of independent Poisson distributed random variables is not Poisson distributed). If,
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however, q is small enough that we can neglect queues of two or more cars at points y;,
and treat the points y; as points where O or 1 of the fast cars can be found, then the second
process above will also be a Poisson process (the proof is left as an exercise). The combined
process will be a Poisson process with spatial density (g/v) + kogE{T;}-

If now we look at the combined distribution for all cars, those of desired speed v and
the stationary ones, we see that to this approximation of 0 or 1 length queues both the cars
of desired speed O or v define Poisson processes separately but the processes are not
independent. The combined process can be interpreted as the superposition of three statistical-
ly independent processes, (1) single v-cars with spatial density g/v, (2) single stationary cars
with spatial density ky - k,qE{T;} , and (3) coincident pairs of cars with a density of pairs
k,qE(T;}. Any count of cars in (3) will have a distribution on only the even integers.

The total number of cars of both types observed in any interval of highway is not
Poisson distributed. It is, however, the sum of a Poisson process for single cars and another
independent Poisson process for coincident pairs, i.€., the sum of a Poisson process on all the

integers and another process defined only on the even integers. Distributions of this type

occur frequently in applications of probability. They are special cases of compound Poisson

distributions, also of infinitely divisible distributions [12]. The process of cars is also a special

case of a compound Poisson process, a process of points at each of which there is a random

distributions, also of infinitely divisible distributions [12]. 'I'he process of cars 1s also a speciat

case of a compound Poisson process, a process of points at each of which there is a random

number of items. The births of babies in a hospital is a process of the type considered here,
mostly single events, occasional pairs but rarely anything else.
It is also of interest to notice that the marginal distribution for the spacing between

consecutive cars at any time t consists of a discrete component at spacing zero plus an
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exponentially distributed tail. In this model, the actual trajectories of cars were idealized so as
to be accurately represented when two cars were outside their range of interaction. The
distribution of spacing for cars in a non-idealized model can differ from the above only in
that the coincident pairs should be separated by some positive distance depending upon the
detailed equations of motion but not by more than the range of the interaction. The distribu-
tion outside this range is unaffected by this idealization of the trajectories and will remain, to
first order in q, the exponential distribution of the idealized model.

The results derived above for the special case in which there are two types of cars,
some with velocity v, some with velocity 0, can be generalized first to the case of two
velocities vi? and v, neither of which is zero, then to three or more velocities v¥, and
finally to a continuous distribution of desired speeds. Formally one can transform the
velocities 0 and v into nonzero velocities v and v by going to a moving coordinate
system but a few consequences of this need to be examined. Suppose the slower cars have

density k® , flow ¢ and desired speed v

; the faster cars density k@, flow g® , and
desired speed v®. The trajectories are now as shown in figure III 4.
If the slow cars travel at a perfectly controlled velocity v\”, then any distribution of

headways between the slow cars assigned at one time will be preserved for all times. There is

no tendency for these cars to acquire an exponential headway distribution. In reality, however,

headways between the slow cars assigned at one time will be preserved for all times. There is
no tendency for these cars to acquire an exponential headway distribution. In reality, however,
it is impossible for drivers to maintain a velocity v’ with perfect precision or for two cars to
keep exactly the same velocity. At best the velocity of any driver is some average v plus a

random time series. Any reasonable postulate one might make about the nature of this random

part would be sufficient to guarantee that after a long period of time, the positions of the cars
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Fig. Il 4
Fast cars passing slow cars
of velocity v/ do become approximately a Poisson process. It is, therefore, reasonable to
assign a Poisson process to the v cars initially.
For v\ = 0 we argued that arrival times of the fast cars at any y; would be a Poisson

process, but the spatial distribution of fast cars would be non-Poisson and dependent upon the

For v¢” = 0 we argued that arrival times of the fast cars at any y; would be a Poisson
process, but the spatial distribution of fast cars would be non-Poisson and dependent upon the
¥, In the present case, v’ 0, neither the spatial distribution nor the arrival times at a fixed
point x will be a Poisson process. The exact analogue of the argument for v\ = 0 is to say
that if one has some reasonable distribution of times at which the fast cars pass slow car

number 1 say, which has a trajectory extending from t = -eo (thus for x = -co to +eco), then
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the times at which these fast cars pass the j™ slow car should for j — o approach a Poisson .
process. If all trajectories start at x = 0, we can still reach a similar conclusion provided the
slow cars also have some reasonable (Poisson, for example) distribution of starting times so
as to guarantee that fast cars that start later and later after the slow car number 1 and which
must therefore pass more and more cars before reaching this slow car, will have some more )
or less stationary distribution of times for passing car 1.

We could also argue that if for sufficiently large x we ask for the conditional

probability that j fast cars will cross x in some time T or be in coincidences with some

given slow car, or satisfy some other such condition, given the trajectories of the slow cars,
these should all satisfy an appropriate Poisson distribution provided the events in question are
rare events for any specified fast car. Again we appeal to the argument that fast cars which
suffer many statistically independent passing delays before reaching x will have essentially
independent probabilities for satisfying some condition at x.

The equilibrium process of times at which fast cars pass a given slow car should
therefore be a Poisson process; i.e., the time intervals between passings are independent and
exponentially distributed. The equilibrium number of fast cars crossing any fixed point x in
any time 7T or the number of fast cars in any interval of highway of length & at time t,

given the number of slow cars in T or £ have a Poisson distribution. The crossing times or

any time T or the number of fast cars in any interval of highway of length ¢ at time f,
given the number of slow cars in T or § have a Poisson distribution. The crossing times or
the positions of cars, however, do not define homogeneous Poisson pracesses, the mean
number in T or & are not exactly proportional to T or § but depend upon the number of

slow cars in T or &.
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If we neglect the events that two or more fast cars be in coincidence with the same
slow car, we can again say that for a Poisson distribution of slow cars the crossing time
distribution or the spatial distribution of cars is approximately (to first order in k) a superposi-
tion of three independent Poisson processes (1) a distribution of single fast cars, (2) a
distribution of single slow cars, and (3) a distribution of coincident pairs of one fast and one
slow car.

To complete the analysis, we need only compute the means of the various Poisson
distributions.

The slow cars travel freely so their distributions are as described in Chapter II. In
particular, we have ¢ = vk, Over a long period of time T the fast car will travel a
distance u®T if u® is the time average velocity. The number of fast cars in the length of
highway u®T will be the number that entered in time T, ie., q®T. Therefore

q? = Ku?, (3.3)

The average velocity u® is obtained by observing that over a long time T, the
distance traveled u®T is the distance the car would travel if there were no passings, VT, less
the average distance loss due to passings. The fast cars gain on the slower ones at an average
relative velocity u® - v\. The average number of passings is therefore (u® - v@)k™T. Thus

WY = v - (% - VORDE(, ),

relative velocity u'“ - v*. The average number of passings 1s theretore (U™’ - v )K*/1. 1hus
U =V - P - VOKDE(d,, ),

or
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(v(l) - v(l)k(l))E{dzl}
1 + kDE{d,}

p® = @

In the present approximations we wish to keep terms only to first order in k so it is proper
that we discard the denominator term above and let
u® =P - (v NOEVE(, ) + O(FF) (3.4
which is a special case (for discrete velocities) of (2.2).
Fast cars will overtake a given slow car at a rate of k?(u® - v\V) and each fast car
holds the velocity v until it has lost a distance d,,, thus an average time E{d, }/(v® - v,
The average number of fast cars in coincidence with a slow car is therefore

k(2)(u(2) - v(l))E{dzl}
v® - O

~ k®E{d,} .

For low flows (to order k) we have a Poisson process of pairs having spatial density
k“"k®E{d,,} and flow (of pairs)
q”)kmE{dz,} = q'VE{d,/v,] = qVq®E{,,]. (3.5)
The free fast cars have a spatial density k® - k"k®E{d,,} and a flow
VO DR DEY, d,; )
The single slow cars have a spatial density k" - kKk®E{d,,) and a flow

WD) DDA A 1

The single slow cars have a spatial density k" - kKk”’E{d,,) and a flow
VORI EBELd, ),
The marginal distribution of spacing between consecutive cars still has a discrete
component at spacing zero plus an exponential distribution. The probability that a car is the

first car of a coincident pair and therefore has spacing zero is
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® KOKPE(d, )
p -

IO 5@
The distribution function for the spacing between consecutive cars is
P{spacing < y} =p + (1 - p){1 - exp[ -K(1 - p)y]}, y > O. (3.6)
The presence of an interaction between cars, p > 0 , causes the formation of pairs which
depletes the stream of free cars. As p increases, the amplitude of the exponential part of the
distribution decreases; but so does the rate of decay. For sufficiently large spacing, the

number of large spacings also increases. Figure III 5 shows a comparison of the distribution

functions for p=0and p > 0.
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Fig. Il 5

Distribution function for spacing

We can now generalize the above to the case of three or more velocities. Suppose we
now add some cars with density k® , flow ¢ and velocity v® > v®. These cars will not

disturb the motion of the slower cars provided we neglect simultaneous interactions involving
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three or more cars (in which a v®-car while passing a v\P-car could delay a v®-car). Also, if
we neglect the three-car interactions, the delays to the v®-car is the sum of the independent
delays due to passing the v*-cars and the v®-cars.

By essentially the same arguments as above, we conclude that the equilibrium
conditional probabilities that j of the v®-cars will be in some interval of highway or cross in
some interval of time, etc., given the trajectories of the v® and v® cars, will all be Poisson
distributed with appropriate means depending perhaps upon the positions of the slower cars. If
the slower cars are assigned their equilibrium probability distributions as described above, we
also conclude that to first order in the interaction, the combined traffic stream can be
represented as a superposition of six independent Poisson processes, processes for the single
cars of velocities v\, v, or v® plus processes for coincident pairs having desired speeds
v and v®, v and v, or v® and v®.

To first order in the interaction, the mean spatial densities for the various pairs will be
the same as they would have been in the absence of the cars having velocity different from
those of the paired cars in question; i.e., the pairs will have spatial densities kPk@E{d,;},
kk®E{d, }, and k?k®E{d,,} independent of k®, k@, and k" respectively. The devsities of
free cars are obtained by simply subtracting away the densities of cars caught in pairs, thus

the density of free v®-cars is

free cars are obtained by simply subfracting away the densities of cars caught in pairs, thus
the density of free v®-cars is

K3 - KOBIE(d;,) - KORTVE(d,,).
The time-average velocity of the v®-cars will be equal to the spatial mean velocity, the
analogue of the E{v} in chapter II; i.e., the average of v, v® and v® weighted according

o)

to the densities of v?-cars that are in coincidence with v"-cars, v®-cars or free. Thus
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u¥ = v (P VDB ) - (v - VIRDELd,,)
which again is consistent with (2.2).

The extension of this to any finite number of velocities v? is obvious. The extersion
to arbitrary discrete or continuous velocity distribution can then be obtained since any
continuous distribution can be approximated by a discrete distribution.

If we have a total density k and a continuous distribution of desired speeds with
probability density f(v), the density of cars with velocity between v and v + dv will be
kf(v)dv (the analogue of the k® above). The spatial density of pairs of cars, one of which
has a desired speed between v and v + dv, the other a desired speed between v’ and v’ +
dv, v  <v,is

Kdv, V)F(v)F(V)dvdy' 3.7
(the analogue of the k"kPE{d;} above) where d(v, v') is the expectation of the distance loss
for cars of velocity v passing cars of velocity v’ as in equation (2.2).

These pairs will be randomly and independently distributed. The totality of all pairs
with the slower car of any pair having a velocity v’ in some velocity set A and the faster
car a velocity v in some velocity set B will define a Poisson process with spatial density

[av [ avkae , vron) . (3.8)

veB ,vVeA Vv

[av [ avcaw , virmgo . (3.8)

veB ,vVeA Vv
A car of velocity v has a probability kd(v , v)f(v)dv’ of being in coincidence with
a car of velocity v/, v/ < v and therefore having an actual velocity v’ instead of v. The

average velocity u(v) is, therefore, as already derived in (2.2).
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p = _L;w dv _I;v av'qr(v , VW (V) (3.12)

that the next arrival at x is a pair. This is the analogue of (3.9). In general p # p’.
P{headway < t} = p" + (I - p’){1 - exp[-q (1 - p')t]}. (3.13)

It should be pointed out again that in the model considered here, we have represented
interacting cars by coincidences and evaluated all distributions to only first order in the
interaction. The form of the headway distribution (3.13) is, therefore, expected to be an -
accurate description (to first order) of the actual distribution of headways larger than the
duration of an interaction between two cars. It is not correct for short times except in the
sense that any excess probability of the true distribution from an exponential has been
reassigned to headway zero. It is, of course, not possible to derive the correct distribution at
short headways unless we have a model which includes a detailed description of how cars
interact during and just before the passing maneuver.

It is possible to extend the present theory to the non-idealized trajectories and thereby
obtain the headway distribution (to first order in k) for short headways as well as long ones.
The formulas, however, would contain such things as the mean actual velocity of a car with
desired speed v when it is a distance x from a car with speed v’ which it is about to pass

(in the idealized model, this velocity is v for x > 0 and Vv’ for x = 0). It is not obvious that

desired speed v when it is a distance x from a car with speed v' which it is about to pass
(in the idealized model, this velocity is v for x > 0 and Vv’ for x = 0). It is not obvious that
such formulas would be of much practical value, however, because it would be easier to
measure headway distributions than to mcaéure properties of the trajectories from which these

distributions could be calculated.
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There is an abundant supply of experimental data on headway distributions. People .
have been collecting such data at least since the 1940s, if not earlier. Equipment exists which
will automatically record both velocities and headways of cars passing some point on the
highway. Numerous conjectures have been made regarding the form of these distributions,
and several people have trnied to fit various formulas to these data, I'-distributions, translated
exponential, combinations of normal and exponential, linear combinations of exponentials, etc.
Invariably the formulas used have exponential tails because this seemed plausible even if it
could not be derived. That the tail of the distribution is indeed exponential has been verified
in essentially all cases, often with exceptional accuracy, well beyond that which could be
derived from the present theory.

Most experimental data relating to headway distributions is for traffic densities which
we would interpret here as moderate densities and is, therefore, relevant both to the present
chapter and to chapter V. Several papers give fairly extensive reviews of the literature [13 -
15]. We will comment here only on a few points that are relevant to the present theory.

Schuhl [16] proposed that the probability density of the headway distribution should
be approximately a linear combination of a relatively long range exponential plus a short
range displaced exponential. Some further analysis of such a model has also been made by

Petigny [17]. Schuhl’s formula differs from (3.13) in that the first term p’ representing the
range displaced exponential. Some further analysis of such a model has also been made by

Petigny [17]. Schuhl’s formula differs from (3.13) in that the first term p’ representing the
distribution of paired cars at zero spacing, is replaced by a term of the form
pexp [ - B(t -ty)] for t>t,

0 t<t,
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for appropriate values of B and t, (the translated exponential). This was not derived from
any mathematical model, but was intended to represent the distribution of headways for cars
that are paired. The fit to experimental data was exceptionally good. Furthermore, the
headway distribution is almost equivalent to (3.13) for headways larger than t; + 0(1/[).

Several people have suggested the use of a single translated exponential for the whole
range of headways, on the grounds that for long spacing the headways are nearly exponential,
but very short headways should be rare because cars cannot be on top of each other. This
gives less satisfactory results and clearly is not quite the correct form. Equation (3.3) implies
that if we plot

log P(Headway >t} = log (1 -p’)- q(1 p')t

vs. t, one should get a straight line, at least outside the range of interaction. The slope should
be less than q and the t = O intercept log (1 - p) should be negative because p” > 0. If one
does the same thing with a translated exponential distribution, however, one obtains a slope
greater than q and a positive intercept. In the latter distribution there is a deficiency of cars
within the entire range of interaction, whereas there should be an excess as compared with a
pure exponential. The extrapolation of the tail distribution back to t = O is probably as good a
measure as any of the amount of pairing. The more customary method of identifying paired

cars is to count all cars with headways less than some specified headway.

measure as any of the amount of pairing. The more customary method of identifying paired
cars is to count all cars with headways less than some specified headway.

We have shown in this section, that, for small k, the traffic stream can be represent-
ed as a superposition of statistically independent processes, one for pairs and one for single
cars. An alternative description of the traffic is to say that the spacings or headways are

independent identically distributed random variables with a distribution function of the form
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(3.10) or (3.13); i.e., the spacing is either zero or exponentially distributed. These two
representations are not exactly equivalent but they are equivalent to within the order of
approximation considered here. The latter description, for example, admits the possibility of
two consecutive zero spacings (thus a triple of interacting cars) with probability p? or p™.
We, however, neglect probabilities of this order in the former description.

In the literature on traffic theory and queueing theory there are many papers in which
a traffic stream of moderate density is represented mathematically as a Poisson process of
traveling queues [18 - 20], a renewal process (independent headways), or a sequence of
alternating blocks and gaps [21]. The motivation for such postulates, however, was not that it
was necessarily realistic but that it was mathematically tractable for the particular application
under consideration. Although we have confirmed here that these are justifiable postulates for
low density traffic, it is not possible to prove, in general, that any of these are necessarily
correct for moderate density, including multiple car interactions. What happens in the next
approximation depends much more critically upon the stochastic properties of the passing
mechanism and is likely to give rise to a very complicated stochastic structure for headways.
These other possible stochastic structures for traffic will be discussed further in chapter V.

The theory of this section determines not only the stochastic properties of the

headways, it gives the complete stochastic properties of the trajectories including velocities as

The theory of this section determines not only the stochastic properties of the
headways, it gives the complete stochastic properties of the trajectories including velocities as
well as headways. Although most random variables or processes which we discussed involved
statistical independence of almost everything, one important exception is the desired speeds of
two cars of a pair. Equation (3.7) or (3.11), in effect, give the joint probability densities for

the two velocities and it is in general not a product of marginal densities. Since the function
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d(v, V") is not determined by the theory, it is not possible to make very meaningful
comparisons with experimental data on joint distribution of velocities for consecutive cars.
Yet this dependence is an important consideration in the comparison of alternative models of

stochastic structure.

4. Velocity fluctuations. The Iast section dealt with only models for which cars maintain

constant velocities except while passing. A more realistic model would result if we assumed
that cars behave as described in section II.8 between passings. Their velocities while free
would then be represented by a stationary time series

v{t) = v; + Mt)
as in I 8.3 with x,(t) perhaps having the properties of a Brownian motion as discussed in II
8.6.

For models with passing delays the existence of random fluctuations in velocity was
not crucial in the arguments relating to the existence of an eguilibrium distribution, as they
were in Chapter II, because the passing delay was chosen to be random and gave a mecha-
nism for entropy increase.

The addition of fluctuations, however, introduces the possibility that the same pairs of

cars may pass each other more than once. Two cars with exactly the same desired speed may

The addition of fluctuations, however, introduces the possibility that the same pairs ot
cars may pass each other more than once. Two cars with exactly the same desired speed may
wish to pass if one car has a larger 1(t) than the other. At some later time the fluctuations
might be reversed so that the car which had passed the other is overtaken by the one it
passed. In a traffic stream where most drivers try to travel at the speed limit and therefore

have a small variance of desired speeds, this phenomenon 1is likely to occur quite frequently.

111




Suppose that the relaxation time T, for the fluctuations is large compared with the
times required to perform the passing so that once a driver has started to pass another car, he
does not change his mind in the middle of the process. Although the actual velocity of a car
will be changing during the passing maneuver itself, we assume that the velocity (with
fluctuation) of the passing car returns after the passing to the same value if had before. Over
times of the order of the passing time, cars therefore behave as if their desired speeds were
the speeds v; + m;(t) at the time in question. In calculating the delays, we shall also imagine
tﬁat the time losses T; or distance losses d;; depend only upon the velocities vi(t) at the time
of passing rather than the desired speeds v;. (This avoids problems of notation that might arise
when a car of desired speed v; may actually try to pass one of desired speed v; > v; because
the fluctuations cause v; + M;(t) to be less than v; + ny(t).)

We again take a density k sufficiently Jow that passings are rare and, to a lowest
approximation, the cars have nearly the Poisson distribution they would have without the
interactions.

Despite the obvious differences in the stochastic structure for the passing processes
now as compared with that of the previous sections, average passing rates and average delays
can be evaluated by essentially the same techniques used in section III 2, except that we

should use velocity distributions for the actual speeds (with fluctuation) rather than the

can be evaluated by essentially the same techmques used 1n section 111 2, except that we
should use velocity distributions for the actual speeds (with fluctuation) rather than the
desired speeds. As the analogue of (2.1) we can say that the rate at which cars of actual speed
v overtake of those with speed between v’ and v’ + dv’ with v' <v is, to first order in k,

(v - V)V )dv

in which £*(v) is the probability density of the speeds v(t) = v + n(t).
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It is the f*(v) which is usually evaluated in experiments on velocity distributions. To
find f(v), in the presence of velocity fluctuations, it would be necessary to observe the long
time average velocities of individual drivers, rather than their instantaneous values. Since
E{n@®} =0 for cars of each desired speed v, the variance of v(t) is

Var(vin(1)} = E{(v+1\(1) - E(v}}}} = E{(v-E{v})’] +E{(0*(1)} = Var v+E{Var(n(2) |v)}
in which the last terms is the variance of m(t) for given v, averaged over all v. Thus the
variance of v(t) is larger than for v. Since passing rates depend upon a spread or variance of
speed, we expect the total passing rates with the fluctuations to exceed those without the
fluctuations.

Equation (2.2) gave the time average speed u(v) of a car with desired speed v. The
direct analogue of this is an expression for the average distance traveled per unit time of a car
whose actual speed (except during passing) is v(t), but a time average over times small
compared with T, so that the random velocity v(t) is essentially constant over the time of

observation. Thus
w((D) = v - k J;”‘" &A@ , VIR - VIO (4.1)

1s the average velocity of a car whose actual speed between passings is v(t) at time t. To

obtain the average speed of a car with desired speed v, we must take the expectation of this

1s the average velocity of a car whose actual speed between passings 1s v(t) at ttme t. ‘10
obtain the average speed of a car with desired speed v, we must take the expectation of this
over the distribution of n(t) for fixed v. This is also the long time (over times large
compared with T,) average speed of a single car with desired speed v. The expectation of

(4.1) over m(t) does not have a simple form.
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The average speed of all cars, however, can be obtained directly from (4.1) by taking

the expectation over the distribution of velocities v(t). Since E{n(t)} = 0
E{u} = E(v) - kf dvf(v) ﬁ ddv , VYO - VI + Ok (4.2)

which differs from (2.3) only in that the f is replaced by f," .

The equilibrium distributions can still be represented, as in the last section, by Poisson
distributions of free cars plus Poisson distributions of pairs. Any subdivision of the population
of cars according to their free speeds or their actual speeds or both will have independent
Poisson distributions. The densities of the Poisson distributions, in particular the densities of
the pairs, however, is determined by the distributions f* of actual speeds but is otherwise
unchanged from that described in the last section.

The time dependence of flows, etc., under nonequilibrium conditions is hopelessly
complicated to follow in detail but there are some curious effects that can be discussed at
least qualitatively.

Suppose two cars with identical desired speeds are in coincidence at time { with one
car having a velocity fluctuation m,(0), the other a velocity fluctuation mM,(0) # n,(0).
Consider the idealized Brownian motion as discussed in (I 8.6) in which drivers retain their

velocities until time T, at which time they pick new m’s independent of their past values.

Consider the idealized Brownian motion as discussed in (II 8.6) in which drivers retain their
velocities until time 1T, at which time they pick new m’s independent of their past values.
They again pick new velocities at each time jT,,j = 1, 2, ... . The relative motion is in
essence a Brownian motion with relative velocities m,(t) - 1,(t) chosen independently at
times jT,. The relative positions of the cars at time kT, is the sum of these independent

relative velocities multiplied by 1, , i.e.,
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x,(kTo) - xfety) = Tp2 1M (7%5) - MoljT0)). (4.3)

A second passing between these two cars will occur if the Brownian motion of
relative positions crosses zero at some time t > 0. There is an extensive literature on the times
between zero-crossing of Brownian motion. This is a problem closely related to, or & special
case of, problems variously described as the problem of gambler’s ruin, first passage time,
absorbing barriers, zero-crossings, etc., which are discussed in most books on probability
theory; see for example Feller [12]. There are even some books almost entirely devoted to
problems of this type [22, 23].

If, in particular, the random variables 1,(jT,) and 7},(jT,) are statistically independent
and each assumes only two values, say + m, with probability 1/2 each, then each term of (4.3)
can be considered as the winnings in a single play of a game in which each player flips a
coin and player one wins 1 times the number of heads (or tails) on the two coins. The entire
expression (4.3) can be interpreted as T;n times the cumulative winnings in a series of k
plays or in a series of 2k tosses of a single coin. The times between successive passings of
the same two cars is the analogue of the number of plays in a game between times when the
opponents are even. In this particular model, the players might be even after each of several
plays, but once one player has gone ahead, the problem is identical to the "gambler’s ruin"

problem, to calculate the number of plays until the player has lost his capital.

plays, but once one player has gone ahead, the problem is identical to the “gambler’s ruin”
problem, to calculate the number of plays until the player has lost his capital.
From the literature on such problems, we conclude the following:
1. With probability one, a second passing will occur within a finite time. In an infinite
time the two cars will pass each other infinitely many times. This is true for

essentially any distribution of the M, and m,; i.e., the time between passings is a
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proper random variable. The distribution of this random variable, however, depends .
upon the detailed properties of the T, and n,.

2. There is a high probability that the second passing will occur within a few multiples
of the time T, , in fact it is quite likely to occur within a time 27, i.e., the cars will
pass again before they have a chance to drift very far apart.

3. The mean time between passings of the same two cars is infinite because the
probability for very long passing times does not go to zero fast enough. In this case
of equal desired speeds the probability that no passing occurs within a time t is of
order t'? for t — oo. If T represents the time between passings, it has a distribu-
tion function and

1-F(t) = 0(t") =0 for t = oo

but

t3f2

E(T} = [ wF 00 =0U°° t_dt_]uo.

The reason this happens is that if the two cars have not met again after some fairly
long time, they are likely to have drifted far apart. Although they are certain to
meet again eventually, it may take a very long additional time.

The analogue of this property for the special case of coin tossing is discussed in most

meet again eventually, it may take a very long additional time.
The analogue of this property for the special case of coin tossing is discussed in most
clementary books on probability theory. It can be derived from the fact that over long times,
k >> 1, the cumulative sum in (4.3) is approximately normally distributed (the central limit

theorem). That these sums are approximately normal is, however, true for essentially any
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distribution of the m’s (provided the first and second moments of the 1’s are finite, which is
certainly true for velocities of cars).

If, instead of having just two cars, we have a low density spatial distribution of cars
all with the same desired speed, then if a passing pair of cars fails to meet again within some
reasonable length of time, they are likely to have drifted far apart and will encounter other
cars. The time until a given car passes some other car is a random variable with finite
expectation. For a uniform density of cars we have already concluded that the mean rate at
which a given car passes other cars is proportional to the density k. This itself guarantees
that the time between passings of cars has a finite expectation proportional to 1/k. It becomes
infinite for k — O which implies that it must also be infinite for a single pair of cars as in 2
above.

Although everything appears to be consistent, the fact that the mean time between
passings for a car in a stream of cars with identical desired speeds is proportional to 1/k
comes about in a peculiar way. If car 1, say, has just passed a car 2 then the mean time until
it meets car 2 again is infinite. Therefore this cannot by itself explain the mean time of order
1/k. If we label as car 3 the car that car 1 is aiming for next after passing 2, cars 1 and 3 are
initially a distance of order 1/k apart. The mean velocities of cars 1 and 3 are identical,

however. If they are to meet, it will be because of the fluctuations which cause the relative

initially a distance of order 1/k apart. The mean velocities ot cars 1 and 3 are 1dentical,
however. If they are to meet, it will be because of the fluctuations which cause the relative
position to drift with an uncertainty proportional to t'2. It is likely, therefore, to take car 1 a
time of order k to meet 3, which for k — 0 is also too long a time to explain a passing rate

proportional to 1/k.
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What happens is that after car 1 passes car 2, it is quite likely to pass 2 again within a .
short time (of order 1 relative to k). The distribution function F(t) therefore rises quite
rapidly (independent of k), but then starts to form the slowly decaying tail which would, if
continued, cause E{T} to be infinite. The presence of other cars, however, in effect cuts off
the tail after t has become of order 1/k* Car 1 is likely to pass 2 very many times before it
drifts away. If or when it encounters some other car, it is likely to pass it many times, etc.

If cars have different desired speeds, the relative position between two cars is a
Brownian motion with a net drift (like a gambler’s winnings in a biased game). If, perchance,
a car of desired speed v,, should pass another with a desired speed v, > v, (but with v, +
n,(t) <v, + N,(t)), then these two cars are certain to meet again. The time until they meet also
has a finite expectation and is likely to occur soon after the time 7, If, however, v, < v,, the
two cars might meet again within a short time but with positive probability they will drift
apart and never meet. With probability one, they will meet only finitely many times before
the car with the higher v; pulls away for good.

Although most of the properties described above were discussed in terms of an
artificial discrete time model, they also hold for quite general types of random processes M(t)
as discussed in section II for 8 fluctuations of the second type; i.e., processes for which n(t)

is stationary but the position or integral of 1} has a variance that increases linearly with t.

as discussed in section II for 8 fluctuations of the second type; i.e., processes for which n(t)
is stationary but the position or integral of 1} has a variance that increases linearly with t.
The key property of the sum (4. 3) or the integral of a continuously varying 1,(t) - M,(t) is
that over long periods of time, the sum or integral should satisfy a central limit theorem. This

should be true for the real life processes.
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5. Time dependent flows. To study time dependent flows particularly with finitely many cars,
we return to the model of section (3.3), without the velocity fluctuations. If we know the
entrance times of cars on the highway and their velocities, or if we know a probability
distribution for such state variables, then the equations of motion determine the same
quantities at any other position x > 0. We wish here to investigate how the probability
distribution of state variables changes with x. To do this we must follow the trajectories of
cars. We can do this by any one of the three schemes I, II, or IIT of section (III.3).

To follow trajectories according to scheme I (for each x look for the next passing
between any two cars) seems awkward because any car could potentially pass any other. At
each stage we must inspect all cars that could pass and see which ones really do. This may be
convenient to desctibe the behavior over short times because only cars which are initially
close together are capable of passing within a short time. One could perhaps derive some
differential equations to describe the x - dependence of the distribution. (This might be useful
to analyze equilibrium solutions for infinite systems.)

To obtain the solution over long times (with many passings) either scheme I or ITI
seems more suitable. The procedure would be first to determine the evolution for the
distribution of car 1 defined to be the slowest car in scheme II or the first car to depart in

scheme III. One then determines the conditional distributions for car 2 given the motion of

Aalsiriouuon oI Car 1 aelned to DE UIC SIOWESL CdI 111 SCIOCINE L1 O N€ I1ESL CaT O ucpdrt 11
scheme III. One then determines the conditional distributions for car 2 given the motion of
car 1, etc. These sets of conditional distributions then determine the joint distributions.

In either of these two schemes the first step should be to renumber the cars. We will

assume that drivers have no identifying properties other than their positions and desired
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speeds. Two states that differ only in the numbering of the cars will be considered equivalent.
If we renumber the cars according to scheme II, it is convenient to define a new probability

density p,,

P05V, vy, s V38T, e oT) (5.1)

n?"1°2?

p, O5v, V5 oy V3 5oty o 1)
14

i ; 0270
for v <y, <..<v
n
0 otherwise

where P is any permutation (i,,,, --, i,) of the numbers (1, 2, -- n). The quantity p,” dv, --
dv, dt, -- dt, is now the probability that among the n cars there is one car having a velocity
between v, and v+dv, (identified as car 1 in the new numbering), another with velocity
between v, and v,+dv, etc. and the car with velocity in dv; departs during the time interval (t;,
t+dt). The density p* vanishes on all but one of the n! parts of the original state space
corresponding to various orderings of the velocities.

If we wish to apply the third scheme of numbering it is desirable to use a similar
procedure applied to the times t; rather than the velocities. We can define a probability
density p,”, so that p,'dv, -- dv, dt, - dt, is the probability that among the n cars there is

one car with departure time between t; and t,+dt,, a second with departure time between t,

-~ « Jde PRI R B T . 1. 1 1

one car with departure time between t; and t,+dt,, a second with departure time between t,

and t, + dt, etc., and the car that leaves in dt; has a velocity in dv,,
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=Ept(0;v‘.,v‘.1,... Vst s e a L) (5.2)
5 3 ) ,

Jor 1 <t, <.t

= 0 otherwise

For any x > 0, the time order of the crossings at x may be different from those at x = 0.
For sufficiently large x, the time ordering will, of course, become the reverse of the velocity
ordering (the fastest car will reach x first for some sufficiently large x regardless of when it
left x = 0). In the 2n dimensional space of velocities and times, the probability density
eventually shifts onto one of n! further subdivisions of the space representing the various
permutations of the times relative to the velocities.

Both schemes IT and III are tedious to apply beyond the first few cars in their
respective numberings. Scheme II leads to a quicker analysis of what happens at the rear of a
platoon because, at least for large x, the rear of the platoon is determined mainly by the
behavior of the slowest cars rather than the ones which started late. These are the low
numbered cars in this scheme. Scheme III on the other hand leads to a quicker analysis of

what happens at the front of a platoon because the expected first arrival at x must not only be

numbered cars in this scheme. Scheme III on the other hand leads to a quicker analysis of
what happens at the front of a platoon because the expected first arrival at x must not only be
a fast car but must not have been delayed by too many passings. It is therefore likely to have
started near the front of the platoon initially and have a low number in this third numbering

scheme. We shall pursue only methods II here, however.
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Starting from a given distribution p’, we can define the marginal distribution for car 1
(the slowest). Since some of the distributions for arrival times will have discrete components,
it is convenient to work with distribution functions relative to the time variables. Let
F*(x,v,t,)dv,=P{v,< velocity of car 1 < v, + dv, (5.3)
and the crossing time at x < t,}.

For x = 0 this is determined from p*

F'O,v, ,1) = ljdtlj: o [ dty .. dtn] d, [ .. ] dvn_,] dv, p(0;..) .(54)

Car I never passes any other. Consequently if it has velocity v,, it can cross x before
time t, if and only if it crosses O before time t-x/v,. Thus F,(x,v,.t|) is given by
F*(xv,t) = F,¥0, v, t; - x/v;) 5.5
and this describes the behavior of car 1.
We consider next the conditional distribution of car 2 given that of car 1. Let
F*,(x, v, t,fv,, t;)dv, = P{v, < velocity of car 2 < v, + dv,
the crossing time at x of car 2<t,, given the velocity v, and (5.6)
crossing time at x, t,, of car 1}.

Figure III 6 shows a possible trajectory for car 1 by the solid line and a series of possible
tentmntrnminn Face Ana N L. lemalomen Tiammn Ctmtln e foel el 10 Lo 2. _C L YIT 7/ .

Fig.ure III 6 shows a possible trajectory for car 1 by the solid line and a series of possibie
trajectories for car 2 by broken lines. Starting from the left-hand side of figure III 6, we see
that if car 2 crosses x = O before car 1, it will not pass car 1. If it leaves just before car 1, it
crosses X at the time t, - x/v, + x/v, (point a of Figure III 6), but if it leaves just after car I, it
must pass car I and will arrive at x a time d,,/v, later (point b of figure Il 6), or at time t, if

% is so small that x(1/v, - 1/v,) <d,/v, , i.e., the passing is not completed by time t;. There
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are no trajectories in the shaded area on the left-hand side of figure Il 6. If car 2 has a
trajectory anywhere in the shaded area on the right-hand side of figure III 6, it catches car 1
just before it reaches x and crosses x at the time t;. For any trajectory to the right of this,

there will be no passing before it reaches x.

Fig. Il 6
Possible trajectories of fast cars for a given slow car

If we choose a time t, < a, then car 2 will cross x before time t, with a velocity v,

if and only if it crossed O before time t,-x/v,. The same is true if t, = t,. Thus we have
If we choose a time t, < a, then car 2 will cross x before time t, with a velocity v,

if and only if it crossed O before time t,-x/v,. The same is true if t, 2 t,. Thus we have
FZ*(X,VZ,I‘Z/VI,IJ) = Fz*(o,vZ,tz'x/v2/v1,tl'x/v1)

ift,< t,- xv,+xv,ort,>t,. (5.7a)
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As we have defined F,*, the conditions on car 1 are to be specified at the value of x in
question. Values v, t, for car 1 at x are equivalent to values v, t, -x/v, at x = 0, either of
which, of course, uniquely defines the entire trajectory for car 1.
Car 2 cannot cross X between points a and min{b,t,} of figure IIl 6, therefore for t,
in this range F,* has the same value as at point a, i.e.,
Fy¥(x, v, t, v, 1)) = Fy¥5(0, vy, t, - X, vy, 8 - X)) (5.7pb)
ift; - xtv, + x/v, < t, < min [t; - x/v; + (x + dy ), , t,] .
If d,, is considered to be a random variable, then this is actually the conditional distribution
given d,,. The complete distributions would be obtained from this by multiplying these
conditional distributions by the distributions for the d,,.
Finally if t, lies between points b and t,, car 2 crosses before time t, if and only if 1t
crosses 0 before time t,-(x+d,,)/v,. Thus
FX¥(x, v, vy, 1) = F,50, vy, 8, - (x + dy))/vy vy, 8y - x/v))
if - xv, + (x+dy;)/v, <1, <t . (5.7¢)
This conditional distribution (5.7 a,b,c) at x along with the marginal distribution for
car | at x, (5.5), determines the joint distributions for cars 1 and 2 at x. For n=2, this is the
complete description. The form of F,* is shown in figure IIT 7. It has a discontinuity at t,=t,.

The distributions for car 3 already become rather complicated because car 3 might

complete description. The form of F,* is shown in figure IIT 7. It has a discontinuity at t,=t,.
The distributions for car 3 already become rather complicated because car 3 might
pass either car 2 or car 1 or both. If we define a distribution Fy*(x, v, t;|v), t;, V3 t,) in the
obvious way as the conditional distribution given both trajectories for cars 1 and 2, we can at
least evaluate this for large or small t;. Certainly car 3 will not pass either car 1 or 2 if it

leaves x =0 ahead of the others or if it leaves so late that it is not able to catch either car
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Fig. Il 7
Distribution function for passing time

before they reach x. The former is true if and only if t,-x/v, is less than both t,-x/v, and
t,-x/v, (regardless of whether or not cars 1 and 2 interact). The latter is true if t,>t, and t,. In
either of these two cases

Fi¥(x, vy, 1 v), 1), vy, 1)) = F3¥(0, vy, t5-35 v, 8/, vy, t)) (5.8)
where t,” and t,” are the times cars 1 and 2 must leave x = 0 so as to cross X at time t, and t,

(their values depend upon whether or not cars | and 2 pass). For intermediate values of t;,

F.* Adeanende nnan the confionratinn of the traiectories for care 1 and 2.

(their values depend upon whether or not cars | and 2 pass). For intermediate values of t,,
F,* depends upon the configuration of the trajectories for cars 1 and 2.

Similarly car j passes no other cars if it leaves x = 0 ahead of all slower cars
1,2,--,j-1 or if it leaves so long after them that it cannot catch any of the slower cars before it

reaches x. The former is true if
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L - xlv; < rrk1<1]n (¢, - xlv) . (5.9)

The latter is true if

> max 7, . (5.10)
<

The quantities on the right hand side of (5.9) are not necessarily all departure times but the
minimurmn of these must be the departure time of the first car among them to leave x = 0
because the first car to leave (among k < j) will not pass any others.

It is straightforward but tedious to write the complete distributions F* for all j. For n
cars, there are all together n! possible passing configurations (the initial spatial ordering can
be any permutation of the final ordering or vice versa). For moderately large n, this can be
come very awkward to disentangle. For very lmée n, however, one can make some approxi-
mations based upon what s typical rather than what is possible.

To illustrate the methods above and the effects of passing delays on diffusion, we
consider the simplest examples with only two cars. Suppose that at x = 0 we have (1) the
departure times t, and t, are independent identically distributed random variables with a
probability density q(t) and distribution function Q(t), (2) velocities are independent identical-
ly distributed random variables with a probability density f(v) and distribution function F(v)

independent of the t, and (3) the d,, is not random for given v, and v,.
ly distributed random variables with a probability density f(v) and distribution function F(v)

independent of the t, and (3) the d,, is not random for given v, and v,.
The joint probability density for entrance times of cars 1 and 2 are
PA0: vy, vy 1), 1) = fv)fiv)a(t))a(ty). (5.11)

The density p* of (5.1) for the cars renumbered according to their velocities is
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2f(v )(v,)q()q(t,)
t, ) =Vfor0O<v <y,
0 otherwise

010 v, v (5.12)

) 3
At x = O the distribution functions F* and F,* are

Fy¥0,v, 1)) = 20t )f (v )[1-F(v))]

QUYWL - F(v)] for v, <v, (5.13)

FO,v,, v ,t) = 0 forv

P>,
The marginal distribution for the second car is obtained by integration of this

conditional distribution over the distribution of car one, i.e.,
F,)(x , v, s b)) = fdvl J. F(x, v,. b 1y, tl)dFl'(x sV s 8D (5.14)
0 =00

where the differential dF,* is with respect to the time variable t;. For x=0 this has the value
FyX(0,vy15) = 2Q(5)f(v,)F(vy). (5.15)

The flow density p(x,v.t) is,
_ d » *
pl(x,v,t)—E[Fl(x,v,t)+F2(x,v,t)], (5.16)

the sum of the densities for each of the two cars. At x=0 substitution of (5.13) and (5.15) into

a
the sum of the densities for each of the two cars. At x=0 substitution of (5.13) and (5.15) into
(5.16) gives

pLOvt) = 2q()f(v){[1-F(v)] + F(v)} (1%

= 2g(t)f(v).
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This merely reproduces a result that is self-evident from (5.11). The total flow density is just
twice that of a single car (before the cars were renumbered according to their velocities). We
have reformulated this problem in this seemingly awkward way (adding the flow for the
slowest, second slowest, etc. cars) because for x>0 and d#0 we cannot represent the flow as
the superposition of statistically independent flows. This awkward formulation was chosen so
that we could follow the evolution conveniently.
For x>0, we have from (5.5) and (5.13)
Fi¥xvuty) = 200 (v ) [ 1-F(v,)] | (5.18)
a result which does not depend upon the interactions. It simply describes the free motion of
car 1 which has a velocity probability density 2f(v)[1-F(v)]. From (5.7) and (5.13) we have
forv, < v,
F Mo vaty vity) = 20(t,-x0) v ) 1-F(v))] (5.19)
ift, <t -xtv+xtv,ort, >t
= 20t XV )f(v)/[1-F(v))]
if 1~/ +x/v, < t, < min{t,-x/v,+(x+d, )/v,t,}
=2Q(t,-(x+dy )V, (V) I-F(v))]
if t;-x/v,+(x+d,)fv, < t, < t,.

Substitution of (5.18) and (5.19) into (5.14) now gives (after some integrations and

Substitution of (5.18) and (5.19) into (5.14) now gives (after some integrations and

rearrangement) for the marginal distribution

Fy¥(xvyt)) = 20(t,-2/v,) ) (v )F(v,)
-fv,) J.dvlﬂvl)[Q(tz = xlvy) - Q@ - x"h)] [0¢, - x/v,)
0
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+Q(t, - xlv) - 20, - xiv,)] (5.20)

where x*/v, = min{(x+d,,)/v,,x/v,}.

The term on the second line describes the effect of d,,#0. It vanishes for d,=0 because x*=x
for all v,. It 1s negative for d,;>0 and x>0 because all factors in the integrand are positive
(this must be so because the passings cause a shift to later arrival times). It also vanishes for
x=0 to agree with (5.15).

Even in this simple situation with only two cars we are obtaining some unpleasant
integrals, particularly since d,; will, in general, be a function of v, and v,. To evaluate
px,v,t) from (5.16), we must still differentiate (5.20) with respect to t, and to find q(x,t) we
must integrate this with respect to v,.

In order to obtain some fairly simple explicit results, we now make some further
restrictions. Let
1. d,, =d be independent of v, and v,

2. the departure times uniformly distributed over the time interval (0,1) in some arbitrary

time units, 1.e.,

lfor 1<t 2
Q) =\t for 0<t<]1 (5-21)

Ofor t<0

lfor 1<t 2
Q) =\t for 0<t<]1 (5-21)

Ofor t<0

and 3. the reciprocal velocities 1/v (the time required to travel unit distance) be uniformly

distributed over some interval (a, a+b), i.e.,
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ifi=%f0rd<%<a+b _ (5.22)
u? lu

0 otherwise .

First for d = 0 we have

p{(xr v, t) = 2 Q(t'-"/ V)f (V)
gx , 9 = 2f dv fVg(t - xv)
0

= 2/b X length of the intersection of the intervals

(a,a+b) and ((t-1)/x, t/x) (5.23)
This function is illustrated in figure IIT 8. For each of several values of x, we have superim-
posed on the x,t plane, graphs of q(x,t) vs t. For x=0, q(x,t) is the rectangular graph q(0,t)=1
for O<t<1. The fastest car travels with velocity 1/a thus the pulse of traffic vanishes to the left
of the line t=ax of figure III 8. The slowest car travels at velocity 1/(a + b); no car can be to
the right of where a slowest car would be if it started at t=1, i.e., to the right of t = (a + b)x
+ 1. These two lines are shown as the broken lines of figure I 8.

For small x, specifically for x<1/b, the distribution of velocities causes both the front

and rear of the pulse to disperse. For ax < t < (a + b)x + 1, the flow will lack some slow

cars. For ax + 1 <t < (a + b)x + 1, the flow will lack some fast cars. The middle range,

and rear of the pulse to disperse. For ax < t < (a + b)x + 1, the flow will lack some slow
cars. For ax + 1 <t < (a + b)x + 1, the flow will lack some fast cars. The middle range,

however, retains q(x, t)=1.
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Fig. 111 8
Platoon spreading with no interaction
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When x=1/b, a fastest car from the rear of the pulse (t=1) can overtake a slowest car
starting at the front. For any x>1/b, we will find, at any time t, only a limited range of
possible velocities. The curve
of q(x,t) is again flat between ax+1 and (a+b)x but now it is so because we took a uniform
velocity distribution, not because we started with a uniform q. In this middle range we have
cars which might have started from any f, O<t<l but outside this range we can have only cars
which started in some subset of {0,1).

The correction to the above formulas and graphs of q(x, t) when we take d>0, is the
contribution to q(x,t) from the second line of (5.20). The evaluation of the integrals for the
special case with Q(t) and f(v) given by (5.21) and (5.22) is elementary but somewhat tedious
because this correction has different forms in various regions of the (x,t) plane. We shall
describe the result below but not the derivation.

Figure III 9 shows the various regions of the (x,t) plane. For x<ad/b, no car is capable
of completing a passing before it reaches x. Even a fast car with velocity 1/a which is ready
at x=0 to begin passing a slowest car, velocity 1/(a + b), will arrive at x within a time (a4-b)x
traveling at the slowest speed but it will not complete the passing until x is so large that this
time is equal to the time it would have arrived at x if it had started a distance d behind and

traveled with the speed a, i.e., time a(x+d). Figure IIT 9 shows the trajectory of such a car
time is equal to the time it would have arrived at x if it had started a distance d behind and

traveled with the speed a, i.e., time a(x+d). Figure IIT 9 shows the trajectory of such a car
starting at t = O (also from t=1). It is the line t = (a + b)x for x<ad/b and t=a(x+d) for x>ad/b.
In the range x<ad/b, (we assume here that ad<1) we find for the correction Aq to the value

for d=0, equation (5.23), the following:
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Fig. 1l 9
Correction to flow due to interactions
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( 2
—i[_t—a} I:a+b—i:|fora<i<a+b (regionl)

b? | x x X
Ag =
) 0 for (a + b)x <t < ax + 1(regionQ)
_ 27, _ (5.24)

x{a+b—(t 1)] |:tl -a}fora<t_1.<a + b (region 2)

b2 X X X
0fori<a0rt_1>a+b.

x X

A typical curve of Aq vs t for some fixed x,x<ad/b is shown in figure Il 9. This Aq
vanishes everywhere except in the range of x where ¢ itself is either increasing or decreasing
as shown in figure III 8. In the range a<t/x<a+b, region 1 of figure III 9, we see from (5.24)
that Aq is a polynomial in t which has a second order zero at one end, t=ax, and a first order
zero at the other end. It is non-positive in this range, i.e., the passing delays tend to decrease
the flow at the front of the pulse as compared with d=0. The form of Aq for a<(t-1)/x<a+b is
Jjust the mirror image of the above. It has a second order zero at the end t=(a+b)x+1 and is
non-negative, Delays tend to displace some of the flow into the rear of the pulse. The area
under the entire curve of Aq vs t mus.t be zero since a change in d produces no change in the

total number of cars (two) crossing any x. The cars that are pushed out of region 1 of figure

TTT O annear latar in reaniAn )

total number of cars (two) crossing any x. The cars that are pushed out of region 1 of figure
I 9 appear later in region 2.

The formula (5.24) for region (1) also applies throughout the other regions labeled (1)
in figure 1 9, i.e., for x>ad/b and ax<t<a(x+d). A fast car which has been delayed but still
arrives in one of these regions will not have completed its passing either since the earliest any

car can reach x after completion of a pass is at time a(x+d), the time a fastest car of velocity .
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1/a would arrive starting at t=0. In region 3 of figure I 9, equation (5.24) must be modified
however because some cars will have completed a passing. Here Aq is less negative than
given by (5.24), which is in effect the formula for d = . Similarly in region 4, some cars
which for d = e would still be passing will, for finite d, have completed the pass. In region 2,
the formula is still unchanged from (5.24).

For ad/b < x < 1/b, we find

x |t z t .
( —_[_-a:I l:a+b—_]forax<z<a(x+d) (region 1)

b2 x X
Ag = —_i__L—aza+b—_t.fora(x+d)<t<(a+b)x(regi0n3)
1 b? | x(x + d) ] x
0 for (a + b) x <t <ax + 1 (region 0) (5.25)

+i|:a+b— (t_l)]zl:t_l —a} forax+ 1< t<alx +d) + 1 (region 2)

X X

+_£[a+b—(t—l)}z{(t_l)}fora(x+d)<1<t<(a +b) x + 1 (region 4)
b2 X x(x + d)

The curve of Aq vs t in this range of x still has zeros at the same points as for (5.24) but the
curve no longer has the front to rear mirror symmetry. The amplitude of (5.24) has been

reduced in regions 3 and 4.

curve no longer has the front to rear muror symmetry. ‘Lhe amplitude OI (J.44) nas oeen

reduced in regions 3 and 4.

1 | ad

For % <x < 3 + o the formulas for Aq , (5.24) and (5.25), remains as before in

regions 1, 2, 3 and 4 but the 0 region has now disappeared and is replaced by a new region 5

where
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Ag=

L axrlvaebx2+— 1 [r-ax+dPla+b)x -1 .
b%x? b%x(x +d) (5.26)

(region 5)
Finally for 1/b + ad/b < x , the formulas for regions 1, 3, 4, and 5 remain as above but region
2 has disappeared and is replaced by region 6 where

[l +(a@a+b)x -2

Ag =
b%? (x + d)

(region 6) . (5.27}

For x > > 1/b, we can make some simplifying approximations in which we keep only

the largest terms of expansions in powers of x. Thus we find that

- (¢t - ax)/xb  in region 1

- ad[2(t - ax) - ad)/bx in region 3

s + (¢t -ax - ad} - 1)/bx  in region 5 (5.28)
Ag ~ | - dla + b - 2t/x)/b*? in region 6

[(@a+b)x+1-1P (a+b)db*x* inregion 4 .

In region 1, Aq vs x decreases quadratically from O at t = ax to -a’d’/xb at t = ax-+ad.
The latter is -a’d*/2 times the maximum value 2(xb)" of q itself. From here Aq decreases
almost linearly with t until t=ax+1 where Aq has the value -ad(2-ad)/bx. Since ad is not

necessarily very small, this means that in regions 1 and 3, the passings can cause a significant
Alhmsmean i Alfar nA—T A Alhnnaa ey f Fantas AF N

necessarily very small, this means that in regions 1 and 3, the passings can cause a significant
change in q(for ad=1 a change by a factor of 2).

In region 5, Aq starts to increase and for t=a (x+d)+1, Aq has returned to zero
according to (5.28) but actually it reaches only some quantity of order 1/x>. These regions 1,
3, and 5 extend over a finite range of t even for x —ee. Region 6, however, has a width of

order bx which becomes infinite for x —eo. In this region Aq increases linearly with t, but it
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is uniformly of order 1/x?, smaller by 0(1/x) than in regions 1, 3, and 5. The area of Aq in
region 6, however, must be essentially equal to the negative of that in regions 1, 3, and 5 (it
has a small amplitude but a wide range). In region 4, Aq is also of order 1/x* but this region
has width 1, so it contributes nothing to the area for x — oo,

At least in this example, the passings cause for large x relatively large negative
changes in q very near the front of the pulse but very small positive changes in q over most
of the remaining range.

Although these examples illustrate some interesting physical phenomena and give
some qualitative indication of how passing delays effect the dispersion of a pulse, they also
suggest that even rather simple physical situations can iead to horrible computations. This
problem is of considerable practical interest (one silould know something about the spreading
of a pulse in order to describe methods for the optimal synchronization of traffic signals, for
example) but we shall not try to pursue it further here.

6. Uniform flow on freeways. One difference between freeways and the older type of rural

road is that on the multilane freeway a car can pass another with essentially no change in
velocity. Since at low density a passing car usually changes lanes gradually, it also suffers
very little increase in distance traveled. Some drivers will even increase their speed during

passing so as to produce a negative loss of time in terms of the model described above. The

very little increase in distance traveled. Some drivers will even increase theur speed during
passing so as to produce a negative loss of time in terms of the model described above. The
experimental fact [24, 25] is that the effective value of d(v, v') in (2.3) or d in (2.4) is so
small for freeways as to have no observable influence at all. Some experiments suggest that
u(v) may even increase slightly as the density increases for low densities so as to give in

effect a negative value of d and a maximum value for u(v) at some density greater than zero.
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If we assume that two car interactions have a negligible effect, then we must look to .
the three car interactions as the lowest order interaction. If 2 highway has only two lanes for
traffic moving in one direction then while one car passes another both lanes are temporarily
blocked and any third car which might overtake this pair while they are passing will be
forced to wait until the passing lane is free. Similarly for a three lane highway, one car will
occasionally be passed simultaneously by two other cars thereby causing a temporary block of
all three lanes to any fourth car that may wish to pass. Despite the fact that for low density
these multiple passings should occur only rarely, the delays caused by any single occurrence
may be sufficiently large that the total effect is a significant one.

For a highway two lanes wide (for the same direction of traffic), we assume that
drivers are disciplined to keep in the right-hand lane except while passing. When one car
wishes to pass a second car, the first car attempts to move into the passing lane when it has
come to within a distance D behind the second car (measured center to center) and it stays in
the passing lane until it has reached a point at a distance D ahead of the second car. We
consider D to be the same for all cars. It should be approximately a "safe driving distance"
between cars traveling at the prevailing average velocity. We also assume that for sufficiently
low density of traffic, passings involving more than three cars are too infrequent to be of any

importance.

low density of traffic, passings involving more than three cars are too infrequent to be of any
importance.

We focus our attention on a reference car O that has desired speed v,. This car retains
the speed v, at all times except during some passing maneuver involving three cars. For such
passings there are three types of situations to consider.

I. At the moment when car O has reached a point D behind a car 1 with desired speed
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v,< V,, the driver looks to see if there is a second car (car 2) in the passing lane already in
the process of passing car 0 (and also car 1). We will consider this to be true if car 2 is
within a distance D behind or ahead of car O and has a velocity v, > v,. In this situation, we
assume that cars | and 2 retain their respective desired speeds but that car ( takes the speed
v, and keeps this speed until car 2 has reached a point D in front of it, after which it regains

its original speed v, and passes car 1. See figure III 10.
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Fig. 11 10
The types of passing maneuvers for three cars

Fig. 11 10
The types of passing maneuvers for three cars

II. At the moment when car O has reached a point D behind a car 1 with desired speed v,<v,,
car 1 is already in the process of passing a car 2 with speed v, < v,. This occurs if car 1 lies

within a distance D behind or ahead of car 2 at this instant. Our first impulse would be to
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assume here that cars 1 and 2 retain their respective desired speeds and car O assumes the
speed v, until car 1 has passed car 2, after which car 0 regains the speed v,. Unfortunately,
as will be seen below, this leads to the unrealistic conclusion that the traffic piles up behind
cars for which v, and v, are nearly equal. To avoid this, it is necessary to make some
assumption that will keep the time of passing finite. We will therefore assume fhat in the
presence of a car O behind car 1, car 1 increases its speed to some value w(v,,v,) with v, <
w(v,,v,) < v, and that car 0 also travels at the speed w(v,,v,) until car 1 has passed car 2.
I. As a result of the assumptions in II, we must also consider situations in which car 0 is in
the position analogous to that car 1 in II. If car O passes car 1 and while doing so is
overtaken by a car 2, then car O increases its speed to w(v,,v,) for the remainder of the
passing operation. |

We will now evaluate the time average velocity u(v,) of a car with desired speed v,
following the same type of perturbation arguments used in sec. .1, i.e., we will calculate
passing rates and delays using an unperturbed Poisson distribution of cars.

To evaluate the delay due to maneuver I we observe first that car O with desired speed
v, overtakes cars with velocity between v, and v, + dv, at a rate of approximately

(v,-v )k fi(v;)dv, 6.1)

for v, > v, as in (2.1). The probability that at the instant when car 0 overtakes car 1, there is
(v,-v )k fi(v;)dv, 6.1)

for v, > v, as in (2.1). The probability that at the instant when car 0 overtakes car 1, there is
also a car 2 with velocity between v, and v, + dv,, v, > v,, located at a position between x
and x + dx relative to car 0 is

k f(v,)dv,dx. 6.2)
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(Here we have used the fact that for Poisson traffic, the probability density for car 2 is
independent of the position or velocities of cars O and 1). In accordance with I above, car O
must travel with velocity v, for a time
(D-x)/(v,-v,)

whenever this happens and -D < x < D. As a result car O loses a distance

(v-v, {D-x)/(v,-v,) (6.3)
compared with what it would have traveled if it had not been delayed in passing. The total
loss in distance traveled per unit time by car O due to all possible positions and velocities of
cars 1 and 2 satisfying the conditions given in I is the product of (6.1), (6.2), and (6.3)

integrated over all v, v, and x with v,>v,>v,and -D <x< D,i.e.

2%2D f dv fdv f(v ) £v,) - (6.4)

In a similar way we find that the loss in distance traveled per unit time by car 0 due

to interactions of type II is

2%2D? j.dvl fdv2 G, = v b, = w2 v o) o) (6.5)

W@, , v,) - v,
while the loss (which is really a gain) due to conditions described in I is

v‘, oo

r, v)[w(vo»v _V]f(v)f(vz) (6 &)
while the loss (wmch is really a gain) due to conditions éescnbed in I is '

(v?. B vo) [w(vo ’ vz) - Va] f,(vl) f;(vz) (66)

Wiy, > vp) ~ vl

2%D? [ v, [ ay,

The total distance traveled per unit time by car 0, u(v,), is v, minus the three
expressions (6.4), (6.5), and (6.6).

The average velocity of all cars is
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E{u} = E{v)} - 2k’D?* x

[, [av, [av, 5, 0) f0) £, 0 0, - v, = w)

v, - w(v, , v)] (6.7)

[W(Vl s VD) - V2]

o v, [, [ dv, 100 F0) £, 0 O, = W)

) J.dva fdv}j dvz f;(v") f;(vl) ]‘;. (vz) (Vz - V) [W(vo ’ vz) - Vo]

7wy, . v) -]

The form of w(v,,v,) has not been specified, but, if we were to take w(v,, v,) = v, as
suggested in II above, the integral in (6.5) diverges. The source of difficulty arises in this
case because when car 1 passes car 2, it blocks the passing lane for a time of order D/(v,-v,).
For v, — v,, this time becomes infinite, however, so rapidly, in fact, that we would be forced
to conclude that a car spends most of its time in long queues even for arbitrarily small values
of k. We must, therefore, either abandon the suggestion that w(v,,v,) = v, or revise the
method of computing delays, because the assumption of negligible correlations in positions of
cars would no longer be a valid approximation. Although the same singularity occurs in the

integrand of (6.4), the numerator vanishes faster than the denominator for v, — v, by virtue

cars would no longer be a valid approximation. Although the same singularity occurs in the
integrand of (6.4), the numerator vanishes faster than the denominator for v, — v, by virtue
of the restriction v, = v, 2 v, in the range of integration.

There is no doubt that traffic on freeways even at low flows has a tendency to form
occasional clusters and perhaps an effect such as this is one of the causes, but it does not

seem realistic that the consequences of this are as violent as the above postulates might
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suggest. If we modify this simple model, however, by taking some other form for w(v,,v,)
this can be done only at the expense of introducing at least one more parameter into the
model to describe this function. At the present time there does not seem to be any
experimental data that would be of much help in determining this.

One can easily deduce from this model with v.<w(v,,v,) <v, that as v, approaches the
smallest allowed value then u(v,) - v, goes to zero because all delays to a car of free speed v,
depend upon this car passing still slower cars and as v, decreases so does the rate of passing
slower cars. For sufficiently small v,, u(v,) - v, will be positive. The dominant effect for
slow cars is that when they do pass still slower cars they will block the highway and will
increase their speed to get out of the way, i.e. type Il effects dominate those of type I and II
For high values of v,, the passings give delays (type I and II losses overpower the gains from
type III passings) and for most reasonable assumptions about w and the distribution f(v), one
will find that the average effect to all cars is a decrease in time average velocity. Since the
low speed cars on the average increase their speed in passing and the high speed cars
decrease their speed, the dispersion in time average velocity is reduced because of passing.

The integrals in (6.4), (6.5), and (6.6) all represent averages of functions depending
only upon velocity differences. The integrals also have the dimension of velocity. For any

reasonable distribution f(v), these integrals will, therefore, be of the order of magnitude of

only upon velocity differences. The integrals also have the dimension of velocity. For any
reasonable distribution f(v), these integrals will, therefore, be of the order of magnitude of
the standard deviation of the free speed velocity distribution, &, and u(v,) can be written in

the form

- E
uv) =v, -k D* o G2 ©.8)
— |
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where G is some non-dimensional function of the dimensionless velocity (v,-E{v,})/c. The
form of G will depend on the distribution f(v) and the function w. The average of u(v,) for

all cars has the form

E{u} = [u(v) £ )dv, = E(v} - k* DG G (6.9)
for some constant G.

In contrast with the previous models that deal only with passings involving two cars
and predict a linear decrease of u with k, the present model predicts that u decreases
proportional to k% This is a direct consequence of the postulate that delays arise only from
passings involving three cars. For dimensional reasons alone, k* must be multiplied by the
square of some length and a velocity to give something with the dimension of a velocity. The
velocity must be a measure of the dispersion since the number of passings depends only upon
velocity differences and the length must be some length of highway in which a passing takes
place. Thus, aside from the value of the number G in (6.9), the form of this equation is an
obvious consequence of the basic postulates of the model and independent of the detailed
mechanism of passing. Minor variations on this model can be incorporated in a new value for
G.

We shall not try to construct a realistic model for three lane traffic here but only
imAiAanta wvihat mm Ahvriarie Avtmnmcinn AF tha Alava tora Thea mmnadal 0ill ~ivva Danl theanm lama

We shall not try to construct a realistic model for three lane traffic here but only
indicate what an obvious extension of the above two lane model will give. Real three lane
traffic is more complicated than two lane traffic because drivers do not generally adhere to
the rule that they should drive in the right-hand lane except to pass and even if they did there
would be some question about delay to a driver who uses the second passing lane because the

first two are blocked.
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The analogue of the above two lane model would be that passings involving either two
or three cars produce no delay because two cars can pass a third car simultaneously using all
three lanes. Occasionally, however, a fourth car will overtake a trio of cars that are
temporarily blocking all three ianes and be delayed until the lanes are unblocked. The only
point we wish to make here is that even though the possibility exists for infinite delays in a
model that is the analogue of the two lane model with w(v,,v)) = v,, large delays do not occur
often enough to cause a divergence in the low density expansion as occurred for the two lane
highway.

For the two lane highway the divergence difficulty arose with w(v,,v,) = v, because
the time consumed in passing was proportional to D/(v,-v,) and one was led to integrals such
as (6.5) which were of the form

[ ax

20
near x = 0. For the three lane highway, a block will last only until one or the other of the two
passing cars has completed the passing. The time the highway is blocked by cars with

velocities v, > v, > v, will be proportional to

for some lengths L, and L,. Although this delay is still infinite for v, = v, = v,, the integrals

one must evaluate to find the total delay will have the form

145




for small x and y. These integrals are finite.

For low densities, this model will lead to a formula analogous to (6.8)

u(v,) = v, - BD’6G((v,-E{v,})/5)

in which G is finite. The delay proportional to k* results from the inclusion only of passings
involving four cars.

That u(v,) - v, should be proportional to k® and that passings involving three cars can
be neglected is probably not realistic. Since the two lane highway model gave possible
divergences, however, and the three lane highway does not, the three lane highway is

probably less sensitive to passings than one might otherwise expect.
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IV. HIGH DENSITY TRAFFIC

1. Introduction. From the consideration of traffic flow at low densities for which cars behave
nearly independently, we now switch to the opposite extreme of very high density where the
dependence between drivers is so strong that they produce a highly ordered state of flow. It is
the consequences of passing that are difficult to analyze in any theory for moderate dense
traffic. By going to very high densities, we can minimize the effects of this because at high
densities cars have little room to make such a maneuver. We idealize the situation by
eliminating it completely. We also rule out any changing of lanes by cars so that a multilane
highway becomes, in effect, a collection of independent one-lane highways. The theory
described here, however, is not only a potential model for very dense traffic but is also
applicable to traffic of any density provided one can justify the no-passing condition on other
grounds. One of the main sources of experimental data for these studies is the traffic in the
tunnels connecting New York City and New Jersey under the Hudéon River. These tunnels
are two-lane highways, but it is forbidden by law for cars to change lanes anywhere over a
two-milg stretch of road. Passing is also artificially eliminated occasionally when one lane of
a two-lane highway is blocked over long distances while it is being repaved.

The key feature of traffic flow with no passing that makes the mathematical analysis
v mrmee e 4l i ammnanntiviales aeman anmd Far A1l Qlimna tha ranca ~F

The key feature of traffic flow with no passing that makes the mathematical analysis
tractable is that one can number the cars consecutively once and for all. Since the range of
view of a driver is finite, his motion depends only upon that of finitely many neighbors (the
same for all time). Furthermore, a driver is influenced mainly by the cars ahead of him and
only slightly, if at all, by those behind. Whatever detailed form the equations of motion may

take, the possibility exists that we can solve them iteratively, i.e., if we know the trajectory of
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the ™, (j-1)", etc., cars, we can, in principle, determine the trajectory of the (j+1)*, from
which we can find that of the (j+2)", etc. This iterative scheme, however, cannot be readily
applied if cars can pass each other because passing either alters the ordering of the cars, if we
number the cars, or it alters the identity of the cars if we number their positions. The
existence of both forward and backward interactions can also lead to some mathematical
difficulties.

Unlike the theory of low density traffic which has evolved in a rather unsystematic
way, the theory of traffic flow with no passing has developed through fairly well-defined
stages. To a large extent, we shall follow here the historical order of evolution which begins
with fairly simple models and mathematical techniques and progressively introduces new
refinements.

The first significant work on traffic flow at high density was by Herrey and Herrey
(1945)[1]. The mathematical analysis in this paper is rather crude (all trajectories are
approximated by parabolas) but many features included in their model were eliminated by
subsequent authors to simplify the detailed mathematics and were not reintroduced until 10 or
15 years later. Their paper seems unfortunately to have had rather little influence on later
developments because many of the ideas introduced by Herrey and Herrey were forgotten and

independently rediscovered later.

developments because many of the ideas introduced by Herrey and Herrey were forgotten and
independently rediscovered later.

We consider first the simple case of a steady flow in which all cars travel at a
constant velocity v. We assume that for any given velocity, a j* driver wishes, for reasons of
safety, to maintain a certain minimum spacing D;(v) which depends upon the velocity v.

Under congested conditions we assume that each does, in fact, travel at this minimum
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spacing. It is perhaps difficult to ascertain (and irrelevant) whether or not drivers travel at
what they consider a safe spacing or not, however, because in the final analysis the Dy(v) will
be what js experimentally observed and not what some safety expert may think is safe.

Much of what was previously described in Chapter 2 regarding models of traffic flow
in which all cars travel at the same velocity still applies. In particular, one still defines a
density k and a flow g in the same way. The main differences are that the model in which
cars all travel at the same velocity makes more sense in the present context because cars
cannot pass and therefore cannot maintain a difference in velocity very long. Also the
specification that each driver has a spacing D(v) implies that the velocity and the density are
not functionally independent.

As regards the stochastic properties, we had previously postulated that for low
densities the cars have a Poisson distribution, thus an exponential distribution for spacing with
parameter k. Herrey and Herrey considered only the case in which the D(v) were the same
for all cars but one can easily extend the model by assuming that drivers are sampled from
some population of drivers with different ideas about what is a safe distance. It is reasonable
to assume, therefore, that for any fixed v the Dj(v) are independent identically distributed
random variables with a distribution function

Fp(dv) = P(D{v) < d). (1.1)

random variables with a distribution function
Fp(dv) = P(D{v) < d). (1.1)
The only difference from the low density case is that F(d,v) is no longer the exponential
distribution, 1 - ™.
In the language of probability theory, the number of cars in any interval of highway

"

for the above model defines a "renewal process.” There is an extensive literature on such
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processes including a recent book by Cox [2]. Intuitively one expects that over any
sufficiently long length L of highway there should be approximately kL. cars. The distance L

must be the sum of distances between cars, however, so

kL
> Dj(v) ~L .
j=

The Dj(v) are independent random variables and by the law of large numbers, the sum of the
Dy(v) should be approximately kL times the expectation of the D;(v); thus
kL E{D{v)} = L
or
k = k(v) = I/E{D(v)} . (1.2)
A rigorous proof of this is one of the basic meoréms in renewal theory which will not be
reconstructed here.
The equation (II 2.7) q = kv, is still valid so that we also have that
g = q(v) = vk(v) = V/E{D(v)} . (1.3)
A similar argument can be used to describe time headways. The time headway t(v) is
defined as the time between the crossings of a fixed position by the (j-1)" and j* cars. Since

the cars travel at velocity v, it follows that

t(v) = Dv)/v (1.4)
the cars trave] at velocity v, it follows that
t(v) = Dfv)/v (1.4)
and since v is fixed (not random)
EQ0) = L E{DW)} (1.5)
v

and
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gv) = o , (1.6)

E{t(v)}

What functional form one assumes for D,(v) or E{D(v)} depends upon whether one
postulates some model for safe driving or uses for D(v) what in fact happens. Herrey and
Herrey proposed that D(v) was a quadratic function

D(vj=a+ bv+c/. (1.7)

The term a is the minimum spacing for velocity zero and is somewhat more than the
length of a car. The constant b has dimensions of time and represents a reaction time; bv is
the distance a car travels before the driver can start to brake. The last term represents the
distance traveled if the driver decelerates at a constant rate after applying the brakes until he
has stopped.

Equation (1.7) agrees qualitatively with what drivers actually do at moderately close
spacing but for large spaciﬁg the velocity should have a finite limit. In later applications we
will be more concerned with the inverse of this relation; i.€., the relation V(d) giving the
velocity as a function of the spacing. The qualitative shape for V(d) is shown in Figure IV.1.
For spacings less than D(0), if possible, V(d) is zero. For large spacings V(d) tends to a finite
limit V(o) which one naturally interprets as the driver’s free speed. Everywhere the curve has

positive but monotone decreasing slope.

limit V(o) which one naturally interprets as the driver’s free speed. Everywhere the curve nas
positive but monotone decreasing slope.
One important consequence of the above shape for V(d) is that the curve for the flow
q as a function of density k has the shape shown in Figure IV.2. For low k,
g = vk ~kV(eo)

has slope V(eo) and is zero for k = 0. For large k, k — 1/D(0), the velocity goes to zero and
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A typical relation between velocity and spacing
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Fig. IV 2
A typical relation between flow and density
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g ~ v(k)/D(0)
again goes to zero. The curve of q vs k must have a maximum for some intermediate k and
consequently there exists a density k, and a corresponding velocity v,, which produces the
maximum flow q,,. The value of g, is usually called the capacity. The surprising experimental
fact about these curves is that v, is quite small for typical urban roads, usually léss than 20
mvh.

Although considerable effort has been devoted to experimental measurements of these
curves, various methods of averages, etc., the main emphasis in the theoretical work has been
directed toward study of time-dependent flows.

The simplest assumption one can make about time-dependent flow is that even when
the velocity varies with time, a driver follows the car ahead of him in such a way that his
velocity and spacing are related by V(d). To simplify the mathematics somewhat, we will
assume now that this relation is the same for all drivers. This is not quite what Herrey and
Hermrey did, but they did propose an algorithm for constructing trajectories based upon a safe
driving distance and their results were almost equivalent to the above assumption. This
specification that the velocity is related to the spacing implies a procedure for constructing
trajectories. If x,(t) is the position of the j™ car at time t, then the spacing is X;.(1) - %,(0). The

velocity vi(t) of the " car is dx;(t)/dt and so the assumption that velocity and spacing are

MARY TS AAT S S SN\ 7Y RS p T TTTToT om ey . a - as - g -

velocity vi(t) of the i car is dx;(t)/dt and so the assumption that velocity and spacing are

related through the function V implies that
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dt

= VIx,() - x(0] . (1.8)

This is a system of first order (in general nonlinear) equations for x,(t) which can, in
principle, be solved iteratively. If x (t) is known, the equation for j=1 is an equation for x,(t)
which can be solved (numerically or graphically if necessary) in terms of x,(t) and some
initial condition x,(0). Knowing x,(t) and x,(0) one can then solve the equation with j=2 for

X,(1), etc.

Xj (f)
D(vo) ‘

\\0

-D(0)
-2D(0)

d‘\\\
/
K 9%4\
3 Ly
‘ \\ /O.o@

Fig. IV 3
Trajectories for a sequence of vehicles
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Suppose that we have somehow constructed a series of trajectories. For example
Figure IV 3 shows a hypothetical series of trajectories for cars which are injtially at rest with
spacing D(0), but, at time 0, the lead car suddenly accelerates to velocity V(ee), as might
occur for example when a traffic signal turns green. Before any car can increase its speed, it
must wait for the spacing to increase to the safe driving distance for the higher velocity. If
one marks on each trajectory the points where that car first reaches some velocity v, as
represented in Figure IV 3 by the circles, and connects these points by a broken line, one
obtains what Herrey and Herrey called the iso-velocity lines of velocity v. In the current
terminology these are called the “"waves" of velocity v. These waves are of considerable
interest in the description of time-dependent flows because, as we shall see later, they also
trace the propagation of any small disturbance at the velocity v. It should be noticed that this
propagation of the starting wave back into the line of cars with a finite velocity is a result of
the fact that drivers must increase their spacing as the velocity increases. We have said
nothing here about "delayed reactions" of drivers. Herrey and Herrey also observed that the
wave corresponding to the optimal speed v,, (for which is g, is a maximum) is stationary.
From this they concluded that the flow passing through a traffic intersection would almost
immediately adjust to the value g, and stay at that value provided the lead car has a velocity

larger than v,

immediately adjust to the value g, and SLdy dl Ulal Valus pioviuvu wiv sves vees asee = - ~oe o,
larger than v,

Most of these ideas which were first introduced by Herrey and Herrey by means of
rather crude analytical and graphical methods of approximation will be reconsidered later in a
more sophisticated way but in the historical development the emphasis now changed to

explicit analytic solution of simpler models. This turn to morse exact mathematical analysis
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has its drawbacks, however, and may even have delayed progress in the field because in the
final analysis one will be forced to deal with realistic models by means of approximate
techniques and one will want to know results only as accurately as can be read from a graph.
Exact formulas are frequently so complicated that they only obscure relatively simple

qualitative results.

2. Linear theories. The main obstacle to a simple analytic solution of (1.8) is that the

equations are, in general, nonlinear. Most of the emphasis for the next 10 or 15 years after
Herrey and Herrey’s work was directed toward solution of various linear models. The first

linear model was a straightforward linearization of (1.8); the function V(d) was taken to be
linear in d,

dx ()
dt

= afx_ (0 - x@®] - B (2.1)

with o and 3 constants independent of x(t), j, or t. This was proposed independently by
Reuschel (1950) [3,4] and by Pipes (1953) [5].

One can think of this linear relation between velocity and spacing either as a crude
approximation to V(d) over a wide range of spacings d or as an accurate representation over a

small range of d. In the latter case one, in effect, replaces the nonlinear V{(d) by its tangent

approximation to V(d) over a wide range of spacings d or as an accurate representation over a
small range of d. In the latter case one, in effect, replaces the nonlinear V(d) by its tangent
line at some fixed value of d about which small changes are to be considered. The values of
o and B/a are the slope and intercept respectively of the tangent line.

More recent models also include a reaction time of the driver. These were first

proposed independently by Chandler, Herman and Montroll (1958) [6] and by Kometani and
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Sasaki (1958) [7] after which a series of quite a few papers appeared giving further details
and refinements [8-12].

Kometani and Sasaki proposed that a driver chooses his velocity at time t+T according
to the spacing he observes at an earlier time t. The time T is interpreted as a reaction time,
the time required for the driver to respond to any changes in the spacing. They thus proposed

a set of equations

dx(t + e
—— D or - %01 -8 22)

Chandler, Herman, and Montroll argued that a driver does not control his velocity
directly but only the accelerator pedal or brakes of his car. They therefore proposed that the
driver chooses his acceleration at time t+7T on the basis of whatever information he may have
about his state at time t. They suggested a number of models in which the acceleration was
linearly dependent upon deviations in the spacing from some given value, differences in
velocities between the j™ and (j-1)™ cars, v;.,(t) - vi(t), and even changes involving the next
nearest neighbor car. Experiments designed to estimate the parameters in the model suggested,
however, that the acceleration depended mainly upon the velocity difference. Most of this

work and subsequent work by others centered around an equation of the form

dix(t + T o . IS
work and subsequent work by others centéred around an equation o the rorm
dix(t +
L)_ = ofv,_, () - v . (2.3)
dt? ’ ’

This equation is just the time derivative of (2.2). Even though the two models (2.2)

and (2.3) arise from slightly different motivation, the end result is the same. Since the first
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step in solving (2.3) would normally be to integrate the equation into the form (2.2) and since
(2.2) includes (2.1) as a special case (for T=0), it suffices to consider only (2.2).

There are a number of analytic methods for solving equations such as {(2.2). For any
fixed j, (2.2) would be called a linear differential-difference equation with constant
coefficients because it contains both derivatives in t and displaced times t and t+T but none of
the coefficients o or B depends upon t. We would consider the j" equation of (2.2) as an
equation for x;(t) with x; (t) as an inhomogeneous term. The solution would give x,(t) in terms
of x;,(t). There is an extensive literature on differential-difference equations including a book
by Bellman and Cooke [13]. Considered as an equation describing the dependence of x(t) on
Jj» (2.2) would also be considered a difference equation with constant coefficients provided o
and f§ were the same for all drivers.

To establish the existence of solutions of (2.2) and also to evaluate the solutions
explicitly for moderate values of /T and j, we notice that if one is given x,(t) for O<t< eo,
x(t) for O<ts,T, x,(9) for T<t<2T, ete., x,(t) for (j-1)T<t<jT, then one can determine x;(t) from
(2.2) for all t, jT<t, by iterative methods. For example, the equation for j=1 gives v,(t) for
T<t<2T in terms of x,(t) and x(t) with O<t<T, both of which are given. If we just integrate

this equation directly we obtain

this equation directly we obtain
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1-T
50 = x(D + [ dilofr® - x@] - B]
0

for T <t < 2T

in which everything on the right-hand side is given. Having evaluated x,(t) in (T,2T) one can
next obtain it in (2T,3T) by the same procedure. Generally, if one already knows x,(i)

and x(t) for (k-1)T<t<kT, one can evaluate x,(t) for kT<t<(k+1)T from the equation

=T
x(D) = x(kT) + at{alx_ (1) - x(1)] - B}
’ ! (kfl)T m ’ 2.4)

for kT <t < (k + )T .

This suffices to determine x(t) for all jT<t.

From a computational point of view, this scheme becomes quite tedious if one must
iterate very many times. One can obtain the exact formulas this way, however, and also
evaluate the asymptotic behavior for large j and/or t, but there are simpler ways of finding
the asymptotic behavior. The main advantage of this iterative method is that it would apply
even if (2.2) were nonlinear in the x(t) and even if the coefficients o and B depended upon j
and t although in this case the possibility of evaluating the integrals in any reasonable form is

very remote.

and t although 1n this case the possibility OI evaluaung tne 1NEgrals 1l diy IedsOndic LULULE 15
very remote.

That the coefficients o and B in (2.2) do not depend upon either j or t and the
equations are linear suggests immediately that you could advantageously use Laplace or

Fourier transforms in time and/or generating functions, Laplace or Fourier-Stieltjes transforms
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in j. The main point is that (2.2) is invariant to translations in t or integer translations in j; .
one car is the same as the next and one time is equivalent to any other time._
The inhomogeneous term B in (2.2) can be removed if we let
z(t) = x{1) + jB/o.. (2.5)
In effect we remove from the highway the minimum spacing /o between each pair of cars
and move all cars forward to take up the gaps. There are j gaps between x,(t) and x;(t) and so
the j™ car is moved forward by jB/o.. The equation for z(t) becomes homogeneous

dz(t + 1)
dt

= o [z, - ()] . (2.6)
Before becoming involved in detailed analytic solution by rather formal methods using
transforms, let us anticipate the nature of the solution using some rather crude mathematics.
Suppose we conjecture that the solutions z(t) should be, in some appropriate sense, slowly
varying in both t and j. We think of j as a continuous parameter, z(t) as a function of two

real variables, and d/dt in (2.6) as d/dt, the partial derivative for fixed j. We make the

approximations

deft + T
—a a

;
2. - 20 ~ - £ 20

gm—w%—%qﬁ

so that (2.6) becomes
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L O (2.7)
dt of

This is the simplest of all partial differential equations, a linear partial differential
equation of first order in two independent variables. It says, in effect, that z(t) 1s constant n
the direction (1,0) in the (t,)) plane. Equivalently, if we make a change in variables

f=t -jo (2.8)
i.e., we consider a new time coordinate t* which depends upon the car number j and which
for each j* car is displaced by an amount 1/ from that of its predecessor (j-1), and we let
g(t) = z/(7) = 7/ (1j/00)
ie., z (t') is the corresponding function to z(t) in the new coordinate system (t',j), then (2.7)

becomes

azj'(t’) _0 (2.9
oj
where the partial derivative with respect to j now means the derivative with t* fixed.
The general solution of (2.7) or (2.9) is
Z/(Y) = zt) ~ A(Y') = h(t - j/o) (2.10)

in which h is an arbitrary function. If we are given the trajectory of the lead car x,(t), then

h(t) must be x,(t) and so
in which h is an arbitrary function. If we are given the trajectory ot the lead car x,(t), then

h(t) must be x(t) and so
3(1) ~ z(t-j/o)
or

xi(1) ~ x,(tj/o) - jPlo . (2.11)
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The physical interpretation of this is that every car approximately reproduces the
motion of the lead car except that it is measured from a position translated by a distance ji/o.
and a time translated by j/a. A hypothetical set of trajectories corresponding to (2.11) is
shown in Figure IV 4. The circles mark corresponding points on the trajectories x,(t) and if
one connects these points by a line as was done in Figure IV 3 to indicate the propagation of
a wave, the line will always have slope -. We say that the wave propagates with the

velocity -B. In this linear model, all waves have the same velocity.

X
Xo(t)
X (t
X5(t)
B/QI il
[/a
slope —f3
AN
, t
[4 / / T
Fig. IV 4

Approximate trajectories

For certain idealized sitvations, it is a simple exercise to compute the wave velocity -3

directly from Figure IV 4. Suppose we assume that, before some disturbance, cars were
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traveling at a steady speed v, and spacing D(v,). After the disturbance cars traveled at a
steady speed v, and spacing D(v,). Regardless of whether or not each car mimics exactly the
motion of its predecessor, if the final motion is one of constant velocity we can extrapolate
the straight line trajectories of the initial and final motion until they intersect. We can then
interpret the path of the intersections, the locus of the discontinuities of slope, as the path of
wave propagation. Knowing the spacings and slopés of the two families of straight lines, it is
a simple exercise to evaluate the slope of the intersection. In essence this is, in fact, the
geometrical interpolation of the above mathematical approximation.

The approximations which led to (2.11) are rather crude and neglect some other
important effects. It is, therefore, worthwhile to extend the approximation one step further.

We now make the substitutions

WD =g+ D = O T a0

7,1 =2, - (-Doy) =2, + Vo) =

’ a ! 1 az ’

=z/(1) + L2

o or

into (2.6). If we neglect all third or higher derivative terms and all derivatives of dz(t")/dj
cliial mmmamAdle e +a D NN A ...l..,-..-.,.ln evanll vira Ahénin

into (2.6). If we neglect all third or higher derivative terms and all derivatives of dz(t")/dj

which according to (2.9) is already small we obtain

9Z/(t) (1-201) 97 2.12)
oj 202 o7

This equation is also well-known. It 1s the heat conduction or diffusion equation in

which j now takes the role normally taken by the time, t’ the role normally taken by the space
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coordinate, z/(t") the role of temperature or concentration and ( 1-2aT)/(20) the conduction or
diffusion coefficient. The coefficient of heat conduction or diffusion is always positive. If it
were negative this would be equivalent to reversing the direction of time or in (2.12)
reversing the direction of increasing j. For heat conduction or diffusion one knows that a
concentration of heat or of mass will in the course of time disperse and approach a uniform
distribution in space. The reverse processes with time running backwards must take a nearly
uniform distribution into a highly irregular one. By analogy we expect that (2.12) with
1-200T<0 would give rise to a highly irregular motion of the j* car even if x(t) were slowly
varying. Such a behavior would violate the assumptions used in deriving (2.12) so that we
cannot justify the use of (2.12) for 1-2aT<0 but we shall see later by means of a more exact
treatment of (2.6) that this condition does in fact lead to an amplification of small
disturbances as (2.12) suggests. Actually, the solution of (2.12) with a negative coefficient is
not always mathematically well defined.

On the other hand if 1-2aT>0, we know that even an irregular motion for x(t),
corresponding to an irregular initial concentration in diffusion, will Jead to a smooth x;(t) for
large j. Thus we expect that the larger j, the better one can justify the assumptions used in
deriving (2.12) from (2.6). This one can readily verify by actually constructing the solution of

(2.12) and showing'that the terms which have been neglected in (2.12) are in fact small.
deriving (2.12) from (2.6). This one can readily verify by actually constructing the solution of

(2.12) and showing'that the terms which have been neglected in (2.12) are in fact small.
The solation of (2.12) is well-known. The fundamental solution or iniiial value

Green’s function is

2R 2T 51 = 2700)

in terms of which the solution for arbitrary z,'(t) is

G . 1) = o exp [;_Z‘._ﬂ} - G - ) (2.13)
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/() = f dv G(t', T)z,/(x) = f dt G - 9z,(%)

(2.14)
- f &t G@) z(f - T) -
The trajectories themselves are therefore given by
x(t) = - jBlo + f & Gt - jlo, , Dx, (1)
- 2.15)

= - jBla + f dt G(Dx,(t - T - jloy .

This approximation reduces to (2.11) if we neglect the diffusion effects or
equivalently if we set 1-20T=0 in (2.12). If we let 1-20T—0 in (2.13), G(t', T) becomes &(t’-
7) and (2.15) goes over to (2.11). In a certain sense the first order effect is still that a
disturbance propagates from the zero™ car to the j™ with a propagation time of j/o.. The
second order effect is that any sudden change of the lead car becomes smeared out. Whereas,
the propagation time grows linearly with j, the spreading of the disturbance grows only as j*.
Since our approximation of j by a continuous variable implies that j is large, it is in this sense
that the first effect is large compared with the second.

The time derivative of (2.15) gives for the velocities
that the first effect is large compared with the second.

The time derivative of (2.15) gives for the velocities

v = [ dt Gy - T - jlo) .

Further differentiation of this gives similar equations for the accelerations, their derivatives,

etc.
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The simplest functional form for v (t) which illustrates the propagation and diffusion
of a disturbance is
V(1) = (2my) exp(-£/2y).
This represents a motion in which the lead car starts at t = -0 with velocity O,
accelerates gradually to a velocity (27y)”” at t=0 and then decelerates in a similar way back

to zero velocity. It travels unit distance in the process. The j™ car has a velocity

ves exp I: - ot - t-7 _j/a)z]
V() = o f & 2j( - 2T o) 2y
’ .. 2 T = 270

[ (t - jloy ]
2[y + j(1 - 2To)/o?]

@ny* [y + 1 - 2Toy/e® 1%

Whereas car 0 has a Gaussian shaped velocity pulse centered at t = 0 with a duration
measured by y* and a peak velocity [2my]'?, car j has a Gaussian pulse centered at time
jlot, a duration [y+j(1-2To)/e]'"* and a maximum velocity proportional to the reciprocal of

this. The pulse propagates with a time lag j/o but spreads and loses amplitude. For Jarge j
j/a, a duration [y+j(1-2Ta)/c]" and a maximum velocity proportional to the reciprocal of

this. The pulse propagates with a time lag j/o but spreads and loses amplitude. For Jarge j
the spread increases proportional to j'? . The total distance traveled by the j® car is 1,
however, for all j; the spacing between cars returns to the same value at t = + o« with which

it started at t = -co. The curves of velocity vs time for this motion are shown in Figure IV 5.
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Fig. IV 5

Propagation of Gaussian shaped velocity pulse

Equations similar to (2.15) were first obtained by Chandler, Herman, and Montroll {6]
from exact solutions of (2.3). The heuristic derivation given here mimics one used by Newell

[14] in discussing some nonlinear models.

3. Solution by Laplace transformn. We shall now reconsider (2.6) and obtain exact solutions in

terms of Laplace transforms. To find the general solution with arbitrary starting conditions for

3. Solution by Laplace transformn. We shall now reconsider (2.6) and obtain exact solutions in

terms of Laplace transforms. To find the general solution with arbitrary starting conditions for
all cars is quite cumbersome and not very illuminating. We are mainly concemed with the
propagation of disturbances originating from car O at some time t > 0 and not with a
succession of disturbances originating from each j car because it may start initially with

some velocity different from that of its predecessor.
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In this section we shall specifically define z(t) as the solution of (2.6) that satisfies

the conditions

z,(t) is given for t > 0
and (3.1

z(t) = 0 forall t < jT.
This means that all cars are initially at rest and subsequently following a prescribed motion of
the zero® car. Since (2.6) is linear in z;(t), however, the sum of this z(t) and any other
solution of (2.6) is also a solution. In particular

zi(1) + (t-j/o)v

is a solution of (2.6) with values (t-j/o)v for t < jT and thus represents the motion of a series
of cars starting from a steady flow with velocity v.

If

£@ = [ de fi (3.2)

denotes the Laplace transform of f(t), then the Laplace transform of (2.6) with the conditions

(3.1) gives

se*Tz"(s) = afz5(s) - z7'(s)]
or

se ’sz'(s) = OL[Zj:,(S) - Z,--(S)]
or

() =z, [ + se /] =z, ()1 + seT/a]? . (33)

The purpose of the Laplace transform was to obtain this simple difference equation for
the z*(s). The method is also useful if different cars have different values of a, say, o,.

One then obtains
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2'(s) = 2,5) 11 [1 + seTioy] ™
and can study statistical problems associated with the propagation of disturbances through
cars with randomly selected properties. We shall not pursue this here, however.
We obtain the trajectories themselves from (3.3) by inverting the Laplace transform

using the formula

’Yﬂ'oo ‘Y+i°° »
. zZ, (s

z(H) = L f ds e” z; (s) = ._1_ fds e _(2_

! 2mi 27i [1 + sesT/oy

‘Y-im 'Y—iaa

34

in which the integral is a line integral in the complex s-piane along some vertical path from y
-ieo t0 7y +ieo With ¥ so chosen that the path lies to the right of singularities of the integrand.
If we assume that z (t) is finite (as it certainty must be) and that after some finite time
I' is a motion with constant velocity v,.
() =vt+a, for >T

then
r o
7, (1) = J.a’te Sz -v,t -al]+ j.dte v, t +a,)
0 o
a . o
= _2 + _° + an entire function’ of s.
= _~ + _“ + an entre runcuon’ of s.
Thus the only singularity of z *(s) with |s| finite, for this fairly general class of motions, is

at s = 0. Furthermore, the entire function is no larger in amplitude than some constant times

|€*"| in the left half-plane.

. 'An “entire function" is 2 function which is analytic (has a Taylor series expansion) at every poinl in the finite complex s-plane.
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It is not possible in general to evaluate (3.4) in closed form but one can deduce from
it the behavior of z(t) for large t and/or large j which was particularly awkward to obtain
from (2.4). We consider first the behavior for large t and fixed j.

For ¢t > T, the integral (3.4) can be evaluated if we close the contour from 7y - ieo to 7y
+ ico by a large (infinite ) semi-circle in the left half-plane. The numerator of the integrand
e¥z,* vanishes for s —oo at least as fast as |exp[s(t-I")]| in the left half-plane. The
denominator has an infinite number of zeros as described below which extend to oo in the
left half-plane, but one can always find a semi-circle of arbitrarily large radius which avoids
these zeros and along which this factor of the integrand is bounded. The integral along the
semi-circle vanishes and so (3.4) can be expressed as the sum of the residues of the integrand
at each of its poles.

The second order pole at s = 0 of the factor z *(s) contributes a term

[t-j/ov,+a,
which we recognize as the equilibrium solution for motion with a constant velocity v,. The
other singularities of the integrand occur at points s, which are roots of the equation.
a+s, exp (s,T) = 0. (3.5)
At each such root the integrand has a pole order of j and a residue of the form

P, (s,t) exp (s¢)
At each such root the integrand has a pole order of j and a residue of the form

P, (s,t) exp (s¢)

in which Py (s;,t) is a polynomial in t of degree j-1. The integral thus has the form
z(®) = [t - jlojv, + a, + X P, (s, , 1) exp (s) . (3.6)
k
If we number the roots according to the values of Real s, so that Real s,> Real s, >
..., then for large t the dominant terms of the series will be the ones with the largest vaiues
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for Real s,. If Real s; > 0 this means that the motion is unstable because z(t) grows
exponentially with t. It is also unstable if Real s, = O. In such cases each following car is so
sensitive to any changes in the motion of the lead car that it is unable to control its motion. If
s, is complex but Re s, < 0 the motion is stable in the sense that the transient terms decay but
the transient will be oscillatory with exponentially decreasing amplitude. Since s, and 5, both?
satisfy (3.5), it follows that, if s, is complex, §, is also a root and the two terms of (3.6)
combine to give a real valued contribution to z(t). Finally if s, is real and negative, the
transient is a non-oscillatory exponential decay.
To locate the roots of (3.5) we note that this equation implies that the s, are solutions
of the two real equations.
Arg S+Im S = (2n+1)m (3.7)
o= [S]/exp (Re S) (3.8)
in which S = sT, Arg S is the argument or complex phase of S, Im S is the imaginary part of
S, Re S the real part of S, and n is any integer. Equation (3.7) does not contain &T, and so all
roots s, (for any aT) must lie on the curves in the S-plane which satisfy (3.7).
These curves are shown in Figure IV 6 by the solid lines. One branch of (3.7) is the negative
real axis. Another starts at (-1,0), moves upward and to the right having the line iw as an

asymptote. It also moves downward and to the right with -in as an asymptote. All other

real axis. Another starts at (-1,0), moves upward and to the ngnt having e 1ne 1T as an
asymptote. It also moves downward and to the right with -in as an asymptote. All other
branches vary from an asymptote 2nmi at the left to (2n+1)mi at the right if n = 1,2, -- or

(Zn-1)mi at the nght if n = -1, -2, --.

%5, is the complex conjugate of s,
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Fig. IV 6
Locus of roots in the complex plane
For oT << 1 in (3.8), we see that either |S| << 1 and, because of (3.7) or Figure IV
6, S is negative real, or -Re S >> 1 and because of (3.7) or Figure IV 6, Im S ~ 2nn for some
integer n. Thus the root with largest Re S is
S = -aT exp (-ReS) = -aT{1+0T + .. ]. (3.9
The other roots are at

ReS = -Jlog oT/ - log] S|/

ReS = -Jlog oT/ - log] S|/
or
S ~ 2nni - Jlog oT[ - log] 2nni + log aT/. (3.10)
These roots are shown in Figure IV 6 by the circles numbered in order of decreasing
ReS. The arrows show the direction in which the roots move as oT increases. The roots 1 and
2 are moving toward each other, and one can readily verify that when oT = 1/e the two roots
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coalesce at S = -1. For oT > l/e there are no negative real solutions of (3.8). The two roots
which combined at S = -1 now move off the axis along the other curve of Figure IV 6 that
crosses S = -1 as shown by the arrows. As oT increases further these roots will cross the
imaginary axis and acquire positive real components at S = in/2 when oT = 7/2. Throughout
this variation of oT the roots 1 and 2 remain the ones with the largest real part.

We thus conclude that for 0 < aT < l/e, the longest surviving transient is stable and
non-oscillatory, for 1/e < oT < m/2 the transient is oscillatory but stable, and for n/2 < oT the
motion is unstable.

Some numerical evaluations of the complete trajectories have been made for various
initial conditions by Kometani and Sasaki [7] and by Herman, Montroll, Potts, and Rothery
[9].

To estimate z(t) when j 1s large but oT <r/2, we choose a path of integration in (3.4)

to the right of the origin but otherwise up the imaginary axis, Y = 0. Along this path with s =

i[s|,
STim Isl? Isl . ;
1 +seTob =11+ 2 - 2 = sin(IsID¥? . (3.11)
If oT < 1/2 this function has a minimum at s = 0. An expansion in powers of |s|
gives
-2
gives

2
1+ se N =11 +‘s_2' (1 - 20T) + .. I
oL

which for large j will be a very sharp one. Except near s = 0 the integrand of (3.4) will,

therefore, be relatively small and it suffices to estimate the integrand only near s = 0. Here
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STV 2 j 02
1+ 1+ 5 5T exp S -5 (1 - 20 -
P
0. o o o 202

and so

5* 0 - 2am)

J
Zj(t) ~f ds es(l-j/u) e2_ar Z,:(S) . (312)

—ico

+joo

For large j this integrand will be highly oscillatory along the imaginary axis unless t -
j/a is sufficiently small. An oscillation causes cancellation of positive and negative terms and
so this integral will be relatively small, except for contributions from any poles of z,*(s) at
the origin, unless the first factor of the integrand varies with s at a rate comparable with the

second for large j; i.e., for

t - jio = o {17200 b
202

If we apply the convolution theorem to (3.12) we obtain for z,(t) the expression
derived earlier in (2.14). Although this derivation is also somewhat heuristic, it is possible to
estimate error terms for (3.12) and so obtain a more convincing argument.

If 1/2 < aT < 0/2, the asymptotic form of (3.4) is more complicated. The factor (3.11)
no longer has a minimum at |s| = O but a local maximum. There are minima, however, at

points s = s, along the imaginary axis where the derivative of (3.11) vanishes namely where

EE RS o |

points s = s, along the imaginary axis where the derivative of (3.11) vanishes namely where

1 sinls 71
—_ = + cosls 71
ol s 71 ‘

or if aT is close to 1/2 at
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The absolute value of the integrand of (3.4) will have a sharp maximum at s = s, for
large j. We can expand the integrand in the vicinity of s, in much the same manner as in
(3.12) and so obtain the asymptotic form for z(t). The details are too awkward to describe
here. It suffices to note that the dominant factor of the integral will be the value of the
integrand at s = s,, particularly |1 + (s,/o) exp (s,T)|%, which is the j* power of a number
of absolute value greater than 1. This already points to an exponential growth in z(t) with j.
For any large fixed j, the time dependence will be oscillatory with a wave number
approximately |s,| coming from the factor exp (s,t) of the integrand at s,, but with a time
varying amplitude that is nearly Gaussian shaped with a peak near t =j/ot coming from the
.integral itself.

The main conclusion is that, for 1/2 < T, a disturbance propagates with increasing
amplitude from one car to the next so that even a small perturbation of the trajectory z(t)
will eventually (for large j) grow into one of arbitrarily large size. Some actual graphs of such
trajectories are given in [9].

Other types of linear theories have also been proposed in which velocities or

accelerations of a j car are linearly dependent upon positions, velocities, etc., of the (j-1)"

Al ln 22 NN e kst tha main wwanlmace AF thaca madale coarme ta ha the acoumntian Af

accelerations of a j* car are linearly dependent upon positions, velocities, etc., of the (j-1)"
and/or the (j-2)* cars but the main weakness of these models seems to be the assumption of
linearity and not the detailed form of the linear equations. We turn next to some nonlinear

models.
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4. Continuum theories. Even before the linear theories described above had developed very

far, a different type of theory was proposed independently by Lighthill and Whitham (1955)
[15] and by Richard (1956) [16]. This was a nonlinear theory but one in which discrete cars
were replaced by a continuum much as, in fluid dynamics, an atomic gas is treated as a
continuous fluid. Since the theory describes in relatively simple form most of the important
large scale effects associated with a nonlinear discrete theory such as (1.8), it is desirable to
consider this theory before returning to the nonlinear discrete case.

The basic assumption in the continuum theory is that the relations between q and k
which were described in sec IV 1 for a steady flow also apply to time-dependent flow. Thus,
ifk= k'(x,t) and q = q(x,t) are functions of position and time, then these are related by the
equation

q(x1) = Q(k(x,2)) (4.1
in which Q(k) is the function determined experimentally from the steady state relation q =
Q(k) when k is independent of x and t.

In order for k(x,t) and q(x,t) to be experimentally well defined, it is necessary that
they vary so slowly that they are nearly constant over distances containing many cars,
otherwise the meaning of the continuum approximation becomes questionable. Even with this,

however, the assumption (4.1) is not as innocent as it may at first seem. It certainly does not

otherwise the meaning of the continuum approximation becomes questionable. Even with this,
however, the assumption (4.1) is not as innocent as it may at first seem. It certainly does not
hold for very low densities where, as we have seen in chapter II, the flow q(x,t) depends upon
not only the density but also the velocity distribution, which is itself time and space
dependent. The continuum theory, in fact, does not contain the velocity distribution at all. We

shall see in the next section, however, that the theory does describe a well defined limit for a
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theory with no passing such as (1.8), but to what extent it is also a reasonable approximation
for moderately dense traffic in which passings do occur has not yet been determined.
Consider any interval of highway of length Ax at x, which we will think of as being
very small on a scale of variation of k(x,t) but which must still contain many cars. The net
rate at which cars enter Ax at time t is
g(x,t)- q(x + Ax.1)~-Axog(x,t)/0x.
Since cars are "conserved,” and cannot vanish, this must be the rate of change of the

number in Ax, Axd k/dx. Thus

ak(x,t) + a - (4.2
—— _a;q(x,t) 0. (4.2)

This is a type of equation familiar in many branches of physics for which there is a
conservation of mass, momentum, or energy, etc. In a stochastic model of traffic, this
equation' also applies if k and g are interpreted as expectations in the sense of chapter II.
The combination of (4.1) and (4.2) with a specified function Q(k) gives a self-cont-
ained theory because we can eliminate either q or k from (4.1) and (4.2) to obtain a single

equation for k or q. For example

OKx L D L orix L 1) KB D _ g (4.3)
ot ox
in which
o TV T T
in which
0k , ) = 229 (4.4)

The solution of (4.3) for k(x,t) will then also determine q(x,t) through (4.1).
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This is again a first order partial differential equation such as (2.7), but this equation .
is nonlinear since Q’ depends upon k. We can interpret (4.3) as stating that the derivative of
k(x,t) at the point (x,t) vanishes along the direction (Q’,1) in the (x,t) plane. If k(x,t) does not
vary in this direction neither can the direction (Q’,1) since it depends only upon k.

If we know k(x,0) and the function Q(k), we can construct the solution of (4.3) as
follows. In the (x,t) plane we draw through each point (x,0) a straight line of slope Q’(k(x,0))
as in figure IV 7. This is known, since, for each x, we know k(x,0) and for each such value
of k, we can determine Q’ (k(x,0)) the slope of the q vs k curve for that value of k.
Everywhere along this line the derivative of k vanishes and so k(x,t) is constant. Figure IV 7
thus represents the "contour" map of k(x,t).

The formal solution of (4.3) is

k(x + 1Q" (k(x,0)),t) = k(x,0) for all . (4.5)

The lines of Figure IV 7 would be called "characteristics” in the theory of partial differential

X
X4 =
(a0
2
v
X ——
33
>
X = k(x,f):k(xz,o)
<
xp | k(x,f):k(xz,o)
X) %
1

Fig. IV 7
Lines of constant density
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equations. Here we call them waves of constant density. Since the value of k determines

g and, therefore, also the average velocity v = g/k, these waves must represent the same
waves described previously in section 1 of Chapter IV. The wave velocity is Q’ (k). Because
of the nonlinearity of the equations, the wave velocity is now a function of k, however.

In the continuum theory and in most macroscopic studies of traffic, it is common
practice to postulate a relation between q and k as done here. In discrete theories, it has been
customary to consider relations between the average velocity v and the average spacing D.
The macroscopic quantities are related, however, by

q=kvandd = 1/k
so that any relations between g and k or between v and d implies a relation between any
other pair of these four quantities. If spacings differ from one car to the next, these
macroscopic quantities can, of course, be identified by suitable expectations as in (1.2) and
(1.3).

For the q vs k curve shown in Figure IV 8, the wave velocity at any value of k.k, is

Slope = car velocity
Slope= wave velocity

e ———

Fig. IV 8
Interpretation of the wave velocity
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the slope Q’(k,) of the tangent line at k,. This is positive (a disturbance propagates forward) if
k, < k,,, it is zero (the wave of maximum q is stationary) if k = k,, and is negative (a wave
propagates backwards) if k, > k. The average car velocity, v = g/k, is the slope of the line
from the origin to (q,k).

For the v vs. d curve of Figure IV 9, the wave velocity is®

dq _ dvid) _ 440 (4.6)
dk  d(1/d) a(d)

At any spacing d,, this is the velocity intercept of the tangent line to the v vs. d curve at d,.
The flow q = v/d at d, is the slope of the line from the origin to (v,.d,).

In section 2, we postulated a linear relation between v and d, equation (2.1) which, for
small variations in d, we were prepared to interpret as the tangent to a nonlinear v vs. d
curve. This line was assigned a slope o and velocity intercept (-3). We later found that the
wave velocity for this discrete linear theory, Figure IV 4, was also (-B) which agrees with the
value deduced here from the continuum theory.

One of our objectives in considering the continuum theory was to investigate the
effects of the nonlinearity. Since waves of different density travel with different wave
velocities as shown in Figure IV 7, these waves may either fan out as shown or converge and

intersect. If k(x,0) is a decreasing function of x, or equivalently if the velocity is an

velocities as shown in Figure IV 7, these waves may either fan out as shown or converge and
intersect. If k(x,0) is a decreasing function of x, or equivalently if the velocity is an
increasing function of x, so that cars are accelerating, then, from Figures IV 8 or IV 9, we

notice that Q’, assumed to be a decreasing function of k, will be an increasing function of x.

*The notation in which d represents the spacing is quite awkward here, because d is also used 1o denote a differential. The reader will need
to interpret the meaning of d from the way the symbol appears.
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Fig. IV 10
Dispersion of an acceleration wave

Fig. IV 10
Dispersion of an acceleration wave

This corresponds to the situation illustrated in Figure IV 7 in which the higher velocity waves

are initially ahead of the slower velocity waves and so the region of acceleration tends to

expand linearly with time as the waves spread further and further apart. Figure IV 10 shows a

decreasing density k(x,0) at time zero by a solid line. A short time later the high density
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region has moved forward perhaps as indicated by the short arrow but not as much as the low
density region. A sharp initial change in density thus tends to disperse.

Although the linear discrete theory also predicted a dispersion of an acceleration wave,
it was of a quite different type. In the linear theory the dispersion increased as t'?, like a
diffusion of particles, but here the dispersion is due to a velocity difference for propagation
and increases as t; it behaves like the dispersion due to a distribution of velocities as
described for low density traffic.

If k(x,0) is an increasing function of x, i.e., cars are decelerating, then the higher
velocity waves at low density are initially behind the slower velocity wave for the high
density. A gradually increasing k(x,0) tends to become steeper as shown in Figure IV 11 and
eventually the profile of k(x,t) will have a vertical tangent. This occurs as soon as any two
waves of neighboring values of k in Figure IV 7, which are now converging, actually
intersect. At this time the solution (4.5) breaks down and, if it were continued beyond this
time, would assign to some (x,t) point more than one value of k, because more than one wave
passes through this point. The existence of a vertical tangent, however, means that dk/ox
becomes infinite and the differential equation from which (4.5) was derived is no longer

valid.

k(x,t) |
valid.

k(x,t)

Fig. IV 11
Focusing of deceleration waves
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A phenomena such as this is familiar in fluid dynamics. The failure of the differential
equation is corrected by allowing discontinuities in k(x,t). In fluid dynamics such
discontinuities are called shocks and this term has been carried over into traffic theory.
Although the shock is interpreted here as a mathematical discontinuity in the equations for a
continuous fluid-like motion of cars, it should be remembered that the continuum equations
were meant to describe only density changes which are small over distances comparable with
the distance between cars. If one did have a large change in density over a distance
comparable with the distance between cars, then one could only represent this as a
discontinuity in the continuum approximation.

The differential equation (4.3) for this continuum theory was derived from a
conservation principle which itself does not require k to be differentiable. Suppose we take
any section of highway between points a(t) and b(t) in which a(t) < b(t) are differentiable
functions of t and such that k(x,t) is continuous at a(t) and b(t). The rate at which cars enter
the interval (a(t), b(t)) at point a(t) is the relative velocity between the cars and the point a(t)

times the density, i.e.,

[v(a(r) B - %] Ka( , 1) .

Similarly the rate at which they enter at b(t) is

‘_r Jl_/.&b-l

Similarly the rate at which they enter at b(t) is

- [v(b(t) , 1) - @] kb , 1) .

The conservation principle implies that this must be the rate of change of the number in (a(t),

b(t); ie.,
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52

d da(t)
—_ k(x ., Hdx = [v(a(t) , 0 - _} k(a(?) , t)
dt GJ; dt 47)
- [v(b(t) P - @] Kb | D) .
dt

If dk(x,t)/0x and oJk(x,t)/dt exist, let a(t)— b(t) uniformly in t; for example let b(t) -
a(t) = € independent of t and let e— 0. Then the left-hand side of (4.7) becomes

approximately

d _ o , da(®) ok(x , 1)
€ = kla(t) , ) =€ |}a_t k(x , 1) — e j|x - Al |

and the right-hand side becomes approximately

(s _ da(t) ok(x , )
= {5 @, 0 kx| o) }x = a(t) .

dr ox

Equating these, we recover the partial differential equation (4.3), as we should.
If, however, there is a path of discontinuity between a(t) and b(t) and we let a(t) and
b(t) converge on the two sides of this discontinuity we obtain for a(t) — b(t) that the left-

hand side of (4.7) must go to zero, thus

B 7 r 7
va(f) , 0 - da(?) k(a(®) , 1) =|v®@) , 1 - da(?) k(o) , D 4.8)
] i | i dr |
B 7 r 7
va® , 0 - 29 kaw ) o = oo o - LD ke | 9 (4.8)
I dr | i dr |

in which k(a(t),t) and k(b(t),t) are the values of k on either side of the curve a(t) = b(t). This
equation simply implies that the flow into the discontinuity must be the same as the flow out.

This equation is called the shock equation and da(t)/dt is called the shock velocity.
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Since k, q, v, and d are all related to each other through the q - k or v - d relations,

we can also write (4.8) in the form

& -k @ -d)

da(t) _ % ~4a _, _ V) (4.9)

in which q,, q,, etc. represent g(a(t),t), q(b(t),t), etc., the values of these quantities on the two
sides of the shock discontinuity.

In terms of the q vs k curve, (4.9) implies that the shock velocity is the slope of the
line joining (g, k,) with (q,k,) as shown in Figure IV 12. In the limit of very weak shocks,
k, = k,, this shock line converges to the tangent line of the q - k curve and the shock
velocity becomes the wave velocity. Similarly (4.9) shows that the shock velocity is the
velocity intercept of the line joining (v,,d,) with (v;,da), as shown in Figure IV 13 which, for

weak shocks, converges to the tangent line of the v - d curve that determines the wave

velocity.
g
qb - =
I
dq Slope = Shock I
. i Velocity |
I
Qq — Slope = Shock I
l Velocity |
| |
Ka Kp k
Fig. IV 12

Evaluation of the shock velocity from the g-k curve
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Fig. IV 13
Evaluation of shock velocity from the v-d curve

To evaluate k(x,t), (4.8) or (4.9) is used mainly to determine the path of the shock.
Figure IV 14 illustrates how in a typical problem one can construct the solution k(x,t)
graphically. If one is given k(x,0) then one can draw the waves of constant k, or use the
solution (4.5), to determine k(x,t) at least until such time t, when two waves first intersect at
a point (x,,t,) of Figure IV 14. At this moment a shock starts to form.

Except for very exceptional functions k(x,0) for which there is a perfect focusing of
the waves such that waves with a non-zero range of k values converge on the single point O,
the shock starts as an "infinitesimal shock"; the intersecting waves have nearly the same

velocity. The shock also will start with a velocity equal to those of the two intersecting

the shock starts as an "infinitesimal shock"; the intersecting waves have nearly the same
velocity. The shock also will start with a velocity equal to those of the two intersecting
waves. Furthermore it is clear, from figures IV 12 or IV 13, that the shock velocity for a
jump in density from k, to k, actually has a value between the values for the wave velocities
of densities k, and k,, i.e., the slope of the shock line in Figure IV 12 must be less than the

slope of the tangent at one of the densities k, or k, and larger than the slope of the tangent at
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the other. For weak shocks, the shock velocity is approximately the average of wave
velocities on either side.

Another method to determine x, and ¢, is based upon the following arguments. From
Figure IV 14 we see that two waves starting at points x and x + a will intersect at time t, and

position x, provided

x, = x+c(x)t, = x+a+c(x+a)t, (4.10)
where
c(x) = Q'(k(x,0)) 4.11)
X
Shock
Path
Xo—— —

Fig. IV 14
Construction of the shock path
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is the initial wave velocity at x. Since t, is the first time any two waves intersect, it follows

that

o max c(x)—c(x+a).

4 0 xa a

(4.12)

If ¢(x) has a continuous derivative, it follows also from the mean value theorem that -

[c(x)-c(x+2a)]/a is equal to the derivative of ¢ at some point between x and x+a. Therefore

ti = max (=) dec(x)/dx . (4.13)

n

The values of x for which the maximum is realized also give the values of x in (4.10) that
determine the position x, where the shock originates.

We now know where the shock starts and its initial velocity, thus its position a short
time later, at time t, + At. If no new shocks form between time t; and t, + At, the values of k
on either side of the shock at time t, + At are still determined by the waves starting at t = 0.
The density on one side of the shock is determined by the wave which intersects the shock at
time t, + At and approaches the shock from the same side. Another wave will approach from
the other side and determine the density on that side. We now know the densities on either
side of the shock at time t, + At and we can reevaluate the shock velocity at time t, + At.

We can then estimate the shock position at a still later time t, + 2At perhaps, find the

side of the shock at time t, + At and we can reevaluate the shock velocity at time t, + At.
We can then estimate the shock position at a still later time t, + 2At perhaps, find the
densities at this time etc. In essence we are performing a graphical integration of (4.9) for the
shock path a(t).

If some other shocks should form elsewhere we proceed similarly to find their paths.

If two shocks should intersect, we simply combine them into a single shock as shown in
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Figure IV 14. The shock velocity for the single shock is determined by the densities in
regions adjacent to the shock not including the region annihilated in the collision.

As a practical example of how the continuum theory can be applied, we consider what
happens, according to this theory, when a steady flow of traffic 1s suddenly stopped, at a road
intersection perhaps, and then released again, as would occur at a traffic signal. The
trajectories of cars which the theory should predict are shown in Figure IV 15. The stopping
point is at x = O and the first car to be stopped is designated by x,(t). The continuum theory
does not describe in detail the trajectory of car 1. If we are given the density k;, the flow g,
or the velocity v, of the initial approaching traffic stream, all other quantities are also
determined by the q vs. k relations. Thus, in particular, the approach velocity of car 1 is
specified. The theory also predicts the final velocity v; of the lead car. If the car is stopped
long enough, this car will have a nearly empty road ahead, i.e., k; = 0 and the corresponding
final velocity for k; = O is also specified by the q vs. k relations. The continuum theory does
not describe the details of the deceleration and acceleration of car 1. However, on a scale of
time and distance in which the continuum theory is meant to apply, we expect the
deceleration and acceleration of car 1 to take a negligible length of time.

The deceleration of the first car, being nearly instantaneous, creates a shock wave

immediately. It is a shock from the initial state q;, k; on the q vs. k curve to the state g = 0,

The deceleration of the tirst car, bemg nearly Insiantaneous, creates a SIOCK wave
immediately. It is a shock from the initial state q;, k; on the g vs. k curve to the state g = 0,
k = 1/D(0) as shown in Figure IV 16. The slope of the shock line of Figure IV 16 between
states determines the shock velocity. In Figure IV 15, the shock starts at x = 0, t = 0 and
travels backwards with constant speed as shown by the broken line. This shock line

represents, in effect, the rear of the queue caused by the traffic signal and the continuum
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approximation implies that this deceleration occurs practically instantaneously (on a scale of
distance in which the distance between cars is also essentially zero). The shock relations are
only relations describing the conservation of cars and, in Figure IV 15, if we specify the
spacing between the approaching cars and the spacing between these cars when they are
stopped, the shock line occurs at the only place it can which will guarantee the continuity of
these trajectories; namely, at the intersections of the trajectories for the approaching cars and
their trajectories when stopped.
When the lead car accelerates again, it sends out a fan of acceleration waves for all

car velocities between 0 and v;. The slowest wave travels backwards with the wave velocity

associated with car velocity 0. This wave velocity is given by the slope of q vs. k curve at

Distance, x

O

Fig. IV 15
Cars stopped at a traffic signal

k = 1/D(0) as shown in Figure IV 16. When this wave starting at x = 0, t = T as shown by

the broken line of Figure IV 15 intersects the shock line at point A, this signals the car at the
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Slope =
Shock velocity \ Slope =
Wave velocity

Fig. IV 16
Evaluation of flows from a traffic signal
tail of the queue to move. The shock does not disappear. The waves that intersect the shock
only assign new values for the density or car velocity on the front side of the shock and these
in turn assign to the shock a new velocity as given by (4.7) or (4.8). As the car velocity at
the front of the shock increases, the shock gains forward speed. It eventually moves with a
positive velocity and crosses the intersection or coordinate x = 0.

The time at which the shock crosses the intersection can be found very easily. We
know that the wave with wave velocity zero is the wave corresponding to q,, since the tangent
to the q vs. k curve is horizontal at q = q,,. The number of cars that cross the intersection
before the shock arrives is therefore q,, multiplied by the time 1" for the shock to arrive.

This must. however. also be equal to the total number of cars that have arrived by this time,

before the shock arrives is therefore q,, multiplied by the time 1" for the shock to arrive.
This must, however, also be equal to the total number of cars that have arrived by this time,
1e.,

gt +7) = g,v 4.14)

in which 7 is the length of time the traffic is stopped; T, q;, and q,, are known.
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The shock, as it moves forward, becomes weaker and weaker. The car velocity at the
rear of the shock remains at v; but the car velocity at the front keeps increasing. Eventually,

the shock will overtake all waves for car velocities less than v; and the shock will degenerate

into a wave or a shock of zero jump. The waves of car velocity larger than v;, however, move

forward faster than the shock and the shock never reaches them.

There are many equivalent ways of constructing the trajectories and waves of Figure
IV 15, but, in any case, they are uniquely determined by the q vs. k curve. In this simple
example where all waves originate from the same point one can give a fairly simple explicit

form of the solution.

Finally, we have already noted that the continuum theory and the linear discrete theory

agree to "first order"; i.e., they give essentially the same velocity for propagation of a wave,
but the "second order" effects, such as the spreading of a disturbance as it propagates, are
quite different in the two theories. In the linear theory disturbances typically spread as t"2
whereas in the nonlinear theory an acceleration wave spreads proportional to t and a
deceleration wave compresses to form a shock. These differences will, however, be resolved
in the next section where we consider nonlinear discrete theories.

As regards stability, the continuum theory is always stable for small disturbances, at

least in the sense that if some car should accelerate slightly and then decelerate back to its
As regards stability, the continuum theory is always stable for small disturbances, at

least in the sense that if some car should accelerate slightly and then decelerate back to its
original velocity (or vice versa), the waves generated by this disturbance will annihilate each
other. The argument is that the deceleration waves will form a shock and the accelerations a
fan of expanding waves analogous to those shown in Figure IV 16 for a large disturbance.

The shock velocity, however, will always have a value within the range of velocities covered
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by the acceleration waves. Regardless of whether the acceleration occurs before or after the
deceleration, some of the acceleration waves will be either faster or slower than the shock.

They will eventually overtake the shock and start systematically to annihilate it.

5. Nonlinear discrete theories. Although the linear discrete theory and the nonlinear

continuum theory both describe the same first order effects of wave propagation (also in a
way which is in fairly good agreement with experimental observations) they give quite
different conclusions about the second order effects (neither of which is obviously coirect).
The first order effects are almost a direct consequence of the conservation of cars which is
necessary in any theory and is implied by each of the two theories, but the second order
effects are the consequences of the more detailed structure of the theory which has not yet
been firmly established. Before investigating various other possible theories, however, it is
worthwhile at least to show that the two theories described so far are compatible with each
other and represent only limiting cases of a more general nonlinear discrete theory such as
described by (1.8).

In the linear theory we neglect the effects of variation in wave velocities in
comparison with the effects of the discrete nature of the traffic, an approximation which can,

at best, be valid only for sufficiently short times and for disturbances of small amplitude. It is

comparison with the effects of the discrete nature of the traffic, an approximaton wnicn camn,
at best, be valid only for sufficiently short times and for disturbances of small amplitude. It is
not enough, however, that disturbances just be of small amplitude because two waves with
even the slightest difference in velocity will eventually either diverge or converge at a rate
(proportional to t) which will eventvally swamp the diffusion type spreading of the

disturbance predicted by the linear theory (which grows only as t*). The continuum theory, on
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the other hand, neglects the discrete nature of traffic, an approximation which is at best valid
only if the variations in k,q, etc., are small over distances comparable with the spacing
between cars, an approximation which also fails when a shock forms.

To investigate the solution of (1.8) or the obvious generalization of it which includes

a reaction time T; namely

dx(t +
D Ve - 500 | (5.1

we can either try to extend the approximation scheme described in section 2 to sufficiently
high order as to include both the nonlinear effects and the dispersion effects or we can look
for other special (nonlinear) forms of the function V for which exact solutions can be found.
In the first procedure we simply mimic that used in Section IV.2. Equation (2.7) is, in
essence, equivalent to the continuum approximation provided we interpret o. as the velocity
dependent slope of the velocity-spacing curve. The solution (2.11) is, in turn, equivalent to
the solution (4.5) of the continuum equatijon in the absence of shocks. The shocks, however,
must also appear in the solution of the nonlinear form of (2.7). In the next approximation, one
has the analogue of (2.12), except that the function z(t") is the position of the j™ car viewed
from a moving coordinate system and the coordinate system t’ =t - j/oc moves with a time lag

1/ per car which itself depends upon the velocity of the j™ car. The "solution” (2.15) is now

from a moving coordinate system and the coordinate system t” =t - j/o. moves with a time lag
1/ per car which itself depends upon the velocity of the j™ car. The "solution” (2.15) is now
only an integral equation for x;(t) because the o in (2.15) itself depends upon the solution.
One can see, however, from this equation the qualitative consequences of the competition
between the nonlinear and the diffusion effects. The phenomena that is taking place here also

has analogues in fluid dynamics where in a first approximation to the fluid equations, without
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viscosity and heat conduction, one has a first order partial differential equation which gives
shocks, but in the next approximation a second derivative term appears which prevents the
discontinuity from developing and also describes the "shock structure”.

For an acceleration wave of small amplitude and short duration the wave velocity is
nearly the same for all car velocities in the disturbance. The first effect is that the diffusion of
the linear theory spreads the disturbance over a longer time and smoothes out any
irregularities. By the time the disturbance has spread over a distance large compared with the
spacing between cars, the continuum approximation can be used to describe the long time
behavior. This predicts that eventually the disturbance will spread proportional to t times the
difference in the wave velocities over the disturbance. Since the two dispersive effects
compliment each other, the total spread of the disturbance at any time is at least as large as
either of them alone.

For a deceleration wave the two effects compete with each other; the nonlinearity tries
to produce a shock and the diffusion tries to smooth it out. If one starts initially with a very
gradual deceleration, the continuum theory applies during the early stages until two waves try
to intersect. Before this can happen, however, the diffusion term in the differential equation
becomes large and prevents the discontinuity from developing. The disturbance eventually

achieves an equilibrium shape in which the two effects balance. The "shock" develops into a

UGLULLCS 1dlEC alld PICVCLLd LT WSUULILLLULLY LIULL UCVCIVPILE. L UC WSLUWUELCS CVeULUdILY
achieves an equilibrium shape in which the two effects balance. The "shock" develops into a
region of rapid but not discontinuous transition which travels with the shock velocity of the
continuum theory but acquires a width and a shape that eventually propagates with no change.
Furthermore, the equilibrium shape of the shock depends only upon the car velocities on

either side of the shock and is independent of the initial rate of deceleration. If, on the other
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hand, the disturbance was initially very rapid, so rapid that the diffusion effect is too large to
balance the nonlinearity, the diffusion will cause the disturbance to spread until the two
effects are again in balance as above.

To prove rigorously that these conclusions are correct might be difficult, although it is
obvious that, during the initial stages of the wave propagation the solution is progressing in
the direction described above. The only point that may be questionable is whether or not a
deceleration wave does eventually acquire an equilibrium shock structure. For this to be true
one must show that there exists an equilibrium shock structure to which the deceleration wave
can converge.

For an equilibrium shock structure to exist there must be solutions of (5.1) of the form

x(H =x_ (¢t -T7) + D" (5.2)
for some appropriate values of T* and D* which are independent of j and t; i.e., the trajectory
of the j" car must be exactly the same as that of the (j-1)" car except that the motion of the
(-1)™ car is mimicked by the j" car at a time T* later and at a position D* ahead (if D* > 0)

as shown in Figure IV 17. From Figure IV 17, the shock velocity must be interpreted to be

jt1

Velocity Up
/

Velocity Uy

Velocity U

Fig. IV 17
An equilibrium shock
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DT,
Substitution of (5.2) into (5.1) gives the single differential difference equation

a’xj(t +D

— = Vix(t+ T - D" - x(0)] . (5.3)

We further specify the boundary conditions that, for t —-co , the cars approach the shock at a
given constant speed U, and for t — +eo they decelerate to a speed U, with U, < U,. Thus,
fort — -eo
x(t+T") - x(1) = T'U,
and from (5.3) we have the condition
U, = V[T'U,-D*]. (5.4)
Similarly for t — +eo |
x(t+T") - x(t) > T'U,.
and so
U, = V[T'U, - D*]. (5.5)
If U, and U, are specified, (5.4) and (5.5) represent two simultaneous equations for
the quantities T and D" of (5.2).
The solution of these two equations can be found graphically from the velocity-

spacing curve. Thus, in Figure [V 18, if we observe the two velocities U, and U, and the
The solution of these two equations can be found graphically from the velocity-

spacing curve. Thus, in Figure [V 18, if we observe the two velocities U, and U, and the
corresponding spacings Dy and D,, then (5.4) and (5.5) imply that

TU,-D*=D;and T'U, - D" = D, (5.6)
These two linear equations for T* and D* show that

T" = (D; - DU, - U,)

199



Fig. IV 18
Evaluation of the shock parameters

is the reciprocal slope of the line joining the points (U,, D)), and (U,,D,) onthe V vs. d
curve. The velocity intercept of this line is D*/T*. Thus the shock velocity of this discrete
non-linear theory agrees with that derived earlier, as illustrated in Figure IV 13, from the
continnum approximation, as indeed it should, since the shock velocity is determined from a
conservation principle.

The existence and nature of the solutions of (5.3) have not as yet been established in
general, but it is possible to find approximate solutions for "weak" shocks [14] in which x(t)
is expected to be slowly varying. If V(.) denotes the inverse of the function V, then (5.3)
implies

VI(v(1) = x{t+T"-T) - x(+-T) - D*.

lIIlpllCS
VI(v(1) = x{t+T"-T) - x(+-T) - D*.

We expand the right hand side in a Taylor series in the time displacements to obtain
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L T(T -21) dv (1)

Vivm) = T -D

2 dt
(5.7
, . 2
o e (T - 3T +37%) dV0)
3 dr?
and in the lowest approximation neglect the second derivative term so that
av(t
~ l T(T* -27) £ ~T'v(@®) -D* - Viy®) . (5.8)
2 dt ! /

The right-hand side of (5.8) has a simple geometrical interpretation as the horizontal distance
in Figure IV 18 between the velocity-spacing curve and the displayed shock line, at the
velocity v;(t). If the velocity-spacing curve is concave this is positive for U, < vi(t) < U, and
vanishes for v{(t) = U, or U,. Equation (5.8), therefore, potentially has a solution if U, < U,
and T* > 2T, since it will give a negative value for dv;(t)/dt; i.e., a deceleration. Since T" is
the reciprocal slope of the shock line which, for weak shocks, is also essentially the reciprocal
slope of the tangent to the velocity-spacing curve, it corresponds to o’ in the linear theory.
The condition T* > 2T, in turn, is equivalent to the stability condition oT < 1/2 of the linear
theory.

Integration of (5.8) gives

2t _ J‘v,m dv (5.9)
THT* - 2T) T*v -D* -V1i@) '

2t _ J‘v,m dv (5.9)
THT* - 2T) T*v -D* -V1i@) '

The origin of time has not been specified and this is reflected in (5.9) by the fact that it
contains an arbitrary integration constant or an unspecified lower limit of integration. Aside
from this, however, (5.9) determines t as a function of vi(t) or conversely vi(t) as a function of

t and so gives the history of the car’s velocity as it travels through the shock.
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To see in more detail what this relation implies, we might further assume that, for .
weak shocks, we can approximate the function V'(v) in the range U, < v < U, by a quadratic
function. We write the right-hand side of (5.8) in the form
T*v-D*-V'(v) = D" (v-U )(U,v)/2, (5.10)
since the left-hand side certainly vanishes at v = U, or v = U,. The constant D" is the second
derivative of V''(v) evaluated at some value of v between U, and U,.
The integral in (5.9) can now be evaluated explicitly and gives (except for an

unspecified origin of t)

29(t) = U+ Up-(U,-UsJianh(y) (5.11)
with
.- D”(Ul - Uz) ' (512)
T(T* - 2T)

This solution for v,(t) shows that for t — -e0, v(t) — U, and for t — +oo, vi(t) — U,
as it should. The important new feature is that it gives the "shock thickness." The time
required for a car to traverse the shock is measured by the time constant y .

These formulas were derived under the assumption that the shocks were weak enough
that we could (1) approximate the curve V''(v) by a parabola over the range of velocities in

question and (2) expand the velocities as in (5.7) for times of the order T*. The latter

that we could (1) approximate the curve V*(v) by a parabola over the range of velocities in
question and (2) expand the velocities as in (5.7) for times of the order T*. The latter

condition is valid provided y ' >> T*, i.e., the time to traverse the shock is large compared
with the time lag for propagation of a wave from one car to the next. This also implies that

the spatial width of the shock is so large as to cover a large number of cars simultaneously.
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From (5.12) we see that the time constant is inversely proportional to the curvature D"
so that ¥y ' —eo in the limit of the linear theory. In the linear theory, any disturbance would
disperse, consequently there can be no finite shock widths. The time constant is also inversely
proportional to U,-U,; thus weak shocks have a large thickness. It is also proportional to T* -
2T which suggests that as one approaches the limit of stability 2T —T*, the shock widths
become small and, therefore, give large decelerations. The approximationé used here, of
course, break down in the limit of small shock thickness but this at least suggests a trend and
a potential danger that this theory might give rise to decelerations within the shock front

which exceed the braking rate of cars if 2T is too close to T".

6. Some exact solutions. The approximation methods discussed in the last section can be used

to describe the formation and propagation of weak shocks or the propagation of acceleration
waves, for a fairly general type of velocity-spacing relation. It is not, however, possible to
obtain simple exact solutions of (5.1) except for very special functions V(d). So far the only
exact time-dependent solutions that have been found are those which result when T = 0 and
V;(d) has the special form

V{(d) = V; - V, exp [-(ctd-B)/V] 6.1)

in which V;, o, and B; are constants that may perhaps depend upon the car number j .
V_,(d) =V,-V,exp {-(aa-p/v;f (0.1}

in which V;, o, and B; are constants that may perhaps depend upon the car number j .
Theories of this type were proposed independently, but presented in somewhat different ways,

by Newell [14] and Franklin [17-19].

Relation (6.1} is shown in Figure IV 19. It gives zero velocity at spacing d = Bj/aj.
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Velocity-v

' ,Bj/aj Spacing -d

Fig. 1V 19
An exponential velocity-spacing relation

For small velocities we can expand the exponential and obtain
Vi{d) ~ ad - B (6.2)

which is the same form as the linear equation (2.1). The notation has been chosen so that the
; and [3; in this non-linear model correspond to the ¢ and B of (2.1), if we consider linear
wave propagation at small velocities. If we approximate (6.1) by a tangent line at some
velocity other than zero, we will, of course, have different slopes and intercepts. For d — oo,
V,(d) = V,, so V; can be interpreted as the free speed of the | car.

Fortunately the shape of (6.1) is approximately that observed for the steady state

relation between velocity and spacing. In fact, by suitable choice of parameters, one can fit

JEPUUIFES I o S Y, [PV 55U NG ) UG UG 4 [P I (SR, | U P U U U U U (. [PV S

relation between velocity and spacing. In fact, by suitable choice of parameters, one can fit
such a formula to any presently available data with as much accuracy as the data justify.

It is not possible to obtain simple solutions of (5.1) and (6.1) with a non-zero time lag
T. The equations are solvable by the iterative method used in (2.4), but the form of the

solution is not very lluminating. We will, however, solve these equations with T = 0, if only
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to establish that the approximations of the last section are valid and that this theory gives rise

to strong shocks as well as the weak shocks predicted in the last section.

We can first eliminate the parameters B from (6.1) by letting

40 = x(0 + £ BJa,

(6.3)

This is the same trick as used in (2.5) for the linear theory. In effect, we are cutting out of

the highway the minimum spacing /oy ahead of each j™ car. Equation (5.1) now takes the

form
_ Az
vj(t) == V. -V, exp {- cxj[zj_l(t) - z(OVV}
If we now make a non-linear substitution
Z).(t) = exp [—OLJ. zj(t)/VJ.]
so that

dzj(t) ~ —VJ. d log Zj(t)
dt o. dt

J

Vi) =

we obtain from (6.4) the linear differential equation for Z(t),

1 dZ(®
dt

— + Z(1) = [Z_ @)D
o. J J-1
J

= Iz = [Z O

WG L= 1) = o Ve, V)

That certain non-linear equations can be transformed into linear equations by non-

(6.4)

(6.5)

(6.6)

(6.7)

(6.7)

(6.8)

linear substitutions has been exploited in various ways for at least two centuries. Franklin [19]

arrives at this in a slightly different way. He started from the postulate that the acceleration of

a driver is given (in terms of the notation here) by
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dv (1) v(®)
yr = {1 = }[vj_l(t) - vj(t)] .

J

This is, in essence, the derivative of (6.4). As an equation for v,(t) with v, (t) given, this is a
form of the Riccati equation (the right-hand side of the equation is a quadratic in v;(t)). The
transformation (6.5) is the well-known change of dependent variables which converts the
Riccati equation into a linear equation [20].

We can easily integrate equation (6.7) and obtain Z(t) in terms of Z; ,(t). But for
pGij-1) # 1, Z(t) is a non-linear functional of Z,(t) which is difficult to iterate with respect
to j so as to find Z;(t) in terms of Z(t). Even if u(j,j-1) = 1 but o; depends upon j, the
iteration of the solution is a bit awkward. This is still worth pursuing, however, because there
are some interesting effects associated with j-dependent free speeds V,. If the free speed of a
car is less than the actual speed of the car ahead, then this car will fall further and further
behind. We can still freat a rather artificial version of this problem if we allow both ¢ and V;

to depend upon j in such a way that p(j,j-1) = 1 or equivalently

=_ =g (6.9

independent of j. This is reasonable at ]east to the extent that the more aggressive drivers

might be expected to have both a large ¢ (a steeper V vs. d curve) and a larger V. The

independent of j. This is reasonable at ]east to the extent that the more aggressive drivers
might be expected to have both a large 0 (a steeper V vs. d curve) and a larger V. The
minimum spacing, which depends upon P, is still arbitrary but has been driven out <\)f the
equations.

Hereafter we will consider only the special cases for which (6.9) is true. Equations

(6.5) and (6.7) now simplify to
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Z(t) = exp [- £ 3(1)], (6.52)

vy = - 210820 (6.62)
! € dt
and
1 dZ()
?x: ~ +Z (1) = Zj_l @ . (6.73)

Equation (6.7a) is similar to the equations that appear in the linear theories such as
(2.6) except that the z(t) now has a different interpretation. In fact for o, = o, independent of
j, the equations are exactly the same as (2.6) with T = 0.

To study an initial value problem for given x,(0), we can again use Laplace transiorm
methods. If cars are moving forward, then x,(t) and z(t) are increasing with t, and Zj(t) is
decreasing. The Laplace transform of Z(t), therefore, exists for all Re s > 0. If we take the
Laplace transform (6.7a) we have

o Z,:1(S) + Z}(O) (6.10)

Z'(s) =
s + O’.j

a linear finite difference equation for the Z,(s) with solution

) - — g @ 550 %% 240
s+a | § + 0O, (s +a.)(s + )
. Z. (0 e AV AR (t
Z'(s) = 1 0 + 0 Z.,0) ooy, Z,(0)
s+o |’ st (o) (s +a,)
(6.11)
L. G ey Z,(0) L 05 Oy e O Z,(s)

(s + OLJ._l) o (s v o) (s + ocj_l) o (8 +0)

207



If car O is chosen to be at x = 0 at time O and we assume that a steady state had
existed prior to time O, i.e., all cars were traveling at some velocity u, independent of j, then,

according to (6.4), the initial values of Z(t) must satisfy the relations

50 ,Z(0) =1
70 Vo
or
Z(0) = IL., (1 - WV’ (6.12)

provided that u is less than all the free speeds V,.

We can obtain a more convenient form of the solution (6.11) with these initial
conditions if we first observe that the steady state solution of (6.7a) is

Z, (1) = Z(0)e™ (6.13)
having transform
Z,,%(s) = Z(O)(s + €u) .

Since (6.72) is a linear difference equation, sums or differences of solutions are also
solutions. In particular Z;(t) - Z; (t) is a solution satisfying the simpler initial conditions that it
vanish at t = 0 for all j. We have now the same type of transform equation as (6.10) but with

no inhomogeneous term

no inhomogeneous term

o[Z,,(5) - Z;,,(9)]
s+ 0, '

[Z7(s) - Z(s)] = (6.102)

Thus
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1 Z)(s) - (s +ew)’?
+ .
(s + ew)h., (1 - wV) IT,.,(1 + s/o)

(6.11a)

AGKE

The inversion of this transform is straightforward; it involves only rational functions
of s or rational functions times Z *(s), but to see some of the consequences of the theory it is
convenient to study some special cases first.

If all cars are identical o = €, V; = V for all j, then

Zj'(s) _ 1 1 . 1 g Z,(s) - (6.14)
(s +eu) |(1 - wVy (1 + s/ay (1 + s/oy
or, from the convolution theorem, we have
(1-uhvyor . ! .
~£ut T -1 -o1 -1 6.15
zZm =6 - f o LT +fdtﬂzo(t—1). (6.15)
’ (1 - wVvy . G - D! G - 1!

The first term above can be written as an incomplete gamma function. We define

TG, 9 = f dte™ vy (G, = f dte ™ v (6.16)

TG)=G-D!=TG, )+, ) =T(, 0) =), =)
To specialize still further, suppose that at t = 0, the lead car suddenly acquires a

velocity v # u and travels at velocity v for all t > 0, ie.,

7(t) = oyn (cevt) far S ()

velocity v # u and travels at velocity v for all t > 0, ie.,
Z(t) = exp (-evt) fort > 0.

The second term of (6.15) is now also an incomplete gamma function and

Zy = €TI0, (- wVian) | e =G, (- viV)or) (6.17)
! ) A - wvy Gy A1 -wv)!
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From this we can now evaluate z{(t), x(t), or vi(t) from (6.52), (6.3), and (6.6a). In particular,

the velocity is given by

v(®) = ux + (1 - %) (6.18a)
with
Kl =1+ M0, B (6.18D)
v7e® I, v)
u=(1-vVjar ,v=(1-wVor. (6.18¢c)

This formula describes the velocity of the j* car after an impulse acceleration or
deceleration of the lead car at time O. If the approximation methods of the previous sections
are correct, it must, in appropriate limiting cases, describe (a) the diffusion effects and wave
propagation of the linear theory if u - v,j, and t are sufficiently small, (b) the formation of
expanding waves if v > u and t is large enough, and (c) the formation of shocks if v < u and
t sufficiently large. These three types of behavior do emerge from (6.18) and will be
considered in order.

(a). If in (6.18) we let (v - u) — O with j and t fixed, and we evaluate v,(t) only to
terms linear in v - u, then in (6.18a), which is equivalent to

vi(t) = u + (v-u)(1-x), (6.19)

it suffices to evaluate ¥ only for v = u. But for v = u we have
v(t) = u + (v-u)(1-x), (6.19)

it suffices to evaluate ¥ only for v = u. But for v = u we have

1 -x=1- 1 WL (6.20)
L +yG, wlG, 180))

This gives the exact solution of the linearized equations of motion that would result if we

approximated V(d) by its tangent line at the velocity v. Solutions of this type were obtained

originally by Reuschel [4] and Pipes [5].
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. The acceleration of the j™ car is

vty o de _ov-wA-vWV) L, o
ar VoW ¥0) e

The time dependence of the acceleration is proportional to p'e™* and this has a maximum at

p = (1-v/V)at = j-1. Curves of acceleration are shown in Figure IV 20. Thus the point of

Acceleration-dvj (t)/d?

: |
O | 2 3 4 5
Time-(I-wV)at

: Fig. IV 20 .
Acceleration of jth car following an impulse acceleration of car O

maximum acceleration propagates with a time lag of (1-v/V)'o! per car, consequently with a

constant velocity, even for small j values. The shape of the acceleration wave changes rapidly

for the first few j values but for large j approaches a Gaussian shape, specifically if for large j

v - o AT/ - -

for the first few j values but for large j approaches a Gaussian shape, specifically if for large j

- (-1) = 0G™)

then
S DR AL R [-(u -j 1)2] 6.21)
dt 2n(G - 1)]* 2 -1
. This follows from the well-known normal approximations to the Poisson distribution.
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Except for a slight difference in notation (the o(1-v/V) in the present theory
corresponds to the o of the linear theory with T = 0), this result simply reconfirms those of
the heuristic analysis for the linear theory following (2.12); the pulse travels with a constant
velocity and spreads proportional to j*2.

To obtain these results, we first let v - u — 0 and then let j and/or t become large.
For any non-zero (v - u), the approximation of (6.18b,c) by (6.20) is valid, however, for only
a finite range of t and j. By evaluating K for v = u, we have made the approximations

(W™ ~ 1 and (i, v) ~ T(j, u) .

For (vu)/V << 1 and j >> 1, however, we have

[ﬁ]-j e“v = exp { log d-wh) _ (v —u) ivt}

g (1 - vV
(6.22)
- - )2 _
~exp |j v -u (v - u |- v - u ot
V(1 - wV)y 2V - wVy? 14
The linear theory is, therefore, valid only if v-u is so small that
v -uw J o atle<et (6.232)
|4 1 - ulv
and
14 | L = wv |
and
- 2
PR P (6.23b)
(V -y

The approximations for the I'-functions are valid under similar conditions.
For (v-u)/V<<l1, and j >> 1, the disturbance for the j® car is, according to (6.22),

confined mainly to the time range where
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‘_j__—w - 00" (6.24)
1 - u/V 1 - wV

In this range of time, however, (6.23b) implies (6.23a), so the important restriction on j is
(6.23b).

The restriction (6.23b), of course, must arise physically from the fact that a small
disturbance at car velocity u will reach the j® car at a time j[c(1-w/V)]", approximately,
whereas a disturbance at car velocity v reaches the j™ car at a time j[c(1-v/V)]"'. The sudden
change in velocity of the lead car from velocity u to velocity v can, therefore, be considered
as a single small disturbance propagating at a fixed velocity only so long as the duration of
the disturbance as represented by (6.24) is large compared with the time interval between the

arrivals of the waves of velocities u and v at the j™ car, ie.,

J* >y JV B

ol - wV) ol - wWVyV

which is indeed equivalent to (6.23b).
(b). To investigate the formation of expanding waves and/or shocks we wish to evaluate x,
(6.18b), for large j, but with more or less arbitrary values for u and v. For this we need the

following asymptotic formulas for the I'-functions [21].

YO, W~ I (1){% + T Erf [(n - J + DI - 2)7]

(6.25a)
Y.~ F(i){% + 1 Erf [(-j + DI2j - 2)"
(6.25a)
if (w-j+1)=0(-1D4
Y, W - — ¥ {1- G -1 }
G-1-w G-1-w (6.25b)

if w-j+1<0[( - 17
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YG,w~TG i u-j+1>0[(G - 1)% (6.25¢)

TG, v) ~T() {% - % Erf (- j + DI - 2)"2]}

(6.26a)

if (-j+1)=0[G -1
TG,v) ~T(¢ ifv-j+1) <0l - D% (6.26b)
r“’””<uifin{l'@?}iﬂy*“} (6260

if -j+1)>0[- D",

If conditions (6.23a,b) hold, then we revert to the situation described above. If j¥2(v-
u)/(V-u) = 0(1), then the factor (6.22) is no longer' 1. Also in the range of t where (6.25a)
applies, (6.26a) also applies, but the arguments of both Erf functions are of order 1 and
significantly different from each other. This is a range of j values where the non-linear effects
start to compete with the dispersion effects. Nothing cancels in the formulas for k.

For

JElvy —ul

(V- u

the behavior of x depends critically on the sign of (v - u), as is expected. For an acceleration,

>>1 (6.27)

v~>nand i« v The i car will ar‘r-p]pr?vn 'FrruT valAarity 11 tn v cn v mmiret ahuiancle Aacraacae

the behavior of x depends critically on the sign of (v - u), as is expected. For an acceleration,
v > uand pu < v. The j* car will accelerate from velocity u to v, so k must obviously decrease
with t from 1 at t =0 to 0 at t —»eo. Qur first task is to locate the range of t where most of
this happens. The earliest range of t indicated in (6.25a) to (6.25c¢) is that where (6.25b) and
(6.26b) both apply, but one can easily check that x is stiil close to 1 here. Before we get out

of the range where (6.25b) applies, we will pass completely through the range where (6.25a)
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applies, but still ¥ is close to 1. The range where things do occur is where (6.25b) and (6.26¢)

hold. Here we have

K-l=1+(U_J+1){1+ O—l) _ (,_1) +}
G-1-w w-j+1)? ¢G-1-p7

with

u-j + 1< 0™ <v -j+1.
Substitution of this into (6.18a) gives

vj(t)-V[ —(f‘l)+...]

ot
for

(1 - vVl + 0] < j&tl <(1-wV)[l +0G™] .

In the limit ] — ee, t — oo with j/(cit) finite we find

u 1 - wlV < jl(on)
v () VI1 - jl(ou)] 1 -V <jlor) <1 - wlV
v 1 — vV > ji(ouf)

(6.28)

This represents the solution we would obtain from the continuum theory. All waves start from
j=0att=0. A wave of velocity v/, u < v/ < v, reaches the jLh car at approximately a tuime

J#/(1-v'/V) later. If we substitute this time into (6.28) we do indeed obtain vi(t) = v".

T ceeon TX7 N1 ahasor tha vralanite ~f a coannanca Af ~are when tha lead ecar anddenlv

#(1-v'1V) later. If we substitute this time into (6.28) we do indeed obtain vi(t) = v,

Figure IV 21 shows the velocity of a sequence of cars when the lead car suddenly
accelerates from u = 0 to v = 1/2V at t = 0. The velocity is plotted vs. ot/j to show the
convergence of this velocity profile to the wave solution (4.28) for j — oo. The convergence
is rather slow, particularly near the wave edges ot/j=1 and 2, because the diffusion effects

depend upon j".
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Fig. IV 21

Convergence of a sudden acceleration o the wave solution

(c). If v<uand p > v, we again look for the range of t where most of the variation
in velocity occurs. This time we find, by essentially the same arguments as above, that it
occurs where (6.25¢) and (6.26b) apply. The I'-functions cancel in (6.18b) and we have from
(6.21) that

A -wv _ _ az}

k' =1 +ex jlog 2= ™ "7 u) -
p{} g(l_v/V) )V

and

@y (v - {j (1 -uwV) (v -uw }

0 2 5 enhyg o8 s v (6:29)
=(u+v)+(v—u) j (1 -uwV) (v-uw

0= 2 tanh{i e T T T m}, (6.29)

This represents the shock profile. We notice that each j™ car has exactly the same
motion as any other except for a displacement in time. The displacement in time from one car

to the next is
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1 _ V{log(l - wV) - log (1 - vV} (6.30)

r

o v - no

If we mark the two points on the velocity-spacing curve corresponding to velocities u
and v as in Figure IV 18, we can recognize immediately from (6.1) that this time lag is the
difference in spacing divided by the difference in velocity for these two points. This checks
with the properties of shock propagation as described in sections IV 4 and I'V 5. The shape of
vi(1), (6.29), also agrees with that derived in (5.11) for weak shocks (except that (5.11) does
not include the j-dependent time lags.)

Figure IV 22 shows the velocities of a sequence of cars when the lead car suddenly
decelerates from 1/2 V to 0. The velocities are plotted vs o(t-j/0’) for several values of j.

The time coordinate of the j car is displaced by the propagation time for the shock to show

the convergence for j — to the equilibrium shock profile given by (6.29).

{1
-5-4 -3 -2 -1 O | 2 3 4 5
a(i-j/a")

Fig. IV 22
Convergence of a sudden deceleration to the shock profile
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One can easily show that if the lead car decelerates from velocity u to velocity v in .

any manner whatsoever, the resulting disturbance will eventually propagate as a shock. The

shape of the equilibrium shock will depend upon the initial and final velocities u and v, but

will otherwise be independent of the shape of the initial disturbance. If the lead car

decelerates very slowly, the decelerations of subsequent cars must increase until they reach

the values associated with the equilibrium shock trajectories. If the shock trajectories involve

high decelerations, it is possible for a lead driver who is cautious and decelerates very slowly

to initiate a disturbance that might eventually become strong enough to cause some accidents.

By differentiating (6.29) we see that the maximum deceleration in the shock is

2
v - u 0LSVOL
4V 4

The latter is for a deceleration between u = V and v = 0 and typically has a value of about 10

ft/sec®. This is a moderately hard rate of deceleration, but not outside the range of braking
power for most cars.

By comparing (6.29) with (5.12), however, we see that a non-zero reaction time T is
likely to cause still larger decelerations. It does so for weak shocks at least. This phenomenon
quite likely contributes to the causes of chain collisions.

Before going on to other aspects of car-following theories we will simply note that all
tha thanvriac AacAarthad oA far ara Anncictant yoith annlh Athar DAt tha Timans anes FATlAsvrin e~

Before going on to other aspects of car-following theories we will simply note that all
the theories described so far are consistent with each other. Both the linear car following
theories and the continuum theories are limiting cases of a more general non-linear discrete
theory. Most large-scale phenomena are most easily described in terms of the continuum
theory or a continuum theory modified by inclusion of the diffusion effects as described in

section IV 5.
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7. Non-identical cars.

a. Linear theories. One of the logical deficiencies of the car-following theories

described so far is that they imply the existence of some lead car whose motion must be
explicitly specified. One might naturally ask: who is the lead driver and why doesn’t he
satisfy the same equations as everyone else?

In some situations there is an obvious way of identifying a lead driver. He may be the
first car stopped by a red signal and when the signal turns green he is not consciously
following anyone. His motion is not described by the equations above because they apply to a
time-independent homogeneous highway. The traffic signal is a time inhomogeneity but we
might imagine that the effect of the signal can be approximately represented by specifying its
effect on car O say, and then postulating that subsequent cars move as if they were simply
following car O but were otherwise not influenced by the signal.

In other instances car 0 may be a slow car that no one can pass. This driver is
different from other drivers in that his desired speed is less than anyone else. His motion is
not described by the above theory because we postulated that all drivers are essentially the
same.

Any complete theory of traffic flow should be such that if a line of cars is obviously

following some particular car, the theory should itself predict which car is leading, how it is

Any complete theory of traffic flow should be such that if a line of cars is obviously
following some particular car, the theory should itself predict which car is leading, how it is
leading, and why. As yet we do not have such a theory, but some significant generalizations
in this direction will result if we include the possibilities that not all drivers are identical and
that highway characteristics (the relations between flow, density, velocity, etc.) may be

explicitly dependent upon position along the highway and the time. Many potential
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applications of the car-following theory, however, apply to the motion of traveling queues;
there is some limited passing but not enough to prevent long queues from forming behind
slow cars. In such cases the lead car, the queue lengths, etc. are determined by the passing
conditions. We do not have very good models for describing such things.

In this section we consider briefly some consequences of random selection of drivers.
We will assume that each driver has his own velocity-spacing relation which he follows
exactly with no fluctuations, but that different drivers have different relations and the drivers
are selected at random from some population of drivers.

The discussion of linear models in section IV 3 can easily be generalized to non-
identical drivers. If we take equation (2.2) with o, and T replaced by oy, B, T; for each it
driver, we can subtract away the minimum spacings /o as done in (6.3). The generalization

of (3.4) is, therefore,

Y +ieo -
Z,(8)
Zj(t) = ?1— f ds e - (
o L1 + 5 o' exp(sT,)| |

For any given j, this integral can again be expanded in terms of residues. The transient
motion of the j™ car will, for sufficiently large t, be dominated by the residue from the zero

of the denominator having the largest real part. This residue might come from any one of the

motion of the j** car will, for sufficiently large t, be dominated by the residue from the zero
of the denominator having the largest real part. This residue might come from any one of the
factors of the integrand. There is no simple rule to determine which one because the roots of
the k™ factor depend upon both o, T, and T,, the latter being the scale factor for S in Figure

IV 6.
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We can say that the dominant transient will be a pure exponential if ¢ T, < 1/e for all
k<j and it will be unstable if o, T, > ®/2 for any k < j. It will also a damped oscillation if 1/e
< oy T, < n/2 for all k<j; but if some o, T, lie in this range, and others are less than 1/e the
transient might be either a pure or oscillatory exponential. In any case the transient for the j®
car persists at least as long as that of any car ahead of it.

The asymptotic properties of z(t) for j —co can again be found by expansion of the

integrand near s = 0 as in (3.11) and (3.12). We write

TE,, [1 +5 0 exp(sTk)] ~ IE., [1 + 50, + st T, 0‘1:1]

~ exp {s(E’l a,:l) -1 52 (Zjl 1 - 20, Tk)/(xf) + } _

The analogue of (3.12) is

z() = 7 ds exp [s(t - Z:’l a;xﬂ exp |:S72 Z:Jl (I__ZZX.L.@} z,(s) .
i "

This has exactly the same form as (3.12) except that the signal reaches the j™ car at a time

—joo

approximately Z,j(xk", the sum of the times for adjacent cars, instead of j/d; and the new

"diffusion constant” is now

i 2
Yo -20, T o

TF Avivvmen ara imdamanAdantly camnlad fram enmae namlatinn the ciime aver b are eannme

Yo -20, 7)o
If drivers are independently sampled from some population, the sums over k are sums
of independent identically distributed random variables. A wave does not travel through a
series of cars with exactly a constant wave velocity as in Figure IV 4 but, for all practical

purposes, travels as if the signal moved a distance (-B, /o) in a time 1/oy in going from the
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(k-1)" to the k™ car. It follows sort of a Brownian path. For sufficiently large j, however, this

random path of propagation will have a time average velocity defined by

-y lo,
wave velocity = lim E"_" P/, _ -E{B/o} _
D DR A E{1l/a}
1

The last step follows from the law of large numbers. The expectations are expectations over
the population of all drivers. This wave velocity is not necessarily equal to -E(B).

If some 0;=0, the equations of motion imply that the velocity of this car 1s
independent of spécing which in turn means that this driver pays no attention to what the car
ahead does. He will stop the propagation of any waves. We will encounter a more realistic
version of what happens if E{1/a} = o in the non-linear theory.

To guarantee stability, we want a positive diffusion constant. This will certainly be the
case if &, T, < 1/2 for all cars. If there is a non-zero probability that oT > 1/2, then there is
also a non-zero probability that the sum in question is negative for any finite j. A disturbance
may, therefore, be amplified at least in'Lhe early stages of its propagation, but, if

E((1 -2aD)/o?) >0,
the disturbance will, with probability 1, eventually decay. The safe drivers can undo the bad
effects of the unsafe ones, in the present context.

More interesting consequences of non-identical drivers arises in the non-linear

effects of the unsafe ones, in the present context.

More interesting consequences of non-identical drivers arises in the non-linear
theories. If the maximum velocities (desired speeds) of individual drivers are not all equal, it
is possible for a line of (j-1) fast cars to pull away from a slow car if their speed exceeds the
desired speed of the latter. It is also possible for fast cars to form queues behind a slow car.

It is not too difficuit to solve (at least approximately) the equations of motion in any
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particular situation. The real problem is that the solution is sensitive to the ordering of the
cars; so many different things can happen that it is difficult to formulate what might be
considered a typical problem. On an infinitely long highway with infinitely many cars, all
cars behind the slowest eventually queue behind the slowest. Consequently there is not even
an equilibrium distribution. For any finite length highway or a highway with entrances and
exits, one must keep a careful account of the entrance or exit of any slow cazs.

We consider here a few miscellaneous features of this problem but we will raise more
questions than we -will answer.

b. Exact solutions. The non-linear theory discussed in section IV 6 can be used to

study some of the analytic aspects of traffic theory with non-identical cars. We will consider
only the special case of this theory in which the uj are proportional to the V; as in (6.9).

In equation (6.10a), we have already the transform Zj'(x) for a line of cars initially
moving with velocity u (u less than any of the V,). This equation has been shown to give the
wave propagation, diffusion, expanding waves, and shocks, but now we want it also to give a
separation of flow into platoons traveling behind slow cars.

Suppose again that the lead car suddenly changes velocity from u to v so that

Z'(s) = Us + ev) .
Z'(9) = Us + ev) .
then
th(s) = 1 _ S(V _u?
(s +elb, (1 —wV) (s +ew (s +ev) IE, (1 +s/) . (7.1)

This is a rational function of s. If the o are all different, the inverse transform is
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e ™ (v - wlv,
e (1 =/V) w1 -wV) (A -WV)TE, (1 -aje) (72

kem

Ifv<V,=0./¢ for all m, m <j, so that the lead car travels slower than the free
speed of the j™ car or any car ahead of it, then for sufficiently large t, the first term of (7.2)
will be large compared with those of the sum. This term alone, however, gives the steady
state motion of the j* car at velocity v with the appropriate spacing. All cars with V; > v
which also follow cars with free speeds V_ > v (for all m < j) will, therefore, eventually
follow the lead car. If, however, €v is larger than some ¢, m < j, the dominant term of (7.2)
will be the one with the smallest o, thus the smallest V,,. The j” car will eventually find
itself traveling with the velocity min V,, m < j. The final velocity of the j™ car is monotone
non-increasing with j. Each car with a free speed less than any predecessor will travel slower
than those ahead and also prevent any car behind from traveling any faster.

These qualitative properties obviously had to come out of the theory somehow. There
are some other properties, however, that require a more detailed analysis. Suppose cars start
with u = O at a traffic signal. We may wish to know how the fluctuations in driver behavior
effect the average flow across the intersection. Does the separation into queues behind slow

cars occur soon enough to cause a drop in flow at the intersection? It may also be of interast

eftect the average tlow across the intersection. Does the separation into queues behind slow
cars occur soon enough to cause a drop in flow at the intersection? It may also be of inter=ast
to investigate the shock profile to see how the cooperative behavior of many cars forces the

behavior of different individual drivers.
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. Equation (7.2) is not a very convenient representation of the solution for large j. To
find asymptotic solutions, it is better to go back to (7.1) and apply some asymptotic methods

to the inversion formula for the Laplace transform. We write Z,(t) in the form

Yeis j
st ev —~uw) IL, (1 - WV,
Z(® = — 1 dse 1 - ( ) 1 ( ) (7.3)
N1 - wV) 4% (8 + €4) (s +ev) IT, (1 + s/or)
. The possible singular points of the integrand are at s = -gu, -€v, -¢t;, --, -0;. We have

assumed already that u <V, thus - eu > -o4. Of these points, the one furthest to the right in
the s-plane is, therefore, either -eu or -ev depending upon whether the motion is an
acceleration or a deceleration. The two cases we already know must behave quite differently.
We consider the acceleration first, -gu is to the right of -ev.

The quantity in the bracket of (7.3) vanishes at s = -gu, so this is actually not a
singular point of the integrand. For large j, the second term of the bracket is, however, rapidly
varying with s. It has the value 1 at s = -eu but along the real axis it drops off rapidly for s >
-eu and becomes very large for s < -€u. It behaves almost like an exponential.

The second term _of the bracket multiplied by e, with t> 0, will have a minimum
along the real axis. For small enough s it is decreasing, but the exponential will eventually,

for s —co overpower the polynomual decay and give a saddle point (a minimum along the real

along the real axis. 'Or Smalt €nough s I 18 Aecreasiny, DUl WS CXPULCILLIAL WL Cveilualy,
for s —eo overpower the polynomuial decay and give a saddle point (a minimum along the real
axis but a maximum along the imaginary direction through this point). For small positive t,
this saddle point occurs for some large value of s. If we evaluate Z(t) by taking vy so that the

path of integration crosses the real axis at the saddle point, the second term of the bracket
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will be small compared with the first everywhere on this path. Its contribution can be

neglected and so we obtain for Z(t)

€ —tul

IRl - wV)

Z( -

For small t, the motion has the constant velocity u that is expected to persist for some non-
zero time.

We will not obtain any significant deviation from this behavior until t becomes so
large that the saddle point moves close to s = -€u where the two terms of the bracket are
comparable.

Let s, denote the position of this saddle point. Then s, occurs where the logarithm of

e* times the second term of the bracket also has a saddle point and a zero derivative, i.e.,

d J

— Ist - log (s + &v) - log (1 + s/o =0,
. g ( ) 2 g ( ,()m
or
1 J 1
r = + 3 . (74
8V+So 1 ak+So

The right-hand side of (7.4) is monotone decreasing in s, to the right of any

eV +s,. 1w *tS,
The right-hand side of (7.4) is monotone decreasing in s, to the right of any
singularities. This equation therefore defines a unique one-to-one relation between s, and t. It
can be used either to determine the saddle point for given t or the time t when the saddle

point occurs at a specified s,. The time when the saddle point occurs at -gu is
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1 j 1 1 j 1 N
t =+ = + - (75
T @ —eu  EW -u) 2 o - Wv) ’

The meaning of this time is clear. Each term of the sum, [0, (1-w/V)]" is the
reciprocal slope of the velocity spacing curve for the k® car at the velocity u. From the
discussion of wave propagation in the linear theory, we have seen that this is the effective
propagation time of the wave of velocity u from the (k-1)® to the k™ car. The sum is,
therefore, the total propagation time for the disturbance at velocity u to reach the j® car from
car 0. For large j, the sum dominates the extra term {e(v-u)]’. This extra term can be
identified with the diffusion effects associated with the impulse acceleration of the lead car. I
is not particularly relevant here. As is expected, the j™ car does not start to deviate from
velocity u until a wave for velocity u can reach it at time t,.

For t near t,, we can approximate the integrand in the vicinity of t~t, and s~s,.
Specifically one expands the logarithm of the second term of the bracket in powers of (s-s,)
through order (s-s,)’ so that this term is represented as an exponential of a quadratic form in
s. This approximate integral can then be evaluated in terms of error functions, etc. What
happens is the analogue of the wave edge phenomenon shown in Figure IV 21. For large j,
the transition takes place in a time proportional to j'* as compared with a duration of the

entire disturbance which will be proportional to j. We shall not show the details of this but

the transition takes place 1n a fume proportional 1o j“~ as comparea will a qQuraton ox Lie
entire disturbance which will be proportional to j. We shall not show the details of this but
asymptotic forms of Z(t) can be found for this time range in a straightforward way.

After t has passed over this range, the saddle point s, has shifted to the left of -en. We
again send the path of integration through the saddle point; there is no difficulty about

moving the contour to the left of -gu because this is not a pole of the integrand. Along this
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path, the second term of (7.3) is now much larger than the first and we can discard the 1
from the bracket. Until t is so large that the saddle point moves close to one of the poles at
(-ev) or one of the o, the logarithm of the integrand can again be expanded in powers of
(s-s,) near the saddle point.

From (6.6a) we see that

| d Z/dt
v() = - = J
J £ ZJ

The differentiation of Z; with respect to t simply adds a factor s to the integrand of (7.3). For
large j, the integrand is rapidly varying with s and the factor s is nearly constant, equal to s,

over the range of s from which most of the contribution to the integration comes. Therefore

LSRR
and
vt ~ - 22 (7.6)
/ £

This along with the equation (7.4) for s, gives

_ L £y 1 7.7
z e(v - v()) X o (1 - v@®IV) 7
_ L £y 1 7.7
e(v - v(9) )X o (1 - v@®IV) 77

As with equation (7.5) we can interpret this to mean that the velocity vi(t) of car j and
the time t are related so that vi(t) is that velocity that can reach the i™ car at time t if it
propagates from the lead car with a time lag o,'(1-v,(t)/V,)" from the (k-1)* to the k™ car.

Again one can carry out the asymptotic estimates to whatever accuracy one wishes.
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For sufficiently large t, the value of s, given by (7.4) will move toward one of the
poles of the right-hand side of (7.4). There are several possible situations to consider.

1. Suppose v < oy /e = V, for all k<j and furthermore even for j—oo, v < inf,V,, so
that the poles at s = -0y, are bounded away from the one at s = -ev. Then for large t. s, as
given by (7.4) will lie close to -gv. The method of expanding the logarithm of the integrand
near s, will not necessarily give very accurate results if the behavior of the integrand near the
saddle point is dominated by the contribution from a single pole. The derivation of (7.6) is
still valid as a first approximation but to obtain subsequent approximations it is better to use a
procedure similar to that used to get past the point -€u in (7.3). We can write the second
factor in the bracket of (7.3) as

e - I (1 -wV) ev-uwllf (1 -uwV)
s+ IF (I +sl) (s +ev) IE (1 - V)

(7.8)

LB - IF (1 - wv) . (1 - WV,

(s +ev) TH (1 - v/V) IG(1 + sfoy,)
We have simply added and subtracted the simple pole at s = -gv. The first term of (7.8)

contributes to Zt) a term

e'EUT

IF.(1 - wV)

e —-Eur

A - wv)
which alone would correspond to a final motion at the constant velocity v. The second term
of (7.8), the transient part, has no pole at s = -€v. Its contribution to Z{(t) can be handled in
the same way that (7.3) was evaluated when the saddle point crossed over s = -gu. The saddle

point of the second term in the bracket of (7.8) satisfies the same type of equation as (7.4)
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but with the term (ev+s,)” missing. Once this newly defined s, moves past -€v, the
contribution of the second term of (7.8) to Z;(t) dies very rapidly. As for s, near -gu, there
will be a transition region as the wave of final velocity v passes over the j™ car.

2. If v = inf, V,, ie., the poles at s = - crowd close to the one at s,, then the
procedure used in 1 is probably not necessary until t is so large for some finite j that the
single term of (7.4), (ev+s,)", makes a contribution to t comparable with that of all the other
terms combined. The phenomenon that is at issue here 1s that if some of the free speeds V,
are very close to the final velocity v, the wave propagation is retarded significantly by cars
which will approach the velocity v only after the spacing has become very large. The velocity
of the j™ car, which in all cases is rather close to -s /e of (7.4) approaches v only at very large
t.

3. If v> op/e = V, for some k < j, then the roles of the ev and the largest (-0 ) are
reversed. The saddle point s, cannot get to the left of this value of (-0y) and the velocity v;
approaches the lowest velocity V,, k<j. Again we expect as in cases 1 vs. 2 above that the
behavior of Z(t) will depend upon whether there is a single slow car dominating the behavior
or many slow cars approach their maximum speeds. In the latter case the wave propagation is
slower because each slow car wishes to have a very large spacing.

The detailed evaluation of asymptotic formulas for all these cases is straightforward

slower because each slow car wishes to have a very large spacing.

The detailed evaluation of asymptotic formulas for all these cases is straightforward
but somewhat tedious. The important thing is that waves do propagate in this non-linear
theory as one would expect from the analysis of the linear theory, provided the car velocity

associated with the wave does not exceed or come too close to the free speeds of any cars.
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For a deceleration v < u < max V,, the asymptotic evaluation of (7.3) is a little easier.
The singularity furthest to the right in the s-plane is at s = -gv, the next is at s = -eu. If we
shift the contour of integration so that -eu < o< -gv then, for large ], the second factor in the
bracket will be small compared with the first everywhere along the path. In shifting the
contour we have passed over the pole at s = -ev and so we must pick up the residue there.

This may or may not be significant but in any case we have

G L A . A (79
(1 - wV) TE(Q - wV)

The term which we have neglected can still be estimated by a saddle point integration. It
describes the approach to a shock structure as j increases but (7.9) alone describes the final
shock for j —eo.

From (6.62) and (7.9) we obtain

v(p) = (w+v) (v-u tanh j[(u - v) &t - T) (7.10)
i ) 5 L 5
with
. . log(l - vV - X, log(1 - wV,) 71D
’ (u - v)e

Thaca radnca ta (A 20Y and (63()} if. Y. = V ingependent of k.
T =

! (u - v)e

These reduce to (6.29) and (6.30) if V, = V independent of k.

Even for this case of non-identical drivers we see from (7.10) that every car has
exactly the same shock trajectory as any other, except for a translation in time and space.
That these trajectories are all similar is, no doubt, a consequence of the restriction that o/V; =

¢ be independent of j. The translations are, however, subject to variation due to the
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differences in the V,. The propagation time T; is the sum of time lags for cars 1 to j. The .
shock wave, therefore, travels along a random path in much the same manner as the waves

propagate.

8. Space and time-dependent highways. We have considered until now only highways that

had time and space independent properties, i.e., we assumed that the q vs k relation was not
explicitly dependent upon x or t. It is of some interest to know also what happens if a
highway has curves, grades, etc., so that the q vs k relation varies with x, or what happens if
it starts to snow so that the q vs k relation depends upon t. We will consider here only the
modifications to the continuum theory since this describes in essence what happens also in the
more complicated discrete theories. Some of the results described here were obtained by
Lighthill and Whitham [15], De [22], and Robertello [23].

Suppose that at each position x and t, there is a specified flow-density relation so that

g = Qkx1)

and that this relation is valid even if k is itself a function of x and t. The conservation

equation
ok dg .
—_+ 1 =0 (8.1)
ot ox

o o1l wralid aveant thet wwra mnet naw intarnroet
ok dg .
_+t 2 =0 (8.1)
ot  ox

is still valid except that we must now interpret

Oqtk.x, 1) _ 0.k, x,1) o, 0.(k,x,0) 8.2)
ox ox x

in which Q, and Q, represent the partial derivatives of Q(k,x,t) with respect to the first and

second arguments, respectively, for fixed values of the remaining two.
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This equation is still a first order partial differential equation for k(x,t) but, with
Q,#0, it is not generally possible to obtain simple explicit solutions. Solutions can, however,
be constructed graphically or numerically and the existence of solutions can be established
[24].

If at time t = O we are given k(x,0), then we can also evaluate Q,(k(x,0),x,0) and
Q.(k(x,0),x,0) from the given function of Q(k,x,t). Through each point (x,0) in the (x,t)-plane,
we now draw a line (characteristic) of slope Q,(k(x,0),x,0) as illustrated in Figure IV 23. We

interpret the quantity

ok ok _ dk
- + —
dt k 9x dt

Slope Q;(x,At)

given

Slope Q, (x,0)

SN

Fig. IV 23
lterative solution scheme

as the time derivative of k along the direction of the characteristic line on which
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dx _
T %
The conservation equation requires that in a small time At, the change in k along this

characteristic is given by

Ak ~ At % ~ 0, (k(x,0),%,0) At . (8.3)
By moving along each of the characteristics we can now evaluate k(x,t) for all x at time t =
At (provided no characteristics intersect). The same information is now available at time At as
originally at time 0. The procedure can be continued with the k(x,At) as "initial data.”

Since Q, and Q, depend upon k, as well as x and t, the slopes of the characteristics
will be slightly different at time At than at t = 0. The iterative procedure generates a family of
non-linear characteristic curves, curves which at every point (x,t) have a slope Q,(k(x,t),x,t),
and the value of k(x,t). If characteristics should intersect we must create shocks as in the
homogeneous solutions. The shock equations are exactly the same as before except that the
relation between g and k will be x and t-dependent.

Since the solutions of the differential equations are rather difficult to construct, it is
perhaps of more interest to consider the simpler solutions for the two special cases in which q
is a function of k and either x or t but not both.

If q = Q(k,t) so that Q, = 0, then according to (8.3), Ak = 0 along the characterstic.
1S a tunction ot k and either x or t but not both.

If q = Q(k,t) so that Q, = 0, then according to (8.3), Ak = 0 along the characterstic.
Thus k is a constant along the characteristic. The equations for the characteristics themselves
are also fairly simple now. Starting from some initial point (x,, 0), we observe the value of k
(%,, 0) which will be the value of k everywhere along the characteristic passing through the

point (x,, 0). The equation for the characteristic is now the ordinary differential equation.
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@:

k =
— 0,kx,.0) ,0) , x0) =x,

or

X0 = %, + [ O, , 0), ) dv.

The function of Q(k,t), and consequently also Q(X,t), are supposed to be given as are the
values of k(x,,0). The integrand is, therefore, a known function, and the characteristics can be
found directly from the initial data.

The differential equation (8.1) shows the duality of the interchange of q and t for k
and x, respectively, which has been encountered many times before. It appears here because
the conservation equation is equivalent to the requirement that car trajectories be continuous
curves in the (x,t) plane with spatial density k. They also define continuous curves in the (t,x)
plane with a "time density" g.

If g = Q(k,t) gives solutions with k constant along characteristics as shown above, one
might surmise from this duality that if q = Q(k,x) in which the t-dependence is replaced by an
x-dependence, that k=constant along a characteristic will be replaced by g=constant. It might,
in this case, also be convenient to think of the q-k relation as defining k as a function of g

instead of q as a function of k. If then k = K(qg,x), the conservation equation becomes an
~mevntbimen Fae o~

instead of q as a function of k. If then k = K(g,x), the conservation equation becomes an

equation for g

dK(g,x) , 9g

—1 + 2 =0
ot ox

dg . dq _
K (g.%) 5 "5

This equation does imply that q is constant along the characteristic curves defined by either
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% - Qkx) or % = K(q,%) .
Of the various Vspeciﬂc problems of the two types described above, the second type,
q = Q(k,x) furnishes the more interesting examples partly because the function k = K{(q,x} is
double valued. Instead of considering an initial value problem, suppose we have a section of
highway fed by some input at x = 0. The input flow q(0,t) is given. Suppose also that the
highway has a bottleneck; Q(k,x), for any given k, is monotone decreasing in x until some
point X; and then it increases again. A possible family of g-k curves for various values of x

are shown in Figure IV 24. As x increases it goes from X, to x, to X, and then perhaps back

to X, 10 X,.

Densi’ry—k
Fig. IV 24

Density -k
Fig. IV 24

A sequence of g-k curves

Prior to time O we suppose that a steady flow existed at a flow value q, and a density

k(x) given by k(x)=K_(q,.x), the smaller of the two values of k associated with any value of
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. q, and x. Now let q(0,t) increase from q,, to g, to qs, etc., until it exceeds the capacity of the

bottleneck, i.e.,
g > max Qk.x,) .
k

The vanious characteristics are shown in Figure IV 25. The 1nitial increase in q

g=q
'/ 92/ a4
_ ~ Y4
X3
g
Xal™ 9e
X |-

Time -t

Space- x

Fig. IV 25
Formation of a shock behind a bottleneck
starting at time t = O say propagates along the characteristics for flow q, whose equation is

given by

1) = [ X (a6 .

Tha stalivmnn Aaf M Ar 7 At vramAne macitiane ran ha nhtatnad Airartlys fram the ale Fniruec

(x) = | K (g,.6)d€ .

The values of Q, or K, at various positions x can be obtained directly from the g-k curves.
For flow q,, they are the slopes or reciprocal slopes, respectively, of the g-k curves at q = q,.
The slopes are seen to be decreasing as x goes from X, to x, to x;. These are also the slopes
of the characteristics at x,, X,, X;. The characteristic for q = q, is thus concave for x < x,.

. Along this characteristic and to the left of it in Figure IV 25, the flow is everywhere q;.
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For flow g, the characteristics have smaller slopes at any given x. They are also
decreasing with x for x < x,. For flow q,, just below the capacity of the bottleneck, the
characteristic becomes almost horizontal as it passes the bottleneck. As q approaches the
capacity of the bottleneck, the characteristics approach a limit characteristic represented by q,
which has a horizontal asymptotic at the bottleneck.

For q > q,, a characteristic at flow qs, for example, will become horizontal at that
location where the capacity of the road is q;. Unlike the characteristic for q,, however, which
approaches the horizontal asymptotically in time, this characteristic will become horizontal at
a finite time and subsequently tum back upstream as illustrated in Figure IV 25.

At location x,, for example, there are two possible densities on the q-k curve
corresponding to a flow gs. At the lower density Qk is positive, but at the higher density Q, is
negative. The former value of Q, gives the slope of the characteristic as it goes forward past
X,. The latter value of Q, gives the slope of the characteristic after it has turned back and
passed x, again.

The details of how this evolves are not important. Certainly a flow g5 cannot pass the
bottleneck and any excess flow above q, will cause vehicles to pile-up behind the bottleneck,
thus pushing the density over to the left-hand side of the g-k curve. That characteristics which

have turned upstream will intersect other characteristics for higher flows moving downstream

thus pushing the density over to the lett-hand side of the g-k curve. That characteristics which
have turned upstream will intersect other characteristics for higher flows moving downstream

means that a shock must form somewhere upstream of the bottleneck.

9. Experimental evidence. The theories described in this chapter have been shown to be

consistent with each other and have been described in sufficient detail that one can obtain a
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clear picture of the qualitative predictions that the theory would produce when applied to a
variety of real physical situations. Some of these predictions agree approximately with what is
actually observed, enough that one cannot afford to scrap the theory, but unfortunately the
theory still has some serious faults, not just quantitative inaccuracies which one would
normaily expect from such a crude model, but gross errors in the qualitative description of
what really happens in certain situations. Before going on to more elaborate theories, it is
therefore advantageous to review some of the successes and failures of these theories.

The key assumption made in the theory was that the relations between velocity and
spacing or between flow and density determined under steady-state conditions are also true
for time dependent flows. The main conclusions of the theory follow from this assumption
alone which was made primarily as a mathematical convenience or plausible conjecture. There
is no a-prior reason why it should be true. It implies that if the spacing between cars is
known then the velocity is uniquely determined and is therefore independent of accelerations,
past history of the motion, etc. We have considered the possibility that different drivers may
have velocity-spacing relations, which accounts for some random effects, but we have not
considered the consequences of the fact that a specified driver will experience random
fluctuations in velocity and/or spacing about the mean velocity-spacing curve for this

particular driver.

fluctuations in velocity and/or spacing about the mean velocity-spacing curve for this
particular driver.

Experiments on traffic flow are very difficult to interpret. The experimental data
almost always show violent fluctuations and it is very hard to decide whether some observed
behavior is just some random deviation from a typical pattern or if it is itself the typical

pattern. At the present time, what is "good" or "bad" agreement with expeniment is often a
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matter of personal judgement because seldom are enough data available to estimate the .
probability distributions for driver behavior or variations in the q vs k relations from one
point to the next along a highway which one would need to know in order to make any real
test of significance. We consider first some of the experiments which, for the most part,
support the theory described here.

A fairly extensive series of experiments have been performed at General Motors
Corporation, Detroit, by R. Herman along with various collaborators. This began with the
work of Chandler, Herman and Montroll [6] in 1958 and has continued to the present time.
Most of these experiments are "car-following" experiments in which cars equipped with
various recording devices to make records of speed and spacing are driven by various people
usually on a test track. One driver, a leader, is instructed to perform a series of maneuvers
and a second (possibly also others) is instructed to "follow the lead car at what you consider
to be a minimum safe distance at all tires." This type of experiment has the obvious
weakness that what drivers will do in an experiment while following certain instructions is
not necessarily what they would do when driving under normal conditions on a highway, but
it should at least give some hints.

As mentioned before, these experiments were first designed to establish best linear

relations between the acceleration of a car and the velocity differences and/or spacing

As mentioned before, these experiments were first designed to establish best linear
relations between the acceleration of a car and the velocity differences and/or spacing
between that car and its leader. Chandler, Herman and Montroll first concluded from these
experiments that the dependence of acceleration upon spacing was not large enough to
improve significantly the correlation and so they concentrated on fitting an equation of the

form (2.3) to the experimental data. From a large collection of data, values of the acceleration
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at times t + T were compared with values of v;,(t) - v;(t). For any fixed T, a regression line
was drawn giving the slope o in (2.3) that minimized the mean square deviation from (2.3).
The correlation coefficient (which would have the value one if the two above quantities were
exactly proportional) of these variables was then considered as a function of T. The values of
T and o which maximized the correlation coefficients were then considered as the "observed
values."

The success of the theory must be measured by the fact that the correlation
coefficients (depending upon the driver) were mostly in the range 0.8 to 0.9. Whether this is
"good" or not is difficult to say, but it does not seem unreasonable in consideration that the
difference in behavior of eight drivers gave a range of T values from about 1 second to 2
seconds, a range of values of o between 0.17 sec” to 0.74 sec’, and a range of values for
oT between 0.18 and 1.04. There are indeed tremendous variations in behavior from driver to
driver and one is trying to fit a simple model for the average behavior in which the
fluctuations in small samples nearly swamp the thing one is trying to observe.

An important feature of these experiments is that they correlate accelerations with
velocity differences and not velocities with spacings. Most of the data is, therefore, taken
during time dependent motion and not in the steady state. If there were a significant

dependence of the velocity-spacing relations on the acceleration, for example, the value of o

during time dependent motion and not in the steady state. 1t there were a sigmiricant
dependence of the velocity-spacing relations on the acceleration, for example, the value of o
one obtains by fitting (2.3) would not necessarily be the same as that obtained by fitting (2.2)
to data taken in the steady state. The fact that one is forcing a best fit of the data to (2.3) and

that (2.3) is the derivative of (2.2) is likely to bias the statistical estimates so as to
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underestimate any differences that may exist, but, on the other hand, there is no a-priori
reason why the theory should fit at all.

The value of oT, which is quite crucial to the question of macroscopic stability, was
found to have an average value for the various drivers slightly above 1/2, the theoretical limit
of stability, but certain drivers had values of 0T considerably above 1/2. This represents a
potential failure of the theory, however, that must be examined more carefully in conjunction
with other observations. For if oT is larger than 1/2, or could be made greater than 1/2 by a
suitable choice of drivers, the present theory would predict a type of instability that would
seem to be more violent than is consistent with observations of macroscopic behavior. More
recent experiments with buses [31], however, give values of oT<1/2.

In subsequent papers in this series [25-31] non-linear models were fitted to
experimental data which were, in effect, the derivative of (5.1) for suitable functions V. The
form of V deduced from dynamic experiments did agree quite well with those obtained under
supposedly steady state conditions [25]. A review of most of the results of these experiments
is contained in the papers by Herman and Potts [26], and Herman and Rothery [30]. In the
[atter it is shown that models with only interactions between adjacent cars are nearly
equivalent experimentally to models containing interactions also between next nearest

neighbor cars. It is also mentioned in both of these papers that the effective or average o in

equivalent experimentally to models containing interactions also between next nearest
neighbor cars. It is also mentioned in both of these papers that the effective or average o in
(2.3) is somewhat larger for decelerations than for accelerations. Although this difference does
not seem very large, it has potentially important consequences that are not consistent with the

theories described here.
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Kometani and Sasaki [7] in their early work on car-following also did some
experiments. They instructed a lead driver to make periodic hard accelerations and
decelerations. The following driver was again instructed to follow at what he considered a
safe driving distance. They found values of oT closer to 1 than 1/2. The experiments were
not done with long lines of cars so one could not check the theoretical prediction that the
propagation of waves would be highly unstable for oT = 1. The periodic motion of the leader
car is also quite unnatural. Helly [32] also analyzed some other experimental data of Forbes
et al [33] and found values of T greater than 1/2.

All of these experiments were done with drivers who knew they were being watched
and were also driving under instructions to follow at what they considered a safe distance
which, no doubt, means that they were actually driving somewhat closer than they ordinarily
would drive.

The agreement between theory and experiment is not very sensitive to the value of T;
it 1s much more sensitive to .. It may be that the experiments are not accurate enough io give
meaningful estimates of T or, if the theory does not have quite the correct form, the
procedure of forcing the best fit to the theory of experimental data may force T to assume
values which have little to do with reaction times. Certainly the experimental estimates of T

from car-following experiments have raised more questions than they have answered.

values which have little to do with reaction times. Certainly the experimental esumates oI 1
from car-following experiments have raised more questions than they have answered.
Although there is considerable experimental evidence for instability of wave propagation, it is
not as violent a type of instability as would be predicted by a theory with oT > 1/2.

Further evidence (and perhaps the most convincing evidence) for the validity of the

continium or car-following theories has been obtained by Foster [35]. He observed the
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acceleration of queues formed at a traffic signal. Crossing times of cars past six points near
the intersection were recorded, from which approximate trajectory plots were drawn.
Calculations were made of headway and spacing distributions at various speeds, average
speed-density curves, and wave speeds. The queues were about 10 or 12 cars long for single
observations but observations were made of many such queues.

The experiments showed that the flow-density relation (over a limited range of
densities) had a maximum and a shape approximately as postulated in the theory described
above. The acceleration waves showed a tendency to fan somewhat with a wave speed that
increased with car speed. Statistical fluctuations were quite large. This is about as much as
the experiment showed conclusively.

In this experiment all data were for cars undergoing acceleration. There was no way
of checking if the flow-density relation obtained under this acceleration is the same as that
which would exist in a steady state or under deceleration.

In contrast with the above experiments, all of which were done with platoons of about
ten or fewer cars at a time, a long series of experiments, starting in the early 1950s, have
been in progress to study the flow of traffic in the Holland and Lincoln tunnels of New York
City. Most of these experiments were done by or in collaboration with Leslie Edie and Robert

Foote [27-29, 32, 33, 35-42]. These tunnels are about two miles long and, although they are

City. Most of these experiments were done by or in collaboration with Leslie Edie and Robert
Foote [27-29, 32, 33, 35-42]. These tunnels are about two miles long and, although they are
two lanes wide, it is against the law to change lanes. Under congested conditions, the tunnels
will hold over a hundred cars any given time so this is an ideal experimental ground to test

the large-scale effects of car-following. It is particularly these experiments that have shown
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serious qualitative inconsistencies with the theory, which have still not been resolved in a
satisfactory way.

Some of the unexplained observations are the following:

1. Flows averaged over periods of about an hour and involving a thousand or more
cars still show fluctuations from hour to hour or from day to day of as much as 20 percent.
These are not fluctuations in demand; there is a queue of cars waiting at the entrance at all
times.

2. The average velocity of cars depends upon the position in the tunnel but the pattern
of this variation is quite different in different tunnels. It also shows wide variation from day
to day. [36].

3. The flow shows instability. There 1s a point particularly in the Holland Tunnel
identified as a bottleneck. At various times a disturbance will originate at the bottleneck and
start to move backwards toward the entrance. It grows in amplitude very quickly until it
causes a complete stoppage which then continues to travel all the way back to the entrance.
An acceleration wave is formed afterwards and follows the stoppage wave but, contrary to the
theory described above, this acceleration wave does not overtake the deceleration wave. The
deceleration wave does form what could be described as a shock; its shape seems to remain

more or less fixed; and it does have a velocity in qualitative agreement with what the theory

deceleration wave does form what could be described as a shock; 1ts shape seems to remain
more or less fixed; and it does have a velocity in qualitative agreement with what the theory
would predict (about 10 m/h). The acceleration wave, however, does not seem to fan out as
much as it should and is not obviously different in shape from the deceleration wave; it could
also be called a shock. These disturbances occur at random time intervals with approximately

an exponential distribution and a mean time between occurrences of about four minutes.
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There can be more than one stoppage in the tunnel simultaneously and there is no evidence
that this is the result of some oscillation caused perhaps by a wave traveling back and forth
between the entrance and the bottleneck. The four minute "time constant” is about 100 times
Jarger than any of the time constants in the car-following theory [37-40].

4. A variety of different averaging procedures have been used to produce graphs of
average flow vs average density. Data of this type are recorded automatically and are
available in almost unlimited amounts. Typically these graphs show a) for densities just above
the value which produces the maximum observed average q, the fluctuations in q become
relatively large; b) despite what should be congested flow behind the bottleneck, the densities
of cars are typically at or less than that which gives the maximum flow instead of more, as
the theory of the last section predicts; and c) as k increases past the point of maximum q, the
average q seems to drop quite suddenly as if there were a discontinuity and then remains
fairly constant as k increases still further. [41].

5. Traffic signals were installed at the entrance of the tunnel to limit the flow entering
the tunnel. This has the effect of increasing the velocities (which for some reason also
improves the stability) and also introduces gaps in the traffic steam that will absorb any
shocks that might still be generated. Measurements of the q vs k curves under this controlled

flow were significantly different from those of the uncontrolled flow. This means, of course,

shocks that might still be generated. Measurements of the q vs k curves under this controlled
flow were significantly different from those of the uncontrolled flow. This means, of course,
that the relation between q and k is not a unique one as implied by the theory [40,42]. By
limiting the number of cars which can enter the tunnel during any interval of time, these

controls have actually given a slight increase in total average flow. They also reduce
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accidents, stalled cars, ventilation problems, etc. Improvements have been made despite the
limited understanding of what goes on.

6. To collect the type of data from which one can draw the actual trajectories of cars
is rather tedious. One cannot make aerial observations of the tunnel traffic and so one must
have either human or electronic observers statione;i simultaneously at a large number of
points in the tunnel. Experiments with about eight observations posts have been made.
Trajectory plots show the large-scale propagation of stoppages but more detailed analysis of
these has only produced a maze of contradictory conjectures. If on these trajectory plots one
draws contours of constant velocity, constant density, and constant flow, they do not coincide;
they do not even show necessarily the same qualitative shape. One thing does seem to appear
quite consistently. If the flow approaching the bottleneck increases, the density at the
bottleneck also increases and creates what one might describe as a super-saturated flow. This
can be sustained for a certain time but it usually collapses after awhile giving a rather sharp
drop in both the velocity and the flow (by as much as a factor of two). Once the flow has
dropped, it is rather slow to recover. During this motion, the state of flow in the g-k plane
follows a path that loops clockwise. A behavior of this type was noted in the paper of
Lighthill and Whitham [15] even in 1955 based upon experiments in Amsterdam.

Instability that is perhaps closely related to that observed in the tunnels also appears in
Lighthill and Whitham [15] even in 1955 based upon expeniments In Amsterdam.

Instability that is perhaps closely related to that observed in the tunnels also appears in
other forms. If one has a long queue, as for example at a toll gate on an expressway, the flow
of traffic through the toll gate may be quite smooth but if one goes back a mile or so in the

queue one finds that the traffic is "stop and go." Since there is no obvious strong fluctuation

in flow at the toll gate one can only conclude that this stop and go driving is self-generated.
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Apparently no experimental studies have been made of the behavior of long queues, but some
experiments were performed on the Merritt Parkway in Connecticut [43] when a temporary
bridge was in use after a flood. These experiments showed some similarities to those done in
the Holland tunnel; they gave some odd-shaped average q - k curves and some oscillations
when the flow exceeded the capacity of the bottleneck.

The art of aerial reconnaissance as applied to traffic studies is developing rapidly.
Photographic studies of various traffic patterns are now being made from helicopters which
can hover for a long time over a single spot. Even with the detailed data that is presently
becoming available, however, it is a difficult and tedious procedure to try to separate
fluctuations from what may be systematic trends. It does appear, however, from photographs
that drivers do not always drive at their shortest safe distance even in congested traffic.
Photographs taken of traffic on the George Washington Bridge by Dickens and Jordan of the
Port of New York Authority show quite clearly that when a driver switches from one traffic
lane to another, he does not usually produce any sudden reaction from the other drivers in
either lane. A driver in one lane, however, suddenly finds that his spacing to the car in front
has been reduced by perhaps a factor of two or more because a new car has moved into the
middle of the gap. A driver in the other lane suddenly finds his spacing increased by a factor

of about two. If drivers insist upon having some set spacing, the former driver would put on

middle of the gap. A driver in the other lane suddenly finds his spacing increased by a factor
of about two. If drivers insist upon having some set spacing, the former driver would put on
his brakes and the latter would accelerate. What happens in fact is that neither driver does
much of anything. Some readjustments usually occur within a half minute or so but it is not

obvious that any drivers intentionally try to make these adjustments.
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. The car-following experiments were done with the instruction that the following driver
was to maintain what he considered a safe driving distance. It is not obvious that this is what

drivers typically are doing.
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V. MODERATELY DENSE TRAFFIC

1. Introduction. Some of the difficulties associated with mathematical models for moderately
dense traffic were discussed in chapter 3. Since most of the practical engineering problems of
highway traffic deal with flows of moderate congestion where passings, merging, etc., occur,
models of such traffic flow could be very useful. Indeed the future for research in traffic
theory would be rather bleak if we had no hope of ever obtaining some reasonable models for
such traffic. The mathematical problems that arise in the analysis of even the crudest models,
however, are quite formidable. For the low density or high density traffic discussed in the
previous chapters, one can question whether or not the theory is accurate enough yet to be of
practical value but few people would question the basic framework of the theory. Greater
accuracy will come from the addition of certain obvious refinements of the theory which will
certainly make the mathematical analysis more tedious but not necessarily more difficult. For
the models of moderately dense traffic, on the other hand, the difficulties are of a more basic
nature. To model even crudely certain obvious features of such traffic, one is forced to set up
equations for which no known methods of solution yet exist.

Since we are not interested in the detailed motion of a specified small collection of

cars, we are committed to some type of stochastic model. Furthermore we are interested in
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cars, we are committed to some type of stochastic model. Furthermore we are interested in
the consequences of interactions between cars and this implies a rather complicated statistical
dependence between the behaviors of the various cars. If the i car has a trajectory x,(t), then
we must consider the functions {x;(t)} as a set of statistically dependent random time series.
From a practical point of view, this identification is of no obvious help, howevesr, because

there are no general mathematical techniques for concrete analysis of such things.
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In this chapter we consider only the evolution and equilibrium distributions of cars on
long homogeneous highways. There are essentially five types of models for moderately dense
traffic, all of which are very crude. Each one is designed primarily to avoid rather than
overcome mathematical difficulties of more realistic models.

The first types of models are simply attempts to represent the point processes of
crossings of cars at a single fixed position, or of the positions of cars at a fixed time, as a
stationary point process of rather simple stochastic structure. No attempt is made to deduce
these processes from any theory of the dynamic motion of cars, nor are these models used in
any way to predict the motion of cars. Indeed, in most cases, there is no hypothetical motion
of cars for which the proposed processes would be invariant. Yet these models are useful as a
means of approximate representation of expeﬂmeﬁtal results and for the calculation of various
quantities which are not expected to be very sensitive to the detailed stochastic structure, for
example, the rate at which cars can merge or cross a traffic stream is determined primarily by
the marginal probability distribution of headways.

The second theory to be discussed here is due to Carleson [1]. This theory is similar
in many respects to the weak interaction theory discussed in chapter I, section 2. Some of
the mathematical difficulties discussed in chapter 3 in extending such theories to higher

densities are avoided, however, because Carleson considers only the question of how the time

the mathematical difficulties discussed in chapter 3 in extending such theories to higher
densities are avoided, however, because Carleson considers only the question of how the time
average velocity of a car of given desired speed depends upon the density and free speed
distribution of the other cars. To evaluate this he then uses a mode] specifically designed o
that this average velocity does not depend upon the detailed stochastic structure of the traffic.

Specifically he assumes that the passing delay to a given car depends only upon the number
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of cars it passes but is independent of whether these cars are in queues or not. If one takes
the delay per passing to be the average delay suffered in the absence of queues, this
approximation has the attractive feature that it should never overestimate the consequences of
passing because it does not include the additional delays that result when a driver must wait
in a queue for other cars 1o pass some slower car.

The third type of theory is due mainly to Miller [2]. He introduces an artificial
stochastic model for the passing discipline designed so as to guarantee that in statistical
equilibrium the probability distributions for the positions of queues having any specified range
of velocities define a Poisson process. Although this model is very crude it is mathematically
tractable because of the special mathematical properties of Poisson traffic. This theory
describes the evolution of the system, as well as its equilibrium properties.

The fourth type of theory originates with Tanner [3]. He considers a two-lane road in
which all cars in the same la.r;e travel with the same constant velocity and with a preassigned
equilibrium probability distribution of spacings. He then introduces a single fast car into one
lane and investigates the passing delays for this car. To pass a slower car, the fast driver must
find a gap in the opposing traffic stream. Tanner takes a sensible model for the passing
mechanism but an artificial model for the probability distribution of slow cars.

The fifth model is due to Prigogine [4]. It is a semi-macroscopic theory in which the
mechanism but an artificial model for the probability distribution of slow cars.

The fifth model is due to Prigogine [4]. It is a semi-macroscopic theory in which the
velocity distribution of cars is assumed to obey a certain differential equation. The main
objection to this theory is that it is based upon postulates regarding the collective behavior of
cars which are not obvious consequences of any well-defined notion of how drivers behave

individually.
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In each of these theories one is groping to obtain some crude results even if one
cannot understand the relation of these models to what really happens. The real mathematicatl
problem of how to handle statistically dependent trajectories is avoided in each of these
theories. Carleson avoids it by asking only a simple question and by choosing a model in
which the answer to the question is not sensitive to the stochastic structure. Miller avoids it
by picking a model that is certain to yield only Poisson processes the properties of which are
well understood. Tanner avoids it by having all cars but one travel at the same velocity so
that the interactions exist only between the reference car and a stream of non-interacting cars.

Prigogine avoids it by jumping directly to a macroscopic theory.

2. Point processes. In some applications to merging and crossing problems, it is necessary to

have some stochastic description of headways or spacings in a traffic stream of moderate
density. It is not necessary that we know the history of the process or that the description
gives a completely correct representation of the statistical dependencies. It is important that
the models be fairly simple so that subsequent uses of them will not become prohibitively
complicated. Here we shall review a few properties of general point processes and some other
properties of special processes which are convenient representations of highway traffic. We

will discuss these in reference to events in time, namely crossing times of cars at a fixed

properties of special processes which are convenient representations of highway traffic. We
will discuss these in reference to events in time, namely crossing times of cars at a fixed
highway position, although the same considerations also apply to events in space, the
positions of cars at a fixed time.

a. Stationary point processes. Some heuristic discussions of point processes were given

already in chapter 2 as a background for the description of Poisson processes. A more
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rigorous definition of (stationary) point processes requires some care. If we let --, T,, T, T,
T,, T,, - be the random time points of a point process, we might be tempted to define
probabilities through a joint distribution function of all the T, i.e., a function

Fl-ty, tt, t, -)=P{ - T, <t, T,<t,, T, <t, -}
It is not obvious, however, that such a function has any precise meaning, particularly in view
of the heuristic interpretation of a stationary process: any specified T,, say, is "equally likely
to be anywhere" and has, therefore, probability zero of being in any finite interval. There are
several other approaches that are more meaningful, however. For example,
(1) Suppose that for every collection of finitely many disjoint intervals, 1,, I,, -- I, of the real
line, we specify the joint probability distribution of the numbers, N;, N,, -- N, of T, in I}, L,
--, I, respectively. (Note that we do not try to identify which of the T; are in I, I, etc.). This
is a generalization of the definition of a Poisson process as one for which the N; are all
independent and Poisson distributed. Since these probabilities must be specified for every
choice of m and every choice of the L, there is an enormous range of possibilities. These
probabilities are restricted, however. If, for example, we choose m = 2, I, the interval (t, t
+t,) and I, the interval (t + T, , t + T, + T,), then choose m = 1 with I, the interval (t, t + T,
+ 1,), the random variable N,” for I,” must be the sum of the random variables N +N, of I,

and I, i.e.,

+ T,), the random variable IN,” IOr i; MuSst De tNe sum OI INE randaoIl VArlaoles N +IN, UL &)

and I, i.e.,

P{N’ =n} = E P{N, =n ,N, =n} .

o+ =

A stationary point process is one for which these probabilities are all invariant to a translation

of the time axis. If I, is the interval (t,, t,"), L, the interval (t,, t,"), etc., then the joint
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probability distribution of N|,N,, etc. is the same as the joint probability distribution for the
numbers N, N,’-- in the intervals (t,+1, t,+1), (t,+7, t,’+7) etc. for every T.
(2) In view of this restriction that the number of events in the union of two sets I, must be

the sum of the events N; in the sets, it may be more convenient to define a random function

N() = + number of events in (0,1 fort>0
- number of events in (+1t,0) fort<O.

The probability structure of N(t) is defined if for arbitrary times t, < t, < -- < t,, we give the
joint probability distribution of the random variables N(t;), N(t,),.., N(t,,). These N(t) are
restricted only by the condition N(t,) £ N(t)) < .. <N(t,). If we know the probabilities as
defined in (1), we can evaluate the probabilities for the N(t;) or vice versa under the rule that
the number N, in an interval (t;, t,) is N(t,)-N(t,).

The process N(t) is not itself stationary. It is called a process of stationary increments
if the distributions of the random varables N(t;+1) - N(T), N(t,+7) - N(7), .... are independent
of T. Processes with stationary increments were encountered before. The position x(t) of a car
undergoing a2 Brownian random motion, with the velocity v(t) defining a stationary process, 1s
of this type.

3 Suppose we pick some reference point, at time 7. Let

T,(t) = smallest t; with T21
3 Suppose we pick some reference point, at time 7. Let

T,(t) = smallest t; with T21
and --, T (1), T_,(7), T,(T), T;(T) --be a renumbering of the T; so that Ti(1) < T;,,(7). Now
define the process by giving, for every n, the joint probability distribution of the Tj(t), -n < J
£ 1, or equivalently the joint distribution of T,(t) and the varabies T,(7)-T;,(t). The process

is stationary if these distributions are independent of 7.
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4) From interpretation (1), we see that if I, --, I, is a partition of the interval (t, t+1)
into m equal parts, then

E{N, + N, + ... + N } = Sm; E{Nj} =m E{N,)

J=l

because stationarity implies E{N;}=E{N,} for all j. If we denote by q the mean number in the
unit interval, the left-hand side above, then the mean number in an arbitrarily small interval of
length dt= 1/m is q dt. If, however, events occur only one at a time and only finitely many
occur in any finite time, then the number in an arbitrarily small interval of length dt must be
either O or 1 with probabilities 1-qdt and qdt, respectively. Thus for a stationary process of
single events there is a probability qdt of an event between t and t+dt, q being independent
of t. If an event occurs in this interval, we label it as event O with T =t and proceed now to
specify the joint probabilities of all finite collections of the times T;-T;,. The stationarity is
specified through the fact that these distributions do not depend upon t.

The first two ways of describing a point process are perhaps most directly suited to
the study of traffic flow past a point, since it gives directly the number crossing in any time
intervals. The last two are most convenient for describing headways and are also
mathematically usually the most convenient because in some sense they involve the least

amount of redundant information (particularly (4)).
mathematically usually the most convenient because in some sense they involve the least

amount of redundant information (particularly (4)).

One of the peculiar features of general stationary processes is that the headways T(T)-
T;.,(t) as specified in (3) are not the same as the headways T-T,, as described in (4). In (3)
we started from an arbitrary time T and called the next event T, whereas in (4) we chose an

arbitrary time t but identified a T, only if an event occurs in a small interval (t, t+dt). In the
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former case, the distributions of the Tj('r)—Tj_l('c) depend upon the time interval T -t and .
furthermore they are not necessarily independent of j. In the latter case we may not find an
event in (t,t+dt) in which case we repeat the experiment unti] we do. When we find an
interval containing an event, the times T;-T;, will be identically distributed and independent
of t. The distinction between these two will be described briefly here. For a more thorough
investigation see McFadden and Weissblum [5,6].
If we adopt the fourth way of defining the point process, it can be specified through

the value of q and, if

of
F(x) = P(X;<x}
Fyxy) = P(X;<x, X, <y} k=12, --
Foo(x3.2) = PIX<xX, <3 Xy < 2}, k0= 1,2, etc.
These distributions are all independent of j because of the stationarity. Each distribution
function of n variables implies those of n-1, n-2, etc., for example,
Fyxy) = F o (%y,%),

thus some of the above description is redundant. But we cannot define the distribution

function for infinitely many variables so that it would imply the distributions of any finite

thus some of the above description is redundant. But we cannot define the distribution
function for infinitely many variables so that it would imply the distributions of any finite
number.

Suppose now we derive the distribution functions of the Ty(7) of the third description
in terms of the above functions of the fourth representation. If we start at some arbitrary time

1, there is a probability qdt, that an event will occur between t, and t +dt, (independent of T).
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If this happens we identify this event as the event T,. There is a probability 1-F(t-1) that T,-
T., > t,-T, so that the event at t; is the next one after 1, and therefore a T (1). The distribution
function of the time to the first arrival T (T)-T is therefore the product of these two

probabilities, the probability that T ,(t) = T, and T, is between t, and t+dt,, integrated over t,

ie.,

PIT(M® -1<2)=¢ [ [ - Ft, - O] &,

(2.1)
g [0 - Fey o
Similarly the distribution function of the time since the last arrival is
Pt -T,M <2} =q [ [ - F&ldz - (2.12)

If this is to be a proper distribution function, it must go to 1 for z—e, ie.,

o

g [[L-Fed = 1.
We can integrate this by parts to obtain
We can integrate this by parts to obtain

glZ[1 - F&)S + fz/ dFZ)) = 1

but 1-F(z')—0 for z'—e and if q # 0, it is also true that z'[1-F(z")]—0 for z’—e. Therefore,

the end terms both vanish and
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g [11-FeNds =q (2 aFe) = 1.

The last integral we recognize as the mean time between events. Thus

qEB(T;-T,,] = L
This relation is heuristically obvious. Over a long length of time L, the mean number of
events in L is qL. But L must also be the number of events times the mean time between
events (except possibly for some fractions of interevent times at the ends). Thus

qLE[T,-T,} =L
Consider next the distribution of the time T (7)- T.,(T), the time between the events

containing T. The probability that T, is between t, and t, + dt, and T, lies between t | and t,
+dt, is

g dt, dF(t, - t,).
The probability that T (1) - T_;(T) lies between z and z+dz 1s obtained by fixing t-t, = z and

integrating overall values of t, with t; =t-z<Tand T <t, Itis
dF(z) q Tj-z dt, = gz dF(z) .
The distribution function of T (T) - T ,(T) 1s therefore,
The distribution function of T (t) - T_(7) is, therefore,
F'(2) = ¢q jz’ dF(z) . (2.2)

The first important difference between the T, - T, and T(7) - T, (1) is that T(t) -

T_(7) has a probability density (if it exists) that is weighted by an additional factor of z
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compared with that of T,-T_,. Another interpretation of this is that if we were to select a point
at random on the infinite time axis, we are more likely to land in a long headway than a short
one. In fact the probability of landing in a headway is proportional to its length.
We have seen that the marginal distribution of T (T) - T (1) is not the same as that of
T, - T,,. If the T; - T;,, are statistically independent, then the distribution of T;(7) - T;.((1), j#0,
are also independent of T,(7) - T.,(1). Furthermore, Ty(T) - T, (1), j#0, have the same distribu-
tions as T; - T;,. The headway one lands in at time T is not typical, but all others are. If the T;
- T}, are statistically dependent, however, the T;(0) - T, (T) will in general not have the same
distribution as the T;-T;, for any j. The joint distributions of the Tj(t) - T;,(T) can be
evaluated from those of the Tj- T;,, however. The procedure can be illustrated by the case of
T,(1) - T,(1) and T (T) - T (7). |
The probability that T (T) is between t, and t, + dt,, T ,(T) is between t, and ¢ + dt,,
18
g dt, dF(t,-T ,, ¢, - t,)
=q fi(t,-t, t,-t,)dd, dt,
if f (.,.) represents the two dimensional density of X, X,,,. The joint density of T,(1)-T, (1)
and T,(7)- T,(T) at X,y is obtained by integrating this overall t, with t-t, and t,-t, fixed at x

and y respectively. Thus
and T, (t)- T,(T) at X,y is obtained by integrating this overall t, with t-t, and t,-t, f1xed at X

and y respectively. Thus

fa,w= [dafe.n=axf &,y

The joint distribution function is
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x y
Foao=[a [aygx 6.9
If we let y—eo we obtain the marginal distribution function of T (1) - T_,(7)
F@ = [a¢gf [fd,y) = [ @ adfix) = [ grar)

as derived earlier. If the T, - T}, are independent

filx'y') = fX )

and

Rh,w=bdfwvw1b@vwi
= F(x) FO) .

Thus as described before T (1)- T,(T) is statistically independent of T (7) - T ,(t) although
they do not have the same marginal distribution functions.

If, we et x—o0 we obtain the marginal distribution function of T,(T)-T,(T)
g Y
Flo,y) = [a¢ [a ax f, &0, ¥)
Flo,y = [ad [ay od f, 0, y)

which, in general, is not the same as F(y).

One can construct all sorts of hypothetical processes with peculiar properties. For

example, we could have a stationary process in which T; - T;; were non-random but alternate
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between the values 1 and 2, ie., if T - Tj_l =1 then T, - T; = 2 and vice versa. For this
process

P{T,-T,=1}=12,P(T,-T,, =2} = 12

E(T,-T,}=32 ,q=2/3

The joint distributions are such that once T, - T, is specified the other T, - T, are also
specified. All probabilities are either 1/2 or 0. But P{T (1)-T (1) = 1} = 1/3, P{T (1) - T, (7)
=2} = 2/3. Also the probabilities for any choices of Ty(t) - T;,(t) will have only the values
173, 2/3, or 0. The T;(7) - T;,(7) and T, - T;, do not have the same marginal distributions for
any j, not even for j—oo,

Although the stochastic properties of headways in highway traffic could be quite
complicated, we expect that they should always have one property not shared by the above
example, namely X; and X, should be statistically independent (or nearly so) for |j-k|
sufficiently large. This also implies that for sufficiently large j the joint distribution of the
T(7) - T;,(7) should become nearly identical with those of the T; - T; . In this regard we are
still thinking of the traffic stream ideally as a stationary point process, which is valid only for
finite times of the order of an hour at most. These statistical correlations should, however,
decay in a much shorter time, probably less than one minute,

Although the concepts of joint distribution functions are mathematically well defined

decay in a much shorter time, probably less than one minute.

Although the concepts of joint distribution functions are mathematically well defined
and can, in principle, be evaluated experimentally, there are obvious limitations to what one
can do in practice. Most experimental work has been concentrated on the evaluation of the

marginal distributions of single headways, F(x). As a practical matter again, these headway
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distributions are usually inferred from measurements on successive headways starting from a .
randomly chosen time T as in the third scheme above.

The "thought experiment” associated with the fourth scheme is to choose a short time
interval (t, t + dt), see if there is an event in dt. If there is, one can then observe an arbitrary

number of headways T;-T;

i1 J = 1,2,-- limited only by the requirement that the process be

stationary, all of which have the same distribution. If one fails to observe an event in dt,
however (which will happen most of the time), then one must repeat the experiment under
what are supposed to be identical and statistically independent conditions, a concept that is
experimentally not too well defined. The difficulty with this procedure is that one cannot
afford to give up the experimental trial every time one fails to observe an event during the
prescribed interval of time dt.

If one can devise an experimental procedure based upon the third procedure, one is at
least guaranteed of obtaining some data within a finite time. The difficulty, however, is that
the first few headways are not typical. One probably would not ordinarily observe or try to
use the time T (7)-T in the estimation of F(x). Suppose we were to start with the headway

T;(D)- T;.(1), j21 and cousider the quantity,

F(x) ~1_ x number of T(1) - T, (T) less than x, k=j ,j+1,..j+n -1

F(x) ~1_ x number of T(1) - T, (T) less than x, k=j ,j+1,..j+n -1

j+n-1

1
=~ Y 7

k=j
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1 fTM -T_ (D) <x
with Z(x) = |0 if T(t) ~T,_(1) > x

for the n headways starting with Ty(1) - T;.,(1). This F(x) or the mean of several observations
of F(x) is what one would typically use as an estimate of F(x). The accuracy of this estimate,
however, depends upon the degree of statistical dependence.

If the T, (T) - T\,(T), k > 1 are statistically independent, they will all have the same
distribution function F(x). The quantity nF(x) for fixed x is an integer valued random variable
with a binomial distribution corresponding to a probability of "success or failure,” Z,(x) = 1
or 0, of F(x) and 1-F(x), respectively. For n—eo, F(x) will with probability 1 converge to
F(x) (law of large numbers) and furthermore F(x) will be asymptotically normal (central limit

theorem) with mean ¥(x) and variance
= 2
Var F(x) = Z F(x)[1 - F(x)] .
n

Most textbooks on mathematical statistics also describe more detailed properties of the
stochastic properties of the dependence of F(x) upon x. This is equivalent to a classic problem
of estimation of a distribution function from independent repeated trials.

If the T, (1)- T\.;(%), k > 1 are statistically dependent, one would probably still use the

~
anma actimata T/v) hart the actimate anill he lace arrnrate far a oiven finite valie of n for twa

If the T, (1)- T\.;(T), k > 1 are statistically dependent, one would probably still use the
same estimate F(x) but the estimate will be less accurate for a given finite value of n, for two
reasons. First of all, F(x) might be a biased estimate of F(x), i.e.,

E{F(x)} # Fx)
because the first few T, (T) - T,,(T) at least will not have a distribution function F(x). Since,

before one does any experiments, one does not know the joint distributions of the T, (T) -
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T,..(T), one cannot very well correct for any bias. The safest thing to do is to disregard the
first few headways, however many one thinks might be correlated with the biased selection of
T.(D - T.,(0).

In addition, the variance of F(x) is likely to be larger with statistical dependence.
Suppose that T,(T) - T,,(T) was statistically independent of Ty(T) - T,,(T) for (k-8) > M for
some number M. We could extract from the headways only every Mth observation. These
T, (7) - T,.,(T) would then be independent but from an experiment of given length n we

would use only about n/M observations and therefore

Var F(x) = 2 F)[1 - F(x)] .
n

Unless one knows something about the covariances of the T, (T) - T, ,(T), one cannot evaluate
Var F(x) for the full number of n observations. One can show, however, that for n—eo, F(x)
— F(x) with probability 1, and that [F(x) - F(x)}/n"* will be normally distributed with a
variance of order M"2,

To determine experimentally an estimate of F,(x,y) one can proceed similarly. Let

Fi(x,y) = % x number of k for which T(1) - T, (V) <xand T,,,(V) - T(D) <y.

Some references to experimental results were given in chapter III, reference HI [13-
n

Some references to experimental results were given in chapter III, reference HI [13-
15]. Most of this literature deals with the function F(x) and various empirical formulas for its
representation. One of the practical difficulties in evaluation of even F(x) is that F(x) depends

upon the flow and upon such things as the geometry of the highway. It is not easy to decide
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from a given collection of data taken with a slowly varying q(t), when a temporary rise in the
apparent flow is just a fluctuation or part of a systematic pattern.

b. Renewal processes. A stationary point process as described above with statistically

independent T; - T}, is, in the probability literature, called a renewal process. The name
derives from its application to the theory of replacement or renewal of repair parts. For
example, light bulbs may have statistically independent lifetimes. If a light bulb is
instantaneously replaced by a new one every time it burns out, the times of renewal define a
renewal process. There is a vast literature on renewal theory and its applications, including a
small book by Cox [7]. Most of this theory deals with the evaluation of probability
distributions for the number of events in some given time interval from the distributions of
times between events. Although this has obvious relevance to highway traffic theory, we will
not try to review here the theory of renewal processes.

It is difficult to trace the origin of the model that highway traffic be represented as a
renewal process. Many people who measured or used headway distributions, and observed
that they were not exponential, assumed that the headways were statistically independent
without realizing that it could be otherwise. The literature on queueing theory also contains
many papers that claim solutions for certain problems for an "arbitrary" distribution of

arrivals or service times when they really mean an arbitrary renewal process of arrivals.

many papers that claim solutions for certain problems for an "arbitrary” distribution ot
arrivals or service times when they really mean an arbitrary renewal process of arrivals.

There are no experiments that obviously point to the unsuitability of a renewal process
as the process of arrivals. There is even some suggestion that it might be a reasonable

approximation. For low density traffic as described in chapter ITI, section 3, we saw no
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inconsistency with a renewal hypothesis although the traffic stream was described as being a
superposition of Poisson processes for singlets and for pairs.

There are some experimental studies which describe, in a rather qualitative way, the
tendency of traffic to form platoons [8,9]. The long headways have approximately an
exponential distribution, the short headways some distribution about the mean spacing for
“car-following." If we choose some, more or less arbitrary, time and consider all headways
less than this to be platooned cars, we can then discuss the distribution of the number of
consecutive platooned cars. If traffic is a renewal process, the probability of a headway being
identified as a platoon headway, is statistically independent of whether or not the previous
headway was short or long, or how many previous cars were considered to be in platoons. If
p is the probability that a car will be in a platoon, then the number of cars in a platoon has a
geomeltric distribution

P{number in platoon = n} = (1 - p)pn
There are very few experiments on distribution of platoon lengths and most of these are very
crude. Although one can probably find other distributions for the lengths that fit the
experiments better than the geometric distribution, the geometric distribution has at least the
correct qualitative shape and is not obviously incorrect.

As theoretical models become more refined and experimental data more plentiful, the

correct qualitative shape and is not obviously incorrect.

As theoretical models become more refined and experimental data more plentiful, the
assumption of a renewal process will undoubtedly be replaced by something better. It seems
clearly inaccurate in some respects. For example, one would expect that a long headway is

frequently followed (and caused by) a slow car, which in turn is frequently followed by a
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platoon. Thus long headways are likely to be followed by a succession of small ones, contrary
to the statistical independence postulate.

¢. Random queues, block-gap processes. Miller [8] proposed a model of traffic as a

compound Poisson process, i.e., a point process each point of which represents a platoon
rather than a single car, the number of cars in the platoon being a random variable of
unspecified distribution. A more realistic model can be obtained from this by assignment of a
physical length to the queue and perhaps some internal structure of headways (but not
necessarily a renewal process). Experiments do indicate that the marginal distribution of long
headways is nearly exponential, so the assumption of Poisson process for the queues seems
reasonable. Although it might be mathematically inconvenient to assume that platoon lengths
are statistically independent of each other and of the long headways, this may not be
physically desirable if very long headways are likely to be followed by long queues. It might
be better to represent traffic as a Poisson process of platoons with the lengths of the platoons
statistically dependent upon the headway proceeding the queue. Such a process is a Markov
process. If one starts with a long headway one selects its value from an exponential
distribution, then depending upon what was selected one next selects a platoon length from
some other distribution. The following headway is then selected independent of the past again

from the exponential distribution, etc. The starting points of successive platoons would in this

some other distribufion. ‘Lhe tollowing headway 1s then selected independent or the past again
from the exponential distribution, etc. The starting points of successive platoons would in this
case define a renewal process, but the internal structure between these points would involve
statistical dependencies.

Models of traffic of essentially the same types as the above have also evolved in a

different context. One of the problems for which a knowledge of the stochastic properties of
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the traffic stream is relevant, is the calculation of merging or crossing rates. In the analysis of .
merging or crossing, it is customary to think of traffic as an alternating sequence of "blocks
and gaps." Blocks are periods of time during which there will be no headway larger than
some preassigned value, so chosen as to guarantee that no crossing is possible within the
block. Gaps are the remaining times during which a crossing may be possible. The headways
used to define a blocked period may depend upon the crossing properties of drivers, the
geometry of an intersection, etc., but otherwise there is no difference between the
mathematical definition of a block and the definition of a platoon. In either case the
maximum headway used to define a block or platoon is chosen in a rather arbitrary way.
Many papers have been written on distribution of block lengths, particularly as this
relates to queueing for gaps. Calculation of block lengths for Poisson streams were made as
early as 1936 by Garwood [1] and later by Tanner [11], and Raff [12]. These were extended
to renewal processes by Mayne [13], Weiss and Maradudin [14] and Oliver [15]. More
recently, however, the trend has been to postulate some arbitrary distribution for the block

lengths to calculate queue lengths, etc. for crossing [16, 17].

3. Carleson theory. In the theory to be discussed in this section we imagine again a situation

analogous to the homogeneous highway fed by an ideal parking lot as discussed in chapters II

3. Carteson theory. In the theory to be discussed in this section we imagine again a situation

analogous to the homogeneous highway fed by an ideal parking lot as discussed in chapters II
and . The cars in the lot have a probability distribution function for desired speeds F,(v)

and they travel at their desired speeds except possibly when trying to pass other cars.
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As in chapter III we wish to evaluate the time average velocity u(v) of a car with
desired speed v. The present scheme parallels that used in chapter III but differs in the
following respects.

1. The spatial distribution of velocities f(v) in III (2.2) is taken to be the one
described by I (2.5) corresponding to an assumption that the distribution of velccities of the
cars selected from the lot does not depend upon the flow q. The average number of cars per

unit length of highway with velocity between v and v + dv is thus taken as

tfsdy = I G.1)

u(v)

in which F,(v) is specified and independent of q.

2. The average rate at which cars of desired speed v overtake those of desired speed
between v’ and v’ + dv’ is now chosen to be

[u(v) - u(v')] k f(vV')av' = q [u(v) - w(v')] d FV')/u(v’) (3.2)
as compared with IIT (2.1) where u(v) - u(v’) was replaced by v-v'.

3. We again define a function d(v,v’) as the average loss in the distance traveled that
results when a car of desired speed v must pass one of desired speed v’. The function d(v,v’)
is assumed to be known.

The time average distance traveled per unit time by a car with desired speed v is

is assumed to be known.
The time average distance traveled per unit time by a car with desired speed v is
given by an equation similar to I (2.2). It is the distance v less the average loss in distance

traveled per unit time due to all passings evaluated from the above expressions (3.1) and

. (32), ie.,
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uv) =v - ¢ deV(v') dv,v') [u(v) - u(V)u(v’) . (3.3)

To derive these relations one must make certain reasonable postulates about the
stochastic properties of traffic. The implications of (3.1) have been described previously. For
(3.2) we assume first that a car of desired speed v never passes one of desired speed v’ > v

and that it passes one of speed v'<v at most once, even if some queueing may occur. Over a
long period of time T, a car of desired speed v will travel an average distance u(v)T. The
actual distance traveled is a random variable but it is reasonable to assume that for
sufficiently large T, the fluctuations in the distance traveled are small compared with the
mean distance. Similarly [u(v) - u(v")] is the average distance a car of desired speed v gains
on one of desired speed v’. The average number of cars with velocity in dv’ that must be
passed is this latter distance times the average spatial density of cars with velocity in dv’. We
are saying here that the average of a product, the product of a distance and a number of cars,
is equal to the product of the averages. This can be justified, however, on the grounds that the
distance in question is, for sufficiently large T, almost always very close to the average.

By an appropriate interpretation of d(v,v’), one could always guarantee that (3.3) is

correct. The difficulty lies in the assumption that d(v,v’) is known. If there is queueing and

Athor aamnlicatad intarantinane hafuraan rare Ana et talra fae A/ v tha avrarnra ~AF tha lhee

correct. The difficulty lies in the assumption that d(v,v’) is known. If there is queueing and

other complicated interactions between cars, one must take for d(v,v’) the average of the loss
in distance traveled averaged over all possible circumstances wherein a car of desired speed v
passes one of desired speed v’ including queueing times. If this is done, d(v,v’) becomes also

a complicated functional of F(*) and a function of q. To avoid this problem we postulate
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. that there are no queueing times and that d(v,v’) is the loss that would exist if cars interact
only two at a time.

With this interpretation of the loss d(v,v"), (3.3) and III (2.2) agree to first order in the
density k or the flow q for small k or q. There is no reason why (3.3) should give
quantitatively realistic values for u(v) for higher flows, but the equation does describe the
behavior for a hypothetical situation that has some qualitative similarities to real traffic (if we
were to extrapolate III (2.2) to large k we would obtain negative velocities).

Equation (3.3), considered as an equation to be solved for u(v) in terms of known
functions Fy(v) and d(v,v’) is, in its present form, a non-linear integral equation. If, however,

we let

1
= .4
o) = 5 3.4

be the unknown we obtain for ¢(v) the linear integral equation

4V oy - 0] (3.5)

1%

1, ,
o) = = q!dmv)

or
1+q [dFW) dw,v) o)
1+q [dF0) dw.v) )
o) = o - (3.6)
v +g deV(v') d(v,V)
Equation (3.6) is a Volterra type integral equation. If velocities are bounded away
. from 0, v > v_, for some minimum velocity v, the solution of (3.6) is known to exist for any
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g > 0 and can be constructed by successive substitution of the value of ¢(v) given by the left
side of (3.6) into the integral on the right. Even though the solution exists for some particular
d(v,v"), it still is necessary to verify that the solution u(v) is monotone increasing or
equivalent ¢(v) is monotone decreasing. If d(v,v") were chosen to be a rapidly increasing
function of v, there is the possibility that fast cars will be delayed so much as to have a
slower time average velocity u(v) than some cars of lower desired speed. If such is the case,
however, equation (3.6) is no longer valid because it gives rise to an artificial negative rate of
passing in (3.2) and a corresponding gain in speed.

There are a number of special cases of (3.6) that lead to fairly simple solutions. The
method of successive substitutions as applied to (3.5) leads to an expansion in powers of q
which for small g agrees with HI (2.2) to order q but the complete expansion is quite
awkward to use. If F(v) is a discrete distribution let v have the value v, with probability p;,

and order the v, so that v, < v, < --. Then (3.6) becomes

j-1
L+q) p dy.v) o)
¢(V_,-) =l (37)

-1

VJ. + qzl P,- d(Vj,Vi)

1/v

o(v)

t

This gives ¢(v;) in terms of the ¢(v;) for i < j. The solution is defined by successive

Yy sevy

This gives ¢(v;) in terms of the ¢(v;) for i < j. The solution is defined by successive

evaluation of ¢(v,), §(v,), etc. Thus

1 + gp, d(v,,v)lv 1
¢(V2) - 1 2 1 1 =
v, + q p, dVv,,v) u(v,)

(3.8)

is the complete solution if there are only two velocities v, and v, . Considered as a
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function of g, other quantities being fixed, we see that u(v,) is a monotone decreasing
function of q having the free speed value v, for g = 0 and the value v, for q—e<. There is
nothing in this model that limits the density of cars or the flow so that the limit q—oo is
meaningful in this model even if it is physically unrealistic.

For three velocides (3.7) gives

1 ) ¢(v3) ) 1 +g D, d (v3,v2) qJ(v2) *+ g p, d'(v3,vl)/v1 3.9)
u(v3) v, +4qp, d(v,,v,) *+ ¢ 12 a(v,,v,

in which the ¢(v,) is given by (3.8). The only point we wish to make here is that if q is large

enough (3.9) gives

D, d(v3,v2) o(v,) + p, d(v,,v)Iv,

(3.10)

¢(V3) -~

For q—9e, we have from (3.8) that ¢(v,)—1/v, and therefore ¢(v;)—1/v, also, but if p,d (v,,v,)
in (3.8) is small compared to the p,d(v,, v,) and p,d(v,,v)) in (3.9), i.e., the faster cars suffer
much larger delays, we could find an intermediate range of q where (3.10) is valid but ¢(v,)
is still nearly equal to 1/v,. In this case ¢(v;) lies between 1/v, and 1/v, and is, therefore,
larger than ¢(v,)~1/v,. This gives rise to the situation described above where the fast cars
travel slower than the slow cars and the theory is not valid even though the equations have

well-defined solutions.

travel slower than the slow cars and the theory 1s not vald even mougn ne equauons nave
well-defined solutions.

The behavior of ¢(v) for a continuous velocity distribution is qualitatively similar to
that of a discrete distribution. For the minimum velocity v, we have that ¢(v)=1/v_, so if the
monotone properties of ¢(v) are preserved ¢(v)< 1/v,, for all v2v,. This means that, in (3.5),

the term ¢(v) and 1/v are bounded for all q and consequently, for q—eo, the integral in (3.5)
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must go to zero. But this integral, having a non-negative integrand, can vanish only if ¢(v") .
— ¢(v) for all v and v’ where dF,(v")d(v,v’) > 0. This, in turn, implies that ¢(v)—1/v,, for
q—ee provided F(v)>0 for any v > 1/v_ (there are cars with velocity arbitrarily close to v,,).

There are also some special forms for F,(v) and d(v,v") with continuous distributions
that lead to relatively simple solutions for (3.5) or (3.6). Carleson considered in some detail
the special case in which d(v,v") = d v/v’ for some constant d. The more general case in
which d(v,v") has a product form

dv,Vv') = a(v)B(v') (3.11)

for some more or less arbitrary functions o and B is also convenient.

A formal solution of (3.5) can be obtained if we write (3.5) in the form

vew) _ 1, “d N
a) o) ‘JI F(V)BOIOG) - ()]

and then take the derivative (denoted by a prime) of both sides with respect to v. This gives

vo'(v)

1 —
[ a(v)

100) + v + g fd F ) dw V)] () = - ‘;‘L ((:)) (3.12)

which is a linear first order differential equation for ¢(v). If all velocities are larger than v,

we can everywhere replace lower limits of integration v’=0 by v’=v,. For v=v, we know that

which 1§ a linear first order ditterential equation for ¢(v). If all velocities are larger than v,
we can everywhere replace lower limits of integration v’=0 by v’=v,. For v=v, we know that
d(v,)=1/v, which gives us a boundary condition for the differential equation.

Equation (3.12) has an integrating factor
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W() = exp f dz [1 - z &/(2)/0(z)]

(3.13)
- 2 +qdeV(x) d(z,%)
and a solution
_ 11 dz ol(z) W(2)
" W) W) f (3.14)

0@ [z + ¢ [dFx) a@n

This solution with arbitrary @(z) is a bit too complicated to be very instructive. One can,
however, reconfirm that for g—ee, W(v) — 1 and ¢(v) — /v,
If ¢(v) is to be monotone non-increasing in v, we must have ¢’(v) £ 0. From (3.12)

we see that this implies

o [ v on(v)}
ol(v) { a(v) o)

or

o) o 1 (3.15)

If this 1s to hold for arbitrarily large q, i.e., for u(v)—v,, then we must have

If this is to hold for arbitrarily large q, i.e., for u(v)—v,, then we must have

a(v) o 1
o) v -v

m
for all v. Carleson’s choice of 0i(v) = v satisfies this condition but one cannot allow o(v) to

increase as a power of v larger than one.
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For the special case o(v) = v, W(v) = 1 and (3.14) gives

v

o0 = — - |

m v
m

dz

221 +qdeV(x> B(x)

as given by Carleson. If a(v) = 1, (3.14) gives

- 1 _ 1 _ v dz
00) = iy T i

v

“i+g fd F (%) B

The total number of passings per unit time and unit length of highway

oo

. f d F ) f d F ()

o e [u(v) - u(¥)]

- ‘IT ojd F ) ojd F, )] 60) - 00" |

For low flows this is proportional to q* but for high flows, ¢(v)—1/v,, and one can
readily see from the above expressions for ¢(v) that ¢(v) - d(v’) typically vanishes as q' for
g—oo. The rate of passing therefore increases only linearly with q for large q (provided the

delay per passing is independent of q). In fact the rate of passing probably decreases for very

g—>ee. The rate of passing therefore increases only linearly with q for large q (provided the
delay per passing is independent of q). In fact the rate of passing probably decreases for very

large q because the delay per passing becomes large.
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VI. POSTSCRIPT

1. Low density traffic. Physicists and chemists who tried to apply the techniques of statistical

mechanics to traffic flow theory translated much of the terminology and notation of physics
into analogous features of traffic flow. This, however, was not always the most appropriate
way to describe traffic.

In physics, the distribution of the velocities of molecules at some point in space and
time depends on the Jocal macroscopic properties (particularly the temperature). Positions and
velocities are, of course, vectors in three dimensions, so, for a hypothetical one-dimensional
system, it seemed natural to introduce a joint distribution of velocity and position, the p, of II
(6.1), .and to consider the p, of II (6.2), (6.3) as a "derived property” from the p..

In physics, all molecules (of the same chemical structure) are considered to be
equivalent. Although the molecule may temporarily have a particular velocity, its velocity
changes after it collides with other molecules and it then behaves the same as any other
molecule with the same new velocity, independent of its past history. For highway traffic not
all drivers are equivalent in the above sense. A driver may be aggressive or timid and he will
take a trip from some specified origin to a specified destination regardless of how his motion

may be affected by other drivers.

Te Analice~ snith flavre Avar natoarle in whicrh vahinlace anter ar leave cnme nartienlar

may be affected by other drivers.

In dealing with flows over networks in which vehicles enter or leave some particular
road segment, it is generally necessary to keep account of where each driver will enter or
leave the highway. Presumably, if one driver should pass another or otherwise interact with

other vehicles, he will still remember where he wanted to go.
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In "traffic flow theory" one does not typically stratify drivers by origin and
destination. The implication is that the way a driver behaves in traveling over some section of
road with no entrances or exits is independent of where his trip originated or where 1t will
finally end. But even if there is some correlation between driver behavior and trip length, for
example, there would still be some (marginal) distribution of driver types averaged over all
trip lengths.

If drivers of any type (aggressive or timid) make a specified number of trips per unit
time (hour or day), this would dictate the (average) flow past some point on a highway for
vehicles of that type. Thus the relative proportions of aggressive or timid drivers passing
some point on a highway should be a property of the origin and destination of trips, (nearly)
independent of the interactions between cars. If, therefore, one wishes to describe a
distribution of driver types in terms of a distribution of "desired speeds," it is more natural to
describe it in terms of the q of II (5.2) or the p, rather than the k® or p.. If, for some reason
(passing delays or whatever), aggressive drivers cannot maintain their desired speeds, the flow
of aggressive drivers should remain unchanged, but the spatial density of such drivers would
increase.

Note that in three dimensions, velocity is a vector, and so would be the analogue of

the flow q. It would be quite cumbersome in physics to introduce something analogous to the

Note that in three dimensions, velocity is a vector, and so would be the analogue of
the flow q. It would be quite cumbersome in physics to introduce something analogous to the
p. of one spatial dimension.

The issue raised here actually has little effect on the conclusions from chapters I and
III. Even in chapter III we evaluated only the relative fractions of paired vehicles as

compared with single vehicles and only to first order in k or q. The point here is more one of
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style than substaace, but in physics the natural question is: given the state of the system (the
positions and velocities of all molecules) at time 0, what will be the state at some time t? In
traffic theory the more natural question is: given the times and types of cars entering a
highway at location x = 0, when will they pass some location x > O.

Another difference between physics and traffic is that in physics it is natural to deal
with the (vector) velocity or (vector) momentum, because there is a conservation of
momentum as a result of any interaction between molecules. Also the kinetic energy depends
on the square of the velocity and there is a conservation of energy. In traffic there is no
meaningful analogue of momentum or energy; there is certainly no analogue of the
conservation of momentum or energy. In traffic, trips will travel a specified distance dictated
by the origin-destination of trips independent of how long it takes (a "conservation" of
distance traveled).

Despite the fact that traffic engineers and the general public like to describe motion in
terms of the velocity (or speed), the quantity which enters most naturally into any analysis is
the reciprocal of the velocity, 1/v, the time to travel unit distance (the only common English
word related to this seems to be "pace"). Even the measurement of velocity is typically made
by observing the transit time between two detectors, i.€., the time to travel a specified

distance.
by observing the transit time between two detectors, 1.€., the ume 1o travel a Speciied

distance.

The basic relation of q = kv, II (2.7) suggests that one would determine the flow q
from the density k and the "space mean" velocity v, although one could write this as k = g/v.
The 1/v, however, is also equal to the arithmetic mean of the "pace" of vehicles crossing a

fixed location (the "time-mean” of the 1/v)'s), i.e., the sum of times for vehicles to pass
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between detectors divided by the distance between detectors and the number of vehicles. The .
whole issue of space mean vs time mean, harmonic mean, etc. would be much less confusing
if we could train ourselves to think in terms of the (average) pace and the flow q (which are
the things most easily measured) and consider k as a derived quantity.

Also in relation to the material given in chapters I, II, and III, noticeably absent frcm
the theory is any reference to the "Boltzmann-like" approach to traffic theory promoted by I.
Prigogine and collaborators over a period of time starting in 1959 [1] and culminating in a
book, "Kinetic Theory of Vehicular Traffic,” by 1. Prigogine and R. Herman [2] (P-H) in
1971. A discussion of this was promised in chapter V but never written. Since this theory was
supposed to apply over a wide range of densities, it would logically form a part of the
discussion for "moderate densities,” but the theory is based mostly on arguments about the
behavior of light traffic.

Reference [2], Chapter 3 on low-density traffic starts with an observation that the p,

of II (6.1) satisfies the differential equation

BP, ‘v aps =0 (1'1) !
ot ox
the solution of which is {
p(xv,t) = py(x-vtv,0) (1.2)
the solution of which is {
p(xv,t) = py(x-vtv,0) (1.2)

as in II (6.4). The interpretation of (1.1) is that the derivative dp/dt as seen by an observer
traveling with the velocity v is zero. P-H then note that a non-uniform spatial distribution
k(x,t) will tend to become more uniform with increasing time due to the spread of velocities,
but they do not point out that the velocity distribution becomes less uniform at the same time. {
@
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P-H now ask what would happen if this distribution were "perturbed as a consequence
of various factors, such as obstacles, weather, or interaction with other drivers.” Presumably
this perturbation lasts for only a finite time after which drivers are free to travel as they wish.
If we were to define t = O as the time when this perturbation is removed, then it would seem
that the subsequent motion should again satisfy (1.2) with the distribution p, at t=0 assigned
whatever was the result of perturbation.

P-H, however, now propose that there exists some "desired speed distribution" which,
in keeping with the notation used here, we will label as p.°(x,v,t). This is specifically chosen
to have a form

pl(xv,t) = k(x,t)f (v). (1.3)
The f (v) is some prespecified time and space independent probability density of (desired)

velocities. The py(x,v,t) 1s now postulated to satisfy an equation of the form

ap: ap: po - ps (14)

+ v =

ot ox T

for some "relaxation time" T (which is "a few seconds").
The effect of such a relaxation term on the right-hand side of (1.4) is not that
individual drivers recover their previous desired speeds (before the perturbation), but that cars

near some location x will collectively try to acquire a velocity distribution f (v). Thus, if at

individual drivers recover their previous desired speeds (betfore the perturbation), but that cars
near some location X will collectively try to acquire a velocity distribution f (v). Thus, if at
time 0, one had a local concentration of aggressive drivers (as would exist downstream of a
traffic signal), these drivers would quickly be replaced by drivers sampled from the

distribution f (v). There clearly is no rational justification for this.
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To model the effects of interactions between cars (at low density), P-H add another
term to the right-hand side of (1.4) which describes a mechanism by which fast cars will
overtake slower cars and follow the latter, but they do not include a mechanism for the fast
cars to return to their previous velocities after passing. The rate of overtaking is evaluated in
a way similar to that described in chapter III. If one includes in (1.4) the interaction term but
not the relaxation term, the average speed of cars would always be decreasing with time as
faster cars overtake slower ones (unless all cars travel with the same velocity). Presumably it
is the relaxation term which provides the mechanism for velocities to increase after passing,
but the relaxation term would reassign to the fast car a velocity sampled from the distribution
f,. The fast car would not recover its own previous velocity.

Our conclusjon is that this "Boltzmann-like" theory bears little relation to the real

world.

2. High density traffic. Perhaps the most important development in transportation theory

during the last 30 years is the increased use of "cumulative curves" for the description of
traffic behavior. This does not really represent any new "theory"; it is simply a more
convenient notation for describing it.

For any particular class of vehicles or for all vehicles, let

convenient notation for describing it.
For any particular class of vehicles or for all vehicles, let
A(x,t} = cumulative number of vehicles to pass x by time 1,

starting from some reference vehicle labeled as 0.
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Equivalently, if someone were to attach numbers to the vehicles in order as they passed him,
and vehicles either did not pass each other or interchanged numbers if they did pass, then
Akx,t) is the number of the last vehicle to pass x before time t.

Since A(x,t) is integer valued, the function A(x,t) is a step function in the three
dimensional space {(A,x,t). A curve in the X,t plane along which A(x,t) jumps from j-1 to j 1s
the trajectory x;(t) of the j™ vehicle. If, however, one smoothes out the steps so that the
smoothed A{x,t) has derivatives, one can define flows and densities as

q(x,t) = 0A(x,1)/3t , k(x,t) = -0A(x,1)/dx. (2.1)

The immediate advantage of dealing with A(x,t) rather than trying to describe the
details of individual trajectories, or even the flows or densities, is that any smoothing of the
A(x,t) will wipe out much of the detailed properties of vehicles which are not likely to be
reproducible anyway. The more one can smooth urregularities in the curves or surfaces, the
better one can "see" the "macroscopic” properties of the traffic. Furthermore, if one draws
curves A(x,t) at two specified locations x; and x,, X, > X, A(x;,t) and A(x,, t), the vertical
distance A(x;,t) - A(X,,t) between the curves at time t is the number of vehicles between X,
and x, at time t , and the horizontal distance between the curves at height j is the trip time of
the j® vehicle from x, to x,. Most descriptive properties of traffic behavior have simple

geometric interpretations in terms of the A(x,t). If one does not care to follow all the details

the j* vehicle from X, to X,. Most descriptive properties oI ralllC benaviol Nave SLIIpIE
geometric interpretations in terms of the A(x,t). If one does not care to follow all the details
of the motion of vehicles between various points, it would suffice to draw the curves A(xj,t)

only at certain critical locations x; (bottlenecks, junctions, etc.).
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The existence of a function A(x,t) automatically guarantees that vehicles are conserved
(if one numbers the vehicles, they will not disappear). The conservation equation IV (4.2) is

equivalent to the mathematical identity

O°A(x,1) _ *A(x,0) (2.2)
oxdt otox '

This fact has recently been exploited [3] to obtain a much simpler method of analyzing the
solution of the continuum theory of Chapter IV, sec. 4, particularly if there are shocks.
In the absence of shocks, the assumption IV (4.1) implies that A(x,t) is a solution of

the differential equation

0A (x,1) - o - 0A(x,?) (2.3)
ot 0x

(for a homogeneous highway section). A formal solution of (2.3) is obtained in the same way
as described in Chapter IV, sec. 4, by observing that q(x,t) and k(x,t) are constant along

straight line characteristic curves (as in IV (4.5)). This, in turn, means that A(x,t) must be

linearly increasing in x and t along such curves.

dAx,1) , , 9AG.D

dA(x,1) =

ox ot
=-kdx+qdt.

ox oL
=-kdx+qdt.

Thus from appropriate initial or boundary conditions where A(x,t), q(x,t), or k(x,t) are
specified, one can integrate A(x,t) along the characteristic curves and evaluate the A(x,t)

everywhere.
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If characteristic curves should intersect, this would imply that there is more than one
formal solution to (2.3) at certain points in the x-t plane. One of these solutions must be the
"correct” solution. The only 1ssue is: which solution is the correct one? It can be shown that
(for a concave function Q(k)) the correct value of A(x,t) is the smallest of all such formal
solutions. This solution will automatically have discontinuities in slopes (k and/or q) where
the formal solutions become multiple-valued. One does not need to determine the shock path
in order to evaluate the A(x,t); the shock path will emerge from the A(x,t). This method
avoids the rather tedious numerical integration of the shock equations described in Chapter
IV, sec. 4.

This is the only significant development during the last 30 years specifically related to
the type of theory described in Chapter IV.

There are deficiencies in this class of models as described, in part, in Chapter IV, sec.
9. Although for dense traffic with negligible passing, each vehicle is "following" the vehicle
ahead of it, a driver will not necessarily follow at what he considers to be the minimum safe
driving separation. If a driver has a spacing substantially larger than the minimum, he might
reach some point a few seconds later than if he drove more aggressively. He might reach his
destination a few seconds late, but, if this were an issue, he could close the gap just before he

left the road. An individual driver has little incentive to travel close to the vehicle ahead. On

MVDLULULITLL G AW Y UM Linels ATALNy WMty Am memmn i mm = mmn mmw —— mmm —— e o= o=

left the road. An individual driver has little incentive to travel close to the vehicle ahead. On
the contrary, if he leaves a substantial cushion, he can drive in a more relaxed way without
responding quickly to any action of the vehicles ahead.

Although driving at a minimum safe driving distance would be beneficial to all the

drivers behind the one in question, the only apparent incentive to the driver himself is to
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prevent other drivers, from adjacent lanes or on-ramps, for example, from jumping into the
gap. Indeed, one can observe relatively large flows at certain times or locations where drivers
have some motivation to be alert and drive with a short but safe spacing.

Models have been proposed [4,5] in which drivers traveling at some specified velocity
will have one (average) spacing if they are accelerating so as to catch-up with the vehicles
ahead, but a smaller spacing if they are decelerating so as to avoid collision. If they have
some spacing between these two limits, they are rather indifferent to minor variations in the
motions of individual vehicles. Such models can potentially predict "stop-and-go" driving, but
it is not obvious how drivers cooperatively alternate between traveling in a lazy fashion
(maybe even be stopped) and in an aggressive fashion. Certainly the laziness or indifference
of drivers is an aspect of driver behavior which affects the collective behavior but the details
are not well understood.

That traffic displays some instabilities has been recognized at least since the late
1950s. This instability, however, is not of a type associated with an unstable reaction time T
as described in Chapter IV. Presumably the T is of the order of a few seconds, but the period
of alternating stop-and-go driving is of the order of a few minutes.

There have been numerous attempts during the last 30 years to modify the continuum

theory of Chapter IV, sec. 4 with the introduction of certain "second-order effects,” relaxation,

There have been numerous attempts during the last 30 years to modify the continuum
theory of Chapter IV, sec. 4 with the introduction of certain "second-order effects,” relaxation,
anticipation, viscosity, etc. in an attempt to make certain analogies to phenomena related to
fluid mechanics. Much like the Boltzmann-like theories mentioned in the previous section,
these theories have little theoretical or experimental justification [6]. It seems that very little

progress has been made during the last 30 years to develop more realistic models of dense
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. traffic than those described in Chapter IV even though it is known that these models are not

always consistent with observed behavior of traffic.
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