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Abstract

Results from a number of different approaches to quantum gravity suggest

that the effective dimension of spacetime may drop to d = 2 at small scales.

I show that two different dimensional estimators in causal set theory display

the same behavior, and argue that a third, the spectral dimension, may

exhibit a related phenomenon of “asymptotic silence.”
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1. Introduction

In classical physics, the dimension of spacetime is a fixed parameter, specified from the outset.
In quantum gravity, this may no longer be the case: dimension may be a quantum observable,
taking different values under different circumstances. In particular, there are intriguing hints from
a number of different approaches to quantum gravity that the effective dimension of spacetime
drops to two at very small distances [1, 2]. This “spontaneous dimensional reduction” was first
noted in high temperature string theory [3], and then a few years later in the discrete path integral
approach of causal dynamical triangulations [4]. Since then, the same behavior has been seen in
the asymptotic safety program [5, 6], the short distance approximation to the Wheeler-DeWitt
equation [1], aspects of loop quantum gravity [7], some formulations of noncommutative geometry
[8–10] or minimum length [11], and perhaps Hořava-Lifshitz gravity [12]. The generality of these
results suggests that dimensional reduction may be a fundamental feature of quantum gravity.

One important approach to quantum gravity, however, seems to be an exception. In [13],
Eichhorn and Mizera show that the spectral dimension of a causal set increases at short distances.
In this paper, I will show that two other dimensional estimators for causal sets—the Myrheim-
Meyer dimension of a small causal set and the dimension determined by the causal set Laplacian—
display the more standard drop to d = 2 and short distances. I will argue that the Eichhorn–
Mizera result may have a different interpretation, as an indication of short distance “asymptotic
silence” [14], a behavior that has also been associated with dimensional reduction [1, 2, 15].

This paper should be read as a report on work in progress. As we shall see, a number of
relevant concepts (e.g., Hadamard Greens functions on causal sets) and calculations (e.g., Myrheim-
Meyer dimension for “small” causal sets with more than six elements) do not yet exist. But the
preliminary results are promising, and this seems to be a program worthy of further study.

2. Causal sets

A causal set [16] is a discrete spacetime in which events have prescribed causal relations. Such
a set is characterized by a partial order ≺ (where x ≺ y means “x is to the past of y”) satisfying

1. transitivity: x ≺ y and y ≺ z ⇒ x ≺ z;

2. acyclicity: x ≺ y and y ≺ x ⇒ x = y;

3. local finiteness: for any x and y, the number of elements z such that x ≺ z ≺ y is finite.

Mathematically, these conditions define a locally finite partially ordered set, or poset. Physically,
the causal relations should be thought of as determining “most” of the metric. Indeed, in the
continuum, the causal structure of a globally hyperbolic manifold determines the metric up to a
conformal factor [17]; in causal set theory, the missing conformal factor is simply the number of
points in a region.

Causal sets with clear physical meaning can be constructed by randomly “sprinkling” points
on a fixed spacetime. Given a globally hyperbolic manifold M with metric g, select a set of points
by a Poisson process so that the probability of finding m points in any region of volume V is

PV (m) =
(ρV )m

m!
e−ρV (2.1)

for some discreteness scale ρ−1. Assign to these points the causal relations determined by the
metric g, and then “remove” the manifold M , leaving only the set of points and relations. At
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scales larger than ρ−1, the resulting causal set is believed to approximate M well. In particular,
if M is Minkowski space, the causal set preserves statistical Lorentz invariance [18], a highly
nontrivial characteristic for any discretization.

3. Myrheim-Meyer dimension of a small causal set

As in other discrete approaches to quantum gravity, it is not obvious what one means by the
“dimension” of a causal set. For a space with an analog of a Riemannian metric, a popular choice
is the spectral dimension, but it is not obvious that this is appropriate to a Lorentzian spacetime;
I will return to this issue later. For a causal set, the most common choice for a dimensional
estimator is the Myrheim-Meyer dimension [19, 20], which is based on a count of the number of
causally related points.

More precisely, let us start with a causal set derived from a Poisson sprinkling of points in
d-dimensional Minkowski space. Choose an Alexandrov interval, or “causal diamond,” A, that is,
the intersection of the future of some point p and the past of another point q. Let 〈C1〉 be the
average number of points in A, and 〈C2〉 be the average number of causal relations, that is, pairs
x, y such that x ≺ y. 〈C1〉 and 〈C2〉 depend on the volume of A and the discreteness scale ρ−1,
but a suitable ratio depends only on the dimension:

〈C2〉

〈C1〉2
=

Γ(d+ 1)Γ(d2 )

4Γ(3d2 )
(3.1)

For an arbitrary causal set, the Myrheim-Meyer dimension dM is then defined as the value d for
which (3.1) holds. One can also consider a sprinkling of points in a curved spacetime; if the
curvature is small, a generalization of (3.1) involving chains of three and four related points can
eliminate distortions due to curvature [21].

We are interested here in the dimension of “small” causal sets. There are several different
things this might mean:

1. One might simply take a random causal set with a small number C1 of elements. As a
practical matter, C1 must be very small: the number of distinct causal sets with C1 elements
goes as 2C

2

1
/4, and the causal sets have only been fully enumerated up to C1 = 16 [22].

2. For larger C1, random causal sets are dominated by Kleitman-Rothschild, or KR, orders
[23, 24]. These are three-layered posets with approximately C1/4 elements in the first and
third layers and C1/2 elements in the second; an element in the first or third layer is causally
related to about half of the elements in the second layer, and almost every element in the first
layer is related to almost every element in the third. Numerical studies indicate that these
sets become important at C1 ∼ 50 [24]. While KR orders must be dynamically suppressed
at large scales if causal set theory is to reproduce anything like our universe, it is plausible
that they remain important at reasonably small scales.

3. The preceding criteria do not include dynamics, in part because the dynamical behavior of
causal set theory is not well understood. One might, however, consider random sprinklings
of points in known spacetimes—Minkowski space, for instance—and look at their small scale
behavior.

The first two of these approaches show clear signs of dimensional reduction. For example,
suppose we start with a large causal set and chose a subset containing four elements. There
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are a total of 16 possible causal structures among those elements, having between zero and six
causal relations. If these structures occur with equal probability, the average 〈C2〉 is

13
4 , and the

Myrheim-Meyer dimension (3.1) is 2.27. For random causal sets with four, five, or six elements,
as enumerated in the Chapel Hill poset atlas [25], the Myrheim-Meyer dimensions range from 2.15
to 2.27. Similarly, for a random KR order, the dimension is 2.38.

For the third approach, more numerical work is needed. But Reid has looked at random sprin-
klings in Minkowski space [26], and the results show a decrease in the Myrheim-Meyer dimension
to a bit less than 2 for small subintervals, as expected in short distance dimensional reduction.

4. Laplacians and Greens functions

Consider a massless field in a d-dimensional spacetime. At short distances, the Hadamard
Greens function takes the form

G(1)(x, x′) ∼

{

σ(x, x′)−(d−2)/2 d > 2
lnσ(x, x′) d = 2

(4.1)

where Synge’s world function σ(x, x′) is half the squared geodesic distance between x and x′. The
dimension is thus determined, in a manifestly physical way, by the rate at which the two-point
function blows up at coincident points.

As usual, it is not immediately obvious how to extend this expression to a discrete spacetime.
Recently, however, considerable progress has been made in defining Laplacians and retarded Greens
functions on causal sets obtained by random sprinklings of points in Minkowski space in two [27],
four [28], and arbitrary [29,30] dimensions. While the retarded Greens functions are not the same
as the Hadamard functions (4.1), they still provide use useful information.

Aslanbeigi et al. have examined the behavior of these quantities averaged over causal sets
obtained by sprinklings on d-dimensional Minkowski space [30]. The averaged Laplacians have
plane wave eigenfunctions eip·x, as expected from Poincaré invariance, with calculable eigenvalues
g(p). Hence

GR(x, x
′) =

∫

C

ddp g(p)−1eip·(x−x′) (4.2)

In the IR limit relevant for long distance behavior, g(p)−1 ∼ 1/p2, confirming that the causal set
Laplacians approximate the standard continuum operators. In the UV, though, one finds that

g(p)−1 ∼ α+ β(p · p)−d/2 (4.3)

For the contour C appropriate for a retarded Greens function, the integral (4.2) near the coincidence
limit σ → 0 gives a delta function plus a finite correction, the normal behavior for a retarded
Greens function [30]. But if, as in the continuum case, the Hadamard function can be obtained by
choosing a different contour in (4.2), then (4.3) will lead to a Hadamard function G(1) ∼ lnσ at
short distances, the standard form for a two-dimensional massless field theory,∗ although one may
worry whether this reduction occurs below the discreteness scale.

To be confident of this claim, one would have to construct the full analog of the Hadamard
Greens function in causal set theory and examine its UV limit. Recent work on field theory on
causal sets [31, 32] suggests an approach to this problem, and work is in progress. But as in the
preceding section, we already see strong hints of dimensional reduction.

∗A similar phenomenon occurs in Hořava-Lifshitz gravity [12], but in contrast to that model, the causal set result
does not require a violation of Lorentz invariance.
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5. Spectral dimension and asymptotic silence

Consider a random walk on a d-dimensional manifold with a Riemannian metric. Diffusion
from an initial position x to a final position x′ in a time s is described by a heat kernel K(x, x′; s),
which behaves for small s as [4]

K(x, x′; s) ∼ (4πs)−d/2e−σ(x,x′)/2s (1 +O(s)) (5.1)

In particular, the return probability K(x, x; s) is determined by the dimension. By generalizing
(5.1) to an arbitrary space, discrete or continuous, on which a random walk can be defined, one
obtains an effective dimension, the spectral dimension.

For several approaches to quantum gravity, including causal dynamical triangulations [4] and
asymptotic safety [5], the spectral dimension exhibits short distance dimensional reduction to
d = 2. For causal set theory, though, it does not. On the contrary, the spectral dimension
increases at short distances [13]. What should one make of this?

Eichhorn and Mizera argue in [13] that the peculiar behavior of causal set theory comes from
the Lorentzian signature of the metric, which in many cases leads to a “radical nonlocality”—
a typical point can have infinitely many nearest neighbors, points connected by a single causal
link. Now, as stressed in [1, 2], the importance of spectral dimension comes in part from the fact
that Greens functions can be obtained as Laplace transforms of the heat kernel: (4.1) is a Laplace
transform of (5.1). But for causal sets, the Greens functions of [27–30] contain nonlocal corrections,
and the direct connection to the heat kernel for a random walk may be broken.

The results of [13] could, however, have a different implication. In a Lorentzian setting, a high
spectral dimension—especially a high value of the “causal spectral dimension” of [13]—implies a
suppression of the probability that two random walkers will meet within a given diffusion time.
The observed rapid rise in spectral dimension at very short distances thus suggests that “nearby”
points are increasingly causally disconnected. A very similar behavior occurs in cosmology near
a spacelike singularity, where it is known as “asymptotic silence” [14]. As I first pointed out
in [1], this phenomenon, which leads to locally Kasner-like behavior of the metric, might explain
dimensional reduction: at certain scales, d-dimensional Kasner space has an effective dimension of
two [33].

It should be possible to test this conjecture more directly. In the continuum, asymptotic silence
is an “anti-Newtonian” limit, in which the speed of light goes to zero and nearby spacelike separated
points become (nearly) causally disconnected. In the causal set context, defining “nearby” is
nontrivial, but not impossible [34], and one can measure the minimum number of links N required
for two nearby points to share a common point in the future. The short distance asymptotic
silence conjecture is that while N should behave classically for pairs of points with large spatial
separations, it should become much larger than its classical value as the spatial distance shrinks.
If this is the case, the arguments of [1] would again predict spontaneous dimensional reduction.

6. Conclusion

While the evidence for short distance dimensional reduction in quantum gravity is far from
conclusive, there are enough hints from enough different approaches to make the phenomenon at
least plausible. But details remain elusive. We do not even know whether dimensional reduction
is mainly kinematical or whether it depends sensitively on the dynamics: in the asymptotic safety
scenario, for instance, the mere existence of a non-Gaussian UV fixed point is enough to indicate
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two-dimensional behavior [6], while in some approaches based on noncommutative geometry the
nature of dimensional reduction depends sensitively on a choice of deformed Laplacian [10].

Causal set theory offers a promising avenue to explore these issues. Much of what we know
about causal sets is nondynamical, and there are several approaches to the dynamics that may not
be equivalent [35]. While this paper is a start, there is clearly much more to be done:

– A systematic study of the Myrheim-Meyer dimension of small subsets of random sprinklings
on various known manifolds could reveal more about the influence of large scale spacetime
geometry, and thus dynamics, on small scale dimension. One might also look at the curvature-
corrected dimensional estimator introduced in [21].

– A construction of the causal set Hadamard function, perhaps following [31,32], and a study
of its asymptotics in the manner of [30], would tell more reliably whether Greens functions
exhibit dimensional reduction. One might also compute the heat kernels, and through that
the spectral dimensions, of the Laplacians in [30].†

– More direct tests of short distance asymptotic silence would certainly be illuminating.

It may be that different dimensional estimators give different answers, and the full picture might
require a better understanding of the quantum dynamics of causal sets. But the preliminary
indications of short distance dimensional reduction in causal set theory seem promising.
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