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ABSTRACT OF THE DISSERTATION 

Detection of Hidden Defects in Stiffened and Fiber-Metal Laminate Composite Aircraft and 

Aerospace Structural Components using Ultrasonic Guided Waves 

by 

Wai Hong Tai 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2020 

Professor Ajit K. Mal, Chair 

 

The objective of this research is to develop an improved nondestructive evaluation (NDE) 

technique to inspect composite aircraft and aerospace structures. This work presents an efficient 

and versatile numerical modeling tool to aid in the design of cost-effective non-destructive 

evaluation technologies. The global-local method, which combines finite element discretization 

and Lamb wave modal expansion is used. An extension to the traditional global local method is 

made to couple the source problem with the scattering problems to deal with a surface source 

generating Lamb waves that interact with defects in multilayered structures. The modeling tool is 

first validated against analytical solution and the finite element method. Since the relationship 

between ultrasonic signal change and the nature of defects is complex, the efficient modeling 

tool is used to create a library of many damage inspection scenarios for FML and stiffened 

composites. The waveforms associated to the different damage cases are then used to establish a 

set of damage indices for damage characterization.  
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Chapter 1 Introduction 

1.1 Background and Motivation 

1.1.1 A Brief Introduction to Non-Destructive Evaluation of Aerospace Structures 

This research is motivated by the need to develop efficient and cost-effective non-

destructive evaluation (NDE) for aerospace structures. Unlike civil, automotive or naval 

structures, aerospace structures are subjected to more demanding weight restrictions. Designed 

for a reasonable service life, the flight structures are often being operated close to their design 

limits to make their applications economically viable. Therefore, it has been a well-accepted 

philosophy to include periodic inspections into their manufacturing process and service life to 

minimize the risk of their structural failure. The goal of inspection is to detect and to determine 

the criticality of defects that may occur during manufacturing or in service. A decision can then 

be made to determine whether or what corrective actions are needed. Such is the principle of 

non-destructive evaluation (NDE). The safety and the life cycle cost of defect-critical structures 

are closely related to the quality of the NDE that are subjected to during their operation. The 

NDE technique should have a high probability of detection, is low cost, reliable, efficient, and 

simple to use. Another challenge that has become more pronounced is the data size collected 

from an inspection. Advanced NDE methods (e.g. CT scan) have detailed sensing and are 

generating an increasingly large amount of data [1]. The data processing, storage, interrogation, 

and analytics become inefficient when all the raw sensing data is stored for the entire service life 

of the structure. Thus, an effective NDE should be able to inspect a large structure with less data 

requirements. 
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Different Types of NDE Techniques 

A variety of NDE techniques are used in industry including visual inspection, ultrasonic 

testing, thermography, liquid penetrant testing, high energy radiography, computer-tomography 

(CT), and Eddy current based methods. The details of the methods can be found in a variety of 

sources available in the open literature, e.g., [2].  

 

Figure 1-1 CT reconstruct X-ray scan result into detailed 3D image of damage, and thermography 

schematic (Image: [3]) 

While each technique is effective in detecting certain types of defect in some structures, most of 

them lack the speed and accuracy to inspect large structures with a high degree of confidence. As 

an example, radiographical and CT techniques have a very high fidelity (less than 0.5mm 

resolution) and can yield detailed information on small defects. However, the size of the 

inspection area must be very small because of the small area coverage of the equipment. 

Moreover, the associated equipment is expensive thus restricting the commercial applicability of 

the method to large structures. Liquid penetrant testing and thermography can inspect a larger 

area and can reveal small defect with good details. However, neither method can detect and 

characterize deep subsurface defects. In addition, thermal source and liquid dye might not be 

adaptable to some inspection conditions. Eddy current based method is applicable only to 

conductive materials. In contrast, ultrasound-based tests have a much wider range of 

applicability and the necessary hardware to provide the most flexible inspection scheme. The 
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detectable size and types of defects are also abundant. The area of inspection can also be quite 

large in many cases but may require significant time and effort to cover. The cost and availability 

of ultrasound testing (UT) is reasonable, and thus most Aerospace structures are inspected by 

ultrasound based NDE methods. However, the reliability of UT varies across inspection 

scenarios, and requires adequate training of skilled technicians as in other NDE techniques. 

Because of the flexibility of UT, it is usually the most preferable method for general inspection. 

However, the UT inspection of a larger areas is inefficient with conventional through-thickness 

inspection, and access to surfaces above or below the damage is not always possible. 

Alternatively, NDE using guided ultrasonic waves, as illustrated in Figure 1-2 has the potential 

to localize damage in a large area with a relatively small number of surface mounted transducers. 

Due to their long propagation distance, guided waves can be excited from a source transducer 

mounted at one end of a structure and receiving transducers can be mounted on the other end to 

detect damage in the area in between. [4] [5] [6]. If a detailed characterization of the defects is 

needed, it can be supplemented by other higher resolution NDE techniques to fully characterize 

the damage. UT could be combined with other methods for detailed local inspection to form a 

comprehensive evaluation. Since ultrasound-based methods are widely used, advancements in 

this approach can be highly beneficial in a wide range of applications. 

 
Figure 1-2 Guided waves in plate can be used to detect damage with a small number of surface mounted 

transducers by examining the changes in the transmitted or reflected waves 
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1.1.2 Some NDE Requirements for Launch Vehicle Structures 

Launch vehicle (LV) are important to ensure the reliable and on-time delivery of often 

very expensive, and time sensitive payloads into orbit. These payloads are essential to 

communications, navigation, and space exploration. As the demands for lowering cost, faster 

production, and heavier launch requirements are increased, the LV structural designs become 

increasingly complex and present significant challenge to their NDE requirements. In this 

section, some important structural considerations of launch vehicles and their NDE needs are 

discussed. 

Structural Components of a Launch Vehicle (LV) 

The primary structures include main propellant tanks, inter-stages, inter-tanks, fairings, 

engine thrust structures, and payload fittings/adapters. The first four are large shell structures 

subjected high pressure, and aerodynamic loads. Figure 1-3 shows how these shell structures are 

situated in a schematic of a prototypical launch vehicle. The figure shows the solid rocket motors 

(red arrows), the core shells structures which could be propellent tank structure or composite 

segments (purple arrows) which are large pressurized shells and payload fairings (green arrows). 

These components could be connected by bolted joint indicated by the blue arrows.  

  

Figure 1-3 An illustration of typical LV components made up with large cylindrical shell structures that 

could be inspected by guided wave based NDE with surface mounted transducers.  
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The extreme demand in structural performance in LV prompts the use of composites, and 

advanced composite structures (such as Fiber Metal Laminates or FML and sandwich structures). 

The usage of composites in LV is usually in large sizes and with critical functionalities. In the 

upcoming generation of vehicles, composite based components such as composite overwrap 

pressure vessels (COPV), graphite epoxy solid rocket motors (GEM) and filament wound 

composite pressure vessels (Figure 1-4), are now being designed and manufactured in ever larger 

sizes than were used in previous generations. The increase in size presents new challenges for 

inspection. 

 

 
Figure 1-4 (L) Composite overwrap pressure vessel (Image: structures.aero). (R) Graphite epoxy motor 

(Image: spaceflight101), (B) Filament wound composite pressure vessel (Image: AIAA.org) 

The payload and the launch vehicle are extremely costly and any failure during launch can have 

highly detrimental consequences. As an example, the SpaceX launch pad static fire failure on 

Sep 1, 2016, was related to a void in the liner of a composite overwrapped pressure vessel 

carrying liquid oxygen. The oxygen was trapped in the liner void and ignited due to friction 
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ignition from composite fiber breakage [7]. This failure resulted in the complete loss of the 

satellite payload (valued at approximately $200 million), the vehicle, and significant damage to 

the launch pad (Figure 1-5). It also resulted in halting launch operations for over four months. 

 

Figure 1-5 COPV failure caused the loss of payload, vehicle and damage to the launch facility during 

SpaceX Sep 1 2016 pre-launch (Image: US Launch Report). 

Launch Vehicle NDE Considerations 

The way a launch vehicle incorporates NDE to ensure successful operation is quite 

different from what is done in the aeronautical industry. Traditionally, aircrafts are inspected in 

regular intervals over their service life. Thus, the needs for aircraft industry are to have a more 

efficient method to reduce the out-of-service inspection time, and to increase the inspection 

sensitivity in order to reduce the time between inspections. Then of course, the idea of structural 

health monitoring (SHM) became the future goal for the industry, where through continuous 

monitoring, any defects that occur during service would be reported to the operator with enough 

information to determine its criticality. A decision could then be made on whether to return to 

ground or if the plane could continue servicing. This concept of SHM can eliminate the need for 

regular inspection and allows the aircraft to be in service continuously [8]. Launch vehicles, 

however, could not apply this philosophy because it is impractical to reverse a launch in mid-air. 

Even with the emerging reusable launch vehicle, SHM is still not practical because of the weight 
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restriction and the extremely low tolerance of failure (partly due to the even lower damage 

tolerance in design for weight savings). For launch vehicles, the philosophy is 100% mission 

assurance through an incremental build process, with validation and verification testing that are 

“test-like-you-fly [3].” That is, throughout the build process, there are a series of qualification 

and acceptance tests, and NDE is integrated into these steps. Thus, the launch vehicle industry is 

facing two fundamental NDE challenges, 1) the time cost of installing and removing the NDE 

instrumentation, making inspection in every test prohibitive, 2) as the vehicles are made larger, 

and with complex composite structures makes inspection difficult and less reliable. Consider the 

example of the progression of a solid rocket motor shown in Figure 1-6. 

  

Figure 1-6 (L) Empty composite segment case (Image: Airforce-technology.com), (ML) prepare for 

hydro-pressurize test (Image: Spaceflight Insider) (MR) Segment after solid fuel casting (Image: 

nasaspaceflight.com), (R) Static fire test (Image: Northrop Grumman Newsroom). 

The composite segment case is wound, the segment-end joining rings are installed, and are 

subjected to NDE. Then the insulation lining is installed and is hydro-pressurized-proof tested. 

Subsequently the solid fuel is cast, and the critically important NDE is done to ensure that there 

is no gap between the fuel, the lining, and the case. Multiple segments are then joined together 

for use. NDE is done to inspect the joint quality. The interweaving between testing and 

inspection could be greatly speeded up if the NDE procedure can be easily integrated with 

testing. Lamb wave based NDE is one of the most potent solutions for this since it can inspect a 

large area of a shell structure with minimal field deployable sensor instrumentation. Thus, it 
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opens up the possibility to conduct evaluation during the many qualification and acceptant tests 

and offers more information than the existing practice of using local acoustic methods that are 

primarily based on acoustic emission.  

1.1.3 Fiber Metal Laminate Composite Structures in Aerospace Applications 

Fiber Metal Laminates (FML) can be described as laminated materials consisting of thin 

layers of metal sheets and fiber layers embedded in an adhesive system [9]. The breath of FML 

research is immense because of the relevance of decades of metallic and polymer matrix 

composites (PMC) development. Therefore, in this section only a brief description of the 

application history, general discussion of some of the key considerations of using FML, and a 

key application in launch vehicle is given here. 

FML Applications in Aircrafts 

Among the very first FML concept appears in the 1970s with the use of Aramid 

Reinforced Aluminum Laminate (ARALL) lead by Schliekelmann at Fokker Aircraft, 

Vogelesang and Schijve at Delf University [10]. Some of the practical reasons for using FML 

include, the high cost, and technical difficulties to produce large scale composites. To reduce the 

risk of using full size composites, bonding metal sheets with PMC is a reasonable engineering 

decision [10]. Early research combining the effort of Fokker, Delf and the Dutch National 

Laboratory (NLR) produced an F-27 wing panel demo article [10]. It was found that the fatigue 

performance of FML parts is far superior to that of their metal and PMC counterparts because of 

the fiber-bridging effect. The stiff aramid fibers adjacent to the metal layer keep the crack in the 

metal layer from opening. Throughout the 1980s, ARALL saw applications into various aircraft 

secondary structures such as cargo doors, and panels. Standardization of ARALL grades 

motivated by the industry made designing aircrafts with the ARALL material system possible 
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[10]. In the late 1980s and in the 1990s, an updated FML design with glass fibers reinforced 

aluminum (GLARE) emerged to improve the weak fiber capability in ARALL. GLARE shows 

excellent impact resistant, chemical resistance and burn-through properties [11]. When GLARE 

can be joined by splicing techniques, it has seen wider range of applications in airbus (A380, 

A340, A320) in the form of fuselage sections, stiffener, floor panel, etc. as well as in structural 

repair and other functions. In 2000s, other variants with carbon fiber-based PMC, and other 

metal constituents (such as titanium) appeared for enhanced performance. This new class of 

FML boost a higher temperature capability which is suitable for more space applications.  

The quality of FML structures is highly dependent on the adhesive bonding between the 

metal layers and the PMCs. Different bonding (surface) treatments (e.g. mechanical, chemical, 

electrochemical, etc.) have been studied for better bonding. The other important effects would be 

the layup design. The number of plies, orientation and layup placement can be tailored for 

specific load applications. A more detailed summary of FML designs can be found in [12]. 

Potential FML Applications in Space Industry 

The newer class of carbon-fiber epoxy/titanium based FML has strong potential to be 

applied to launch vehicles because of their mechanical performance and the familiarity of using 

composites in the space industry. Yet, the application of Carbon-Reinforced/Ti based FML is 

very limited. A key study of a spacecraft payload adaptor done by Fink et. al. [13] shows a 

comprehensive set of results to demonstrate the performance increase with the use of FML. In 

that study, a series of coupon testing is done with different Ti content to evaluate bearing 

strength showing that their bearing capability outperformed the composite counterparts. This 

study also includes larger component testing to evaluate the bolted joint performance near a 

region of multiple rows of bolt holes. This study provides important insights on how CFRP/Ti 
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FML can improve joint design. Current composite joint design requires thickness increase near 

the joint section. The asymmetric thickness increases usually induce some bending load. In 

addition, multiple rows of pins are needed to distribute the bearing load to a wider section of 

composite. With the use of the hybrid FML near the joint region (as shown in Figure 1-7), the 

bearing capacity would increase, and less row of pins would be needed. Then, the composite 

section would no longer require a thickness increase. As a result, the launch vehicle weight is 

reduced resulting in a larger payload capacity with a shorter assembling time. 

 
Figure 1-7 Using hybrid FML near joint can increase bearing performance for joining composite 

segments 

However, no FML is used in current launch vehicle because of the lack of adequate knowledge 

in their design. Furthermore, for such design to be used in an active vehicle, a reliable NDE 

technique must be in place. Thus, the fundamental research of the NDE aspect of FML structures 

would greatly benefit future launch vehicle designs.  

1.2 Scope of Research 

The relatively uniform cylindrical structure in LV is ideal for using Lamb waves to detect 

damage in large areas by mounting ultrasonic transducers near the end of each segments. This 

work aims to address the fundamental research needs in implementing ultrasonic sensor network 

on composite LV segments. In order to develop the signal processing techniques for accurate 

damage characterization, the nature of the Lamb wave interaction with defects must be well 

understood. The objective of this study is 1) develop a general and numerically efficient 

modeling tool that is capable of representing the diverse range of ultrasonic inspection scenarios. 



11 

2) this tool can then be used to create a library of ultrasonic signals for different types of possible 

defects and finally, 3) to demonstrate a framework that uses this signal library to characterize the 

defects. Figure 1-8 summarizes the major components of this dissertation.  

 

Figure 1-8 Breakdown of scope of research 

The first phase is to study the wave propagation in multilayer medium without defects. 

Chapter 2 presents the wave propagation theory for computing the dispersion curves and the 

modal functions, which describe the free wave propagation characteristics in composite 

structures. This is achieved by using the global matrix (chapter 2.1) and the waveguide finite 

element method (chapter 2.2). These results are validated by the available theoretical solutions 

and experimental measurements. Chapter 3 presents the global local method (GLM), a semi-

analytical method to model the Lamb wave response to sources and defects. The dispersion 

curves and the modal functions from phase 1 are the input for the global local method in phase 2. 

Furthermore, the numerical and modelling considerations for using the GLM are discussed in 

detail to insure a robust implementation. Continuing with phase 2, Chapter 4 presents a detailed 

study of the interaction of selected defects with Lamb waves in FML to determine their 
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waveform characteristics. By building many GL models, structural configurations, defect types 

and sizes are modeled to create a waveform library. Then, the library is used in phase 3 to select 

the sensitive scattering characteristics to develop characterization strategies with a number of 

damage indices. Finally, numerical test cases with unknown damage types are applied to the 

proposed strategy to simulate an inspection. The robustness of the damage indices and the 

method of their characterization are discussed. Chapter 5 presents the waveform library for 

stiffened composite structures. The various GL models are used to determine the feasibility of 

using Lamb waves to characterize hidden damages in a multi-stiffener configuration. 
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Chapter 2 Lamb Wave Propagation in Multilayered Plates 

Propagating waves that guide energy along the plate are generally referred to as Lamb 

waves. The propagation of harmonic waves in isotropic plates and their applications to NDE 

have been studied extensively. Readers are referred to the following standard literatures for a 

detailed discussion [14] [15] [16] [17]. In this chapter, a brief description is given for the Lamb 

wave propagation in a laminated plate structure that is free of defects. An analytical method, the 

global matrix method (GMM), and a semi-analytical method, the waveguide finite element 

(WFE) method, are used to calculate the dispersion curve and modal functions that are used in 

the global-local method in Chapter 3. 

2.1 The Global Matrix Method 

The Lamb wave solution of the elastic wave propagation in a multilayered medium can 

be formulated from the solution of a single layer and then consider their interactions between 

layers. A matrix formulation can account for all the different layers systematically and then the 

system of matrix equations can be solved numerically. 

2.1.1 A Review of the Global Matrix Method 

The early use of matrix procedure to device solution for elastic wave in plate problem are 

done by Thomson [18] and Haskell [19]. Thomson introduces the transfer matrix to correlate the 

displacement, and stresses between two layers. Then, the solution for the multilayered system 

can then be found as a product of the transfer matrices to relate each layer to the top layer. 

Although the matrix size is relatively small, and thus have a smaller computational storage 

requirement, the method is not numerically stable if the frequency-thickness product is large. 

This is because the formulation involves a matrix inversion of an exponential term with 
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frequency and thickness in the exponent that can become large. The matrix method introduced 

by Knopoff [20], considers the SH wave propagation in multilayered medium, assembles the 

matrices of displacement/stress continuity for all layers all at once. Although the matrix storage 

requirement is larger, the numerically instability problem in transfer matrix method can be 

completely avoided by the global matrix method. The computational storage nowadays is ample 

for most personal computers, and the robustness of the global matrix method is desirable. Mal 

introduced the global matrix method for guided waves in general multilayer isotropic and 

composite laminates, and special half space problems [21]. The composite laminate problem is 

also formulated using the global matrix [22]. The global matrix method is effective in modelling 

the contributions for each layer of a composite plate. The dispersion curves are validated with 

leaky Lamb wave experiment [23]. The global matrix equations are in general complex valued 

and are very difficult to interpret and solve. The global matrix method can also be modified to 

include interface slip in the form of displacement jumps, and to solve for the force response 

when the multilayered system is subjected to surface loads [22]. 

2.1.2 Global Matrix Method for a Transversely Isotropic Material 

A review of the formulation for the modal solution of wave propagation in a multilayer 

system in which the individual layers are transversely isotropic with their symmetry axes are 

normal to their layers is given in this section. 

Formulating the Layer Matrix Equations 

Consider one layer in the multilayered system shown Figure 2-1, in which the material is 

assumed to be isotropic in 𝑥1-𝑥2 plane and is symmetric about the 𝑥3 axis.  
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Figure 2-1 A layer, described by a transversely isotropic medium with symmetry about the 𝑥3 axis. The 

Lamb waves are assumed to propagate in the x1 direction 

Assuming a plane-strain model on x1-x3 plane, the displacements associated with time harmonic 

Lamb waves propagating along the x1 direction, have the form 

𝑢𝑗 = 𝐴𝑗𝑒
𝑖(𝑘𝑥1−𝜔𝑡)−𝜂𝑥3 

(2-1) 

where Aj is the frequency dependent amplitude, k is the wavenumber, ω is the angular frequency, 

and η is a function to be determined by satisfying the equation of motion, strain-displacement 

relations and material law. The equation of motion in absence of body force is given by 

𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎13
𝜕𝑥3

− 𝜌
𝜕2𝑢1
𝜕𝑡2

= 0 

𝜕𝜎13
𝜕𝑥1

+
𝜕𝜎33
𝜕𝑥3

− 𝜌
𝜕2𝑢3
𝜕𝑡2

= 0 

(2-2) 

The linear transversely isotropic stress-strain relation under the plane strain conditions is 

{

𝜎11
𝜎33
𝜎13
} = [

𝐶11 𝐶13 0
𝐶13 𝐶33 0
0 0 (𝐶11 − 𝐶13)

] {

𝑢1,1
𝑢3,3

1

2
(𝑢1,3 + 𝑢3,1)

} 

(2-3) 

𝑥1 

𝑥2 

𝑥3 

Isotropic plane 
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The constants (Cs) are defined in terms of the more commonly used elastic constants in the 

appendix section 2.3. 

Substituting the expression for the displacements given in (2-1) into the constitutive relations in 

(2-3), the stresses can be obtained as 

𝜎11 = 𝐶11(𝑖𝑘𝑢1) + 𝐶13(−𝜂𝑢3) 𝜎33 = 𝐶13𝑖𝑘𝑢1 + 𝐶33(−𝜂𝑢3) 

𝜎13 = (𝐶11 − 𝐶13)[−𝜂𝑢1 + 𝑖𝑘𝑢3]  

(2-4) 

Defining 𝐶44 = 𝐶11 − 𝐶13, and substituting the stresses from (2-4) into the equation of motion 

(2-2) results in the following system of homogeneous equations for the unknown constants 𝐴1 

and 𝐴3 

[
𝜂2𝐶44 + 𝜌𝜔

2 − 𝑘2𝐶11 −𝑖𝑘𝜂(𝐶13 + 𝐶44)

−𝑖𝑘𝜂(𝐶13 + 𝐶44) 𝜂2𝐶33 + 𝜌𝜔
2 − 𝑘2𝐶44

] {
𝐴1
𝐴3
} = {

0
0
} 

(2-5) 

For a non-trivial solution for 𝐴1 and 𝐴3, η is determined from the root of the following quartic 

equation 

𝜂4 + 𝜂2𝑘2 [
𝜌𝑐2

𝐶33
+
𝜌𝑐2

𝐶44
−
𝐶11𝐶33 − 𝐶13

2 − 2𝐶13𝐶44
𝐶33𝐶44

] + 𝑘4 (
𝜌𝑐2

𝐶44
− 1)(

𝜌𝑐2

𝐶33
−
𝐶11
𝐶33
) = 0 

(2-6) 

where 𝑘 =
𝜔

𝑐
 and c is the phase velocity. 

With the definitions of the bulk wave velocities, 

𝑐1𝐿 = √
𝐶11

𝜌
 𝑐3𝐿 = √

𝐶33

𝜌
 𝑐3𝑇 = √

𝐶44

𝜌
 

(2-7) 

The constant η can be obtained as 

±𝜂1,2 = 𝑘√
−𝐴±√𝐴2−4𝐵

2
 where 𝐼𝑚(𝜂𝑗) < 0 for decaying wave in the thickness direction 
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(2-8) 

and, 𝐴 =  
𝑐2

𝐶3𝐿
2 +

𝑐2

𝐶3𝑇
2 −

𝐶11𝐶33−𝐶13
2 −2𝐶13𝐶44

𝐶33𝐶44
 and 𝐵 = (

𝑐2

𝐶3𝑇
2 − 1) (

𝑐2

𝐶3𝐿
2 −

𝐶11

𝐶33
). The ± sign indicate the 

upward and downward propagating bulk waves as illustrated in Figure 2-2. 

 

Figure 2-2 The upward and downward propagating wave in the η definition 

The relationship between the horizontal and vertical displacement components, must satisfy the 

system of equations (2-5) and yield the ratio of amplitudes 

𝐴3
𝐴1
=
𝑘2𝐶11 − 𝜌𝜔

2 − 𝜂𝑗
2𝐶44

−𝑖𝑘𝜂𝑗(𝐶13 + 𝐶44)
≡ 𝛽𝑗 

(2-9) 

From the original assumed form of displacement in (2-1), η is related to the wavenumber 

component in the thickness direction that corresponds to the bulk waves that propagate upward 

or downward. Since the ratio defined as βj would have upward (+) and downward (-) propagating 

directionality (Figure 2-2) it is written as 𝛽𝑗
± respectively. The next step is to write the 

displacements and stresses for a single layer and apply the appropriate boundary conditions. 

Displacements and stresses in the mth layer 

Consider the mth layer occupying the region zm-1 < z < zm, as shown in Figure 2-3. 

𝑥1 

𝑥3 

+ − 
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Figure 2-3 A layer (layer m), described by the coordinate system (x, z) 

For this generic layer, the displacements are written as 

𝑢(𝑥, 𝑧, 𝜔, 𝑘) = 𝑈(𝑧, 𝜔, 𝑘) 𝑒𝑖(𝑘𝑥−𝜔𝑡) 

(2-10) 

For simplicity, the term 𝑒𝑖(𝑘𝑥−𝜔𝑡) is omitted in the following derivations, so that the 

displacement components are given as 

𝑈𝑥(𝑧, 𝜔, 𝑘) = [𝐶1𝑒
−𝜂1(𝑧−𝑧𝑚−1) + 𝐶2𝑒

−𝜂2(𝑧−𝑧𝑚−1) + 𝐶3𝑒
−𝜂1(𝑧𝑚−𝑧) + 𝐶4𝑒

−𝜂2(𝑧𝑚−𝑧)] 

(2-11) 

𝑈𝑧(𝑧, 𝜔, 𝑘) = [𝛽1𝐶1𝑒
−𝜂1(𝑧−𝑧𝑚−1) + 𝛽2𝑒

−𝜂2(𝑧−𝑧𝑚−1) − 𝛽1𝐶3𝑒
−𝜂1(𝑧𝑚−𝑧) − 𝛽2𝐶4𝑒

−𝜂2(𝑧𝑚−𝑧)] 

(2-12) 

Substituting these expressions in equation (2-4), the stresses become 

𝑆𝑥𝑥(𝑧, 𝜔, 𝑘) = 𝐶1[𝑖𝑘𝐶11 − 𝐶13𝛽1𝜂1]𝑒
−𝜂1(𝑧−𝑧𝑚−1) + 𝐶2[𝑖𝑘𝐶11 − 𝐶13𝛽2𝜂2]𝑒

−𝜂2(𝑧−𝑧𝑚−1)

+ 𝐶3[𝑖𝑘𝐶11 − 𝐶13𝛽1𝜂1]𝑒
−𝜂1(𝑧𝑚−𝑧) + 𝐶4[𝑖𝑘𝐶11 − 𝐶13𝛽2𝜂2]𝑒

−𝜂2(𝑧𝑚−𝑧) 

(2-13) 

𝑆𝑥𝑧(𝑧, 𝜔, 𝑘) = 𝐶1𝐶44[−𝜂1 + 𝑖𝑘𝛽1]𝑒
−𝜂1(𝑧−𝑧𝑚−1) + 𝐶2𝐶44[−𝜂2 + 𝑖𝑘𝛽2]𝑒

−𝜂2(𝑧−𝑧𝑚−1)

+ 𝐶3𝐶44[𝜂1 − 𝑖𝑘𝛽1]𝑒
−𝜂1(𝑧𝑚−𝑧) + 𝐶4𝐶44[𝜂2 + 𝑖𝑘𝛽2]𝑒

−𝜂2(𝑧𝑚−𝑧) 

(2-14) 

𝑆𝑧𝑧(𝑧, 𝜔, 𝑘) = 𝐶1[𝑖𝑘𝐶13 − 𝐶33𝛽1𝜂1]𝑒
−𝜂1(𝑧−𝑧𝑚−1) + 𝐶2[𝑖𝑘𝐶13 − 𝐶33𝛽2𝜂2]𝑒

−𝜂2(𝑧−𝑧𝑚−1)

+ 𝐶3[𝑖𝑘𝐶13 − 𝐶33𝛽1𝜂1]𝑒
−𝜂1(𝑧𝑚−𝑧) + 𝐶4[𝑖𝑘𝐶13 − 𝐶33𝛽2𝜂2]𝑒

−𝜂2(𝑧𝑚−𝑧) 

z 

x 

…
 

…
 

zm 

z
m-1

 
Layer m 
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(2-15) 

The displacements and traction components at the interfaces between layers m-1 and m, given in 

equations (2-11),(2-12),(2-14) and (2-15) are written in matrix form as 

{

𝑈𝑥
𝑈𝑧
𝑆𝑥𝑧
𝑆𝑧𝑧

} = [

𝑞11 𝑞12 𝑞11 𝑞12
𝑞21 𝑞22 −𝑞21 −𝑞22
𝑞31 𝑞32 −𝑞31 −𝑞32
𝑞41 𝑞42 𝑞41 𝑞42

] [

𝑒−𝜂1(𝑧−𝑧𝑚−1) 0 0 0
0 𝑒−𝜂2(𝑧−𝑧𝑚−1) 0 0
0 0 𝑒−𝜂1(𝑧𝑚−𝑧) 0
0 0 0 𝑒−𝜂2(𝑧𝑚−𝑧)

]{

𝐶1
𝐶2
𝐶3
𝐶4

} 

(2-16) 

with the following substitutions 

𝑞11 = 1  𝑞12 = 1 

𝑞21 = 𝛽1  𝑞22 = 𝛽2 

𝑞31 = 𝐶44[−𝜂1 + 𝑖𝑘𝛽1]  𝑞32 = 𝐶44[−𝜂2 + 𝑖𝑘𝛽2] 

𝑞41 = [𝑖𝑘𝐶13 − 𝐶33𝛽1𝜂1]  𝑞42 = [𝑖𝑘𝐶13 − 𝐶33𝛽2𝜂2] 

(2-17) 

To further simplify the description of (2-16), define the following block matrices 

[𝑄(𝑚)] = [
𝑄11
𝑚 𝑄12

𝑚

𝑄21
𝑚 𝑄22

𝑚 ] 

(2-18) 

[𝐸(𝑧,𝑚)] = 𝐷𝑖𝑎𝑔[𝑒1(𝑧 − 𝑧𝑚−1) 𝑒2(𝑧 − 𝑧𝑚−1)  𝑒1(𝑧𝑚 − 𝑧) 𝑒2(𝑧𝑚 − 𝑧)] = [
𝐸1 𝟎
𝟎 𝐸2

] 

(2-19) 

where 𝑒𝑗 = 𝑒
−𝜂𝑗. Note that E1, and E2 correspond to upward and downward propagating waves, 

respectively. 

{𝐶(𝑚)} = {
𝐶𝑚
−

𝐶𝑚
+} 

(2-20) 

Therefore, 𝐶𝑚
− and 𝐶𝑚

+are the amplitude coefficients for the downward and upward propagating 

waves, respectively. 
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Equation (2-16) can now be written in a more compact form as 

{

𝑈𝑥
𝑚

𝑈𝑧
𝑚

𝑆𝑥𝑧
𝑚

𝑆𝑧𝑧
𝑚

} = [𝑄(𝑚)][E(z,𝑚)]{𝐶𝑚} 

(2-21) 

Interface Conditions and Boundary Conditions 

The notations shown in Figure 2-4 are used to define the layered structure. For a stack of 

N layers, the first layer, of thickness h1 has bottom surface at z = 0. The top surface of layer 1 is 

interfaced with layer 2 at z = h1.  

 

Figure 2-4 The coordinate system for assembling the global matrix equations for a multilayered system 

For a general layer m, between interface layer m-1 and m, the lower surface is at z= 𝑧𝑚−1 

and the upper surface is at  𝑧 = 𝑧𝑚. We can then describe the continuity conditions for the 

traction and displacement components at the interfaces as shown in Figure 2-4. Noting that the 

traction components at the bottom face of layer m is 

𝑆𝑙𝑎𝑦𝑒𝑟 𝑚( 𝑧𝑚−1) = [𝑄(𝑚)𝐸(𝑧𝑚−1)]{𝐶(𝑚)} 

(2-22) 

shall be equal to the traction components at the top surface of layer m-1, which are  

z 

x 

…
 

𝑧2 

z
1  

Layer 2 

Layer 1 

Interface 1 

z=0 
h

1
 

h
2
 

𝑧
𝑁

 

z
N-1

 Layer N h
N
 

Interface 2 

Interface N-1 

Interface N 

…
 z

m-1
 

Layer m h
m
 

Interface m-1 

Interface m z
m
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𝑆𝑙𝑎𝑦𝑒𝑟 𝑚−1(𝑧𝑚) = [𝑄(𝑚 − 1)𝐸(𝑧𝑚)]{𝐶(𝑚 − 1)} 

(2-23) 

The continuity of displacements and traction at the interface Im-1 yields 

[
𝑄11
𝑚 𝑄12

𝑚

𝑄21
𝑚 𝑄22

𝑚 ] [

1 0 0 0
0 1 0 0
0 0 𝑒−𝜂1ℎ𝑚 0
0 0 0 𝑒−𝜂2ℎ𝑚

] {
𝐶𝑚
−

𝐶𝑚
+} = [

𝑄11
𝑚−1 𝑄12

𝑚−1

𝑄21
𝑚−1 𝑄22

𝑚−1] [

𝑒−𝜂1ℎ𝑚−1 0 0 0
0 𝑒−𝜂2ℎ𝑚−1 0 0
0 0 1 0
0 0 0 1

] {
𝐶𝑚−1
−

𝐶𝑚−1
+ } 

(2-24) 

For the top layer N, the traction free boundary condition at the at the top surface 𝑧 = 𝑧𝑁 is 

{
𝑆𝑥𝑧
𝑆𝑧𝑧
} = [𝑄21

𝑁 ][𝐸1
𝑁(𝑧𝑁)]{𝐶𝑁

−} + [𝑄22
𝑁 ]{𝐶𝑁

+} = {𝟎} 

(2-25) 

For the bottom layer, the traction free boundary condition at the at the bottom surface gives 

{
𝑆𝑥𝑧
𝑆𝑧𝑧
} = [𝑄21

1 ]{𝐶1
−} + [𝑄22

1 ][𝐸2
1(0)]{𝐶1

+} = {𝟎} 

(2-26) 

The Dispersion Equations for a Layered Medium in Global Matrix Form 

Using the traction free boundary conditions (2-25), (2-26) at the top and bottom surfaces 

of the plate, and then use the continuity conditions (2-24) across all the interfaces, the global 

matrix system written in equation (2-27) below represents the equation for free wave propagation 

in the multilayered medium. 
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{
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑆𝑥𝑧
𝐵𝑜𝑡𝑡𝑜𝑚

𝑆𝑧𝑧
𝐵𝑜𝑡𝑡𝑜𝑚

𝑈𝑥
𝐼1

𝑈𝑧
𝐼1

𝑆𝑥𝑧
𝐼1

𝑆𝑧𝑧
𝐼1

𝑈𝑥
𝐼2

𝑈𝑧
𝐼2

𝑆𝑥𝑧
𝐼2

𝑆𝑧𝑧
𝐼2

⋮

𝑈𝑥
𝐼𝑖

𝑈𝑧
𝐼𝑖

𝑆𝑥𝑧
𝐼𝑖

𝑆𝑧𝑧
𝐼𝑖

⋮

𝑈𝑥
𝐼𝑁−1

𝑈𝑧
𝐼𝑁−1

𝑆𝑥𝑧
𝐼𝑁−1

𝑆𝑧𝑧
𝐼𝑁−1

𝑆𝑥𝑧
𝑇𝑜𝑝

𝑆𝑧𝑧
𝑇𝑜𝑝

}
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑄21
1 𝑄22

1 𝐸1
1 𝟎 𝟎 𝟎 𝟎 ⋯ 𝟎

−𝑄11
1 𝐸1

1 −𝑄21
1 𝑄11

2 𝑄12
2 𝐸2

2 𝟎 𝟎 ⋯ 𝟎

−𝑄21
1 𝐸1

1 −𝑄22
1 𝑄21

2 𝑄12
2 𝐸2

2 ⋱ ⋱ ⋱ 𝟎

𝟎 𝟎 −𝑄11
2 𝐸1

2 −𝑄21
2 𝑄11

3 𝑄12
3 𝐸2

3 ⋯ 𝟎

⋮ ⋮ −𝑄21
2 𝐸1

2 −𝑄22
2 𝑄21

3 𝑄22
3 𝐸2

3 ⋯ 𝟎
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮ 𝟎
𝟎 ⋯ −𝑄11

𝑖 𝐸1
𝑖 −𝑄21

𝑖 𝑄11
𝑖+1 𝑄12

𝑖+1𝐸2
𝑖+1 ⋯ 𝟎

𝟎 ⋯ −𝑄21
𝑖 𝐸1

𝑖 −𝑄22
𝑖 𝑄21

𝑖+1 𝑄22
𝑖+1𝐸2

𝑖+1 ⋯ 𝟎
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ −𝑄11

𝑁−1𝐸1
𝑁−1 −𝑄21

𝑁−1 𝑄11
𝑁 𝑄12

𝑁 𝐸2
𝑁

⋮ ⋱ ⋱ ⋱ −𝑄21
𝑁−1𝐸1

𝑁−1 −𝑄22
𝑁−1 𝑄11

𝑁 𝑄22
𝑁 𝐸2

𝑁

𝟎 ⋯ ⋯ ⋯ ⋯ 𝟎 𝑄21
𝑁 𝐸1

𝑁 𝑄22
𝑁 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟                                                    

𝑮̂
{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝐶1
−

𝐶1
+

𝐶2
−

𝐶2
+

𝐶3
−

𝐶3
+

⋮
𝐶𝑚
−

𝐶𝑚
+

⋮
𝐶𝑁−1
−

𝐶𝑁−1
+

𝐶𝑁
−

𝐶𝑁
+ }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

= 𝟎 

(2-27) 

For a non-trivial solution, the determinant of the matrix 𝑮̂ = 0, represents the dispersion 

equation for the multilayered system. Solving for the root k from this equation is not trivial. An 

efficient root identification and root tracing (finding) scheme is presented in [27], and [28].   

2.1.3 The Dispersion Equation for a Single Layer using the Global Matrix Method 

For a multilayered medium, the behavior of the dispersion curves is extremely complex, 

due to the highly coupled nature of the system of transcendental system of equations (2-27). 

Furthermore, the computational effort of calculating the determinant can be very high for a 

system with many layers. This is especially true since the dispersion relation needs to be 

computed many times over a wide range of frequencies in order to generate reliable solutions in 

the time domain, and for root searching. In practice, many composite structures have a 

symmetric and balanced layup, where there are same number of plies above and below the mid-
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plane. In such cases, the size of the matrix can be reduced by only considering half of the layers. 

Furthermore, it is often time of interest to separate the contributions of the symmetric and anti-

symmetric modes. The dispersion curves obtained from the solution of equation (2-27) contain 

both the symmetric and antisymmetric modes. In this section, the reduction of the dispersion 

equation obtained from the global matrix for a single layer case is presented to demonstrate how 

to separate the two modes. 

Reduction of the Global Matrix for a Transversely Isotropic Plate 

Consider the following definition of a layer of thickness h = 2H as shown in Figure 2-5, 

and apply the traction free boundary conditions in the standard global matrix procedure. 

 

Figure 2-5 Coordinate system for global matrix formulation for one layer 

The stresses in equation (2-16) are evaluated at the top surface with zm=h and zm-1 = 0 using the 

block matrix defined in (2-17) and (2-18) to give  

{
𝑆𝑥𝑧(ℎ)
𝑆𝑧𝑧(ℎ)

} = [𝑄21
1 𝑄22

1 ] [

𝑒−𝜂1(ℎ−0) 0 0 0
0 𝑒−𝜂2(ℎ−0) 0 0
0 0 𝑒−𝜂1(ℎ−ℎ) 0
0 0 0 𝑒−𝜂2(ℎ−ℎ)

] {

𝐶1
𝐶2
𝐶3
𝐶4

} = {
0
0
} 

(2-28) 

{
𝑆𝑥𝑧(0)
𝑆𝑧𝑧(0)

} = [𝑄21
1 𝑄22

1 ] [

𝑒−𝜂1(0−0) 0 0 0
0 𝑒−𝜂2(0−0) 0 0
0 0 𝑒−𝜂1(ℎ−0) 0
0 0 0 𝑒−𝜂2(ℎ−0)

]{

𝐶1
𝐶2
𝐶3
𝐶4

} = {
0
0
} 

For compactness in writing the matrix determinant, define  

z 

x 𝑧𝑚−1 = 𝑧0 = 0 

Layer m 

𝑧𝑚 = 𝑧1 = ℎ 

h 
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𝑒1 = 𝑒
−𝜂1ℎ   𝑒2 = 𝑒

−𝜂2ℎ 

(2-29) 

The dispersion equation written in global matrix form is then  

{

𝑆𝑥𝑧(0)
𝑆𝑧𝑧(0)
𝑆𝑥𝑧(ℎ)
𝑆𝑧𝑧(ℎ)

} = [

𝑞31 𝑞32 −𝑞31𝑒1 −𝑞32𝑒2
𝑞41 𝑞42 𝑞41𝑒1 𝑞42𝑒2
𝑞31𝑒1 𝑞32𝑒2 −𝑞31 −𝑞32
𝑞41𝑒1 𝑞42𝑒2 𝑞41 𝑞42

]{

𝐶1
𝐶2
𝐶3
𝐶4

} = {𝟎} 

(2-30) 

To calculate the determinant, it is important to group the terms [𝑞31𝑞42 − 𝑞32𝑞41], [𝑞31𝑞42 +

𝑞32𝑞41] [𝑞31𝑞42𝑞32𝑞41], and factor out 𝑒1
2, 𝑒2

2 and 𝑒1
2𝑒2
2. For instance, the first term in the 

determinant is written as, 

𝑞31 |

𝑞42 𝑞41𝑒1 𝑞42𝑒2
𝑞32𝑒2 −𝑞31 −𝑞32
𝑞42𝑒2 𝑞41 𝑞42

| 

= 𝑞31{𝑞42[−𝑞31𝑞42 + 𝑞32𝑞41] − 𝑞41𝑒1[𝑞32𝑞42𝑒2 + 𝑞32𝑞42𝑒2] + 𝑞42𝑒2[𝑞32𝑞41𝑒2 + 𝑞31𝑞42𝑒2]} 

= −𝑞31𝑞42[𝑞31𝑞42 − 𝑞32𝑞41] − 2𝑞31𝑞42𝑞32𝑞41𝑒1𝑒2 + 𝑞31𝑞42𝑒2
2[𝑞31𝑞42 + 𝑞32𝑞41] 

Calculating the rest of the terms gives the dispersion equation  

[𝑞31𝑞42 − 𝑞32𝑞41]
2{1 + 𝑒1

2𝑒2
2} − [𝑞31𝑞42 + 𝑞32𝑞41]

2{𝑒1
2 + 𝑒2

2} + 8𝑞31𝑞42𝑞32𝑞41𝑒1𝑒2 = 0 

(2-31) 

To better compare with the well-known dispersion equation as shown in Appendix 2.2, the term 

[𝑞31𝑞42 − 𝑞32𝑞41] is rewritten using the definitions listed in (2-17) as 

[𝑞31𝑞42 − 𝑞32𝑞41] =  𝐶44[−𝜂1 + 𝑖𝑘𝛽1][𝑖𝑘𝐶13 − 𝐶33𝛽2𝜂2] − 𝐶44[−𝜂2 + 𝑖𝑘𝛽2][𝑖𝑘𝐶13 − 𝐶33𝛽1𝜂1] 

(2-32) 

Since the right-hand side of the standard form of the dispersion equation does not have the 

wavenumber, it is factored out from ηj such that 𝜂𝑗 = 𝑘𝜂̅𝑗 and 𝛽𝑗 = −
𝐶11−𝜌𝑐

2−𝜂̅𝑗𝐶44

𝑖𝜂̅𝑗(𝐶13+𝐶44)
=

𝑖[𝐶11−𝜌𝑐
2−𝜂̅𝑗𝐶44]

𝜂̅𝑗(𝐶13+𝐶44)
= 𝑖𝛽̅𝑗 
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[𝑞31𝑞42 − 𝑞32𝑞41] = 𝑘
4𝐶33𝐶44 {[−𝜂̅1 − 𝛽̅1] [

𝐶13
𝐶33

− 𝜂̅2𝛽̅2] + [𝜂̅2 − 𝛽̅2] [
𝐶13
𝐶33

− 𝜂̅1𝛽̅1]} 

(2-33) 

Similarly, the other term is 

[𝑞31𝑞42 + 𝑞32𝑞41] = 𝑘
4𝐶33𝐶44 {−[𝜂̅1 + 𝛽̅1] [

𝐶13
𝐶33

− 𝜂̅2𝛽̅2] − [𝜂̅2 − 𝛽̅2] [
𝐶13
𝐶33

− 𝜂̅1𝛽̅1]} 

(2-34) 

To better compare this with the standard dispersion equation, the following terms are defined 

Æ = [𝜂̅1 + 𝛽̅1] [
𝐶13

𝐶33
− 𝜂̅2𝛽̅2]  Å= [𝜂̅2 − 𝛽̅2] [

𝐶13

𝐶33
− 𝜂̅1𝛽̅1] 

(2-35) 

Recalling the right-hand side of the dispersion equation is 

𝐴1 [𝐴2
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴1
2 +

𝐶11
𝐶44
(
𝑐2

𝐶1𝐿
2 − 1)]

𝐴2 [𝐴1
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴2
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

 

(2-36) 

Using 𝐶11 = 𝜌𝐶1𝐿
2  and 𝐶44 = 𝜌𝐶3𝑇

2 , 𝛽̅𝑗 and 𝜂̅𝑗  can be expressed in the forms, 

𝛽̅𝑗 =
1−

𝜌𝑐2

𝐶11
−
𝜂̅𝑗
2𝐶44

𝐶11
𝜂̅𝑗(𝐶13+𝐶44)

𝐶11

 𝜂̅𝑗 = √
−𝐴±√𝐴2−4𝐵

2
= 𝐴1,2 

(2-37) 

From equation (2-35), and (2-37), the terms obtained from the global matrix equation can be 

rewritten as  

Æ =

[
 
 
 
 

𝐴1 + 𝐶11

[
 
 
 1 −

𝑐2

𝐶1𝐿
2 − 𝐴1

2 (
𝐶44
𝐶11
)

𝐴1(𝐶13 + 𝐶44)

]
 
 
 

]
 
 
 
 

[
 
 
 
 
 
𝐶13
𝐶33

−

𝐶11 (1 −
𝑐2

𝐶1𝐿
2 − 𝐴2

2 (
𝐶44
𝐶11
))

𝐶13 + 𝐶44

]
 
 
 
 
 

 

(2-38) 
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Factoring out (
𝐶13

𝐶13+𝐶44
) (

𝐶44

𝐶13+𝐶44
) from (2-38) to obtain, 

Æ = (
𝐶13

𝐶13 + 𝐶44
) (

𝐶44
𝐶13 + 𝐶44

)
1

𝐴1
[𝐴1
2 −

𝐶11
𝐶33

(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33
(
𝐶13
𝐶44

− 1) + 𝐴2
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)] 

(2-39) 

Whereas for Å, by using equation (2-37) Å can be expressed in terms of bulk wave velocities and 

elastic properties in the following form  

Å =

[
 
 
 
 

𝐴2 + 𝐶11

[
 
 
 1 −

𝑐2

𝐶1𝐿
2 − 𝐴2

2 (
𝐶44
𝐶11
)

𝐴2(𝐶13 + 𝐶44)

]
 
 
 

]
 
 
 
 

[
 
 
 
 
 
𝐶13
𝐶33

−

𝐶11 (1 −
𝑐2

𝐶1𝐿
2 − 𝐴1

2 (
𝐶44
𝐶11
))

𝐶13 + 𝐶44

]
 
 
 
 
 

 

Å= (
𝐶13

𝐶13+𝐶44
) (

𝐶44

𝐶13+𝐶44
)
1

𝐴2
[𝐴2
2 −

𝐶11

𝐶33
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13

𝐶33
(
𝐶13

𝐶44
− 1) + 𝐴1

2 +
𝐶11

𝐶44
(
𝑐2

𝐶1𝐿
2 − 1)] 

(2-40) 

Denote the right-hand side of the dispersion equation by, 

𝑅𝐻𝑆𝐵 = [𝐴1
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33
(
𝐶13
𝐶44

− 1) + 𝐴2
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)] 

𝑅𝐻𝑆𝑇 = [𝐴2
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

− 1) + 𝐴1
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)] 

The terms 𝑞31𝑞42 is related to the numerator of the right-hand side in the standard form of the 

dispersion equation and, the term 𝑞32𝑞41is related to the denominator of the right-hand side.  

Let 𝐴̅ =
𝐴1

𝑅𝐻𝑆𝐵
 and 𝐵̅ =

𝑅𝐻𝑆𝑇

𝐴2
, the dispersion equation obtained from the global matrix approach in 

(2-31) can be written in the form to better compare with the standard form 

[𝐴̅ − 𝐵̅]2{1 + 𝑒1
2𝑒2
2} − [𝐴̅ + 𝐵̅]2{𝑒1

2 + 𝑒2
2} + 8𝐴̅𝐵̅𝑒1𝑒2 = 0 

(2-41) 
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Expanding the product [𝐴̅ ± 𝐵̅]2 in (2-41), and collecting 𝐴̅ and 𝐵̅ terms give the dispersion 

equation 

𝐴̅2[1 + 𝑒1
2𝑒2
2 − 𝑒1

2 − 𝑒2
2] − 2𝐴̅𝐵̅[1 + 𝑒1

2𝑒2
2 + 𝑒1

2 + 𝑒2
2 − 4𝑒1𝑒2] + 𝐵̅

2[1 + 𝑒1
2𝑒2
2 − 𝑒1

2 − 𝑒2
2] = 0 

(2-42) 

Divide equation (2-42) by 𝐴̅2 to obtain  

1 − (
2𝐵̅

𝐴̅
)
[1 + 𝑒1

2 + 𝑒2
2 + 𝑒1

2𝑒2
2 − 4𝑒1𝑒2]

[1 − 𝑒1
2 − 𝑒2

2 + 𝑒1
2𝑒2
2]

+ (
𝐵̅

𝐴̅
)

2

= 0 

(2-43) 

Recalling that the dispersion equations for the symmetric, and anti-symmetric cases, 

tanh(𝜂1𝐻)

tanh(𝜂2𝐻)
=
𝐵̅

𝐴̅
  

tanh(𝜂2𝐻)

tanh(𝜂1𝐻)
=
𝐵̅

𝐴̅
 

(2-44) 

where H is the half plate thickness so that h=2H. Using the identity tanh(𝑥) =
1−𝑒−2𝑥

1+𝑒−2𝑥
 

The product of the two dispersion equations is 

[
(1 − 𝑒1)(1 + 𝑒2)

(1 + 𝑒1)(1 − 𝑒2)
−
𝐵̅

𝐴̅
] [
(1 − 𝑒2)(1 + 𝑒1)

(1 + 𝑒2)(1 − 𝑒1)
−
𝐵̅

𝐴̅
] = 0 

(2-45) 

Finally, by expanding equation (2-45), equation (2-43) is found to be identical to equation 

(2-45). The implication of this exercise is that, the dispersion equation obtained from the global 

matrix approach is a product of the symmetric and anti-symmetric equations, and the term  

[𝑞31𝑞42 𝑞32𝑞41] is the numerator and the denominator of the frequency independent right-hand 

side of the standard dispersion equation as shown in (2-44) and (2-36). 
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2.1.4 Separation of Symmetric and Anti-Symmetric Dispersion Equations in the Global 

Matrix Method 

By applying the appropriate boundary conditions at the mid-plane, the dispersion 

equations for a balanced and symmetric layup can be separated into the two families reducing the 

matrix size by half. A formal proof for a single layer is presented here for symmetric and anti-

symmetric cases. 

Symmetric Case 

Consider the upper-half of an original plate with thickness 2H with the origin at mid-

plane as shown in Figure 2-6.  

 

Figure 2-6 For symmetric case, write the dispersion equation of the upper-half using global matrix 

For the symmetric problem, the displacements shown by the arrows would have the same sign 

for the horizontal components and have opposite sign for the vertical components above and 

below the mid-plane of the plate. This implies that for the half-plate, the conditions at the mid-

plane can be replaced by new boundary conditions 

𝑢𝑧 = 0  𝜎𝑥𝑧 = 0 

(2-46) 

z 

x 

H 

𝑧𝑚−1 = 𝑧0 = 0 

𝑧𝑚 = 𝑧1 = 𝐻 

H 
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The top surface of the half plate is traction free (2-46). Thus, using the layer matrix equation 

(2-16), the definitions of q in equation (2-17), and the definitions of the es in equation (2-19), and 

(2-29), the global matrix equation for the new problem can be written as 

{

𝑈𝑧(0)
𝑆𝑥𝑧(0)

𝑆𝑥𝑧(𝐻)

𝑆𝑧𝑧(𝐻)

} = [

𝑞
21

𝑞
22

−𝑞
21
𝑒1 −𝑞

22
𝑒2

𝑞31 𝑞32 −𝑞31𝑒1 𝑞32𝑒2
𝑞31𝑒1 𝑞

32
𝑒2 −𝑞

31
𝑞
32

𝑞41𝑒1 𝑞
42
𝑒2 𝑞

41
−𝑞42

]{

𝐶1
𝐶2
𝐶3
𝐶4

} = {𝟎} 

(2-47) 

For non-trivial solution of (2-47), the determinant of the matrix gives the symmetric dispersion 

equation. As suggested in section 2.1.3, the term 𝑞31𝑞42 𝑞32𝑞41represents the right-hand side of 

the standard form of the dispersion equation. The first determinant term is shown here as an 

illustration. 

𝑞21 |

𝑞31 −𝑞31𝑒1 𝑞32𝑒2
𝑞32𝑒2 −𝑞31 𝑞32
𝑞42𝑒2 𝑞41 −𝑞42

| 

= 𝑞21{𝑞32[𝑞31𝑞42 − 𝑞32𝑞41] − 𝑞31𝑒1[2𝑞32𝑞42𝑒2] + 𝑞32𝑒2[𝑞32𝑞41𝑒2 + 𝑞31𝑞42𝑒2]} 

= 𝑞21𝑞32[𝑞31𝑞42 − 𝑞32𝑞41] − 2𝑞21𝑞31𝑞32𝑞42𝑒1𝑒2 + 𝑞21𝑞32𝑒2
2[𝑞31𝑞42 + 𝑞32𝑞41] 

After calculating the remaining three terms of determinant, the dispersion equation is 

[𝑞21𝑞32 − 𝑞22𝑞31][𝑞31𝑞42 − 𝑞32𝑞41](1 − 𝑒1
2𝑒2
2) − [𝑞21𝑞32 − 𝑞22𝑞31][𝑞31𝑞42 + 𝑞32𝑞41](𝑒1

2 − 𝑒2
2) = 0 

(2-48) 

Since the term [𝑞21𝑞32 − 𝑞22𝑞31] = 𝛽1𝐶44[−𝜂2 + 𝑖𝑘𝛽2]− 𝛽2𝐶44[−𝜂1 + 𝑖𝑘𝛽1] can be factored out 

and is not equal to 0, the term [𝑞31𝑞42 − 𝑞32𝑞41](1 − 𝑒1
2𝑒2
2) − [𝑞21𝑞32 − 𝑞22𝑞31][𝑞31𝑞42 +

𝑞32𝑞41](𝑒1
2 − 𝑒2

2) = 0 is the dispersion equation. Using the substitution of [𝑞31𝑞42 ± 𝑞32𝑞41] with 

the material properties, velocities as in (2-33),(2-34) and the development through (2-41), it is 

concluded that [𝑞31𝑞42 ± 𝑞32𝑞41] = [𝐴̅ ± 𝐵̅] (Recall 𝐴̅ and 𝐵̅ are the denominator and the 
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numerator of the dispersion equation in equation (2-44)). Then the dispersion equation from 

equation (2-48) becomes 

[𝐴̅− 𝐵](1 − 𝑒1
2𝑒2
2) − [𝐴̅+ 𝐵](𝑒1

2 − 𝑒2
2) = 0 

(2-49) 

Collect the 𝐴̅ and 𝐵̅ terms gives, 

𝐴̅(1 − 𝑒1
2𝑒2
2 − 𝑒1

2 + 𝑒2
2) − 𝐵̅(1 − 𝑒1

2𝑒2
2 + 𝑒1

2 − 𝑒2
2) = 0 

(1 − 𝑒1
2𝑒2
2 − 𝑒1

2 + 𝑒2
2)

(1 − 𝑒1
2𝑒2
2 + 𝑒1

2 − 𝑒2
2)
=
𝐵̅

𝐴̅
 

(2-50) 

Using the hyperbolic tangent functions in the form of 1 ± 𝑒𝑗
2 to factor the left-hand side, 

(1 − 𝑒1
2)(1 + 𝑒2

2)

(1 + 𝑒1
2)(1 − 𝑒2

2)
=
𝐵̅

𝐴̅
 

(2-51) 

And using the definitions 𝑒1 = 𝑒
−𝜂1𝐻 and 𝑒2 = 𝑒

−𝜂2𝐻, equation (2-51) becomes 

(1 − 𝑒−𝜂12𝐻)(1 + 𝑒−𝜂22𝐻)

(1 + 𝑒−𝜂12𝐻)(1 − 𝑒−𝜂22𝐻)
=
𝐵̅

𝐴̅
 

(2-52) 

Apply the trigonometric identity tanh(𝑥) =
1−𝑒−2𝑥

1+𝑒−2𝑥
 gives the standard form of the symmetric 

dispersion equation, 

tanh(𝜂1𝐻)

tanh(𝜂2𝐻)
=
𝐵̅

𝐴̅
=

𝐴1 [𝐴2
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴1
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

𝐴2 [𝐴1
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33
(
𝐶13
𝐶44

+ 1) + 𝐴2
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

 

(2-53) 

Equation (2-53) is identical to the transversely isotropic dispersion equation derived in [29], 

which is also given in the appendix section 2.2. 
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Anti-Symmetric Dispersion Equation from Global Matrix Method 

For anti-symmetric case, the updated representative boundary conditions at the mid-plane 

can be inferred form Figure 2-7 to be  

𝑢𝑥 = 0  𝜎𝑧𝑧 = 0 

(2-54) 

 

Figure 2-7 For anti-symmetric case, write the dispersion equation of the upper-half using global matrix 

Using the layer matrix equations (2-16) to write the boundary conditions, the only difference 

between the anti-symmetric and symmetric case is in the first two rows of the matrix equation 

{

𝑈𝑥(0)
𝑆𝑧𝑧(0)

𝑆𝑥𝑧(𝐻)

𝑆𝑧𝑧(𝐻)

} = [

𝑞
11

𝑞
12

𝑞
11
𝑒1 −𝑞

12
𝑒2

𝑞41 𝑞42 𝑞41𝑒1 −𝑞42𝑒2
𝑞31𝑒1 𝑞

32
𝑒2 −𝑞

31
𝑞
32

𝑞41𝑒1 𝑞
42
𝑒2 𝑞

41
−𝑞42

]{

𝐶1
𝐶2
𝐶3
𝐶4

} = {𝟎} 

(2-55) 

The first term of the determinant is, 

𝑞11 |

𝑞42 𝑞41𝑒1 −𝑞42𝑒2
𝑞32𝑒2 −𝑞31 𝑞32
𝑞42𝑒2 𝑞41 −𝑞42

| 

= 𝑞11{𝑞42[𝑞31𝑞42 − 𝑞32𝑞41] − 𝑞41𝑒1[−2𝑞32𝑞42𝑒2] − 𝑞42𝑒2[𝑞32𝑞41𝑒2 + 𝑞31𝑞42𝑒2]} 

= 𝑞11𝑞42[𝑞31𝑞42 − 𝑞32𝑞41] + 2𝑞11𝑞41𝑞32𝑞42𝑒1𝑒2 − 𝑞11𝑞42𝑒2
2[𝑞31𝑞42 + 𝑞32𝑞41] 

After collecting terms form all the minor determinants. The dispersion equation is then 

[𝑞11𝑞42 − 𝑞12𝑞41][𝑞31𝑞42 − 𝑞32𝑞41](1 − 𝑒1
2𝑒2
2) − [𝑞11𝑞42 − 𝑞12𝑞41][𝑞31𝑞42 + 𝑞32𝑞41](𝑒1

2 − 𝑒2
2) = 0 

z 

x 

H 

𝑧𝑚−1 = 𝑧0 = 0 

𝑧𝑚 = 𝑧1 = 𝐻 

H 
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(2-56) 

Equation (2-56) has the same form as the symmetric case (2-48) with the only difference of 

having [𝑞11𝑞42 − 𝑞12𝑞41] instead of [𝑞21𝑞32 − 𝑞22𝑞31]. Thus equation (2-56) is written as  

[𝐴̅− 𝐵](1 − 𝑒1
2𝑒2
2) + [𝐴̅+ 𝐵](𝑒1

2 − 𝑒2
2) = 0 

(2-57) 

And to be factored as 

(1 − 𝑒1
2𝑒2
2 + 𝑒1

2 − 𝑒2
2)

(1 − 𝑒1
2𝑒2
2 − 𝑒1

2 + 𝑒2
2)
=
𝐵̅

𝐴̅
=
(1 + 𝑒1

2)(1 − 𝑒2
2)

(1 − 𝑒1
2)(1 + 𝑒2

2)
 

(2-58) 

For completeness, using the definitions of 𝑒1 = 𝑒
−𝜂1𝐻 and 𝑒2 = 𝑒

−𝜂2𝐻to obtain the standard form 

(1 + 𝑒−𝜂12𝐻)(1 − 𝑒−𝜂22𝐻)

(1 − 𝑒−𝜂12𝐻)(1 + 𝑒−𝜂22𝐻)
=
tanh(𝜂2𝐻)

tanh(𝜂1𝐻)
=
𝐵̅

𝐴̅
 

(2-59) 

Thus, we have concluded that the symmetric and anti-symmetric dispersion equations can be 

obtained by using only the upper half of a homogeneous plate. 
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2.2 The Waveguide Finite Element Method 

2.2.1 A Review of the Wave Guide Finite Element Method 

The Wave Guide finite element (WFE) method is semi-analytical procedure to model 

elastic wave propagation in frequency domain. Mace et. al. developed the method to model wave 

motions in different structural waveguides such as plates and channels [30]. Duhamel et. al. 

applied the method to analyze the wave modes in simple frames and beam structures [31]. The 

WFE method has been applied to study wave motion in complex waveguides with difficult-to-

find analytical solutions such as fluid-filled corrugated pipes [32], multi-wire cable systems [33], 

and honeycomb core sandwich structures [34] [35]. Renno et. al. modified the WFE method to 

find the forced response of a structure [36].  

2.2.2 Formulation of the WFE Method 

Consider an infinite plate with thickness 2H, with the waveguide segment of length Δh 

that is repeated in the z-direction, as shown in Figure 2-8.  

 

Figure 2-8 A section of plate is the waveguide, s 

The segment s is described by the FE equation of motion given below with the mass and stiffness 

matrices denoted by 𝑴, and 𝑲, respectively. 

𝑴𝒖̈ + 𝑲𝒖 = 𝒇 
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(2-60) 

The vectors u and f are the nodal displacements and forces of the waveguide segment. 

Assuming harmonic motion in the form 𝑒−𝑖𝜔𝑡, the equation of motion (2-60) becomes 

[

𝑫̅𝑳𝑳 𝑫̅𝑳𝑰 𝑫̅𝑳𝑹
𝑫̅𝑰𝑳 𝑫̅𝑰𝑰 𝑫̅𝑰𝑹
𝑫̅𝑹𝑳 𝑫̅𝑹𝑰 𝑫̅𝑹𝑹

] {

𝒖𝑳
𝒖𝑰
𝒖𝑹
} = {

𝒇𝑳
𝟎
𝒇𝑹

} 

(2-61) 

where 𝑫̅ =  −𝝎𝟐𝑴+𝑲 is the dynamic stiffness matrix, and the subscripts in (2-62) denote the 

partition of the degrees of freedom (DOF) associated with the left side, the interior and the right 

side of the segment. In order to apply the segment continuity condition, the interior DOFs are 

expressed in terms of the left and right DOFs as 

𝑫𝑳𝑳 = 𝑫̅𝑳𝑳 − 𝑫̅𝑳𝑰𝑫̅𝑰𝑰
−𝟏𝑫̅𝑰𝑳 𝑫𝑳𝑹 = 𝑫̅𝑳𝑹 − 𝑫̅𝑳𝑰𝑫̅𝑰𝑰

−𝟏𝑫̅𝑰𝑹 

𝑫𝑹𝑳 = 𝑫̅𝑹𝑳 − 𝑫̅𝑹𝑰𝑫̅𝑰𝑰
−𝟏𝑫̅𝑰𝑳 𝑫𝑹𝑹 = 𝑫̅𝑹𝑹 − 𝑫̅𝑹𝑰𝑫̅𝑰𝑰

−𝟏𝑫̅𝑰𝑹 

(2-62) 

Equation (2-61) can then be condensed into the form 

[
𝑫𝑳𝑳 𝑫𝑳𝑹
𝑫𝑹𝑳 𝑫𝑹𝑹

] [
𝒖𝑳
𝒖𝑹
] = [

𝒇𝑳
𝒇𝑹
] 

(2-63) 

Since the right face of waveguide segment s should have field continuity with the left face of 

segment s+1, 

𝒖𝑹
𝑺 = 𝒖𝑳

𝒔+𝟏  and 𝒇𝑹
𝒔 = 𝒇𝑳

𝒔+𝟏 

(2-64) 

Inserting the continuity conditions (2-64) into the equilibrium equation (2-63), a system of 

matrix equations is obtained in which the downstream displacement and force components are 

expressed explicitly in terms of the upstream displacement and force components in the form 

[
𝒖𝑳𝒔+𝟏

𝒇𝑳
𝒔+𝟏 ] = [

−𝑫𝑳𝑹
−𝟏𝑫𝑳𝑳 𝑫𝑳𝑹

−𝟏

−𝑫𝑹𝑳 +𝑫𝑹𝑹𝑫𝑳𝑹
−𝟏𝑫𝑳𝑳 −𝑫𝑹𝑹𝑫𝑳𝑹

−𝟏] [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] = 𝑻 [

𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] 



35 

(2-65) 

Using the substitution 𝜆 = 𝑒𝑖𝑘𝛥ℎ to represent the phase shift of the wave that travels through the 

waveguide segment with length Δℎ, the downstream displacements and forces can be expressed 

as 𝒖𝑳
𝒔+𝟏 = 𝝀𝒖𝑳

𝒔  𝑎𝑛𝑑 𝒇𝑳
𝒔+𝟏 =  𝝀𝒇𝑳

𝒔  where k is the angular wavenumber. The following eigenvalue 

equation represents the free wave propagation in the plate 

𝑻 [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] = 𝝀 [

𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] 

(2-66) 

Solving the equation gives the values of λ the wavenumber can be obtained as, 

𝑘 = −
𝑖

𝛥ℎ
𝐿𝑛 (𝜆) 

(2-67) 

The phase velocity cp and the group velocity cg can be calculated from the well-known relations 

𝑐𝑝 =
𝜔

𝑘
  𝑐𝑔 =

𝜕𝜔

𝜕𝑘
 

(2-68) 

Alternatively, using energy transport velocity formula given in [37], the inaccuracies associated 

with numerical differentiation in calculating the group velocity can be avoided  

𝑐𝑔 =
< 𝑃 >

< 𝐻 >
 

(2-69) 

where < 𝑃 > is the time-averaged power flow over the cross-section of the waveguide, and <

𝐻 > is the time-averaged sum of the potential and kinetic energy densities in the waveguide. 

< 𝑃 > =
1

2
𝜔𝐼𝑚{𝒇𝑳

𝐻𝒖𝑳}  

(2-70) 

< 𝐻 >=
1

4𝛥𝐻
𝜔2𝑅𝑒{𝒖𝐻𝑴𝒖} +

1

4𝛥𝐻
𝑅𝑒{𝒖𝐻𝑲𝒖} 
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(2-71) 

where uH denotes the complex conjugate transpose of the vector u. 

Lamb Wave Mode Identification Based on Wavenumbers 

The wavenumbers calculated from the equation (2-67) is in general complex with the 

number of eigenvalues equal to the number of degrees of freedom in the FE discretization. Since 

these wavenumbers are the roots of the dispersion equation, it is useful to classify them base on 

the physical characteristics of the Lamb waves. In the subsequent discussions, it is assumed that 

the waveguide in consideration is a plate that is balanced and symmetric about its mid-plane. 

Figure 2-9 shows the typical root distribution on the complex k-plane for an aluminum plate.  

 
(a) All complex roots found by WFE 

 
 (b) Roots associated with right propagating 

waves for symmetric (x) and anti-symmetric 

modes (⸋) 

Figure 2-9 The complex wavenumbers for a 1.78mm thick aluminum plate 

The wavenumber k appears in all four quadrants and they are not independent. For each k, there 

are other roots −𝑘, 𝑘∗ and − 𝑘∗. Furthermore, k can be real, pure imaginary or complex. Recall 

from equation (2-1) that the displacement has the form 𝑒𝑖𝑘𝑥1  , the real value of k corresponds to 

the propagating waves with no decay in two-dimensional problems. The complex roots 

correspond to evanescent waves that decay exponentially 𝑥1, with the rate of decay depending on 

the imaginary part of the wavenumber. The purely imaginary roots are associated with waves 

that decay exponentially but do not propagate. It should be noted that the sign of the real part k 
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indicates the direction of propagation.  For 𝑥1 ≥ 0, the right propagating waves would have a 

positive real part, and a positive imaginary part such that the wave amplitude decreases with 

increasing propagation distance. There is, however, some exceptions to these rules when a 

positive real wavenumber is associated to a negative group velocity. For some materials, such as 

aluminum near the cut-off frequency of the S2 mode, the derivative 
𝜕𝜔

𝜕𝑘
 is negative, resulting in 

the well-known behavior of “backward power flow” as pointed out in [38]. In such case, to select 

the right propagating non-decaying wave, the positive group velocity is used as the determining 

condition along with a negligible imaginary part. After the wavenumbers are classified into real, 

imaginary, and complex, the real roots are then sorted in descending magnitude of the real part 

because the higher modes would be more likely to have a higher phase velocity. The imaginary 

and the complex roots are sorted with increasing magnitude of the imaginary part which have a 

slower rate of decay and therefore are more dominant. Although an infinite number of complex 

roots can satisfy the Lamb wave dispersion equation and WFE can only calculate as many of 

those roots as there are the degrees of freedom, typically a subset of those roots is sufficient to 

obtain an accurate solution when using Lamb mode expansion. For the remaining analysis, 40 

complex roots in the first quadrant are kept. Finally, when the waveguide is balanced and 

symmetric such that the Lamb modes can be separated into symmetric and anti-symmetric 

modes, the wavenumbers are further separated into the two families. To do so, the eigenvectors 

for each wavenumber obtained from equation (2-66) are used to evaluate the displacement 

components at the top and bottom nodes to satisfy the symmetry and anti-symmetry as shown in 

Figure 2-6 and Figure 2-7.  
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3D Waveguide Segment Periodic Boundary Conditions 

For this research, the primary focus is the elastic wave propagation in plates with infinite 

in-plane dimensions, and the periodic boundary condition is used to restrict the eigenvalue 

problem to only model Lamb waves. Consider the waveguide section sketched in Figure 2-10, 

which represents a small section of the plate segment 𝑠 in Figure 2-8 with guided waves 

propagating in the z direction.  

 
Figure 2-10 Nodes in the FE waveguide segment are subjected to periodic boundary conditions, and the 

red dots are the nodes which the displacement components are used to determine whether a mode is 

symmetric or anti-symmetric 

Since the plate is long in the x direction, the waveguide section will be periodic, and the 

associated periodic boundary condition is 𝑢𝑥 = 0 for all nodes on the front and back faces of the 

waveguide (parallel to 𝑦-𝑧 plane). This is a more restrictive condition than the plane-strain 

condition in which 
𝜕𝑢𝑥

𝜕𝑥
= 0 gives 𝑢𝑥

𝑓𝑟𝑜𝑛𝑡
= 𝑢𝑥

𝑏𝑎𝑐𝑘. It is worth mentioning that the degrees of 

freedom in equation (2-61) are active (i.e., with the fixed DOFs removed). 

Numerical Considerations 

The standard form of the eigenvalue problem in (2-66) can be ill-conditioned at higher 

frequencies and may result in missing roots or in mode shapes that could not be classified into 

symmetric/antisymmetric modes properly. The first numerical issue is that the upper half and the 
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lower half of the displacement-nodal force vector [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] is of significantly different order in 

magnitude. By introducing an 𝛼 factor with the norm of the submatrices  

𝛼 =
‖𝑫𝑳𝑹

−𝟏‖

‖−𝑫𝑳𝑹
−𝟏𝑫𝑳𝑳‖

 

(2-72) 

the new eigenvalue problem is written in terms of the normalized vector  [
𝒖𝑳
𝒔

𝛼𝒇𝑳
𝒔]. Inspecting 

equation (2-65), −𝑫𝑳𝑹
−𝟏𝑫𝑳𝑳 is multiplying the displacement vector whereas −𝑫𝑳𝑹

−𝟏𝑫𝑳𝑳is 

multiplying the nodal force vector. The 𝛼 factor can then be used to rescale the eigenvalue 

problem to become  

[
−𝑫𝑳𝑹

−𝟏𝑫𝑳𝑳 𝑫𝑳𝑹
−𝟏/𝛼 

(−𝑫𝑹𝑳 +𝑫𝑹𝑹𝑫𝑳𝑹
−𝟏𝑫𝑳𝑳)𝛼 −𝑫𝑹𝑹𝑫𝑳𝑹

−𝟏] [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] = 𝝀 [

𝒖𝑳
𝒔

𝛼𝒇𝑳
𝒔] 

(2-73) 

Furthermore, when the number of interior DOFs increases relative to the number of boundary 

DOFs, the numerical error in the matrix inverse calculation of 𝑫𝑳𝑹 is prominent. Maess et. al. 

proposed [32] to reformulate the eigenvalue problem to use the general form of the eigenvalue 

problem as in (2-74) to avoid using the inverse matrices as in equation (2-73). 

[
𝑫𝑳𝑳 −𝑰
𝑫𝑹𝑳 𝟎

] [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] = 𝜆 [

−𝑫𝑳𝑹 𝟎
−𝑫𝑹𝑹 −𝑰

] [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] 

(2-74) 

Prescribe the Sign Convention of the Eigenmodeshapes 

Since the eigenvectors are not unique, the sign of the modal displacements/stresses can be 

scaled differently across frequencies. 
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(a) without prescribing a sign convention 

 
 (b) with a prescribed sign convention 

Figure 2-11 WFE Eigenmode shapes for S0 mode vertical displacement across frequencies  

The consequence is that when the inverse Fourier time transform is done, the frequency domain 

solution has inconsistent phases between frequencies. To ensure the eigenvectors are consistent 

across frequencies, the top surface vertical displacement for every Lamb mode is multiplied by a 

scalar such that it is real and positive. For example, if the eigenvalue problem returns the nodal 

displacement of the top left node to be a negative imaginary quantity, the entire eigenvector [
𝒖𝑳
𝒔

𝒇𝑳
𝒔 ] 

is multiplied by i, such that the resulting top surface displacement is a positive real number. 

Figure 2-11 shows the difference between the modal functions without and with the common 

sign convention. When the sign and phase of the modal function are prescribed, the modal 

functions have a common phase across frequencies for the numerical calculations of the inverse 

Fourier transform. 

2.2.3 Theoretical Validation of WFE Model 

In the previous sections, GMM and WFE are introduced to model the free wave response 

in multilayered plates, each have their advantages and disadvantages. In this section, the 

analytical GMM is used to validate the dispersion curves and the modal functions calculated 

from WFE. Furthermore, since both methods are capable of modeling multilayered material 
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systems efficiently, they are used to study the free wave response of several polymer adhesive 

systems. The baseline plate considered is a 3-layer aluminum skin panel of 1 mm skin thickness 

with different isotropic core materials that are 2 mm thick. 

Validation of the WFE Dispersion Curves and Mode Shape using GMM 

The aluminum-titanium laminate is chosen for comparing WFE results with those 

obtained from GMM. Figure 2-12 shows the dispersion data obtained from GMM, represented 

by the black crosses are identical to the WFE results (solid lines).  

 
Figure 2-12 Wavenumber comparison between the WFE (solid blue lines denoting antisymmetric mode, 

and solid red lines denoting symmetric modes) and the GMM (denoted by black crosses) for the Al-Ti 

laminate 

It is worth to mention that for the “backward” wave mentioned above, the GMM data would 

require the calculation of  
𝜕𝜔

𝜕𝑘
 to identify the modes with negative group velocity (not shown). For 

the modes that have a negative derivative of  
𝜕𝜔

𝜕𝑘
, −𝑘 should be used instead.  

Lamb Wave Propagation in Laminates with a Soft Core 

The bulk wave velocities of some common of polymer adhesive materials are collected in 

Table 2-1. To down select the number of core materials being considered, the materials with 

more unusual bulk wave velocities in terms of 𝑐1/𝑐2 and 𝑐1 − 𝑐2 are chosen using Figure 2-13. 

The baseline structure, highlighted in gray in the table, is the aluminum-titanium hybrid which is 
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characterized by the 𝑐1 of the titanium is greater than the 𝑐2 of the aluminum and the respective 

𝑐1and c2 are relatively similar between the skin and core materials. 5505 Epoxy and P3-319 

Epoxy, highlighted green, are characterize as the extremum cases in 𝑐1 − 𝑐2 whereas KT-820 

PEEK and R-5100 PPSU, highlighted in yellow, are characterized as unusual in 𝑐1/𝑐2. Finally, 

highlighted in orange is the high-density foam in which the elastic properties and the density are 

extremely low when compared to the aluminum skin. 

Table 2-1 Material properties of some core materials being considered 

ID Material Name 𝐸 [GPa] 𝐺 [GPa] 𝜈 ρ [kg/m3] 𝑐1[m/s] 𝑐2[m/s] 

1 3506-1 Epoxy 4.20 1.567 0.34 1300 2230 1098 

2 5250-4 RTM 4.62 1.71 0.35 1246 2439 1172 

3 5505 Epoxy 7.24 2.68 0.35 1265 3030 1455 

4 8551-7 Epoxy 4.08 1.478 0.38 1273 2449 1077 

5 BSL914C Epoxy 4.00 1.48 0.35 1265 2252 1082 

6 CETEX PEI 3.28 1.204 0.36 1270 2081 973 

7 Coors Tek PEKK 4.40 1.57 0.4 1310 2683 1095 

8 KT-820 PEEK 3.50 1.316 0.33 1300 1997 1006 

9 KT-880 PEEK 3.70 1.35 0.37 1300 2244 1019 

10 LY556 Epoxy 3.35 1.24 0.35 1273 2055 987.0 

11 MY750 Epoxy 3.35 1.24 0.35 1273 2055 987.0 

12 Polyester 3.24 1.17 0.38 1163 2284 1005 

13 PR-319 Epoxy 0.95 0.35 0.35 1273 1094 526.0 

14 R-5100 PPSU 2.34 0.824 0.42 1300 2144 796.0 

15 Vinyl ester 3.44 1.172 0.38 1265 2256 993.0 

16 High Dens. Foam 0.30 0.110 0.364 249.9 1433 663.4 

17 Aluminum 68.9 26.5 0.3 2700 5861 3132 

18 Titanium 100.0 37.59 0.33 4760 5579 2810 
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(a) Longitudinal, shear wave velocities, and their 

differences for different core materials 

 
 (b) The ratio between the longitudinal and shear 

wave velocities 

Figure 2-13 Bulk wave velocities for material selection 
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Figure 2-14 Group velocities and the bulk wave velocities for various hybrid laminates. The brown 

dashed lines are the c1 and c2 of the aluminum skin, whereas the black dotted lines are those for the core 

materials 

The group velocity curved presented in Figure 2-14 show that more higher modes will 

appear when a material has slow bulk wave velocities. Furthermore, the group (and phase) 

velocities converges to the lowest shear wave velocity among the different laminated materials. 

This could be explained by the fact that Lamb wave modes are formed by the consecutive 

reflections of bulk waves, the slower velocities induce a smaller reflection angle so that more 

Lamb modes can be formed.  
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Figure 2-15 Phase velocities and the bulk wave velocities in various hybrid laminates. The brown dash 

lines are the c1 and c2 of the aluminum skin, the magenta lines are the A0 and S0 mode phase velocity of a 

1mm thick aluminum plate, whereas the black dotted lines are those for the core materials 
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The phase velocity of the laminated materials shown in Figure 2-15 exhibits some remarkable 

features. When the core material has slower longitudinal and shear wave velocities than those of 

the skin (aluminum), the dispersion curves for the entire laminate would converge to the 

aluminum skin (magenta lines). Furthermore, as the frequency increases, the phase velocity 

would converge to the slowest shear wave velocity which is of the core material. It is worth 

mentioning that the “vertical lines” in the phase velocity appear because of the “backward” wave 

mentioned in section “Lamb Wave Mode Identification Based on Wavenumbers.” For those 

wave modes to have a forward propagating power flow (with a positive group velocity), the 

phase velocity transitions from negative to positive, hence the vertical line.  

The discussion of the nature of the dispersion curves pointed out some distinct 

differences between the nature of the wave propagation in a laminated material with a very slow 

core versus that of comparable bulk wave velocities. To better understand the underlying wave 

propagation mechanism, the wave motion across different layers is investigated. For the 

remainder of this section, the aluminum-titanium laminate, representing a stiffer core, and the 

aluminum-high density foam laminate, representing a softer core are studied. Figure 2-16 and 

Figure 2-17 show the displacement eigenvectors for the A0 and S0 modes, respectively across 

frequencies for the aluminum-titanium laminate and the aluminum-high density foam laminate. 

The eigenvector is multiplied by a scalar such that the vertical displacement is always a real 

number, and therefore the horizontal displacement is an imaginary quantity. As expected, the 

displacement in the soft foam core material is significantly larger than the stiffer aluminum skin 

whereas the Al-Ti laminate has barely visible slope change in the displacement. An important 

feature in the eigenvector is that below a certain frequency, the mode shapes exhibit a monotonic 

change with respect to thickness and above that frequency, the shapes display a sinusoidal 
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variation. The displacement magnitude often changes significantly around that frequency. In the 

case of a single layer isotropic plate, that frequency correspond to when 𝜂2 = √𝑘2 − 𝑘2
2 changes 

from a real to an imaginary quantity. For multilayer media, it appears that the eigenvectors 

behave similarly, but it is difficult to determine whether the same changes in the numerical 

characteristics of 𝜂2 occurs. 

 

 
Figure 2-16 A0 mode horizontal (ux) and vertical (uz) displacement eigenvector comparing Al-Ti and Al-

High Density Foam laminates 
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Figure 2-17 S0 mode horizontal (ux) and vertical (uz) displacement eigenvector comparing Al-Ti and Al-

High Density Foam laminates 

The displacement vectors show the wave motion in different layers but not indicative to the wave 

characteristics in the stiffer aluminum skin because of the relatively low amplitude of the 

displacements. The elastic energy associated with the nodal displacements and forces, 

represented by the Poynting vector, 𝑝𝑗
(𝑛) =

1

2
𝑅𝑒{𝑖𝜔𝑓𝑗

∗𝑞𝑗}, (where 𝑓∗ is the complex conjugate of 

the nodal force components, and the subscript j refers to the x or z component) is indicative of the 

stress state in the layers. Figure 2-18 shows the Poynting vectors for the A0 and S0 modes across 

frequencies for the two material systems.  
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Figure 2-18 The Poynting vector of the A0 and S0 modal eigenvectors for Al-Ti and Al-High Density 

Foam for different nodal positions through the thickness at various frequencies 

For the Al-Ti laminate, the elastic energy distribution in the aluminum skin does not change 

across frequencies for the A0 mode whereas the S0 mode has more energy concentrated in the 

titanium core in the lower frequencies and at the top and bottom surfaces in the aluminum skin 

for higher frequencies. For the aluminum-foam core laminate, the A0 mode exhibits a different 

behavior where the elastic energy is concentrated on the plate’s surfaces and at the interlaminar 

interfaces at lower frequencies. At higher frequencies, the elastic energy is concentrated almost 

exclusively in the soft core. The S0 mode is similar in that the elastic energy is primarily in the 

skin at lower frequencies and in the core at higher frequencies. Figure 2-19 shows the selected 

frequencies depicting the distinctions at lower and higher frequencies.  
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Figure 2-19 The Poynting vector of Al-Ti and Al-High Density Foam for A0 and S0 modes at various 

frequencies 
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Figure 2-19 highlights the differences in the energy distribution through the thickness between 

Al-Ti and Al-Foam laminates, where in the Al-Ti case, the elastic energy carried by the skin and 

core is relatively even as opposed to the Al-Foam, where the energy is either carried by the skin 

or the core. Furthermore, there are some frequencies such as at 87.5kHz and 312.5kHz, at which 

the direction of the Poynting vector is opposite to each other between the skin and the core, 

indicating the elastic energy is leaking across the interface.  

2.2.4 Experimental Validation of the WFE Model 

Quasi-isotropic laminates are often used in the design of composite structures and are 

often modeled as a homogenized material with the effective properties of the laminate. In 

practice, the manufacturing errors of those laminates could weaken the validity of the quasi-

isotropic assumption but could still be sufficient for the purpose of structural analysis when a 

safety factor is employed. For guided ultrasonic wave based nondestructive testing methods, 

these deviations may cause a directional dependency of the propagation velocities that could lead 

to error in the time-of-flight analysis. In this section, the dispersion curves calculated by WFE is 

compared with experimental measurements for two carbon composite plates that one of them has 

the quasi-isotropic layup while the other does not.  

Composite Modeling 

A waveguide segment is modeled in ABAQUS CAE with dimensions 2H x 50 μm x 50 

μm is created where 2H is the plate thickness. The waveguide is subjected to a periodic boundary 

conditions in the 𝑥2 direction. For composite laminates, the model is partitioned such that each 

ply is modelled explicitly. A sufficiently large number of elements per ply thickness (element 

size less than 20 µm) is used to minimize any numerical dispersion artifacts, and to ensure 

convergence of the results. For the individual plies with various orientations, the lamina stiffness 
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properties are calculated through a matrix rotation. Figure 2-20 shows the convention for 3D 

WFE used in this work in which the 0° ply aligns with the global 𝑥1 axis and a positive ply angle 

is rotated counterclockwise about 𝑥3 axis. The lamina used is this study is a 2x2 twill woven 

fabric with T300 fibers of 3K tow embedded in CYCOM970 epoxy. It is worth noting that most 

manufacturers report only a subset of the elastic constants. In this case 𝐺13, 𝐺23, 𝜈13, and 𝜈23are 

obtained from composite handbooks with similar in-plane properties, and the complete list of the 

lamina properties is given in Table 2-2. 

 
Figure 2-20 Illustration of the 3D ply rotation for stiffness properties calculations 

Table 2-2 Lamina properties for the studied composite plate with T300/CYCOM970  (ρ = 1543 kg/m3) 

𝐸11[GPa] 𝐸22[GPa] 𝐸33[GPa] 𝐺12[GPa] 𝐺13[GPa] 𝐺23[GPa] 𝜈12 𝜈13 𝜈23 

57.25 55.5 13.5 5.20 4.08 3.28 0.06 0.5 0.37 

 

Although there are serval software tools to calculate the overall elastic constants for 

different ply orientations, most of the tools would only accept real numbers. In preparation for 

modeling material attenuation with complex elastic properties, the well-known procedure is 

summarized below for completeness. First the compliance matrix is calculated through equation 

(2-75) below and the stiffness matrix 𝑫 is evaluated from its inverse. 

𝑥1 

𝑥2 

𝑥3 

𝜃 
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𝑠𝑦𝑚
1

𝐺13
0

1

𝐺12]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(2-75) 

To obtain the components of 𝑫′, the stiffness matrix in the new orientation, evaluate the matrix 

transformation from equation (2-76) where the rotation matrix T  is defined in equation (2-77) 

with 𝑚 = cos (−𝜃), 𝑛 = sin (−𝜃) and 𝜃 is the ply orientation relative to the propagation axis 𝑥1 

which would be positive when rotated counterclockwise as illustrated in Figure 2-20.  

𝑫′ = 𝑻𝑫𝑻𝑇 

(2-76) 

𝑻 =

[
 
 
 
 
 
𝑚2 𝑛2 0 0 0 𝑚𝑛
𝑛2 𝑚2 0 0 0 −𝑚𝑛
0 0 1 0 0 0
0 0 0 𝑚 −𝑛 0
0 0 0 𝑛 𝑚 0

−2𝑚𝑛 2𝑚𝑛 0 0 0 𝑚2 − 𝑛2]
 
 
 
 
 

 

(2-77) 

The rotated elastic property for each ply can then be written into a .csv file and be read into 

ABAQUS CAE directly in the form of equation (2-78).  

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23}
 
 

 
 

=

[
 
 
 
 
 
 
𝐷1111 𝐷1122 𝐷1133 𝐷1112 𝐷1113 𝐷1123

𝐷2222 𝐷2233 𝐷2212 𝐷2213 𝐷2223
𝐷3333 𝐷3312 𝐷3313 𝐷3323

𝐷1212 𝐷1213 𝐷1223
𝑠𝑦𝑚 𝐷1313 𝐷1323

𝐷2323]
 
 
 
 
 
 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
2𝜀12
2𝜀13
2𝜀23}
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(2-78) 

Note that for ABAQUS, the stress vector convention has a slight change to the standard Voigt 

notation, instead of {𝜎11 𝜎22 𝜎33 𝜎23 𝜎13 𝜎12}𝑇, it is {𝜎11 𝜎22 𝜎33 𝜎12 𝜎13 𝜎23}𝑇. 

Therefore, some row and column changes are necessary to convert the matrix from equations (2-76) to 

(2-78).  

Furthermore, in the case of preparing dispersion data and modal functions, a 2D model is needed 

since ABAQUS would only allow the plane-strain problem to be modeled on the 𝑥1-𝑥2 plane. The ply 

stiffness matrix rotation must be done about the 𝑥2 axis as shown in Figure 2-21. 

 
Figure 2-21 Illustration of the ply rotation about 𝑥2axis 

Although the angled plies are not strictly in plane-strain condition, it is determined that when the laminate 

has a balanced and symmetric layup, the plane-strain assumption is a fair approximation and further 

details are presented in Figure 2-26b. For such 2D case, the rotational matrix in equation about the 𝑥2 

axis is 

𝑻 =

[
 
 
 
 
 
𝑐2 0 𝑠2 0 2𝑐𝑠 0
0 1 0 0 0 0
𝑠2 0 𝑐2 0 −2𝑐𝑠 0
0 0 0 𝑐 0 −𝑠
−𝑐𝑠 0 𝑐𝑠 0 𝑐2 − 𝑠2 0
0 0 0 𝑠 0 𝑐 ]

 
 
 
 
 

 

(2-79) 

𝑥1 

𝑥3 

𝑥2 

𝑥1′ 𝑥3′ 

𝜃 
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Note that a change of direction for the elastic constants is made when entering the 0° properties 

listed in Table 2-2 where the left-hand side of the equations are written for the lamina in the 𝑥1 −

𝑥3 plane. The right-hand side of the equation is written for which the lamina is in the 𝑥1 − 𝑥2 

plane instead 

𝐸22 = 𝐸33 𝐸33 = 𝐸22 𝜈12 = 𝜈13 𝜈13 = 𝜈12 𝜈23 = 𝜈32 

𝐺13 = 𝐺12 𝐺12 = 𝐺13 

(2-80) 

Finally, for calculating the dispersion curves for different propagation directions, the global 

coordinate system is rotated through a clockwise angle θ from the layup 0° orientation about the 

 off plane axis.  

Experimental Procedure 

Two composite plates are manufactured: plate A) with an anisotropic stacking sequence 

[60/0/60/60/0/60]s and plate B) with a quasi-isotropic stacking sequence [-60/0/60/60/0/-60]s. It 

should be noted that both plates were supposed to be manufactured to the specifications of plate 

B, however, due to a misinterpretation, the angled layers for plate A were cut incorrectly. Both 

specimens are manufactured with the T300/CYCOM970 system mentioned in Table 2-2. The 

two plates are trimmed to a size of 440 mm by 440 mm and the cured laminate thickness to be 

2.71 mm. To measure the group velocities of Lamb waves, a 10 Vpp Hann-windowed sine signal 

of 5 cycles with center frequency varying from 50 kHz to 300 kHz in steps of 25 kHz is 

generated by a waveform generator (NI 5402). The source and receiving piezoelectric 

transducers are identical (Digital Wave B225) and are positioned with the use of a Plexiglass 

template. The receiving transducer is connected to a signal conditioner (Digital Wave FM-1), 

which with a 20 kHz high-pass filter and 12 dB gain. The conditioned signal is captured by an 
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oscilloscope (Agilent 54624A) with a 5 MHz sampling frequency and a 400 µs recording time. 

Results from serval repeated wave bursts are averaged to achieve a higher signal-to-noise ratio. 

The receiving transducer is placed at serval distances from the source for each investigated 

direction (0°, 30°, 60°, and 90°), as shown in Figure 2-22. 

 

Figure 2-22 Experimental setup for measuring group velocities at different orientations. The source 

location is denoted by the red dot, while receivers are denoted by the black dots.  

In order to determine the group velocity from the recorded signals, the time of arrival of 

the waveform corresponding to the center frequency is needed. Since Lamb waves are 

dispersive, the time domain waveform is subjected to a short time Fourier transform (STFT). An 

example for a source with center frequency of 200 kHz, measured at 0° and 135mm from the 

source is shown in Figure 2-23a. instead of using the waveform’s peak times, the more robust 

time of the STFT peak amplitude at the center frequency is determined, as shown in Figure 

2-23b. This process is repeated for measurements taken at 60 mm, 85 mm, 110 mm, and 135 mm 

separation distances for each investigated angle, as shown in Figure 2-22. The average group 

velocity for each frequency and orientation can then be determined by fitting a line through the 

data points of peak times vs. propagation distance as shown in Figure 2-23c. 
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(a) Complete STFT of the signal                (b) STFT result at center frequency 

 

(c) The linear fit obtained from STFT peak times for the 4 locations 

Figure 2-23 Time-of-flight evaluation of a sample signal using STFT 

Comparison between WFE Dispersion Curves and Experimental Results 

Figure 2-24 shows the numerical and experimentally derived dispersion curves for plate 

A with the anisotropic layup. The red lines denote the symmetric modes, and blue lines are used 

for the antisymmetric modes. The WFE model explicitly accounts for each ply in the laminate. It 

is evaluated for different propagation orientations, and the resulting dispersion curves are shown 

in Figure 2-24a.  
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(a) WFE results for 0°, 30°, 60°, and 90°           (b) Comparison of experimental group 

                                                                                                velocities to WFE 0° results 

Figure 2-24 Dispersion results for plate A with the anisotropic stacking sequence 

The model predicts that the A0 mode is orientation-insensitive and non-dispersive in the 

investigated frequency range of 50-500 kHz. On the other hand, for the S0 mode, it can be seen 

that waves propagating along the 60°-direction are predicted to be the slowest. These 

observations can be explained with having most fibers aligned with the 60°-orientation, and the 

least in the 30°-direction. Moreover, the WFE results suggest that the S0 mode has almost the 

same propagation speed along 0° and 90°. Similar trends are observed from the experimentally 

derived group velocities as shown in Figure 2-24b. Overall, numerical and experimental results 

match reasonably well. Furthermore, despite the obvious variations in the results, S0 waves along 

the 60°-direction are consistently observed to be the fastest. The experimental measurements of 

the group velocity for different orientations also show no significant change in A0 mode group 

velocities across the measured frequency range. 

For the quasi-isotropic plate B, the WFE prediction of the group velocity using an 

explicit model of the laminate’s stacking sequence and the comparison with experimental results 

are shown in Figure 2-25. 
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(a) WFE results for 0°, 30°, 60°, and 90°           (b) Comparison of experimental group 

                                                                                                 velocities to WFE 0° results 

Figure 2-25 Dispersion results for plate B (quasi-isotropic stacking sequence) 

There is almost no difference between the different orientations for both the A0 and S0 modes. 

Despite some noise, the experimental results confirm that the A0 and S0 modes in the quasi-

isotropic laminate are invariant with respect to the propagation direction. Since virtually no 

differences between the different orientations are observed, a transversely isotropic model is 

developed using the homogenized elastic properties for plate B which is presented in Table 2-3. 

The homogenized elastic properties are calculated using classical laminate theory [26]. 

Table 2-3 Effective Properties when Plate B is Homogenized into One Layer (ρ = 1543 kg/m3) 

𝐸11[GPa] 𝐸22[GPa] 𝐸33[GPa] 𝐺12[GPa] 𝐺13[GPa] 𝐺23[GPa] 𝜈12 𝜈13 𝜈23 

44.4 44.4 13.5 17.2 4.60 4.60 0.29 0.33 0.33 

 

For the homogenized model, the analytical dispersion equation is available in equation 

(2-44), and the dispersion curves are compared to those obtained by the WFE ply-by-ply model 

in Figure 2-26a. 
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(a) ) Dispersion curves calculated from WFE ply-

by-ply model for waves propagating in 0° 

direction (solid line) vs. homogenized transversely 

isotropic model (dashed line) 

 
 (b) Dispersion curves calculated from WFE ply-

by-ply model with 3D elements for waves 

propagating in 0° direction (solid line) vs. the 

result calculated from 2D plane-strain ply-by-ply 

model (dotted line) and the experimental 

measurements 

Figure 2-26 Dispersion curves for homogenized models 

 

While the A0 mode has a negligible difference between the two modes, for S0, the homogenized 

model seems to predict a group velocity about 100 m/s slower than the 12-ply model. It should 

be noted that the solutions obtained by the WFE method have been compared with analytical 

solutions for isotropic and transversely isotropic plates in section 2.2.3, confirming their 

numerical convergence. Furthermore, a validity check for the 2D WFE implementation is made. 

Using an explicit ply-by-ply modeling for plate B with the use of plane-strain element where the 

ply constants are calculated by using the transformation equation in equation (2-79), the 2D vs. 

3D dispersion curves for 0° propagation orientation is shown in Figure 2-26b. Comparing the 

dashed and dotted lines from Figure 2-26a and b, the results for the homogenized transversely 

isotropic analytical dispersion equation can be seen to be almost identical to the 2D plane strain 

ply-by-ply WFE results. This is likely because when the layup is balanced and symmetric, the 

effects of the non-zero stiffness constants that violate plane-strain would cancel out with those of 

for the matching plies.  
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2.2.5 On the Assumption of Transverse Isotropy of Honeycomb Sandwich Structure 

Honeycomb Cell Model 

Honeycomb sandwich composite structures, consists of thin composite skins enclosing a 

thick cellular core with honeycomb cells, has high bending stiffness and can be found in some 

aerospace structures. Traditionally, the honeycomb core layer is modeled with equivalent 

homogenized properties derived from structural theories for predicting the bulk material load-

displacement response [39]. However, the use of homogenized layer with equivalent properties 

in wave propagation have yet been analyze in greater depth. With the use of WFE, waveguides 

with complex shapes can be handled by the FE discretization allowing the honeycomb cells 

geometry to be modeled. The 3D model of the honeycomb core has a cell size of 𝑡 = 0.0762 mm, 

𝐿 = 2.7568mm according to Figure 2-27.  

 

Figure 2-27 Honeycomb cell model in WFE (top view), representing one unit cell in the periodic structure 

Utilizing the symmetry of the problem, this model is sufficient to represent a honeycomb core 

layer of infinite lateral dimensions with periodic boundary conditions. The material properties 

are given as follows: Young's modulus 𝐸 = 70.3 GPa, Poisson's ratio 𝜈 = 0.33, density 𝜌 = 

2680 kg/m3
 (aluminum 5052). The geometry is meshed in the FE software package Abaqus with 

about 40 elements in the plate thickness direction (2𝐻 = 12.7 mm). Mass and stiffness matrices 



62 

are extracted, and the equations of WFE are implemented and solved in MATLAB. The resulting 

dispersion curves for the honeycomb core model for waves propagating in the z-direction are 

shown in Figure 2-28.  

 
(a) Phase velocity      (b) Group velocity 

Figure 2-28 Dispersion curves for waves propagation in the honeycomb core in the z-direction (0°).  Solid 

lines denote symmetric waves whereas antisymmetric waves are shown as dashed lines  

 

It can be seen that in the considered frequency range, only the two fundamental modes, S0 and 

A0, are propagating. It should be noted that higher order modes are not investigated as the 

accuracy of the results at higher frequencies cannot be guaranteed due to the increased mesh 

requirements. In addition to the dispersion curves, mode shapes are investigated to conform 

symmetric and anti-symmetric wave motion. The determined mode shapes for the S0 and A0 

waves are shown in Figure 2-29(a), (b), respectively.  
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(a) S0 at top (left) and at bottom (right)  (b) A0 at top (left) and at bottom (right) 

Figure 2-29 In-plane displacements of fundamental modes in the xz-plane for the 0° model at 40 kHz 

It can be seen that the in-plane displacement field of the S0 wave is the same at the top and 

bottom of the core. On the other hand, the displacements of the A0 wave are of the same 

magnitude but opposite sign at the top and bottom of the core. These results are in accordance 

with the theory and results for isotropic and transversely plates.  

In a second step, the 3D model of the honeycomb core cell is rotated by 90° Keeping all 

other parameters (material properties, mesh) constant, and implementing corresponding 

symmetry and periodicity conditions for this case, the WFE method is again applied. The 

resulting dispersion curves are compared to the ones from the previous (0°) model in Figure 

2-30.  

 
(a) Phase velocity      (b) Group velocity 

Figure 2-30 Dispersion curves in the honeycomb core. Solid lines denote results from the 0° model, 

results from the 90° model are shown as dashed lines 
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It can be seen that while the phase velocities for the A0 wave are very similar between the two 

cases, the plots reveal noticeable differences for the S0 wave. As in the previous case, also the 

mode shapes are analyzed for the 90°
 model. The mode shapes for both the S0 and A0 waves are 

shown Figure 2-31. For the sake of brevity, only the shapes at the top of the core are shown here. 

 
(a) S0 at top                   (b) A0 at top 

Figure 2-31 In-plane displacements of fundamental modes in the xz-plane for the 90° model at f = 40 kHz 

The equivalent behavior at the bottom of the core is evident. Compared to the mode shapes from 

Figure 2-29, it can be seen that in this configuration, the stiffness of the model is distributed 

differently, causing (slight) bending in different regions of the cell. This confirms that 

differences in the dispersion curves are to be expected.  

Comparing 3D and Transversely Isotropic Homogenized Layer Model 

In this subsection, results for a simplified model are derived in an effort to compare the 

results from the novel 3D model of the honeycomb cells with the established practice of 

modeling the core as a homogeneous transversely isotropic layer. In this case, the transversely 

isotropic core later is modeled with equivalent properties and the plane strain assumptions. The 

material properties are calculated using the mixture theory in [39] and are summarized in Table 

2-4. 

Table 2-4 Geometry and material parameters for the aluminum honeycomb core 

Thickness [mm] 𝐸11[GPa] 𝐸33[GPa] 𝐺13[GPa] 𝜈12 𝜈13 𝜌 [kg m3⁄ ] 

12.7 3.43× 10−3 2.99 0.413 0.997 3.79× 10−4 0.33 
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The WFE is applied and the dispersion curves for waves propagation in this homogeneous layer 

are determined. Due to the reduced complexity of the geometry in the homogenized model, a 

smaller element size of about 50 µm is chosen for this study. The resulting dispersion curves 

(dashed lines) are compared with those from the 3D 0° model (solid lines) and are presented in 

Figure 2-32. 

 

(a) Phase velocity      (b) Group velocity 

Figure 2-32 Dispersion curves for honeycomb core. Solid lines denote 3D model, dashed lines represent 

results from homogenized transversely isotropic core layer 

It can be seen that both the S0 and A0 waves are significantly different. The effect is particularly 

strong for the S0 wave. However, it should be noted that the equivalent material properties are 

based on simplified mixture theory, and more accurate predictions might reduce the differences.  
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Chapter 3 The Global Local Method 

3.1 A Review of the Global Local Method 

In Chapter 2, the mathematical description of Lamb wave propagation in various plate 

structures are presented. However, in NDE applications, the knowledge of the elastic waves 

generated by sources and scattered by defects in their path of propagation are also important. The 

equations governing Lamb waves for these problems are typically solved analytically for specific 

cases using integral (e.g. Fourier) transform techniques. For surface corrosion defects, solution 

for surface waves with varying plate thickness is available in [40]. Green’s function approach is 

used to solve the scattering problem of Rayleigh waves at a corner and a step [41] [42]. Solution 

of a limited number of source problems exists as well, such as to the dislocation source response 

in an elastic plate [43], and the response to various types of surface loads [29]. The response of a 

unidirectional composite laminate subjected to concentrated surface load is given in [44] [45]. 

These analytical solutions often involve numerical evaluation of difficult integrals of complex 

value functions. Alternatively, some scattering of plate discontinuity problems can be solved by 

the least-square method of matching the displacement and stresses at the boundary of the 

discontinuity. The solutions for step discontinuity and delamination-like discontinuity are 

presented in [46] [47].  

For the goal of developing a library of waveforms associated to different types of defects, 

a more general source and wave scattering modeling tool is required, and numerical methods 

could provide solution for such problem. Conventional transient time-domain dynamic analysis 

is computationally intensive to model a large structure requiring small time step and mesh sizes 

when the wavelength is small, or the frequency is high. With the use of the boundary element 
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method (BEM) [48], the amount of computation is reduced to the size of the plate boundary. Cho 

et. al. uses the BEM method with the elastodynamics fundamental solutions in the frequency 

domain and specialize the method to solve Lamb reflection at a free-edge in an efficient manner. 

The elastodynamics equations, instead of being solved with BEM, a variant of the finite 

difference (FD) approach known as Local Interaction Simulation Approach (LISA) is proposed 

by Delsanto et. al. [49]. The method is applied to solve scattering problems, such as a crack 

under normal incidence [50], in conjunction with local FE and global LISA to study a composite 

plate with delamination and stiffeners [51]. These methods are formulated quite differently from 

the finite element method, and thus could be difficult to take advantage of the existing utilities 

developed for FE, such as user defined material laws, solvers, etc. The semi-analytical FE 

method used in [52] is a good illustration of the flexibility to simulate elastic wave response in 

plates with defects. The spectral element method (SEM) is a time-domain FE for wave 

propagation analysis [53]. The Spectral Finite Element Method (SFEM), on the other hand, is a 

frequency domain method that derives the dynamic stiffness matrix exactly form the governing 

differential equations [54]. A demonstration of the method on infinite and semi-infinite half 

space indicates the efficiency of the method [55]. An extension of the SFEM suitable to model 

short waveguide is the wavelet spectral finite element (WSFE) [56].  

The numerical methods mentioned previously can model wave propagation in many 

types of waveguides efficiently. When there is an anomaly in the waveguide (such as a defect), 

these methods could provide a numerical efficient solution in the far field, but a local description 

is still required for the defect. This is the idea of the global-local method is a higher fidelity local 

description satisfying the continuity conditions with the far-field solution. Early use of global 

local FE analysis is on axisymmetric scattering problems using Bessel functions in the far field 



68 

description [57]. Koshiba et. al. developed a framework for plates, in which the fields in the FE 

region are represented by the sum of normal Lamb modes and solved a series of notch scattering 

problems [58]. Another approach provided by Al-Nassar et. al. describes the far field with a sum 

of Lamb modes and enforcing continuity between the local FE region (that contain the scattering 

source) and the far field [59]. The formulation given in [59] is well suited for plates, because the 

Lamb wave modal functions are separated from the equations in the FE region. Chang et. al. 

formulated the scattering problem differently than [59], in which the modal amplitudes are the 

unknowns to be solved for [60]. Under this formulation, the least-square nature of matching a 

smaller number of Lamb modes with a larger number of FE boundary degree of freedom is 

clearer. Chang also describes the important requirements on the far field Lamb mode selection. 

He notes that the proper selection of non-propagating and backward propagating modes is 

important for energy conservation consideration. 

The global local method shown before is applied to wave scattering problems where only 

one incident mode is considered (usually the A0 or S0 mode). However, in some cases the 

complete wavefield generated by a surface source would create multiple incident modes. The 

complex wavefield near a source can be represented by FE discretization, and the outgoing 

wavefield in the far field can be described by the sum of propagating Lamb modes. Schaal et. al. 

applies the global local method to study the energy loss of a surface mount resonator [61] [62]. A 

time varying force is applied to the resonator in the FE region, and the frequency response of the 

resonator tip is calculated. The far field Lamb modes would transport energy away from the FE 

region. The NDE source problem is similar to the resonator problem. Instead of minimizing the 

energy lost to substrate in the form of Lamb wave propagation, the NDE source could be 

modelled and optimized for maximum energy transport by the desired mode(s).  
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The global local method has been applied for modeling scattering and source problems 

separately. However, for practical NDE situations, the two aspects are combined. Therefore, a 

global-local framework that can combine the two types of problem is developed to simulate an 

NDE inspection procedure.   

3.2 The Global Local (GL) Problem Formulation 

The GL model for the problem is shown in Figure 3-1. The plate is subjected to a 

specified surface traction, representing an ultrasound source, and contains a defect at some 

distance away. Figure 3-1 illustrates that the region in the proximity of the surface load and the 

region around the defect are modelled by FE discretization and the elastodynamics fields in the 

regions outside are described by global functions. Plane strain conditions in the 𝑥-𝑧 plane are 

assumed throughout this work. 

 
Figure 3-1 Illustration of the coupled source-scatterer problem in the global-local method. Subscript B 

refers to the FE boundary, and the superscript L,R refers to the left and right side of the boundary 

respectively 

The coordinate system (𝑥𝐼 , 𝑧𝐼) is used in the source region and the scattering region is described 

by the coordinate system (𝑥𝐼𝐼 , 𝑧𝐼𝐼) separated by a distance 𝑥𝑇 as shown in Figure 3-1. The 

equation of motion in the discretized zones is of the form: 

𝑴𝒖̈ + 𝑲𝒖 = 𝒇      
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( 3-1) 

where 𝑲 and 𝑴 are the stiffness and mass matrices that can be obtained from commercial FE 

software such as ABAQUS. Assuming time harmonic motion of the form e-iωt, where 𝜔 is the 

circular frequency, equation ( 3-1) can be written in frequency domain in terms of the dynamic 

stiffness matrix 𝑫 as 

[
𝑫𝑳𝑳 𝑫𝑳𝑰 𝑫𝑳𝑹
𝑫𝑰𝑳 𝑫𝑰𝑰 𝑫𝑰𝑹
𝑫𝑹𝑳 𝑫𝑹𝑰 𝑫𝑹𝑹

] {

𝒖𝑩
𝑳

𝒖𝑰

𝒖𝑩
𝑹

} = {

𝒇𝑩
𝑳

𝒇𝑰
𝒇𝑩
𝑹

} 

( 3-2) 

where 𝑫 = 𝑲−𝜔2𝑴 and the superscripts L, I, R refer to the left, interior, and right degrees of 

freedom (DOFs) respectively. 

3.2.1 The Source Problem 

 
Figure 3-2 Illustration of the source problem. The FE region enclose the vicinity of the applied traction t 

For the source problem, the interior DOFs in equation ( 3-2) are further partitioned into 

either free (I0) or subjected to applied traction (IF). 

[

𝑫𝑳𝑳 𝑫𝑳𝑰𝑭 𝑫𝑳𝑰𝟎 𝑫𝑳𝑹
𝑫𝑰𝑭𝑳 𝑫𝑰𝑭𝑰𝑭 𝑫𝑰𝑭𝑰𝟎 𝑫𝑰𝑭𝑹
𝑫𝑰𝟎𝑳 𝑫𝑰𝟎𝑰𝑭 𝑫𝑰𝟎𝑰𝟎 𝑫𝑰𝟎𝑹
𝑫𝑹𝑳 𝑫𝑹𝑰𝑭 𝑫𝑹𝑰𝟎 𝑫𝑹𝑹

]
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( 3-3) 

where 𝑓𝑎𝑝𝑝 is the Fourier time transform of the time dependent nodal force that created by the 

surface mounted transducers. The nodal displacements and the nodal forces on the FE boundaries 

 

𝑥 

𝑧 

𝑥𝐿 𝑥𝑅 

𝒖𝐵
𝐿  𝒇𝐵

𝐿  𝒖𝐵
𝑅  𝒇𝐵

𝑅  𝒕 

Outgoing wave  Outgoing wave  

FE Region 
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at 𝑥 = 𝑥𝐿 and 𝑥 = 𝑥𝑅 are expressed as a summation of the generated Lamb modes (e.g. A0, S0, 

…) with unknown amplitudes 𝐵𝑛 in the forms, 

{𝒖𝑩
𝑳 } = [𝑸⃖  ]{𝐵𝑛

𝐿𝑒𝑖𝑘𝑛 ⃖    𝑥𝐿}  {𝒇𝑩
𝑳 } = −[𝑭⃖  ]{𝐵𝑛

𝐿𝑒𝑖𝑘𝑛 ⃖    𝑥𝐿} 

( 3-4) 

{𝒖𝑩
𝑹} = [𝑸   ]{𝐵𝑛

𝑅𝑒𝑖𝑘𝑛      𝑥𝑅}  {𝒇𝑩
𝑹} = [𝑭   ]{𝐵𝑛

𝑅𝑒𝑖𝑘𝑛      𝑥𝑅} 

( 3-5) 

In equations ( 3-4) and ( 3-5) the modal displacements and nodal forces are denoted by [𝑸⃖  ] and 

[𝑭⃖ ], respectively. For a homogeneous isotropic plate, the analytical expressions for the modal 

functions can be found in [63] [47]. For a multilayered plate, the WFE method [32] is used to 

determine the wavenumbers and the modal functions. Further details regarding the calculation of 

the modal functions are described in section 2.2.2. The upper arrows indicate the propagation 

direction with respect to the 𝑥 direction. In equations ( 3-4) and ( 3-5), the columns of the 

matrices [𝑸⃖  ] and [𝑭⃖ ] correspond to each Lamb mode, 𝑛, with wavenumber, 𝑘𝑛 that should be 

chosen appropriately as described in [64] and in section 3.5.1. The rows are the 𝑥 and 𝑧 

components evaluated at different 𝑧 positions corresponding to the FE boundary nodes. Thus, 

[𝑸⃖  ] and [𝑭⃖ ] have a number of rows equal to two times the number of boundary nodes on the left 

(or the right) side, and the number of columns equal to the number of symmetric and 

antisymmetric modes at a given frequency 𝜔. Note that the minus sign on the nodal force in 

equation ( 3-5) is due to the negative direction of the normal on the FE boundary at 𝑥𝐿. Solving 

for 𝐵𝑛 from the displacement expressions in equations ( 3-4) and ( 3-5), and substituting into the 

nodal force expressions in equation ( 3-4) and ( 3-5), respectively, the boundary nodal forces are 

expressed in terms of [𝑸⃖  ] and [𝑭⃖ ]. It should be noted that [𝑸⃖  ] is not a square matrix, and  [𝑸⃖  ]
−1

is 

its Moore-Penrose pseudoinverse. Finally, the augmented dynamic stiffness matrix, as shown on 
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the left-hand side of equation ( 3-6), is obtained by substituting the nodal force expressions into 

equation ( 3-3). Note that, this step ensures that the continuity conditions are satisfied across the 

boundary between the FE and global regions. The displacements in the FE region can then be 

obtained from equation ( 3-6). Furthermore, the outgoing wave amplitude coefficients, 𝐵𝑛
𝑅 are 

calculated and used as inputs for the coupled scattering problem. 

[
 
 
 
 𝑫𝑳𝑳 + [𝑭⃖  ][𝑸⃖  ]

−𝟏
𝑫𝑳𝑰𝑭 𝑫𝑳𝑰𝟎 𝑫𝑳𝑹

𝑫𝑰𝑭𝑳 𝑫𝑰𝑭𝑰𝑭 𝑫𝑰𝑭𝑰𝟎 𝑫𝑰𝑭𝑹
𝑫𝑰𝟎𝑳 𝑫𝑰𝟎𝑰𝑭 𝑫𝑰𝟎𝑰𝟎 𝑫𝑰𝟎𝑹

𝑫𝑹𝑳 𝑫𝑹𝑰𝑭 𝑫𝑹𝑰𝟎 𝑫𝑹𝑹 − [𝑭   ][𝑸   ]
−𝟏
]
 
 
 
 

{
 

 
𝒖𝑩
𝑳

𝒖𝑰𝑭

𝒖𝑰𝟎

𝒖𝑩
𝑹}
 

 

= {

𝟎
𝒇𝒂𝒑𝒑
𝟎
𝟎

} 

( 3-6) 

The nodal force in the FE region and FE boundary can be solved from the nodal displacements: 

𝑓
𝐿
= 𝑫𝑳𝑳𝑢𝐵

𝐿 +𝑫𝑳𝑰𝑭𝑢
𝐼𝐹 +𝑫𝑳𝑰𝟎𝑢

𝐼0 +𝑫𝑳𝑹𝑢𝐵
𝑅  

𝑓𝐼0 = 𝑫𝑰𝑭𝑳𝑢𝐵
𝐿 +𝑫𝑰𝟎𝑰𝑭𝑢

𝐼𝐹 +𝑫𝑰𝟎𝑰𝟎𝑢
𝐼0 +𝑫𝑰𝟎𝑹𝑢𝐵

𝑅 

𝑓
𝑅
= 𝑫𝑹𝑳𝑢𝐵

𝐿 +𝑫𝑹𝑰𝑭𝑢
𝐼𝐹 +𝑫𝑹𝑰𝟎𝑢

𝐼0 +𝑫𝑹𝑹𝑢𝐵
𝑅 

( 3-7) 

3.2.2 The Coupled Scattering Problem 

In the 2D scattering problem of Lamb waves, an incident wave propagating from the left 

far field interacts with the scatterer in the finite element region as shown in Figure 3-1. The 

scatterer (e.g. a surface dent, a crack, etc.) would generate reflected waves to its left, and 

transmitted waves to its right. 
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Figure 3-3 The sketch of a scattering problem, showing the scatterer in the FE region interacting with the 

incident wave from the left far field. 

The equations for the coupled scattering problem are written in the coordinate system 

(𝑥𝐼𝐼 , 𝑧𝐼𝐼)  and the superscript II will be omitted in the following sections. The displacements, 𝒖𝐵
𝐿  

and nodal forces 𝒇𝐵
𝐿  at the left boundary nodes consist of the incident waves from the source 

problem and the reflected waves from the scattering region. The incident amplitude coefficient 

𝐴𝑚 is equal to the right going Lamb mode amplitude coefficients 𝐵𝑛
𝑅 of the source problem with 

a phase change due to the propagation distance 𝑥𝑇. The reflected displacement has the unknown 

amplitude coefficients 𝐵𝑛
𝐿 for each mode 𝑛:  

{𝒖𝐵
𝐿 } = [𝑸𝑳      ]{𝐴𝑚𝑒

𝑖𝑘𝐿𝑚          (𝑥𝐿+𝑥𝑇)} + [𝑸𝑳 ⃖    ]{𝐵𝑛
𝐿𝑒𝑖𝑘𝐿𝑛 ⃖       𝑥𝐿}  

( 3-8) 

{𝒇𝐵
𝐿 } = −[𝑭𝑳      ]{𝐴𝑚𝑒

𝑖𝑘𝐿𝑚          (𝑥𝐿+𝑥𝑇)} − [𝑭𝑳 ⃖    ]{𝐵𝑛
𝐿𝑒𝑖𝑘𝐿𝑛 ⃖       𝑥𝐿} 

( 3-9) 

With the modal function matrix [𝑸⃖  ] and [𝑭⃖ ], the left-hand field can be described by summing the 

contributions of incident mode m with known amplitude Am and reflected mode n with unknown 

amplitude Bn
L. Note that the minus sign on the nodal force expressions is due to the negative face 

normal. The left-hand displacements and nodal forces at the boundary nodes consist of an 

incident field of Lamb mode m (e.g. A0) and a reflected field with unknown amplitude 

coefficients Bn
L for each propagating Lamb mode n at a given frequency (e.g. S0, A1, …). The 

 

𝑥𝐼𝐼

𝑧𝐼𝐼 

𝑥𝐿 𝑥𝑅 

𝒖𝐵
𝐿  𝒇𝐵

𝐿  

𝒖𝐵
𝑅  𝒇𝐵

𝑅  

Incident wave  

Reflected wave  Transmitted wave 

FE 𝐻𝐿 

𝐻𝑅 
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modal displacement functions for isotropic material are listed in the appendix section 2.1. The 

nodal force functions for each mode are obtained by integrating the modal stresses with shape 

functions by following standard FE approach (as described in section 3.3). The modal 

displacement and nodal force functions are stored in the matrix [𝑸⃖  ] and [𝑭⃖ ] respectively, where 

the columns corresponding to each Lamb mode, and the rows are the 𝑥 and 𝑧 degree of freedom 

for FE boundary nodes at different thickness positions, as shown in equation ( 3-10).  

 [𝑸⃖  ] =

[
 
 
 
 
 𝑞𝑥
(𝑚=1)

𝑞𝑥
(2)

⋯ 𝑞𝑥
(𝑁)

𝑞𝑧
(𝑚=1) 𝑞𝑧

(2) ⋯ 𝑞𝑧
(𝑁)

⋮ ⋮ ⋯ ⋮

𝑞𝑥
(𝑚=1) 𝑞𝑥

(2) ⋯ 𝑞𝑥
(𝑁)

𝑞𝑧
(𝑚=1) 𝑞𝑧

(2) ⋯ 𝑞𝑧
(𝑁)
]
 
 
 
 
 

2𝑗∗𝑁

 [𝑭⃖ ] =

[
 
 
 
 
 𝑓𝑥
(𝑚=1)

𝑓𝑥
(2)

⋯ 𝑓𝑥
(𝑁)

𝑓𝑧
(𝑚=1) 𝑓𝑧

(2) ⋯ 𝑓𝑧
(𝑁)

⋮ ⋮ ⋯ ⋮

𝑓𝑥
(𝑚=1) 𝑓𝑥

(2) ⋯ 𝑓𝑥
(𝑁)

𝑓𝑧
(𝑚=1) 𝑓𝑧

(2) ⋯ 𝑓𝑧
(𝑁)
]
 
 
 
 
 

2𝑗∗𝑁

 

( 3-10) 

where j is the number of nodes on the left or right boundary, and N is the number of propagating 

modes at a specific frequency. The modal displacement and stress functions are evaluated with 

the wave number for mode n, 𝑘𝑛 ⃖   , for [𝑸⃖  ], and [𝑭⃖  ], and  𝑘𝑛      for [𝑸   ] , and [𝑭   ]. The arrow above 

indicates the propagation direction with respect to the x direction. For continuity, the choice of 

wavenumber corresponding to the left or right propagation will be described later. 

Similarly, the displacements and nodal forces at the right boundary nodes consist of the 

incident waves from the source with a phase shift of (𝑥𝑅 + 𝑥𝑇), and the scattered waves with 

unknown amplitude coefficients 𝐵𝑛
𝑅 for each mode 𝑛: 

{𝒖𝐵
𝑅} = [𝑸𝑹       ]{𝐵𝑛

𝑅𝑒𝑖𝑘𝑅𝑛         𝑥𝑅}  

( 3-11) 

{𝒇𝐵
𝑅} = [𝑭𝑹      ]{𝐵𝑛

𝑅𝑒𝑖𝑘𝑅𝑛         𝑥𝑅}  

( 3-12) 
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Note that the wavenumbers kRn are calculated with plate thickness equals to 2HR. Furthermore, 

for the right boundary nodes, the nodal coordinate z for evaluating the modal functions must be 

shifted to z’ with the expression (𝑧’ =  𝑧 − 𝑠ℎ𝑖𝑓𝑡) where 

𝑠ℎ𝑖𝑓𝑡 =
(𝑧𝑅𝑚𝑎𝑥 + 𝑧𝑅𝑚𝑖𝑛)

2
−
(𝑧𝐿𝑚𝑎𝑥 + 𝑧𝐿𝑚𝑖𝑛)

2
  

( 3-13) 

 
Figure 3-4 Illustration of the coordinate shift due to a change in the plate thickness 

The next step is to use the displacement {𝒖𝐵
𝐿 } in equation ( 3-8) to solve for the unknown 

amplitude coefficients {𝐵𝑛
𝐿𝑒𝑖𝑘𝑛 ⃖    𝑥𝐿} and substitute them into the expressions for the nodal forces 

{𝒇𝐵
𝐿 } from equation ( 3-9) to obtain the system of equations with the unknown displacements in 

the FE region. Using equation ( 3-8): 

{𝐵𝑛
𝐿𝑒𝑖𝑘𝐿𝑛 ⃖       𝑥𝐿} =  [𝑸𝑳 ⃖    ]

−1
{𝒖𝐵
𝐿 } − [𝑸𝑳 ⃖    ]

−1
[𝑸𝑳      ]{𝐴𝑚𝑚𝑒

𝑖𝑘𝐿𝑚𝑚              (𝑥𝐿+𝑥𝑇)} 

( 3-14) 

Substituting into the left-hand nodal force given in equation ( 3-9),  

{𝒇𝐵
𝐿 } = −[𝑭𝑳 ⃖    ][𝑸𝑳 ⃖    ]

−1
{𝒖𝐵
𝐿 } − ([𝑭𝑳      ] − [𝑭𝑳 ⃖    ][𝑸𝑳 ⃖    ]

−1
[𝑸𝑳      ]){𝐴𝑚𝑒

𝑖𝑘𝐿𝑚          (𝑥𝐿+𝑥𝑇)} 

( 3-15) 

For the right boundary, the nodal forces can be expressed in the form of equation ( 3-12) by 

solving for the amplitude coefficient from equation ( 3-11) as 

{𝒇𝐵
𝑅} = [𝑭𝑹      ][𝑸𝑹       ]

−1
{𝒖𝐵
𝑅}  

z 

x 
HL  

ξ 

H
R
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( 3-16) 

Substituting the nodal force into equations ( 3-2), the final system of equations for the 

displacements in the FE region is obtained: 

[

𝑫𝑳𝑳 + [𝑭𝑳 ⃖    ][𝑸𝑳 ⃖    ]
−1

𝑫𝑳𝑰 𝑫𝑳𝑹
𝑫𝑰𝑳 𝑫𝑰𝑰 𝑫𝑰𝑹

𝑫𝑹𝑳 𝑫𝑹𝑰 𝑫𝑹𝑹 − [𝑭𝑹      ][𝑸𝑹       ]
−1

] {
𝑢𝐵
𝐿

𝑢𝐼

𝑢𝐵
𝑅

} = {
−([𝑭𝑳      ] − [𝑭𝑳 ⃖    ][𝑸𝑳 ⃖    ]

−1
[𝑸𝑳      ]) {𝐴𝑚𝑒

𝑖𝑘𝐿𝑚          (𝑥𝐿+𝑥𝑇)}

0
0

} 

( 3-17) 

Representation of the Wave Field 

One of the advantages of using GLM is that the modal contribution in the global regions 

from different Lamb modes can be separated. In this section, the expressions for the modal 

displacements and the power flow are defined so that they can be used for the analysis presented 

in the later sections of the paper. 

Reflected Field 

The reflected displacement is the absence of the incident field in the total field given in 

equation ( 3-8)( 3-9)( 3-11)( 3-12), thus the reflected fiends are,  

{𝑢𝐵
𝑟𝑒𝑓
} =  [𝑸𝑳 ⃖    ] {𝐵𝑛

𝐿𝑒𝑖𝑘𝐿𝑛 ⃖       𝑥} = ∑ 𝐵𝑛
𝐿{𝒒𝑳𝑛 ⃐      

𝑁
𝑛=0 }𝑒𝑖𝑘𝐿𝑛 ⃐       𝑥             

( 3-18) 

where 𝑥𝑅
𝐼 < 𝑥 < 𝑥𝐿

𝐼𝐼  

The modal displacement is then 

{𝑢𝐵
𝑟𝑒𝑓𝑛} =  [𝑸⃖  ]𝑑𝑖𝑎𝑔 {𝐵𝑛

𝐿𝑒𝑖𝑘𝑛 ⃖    𝑥}          𝑥 < 𝑥𝐿 

( 3-19) 

The modal amplitude coefficient 𝐵𝑛
𝐿 is 

{𝐵𝑛
𝐿} = {[𝑸𝑳 ⃖    ]

−1
{𝒖𝐵
𝐿 } − [𝑸𝑳 ⃖    ]

−1
[𝑸𝑳      ] {𝐴𝑚𝑒

𝑖𝑘𝐿𝑚          (𝑥𝐿+𝑥𝑇)}} ∗ {𝑒−𝑖𝑘𝐿𝑛
 ⃖       𝑥𝐿} 

( 3-20) 
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Note that the modal amplitude coefficient should only be calculated for the propagating modes 

with real wave numbers.  

Transmitted Field 

The transmitted displacement field to the right of the FE region is 

{𝑢𝐵
𝑡𝑟} =  [𝑸𝑹       ] {𝐵𝑛

𝑅𝑒𝑖𝑘𝑅𝑛         𝑥} = ∑𝐵𝑛
𝑅{𝒒𝑹𝑛         

𝑁

𝑛=0

}𝑒𝑖𝑘𝑅𝑛         𝑥         and 𝑥 > 𝑥𝑅
𝐼𝐼 

( 3-21) 

The modal transmitted field is then  

{𝑢𝐵
𝑡𝑟𝑛} =  𝐵𝑛

𝑅𝑒𝑖𝑘𝑅𝑛         𝑥{𝑞𝑅𝑛        }        and 𝑥 > 𝑥𝑅
𝐼𝐼   

( 3-22) 

The modal scattering coefficients for the propagating modes are 

{𝐵𝑛
𝑅} = {[𝑸𝑹       ]

−1
{𝑢𝐵
𝑅}} ∗ {𝑒−𝑖𝑘𝑅𝑛         𝑥𝑅} 

( 3-23) 

Power Flow Associated to the Scattering Problem 

The power flow is a useful quantity as a measure of the energy carried by the transmitted 

and reflected waves propagating in the plate. The general definition of power flow P through a 

cross-section A of a waveguide with unit normal 𝒏 = 𝒆𝟏 

𝑃 =  −∫𝜎𝑖𝑗𝑛𝑗𝑢𝑖̇
𝐴

𝑑𝐴 =  −∫𝜎𝑖1
𝐴

𝑢𝑖̇ 𝑑𝐴 

( 3-24) 

The time-average power flow over one period 𝑇 =
2𝜋

𝜔
 expressed in the frequency domain is then 

given by 

〈𝑃〉 =
1

𝑇
∫ 𝑃
𝑇

0

𝑑𝑡 =  −
𝜔

2
∫𝑖𝑚𝑎𝑔(𝜎̂11

∗ 𝑢̂1 + 𝜎̂21
∗ 𝑢̂1 + 𝜎̂31

∗ 𝑢̂3)
𝐴

𝑒−2𝑖𝑚𝑎𝑔(𝑘)𝑥1𝑑𝐴  

( 3-25) 
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where * denotes the complex conjugate. 

For a discretized cross-section, the time averaged power flow for a propagating wave is 

𝑃 = −
1

2
𝑅𝑒{𝒇𝐻𝒒̇} = −

1

2
𝑅𝑒{−𝑖𝝎𝒇𝐻𝒒} 

( 3-26) 

where H is the complex conjugate transpose, and 𝒇, 𝒒 are the nodal force and nodal displacement 

vector on the given cross section. The expressions for the transmitted modal power flow 𝐸𝑡𝑟
𝑛

, 

reflected power flow 𝐸𝑟𝑒𝑓
𝑛

 for mode 𝑛, and the incident power flow 𝐸𝑖𝑛𝑐
𝑚

 are 

𝐸𝑡𝑟
𝑛 = −

1

2
|𝐵𝑛
𝑅|2𝑅𝑒 {−𝑖𝜔𝒇𝑹𝑛         

𝐻
𝒒𝑹𝑛         } 

( 3-27) 

𝐸𝑟𝑒𝑓
𝑛 = −

1

2
|𝐵𝑛
𝐿|2𝑅𝑒 {−𝑖𝜔𝒇𝑳𝑛

 ⃖      
𝐻
𝒒𝑳𝑛
 ⃖       } 

( 3-28) 

𝐸𝑖𝑛𝑐 = ∑ −
1

2
|𝐴𝑚𝑚𝑒

𝑖𝑘𝑚𝑚          (𝑥𝑅+𝑥𝑇)|
2

𝑅𝑒 {−𝑖𝜔𝒇𝑳𝑚𝑚
             

𝐻
𝒒𝑳𝑚𝑚
             }

𝑁𝐿

𝑚𝑚=0

 

( 3-29) 

where the |⋯ |2 is the square of the modulus of a complex quantity. 

If the FE region is not dissipative, the energy conservation principle dictates that the sum of the 

magnitude of the incident time averaged power flow should be equal to the sum of the 

transmitted and reflected power flows. Thus, equation ( 3-30) can be used to evaluate the 

numerical accuracy of the solution 

𝐸𝑟𝑟𝑜𝑟 = 1 −
∑ 𝐸𝑡𝑟

𝑛
𝑎𝑙𝑙 𝑝𝑟𝑜𝑝.  𝑚𝑜𝑑𝑒𝑠 𝑁𝐿 − ∑ 𝐸𝑟𝑒𝑓

𝑛
𝑎𝑙𝑙 𝑝𝑟𝑜𝑝.  𝑚𝑜𝑑𝑒𝑠 𝑁𝑅  

𝐸𝑖𝑛𝑐
  

( 3-30) 
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Note that the power flow for the reflected waves calculated using the nodal force and nodal 

displacement vectors is negative in numerical value due to the definition of the normal to the 

cross section. Therefore, a negative sign is used in the reflected power flow in equation ( 3-30). 

3.2.3 The Edge Excitation Problem 

The formulation shown in the previous section can be modified with appropriate 

boundary conditions to model other types of Lamb wave propagation problems. In this section, 

we assume that a load is applied on the edge of the plate to model a transducer is being mounted 

on the edge of the plate.  

 
Figure 3-5 Illustration of the edge loading problem in which the left face of a plate is subject to an applied 

load 

The nodes associated to the left edge in equation ( 3-2) is partitioned into F for those with applied 

traction 𝒇
𝒂𝒑𝒑

, and L0 for those that are traction free, I for the interior nodes and R for the right 

boundary nodes.  

[

𝑫𝑭𝑭 𝑫𝑭𝑳𝟎 𝑫𝑭𝑰 𝑫𝑭𝑹
𝑫𝑳𝟎𝑭 𝑫𝑳𝟎𝑳𝟎 𝑫𝑳𝟎𝑰 𝑫𝑳𝟎𝑹
𝑫𝑰𝑭 𝑫𝑰𝑳𝟎 𝑫𝑰𝑰 𝑫𝑰𝑹
𝑫𝑹𝑭 𝑫𝑹𝑳𝟎 𝑫𝑹𝑰 𝑫𝑹𝑹

]

{
 

 
𝒖𝑩
𝑳𝑭

𝒖𝑳𝟎

𝒖𝑰

𝒖𝑩
𝑹 }
 

 

= {

𝒇𝒂𝒑𝒑
𝟎
𝟎
𝒇𝑩
𝑹

} 

( 3-31) 

In this case, the left-hand field does not exist, and only the right-hand field is represented by the 

Lamb wave modal expansion.  

{𝒖𝐵
𝑅} = [𝑸   ]{𝐵𝑛

𝑅𝑒𝑖𝑘𝑛      𝑥𝑅}  

 

𝑥 

𝑧 

𝑥𝐿 𝑥𝑅 

𝒖𝐵
𝐿  𝒇𝐵

𝐿  𝒖𝐵
𝑅  𝒇𝐵

𝑅  

Outgoing waves  

FE Region 
𝒕 
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( 3-32) 

{𝒇𝐵
𝑅} = [𝑭   ]{𝐵𝑛

𝑅𝑒𝑖𝑘𝑛      𝑥𝑅}  

( 3-33) 

By the substitution of {𝐵𝑛
𝑅𝑒𝑖𝑘𝑛      𝑥𝑅} from equation ( 3-33) into ( 3-32) , the following system of 

linear equations is obtained 

[
 
 
 
 
𝑫𝑭𝑭 𝑫𝑭𝑳𝟎 𝑫𝑭𝑰 𝑫𝑭𝑹
𝑫𝑳𝟎𝑭 𝑫𝑳𝟎𝑳𝟎 𝑫𝑳𝟎𝑰 𝑫𝑳𝟎𝑹
𝑫𝑰𝑭 𝑫𝑰𝑳𝟎 𝑫𝑰𝑰 𝑫𝑰𝑹

𝑫𝑹𝑭 𝑫𝑹𝑳𝟎 𝑫𝑹𝑰 𝑫𝑹𝑹 − [𝑭   ][𝑸   ]
−𝟏
]
 
 
 
 

{
 

 
𝒖𝑩
𝑳𝑭

𝒖𝑳𝟎

𝒖𝑰

𝒖𝑩
𝑹 }
 

 

= {

𝒇𝒂𝒑𝒑
𝟎
𝟎
𝟎

} 

( 3-34) 

Benchmark Problem #1 

The following problem demonstrates how the edge excitation model can be used to study 

the Lamb waves from a surface mounted transducer on an edge of a plate. The model considered 

here is a 20 mm thick steel plate (𝐸 = 200 GPa, 𝜈 = 0.33, 𝜌 = 7960 kg/m3) with a left edge 

normal load of 1 MPa peak magnitude subjected to a Gaussian distribution to simulate a source 

transducer on the left edge as depicted in Figure 3-6. Within the plate, two models with a crack 

are simulated at the center of a 200 mm wide FE region with a 5 mm vertical crack or a 5 mm 

horizontal crack.  

 
(a) A normal load with a Gaussian distribution 

applied on the left edge to represents a transducer 

 
 (b) the 5mm long horizontal and vertical crack 

cases 
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Figure 3-6 (a) The edge excitation problem representing the inspection of a leading edge 

The displacement waveform at the origin for the two cases are compared with the defect free 

cases to mimic a pulse echo inspection. A 5-cycle tone burst of 400 kHz sine with Hann window 

is used as the excitation. Such excitation can be considered high frequency since the frequency 

thickness ratio would be 8 MHz ∙ mm and thus a substantial higher mode contribution is 

expected. The waveforms for the simulated pulse-echo inspection are shown in Figure 3-7.  

 
(a) The horizontal crack case (blue dash line) 

 
 (b) The vertical crack case (red dash-dot line) 

Figure 3-7 The horizontal displacement at the center of the transducer for the defect free (black dot line) 

case vs. the two defect cases 

In the defect free case (black dotted line), the edge excitation only produces the incident packet 

and a small amount of surface vibrations but for the remainder of the period is free of signals. 

For the two crack cases, the echo is prominent whereas the vertical crack (the signal shown in 

red dash-dot line) produces distinct packets with the first reflection arriving earlier than the first 

reflection for the horizontal crack case. Upon inspecting the displacement field at various 

instances such as the ones shown in Figure 3-8, it is observed that the reflected waves are 

generated at the leading and the trailing edge of the horizontal crack continuously as the incident 

waves arrives. For the vertical crack case, most of the incident waves are reflected from the free 

edge thus producing more concise packets in the signal. 
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(a) horizontal crack case 

 
 (b) vertical crack case 

Figure 3-8 Magnitude of the displacement field  around the crack at 0.035 ms 

3.2.4 The Edge Reflection Problem 

We next consider the free edge reflection problem as shown in Figure 3-9.  

 
Figure 3-9 Reflection of Lamb waves at a free edge. Traction free boundary condition is applied at the 

free edge. 

Since the right boundary is traction free to represent the plate edge, equation ( 3-2) becomes 

[
𝑫𝑳𝑳 𝑫𝑳𝑰 𝑫𝑳𝑹
𝑫𝑰𝑳 𝑫𝑰𝑰 𝑫𝑰𝑹
𝑫𝑹𝑳 𝑫𝑹𝑰 𝑫𝑹𝑹

] {

𝒖𝑩
𝑳

𝒖𝑰

𝒖𝑩
𝑹

} = {
𝒇𝑩
𝑳

𝟎
𝟎

} 

( 3-35) 

The right-hand displacements are unknown to be solved for, and the left-hand displacement and 

nodal force remains unchanged from the standard scattering problem. The final system of 

equations for the displacement in the FE region is then 

 

𝑥 

𝑧 

𝑥𝐿 𝑥𝑅 

𝒖𝐵
𝐿  𝒇𝐵

𝐿  𝒖𝐵
𝑅  𝒇𝐵

𝑅  

Incident wave  

Reflected wave  

FE Region 

Traction Free 
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[
𝑫𝑳𝑳 + [𝑭⃖  ][𝑸⃖  ]

−1
𝑫𝑳𝑰 𝑫𝑳𝑹

𝑫𝑰𝑳 𝑫𝑰𝑰 𝑫𝑰𝑹
𝑫𝑹𝑳 𝑫𝑹𝑰 𝑫𝑹𝑹

] {
𝑢𝐵
𝐿

𝑢𝐼

𝑢𝐵
𝑅

} = {
−({𝒇  𝑚} − [𝑭⃖  ][𝑸⃖  ]

−1
{𝒒   𝑚})𝐴𝑚𝑒

𝑖𝑘𝑚       𝑥𝐿

0
0

} 

( 3-36) 

Benchmark Problem #2 

As another benchmark problem, the reflection of an incident Lamb wave from a free end 

is compared with available results [44]. This problem is the edge reflection of an incident A0 

mode in a semi-infinite aluminum plate (2𝐻 = 1.78 mm, 𝐸 = 69 GPa, 𝜈 = 0.33, 𝜌 =

2700 kg/m3) as shown in Figure 3-10. The incident A0 mode is assumed to have a unit power 

flow across the studied frequency range from 50 kHz to 2 MHz. The FE region of the GL model 

is 40 mm long and the elements are 4-node plane strain element of size 50 µm by 50 µm. 

 

Figure 3-10 Illustration of the edge reflection problem 

 
(a) The result given in [44] 

 
 (b) The GL result showing that the scattering of 

the incident A0 mode into higher A modes is only 

possible at frequency thickness greater than 1.6 

MHz-mm 

Figure 3-11 Modal reflected power flow the scattering of an incident A0 mode 

Figure 3-11a shows the results calculated from satisfying the traction free boundary conditions in 

the least-square sense. Figure 3-11b shows the results using GLM. Both results agree with the 
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well-known behavior of the incident A0 mode: there are no reflected S modes, and mode 

conversion to higher A modes are only possible above the first cut-off frequency.  

3.3 Remark on Computing Nodal Force Vectors 

For the source problems shown in section 3.2.1 and 3.2.3, the applied traction is required 

to be converted into the nodal applied force vector 𝒇𝒂𝒑𝒑 per equations ( 3-6) and ( 3-31). This is 

done by integrating the traction components with the shape functions as in the standard FE 

approach. A brief review of computing the nodal force vector from traction using the 

isoparametric formulation is presented here. The nodal force vector is defined as 

𝒇 = ∫ 𝑵𝒕𝑑𝑠 = ∫ 𝑵𝑻𝑵𝒕𝒏𝒐𝒅𝒆𝑑𝑠
𝛤𝑡𝛤𝑡

 

( 3-37) 

where 𝛤𝑡 is the boundary at which traction is applied, and N is the bi-linear shape functions. The 

nodal force at nodes, i, j, k, l, for the element shown in Figure 3-12 is obtained by integrating the 

products of the shape functions with the tractions evaluated at the boundary 

{
 
 
 
 
 

 
 
 
 
 𝑓𝑥

𝑖

𝑓
𝑧
𝑖

𝑓
𝑥
𝑗

𝑓
𝑧
𝑗

𝑓
𝑥
𝑘

𝑓
𝑧
𝑘

𝑓
𝑥
𝑙

𝑓
𝑧
𝑙
}
 
 
 
 
 

 
 
 
 
 

= ∫

[
 
 
 
 
 
 
 
 
𝑁1 0
0 𝑁1
𝑁2 0
0 𝑁2
𝑁3 0
0 𝑁3
𝑁4 0
0 𝑁4]

 
 
 
 
 
 
 
 

{
𝑡𝑥(𝑥, 𝑧)
𝑡𝑧(𝑥, 𝑧)

}𝑑𝑠
𝛤𝑡

 

( 3-38) 

Using isoparametric formulation, the boundary integral is expressed in natural coordinates (ξ, η). 

𝒇 = ∫ 𝑵̂𝑻𝑵̂𝒕𝑛𝑜𝑑𝑒𝐽𝑠𝑑𝜉 𝑜𝑟
1

−1

𝑑𝜂 
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( 3-39) 

 

where 𝑵̂ is the bilinear 2D shape functions in natural coordinates, that can be found in standard 

FE literature and in Appendix 3.1, evaluated at the boundary subjected to traction. Js is the line 

Jacobian  

 𝐽𝑠 = √(
𝜕𝑥

𝜕𝜉
)
2
+ (

𝜕𝑦

𝜕𝜉
)
2
𝑜𝑟√(

𝜕𝑥

𝜕𝜂
)
2
+ (

𝜕𝑦

𝜕𝜂
)
2
 

( 3-40) 

As an example, if the edge between the nodes k and l is subject to traction, the shape functions 

are evaluated to η=1 and J is integrated for variable ξ from -1 to 1. With the use of the Jacobian 

matrix define below, the integration for ( 3-37) is done using Gaussian quadrature. 

𝑱 =

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂]
 
 
 
 

=

[
 
 
 
 

[
 
 
 
 
𝜕𝑁1,2,3,4
𝜕𝜉

𝜕𝑁1,2,3,4
𝜕𝜂 ]

 
 
 
 

[

𝑥𝑖 𝑧𝑖
𝑥𝑗 𝑧𝑗
𝑥𝑘 𝑧𝑘
𝑥𝑙 𝑧𝑙

]

]
 
 
 
 
𝑇

 

( 3-41) 

For completeness, the procedure for Gaussian quadrature is described here. Consider a 2D 

integration over ξ-η domain as shown in Figure 3-12 which is the case in a 2D FE problem. 

 
Figure 3-12 Integration domain with ξ-η limit from -1 to 1 

The integral, evaluated by Gaussian quadrature is then 

i j 

k l 
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∬ 𝑔(𝜉, 𝜂)𝑑𝜉𝑑𝜂
1

−1

= ∑ ∑ 𝑔(𝜉𝑙1 , 𝜂𝑙2)

𝑁𝐼𝑁𝑇1

𝑙1=1

𝑤𝑙1𝑤𝑙2

𝑁𝐼𝑁𝑇2

𝑙2=1

 

( 3-42) 

where 𝑙1 𝑙2 are the integration points for ξ and η, respectively, and 𝑤𝑙1 , 𝑤𝑙2 are the integration 

weights. In other words, evaluate the integrand at ξ = l1, and η = l2 and multiply by 𝑤𝑙1 , 𝑤𝑙2 at 

each point and sum. The integration points for 2nd order rule are l1,2 = −
1

√3
,
1

√3
 with 

corresponding weight 𝑤𝑙1 , 𝑤𝑙2 = 1 for each point. 

3.3.1 Nodal Force Vectors Evaluated from Modal Stress Expressions 

GLM uses FE discretization to represent a source or a defect and the remainder of the 

plate by analytical global functions. Continuity of displacements and stresses across the global 

and the local regions are enforced. In the case of an isotropic plate, the symmetric and 

antisymmetric Lamb wave modes are the global functions and their analytical expressions can be 

found in the literature such as [63]. However, the procedure for converting the nodal stress 

expressions to the nodal force vector as required in equation ( 3-10) are often not explained. 

Therefore, a detailed implementation is given here. The modal stress functions in the frequency 

domain can be expressed  in the form 𝜎(𝑥, 𝑧, 𝑡) = 𝐴𝜎̂(𝑧)𝑒𝑖(𝑘𝑥−𝜔𝑡) where A is an unknown 

constant. For the antisymmetric modes, the modal stress functions are 

𝜎̂𝑥𝑥 = 𝜇 ((2𝜂1
2 + 𝑘2

2) sinh(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2) sinh(𝜂1𝐻)

sinh(𝜂2𝐻)
sinh(𝜂2𝑧)) 

( 3-43) 

𝜎̂𝑧𝑧 = −𝜇(2𝑘
2 − 𝑘2

2) (sinh(𝜂1𝑧) −
sinh(𝜂1𝐻)

sinh(𝜂2𝐻)
sinh(𝜂2𝑧)) 

( 3-44) 

𝜎̂𝑥𝑧 = −𝑖𝜇2𝑘𝜂1 (cosh(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2)2 sinh(𝜂1𝐻)

4k2η1η2 sinh(𝜂2𝐻)
cosh(𝜂2𝑧)) 
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( 3-45) 

For symmetric mode, the modal stress functions are 

𝜎̂𝑥𝑥 = −𝜇 ((2𝜂1
2 + 𝑘2

2) cosh(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2) cosh(𝜂1𝐻)

cosh(𝜂2𝐻)
cosh(𝜂2𝑧)) 

( 3-46) 

𝜎̂𝑧𝑧 = 𝜇(2𝑘
2 − 𝑘2

2) (cosh(𝜂1𝑧) −
cosh(𝜂1𝐻)

cosh(𝜂2𝐻)
cosh(𝜂2𝑧)) 

( 3-47) 

𝜎̂𝑥𝑧 = 𝑖𝜇2𝑘𝜂1 (sinh(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2)2 cosh(𝜂1𝐻)

4k2η1η2 cosh(𝜂2𝐻)
sinh(𝜂2𝑧)) 

( 3-48) 

The nodal force induced by the propagating waves is exerted to the FE region boundary as 

shown in Figure 3-13 whre t is the traction resultant from the two stress components. Note that 

the element face normal is aligned with the x axis, thus, the relevant stress components are only 

𝜎̂𝑥𝑥 and 𝜎̂𝑥𝑧. The applied modal stress functions (𝜎̂𝑥𝑥, 𝜎̂𝑥𝑧) act on the left edge Γ4-1, which are 

evaluated to the nodal forces 𝑡𝑥1, 𝑡𝑧1 for node 1, at z=zi (bottom left) and 𝑡𝑥4, 𝑡𝑧4for node 4, at 

z=zl (at the top left), as shown in Figure 3-13. Since the stress distribution is known throughout 

the thickness, the nodal force integral in equation ( 3-38) can be calculated exactly without the 

use of isoparametric formulation. 

 
Figure 3-13 An element for nodal force integration from modal stress functions 

Element  

tx4  

t
z4

  

t
x1

  

t
z1

  
Γ4-1 

z=zi  

z=z
l
  

t 
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The nodal force vector is 

{

𝑡𝑥1
𝑡𝑧1
𝑡𝑥4
𝑡𝑧4

} = ∫ [

𝑁1 0
0 𝑁1
𝑁4 0
0 𝑁4

] {
𝜎̂𝑥𝑥
𝜎̂𝑥𝑧
} 𝑑𝑧

𝛤4−1

 

( 3-49) 

With the definition of edge length, 𝑙𝑒 = 𝑧𝑙 − 𝑧𝑖, the shape functions are 

𝑁1 =
𝑧𝑙−𝑧

𝑙𝑒
 𝑁4 =

𝑧−𝑧𝑖

𝑙𝑒
 

( 3-50) 

The integrals can then be evaluated term by term with respect to the thickness coordinate, z. To 

simplify the expressions, some symbolic substitutions are made to highlight the functions’ z 

dependence. 

Antisymmetric Mode 

Introducing the following symbols, 

Å = 2𝜂1
2 + 𝑘2

2  Æ =
(2𝑘2−𝑘2

2)𝑠𝑖𝑛ℎ(𝜂2𝐻)

𝑠𝑖𝑛ℎ(𝜂2𝐻)
  Ö =

(2𝑘2−𝑘2
2)
2
𝑠𝑖𝑛ℎ(𝜂1𝐻)

4𝑘2𝜂1𝜂2𝑠𝑖𝑛ℎ(𝜂1𝐻)
 

( 3-51) 

The modal stress functions for anti-symmetric mode can be expressed as  

𝜎̂𝑥𝑥 = 𝜇[Åsinh(𝜂1𝑧) − Æsinh(𝜂2𝑧)] 

𝜎̂𝑥𝑧 = −𝑖𝜇2𝑘𝜂1[cosh(𝜂1𝑧) − Öcosh( 𝜂2𝑧) 

( 3-52) 

Multiplying the shape functions ( 3-50) with the modal stress functions in ( 3-52)   
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{

𝑡𝑥1
𝑡𝑧1
𝑡𝑥4
𝑡𝑧4

} = ∫

[
 
 
 
 
 
 
 
𝑧𝑙 − 𝑧

𝑙𝑒
0

0
𝑧𝑙 − 𝑧

𝑙𝑒
𝑧 − 𝑧𝑖
𝑙𝑒

0

0
𝑧 − 𝑧𝑖
𝑙𝑒 ]

 
 
 
 
 
 
 

{
𝜇[Åsinh(𝜂1𝑧) − Æsinh(𝜂2𝑧)]

𝑖𝜇2𝑘𝜂1[cosh(𝜂1𝑧) − Öcosh( 𝜂2𝑧)
} 𝑑𝑧

𝑧𝑙

𝑧𝑖

 

( 3-53) 

Note that the integrals would have the following four terms 

∫ 𝑠𝑖𝑛ℎ (𝜂𝑗𝑧)
𝑧𝑙
𝑧𝑖

𝑑𝑧 =
cosh(𝜂𝑗𝑧)

𝜂𝑗
]
𝑧𝑖

𝑧𝑙

 ∫ 𝑐𝑜𝑠ℎ (𝜂𝑗𝑧)
𝑧𝑙
𝑧𝑖

𝑑𝑧 =
𝑠𝑖𝑛ℎ(𝜂𝑗𝑧)

𝜂𝑗
]
𝑧𝑖

𝑧𝑙

 

∫ 𝑧𝑠𝑖𝑛ℎ (𝜂𝑗𝑧)
𝑧𝑙
𝑧𝑖

𝑑𝑧 =
𝜂𝑗𝑧𝑐𝑜𝑠ℎ(𝜂𝑗𝑧)−𝑠𝑖𝑛ℎ(𝜂𝑗𝑧)

𝜂𝑗
2 ]

𝑧𝑖

𝑧𝑙

 ∫ 𝑧𝑐𝑜𝑠ℎ(𝜂𝑗𝑧)
𝑧𝑙
𝑧𝑖

𝑑𝑧 =
𝜂𝑗𝑧𝑠𝑖𝑛ℎ(𝜂𝑗𝑧)−𝑐𝑜𝑠ℎ(𝜂𝑗𝑧)

𝜂𝑗
2 ]

𝑧𝑖

𝑧𝑙

 

( 3-54) 

Carrying out the integrations the following nodal forces are obtained. Recalling that le is the 

element length in the thickness direction 

𝑡𝑥1 =
𝜇

𝑙𝑒
[𝑧𝑙Å(

𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

− Å(
𝜂1𝑧𝑐𝑜𝑠ℎ(𝜂1𝑧) − 𝑠𝑖𝑛ℎ(𝜂1𝑧)

𝜂1
2 )]

𝑧𝑖

𝑧𝑙

     

− 𝑧𝑙 (
𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

+Æ(
𝜂2𝑧𝑐𝑜𝑠ℎ(𝜂2𝑧) − 𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

] 

𝑡𝑧1 =
−𝑖𝜇2𝑘𝜂1
𝑙𝑒

[𝑧𝑙 (
𝑠𝑖𝑛ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

−
𝜂1𝑧𝑠𝑖𝑛ℎ(𝜂1𝑧) − 𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
2 ]

𝑧𝑖

𝑧𝑙

  

− 𝑧𝑙 Ö(
𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

+ Ö(
𝜂2𝑧𝑠𝑖𝑛ℎ(𝜂2𝑧) − 𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

] 
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𝑡𝑥4 =
𝜇

𝑙𝑒
[Å (

𝜂1𝑧𝑐𝑜𝑠ℎ(𝜂1𝑧) − sinh(𝜂1𝑧)

𝜂1
2 )]

𝑧𝑖

𝑧𝑙

− 𝑧𝑖Å(
𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

−Æ(
𝜂2𝑧𝑐𝑜𝑠ℎ(𝜂2𝑧) − 𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

+ 𝑧𝑖Æ(
𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

] 

𝑡𝑧4 =
−𝑖𝜇2𝑘𝜂1
𝑙𝑒

[
𝜂1𝑧𝑠𝑖𝑛ℎ(𝜂1𝑧) − 𝑐𝑜𝑠ℎ (𝜂1𝑧)

𝜂1
2 ]

𝑧𝑖

𝑧𝑙

− 𝑧𝑖
𝑠𝑖𝑛ℎ(𝜂1𝑧)

𝜂1
]
𝑧𝑖

𝑧𝑙

− Ö(
𝜂2𝑧𝑠𝑖𝑛ℎ(𝜂2𝑧) − 𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

+ 𝑧𝑖Ö(
𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

] 

( 3-55) 

Symmetric Mode 

Similarly using the substitutions, 

Å = 2𝜂1
2 + 𝑘2

2  æ =
(2𝑘2−𝑘2

2)cosh (𝜂2𝐻)

cosh (𝜂2𝐻)
  Ä =

(2𝑘2−𝑘2
2)
2
cosh (𝜂1𝐻)

4k2η1η2cosh (𝜂1𝐻)
 

( 3-56) 

the modal stress functions become 

𝜎̂𝑥𝑥 = −𝜇[Å𝑐𝑜𝑠ℎ(𝜂1𝑧) − æ𝑠𝑖𝑛ℎ(𝜂2𝑧)] 

𝜎̂𝑥𝑧 = 𝑖𝜇2𝑘𝜂1[𝑠𝑖𝑛ℎ(𝜂1𝑧) − Ä 𝑠𝑖𝑛ℎ( 𝜂2𝑧) 

( 3-57) 

The nodal force vector for symmetric mode is then evaluated using ( 3-54)  

{

𝑡𝑥1
𝑡𝑧1
𝑡𝑥4
𝑡𝑧4

} = ∫

[
 
 
 
 
 
 
 
𝑧𝑙 − 𝑧

𝑙𝑒
0

0
𝑧𝑙 − 𝑧

𝑙𝑒
𝑧 − 𝑧𝑖
𝑙𝑒

0

0
𝑧 − 𝑧𝑖
𝑙𝑒 ]

 
 
 
 
 
 
 

{
−𝜇[Å𝑐𝑜𝑠ℎ(𝜂1𝑧) − æ𝑠𝑖𝑛ℎ(𝜂2𝑧)]

𝑖𝜇2𝑘𝜂1[𝑠𝑖𝑛ℎ(𝜂1𝑧) − Ä 𝑠𝑖𝑛ℎ( 𝜂2𝑧)
} 𝑑𝑧

𝑧𝑙

𝑧𝑖

 

( 3-58) 

The nodal force components for the symmetric mode are then 
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𝑡𝑥1 = −
𝜇

𝑙𝑒
[𝑧𝑙Å(

𝑠𝑖𝑛ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

− Å(
𝜂1𝑧𝑠𝑖𝑛ℎ(𝜂1𝑧) − 𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
2 )]

𝑧𝑖

𝑧𝑙

   

− 𝑧𝑙æ(
𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

+æ(
𝜂2𝑧𝑠𝑖𝑛ℎ(𝜂2𝑧) − 𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

] 

𝑡𝑧1 =
𝑖𝜇2𝑘𝜂1
𝑙𝑒

[𝑧𝑙 (
𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

−
𝜂1𝑧𝑐𝑜𝑠ℎ(𝜂1𝑧) − 𝑠𝑖𝑛ℎ(𝜂1𝑧)

𝜂1
2 ]

𝑧𝑖

𝑧𝑙

− 𝑧𝑙 Ä(
𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

+ Ä(
𝜂2𝑧𝑐𝑜𝑠ℎ(𝜂2𝑧) − 𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

] 

𝑡𝑥4 = −
𝜇

𝑙𝑒
[Å (

𝜂1𝑧𝑠𝑖𝑛ℎ(𝜂1𝑧) − 𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
2 )]

𝑧𝑖

𝑧𝑙

− 𝑧𝑖Å(
𝑠𝑖𝑛ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

− æ(
𝜂2𝑧𝑠𝑖𝑛ℎ(𝜂2𝑧) − 𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

+ 𝑧𝑖æ(
𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

] 

𝑡𝑧4 =
𝑖𝜇2𝑘𝜂1
𝑙𝑒

[
𝜂1𝑧𝑐𝑜𝑠ℎ(𝜂1𝑧) − 𝑠𝑖𝑛ℎ (𝜂1𝑧)

𝜂1
2 ]

𝑧𝑖

𝑧𝑙

− 𝑧𝑖 (
𝑐𝑜𝑠ℎ(𝜂1𝑧)

𝜂1
)]
𝑧𝑖

𝑧𝑙

− Ä(
𝜂2𝑧𝑐𝑜𝑠ℎ(𝜂2𝑧) − 𝑠𝑖𝑛ℎ(𝜂2𝑧)

𝜂2
2 )]

𝑧𝑖

𝑧𝑙

+ 𝑧𝑖Ä(
𝑐𝑜𝑠ℎ(𝜂2𝑧)

𝜂2
)]
𝑧𝑖

𝑧𝑙

] 

( 3-59) 

3.3.2 Nodal Force Vector Evaluated from WFE Force Vector 

In the previous section, the modal stress functions are given in the form of analytical 

expressions. Therefore, the nodal force for the FE region can be computed by integrating the 

product of the stress functions with the shape functions. However, for a ply-by-ply approach, the 

dispersion equation is solved by WFE and the global stress functions are instead embedded in the 

WFE nodal force vectors 𝒇𝑳
𝒔  in equation (2-66). In this section, the procedure to interpolate the 
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WFE nodal force for the GL nodal force is described. Consider the WFE elements shown in the 

left, and the GL elements at the left boundary shown in the right of Figure 3-14.  

 
Figure 3-14 (L) WFE mesh and (R) Global local FE mesh 

Typically, the element size through the plate thickness in the WFE mesh is smaller than the one 

in the GL mesh. Furthermore, the element size in the thickness direction may also change based 

on the individual ply thickness. The main idea behind the interpolation is to find a ratio between 

the GL element size and the WFE element size at the same thickness location. Then this factor is 

used to scale the WFE nodal force vector appropriately for the GL nodal forces. The first step in 

the procedure is to sort and find the nodal positions of the left boundary nodes for the WFE and 

GL meshes. These two vectors are used to compute the element size in the thickness direction for 

the two meshes. For illustration, they are plotted in Figure 3-15a as the red dot (WFE element 

size) and the blue diamond (GL element size). The next step is to interpolate the GL element size 

vector for all WFE nodes, shown as the black dots. Note that GL element size averaging is 

possible between element size variations through thickness. Finally, the ratio between the GL 

element size and the WFE element size is found by element-wise division of the the two vectors, 

and the results are shown in Figure 3-15b. Once the ratio is found for every WFE nodal point, the 

WFE nodal force vector is multiplied by this ratio to scale the GL nodal points. Finally, for each 

of the GL nodes, the nodal force vector is interpolated from this scaled WFE nodal force vector. 

It is worth mentioning that due to the numerical precision of the nodal coordinate, the GL nodal 
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points could be outside of the range of the WFE nodal points. In such cases, the GL nodal 

coordinate must be adjusted to fall in range for the interpolation to avoid errors. 

 

 
(a) the element size though thickness for WFE, 

GL mesh 

 
 (b) the ratio between the WFE element size and the 

GL element size to compute the nodal stress factor 

Figure 3-15 Example of the WFE element size and the GL element size, and the calculation of the nodal 

stress factor 

3.4 Numerical and Modeling Considerations 

3.4.1 Finite Element Discretization 

Effects of the Local Region Size 

One of the advantages of using GLM is that only a small region of the plate with 

irregularities is discretized to reduce the computational effort. However, a proper choice of the 

width of the local region is not immediately clear. A previous researcher has pointed out that the 

FE region boundary should be at least twice of the plate thickness away from the defect, where 

the contributions of the non-propagating modes can be ignored [65]. To further investigate the 

effects of the FE region width on the accuracy of the GL solution, a study with a stiffened 

aluminum plate (E = 68.9 GPa, ν = 0.3, ρ = 2700 kg/m3), shown in Figure 3-16, with a 25 mm 

wide, 2.7 mm thickness increased section within the FE regions of 100 mm, 65 mm, 45 mm, and 

40 mm in width is conducted. First the energy balance error, defined in equation ( 3-30), for both 
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A0 and S0 incident modes are considered. The incident wave amplitude is chosen such that the 

power flow of the incident mode is 1 at all frequencies. 

 

 

 

 
Figure 3-16 Geometry of the stiffned plate and the GL model with various FE region sizes 

Figure 3-17 shows that as the FE region decrease in size, the lower frequencies have noticeable 

error in energy balance. Even with 20 mm spacing from the FE boundary to the step (65 mm FE 

region), at 50 kHz, the error can reach up to 6% in the case of A0 incidence. It is, however, 

difficult to explain why the error for 40 mm FE region size is smaller than the 45 mm case. 

Despite this unusual result, one could conclude that if the error below the first cut-off frequency 

does not show an increasing trend towards the lower frequencies which is the case of 100 mm 

size, the FE region size is likely to suffice. Another interesting phenomenon is that the error is 

larger with A0 incident mode than with S0 incident. It is counterintuitive because the wavelength 

of A0 mode is significantly smaller than that for the S0 mode at lower frequencies (Figure 3-18b).  

2.7mm 
25mm 2.7mm 
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(a)       (b) 

 
(c)       (d) 

Figure 3-17 The energy balance error for the stiffened aluminum plate subjected to A0 incidence (blue 

line) and S0 incidence (red line) for FE region width of (a) 40 mm, (b) 45 mm, (c), 65 mm, (d) 100 mm 

 
(a) the frequency wavenumber curves of the 

1.6mm thick aluminum plate 

 
 (b) the coressponding wavelength-frequency 

relations 

Figure 3-18 Dispersion curve for a 2.7 mm thick aluminum plate 
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Furthermore, at the cut-off frequencies, the wavelengths for the higher modes are theoretically 

infinite which is much longer than the FE region length. Figure 3-19 indicates that the energy 

balance has a noticeable “jump” in a narrow frequency range around the cut-off frequencies. For 

the rest of the frequencies, the error is much smaller than the transmitted and reflected power 

flow. It is worth to mention that the power flow variation as a function of frequency is smaller 

when the wavelength is longer. In other words, an incident S0 mode has longer wavelength when 

compared to incident A0 waves at lower frequencies, and the “dips” in the power flow spectrum 

at lower frequencies are not as numerous as for the S0 incidence. This could be explained by the 

fact that wave scattering is most likely due to matching of the defect size with multiples of 

wavelengths. 

 
(a) A0 incidence 

 
 (b) S0 incidence 

Figure 3-19 The transmitted (red solid line) and reflected (blue dash-dot line) power flow for 65 mm FE 

region 

Element Considerations 

For some geometries or defects with complex shapes, it is necessary to use triangular 

elements in the FE discretization. Therefore, the computer algorithm that implements the GLM 

calculation described above should accept the mixed use of the 4-node bi-linear plane strain 

rectangular elements and the 3-node linear plane strain triangular elements. However, the nodal 
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force vector calculation outlined in 3.3, is only implemented for 4-node elements. Thus, the use 

of tri-element is not possible at the left or the right boundary, nor with applied traction loads. In 

contrast to rectangular elements, the shape functions for tri-elements lacks the product term of 

the two-dimensional coordinate, and thus can only represent a constant strain state, and be 

susceptible to shear locking. Therefore, an exercise is carried out to determine whether the use of 

mixed tri-rectangular element mesh would cause artificial stiffness change or affect the 

wavefield calculations. A model with a 2.7 mm thick aluminum plate free of defects is used to 

calculate the power flow of the scattered waves. Figure 3-20 shows the FE discretization where 

the local region is 50 mm long with a mesh that contains 26480 rectangular elements that are 68 

µm by 68 µm, surrounding a region of 10 mm by 2 mm that is made up of 5920 triangular 

elements of the same edge lengths. The power flow results are then compared to those obtained 

from a mesh with only rectangular elements that are of the same edge length. 

 
Figure 3-20 (a) the local region where the triangular elements are colored pink, (b) a magnified view of 

the mixed element mesh showing the orientation of the tri-elements 

The power flow calculation is done for an incident A0 mode with unit power flow across the 

studied frequency range. Figure 3-21a shows the energy balance error given in equation ( 3-30), 

which is the quantity that accounts for the difference between the power flows carried by the 

incident wave and the scattered waves. 
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Figure 3-21 (a) Energy balance error, (b) transmitted A0 mode power flow calculated using the two 

meshes 

Since the local region has no energy dissipation mechanisms or defects, the incident power 

should be transmitted entirely as A0 mode, which is confirmed with the results shown in Figure 

3-21b. The numerical discrepancy between the rectangular element mesh and the mixed element 

mesh is almost indistinguishable at frequencies below 1 MHz, and for all practical problems 

negligible in the studied frequency range.  

 The FE discretization and the mass M and stiffness K matrices generation are done with 

ABAQUS/CAE. Like some commercial FE codes, ABAQUS has some modifications to the 

standard M, and K calculations with ( 3-60) and the numerical integration rule in ( 3-42) 

𝑴 = ∫ 𝑵𝑇𝝆𝑵
𝑉

𝑑𝑉  𝑲 = ∫ 𝑩𝑇₵𝑩
𝑉

𝑑𝑉 

( 3-60) 

where 𝝆 is a diagonal matrix of density, ₵ is the elastic constant matrix, and 𝑩 is the 

displacement gradient matrix containing the derivatives of the shape functions. In transient FE 

approach, the inverse of the mass matrix is computed regularly, thus it is common to diagonalize 

the mass matrix by row sum method as shown in the example of a single 4-node element of 1 m 

X 1 m with density 2700 kg/m3
 in ( 3-61). 
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[
 
 
 
 
 
 
 
300 0 150 0 75 0 150 0

300 0 150 0 75 0 150
300 0 150 0 75 0

300 0 150 0 75
300 0 150 0

𝑠𝑦𝑚 300 0 150

300 0
300]

 
 
 
 
 
 
 

 → 

[
 
 
 
 
 
 
 
675 0 0 0 0 0 0 0

675 0 0 0 0 0 0
675 0 0 0 0 0

675 0 0 0 0
675 0 0 0

𝑠𝑦𝑚 675 0 0

675 0
675]

 
 
 
 
 
 
 

 

( 3-61) 

Moreover, when full integration is used for the bi-linear element, the stiffness matrix is 

calculated with the “selectively reduced-integration technique” with the order of integration 

reduced for selected terms for the purpose of preventing mesh locking [66]. Using the elastic 

property of aluminum, the 1m X 1m element K matrices calculated with the standard definition, 

the selectively reduced integration and the differences between the two are shown in ( 3-62). 

ABAQUS K 

 
Standard K 

 
Difference (KABAQUS – K) 

 
( 3-62) 

The difference of the two matrices shows which selected terms are subjected to the selective 

reduce integration. These numerical implementations appear to have negligible effects on the 

precision of the waveform prediction as the changes in the waveform prediction is often very 

small compare to changes in waveforms due defects.  
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Crack Tip Mesh Refinement 

Delamination is a critical type of defect in laminated composites and the simplest way to 

model such defect is by separation of nodes. However, for fracture model, it is often required to 

have a fine mesh to converge to the high stress intensity at the crack tip. Therefore, a comparison 

of simple mesh is compared with another mesh that has a higher degree of mesh refinement. 

Figure 3-22 shows the two different meshes where the refined mesh has circular regions around 

the two crack tips with increased mesh density. 

  

  
Figure 3-22 The nodal points around the crack, and the separation nodes are indicated by the green dots. 

The manifiying view of the mesh near the left crack tip for (a) the “regular” mesh, (b) the refined mesh 

The physical problem considered here is a 4 mm thick aluminum plate (E = 68.9 GPa, ν = 0.3, ρ 

= 2700 kg/m3), with a 10 mm long crack situated 1 mm below the top surface. The nominal 

element size is 100 µm by 100 µm, whereas for the refined mesh a circle of 1 mm diameter is 

drawn such that the element edge length is 25 µm in the radial direction (Figure 3-22b). To study 

the scattering effects of the two models, it is assumed that a single incident A0 mode or S0 mode 

is incident from the left boundary. For a better displacement waveform visualization, the incident 

wave is of 5 cycle Hann windowed sine pulse with a 300 kHz center frequency. Figure 3-23a 

shows that for an incident A0 mode, both models predict the 300 kHz frequency content is not 

strongly transmitted with small differences in the power flows. The top surface vertical 

displacement at 216 mm to the right of the crack’s leading edge in Figure 3-23b shows that the 
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scattered waves arrives in two main packets. For the displacements, the differences between the 

two models are not noticeable.  

 
Figure 3-23 Comapring the result from the regular and the refined mesh for incident A0 mode (a) the total 

transmitted power flow, (b) the top surface vertical displacement of the transmitted wave at 216 mm to 

the right of the crack leading edge 

For incident S0 mode, the transmission for 300 kHz frequency content is not as obstructive as A0 

mode. Figure 3-24a shows that the two models predict indistinguishable difference in transmitted 

power flow. The horizontal displacement waveform shown in Figure 3-24b indicates that the 

incident S0 is strongly transmitted with smaller S0 to A0 packet trailing the main S0 packet. Once 

again, the differences between the two models are negligible. When comparing the small amount 

of differences between the two models in Figure 3-23 and Figure 3-24, incident A0 mode is more 

sensitive to the mesh refinement. This is likely due to the fact that the wavelength for A0 mode (8 

mm) is approximately 2 times less than that of S0 mode (17 mm). Furthermore, it is believed that 

the dominating source of wave scattering in a discontinuity is that the guided waves above and 

below the crack travel at different speeds and when they reach the end of the trailing edge of the 

crack, a scattered wave must be induced to satisfy the continuity conditions when the waves 

arrive at the trailing edge and merge together.  
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Figure 3-24 Comapring the results from the regular and the refined mesh for incident S0 mode (a) the total 

transmitted power flow, (b) the top surface vertical displacement of the transmitted wave at 216 mm to 

the right of the crack’s leading edge 

 

3.4.2 Modeling Wave Attenuation with Complex Moduli 

In modeling some composite structures with highly attenuative materials such as rich 

resin or adhesive polymer, it is necessary to introduce material attenuation to account for the 

reduction in the amplitude of the elastic waves with propagation distance and frequency. 

Furthermore, when the plate has a high frequency thickness ratio, a large number of higher 

modes are included in the global local analysis. The cutoff frequencies for the higher modes are 

the natural frequencies of the plate in which resonance occurs. Thus, for undamped models, the 

wave amplitude for the resonating mode is overpredicted in a small frequency range around the 

cutoff frequencies. By introducing a small amount of material damping, the global local model 

prediction for thick plates can be improved with the unrealistic plate motion due to resonance 

being suppressed.  

The amplitude reduction of the waves as they propagate away from the source can be 

attributed to geometric spreading as shown in Figure 3-25, that is the increase in the perimeter of 

the wave front, and material dissipation. A comprehensive models of wave attenuation caused by 

the two effects in polymer matrix composites has been developed by Mal [65]. The main idea 
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behind the model is to assume that the stiffness constants in the frequency domain are complex 

with a small number of parameters that represent the energy absorbed by dissipated by the 

viscoelasticity of the polymers and the energy lost due to the scattering of the waves by the 

fibers. This model is used here with appropriate modifications to determine the effects of wave 

attenuation. 

 
Figure 3-25 Elastic wave amplitude reduction due to geometric spreading  

 It should be noted that for isotropic solids, the moduli results in complex bulk wave velocities 

𝛼 and 𝛽 of the form. 

𝛼2 =
𝛼̂2

1 + 𝑖𝑝 (
𝛽̂
𝛼̂
)

                     𝛽2 =
𝛽̂2

1 + 𝑖𝑝
 

( 3-63) 

where 𝛼,̂ and 𝛽̂ are the real bulk wave velocities, and  𝑝 is a positive and dimensionless constant 

to be determined by experiment. It is worth to mention that [66] points out that Kelvin-Voigt and 

other spring-dashpot models fail to predict the wave amplitude as observed in viscoelastic solids.  

Ply-by-Ply Implementation in a Layered Composite Plate 

Assume that the lamina shown in Figure 3-26 is transversely isotropic with the symmetric 

axis aligned with the fiber direction and the damping parameter p is a known constant. The local 

stiffness matrix for a single ply along the fiber direction is first calculated using the inverse of 

𝑟 

𝑥3 

𝑥1 

𝑥3 

𝐴(𝑥1) 

𝐶0 
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the compliance matrix shown in equation (2-75) with the real elastic properties. The local ply 

stiffness matrix is in the form 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12}
 
 

 
 

=

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0

𝐶22 𝐶23 0 0 0

𝐶22 0 0 0

𝐶44 0 0

𝑠𝑦𝑚 𝐶55 0

𝐶55]
 
 
 
 
 
 

{
 
 

 
 
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12}

 
 

 
 

 

( 3-64) 

 
Figure 3-26 Sketch of a lamina showing the isotropic plane and plane wave velocities 

𝐶11, 𝐶12, 𝐶22, 𝐶23, 𝐶55 are the five independent real material constants and 𝐶44 =
(𝐶22−𝐶23)

2
. The 

associated constants are related to the bulk wave velocities, √𝑎̂, which can be determined from 

solving the Christoffel tensor equation  

𝑎̂1 =
𝐶22
𝜌
, 𝑎̂2 =

𝐶11
𝜌
, 𝑎̂3 =

𝐶12 + 𝐶55
𝜌

, 𝑎̂4 =
𝐶44
𝜌
, 𝑎̂5 =

𝐶55
𝜌

 

( 3-65) 

𝑥1 

𝑥2 

𝑥3 

√𝑎1 

√𝑎5 

√𝑎4 

√𝑎2 

√𝑎5 
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It is worth mentioning that the longitudinal waves are related to 𝑎̂2, and 𝑎̂1, and the shear waves 

are related to 𝑎̂4 and 𝑎̂5. Extending the definition of the complex velocities for isotropic material 

in equation ( 3-63), the following complex stiffness constants CC are evaluated [65] 

𝑎1 =
𝑎̂1

1+𝑖𝑝√
𝑎̂5
𝑎̂1

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶22 = 𝜌𝑎1  𝑎2 =

𝑎̂2

1+𝑖𝑝√
𝑎̂5
𝑎̂2

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶11 = 𝜌𝑎2 

𝑎3 =
𝑎̂3

1+𝑖𝑝√
𝑎̂5
𝑎̂3

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶12 = 𝜌𝑎3 − 𝐶𝐶55  𝑎5 =

𝑎̂5

1+𝑖𝑝
     

𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶55 = 𝜌𝑎5 

𝑎4 =
𝑎̂4

1+𝑖𝑝√
𝑎̂5
𝑎̂4

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶44 = 𝜌𝑎4  𝐶𝐶23 = −(2𝐶𝐶44 − 𝐶𝐶22) 

( 3-66) 

For transverse isotropy, the following relations hold between the stiffness constants 

𝐶𝐶33 = 𝐶𝐶22  𝐶𝐶66 = 𝐶𝐶55  𝐶𝐶13 = 𝐶𝐶12 

( 3-67) 

The complex stiffness matrix is then computed for different ply orientations using equation 

(2-76). In the calculation of the FE stiffness matrices, the complex elastic constants are then 

separated into the real and the imaginary part, such that 𝑲 = 𝑲𝒓𝒆𝒂𝒍 − 𝑖𝑲𝒊𝒎𝒂𝒈 and are computed 

separately. Since 𝑲𝒓𝒆𝒂𝒍 and 𝑲𝒊𝒎𝒂𝒈 are real valued matrices, they can be calculated by standard 

FE programs such as ABAQUS. 

Homogenized and Transversely Isotropic Laminate 

As pointed out in section 2.2.4, common composite laminates have a balance and 

symmetric layups so that a homogenized and transversely isotropic model is accurate for time-

of-flight analysis at lower frequencies. The material damping with complex moduli 

implementation is similar to the ply-by-ply cases but with some differences in the bulk wave 

velocity definitions. For completeness, the equations are presented here.  
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Figure 3-27 Homogenized laminate represented by transversely isotropic model 

Assuming the five independent elastic constants 𝐸11, 𝐸33, 𝜈12, 𝜈13, and 𝐺13 are known, the 

derived elastic constants are  

𝐸22 = 𝐸11 𝜈23 = 𝜈13 𝐺23 = 𝐺13 𝐺12 =
𝐸11

2(1+𝜈12)
 

( 3-68) 

Using equation (2-75), and calculating its inverse, the complex stiffness matrix is obtained: 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12}
 
 

 
 

=

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0

𝐶11 𝐶13 0 0 0

𝐶33 0 0 0

𝐶44 0 0

𝑠𝑦𝑚 𝐶44 0

𝐶66]
 
 
 
 
 
 

⏟                      
𝑪

{
 
 

 
 
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12}

 
 

 
 

 

( 3-69) 

Upon calculating the stiffness matrix 𝑪, the following quantities with the dimension of velocities 

squared are defined as follows [66]:  

𝑎̂1 =
𝐶11

𝜌
 𝑎̂2 =

𝐶33

𝜌
 𝑎̂3 =

𝐶13+𝐶44

𝜌
    𝑎̂4 =

𝐶66

𝜌
 𝑎̂5 =

𝐶44

𝜌
  

( 3-70) 

√𝑎̂1 and √𝑎̂5 are the velocities of the longitudinal and shear waves propagating in the 𝑥1-𝑥2 

plane respectively, whereas √𝑎̂2 and √𝑎̂5 are the velocities for the longitudinal and shear waves 

propagating in the 𝑥3 direction. Unlike the ply-by-ply case,  √𝑎̂4 is the SH wave velocity in 𝑥1-

𝑥1 

𝑥2 

𝑥3 

Iso-pl 
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𝑥2 plane. Subsequently, the complex velocities √𝑎 are calculated using the real velocities with 

similar ratios of shear and longitudinal bulk wave velocity as in equation ( 3-63). 

𝑎1 =
𝑎̂1

1+𝑖𝑝√
𝑎̂5
𝑎̂1

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶11 = 𝜌𝑎1  𝑎2 =

𝑎̂2

1+𝑖𝑝√
𝑎̂5
𝑎̂2

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶33 = 𝜌𝑎2 

𝑎3 =
𝑎̂3

1+𝑖𝑝√
𝑎̂5
𝑎̂3

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶13 = 𝜌𝑎3 − 𝐶𝐶44  𝑎5 =

𝑎̂5

1+𝑖𝑝
     

𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶44 = 𝜌𝑎5 

𝑎4 =
𝑎̂4

1+𝑖𝑝√
𝑎̂5
𝑎̂4

     
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝐶𝐶66 = 𝜌𝑎4  

( 3-71) 

The transversely isotropic model yields the following relations 

𝐶𝐶22 = 𝐶𝐶11  𝐶𝐶55 = 𝐶𝐶44 

( 3-72) 

and 𝐶𝐶12 = −(2𝐶𝐶66 − 𝐶𝐶11). However, the resulting 𝐶𝐶12 would result in a unrealistic 

negative stiffness constants for the imaginary parts in most homogenized materials. To overcome 

this issue, an additional complex quantity 𝑎6 is defined such that an admissible 𝐶𝐶12 can be 

calculated as 

𝑎̂6 =
𝐶12

𝜌
   →   𝑎6 =

𝑎̂6

1+𝑖𝑝√
𝑎̂5
𝑎̂6

    → 𝐶𝐶12 = 𝜌𝑎6 

( 3-73) 

Determining the Damping Coefficients 

The parameters should be determined from experiments. To determine the appropriate 

model damping parameter p, the imaginary part of the wavenumbers derived from experimental 

measurements are compared with the predicted imaginary wavenumbers in an interactive 

manner. The procedure is explained in this section with an example. Since the elastic wave 

amplitude decreases with increasing distance, multiple ultrasound measurements are taken to 
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determine the amplitude reduction and the parameters can be determined with a least square fit 

as shown in Figure 3-29a.  

ln(𝐴(𝑥𝑛)) = ln(𝐶0) − 0.5 ln(𝑥𝑛) − 𝛼(𝑥𝑛) 

( 3-74) 

Consider a carbon fiber reinforced plate (890 mm by 890 mm by 2.7 mm) with a layup of 

[0/±45/90]s build up from HEXCELL AS-4/NEWPORT 301 plain weave 3K tow lamina as 

shown in Figure 3-28. Ultrasound signals are taken with the receiver being placed at a distance 

range from 50.8 mm to 533 mm to the source in 25.4 mm increments. Those distances are 

denoted as 𝑥 = 𝑥1, 𝑥2, … 𝑥𝑛 with the associated amplitude measurement 𝐴(𝑥𝑛). For this problem 

the wave function can be expressed in the form 

𝐴(𝑥1) =
𝐶0

√𝑥1
𝑒−𝛼𝑥1 

( 3-75) 

where  is the damping parameter and C0 is a constant. 

These measurements are also taken at excitation frequency range from 50 kHz to 250 kHz in 10 

kHz increments. 

 
Figure 3-28 Composite plate used in the experiment for damping parameter estimation 

With the measurements at various distances substituted into equation ( 3-74), the system of 

equations is rewritten into the form of 𝑨𝒙 = 𝒃 where 
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𝑨 = [

−𝑥1 1
−𝑥2 1
⋮ ⋮
−𝑥𝑛 1

]    𝒙 = [
𝛼

ln (𝐶0)
]     𝒃 =

[
 
 
 
 
ln(𝐴(𝑥1)) + 0.5ln (𝑥1)

ln(𝐴(𝑥2)) + 0.5ln (𝑥2)

⋮
ln(𝐴(𝑥𝑛)) + 0.5ln (𝑥𝑛)]

 
 
 
 

 

( 3-76) 

Since A is not square matrix, the system of equation is over determined and a least square 

solution is obtained by minimizing the second norm of the system of equations, i.e. 

𝑚𝑖𝑛‖𝑨𝒙 − 𝒃‖2 

( 3-77) 

The amplitude measurement 𝐴(𝑥𝑛) can be carried out in different ways from the measured 

ultrasound signals. Here, an envelope of the signal is obtained utilizing the Hilbert transform, 

and the peak value of the envelope is used. Care must be taken to ensure the amount of couplant, 

and the transducer contact remain relatively unchanged for measurements taken at various 

locations. For higher frequencies, it is possible to excite multiple Lamb modes. The 

determination of the amplitude 𝐴(𝑥𝑛) should be made by selecting the local peak in a time 

window for each Lamb mode. In order to determine the correct time window, the theoretical 

dispersion curves are used to determine the estimated time of arrival of the corresponding modes. 

This process is more robust when the theoretical dispersion curves are validated with the 

procedure discussed in section 2.2.4. The time window is then selected around the time of arrival 

with time period equal to that of the excitation signal. Figure 3-29a shows the relation between 

the amplitude of the A0 mode excited at 150 kHz center frequency with the propagation distance. 

The calculated damping constant 𝛼 is 0.1127. Figure 3-29b shows damping constants of the A0 

and S0 modes for the remaining tested frequencies. The results conform with the observation 

from other researchers that the A0 mode is more attenuative than the S0 mode, and the damping 
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effect is more severe as the frequency increases. Furthermore, the results confirm than the 

damping effect is linearly proportional to frequency in this frequency range.   

 
Figure 3-29 (a) Example of the A0 mode amplitude decay for 150kHz center frequency, (b) damping 

constant α as a function of frequency for A0 and S0 mode 

The next step is to develop a calibrated numerical model to simulate the elastic wave 

propagation with material attenuation. Since the layup is balance and symmetric, the WFE model 

used to calculate the theoretical dispersion curves is modeled as a transversely isotropic plate 

with the homogenized elastic properties as shown in Table 3-1. 

Table 3-1 Effective Properties when composite plate is Homogenized into One Layer (ρ = 1570 kg/m3) 

𝐸11[GPa] 𝐸33[GPa] 𝐺13[GPa] 𝜈12 𝜈13 

40.0 8.20 2.60 0.30 0.29 

 

In order to determine the damping parameter p for the model, a single experimental damping 

coefficient α is chosen as an initial guess. In this case, the experimental value of 

𝛼 for the A0 mode is 0.1127 for 150kHz is chosen, and by changing the model parameter p 

iteratively such that the imaginary wavenumber, kI for the A0 mode matches with sufficient 

agreement with that α value, that p value becomes the calibrated model damping parameter. It is 

determined that p = 0.035 gives the best match to the experimental damping parameter α. With 

this p value, the WFE and the GL models’ complex stiffness matrices are calculated using 
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equation ( 3-71) and ( 3-73). For reference, the real and the complex stiffness matrices, denoted 

as 𝑪 and 𝑪𝑪, respectively, in gigapascal, are presented in ( 3-78). The changes in the real part of 

the stiffness values are in the 1/100th , and the imaginary parts of the stiffness constants are about 

3 orders of magnitude smaller than the real parts. 

𝑪 =

[
 
 
 
 
 
45.44 14.67 3.57 0 0 0

45.44 3.57 0 0 0
8.62 0 0 0

2.60 0 0
2.60 0

𝑠𝑦𝑚 15.38]
 
 
 
 
 

  

𝑪𝑪 =

[
 
 
 
 
 
45.43 − 0.38𝑖 14.66 − 0.22𝑖 3.57 − 0.05𝑖 0 0 0

45.43 − 0.38𝑖 3.57 − 0.05𝑖 0 0 0
8.62 − 0.16𝑖 0 0 0

2.59 − 0.09𝑖 0 0
2.59 − 0.09𝑖 0

𝑠𝑦𝑚 15.38 − 0.22𝑖]
 
 
 
 
 

 

( 3-78) 

Figure 3-30a shows the comparison between the imaginary part of the wavenumber calculated by 

WFE with element size of 20 µm by 25 µm, and the damping coefficient α calculated from the 

amplitude reduction in the signals. 

 
Figure 3-30 (a) Comparing experimental damping coefficient α (dots) with the imaginary part of the 

theoretical wavenumber (lines), (b) Wavenumber evaluated from WFE model without material 

attenuation (solid red/blue line), vs. with damping using p = 0.035 (black dot) 

A0 

S0 
A1 

S1 

S2 



112 

In spite of the fact that only the A0 mode’s damping coefficient 𝛼 at 150kHz is used to calibrate 

the theoretical damping parameter p, the imaginary wavenumbers for both the S0 mode and A0 

mode agree well with the experimentally derived wavenumbers. It is worth mentioning that, near 

the cutoff frequencies, the wavenumbers for the higher modes generally have larger imaginary 

parts even though the real parts remain largely unchanged when compared to the undamped 

model. This implies that the imaginary part of the wavenumber is critical to suppress the 

resonance behavior as discussed earlier. Moreover, Figure 3-30b shows that the real part of the 

wavenumber has insignificant difference in the damped and undamped models. Thus, by 

comparing the experimentally measured group velocity and the WFE predicted group velocity, 

the full material model in WFE can be validated experimentally. Figure 3-31 shows the 

dispersion curves calculated with the homogenized effective material properties listed in Table 

3-1 and the group velocity measured from the experiment. The two results agree well thus 

validating the real elastic properties. 

 
Figure 3-31Comparison between experimental group velocity (crosses) and WFE group velocity 

Remarks on the Displacement Prediction using Material Attenuation 

As pointed out in the previous section, the use of material damping is essential to 

suppress resonance in model predictions. A discussion is presented here to illustrate the changes 
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to displacement prediction with and without the use of damping. Consider the transversely 

isotropic model of the composite plate discussed in the previous section with the same damping 

parameter p =0.035. A GL model is used to simulate a surface mounted transducer exciting 

elastic wave with an 8 mm wide uniform normal load of 1 MPa magnitude applied on the top 

surface, and the results with and without the use of damping are compared. Since the cutoff 

frequencies are the resonance frequencies of the plate, the displacements are calculated for 

excitation frequencies that are in one case close to the first cutoff frequency at 250 kHz while the 

other case is below the first cutoff frequency at 175 kHz. The time dependence of the input 

signal is shown in Figure 3-32. 

  
Figure 3-32 Hann windowed sine burst of 5 cycle is used for excitation (left) with center frequency at 

175kHz below the first cutoff frequency (right) at 250kHz which is close to the first cut off frequency 

Figure 3-33 shows the vertical displacement for the damped and the undamped models on the top 

surface 200 mm from the source. Comparing the spectra in (a) and (b) for the undamped and 

damped models, the resonance for the S1 mode causes the peak value to surpass the main 

excitation, whereas the damped model has no “spikes” in the spectrum. It can be seen from 

Figure 3-33c, that “spike” introduces an oscillation in the waveform for all time, which suggests 

that resonance is occurring in which motion is present everywhere in the plate continuously. 

Near the cutoff frequencies, the condition number for the matrix inverse for the system of 
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equations in ( 3-17) increases, indicating that the dynamic stiffness matrix is close to singular. 

By introducing damping, the modal functions would have some complex parts such that the 

matrix determinant is not close to zero. Figure 3-33d shows that not only there is no resonance in 

the damped model, the faster traveling dispersive S0 packet has a larger amplitude that the slower 

traveling A0 packet as suggested by the higher damping coefficient for the A modes than for the 

S modes. The use of complex moduli damping model is essential to capture the relative 

amplitude between different wave modes for an attenuative material. Figure 3-34 confirms that 

close to the source at 30 mm, the damped and undamped solutions have similar A0 to S0 

amplitude ratios in spite the resonance. 
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(a) Undamped model spectrum    (b) Damped model spectrum 

 
(c) Undamped model-vertical displacement  (d) Damped model-vertical displacement 

Figure 3-33 Displacement results for 250kHz excitation for the resonance prone case, measured at 

200mm to the right of the source on the top surface 

 
Figure 3-34 Top surface vertical displacement comparison between the damped and undamped model (a) 

30 mm away from source, (b) 150 mm away from source 

To confirm that the undamped model does not produce resonance when the excitation 

frequency is relatively far from the cutoff frequency, an input with 175 kHz center frequency is 

used and the displacement predictions are presented in Figure 3-35. 
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Figure 3-35 Top surface vertical displacement comparison between the damped and undamped model 

measured at 100mm from the source, using a 175kHz input (a) frequency spectrum, (b) waveform 

Unlike the result from 250 kHz excitation, the “spike” near the cutoff frequency of S1 around 

425 kHz is not influential due to a lower frequency of excitation. Therefore, the time waveforms 

have similar shapes in the damped and undamped models, and the same time of arrival for the 

excited Lamb modes. In such instances, the undamped model is sufficient to predict the source 

response. 

3.5 Global Local Method Verification and Validation 

3.5.1 Validation of the Source Problem Against Analytical Solution 

In this section, the GL modeling of the source problem is validated against analytical 

solution. Two problems, one with a linearly varying surface load on a single layer plate, and the 

other one with a uniform load on a multilayer plate, are studied. 

Single Layer Plate Subjected to Dynamic Surface Load using Wavenumber Integral Approach  

Consider the problem sketched of a plate with thickness 2H = 4 mm in Figure 3-36, 

where the normal load applied on a region with width equals to 2a varying linearly with peak 

intensity 𝑝0.  
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Figure 3-36 Sketch of the rocking load problem 

The analytical solution is obtained by evaluating the wavenumber integral using residue theorem 

[29], and a brief review is given here. Assuming the plate is isotropic, perfectly elastic and in a 

state of plane strain, the displacements 𝑢𝑖(𝑥, 𝑧, 𝑡) and the stresses 𝜎𝑖𝑗(𝑥, 𝑧, 𝑡) are expressed using 

Fourier time transforms: 

𝑢𝑖(𝑥, 𝑧, 𝑡) =
1

𝜋
𝑟𝑒𝑎𝑙 (∫ 𝑢̅(𝑥, 𝑧, 𝜔)𝑒𝑖𝜔𝑡

∞

0

𝑑𝜔) 

𝜎𝑖𝑗(𝑥, 𝑧, 𝑡) =
1

𝜋
𝑟𝑒𝑎𝑙 (∫ 𝜎𝑖𝑗(𝑥, 𝑧, 𝜔)𝑒

𝑖𝜔𝑡
∞

0

𝑑𝜔) 

( 3-79) 

where 𝑖, 𝑗 = 𝑥, 𝑧 and 𝑢̅ and 𝜎𝑖𝑗are the Fourier time transform of the displacements and stresses. 

Introducing another Fourier transform with respect to x, the frequency-wavenumber domain 

solution is in the form 

𝑢̅𝑖(𝑥, 𝑧, 𝜔) =
1

2𝜋
∫ 𝑢̂𝑖(𝑘, 𝑧, 𝜔)𝑒

𝑖𝑘𝑥
∞

−∞

𝑑𝑘 

𝜎𝑖𝑗(𝑥, 𝑧, 𝜔) =
1

2𝜋
∫ 𝜎̂𝑖𝑗(𝑘, 𝑧, 𝜔)𝑒

𝑖𝑘𝑥
∞

−∞

𝑑𝑘 

( 3-80) 

Equation ( 3-80) is known as the wavenumber integral with the integration variable 𝑘 =
𝜔

𝑐
 along 

the x direction. The double-transformed displacements 𝑢̂𝑖 and stresses 𝜎̂𝑖𝑗 satisfy a system of 
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ordinary differential equations (ODEs) in z, derived from the elastodynamic equations of motion. 

Appropriate boundary conditions must accompany the ODEs to solve the equations. The applied 

load 𝑝0𝑓(𝑡) is transformed into the frequency-wavenumber domain as 𝑃̂0(𝑘, 𝜔). For the linear 

varying load, 

𝑃̅0(𝑥, 𝜔) = ∫
𝑝0𝑥

𝑎
𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡                    |𝑥| ≤ 𝑎

∞

−∞

 

( 3-81) 

𝑃̂0(𝑘, 𝜔) = ∫ 𝑃̅0(𝑥, 𝜔)𝑒
−𝑖𝑘𝑥𝑑𝑥 = ∫ [∫

𝑝0𝑥

𝑎
𝑒−𝑖𝑘𝑥𝑑𝑥

𝑎

−𝑎

] 𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

0

∞

−∞

= ∫
2𝑖𝑝0
𝑘

∞

0

[cos(𝑘𝑎) −
sin(𝑘𝑎)

𝑘𝑎
] 𝑓(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 

( 3-82) 

The solution to the ODEs in the frequency-wavenumber domain with the appropriate boundary 

conditions in the frequency-wavenumber domain is listed below [29]. For the antisymmetric 

mode, 

𝑢̂𝑥(𝑘, 𝑧, 𝜔) = −
𝑖𝑘𝑃̂0(𝑘, 𝜔)

2𝜇𝑅𝑎(𝑘, 𝜔)
[(2𝑘2 − 𝑘2

2) sinh(𝜂1𝑧) cosh(𝜂2𝐻) − 2𝜂1𝜂2 cosh(𝜂1𝐻) sinh(𝜂2𝑧)] 

𝑢̂𝑧(𝑘, 𝑧, 𝜔) = −
𝜂1𝑃̂0(𝑘, 𝜔)

2𝜇𝑅𝑎(𝑘, 𝜔)
[(2𝑘2 − 𝑘2

2) cosh(𝜂1𝑧) cosh(𝜂2𝐻) − 2𝑘
2 cosh(𝜂1𝐻) cosh(𝜂2𝑧)] 

 ( 3-83) 

where 𝑅𝑎(𝑘, 𝜔) = (2𝑘
2 − 𝑘2

2)2 sinh(𝜂1𝐻) cosh(𝜂2𝐻) − 4𝑘
2𝜂1𝜂2 cosh(𝜂1𝐻) sinh (𝜂2𝐻) which 

can be seen to be the right-hand side of the dispersion equation for the antisymmetric mode. 

For the symmetric mode,  

𝑢̂𝑥(𝑘, 𝑧, 𝜔) = −
𝑖𝑘𝑃̂0(𝑘, 𝜔)

2𝜇𝑅𝑠(𝑘, 𝜔)
[(2𝑘2 − 𝑘2

2) cosh(𝜂1𝑧) sinh(𝜂2𝐻) − 2𝜂1𝜂2 sinh(𝜂1𝐻) cosh(𝜂2𝑧)] 
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𝑢̂𝑧(𝑘, 𝑧, 𝜔) = −
𝜂1𝑃̂0(𝑘, 𝜔)

2𝜇𝑅𝑠(𝑘, 𝜔)
[(2𝑘2 − 𝑘2

2) sinh(𝜂1𝑧) sinh(𝜂2𝐻) − 2𝑘
2 sinh(𝜂1𝐻) sinh(𝜂2𝑧)] 

( 3-84) 

where 𝑅𝑠(𝑘, 𝜔) = (2𝑘
2 − 𝑘2

2)2 cosh(𝜂1𝐻) sinh(𝜂2𝐻) − 4𝑘
2𝜂1𝜂2 sinh(𝜂1𝐻) cosh (𝜂2𝐻) which 

can be seen to be the right-hand side of the dispersion equation for the symmetric mode. 

To evaluate the wavenumber integral as presented in equation ( 3-80) with the integrand ( 

3-83) and ( 3-84), it is recognized that both the symmetric and antisymmetric modes have the 

same form:  

𝑔̅(𝑥, 𝑧, 𝜔) =
𝑃̅0(𝜔)

2𝜋
∫

ℎ̂(𝑘, 𝑧, 𝜔)

𝑅(𝑘, 𝜔)

∞

−∞

𝑒𝑖𝑘𝑥𝑑𝑘 

( 3-85) 

where ℎ̂(𝑘, 𝑧, 𝜔) is the part of the equation ( 3-83), ( 3-84) with the load 𝑃̂0 and R factored out. 

The denominator R=0 is the dispersion equation and it has a finite number of real roots and an 

infinite number of complex roots at a given frequency ω thus presenting singularities in the 

integral. In order to evaluate the integral, contour integration on the complex plane with the path 

C+ shown in Figure 3-37 is used [34].  

 
Figure 3-37 (a) Illustration of the path of contour integration and the roots of the dispersion equation, (b) 

the wavenumber for a 4[mm] thick aluminum plate 
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The path is chosen such that only the solution for the outgoing wave is retained. Since the 

integrands only have simple poles, and there are no branch points in the complex k-plane, the 

integral can be evaluated as the sum of the residues at the poles using Cauchy’s theorem as 

shown below 

𝑔̅(𝑥, 𝑧, 𝜔) =
𝑃̅0(𝜔)2𝜋𝑖

2𝜋
∑
ℎ̂(𝑘𝑛, 𝑧, 𝜔)

𝑅′(𝑘𝑛, 𝜔)

∞

𝑛=1

𝑒𝑖𝑘𝑛𝑥 

( 3-86) 

where 𝑅′(𝑘𝑛, 𝜔) is the derivative of 𝑅(𝑘, 𝜔) with respect to k evaluated at the root of the 

dispersion equation kn, 𝑅′ =
𝜕𝑅

𝜕𝑘
|
𝑘=𝑘𝑛

. The expressions for the vertical displacements in 

frequency domain for the antisymmetric and symmetric modes are given here; the remaining 

expressions for the displacements, stresses and R’ are listed in appendix, section 3.2.  

Anti-symmetric mode: 

𝑢̅𝑧(𝜔, 𝑥, 𝑧) =∑−
𝜂1𝑎𝑃̅(𝑘𝑎, 𝜔)

2𝜇𝑅𝑎′ (𝑘𝑎)
[(2𝑘𝑎

2 − 𝑘2
2) cosh(𝜂1𝑎𝑧) cosh(𝜂2𝑎𝐻)

𝑘𝑎

− 2𝑘𝑎
2 cosh(𝜂1𝑎𝐻) cosh(𝜂2𝑎𝑧)]𝑒

𝑖𝑘𝑎𝑥 

Symmetric mode: 

𝑢̅𝑧(𝜔, 𝑥, 𝑧) =∑−
𝑖𝜂1𝑠𝑃̅(𝑘𝑠, 𝜔)

2𝜇𝑅𝑠′(𝑘𝑠)
[(2𝑘𝑠

2 − 𝑘2
2) sinh(𝜂1𝑠𝑧) sinh(𝜂2𝑠𝐻)

𝑘𝑠

− 2𝑘𝑠
2 sinh(𝜂1𝑠𝐻) sinh(𝜂2𝑠𝑧)]𝑒

𝑖𝑘𝑠𝑥 

( 3-87) 

The GL solution is compared with the analytical solution calculated from the wavenumber 

integral evaluation for a 4 mm thick aluminum plate (E = 68.9 GPa, ν = 0.3, ρ = 2700 kg/m3), 

subjected to a load with p0 = 1 MPa and width 2a = 10 mm as shown in Figure 3-38a that has a 

time dependency of 5-cycle 300 kHz sine with a Hann window as shown in Figure 3-38b. 
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(a)      (b) 

Figure 3-38 (a) the geometry and the apply load of the aluminum plate, (b) the time varying input of 5 

cycle Hann windowed tone burst  

 

Figure 3-39 Comparing analytical solution and the GL solution for the vertical displacement at top 

surface, 200 mm away from the source 

Layered Medium Subjected to Dynamic Surface Load using Matrix Approach 

The global matrix method provides an analytical solution for the force response in a 

multilayered medium [70]. A brief review of the formulation is given here. In the frequency-

wavenumber domain, the global matrix 𝑮̂ is defined in equation (2-27) such that the system of 

equation is in the form 

𝑮̂(𝑘, 𝑧, 𝜔)𝑪̂(𝜔) = 𝑭̂(𝑘, 𝜔) 

( 3-88) 

68 mm 

x 

z 
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where 𝑭̂(𝑘, 𝜔) is the traction vector for every ply in the frequency-wavenumber domain. Thus, 

only the top surface normal traction component at the top surface is non-zero. To determine the 

unknown amplitude coefficients, the inverse of the global matrix is needed 

𝑪̂ = 𝑮̂−1𝑭̂ 

( 3-89) 

𝑪̂ =
𝑎𝑑𝑗(𝑮̂)

det (𝑮̂)
𝑭̂ =

𝑴̂𝑭̂

det (𝑮̂)
 

( 3-90) 

where 𝑴̂ is the adjoint matrix of 𝑮̂  

𝑀̂𝑗𝑖 = (−1)
𝑖+𝑗det (𝐾̂𝑖𝑗)   

and 𝑲̂ is the global matrix 𝑮̂ matrix with the ith row and the jth column eliminated. 

In a very similar fashion, the inverse Fourier transform from the frequency-wavenumber domain 

back to the frequency domain is carried out with the residue theorem.  

𝑪̅(𝜔) =
1

2𝜋
∫

𝑴̂𝑭̂

det (𝑮̂)

∞

−∞

𝑑𝑘 =  
1

2𝜋
 (2𝜋𝑖)

(

 
 
∑

𝑴̂𝑭̂

∂ det(𝐆̂)
∂𝑘

∞

𝑘𝑛

|

𝑘𝑛)

 
 

 

( 3-91) 

where kn are the roots of the dispersion such that det(𝑮̂) = 0, and det(𝑮̂) = 0 is the dispersion 

equation (free wave response) for the layered medium. To calculate the derivative of the global 

matrix, the Jocobi Formula is used 

𝑪̅(𝜔) =  𝑖 (∑
𝑴̂𝑭̂

tr(𝑴̂𝑮̇̂)

∞

𝑘𝑛

|

𝑘𝑛

)  

( 3-92) 
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where tr() is the trace of matrix product(𝑴̂𝑮̇̂), and 𝑮̇̂ is the derivative of each of the elements in 

𝑮̂ with respect to kn. Finally, the displacement and stress vectors for the mth ply (as defined in 

section 2.1.2) in frequency domain is: 

𝑼̅(𝑚) = {

𝑈𝑥
𝑚

𝑈𝑧
𝑚

𝑆𝑥𝑧
𝑚

𝑆𝑧𝑧
𝑚

} = 𝑖𝑄(𝑚)𝐸(𝑧,𝑚) {𝑪̅(𝑚)} 

( 3-93) 

where {𝑪̅(𝑚)} is a sub-vector of 𝑪̅(𝜔) for the mth ply. 

As a benchmark problem, the predicted GL source response predicted is compared to the 

one obtained from the GMM. Because of the isotropic layer restriction in the current global 

matrix implementation, the structure is a 4-layer aluminum-titanium laminate with a thickness of 

1 mm for each layer, which is used in the previous chapter in section 2.2.3. The material 

properties of the layers are given in Table 2-1. The source is a uniform traction load of 1MPa 

normal to the surface, with a width of 10 mm and the time dependency is a tone burst of 250 kHz 

center frequency. Since the 5 cycle Hann windowed sine excitation will be used multiple times in 

the remainder of this paper, it will be referred as the tone burst excitation. The FE region is 65 

mm wide (Figure 3-40) with element size of 100 μm by 100 μm. 
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Figure 3-40. Uniform surface load on the Al-Ti laminate, and the black region indicate the size of the 

"local" region for the global local method 

In both methods, the displacement is computed in the frequency domain, from 50 kHz to 2 MHz 

at every 2.5 kHz step. Since most signal processing hardware for physical experiments would 

have a high pass filter, the solution at lower frequencies is not needed. The time domain 

waveform is then obtained from IFFT. The displacement from both methods are compared in 

Figure 3-41 where the frequency spectrum and the time domain waveforms of the displacement 

at the top surface at 150 mm to the right of the surface load are shown.  

 
Figure 3-41. Vertical displacement on the top surface at 150mm to the right of the source. (a) frequency 

spectrum (b) time domain waveform 
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The two solutions give almost identical displacement prediction consisting of both S0 and A0 

modes. The frequency spectrum also indicates serval frequencies that could not be excited with 

this specific load and plate configurations. 

Experimental Validation of Source Modeling 

In the previous section, the source transducer is modeled as a uniform distributed load, 

which is often not accurate enough to predict the waveform features as observed in experiments. 

The physical experiment to measure the ultrasound waveform is conducted on a hybrid 

titanium/carbon reinforced polymer specimen as shown in Figure 3-42. The plate has a stacking 

sequence of [0/45/Ti/-45/90]s (10 plies), where 0 degree is also the propagation direction. All 

composite plies (Woven fabric, HexForce 433) are 0.325 mm thick and the titanium plies (CP-

Grade 2) are 0.5 mm thick with the material properties as shown in Table 3-2.  

Table 3-2 Properties used in the FML models. 11 direction is along fiber direction 

 E11 

[GPa] 

E33 

[GPa] 

G13 

[GPa] 
ν12 ν23 

Density 

[kg/m3] 

Thickness 

[mm] 

CFRP 77 13.8 5.1 0.06 0.37 1526.1 0.325 

Ti 105   0.37  4510 0.5 

 

 
Figure 3-42 Experimental setup for measuring the waveforms on the FML specimen 

S R 
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Instead of modeling the electro-mechanical behavior of the transducer itself, two simple 

modifications can be used to improve the source response prediction and will be used for further 

damage detection studies. The first modification is to use a Gaussian windowed source 

distribution instead of the uniformly distributed surface source to model a more realistic 

transducer-plate contact condition. Since the source distribution is created numerically, any 

arbitrary traction distribution can be easily modeled with standard FE nodal force vectors. Thus, 

a large variety of transducers can be modelled without any modifications to the global-local 

theory or code implementation. The effects of using the Gaussian distribution is shown in Figure 

3-43, in which the proportion and the waveform shape of the generated A0 and S0 modes are 

modified. Uniform loading would tend to generate an increased proportion of S0 mode which is 

not observed in experiments when compared to a normal load with a narrower Gaussian window.  

 

                      
Figure 3-43 Comparing displacements at top surface, 100mm from source. Uniform vs. Gaussian 

windowed normal load (a) frequency spectrum (b) Waveform 

The second modification is to use a face-to-face transducer response as the input to the GL 

model. The “face-to-face” response is the recorded signal when the source and receiving 

transducers are in direct contact, driven by the desired excitation (e.g. tone burst excitation at 125 

kHz center frequency). The face-to-face response is subjected to Fourier transform and used as 

the GL model input term 𝒇𝒂𝒑𝒑 in equation ( 3-3). This modification can capture the electrical 
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response of the measurement system and the vibrational behavior of that particular transducer 

pair. Figure 3-44a shows the desired source and the modified source obtained from the “face-to-

face” response. Figure 3-44b shows the model prediction of the displacement waveforms 

between the two input sources. The face-to-face response has a small-time delay compared to the 

desired source because of the transducer face plate and the oscilloscope triggering time. The 

response also captures the extended tail that is due to ringing of the transducers.  

 
Figure 3-44 (a) The desired 5 cycle Hann windowed sine at 125 kHz center frequency source vs. the 

transducers’ face-to-face response. (b) The GL displacement prediction under the desired driving source 

and the one with the modified source 

Finally, using these two modifications, the predicted normalized waveform is compared with that 

obtained in the experiment (Figure 3-45).  The GL prediction slightly underestimates the 

amplitude of the S0 mode. For the A0 main packet, the waveform prediction is significantly 

improved. Comparing the model prediction using the modified and the desired excitations, the 

former waveform matches more closely with the experimental measurement except the signal at 

the tail which is cause by the reflections from the edges. 
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Figure 3-45 Measured waveform with the GL prediction using (a) the Hann windowed 5 cycle of sine at 

125 kHz center frequency excitation (b) with the modified source which includes the system response. 

With the modified source, the GL result prediction agrees more closely with the measured waveform. The 

later arrivals are due to edge reflection 

 

3.5.2 Validation of Combined Problem with ABAQUS 

For Lamb wave problems, the analytical solution is often separated into the source and 

the defect problems, and it is not straightforward to combine them. Therefore, the more general 

transient FE method is used to validate the combined problem. The design of the FE problem is 

made with care such that a large enough portion of the plate for a short enough simulation time 

to mimic the elastic wave propagation in a large structure in which boundary reflections are of 

negligible influence. Two FE validations are presented in this section. The first problem is for an 

isotropic plate with a step increase in thickness, and the second one is a delamination within a 

hybrid composite. 

Wave Scattering by a Step in an Aluminum Plate 

The geometry of the FE problem is shown in Figure 3-46 which depicts a 500 mm section 

of the aluminum plate (E = 68.9 GPa, ν = 0.3, ρ = 2700 kg/m3) subjected to a symmetric and 

uniform normal load of 1 MPa magnitude, at 200 mm to the left of the step that increases from 

3.175 mm to 4.7625 mm. The distributed load is 8 mm wide, and due to the symmetric nature of 

the source and only the right propagating wave of interest, the right-half of the problem is 
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modeled. A symmetric boundary condition is used on the left end to ensure only vertical 

displacement is possible, and the bottom right node is pinned to avoid rigid body motions.  

 
Figure 3-46 Geometry of the FE model of the step problem (not to scale). The rollers and the pin indicate 

the boundary conditions used for the FE model. The red dots indicate where the waveform is reported. 

The region bounded by the dashed line indicates where the 80 mm long local regions of the GL model. 

The time domain FE model has a total simulation period of 0.175 ms to ensure no edge reflection 

to return to the displacement calculating points that are 100 mm before and after the step. Models 

with time steps varying from 0.5µs, 0.35µs, 0.25µs to 0.175µs are computed to ensure that the 

effect of numerical dispersion is negligible. As shown in Figure 3-47, the solution computed 

from 0.25µs and 0.175µs has negligible differences indicating time convergence. When time 

convergence is not achieved such as the case of 0.5µs step time, the predicted wave packets have 

a delayed arrival time, and a longer time period, hence it is described as numerical dispersion.   

 

Figure 3-47 Vertical displacement at the top surface at 100 mm to the right of the step computed with 

different time steps using transient FEM. Convergence is achieved with 0.25µs 

The 4-node plane strain elements that are used are 160µm by 160µm in size to ensure a large 

wavelength to element size ratio. The symmetric load is chosen to simplify the analysis by 

4mm 

36mm 80mm 120mm 260mm 

4.7625mm 

x 

3.175mm 

100mm 100mm 
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generating predominately S0 mode since the excitation (3 cycle Hann windowed sine burst) has a 

200 kHz center frequency which is well below the cutoff frequency of either plate thickness. The 

group velocity presented in Figure 3-48 is used confirm whether the scattered wave is 

antisymmetric or symmetric with the appropriate time of arrival. 

 

 

Figure 3-48 The group velocity for 3.175 mm thick (solid line) and 4.7625 mm thick (dash line) 

aluminum plate, where red lines are symmetric modes and blue lines are antisymmetric modes. 

Figure 3-49 shows the displacement comparison between the ABAQUS transient solution 

and the GL solution for the reflected waves (100 mm to the left of the step) and the transmitted 

waves (100 mm to the right of step).  

  
Figure 3-49 Top surface vertical displacement comparison between ABAQUS FE solution and the GL 

solution (a) 100 mm to the left of the step and (b) 100 mm to the right of the step 
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The top surface vertical displacement is calculated because that is the dominating displacement 

component that be measured by a surface mounted transducer. The left probing point shows the 

relatively non-dispersive S0 mode that arrives shortly after 0.02 ms. The reflected waves consist 

on the faster returning S0 mode ahead of the reflected A0 mode arriving around 0.07 ms and 0.08 

ms respectively. It is somewhat surprising that the reflected A0 amplitude is larger than that of 

the reflected S0 mode. For the transmitted waves, the scattered two modes have similar 

amplitudes and the group velocities have sufficient difference such that they are separated at that 

distance.  

Wave Scattering in Hybrid Composites due to a Disbond 

Both GLM and the conventional implicit time-stepping FE methods (ABAQUS) are used 

to model a disbond at the metal composite interface in the FML. Figure 3-50 shows the problem 

of the uniformly distributed sources, 8 mm wide with a tone burst excitation at 200 kHz center 

frequency, generating waves that interact with a 10 mm long disbond at a distance of 175 mm 

from the center of the source.  

 
Figure 3-50. Sketch of the coupled problem. Only the right-half of the problem is shown. The dashed 

lines indicate the FE region in the Global Local model. The red dots indicate where the displacement is 

evaluated 

For the GLM, each “local” region is 65 mm wide, which is 18 times the plate thickness. Both 

models have a mesh size of around 71 μm. Note that, for the conventional FE model, only the 

right half of the plate is modeled with the use of symmetric boundary conditions at the left end. 

This model has a total length of 385 mm in 𝑥-direction. A “crack seam,” which allows the 

32.5mm 65mm   147.5mm 172.5mm 

𝑥𝐼  𝑥𝐼𝐼 

4mm 

10mm 27.5mm 

Local Local 

96mm 120mm 
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separation of nodes is created to represent the disbond between the first 45/Ti interface in the 

upper half of the laminate. The faces of the disbond are assumed to be traction free. The time 

stepping FE model has a total simulation period of 0.1 ms using 1000 time-steps (with a time 

step of 0.1 μs). Figure 3-51 shows the vertical displacement from the conventional FE and GLM 

at 100 mm and 220 mm to the right of the source. The symmetric load generates only S0 mode. 

At the left side of the disbond (at 100 mm), the reflected wave arrives at 0.06 ms, and at the right 

side of the disbond (at 220 mm), the scattered wave follows the main S0 packet closely. The time 

snapshots of the displacement field (Figure 3-51c, d) show the disbond splits the incident wave 

into the waves above and below the disbond. Subsequently, part of the incident wave is reflected 

back and forth between the leading and trailing edges of the disbond creating the coda wave. 

 

 
Figure 3-51. Comparison between the total vertical displacements obtained using GLM and FEM at (a) 

100 mm, (b) 220 mm, to the right of the source, (c) Resultant displacement field in the vicinity of the 

delamination at 44.72 μs and (d) at 62.71 μs 
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Finally, it is worth mentioning that the time taken to calculate the transient FE solution is about 3 

hours, while the GL solution requires around 10 minutes on the same desktop computer. The use 

of the GLM can significantly reduce computational time in the following ways. For a large plate, 

the source and defect regions are small. The rest of the global regions are represented by global 

functions thus eliminating the need for a large mesh. This is especially beneficial for FML 

because of the small through thickness mesh size requirement to model the different ply 

materials. Increasing the number of elements in thickness does not require a large increase in 

mesh size in the propagation direction. Furthermore, the frequency domain based GLM made it 

possible to use parallel computing directly using parallel for loop, because the solution at 

different frequencies are independent of each other. Finally, when the analysis involves the study 

of different defects, the GL solution of the source problem remains valid and can be coupled 

with different scattering problems without recomputing the source portion. The transient FE 

method would require modification to the entire model and be re-solved as a whole. 
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Chapter 4 Damage Characterization in Fiber Metal 

Laminate 

The motivations of using FML in aerospace structure have been introduced in section 

1.1.3 and in this chapter, a brief discussion of the different types of critical defects in FML is 

first given. These defects are modeled using GLM, for the purpose of determining the correlation 

between the ultrasound signal features and the defect characteristics. These models apply the 

extended GL framework developed in Chapter 3 in which the different source models are 

coupled with defects of various sizes in order to create a waveform library for the purpose of 

damage characterization. This library of waveforms is subsequently used to design damage 

indices to quantitatively describe the changes in the waveforms. Finally, the damage indices for 

serval simulated test signals with unknown defects are calculated and then compared to the 

defect library to illustrate a procedure to determine the nature of the unknown defects. 

4.1 Mechanical Performance Considerations of Fiber Metal Laminate 

The make-up of the polymer matrix composites and metal constituents, layup, ply 

thickness, and adhesion treatment at the metal-composite interfaces are some of the important 

factors in the overall mechanical performance and the nature of defects that could occur in FML. 

A brief review of the mechanics of FML is given here. For most design applications, the 

composite plies are modeled with anisotropic linear elastic material law based on classical 

laminate plate theory such as those given in [36] and [64] at the meso-level. A useful summary 

of the elastic properties of the different FML constituents is given in [68]. The meso-level 

approach is useful when the plate response of the laminate and the interface disbond failure is of 

interest. Such analysis can model part-level failure as in the case in [69]. Lind et. al. predicted 
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the FML failure near rivet holes of a 2-row rivet jointed specimen [69]. The meso-level analysis 

provides good insights into the composite ply angle designs, the linear response of the laminate 

and the onset of failure [70]. Beyond the linear region, composites begin to experience damage 

in contrast to metal that exhibit hardening behavior.  

More advanced strength prediction and damage initiation criterion can be derived from 

the matrix crack initiation and the crack propagation energy, such as those suggested in [71]. 

Davila et. al. [72], and Hinton et. al [73] give good summaries of the failure (initiation) criteria 

for composite laminates. The Hashin criteria [74] is a popular failure criterion that takes into 

account the fiber and matrix tension-compression strength. This criterion assumes a quadratic 

interaction between the normal and shear stresses on the failure plane. Puck modifies the original 

Hashin criterion to include the calculation of the fracture plane to account for the transverse 

compression on the increase of shear strength [76]. In some instances, the stress state is 3 

dimensional, for example, near a bearing hole, and a 3D damage initiation criterion is needed. 

Hundley et. al. analyzed the bearing strength of hybrid Ti/CFRP FML structures based on a 3D 

damage initiation criterion and a user defined damage model implemented in ABAQUS [77].  

Beyond damage initiation, a damage evolution law is needed to describe the reduction in 

load carrying capability. A continuum damage model implies that the stiffness reduction, 

described by damage parameter(s) ds, for the bulk materials without the need to model each 

defect and change in their morphology. The damage evolution law is usually derived from an 

energy potential. Maimi et. al. [78] [79], derived a continuum damage model that takes the 

longitudinal and transverse failure into account, and gave their numerical implementation. 

Another damage model proposed by Lapczyk et. al. [79], considers the energy dissipation from 

the formation of damages and this model is also being implemented in ABAQUS. 
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The interfacial strength is also important for the performance of FML structures. 

However, to quantify the inter-laminar capability is not a trivial task because asymmetric at the 

tested composite-metal interface, and the stress-state in each material would be complex. In 

addition, the interfacial strength also varies significantly on the bonding methods and curing 

conditions. In [80], Gan discusses the effects of interface structure on the mechanical properties 

of the composites. The residual stresses from bonding and curing steps make the prediction of 

the interface response difficult. The difference in the coefficient of thermal expansion between 

the composites and metal often causes buckling and disbond after cure. Fu et. al. proposed a 

higher order plate theory to describe the thermal stress induced buckling with interfacial slip 

[81]. Mechanical testing using existing composite test standards are often used to gain insights 

into the performance of the metal-composite interface. Lawcock et. al. conducts double-

cantilever beam fracture tests, and three and four-point bending tests to characterize the 

interfacial fracture toughness [82]. The study compares two surface treatments to evaluate their 

influence on the fracture toughness of the interface. To overcome the asymmetry of the metal-

composite interface, Carrillo et. al. suggests a single-cantilever beam test, in which only the 

bottom half is subjected to bending force and the top half is fixed to avoid out-of-plane 

deformations [84].  

4.1.1 Design of FML Specimen 

The hybrid composites of titanium and carbon fiber reinforced polymer analyzed in 

section 3.5 and in this chapter is designed to be representative of those being used in joining 

segments of launch vehicles. For such applications, the layup is designed to have a bearing 

failure mode. This section presents some simple models based on the classical laminate theory 

implemented in commercial software Helius Composites [84] to ensure that the sample design is 
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reasonable. The chosen FML design has lamina properties as shown in Table 4-2 and the layup is 

shown in Figure 4-20a. The laminate stiffness matrix calculated from classical laminate plate 

theory follows the convention as shown in Figure 4-1 with equation (4-1) relating the mid-plane 

strains and internal load. The ABD matrices are shown in the Appendix (Chapter 4). 

 
Figure 4-1 Laminate stiffness matrix sign convention 

{
  
 

  
 
𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦
𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦}

  
 

  
 

=

[
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66]

 
 
 
 
 

{
  
 

  
 
𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾12
0

𝜅𝑥𝑥
0

𝜅𝑦𝑦
0

𝜅𝑥𝑦
0 }
  
 

  
 

 

(4-1) 

The stress distribution for the individual plies is shown in Figure 4-2 where the laminate is 

subjected to a tensile load (stress) of 50 MPa in the x direction. The red, blue and green lines 

show the stress components σx σy σxy respectively, across the 10 plies. 



138 

 
Figure 4-2 Stress distribution in each ply for a tensile load of 50 MPa 

The 0-degree plies caries the most load with the highest tensile stress. It is ideal to have the 

composite plies carry the tension load and the Ti plies (ply 3 and 8) carry the shear load [85]. 

Similarly, in the transverse direction, the Ti plies are also subjected to less tensile stress than the 

neighboring composite plies. 

The bearing capability of a bolted joint is evaluated by the bearing failure mode and the 

bearing margin. Typical design considerations are to modify the distance between the bolt holes 

(W), the pin diameter (D), and the edge distance (e) such that bearing failure is the failure mode. 

Figure 4-3 shows the different failure modes (shear out, bearing, and net tension failure) that can 

occur in a bearing test. If the bolt diameter is large compared to the width (or the pin holes are 

spaced in close proximity), net tension is the critical failure mode. Shear out is likely to happen if 

the bolt hole is placed close to the edge (i.e. e is small). Bearing failure is less catastrophic and 

can utilize the full bearing joint capability and thus is desirable. Figure 4-4 shows the final 

design of the bolted joint that would have a bearing failure. The FML sample (red) of 1 in width 

(W) is subjected to a 5 kN far field force. A hole with diameter (D) equals to 0.4 in with its 
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center located 1.25 in (e) away from the plate edge. Two steel plates are used to apply the far 

field load through a rigid pin. 

 

Figure 4-3 Bearing load failure modes. Bearing failure is ideal 

 
Figure 4-4 Bearing load modeling in Helius composite to evaluate FML bearing performance 

Table 4-1 Bearing model result comparing the performance of an FML design and its composite 

counterpart 

Sample 
Critical Failure 

Mode 
Bearing Margin Shear Margin 

Net Tension 

Margin 

FML Bearing 1.320 3.359 5.064 

Composite Bearing 0.243 1.620 2.457 

 

Table 4-1 shows the bearing margin comparing the 10 ply FML sample and a composite plate 

with the Ti plies substituted with 90-degree plies. The bearing margin is defined by Margin = 

Factor of Safety – 1. In either case, bearing is the critical failure mode because of the design. The 

bearing margin is increased by almost 4 times in the FML sample when compared to the 

composite counterpart, thus confirming the motivation of using FML for pin bearing joints in 

launch vehicles. The less than 1 bearing margin suggests that the composite sample would have 

failed while the FML sample would be able to support a far field force of 5 kN. This design of 
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FML is manufactured for ultrasonic testing in the rest of this chapter. The details of the 

manufacturing process are shown in appendix 4.2 

4.1.2 Ultrasonic Inspection in Mechanical Testing 

In section 1.1.2, the advantages of using guided waves for NDE in qualification and 

acceptance tests for launch vehicle components are discussed. In this section, a proof of concept 

in the ultrasound monitoring experiment is presented. The hybrid composite specimen subjected 

to the bending test showcases the types of failure at the metal-composite interface. The 

experiment measures the load-displacement response from the Instron test frame, additional 

displacements and strains measurements are reported from Digital Image Correlation (DIC), and 

the ultrasound signals are captured from surface mounted piezoelectric patches (PZT). The FML 

sample used for this experiment consisted of 9 layers of titanium, and with overall dimensions of 

153.21 mm X 19.43 mm X 8.59 mm. The supports are separated at 127 mm apart. A speckle 

pattern is applied to the front side of the sample for DIC measurement, and the images are 

processed by an open source DIC software, Ncorr [86]. For ultrasound measurements, PZTs 

were mounted on the top and bottom, with the source on the left side and the receivers on the 

right side, as shown in Figure 4-5. 

 
Figure 4-5 Specimen for three-point bending test is instrumented for DIC, and ultrasound measurement 

The bending test is displacement controlled with compressing rate of 0.1 mm/s to reach the final 

displacement of 10 mm. The ultrasound inspection uses a source of 5 cycle Hann windowed sine 
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burst of 250 kHz center frequency. The ultrasound signals are taken every 1 mm of crosshead 

displacement, by pausing the load cycle. 

Observations from the Mechanical Test 

The force displacement response shows a peak load of 3.247 kN. The response also 

shows three significant unloading events during the test. Comparing the images taken at specific 

instances that correspond to the load drops shown in Figure 4-6, the first event is attributed to the 

delamination of the bottom plies, labelled as 1. The second unloading event corresponds to the 

disbond at a metal composite interface (MCI), labelled as 2. This disbond occurs near the mid-

plane of the specimen and the force reading drops by approximately 2.5 kN. The third and final 

event is another disbond at an MCI, in the upper half of the specimen. 

 
Figure 4-6 Load-displacement response and the defects associated to the unloading events 

A close-up image of the disbonds is shown in Figure 4-7, revealing the locations of the defects. 

The image in the left-hand side a noteworthy damage feature where the disbond travelled 

through the composite plies, “shifting” from the titanium sheets positioned above to the one 

below.  
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Figure 4-7 Detailed inspection of the disbands that cause the load drops 

The displacement field measured from DIC is shown in Figure 4-8. The location of the first 

disbond can be determined where the horizontal displacement shows a change in sign. The 

interfacial displacement difference is determined to be 0.92 mm. 

 
Figure 4-8 Horizontal displacement field shortly after the first disbond has occurred 

Disbond 2 Disbond 1 
Disbond Ply Shift 
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In Figure 4-9, the second disbond can be observed upon close inspection. The smaller difference 

in the interfacial displacement indicates that the unloading for this event is smaller than that in 

first disbond, a fact mentioned previously in the force displacement response. 

 
Figure 4-9 Horizontal displacement field after the occurrence of the second disbond 

Ultrasound Results 

The ultrasound waves are generated from the PZT at the left end of the specimen and 

travel to the receivers at the right end. Stressing the specimen causes a noticeable change in the 

observed signal as shown in Figure 4-10. Figure 4-10 shows the comparison between the signals 

taken at load magnitudes of 0.25 kN (red) and 1.25 kN (blue), respectively 

 
Figure 4-10 Measured ultrasound signals at load levels of 0.25 kN and 1.25 kN 

The time period highlighted by the green arrows in Figure 4-10 shows the greatest change. After 

the first disbond, the same wave packet is also most influenced by the load changes as shwon in 
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Figure 4-11. It is worth mentioning that no waveform data was collected after the first disbond as 

shock of the failure caused the source PZT to separate from the specimen. 

 
Figure 4-11 Specimen Signal after First Disbond 

The frequency spectrum obtained by fast Fourier transform of the waveform as shown in Figure 

4-12 shows an amplitude reduction, and a shift in peak frequency associated with the increase in 

applied load. In addition, a new frequency content began to appear after the first delamination, as 

seen in the right side of Figure 4-12. 

 
(a) at load level of 0.25 kN (red) and 1.25 kN 

(blue) 

(b) before (red) and after the occurrence of first 

disbond (blue) 

Figure 4-12 Frequency spectra of the ultrasound signals  
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4.2 Limitations of the Ultrasonic Transducers for Damage Detection 

NDE using guided waves relies on the basic idea that Lamb waves are excited by the 

surface mounted transducers, and the nature of the defects can be inferred from the scattered 

waves. As a result, the frequency response of the transducers is an important factor in the 

sensitivity of the inspection. Since the combined GL approach takes into account the transducer 

excitation characteristics, and the measurement system response in the source portion of the 

problem, the modeling tool can be used to determine the frequency ranges that are sensitive to a 

different type of defects. This methodology is applied to different defects that could occur in 

FML structures during manufacturing or in service, specifically a gap that exists between two Ti 

sheets that are supposed to be continuous, henceforth referred to as the gap defect. The objective 

is to determine the frequencies of the ultrasonic waves that are more prone to scattering for 

various gap sizes.  

4.2.1 Hybrid Composite Specimen and its GL Model 

The model considered here is a hybrid titanium (Ti CP Grade 2) and carbon fiber 

reinforced polymer composite with 5H Satin weave woven plies (Hex433). The material 

constants used in the models are shown in Table 4-2. The hybrid composite plate has a stacking 

sequence of [0/45/Ti/-45/90]s in which the Ti plies are 0.5 mm thick and the cured ply thickness 

for the composites is assumed to be 0.325 mm. The local region representing the source 

transducer has an applied distributed load that is 8 mm wide with a Gaussian distribution. The 

FE region has a length (in the x direction) of 65 mm, whereas the FE region enclosing the defect 

has a length of 90 mm. Both FE meshes have an average element size of 75 µm × 75 µm of 4-

node plane strain elements. The mesh size is well within 1/10th of the smallest wavelength to 

ensure convergence. To mimic the measurements from experiments, the wave motion (vertical 
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displacements) on the top surface, at location 55 mm to the right of the center of the defect is 

shown, simulating a transmission test. 

Table 4-2 Properties used in the GL models for Titanium CP Grade 2 and Hex433 CFRP. The 11 direction 

is along the fibers 

 E11 

[GPa] 
E33 

[GPa] 
G13 

[GPa] 
ν12 ν23 

Density  
[kg/m3] 

Thickness 
[mm] 

CFRP 77 13.8 5.1 0.06 0.37 1526.1 0.325 

Ti 105   0.37  4510 0.5 

 

The ply gap is located at the top Ti ply (3rd ply from the top) and the gap spacing for 

different defect models varies from 0 mm (defect free) to 15 mm, at 1 mm increments (Figure 

4-13). The width of the local region is many wavelengths larger than the largest gap size to 

ensure that the contributions of the propagating modes dominate at the boundary between the FE 

and the global regions. For the source model, a normal surface traction is applied only at the top 

surface with a Gaussian window of 8mm width to simulate a transducer.  

 

 
(a) 1 mm      (b) 15mm wide 

Figure 4-13 The geometry of the ply gap with width ranging from 1 to 15 mm 

4.2.2 Sensitivity to Excitation Frequency and Minimum Detectable Size 

To study the frequency response of the transducers (Digital Wave B-225), the physical 

transducer is subjected to a wideband excitation (0.1 ms chirp excitation with frequency 

increasing linearly from 20 kHz to 450 kHz), and the “face-to-face” response is recorded. Figure 

4-14 shows the excitation signal and the frequency response of the transducer pair. The spectra 

indicate that the response is relatively weak at frequencies below 60 kHz, between 86 kHz to 96 

kHz, and above 230 kHz. An amplifier is used in the measurement system so that the response 

spectrum can be greater than the source spectrum. 
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(a) source and reciever response in time domain       (b) Frequency spectra for the two waveforms 

Figure 4-14. Chirp (20 kHz to 450 kHz) signal is used to excite the transducer, and the face-to-face 

response  

This “face-to-face” response is used as the time dependence of the source problem. The excited 

Lamb wave modes are then coupled with 16 different gap sizes. Figure 4-15 plots the transmitted 

and the reflected power flows due to all propagating Lamb modes for the various gap sizes as 

functions of frequency. The color in Figure 4-15 represents the strength of the power flow. As 

expected, for smaller gap size, wave scattering is less prone to occur, and the transmitted power 

flow follows the trend of the transducer frequency response spectrum closely. When the gap size 

is less than 4 mm, the reflected power flow is relatively insignificant for all frequencies. In 

contrast, for certain frequency and larger gap size combination, namely 172.5 kHz and 10 mm, 

the reflected power flow is significantly different from the transmitted power flow. Thus, those 

frequencies could be used in a reflection-based defect detection scheme for a particular gap size. 
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(a) Transmitted power flow from all Lamb modes, 

deep blue region indicates weak transmission, 

 (b) power flow of the reflected wave indicates 

gap size greater than 4mm has some stronger 

reflection for some specific gap size 

Figure 4-15. Power flow spectrum of gap length vs. frequency 

Figure 4-16 shows reflected power flow for A0 and S0 modes, respectively. Comparing the total 

power flow (Figure 4-15b) with the power flow of A0 mode (Figure 4-16a), the results can be 

seen to be similar thus indicating there is very little mode conversion below 160 kH and above 

200 kHz for a gap size less than 7 mm. Following similar observation, other frequency-gap size 

combination that produces stronger wave scattering can be determined, and it may be possible to 

select a sensitive Lamb mode.  

  
(a) A0 mode    (b) S0 mode 

Figure 4-16 Reflected power flow for various gap sizes 

The power flow representation in Figure 4-15 - Figure 4-16 are informative in studying 

the gap defect scattering characteristics and source selection but may not be directly related to 

the ultrasonic measurement from surface mounted transducers. Power flow is a through-

thickness averaged quantity and the FML material has distinct through-thickness variation in 

stiffness. In Figure 4-17, the top surface vertical displacement spectra at 65mm to the left, and to 

the right of the gap are presented.  
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(a) 65mm to the right              (b) 65mm to the left of the gap 

Figure 4-17. Vertical displacement spectra at top surface 

The results show that around 85 kHz to 100 kHz, the weak transducer response causes 

indistinguishable displacement amplitude changes for all gap lengths, making it difficult to 

identify the defect. At higher frequency ranges, namely between 110 kHz to 170 kHz, it is more 

likely for a specific gap size to cause strong reflections. Furthermore, the reflected displacement 

spectrum indicates that with a center frequency at around 170 kHz, the difference between 10mm 

and 8 mm gap size is quite pronounced. That is, despite the relatively small gap size difference, 

the 10 mm case causes more pronounced reflection, which is effective for detecting defects with 

high sensitivity.  

For practical applications, it is necessary to inspect displacement time waveforms which 

are more directly comparable to experimental measurements. A source problem with the input of 

transducer “face-to-face” response subjected to a tone burst excitation with 175 kHz center 

frequency is created, and this source problem is coupled with the 8 mm and 10 mm gap 

scattering problems. Figure 4-18 shows the vertical displacement at the top surface 65mm to the 

left and to the right of the gap. For the transmitted side, the waveform for the less sensitive 8mm 

ply gap case (solid blue line) is similar to the defect free (dash black line) case with only a small 

amplitude reduction. However, the waveform for the 10 mm ply gap case (solid red line) shows a 
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significant amplitude change and increase in time duration on both the transmitted and reflected 

sides.  

 

(a) at 65 mm to the left, 

 

 (b) 65 mm to the right of the center of the gap  

Figure 4-18. Vertical displacement for a narrow band excitation at the top surface for 8mm and 10 mm 

gap lengths. Results show that the 10 mm gap changes the incident wave significantly as compared to the 

8 mm case 

These features could be useful in developing a Lamb wave-based damage detection scheme. To 

inspect the scattering features at other locations, the surface displacement is presented in a 

spatial-temporal plot (Figure 4-19) where the horizontal axis is the arrival time of the waves, the 

vertical axis is the x-coordinate, and the colors represents the (vertical) displacement amplitude. 

The figures show the right (transmission) side of the gap for 8mm and 10mm gap size.  

 

(a) 8 mm gap       (b) 10 mm gap 

Figure 4-19. Space-time representation of the surface displacement on the transmitted side. The 10mm 

gap shows a more significant mode conversion and distortion of the waveform than the 8mm gap case 

S0 A0 
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The wave duration for 10 mm case is longer than that for the 8 mm case in the given distance 

range. Furthermore, the slope of the color band indicates that the dominant transmitted and 

reflected waves are A0 mode Lamb wave without significant dispersion. Small mode conversion 

to S0 can be seen for the 10 mm case in the transmission side because of band branching at a 

steeper slope from the A0 mode. 

4.3 Defect Characterization in FML 

The complexity in the changes in guided wave characteristics associated to the wide 

range of defects means that inverse process to classify the damage type and to quantify the 

severity of the damage is difficult. No straightforward solution exists to the inverse problem and 

one possible method to approach the problem is with machine learning strategies. A substantially 

large amount of data, and a robust waveform data reduction scheme are needed to formulate the 

machine learning problem. The GL simulation tool is efficient in simulating a wide range of 

elastic wave propagation problems of composites with defects. It is used here to model different 

damages of various severity to demonstrate how the model can be used to design a damage 

characterization scheme for NDE. 

4.3.1 Defect Study Matrix 

Figure 4-20 describes the various defect cases included in this study. The FML material 

system considered in this section is identical to the one described in section 4.2.1. The plate in 

the vicinity of the surface loading is modeled by an FE mesh of 65 mm in length in the 

propagation direction, whereas in the vicinity of the defect, the plate is represented by a 100 mm 

wide mesh. Two types of defects are studied in this work (Figure 4-21), a gap in the Ti ply (Type 

1), representing a manufacturing error in positioning the titanium sheets, and a disbond at the 

interface of the 45-degree composite ply and the Ti ply (Type 2). Both types of defects are 



152 

modeled with dimensions in the x direction varying from 0 mm to 35 mm in 1 mm increment. 

Furthermore, these defects are modeled in two different structural configurations, the first is the 

entire structure is hybrid composites (config. A), and the second is a transition from full carbon 

composite to hybrid composite (config. B). 

 
(a) Ti ply gap defect (Type 1) in full hybrid composite (Config. A) 

 
(b) Disbond at the Ti-composite interface (Type 2) in full hybrid composite (Config. A) 

 
(c) Ti ply gap defect (Type 1) in transition region (Config. B) where the gap could either exist in the top 

Ti ply (Case I) or the bottom Ti ply (Case II) 

 

8mm 

center to center distance 200 mm 

55 mm 

Ti 

𝑥𝐼𝐼 𝑥𝐼 

Ti 
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Ti 
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55 mm 

Sub.ed CFRP 
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(d) Disbond at the Ti-composite interface (Type 2) in transition region (Config. B) 

Figure 4-20 Geometry of the FML defect study matrix. The thick black lines and the thick gray lines 

represent the Ti plies and the substituting 90 deg plies. The displacement is reported at 55 mm to the right 

of the center of the defect indicated by the dot. The FE regions are outlined by the dash box, where 𝑥𝐼and 

𝑥𝐼𝐼are the local coordinates of the source and scattering FE region, respectively  

 

Figure 4-21 Illustration of the defect type (L) gap, representing the discontinuity in the Ti ply due to 

placement error, (R) disbond at the 45/Ti interface where the green line highlight the FE nodes that can be 

separated 

Since the signal analysis for damage characterization would require amplitude comparisons, the 

effects of material attenuation are included in these models using the complex moduli procedure 

outlined in section 3.4.2. For the carbon composite lamina and the titanium plies, the parameter p 

have values of 0.035 and 0.0035, respectively. It is necessary to include a small p value for the 

titanium, estimated to be 1/10th of polymer matrix composite. Furthermore, the source transducer 

is represented by a 1 MPa normal load with a Gaussian distribution spanning 8 mm, in one case 

with excitation frequencies of 175 kHz and the other at 125 kHz (Hann windowed 5 cycle sine 

pulse, Figure 4-22). To better mimic the ultrasound measurements from a physical experiment, 

the transducer face-to-face responses at those frequencies are used as the model excitation. 

 

Figure 4-22 Excitation and transducer response for (L) 175kHz and (R) 125kHz 
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4.3.2 Global-Local Model Waveform Prediction  

In this section, a survey of the waveform prediction for the various combinations as 

described in the defect study matrix is presented. The visual inspection of the waveform changes 

for different damage cases are used to design the damage indices in the subsequent steps.  

Full Hybrid Composites 

In the case of the entire plate is made with FML, the predicted vertical displacement with 

no defect measured at 255 mm to the right of the center of the source is shown in Figure 4-23. 

These two signals are considered as the “baseline” and by comparing these signals to those 

obtained from the damaged cases are used to design a damage index for damage characterization. 

Under both excitation frequencies, both S0 and A0 modes are generated but of different 

proportions. This is due to the fact that A0 mode is more attenuative than S0 mode, a trend that is 

stronger with increasing frequencies as discussed in section 3.4.2. Naturally, the amplitude of the 

received signal for 175 kHz is significantly smaller than the case of 125 kHz, at almost ¼ of the 

later. The signals also show that the effects of transducer vibrations and dispersion are different 

for the two fundamental modes. The trailing wave packet behind the S0 mode is longer in the 

case of 175 kHz than that of 125 kHz, whereas the packet behind the A0 mode is longer at 125 

kHz. In the case of signals recorded from damaged cases, these trailing packets are often 

overlapped with the scattered waves. 
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Figure 4-23 Signal predicted for no damage case at 55mm to the right of the would have existed defect 

(L) 175kHz and (R) 125kHz 

 
(a)     (b)                          (c)                     (d) 

Figure 4-24 Selected waveforms measured at 55 mm to the right of the defect for 175 kHz excitation for 

(a) gap defect, (b) disbond defect, and 125 kHz for (c) gap and (d) disbond defects 

Figure 4-24 shows the predicted waveforms for the pristine cases and those from 10, 20, and 30 

mm defect sizes. In the case of 175 kHz. Inspecting both excitation frequencies and at different 

defect sizes, the coda (packet tail) is longer for the case of gap defect than disbond defect. This is 

more evident at higher frequencies since the wavelength of the S0 mode is more sensitive to the 

defect. The longer coda suggests that waves are more prone to scattering in the gap defect than 

the disbond defect. This can be attributed to the fact that the wave motion is more distorted by 

the gap defect since the stiffness changes more significantly than the disbond defect. As the 

length of the defect increases, the waveforms between the S0 and A0 modes exhibit the most 

changes when compared to the pristine signal. To examine the wave packets associated to the 
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scattered waves, Figure 4-25 plots are shown for the displacement contribution from A0 mode, S0 

mode and the sum of all Lamb modes for the case of a 10 mm gap defect at 175 kHz excitation 

as an illustration. For all studied defect sizes, S0 and A0 signals tracks well with the total 

displacement, indicating that the mode conversion is mainly between the fundamental modes. 

Since the added wave packet arrives between the directly reached S0 and A0 modes, the scattered 

wave is effectively from S0 to A0 conversion.  

 
Figure 4-25 Waveform for 175 kHz, 10mm Gap defect, plotting the vertical displacement for A0 (dotted 

line), S0 modes (dash line) and the sum of all Lamb modes (solid line) 

In order to better compare the waveforms for the various damaged cases, they are plotted in 3D 

plots in Figure 4-26 and Figure 4-27 where the x-y plane denote the time of flight and the defect 

sizes and the displacement amplitudes are represented by the height (z-axis) and the contour 

color. For both the disbond and the gap defect, visual inspection shows that below 5 mm, the 

waveform experiences negligible change from the pristine case, and the changes at the lower 125 

kHz is even smaller. Therefore, it is difficult to distinguish between smaller damage sizes 

indicating 5 mm could be the minimum detectable size in a qualitative sense. At larger defect 

sizes, there are bands of scattered waves at the tail of the main packets with an increased phase 

delay as the defect size increases. The results make it possible to use the delay in the S0 and A0 

codas to identify possible defect sizes. The challenge is that the delay is not unique to one defect 
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size. A process of elimination is needed with multiple source excitation frequencies to determine 

the most likely defect size. Figure 4-27 shows the amplitude variation between different defect 

sizes. As expected, if the defect that is prone to wave scattering, the main packet has a significant 

amplitude reduction and the amplitude of the coda wave increases. 

 

(a) gap defect, 175 kHz 

 

 (b) gap defect, 125 kHz 

 

(c) disbond, 175 kHz 

 

(d) disbond, 125 kHz 

Figure 4-26 Waveforms for all defect sizes of Type 1 (Gap) and Type 2 (Disbond) subjected to 125 kHz, 

and 175 kHz excitation 
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(a) gap defect, 175 kHz 

 

 (b) gap defect, 125 kHz 

 

(c) disbond, 175 kHz 

 

(d) disbond, 125 kHz 

Figure 4-27 Waveform of all defect sizes of Type 1 (Gap) and Type 2 (Disbond) subjected to 125 kHz, 

and 175 kHz excitation. The contour color shares the same color code as Figure 4-26 

Transition Region 

To complete the dataset for the study matrix, the waveforms for the full composite to 

hybrid transition region (Config. B) is presented below. In spite of the difference in group 

velocity in a solid composite laminate and the hybrid composite as shown in Figure 4-28b, the 

time of arrival of the S0 and A0 are differ by approximately half a cycle at the measurement 

point. The full hybrid composite would yield a slow S0 mode but a faster A0 mode with similar 

amplitudes as shown in the pristine signal prediction in Figure 4-28a. 



159 

 

(a) predicted signals at 55mm to the right of the 

would have existed defect 

 

 (b) group velocity for A0 and S0 mode 

Figure 4-28 Comparison of the results for no damage case between the transition region (Config B) and 

the full hybrid composite (Config. A) under 175 kHz excitation 

The waveform prediction for the transition region with gap and disbond defect are shown in 

Figure 4-29. An additional test case for this set of result is the comparison for a gap defect at the 

top Ti ply versus at the bottom Ti ply. Preliminary inspection of Figure 4-26 and Figure 4-29 

shows that a similar amount of wave scattering occurs between the S0 and A0 modes if the defect 

types and the defect sizes are the same. In contrast, the scattered waves for disbond versus gap 

defect are different that can be observed between the S0 and A0 modes in Figure 4-26a, and c. 

The depth at which the gap defect occurs also produces some differences in scattered waves that 

can be deduced by comparing Figure 4-29a, and b. From the qualitative observation, the 

waveform changes produced by the different damage scenarios, at various severity (defect 

length) are a complex combination of amplitude, phase changes and the addition of new wave 

packets. Therefore, it is difficult to construct a simple way to characterize damage from a 

waveform (i.e. the inverse problem).  
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(a) Top Gap 

  
(b) Bottom Gap 

  
(c) Disbond 

Figure 4-29 Waveforms for the transition region (Config. B) for all defect sizes of (a) Type 1 (Gap) at top 

(Case I) or (b) bottom Ti ply (Case II), and (c) Type 2 (Disbond) subjected to 175 kHz excitation 
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4.3.3 Damage Indices 

The survey of waveforms in section 4.3.2 indicates that the signal changes are not 

monotonic variation of amplitude or phase delay across the full range of the defect sizes and time 

of flight, thus the inverse damage characterization process is ambiguous. Despite some 

monotonic trends of amplitude and/or phase can be found in a limited range of defect size or in a 

short time window, it is difficult to determine the domain of applicability for these reductions. 

The survey also lacks a quantitative measure of the amount of signal changes when compared to 

the pristine signal. The use of damage index (DI) naturally arises to reduce the information in a 

time signal (or in frequency) into a single scalar value. This DI reduction coincides with the need 

for various damage characterization inversion schemes, such as machine learning. In this section, 

serval DIs are used to process the GL predicted waveforms to examine their effectiveness.  

The form of the DIs is motived by the nature of signal changes. Figure 4-30 shows the 

waveforms and their absolute values for the selected cases for a gap defect 55 mm to the right of 

the center of the defect, that is at 𝑥𝐼𝐼 = 100 mm .  

 
(a) Selected signals 

 
 (b) Absolute value of the time signal 

Figure 4-30 Comparison of the time signals between pristine and 2 gap defect sizes 

The changes are complex in which a new wave packet appears between the main S0 and A0 

mode, A0 mode has a noticeable amplitude drop and phase delay, and the new packet tail appears 
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after the main A0 mode. Despite the smaller defect size some of these changes seem to be more 

severe in 10 mm than in 20 mm gap size. This could be the result of different wave modes, 

originated from the scattering of different Lamb modes overlapping in time and the changes are 

diminished. Since the signals exhibit various degree of amplitude, phase and waveform changes, 

a combination of DIs based on these criteria are used and are described as the fundamental DIs.  

Fundamental Damage Index Calculations 

𝑫𝑰𝟏 

𝐷𝐼1 is an amplitude-based DI using the cross-correlation of the damage signal, 

𝑥𝑐𝑜𝑟𝑟𝑑𝑎𝑚𝑎𝑔𝑒, with the pristine signal. The cross-correlation between two signals, 𝑥𝑐𝑜𝑟𝑟(𝑅2, 𝑅1) 

can be graphically illustrated by Figure 4-31. As an example, both 𝑅1 and 𝑅2 are displacements 

for pristine case whereas 𝑅1is taken 25 mm to the left of 𝑅2. By time shifting the signal 𝑅1 in 

Figure 4-31a, the sum the product of the signals, 𝑅2 and 𝑅1is calculated at each time shift to be 

the cross-correlation as shown in Figure 4-31b.  

 
(a) R1 is measured a location to the left of R2 

 
 (b) 𝑥𝑐𝑜𝑟𝑟(𝑅2, 𝑅1) 

Figure 4-31 Sample cross-correlation of two signals 

The biggest peaks corresponding to the time shift of 𝑅1to have the most overlap with 𝑅2 namely, 

both the A0 and S0 modes are approximately overlapping. The left and right-side peaks of the 

cross-correlation are the overlapping of A0 or 𝑅1overlaps with S0 of 𝑅2 and S0 of 𝑅1overlaps 

with the A0 of 𝑅2. Equation (4-2) defines the DI in which the ratio between the peak of the 
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absolute value of the cross-correlation of damage signal being 𝑅2 and the pristine signal being 

𝑅1. The autocorrelation, 𝑎𝑢𝑡𝑜 𝑐𝑜𝑟𝑟𝑝𝑟𝑖𝑠𝑖𝑛𝑡𝑒, is the cross-correlation of the pristine signal with 

itself and is then used to describe the peak amplitude change.  

𝐷𝐼1 = 1 −
max{|𝑥𝑐𝑜𝑟𝑟𝑑𝑎𝑚𝑎𝑔𝑒|}

max{|𝑎𝑢𝑡𝑜 𝑐𝑜𝑟𝑟𝑝𝑟𝑖𝑠𝑖𝑛𝑡𝑒|}
 

(4-2) 

Figure 4-32 shows the autocorrelation, and the cross correlation calculated from the 10 mm, and 

20 mm gap defect signals. Since the peak is centered around time shift of 0 value, 𝐷𝐼1 is 

capturing the amplitude change of A0 and S0 modes, with the A0 mode being more influential. 

Therefore, the variation of 𝐷𝐼1 appears in similar trend as the peak amplitude of A0 mode with 

respect to damage size. This DI is unitless and is bounded between 0 and 1, thus it is 

straightforward to compare the DI values between measurements. However, as this DI is 

amplitude based, when applied to the physical measurement, extreme caution must be taken to 

control the amplitude to ensure a fair comparison between pristine and damage signals. This 

might not be always possible when multiple transducers are used, as the transducers and the 

measurement system could have difficulties in to quantifying the amplitude variations or their 

own. 𝐷𝐼1 is less effective to represent the appearance of new wave packets or phase delay 

because the peak value of the cross-correlation does not utilize the information contained in the 

lower amplitude parts of the time signal. Therefore, 𝐷𝐼1 is sometimes used with the windowing 

of time signal to compensate for these shortcomings. However, it is difficult to generalize a 

specific set of time windows to processing of other signals. This issue will be addressed in the 

discussion to follow. 



164 

 
Figure 4-32 Auto-correlation (solid line), cross-correlation of 10 mm (dotted line), 20 mm gap (dash line) 

cases with pristine signal 

𝑫𝑰𝟐 

Based on the waveform observations, a DI is needed to account for the scattered wave 

packets in a signal. The formation of new wave packets associated to the scattered waves 

generally reduces the amplitude of the main wave packets. This is the case when a gap defect of 

10 mm to 15 mm size under 175 kHz excitation as shown in Figure 4-26and Figure 4-27a. 

Therefore, 𝐷𝐼2 is designed to account for new wave packets when compared to the pristine case. 

For the calculations of DI2, it is important to discount the small fluctuations due measurement 

noise in experiments, or the numerical error in model data. For the data presented in this section, 

the signals with amplitude less than 1% of the peak amplitude is set to 0. Then, the number of 

data points with non-zero values are counted for the DI calculation using Equation (4-3).  

𝐷𝐼2 =
num of dat pt > 1% peak in damage case − num of dat pt > 1% peak in pristine case

num of dat pt > 1% peak amp in pristine case
 

        =
num of dat pt > 1% peak in damage case

num of dat pt > 1% peak amp in pristine case
− 1 

(4-3) 

The increase in the number of data points in the damage case would indicate the formation of 

new wave packets due to wave-scattering. Since the number of data points is used for the DI 
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calculations, it does not rely on the absolute magnitude of the signal and the entire signal is 

considered. The DI takes a positive value when additional scattered wave packets is present in 

the damage signal when compared to the pristine signal. However, when the waves are in 

destructive interference, this DI could be negative. Alternatively, the DI can be defined as:  

𝐷𝐼2 =
|num of dat > 1% peak in damage case − num of dat > 1% peak in pristine case|

num of dat pt > 1% peak amp in pristine case
 

(4-4) 

 
(a) Waveform 

 
 (b) Absolute value of the waveform 

Figure 4-33 Signals of the pristine and damage cases along with the 1% of the peak amplitude of the 

pristine case  

Figure 4-33 shows the signals of the pristine and damage cases along with the 1% threshold. A 

drawback of 𝐷𝐼2 is the vaguely defined threshold. The 1% threshold is used here because of the 

numerical noise produced by the Fourier transform and other sources. Other thresholds should be 

determined under different experimental or numerical conditions.  

𝑫𝑰𝟑 

 In some cases, the waveforms are not changed significantly in the transmitted region 

when compared to the incident waves. The scattered waves could be in interference with the 

main wave packets. By taking the difference of the damage signal with the pristine signal (see 

Figure 4-34), the waveform associated to the scattered waves can be made more visible.  
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Figure 4-34 Selected cases of the damage (solid line), pristine (dotted line), and the difference (dash line) 

of signals 

When a phase shift less than a period occurs between the pristine and the damage signals, the 

signal difference would sum the amplitude of the two waveforms and the phase change 

information is strongly retained. Based on the signal difference, 𝐷𝐼3 is then defined as: 

𝐷𝐼3 =

1
2∫
|damage signal − pristine signal|dt

∫ |pristine signal|dt
 

(4-5) 

𝐷𝐼3 uses the area under the signal difference to quantify the amount of scattered waves and phase 

changes. To ensure the area is summed over the entire signal, the absolute value of the signal 

difference is used. For the DI to be unitless, the area of the signal difference is divided by the 

area under the pristine signal. Consider the case of a damage signal with exactly half a period 

phase shift with respect to the pristine singal, the maximum signal difference would result in two 



167 

times the amplitude of the original signal. Therefore, a factor of ½ is used to ensure the DI is 

bounded between 0 to 1. 𝐷𝐼3 accounts for both amplitude and phase changes. Since the 

amplitude is compared between the pristine and the damaged signal, it requires careful 

measurement to ensure proper signal cancelation between two signals. In experiments, it is 

difficult to ensure that two repeated measurement to be identical. Namely the contact between 

the transducers and the surfaces of the material or taking measurements with two different sets of 

transducers can produce some signal differences. In order to better compare the waveforms from 

different experimental measurements, it is typical to normalize each signal with the peak 

amplitude of the signal, which is often the A0 mode. However, normalizing the signals with 

respect to the peak of S0 mode could be advantageous for a number of reasons. Figure 4-35 

shows the GL model predicted waveform for various gap sizes separating S0 and A0 mode. The 

changes in S0 mode are less apparent than the A0 mode. The main S0 packet has small amplitude 

changes but with no visible phase changes. This is because S0 mode has longer wavelength than 

A0 mode at a given frequency and thus less sensitive. Assuming the primary contribution are the 

fundamental modes, the slower A0 main packet is more likely to change due to interference of 

the scattered waves.  

 
(a) S0 mode 

 
 (b) A0 mode 

Figure 4-35 Overlapping modal displacement for gap sizes with 175 kHz excitation  
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Since the changes of the primary S0 packet is among the smallest due to damage, if the measured 

signals are normalized with the peak of the S0 mode, the changes due to the transducer contact 

and response could be reduced. By doing so, 𝐷𝐼3 could be applied with greater effectiveness for 

experimental data. 

𝑫𝑰𝟒 

The previous DIs was, in some way, comparing the amplitudes of the damage and 

pristine signals. A DI that only considers the phase change information would be less affected by 

the amplitude changes due to measurement conditions. The analytical signal, in which the real 

part is the signal itself and the imaginary part is the Hilbert transform of the signal, is helpful in 

determining the phase information. Specifically, the following DI utilizes the (averaged) 

instantaneous frequency calculated from the analytical signals to capture the phase change due to 

waves scattering. The instantaneous frequency of a monocomponent signal can be estimated 

from the time rate of change of the phase angle of the analytical signal. If the signal is not 

monocomponent, the average of the instantaneous frequency is estimated instead. This DI is 

based on the fact that when waves scattering occurs, the mixing of wave modes would induce 

instantaneous frequency changes to the time signals. The converse is true, the instantaneous 

frequency sees smaller variation in the time period of the main packets. The line data in Figure 

4-36 shows the instantaneous frequency between 0.04 ms and 0.3 ms for the selected gap sizes 

under a 175 kHz excitation. 
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Figure 4-36 Instantaneous frequency of some gap damage cases with 175 kHz excitation. The diamonds 

are the data point correspond to the values at waveform peaks 

In order to better capture the frequency changes due to mode mixing, the values of the 

instantaneous frequency that coincide with the waveform peaks and troughs are selected. The 

values at the peak times are shown in diamond in Figure 4-36. The time that corresponds to the 

extremum of the waveform is found by taking the difference of the consecutive values of the 

time series. Then use the sign change of the difference to indicate the time index at which the 

extremum occurs.  Figure 4-37a, b shows the time signals, the difference of the consecutive 

values of the time series, and the extremum points for the pristine and 10 mm gap signals, 

respectively. Figure 4-37c, d shows the extremum points for all gap sizes. It can be seen that in 

the time period of the main wave packet, the extremum points are of regular pattern indicating 

little phase delay as the gap size increases. 

  
 (b) signals for the 10 mm gap case 
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(a) Pristine signal, showing the signal itself, the 

difference of the entries, and the identified peak 

and trough 

 
(c) Peaks of all the gap cases 

 
 (d) Trough of all the gap cases 

Figure 4-37 Identifying the peaks and trough of the time signals for gap defect under 175 kHz excitation 

Using the instantaneous frequency at the extremum points, 𝐷𝐼4 is defined as: 

𝐷𝐼4 =
∑(|Inst. Freq of Damage − Inst. Freq. of Prisitne|)at damage case extremum 

∑(Instant. Freq. of Pristine Signal )at pristine case extremum
 

(4-6) 

All the frequency changes are sum over the extremum points and then it is normalized by the 

instantaneous frequency calculated in the pristine case. Figure 4-38 shows the data points that are 

used to calculate 𝐷𝐼4. 

 
(a) Instantaneous frequency  

 
 (b) Difference of instantaneous frequency 

between the damage and pristine case 

Figure 4-38 Data points at the peak points for various gap sizes 
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The instantaneous frequency is found to give a systematic way to determine a time window 

associated to the main wave packets. By taking the difference in consecutive entries of the 

instantaneous frequency, the time periods with smaller variations are those of the main wave 

packets. Figure 4-39a shows the absolute value of the difference in instantaneous frequency 

calculated from the pristine signal. The time periods with small amplitudes could be used to 

define the time windows for the main S0 and A0 modes (indicated by the red and blue arrows, 

respectively). The time window associated to the S0 mode and the signals for the different 

damage cases are shown in Figure 4-39b. The windowed signal has the least of wave interference 

since it is the fastest traveling wave mode and thus the waveform changes are simpler for DI 

calculations. As an illustration, using the time window shown in Figure 4-39b and calculate 𝐷𝐼1 

(peak of cross-correlation) for the signals measured at 𝑥𝐼𝐼 = 125, the DI values are plotted in 

Figure 4-40b. This DI shows less fluctuation when compared to DI1 that is calculated from the 

entire time signal as the defect size increases.   

 
(a) Absolute value of the difference of the 

consecutive entries in the instantaneous frequency 

where red and blue arrows marks the main S0 and 

A0 modes, respectively 

 
 (b) Overlapping signals for different gap sizes, 

with the time window of S0 mode shown in the 

vertical dotted lines 

Figure 4-39 Time windowing of the main packets using instantaneous frequency determined to be 0.051 

ms to 0.07 0ms for S0 mode and 0.143 ms to 0.165 ms for A0 mode for measurement taken at 𝑥𝐼𝐼 = 125 

mm 
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Evaluating the Performance of the Damage Indices 

In this section, the results are presented for the DIs calculated from the waveforms 

obtained for all the damage cases. The relationships between the defect sizes and the DI values 

are plotted to evaluate their effectiveness in characterizing damages. The DIs results are used to 

determine if it is feasible to distinguish the two types of defects, to estimate the defect size or to 

determine if the defect is on the upper or lower half of the laminate.  

First, the robustness of the DIs is evaluated. Figure 4-40 plots the four DIs for the gap 

defect (Type 1) in full hybrid composites (Config. A) using signals measured at different 

receiver locations (𝑥𝐼𝐼 = 100 mm, 125 mm, 150 mm, 175 mm). The line data are the calculated 

DIs using the signals associated to defect sizes of 0mm (pristine) to 35 mm, in 1 mm increment, 

which is being referred to as the training dataset. The cross points are additional data points 

calculated from the models with gap sizes of 3.5, 7.5, 14.5, 18.5, 21.5, 28.5, and 33.5 mm, which 

is being referred to as the validation dataset. The DIs are for the disbond defect is shown in 

Figure 4-41, whereas the validation dataset is calculated from models with disbond sizes of 4.5, 

9.5, 12.5, 17.5, 22.5, 26.5, and 32.5 mm instead. 

 
(a) 𝑥𝐼𝐼 = 100 mm 

 
 (b) 𝑥𝐼𝐼 = 125 mm 
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(c) 𝑥𝐼𝐼 = 150 mm 

 
(d) 𝑥𝐼𝐼 = 175 mm 

Figure 4-40 DIs for gap defect with 175kHz excitation. Cross points are calculated from validation cases 

 
(a) 𝑥𝐼𝐼 = 100 mm 

 
 (b) 𝑥𝐼𝐼 = 125 mm 

 
(c) 𝑥𝐼𝐼 = 150 mm 

 
(d) 𝑥𝐼𝐼 = 175 mm 

Figure 4-41 DI for disbond with 175kHz excitation. Cross points are calculated from validation cases 

Despite that the DIs are unitless, the theoretical upper bounds for each of the DIs may not be the 

same. Therefore, the sensitivity of the DIs may not be evaluated by the DI magnitude. Instead, a 

better performing DI should take a unique value for each damage case, and the value should not 

fluctuate in a small neighborhood of a given defect size. 𝐷𝐼1(solid black line) shows similar 

fluctuations as 𝐷𝐼3 (blue dash dot line) for both the gap and disbond defects. In particular, the 
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fluctuations above 10 mm defect size is qualitatively less than smaller defect sizes. The reason 

for the worse performance in the smaller defect sizes is that the peak amplitude changes in the A0 

and S0 mode is small. Between the defect sizes of approximately 15 mm to 28 mm, 𝐷𝐼1 is not 

unique due to the fact that the A0 mode amplitude increases to a peak near 21 mm. 𝐷𝐼2 and 𝐷𝐼4 

perform poorly in terms of the fluctuations with respect to different defect sizes. This could be 

due to the complex interactions of the different wave modes. However, 𝐷𝐼2 and 𝐷𝐼4 could be 

used to compensate the decrease in 𝐷𝐼1 between 15 mm to 28 mm defect sizes. 𝐷𝐼3 is the best 

performing DI due to the fact that the DI show less fluctuations and has a monotonic trend in 

most of defect sizes. Almost all of the validation dataset (cross points) falls in between the data 

points of the training set, indicating that the increment of the defect size in the training set is 

sufficiently fine. The notable exceptions are 𝐷𝐼1, 𝐷𝐼2, and 𝐷𝐼4 with 17.5 mm disbond. The 

validation set consistently under predict the DI values. In practical applications, the transducer 

placement could vary for different inspections. Thus, the DI should perform similarly despite the 

waveform signals are measured at different locations. Figure 4-42 plots the four DIs for the gap 

defect at the four different receiver locations.  

 
(a) 𝐷𝐼1 – Cross correlation peak 

 
 (b) 𝐷𝐼2 – Number of data points > 1% 
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(c) 𝐷𝐼3 – Area of signal difference 

 
(d) 𝐷𝐼4 – Sum of instantaneous frequency change 

Figure 4-42 DI changes using signals measured at 𝑥𝐼𝐼 = 100 mm, 125 mm, 150 mm, 175 mm for gap 

defect at 175 kHz excitation 

Among the four DIs, 𝐷𝐼1 is least affected by the location. This could be due to the fact that the 

peak amplitude of is normalized to the pristine signal and the effects of attenuation is accounted 

for. The influence of mode mixing is not as sensitive in 𝐷𝐼1 and it is another reason why it is less 

sensitive to measurement distance. In contrast, 𝐷𝐼3 is distant dependent and increasingly affected 

by measurement distance with larger defect sizes. This is likely due to the fact that the “signal of 

the scattered waves,” calculated by taking the signal difference of the damage and the pristine 

signal, is larger with an increased phase change at longer distances. This dependency of 

measurement distance is not obvious in 𝐷𝐼2. It remains unclear how the addition of scattered 

wave packets varies at different distances. The performance of 𝐷𝐼4 is poor as the variation in 

distance is chaotic with respect to the increase in defect size. With the 175 kHz excitation, the 

ultrasonic wave is not sensitive to that size of defect and the waveform is similar to the pristine 

case. Base on this assumption, a set of study with 125 kHz excitation frequency is conducted, 

and the choice of 125 kHz is based on the result from Figure 4-14b that at this frequency, the 

transducers have a strong response. Figure 4-43 shows the four DIs calculated for 125 kHz and 

the performance of the DIs is similar to the case of 175 kHz. 𝐷𝐼4 and 𝐷𝐼1 has fewer fluctuations 

than the other DIs. 𝐷𝐼2 has perform noticeable much worse. This could be due to the fact that at 
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lower frequencies, S0 mode is less excitable and thus the reduction of S0 to A0 conversion that 

contributes the most to the generation of new wave packets as in 175 kHz is diminished. 

 
(a) Gap defect 

 
 (b) Disbond defect 

Figure 4-43 DI values for 125kHz excitation using time signals at 𝑥𝐼𝐼 = 125 mm 

To better compare the better performing DIs between the two frequencies, Figure 4-44 plots 

𝐷𝐼1and 𝐷𝐼3 using signals measured at 𝑥𝐼𝐼 = 125 mm for the gap and disbond defects. It can be 

seen that the increase of 𝐷𝐼3are similar in the two frequencies and when the DIs of the 175 kHz 

has a distinct minimum between 15 mm to 25 mm defect sizes, the DIs of the 125 kHz set has an 

approximate maximum. The difference in performance of the DIs at various frequency-defect 

size combination may suggest that using multiple frequencies DIs sets could a unique DI versus 

defect size relationship. 𝐷𝐼1 for 125 kHz preforms poorly as it has a stronger minimum between 

18 mm to 32 mm in the gap defect case.  

 
(a) Gap defect 

 
 (b) Disbond defect 

Figure 4-44 Comparing 𝐷𝐼1 and 𝐷𝐼3 for the two excitation frequencies 
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Another aspect to explore is to determine whether it is possible to differentiate the gap defect in 

the top or in the bottom Ti ply. Figure 4-45 shows the four DIs using signals with 175 kHz 

excitation measured at 𝑥𝐼𝐼 = 125 mm for the top and bottom gap defect in the transition region 

(Config. B).  

 
(a) Top Gap 

 
(b) Bottom Gap 

Figure 4-45 DI values for gap defect at the transition region with 175kHz excitation using signals 

measured at 𝑥𝐼𝐼 = 125 mm 

All four DIs for are checked with validation set (plotted as crosses) with gap sizes 3.5, 7.5, 14.5, 

18.5, 21.5, 28.5, and 33.5 mm for the top gap, and 4.5, 9.5, 12.5, 17.5, 22.5, 26.5, and 32.5 mm 

for the bottom gap cases. The DIs calculated from the validation sets are fall in the trendlines of 

the training set. 𝐷𝐼1 and 𝐷𝐼3 are the better performing DIs as in gap defects in the transition 

region as well. For these two DIs, 𝐷𝐼1 shows a distinct different trend between the top and 

bottom gap for gap sizes between 10 mm to 15 mm. However, visual inspection of the DIs shows 

no clear distinction between the top and bottom gap cases. 

Finally, the DIs for the disbond damage in the transition region is compared to the 

disbond in a full hybrid laminate. Figure 4-46a plots the four DIs for the former case with 175 

kHz excitation and calculated using signals measured as 𝑥𝐼𝐼 = 125 mm. Thus, it should be 

compared to the DIs plotted Figure 4-41b for the full hybrid case. 𝐷𝐼1 and 𝐷𝐼4 have less 

fluctuation in disbond size greater than 15 mm. These two sets of DIs are compared to the full 
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hybrid cases in Figure 4-46b. The comparison shows that the DIs are not indicative whether the 

disbond is in a full hybrid or in the transition region, rather only the disbond size can be deduced 

with higher level of certainty. 

 
(a) DIs for disbond defect in transition region  

 (b) Comparing 𝐷𝐼1 and 𝐷𝐼3 between disbond 

defect in transition region and in full hybrid 

Figure 4-46 DIs of the disbond defects in transition region calculated from signals at 𝑥𝐼𝐼 = 125 mm 

4.3.4 Damage Characterization for Unknown Test Case 

In this section, the DI library obtained from the training cases are being applied to 

characterize damage for two hypothetical damaged signals (test cases). The two signals are 

associated to a disbond damage of 24.4 mm long where one of them is simulated in the full 

hybrid composites (Config. A) and the other is in the transition region (Config. B). Assuming the 

only priori knowledge is the structure, the four DIs specified in section 4.3.3 are calculated using 

the newly obtained damage signals and the pristine signal. For the test signals, a single value is 

calculated for each DI for each structural configuration and the DIs are plotted against the DI 

library in Figure 4-47a, c and Figure 4-48 a, c, e. The horizonal lines are the DI values for the 

test cases and at the defect sizes cross the various DI library are the potential defect sizes. Since 

there is no prior knowledge of the defect type, the DIs calculated from the test case are compared 

to both the gap and disbond defect library. In order to identify the defect, the four DIs of the test 

cases should take the same value with the DI library at one defect size for one of the libraries. To 
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better identify the matching defect size, the test case DIs are subtracted with the DI library and 

are plotted Figure 4-47b, d, and Figure 4-48 b, d, f. The pink line indicates the difference 

between the test DIs and the DI library equals to 0.  

 
(a) Gap vs. Test Case DIs 

 
 (b) Test DI value minus Gap DI Library 

 
(c) Disbond vs. Test Case DIs 

 
 (d) Test DI value minus Disbond DI Library 

Figure 4-47 Comparing DI library with the DI calculated from the damage signal in the full hybrid 

composite structure (Config. A) 

It can be seen that in Figure 4-47b for the full hybrid structure, no gap size at which the 

difference in the DIs is close to 0 at a given defect size. Whereas in Figure 4-47d, the difference 

in DIs approaches 0 at a disbond size just short of 25 mm. Since the disbond size increment in 

the library is 1 mm, the zero-crossing point could be between 24 mm and 25 mm. Furthermore, it 

is encouraging that the zero-crossing is unique in the range of studied disbond cases which 

implies that we can uniquely determine to be one disbond size for the test signal. 
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(a) Top Gap vs. Test Case DIs 

 
 (b) Test DI value minus Top Gap DI Library 

 
(c) Bottom Gap vs. Test Case DIs 

 
 (d) Test DI value minus Bottom Gap DI Library 

 
(e) Disbond vs. Test Case DIs 

 
 (f) Test DI value minus Disbond DI Library 

Figure 4-48 Comparing DI library with the DI calculated from the damage signal in the transition region 

(Config. B)  

Similar results for the transition region are presented in Figure 4-48 b, d, f. In this instance, the 

difference between the test DI and the DI libraries indicates that the defect could be top or 
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bottom gap of 8 mm long or a disbond at 24 mm. The sum of the difference between the test case 

and the library for all four DIs for the top gap is 0.1427, whereas for the bottom gap is 0.1614 

and for the disbond base is 0.0861. The smallest of the difference indicates that disbond of 24 

mm is the most likely defect associated to the test signal.  
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Chapter 5 Damage Characterization in Stiffened Composite 

Structures 

Polymer matrix composites such as carbon fiber-reinforced polymers (CFRPs) have 

superior in-plane structural properties and are increasingly being used for advanced designs. The 

thin composites panels are often stiffened through a local thickness increase or with bonded 

stiffeners of different cross-sectional shapes to prevent excessive bending or buckling. These 

stiffened regions are prone to manufacturing defects, in particular delaminations/disbonds, since 

it is more difficult to maintain compaction and a uniform resin flow in these regions [36]. 

Defects in these stiffened regions are particularly detrimental to the structure and are often 

difficult to inspect with traditional through-thickness non-destructive evaluation (NDE) 

techniques since it is around irregular regions and testing access is restricted [87].  

However, guided wave propagation phenomena in stiffened composites are complex and 

the wave forms can vary significantly due to the presence of the change in the geometry [88], 

[89]. Nonetheless, it has been shown that it is generally possible to identify the signal changes in 

the transmitted waves due to defects in the stiffener. In most aerospace structures, many 

stiffeners (e.g. ribs) are used and several of them could be present between the source and the 

receiving transducers when the inspection range is increased. Thus, it is of interest to determine 

whether it is still feasible to identify signal changes when the guided waves have propagated 

through several stiffeners. In order to design a guided wave-based damage detection scheme, the 

signal changes due to different defects, geometry and excitation must be analyzed.  

In this work, the efficiency of the coupled formulation as described in section 3.2.2 is 

being further enhanced by considering multiple stiffeners in a number of local regions to study 
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their wave transmission characteristics. First, experimental measurements from a composite plate 

with a T-shaped stiffener are compared with the GL model predictions to gain insights into the 

guided wave characteristics. Different delaminations are considered in the stiffener to identify 

the signal changes using the GL model. Finally, the model with four stiffeners with an embedded 

defect is investigated to determine whether the predicted signal change is indicative of a 

damaged case when multiple stiffeners are present. 

5.1 Flat Stiffener 

5.1.1 Finite Element Models and Composite Specimen 

Two CFRP plates, one with an added flat stiffener and one without, are cured with the 

CYCOM970 prepreg with T300 fiber of 3K tow and 2x2 twill. The lamina properties are given 

in Table 5-1. Both plates have an identical layup of [60/ 0/ 60/ 60/ 0/ 60]s with a ply thickness is 

0.225 mm for a total plate thickness of 2.71 mm. The stiffened plate with identical layup ([60/ 0/ 

60/ 60/ 0/ 60]s) has an additional 12 plies added that is approximately 50 mm wide spanning the 

full length of the transverse direction (see Figure 5-1 and Figure 5-2 highlighted by the red box). 

The two plates are trimmed to an approximate size of 450 mm × 450 mm as shown in Figure 

5-2. The GL model of the flat stiffener is made with a local region width of 100 mm, with a 

nominal element edge length of 75 µm. 

Table 5-1 Lamina properties of the stiffened composite panel (density ρ=1543 kg/m3) 

𝐸11[GPa] 𝐸22[GPa] 𝐸33[GPa] 𝐺12[GPa] 𝐺13[GPa] 𝐺23[GPa] 𝜈12 𝜈13 𝜈23 

57.25 55.25 13.50 5.20 4.08 3.28 0.06 0.5 0.37 
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Figure 5-1 Geometry of the flat stiffener and the associated GL model of the local region 

5.1.2 Experimental Setup 

In this section, an experimental program is carried out to compare the waveform changes 

predicted by the GL model versus physical measurements between a composite plate with the 

flat stiffener and the one without it. Figure 5-2 shows the placement of the two plates with 0° 

aligned with the x-axis, and the placement of the various transducers. 

 
Figure 5-2 Experimental setup to measure the waveform changes between the plate with a flat stiffener 

and the one without. The colored arrows correspond to the 3 different measurement cases 

x 
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In order to compare the two plates simultaneously, two pairs of identical models of transducers 

denoted by pair A-D and pair C-B (i.e. 4 Digital Wave B225) with the source transducer in each 

pair driving by the same 100 kHz, 5 cycle Hann windowed sine electrical input. Both receiving 

transducers are filtered and amplified through a signal conditioner (Digital Wave FM-1) and 

digitized by an oscilloscope (Agillent 54624A) using the same timing trigger. Four sets of 

signals are recorded, 1) direct (face-to-face) contact of transducer A to D, and C to B to measure 

the response of their paring, 2) as shown in green arrows in Figure 5-2, both pairs A-D and C-B 

are placed on the nominal plate (without stiffener) with source and receiver 178 mm apart in the 

same direction. These two signals are expected to be very similar, 3) shown as red arrows, pair 

A-D are placed on the plate with stiffener with a wave-path not crossing the stiffener, and pair C-

B are placed on the nominal plate with 102 mm source-receiver separation distance in both pairs. 

Since both plates are manufactured from the same curing cycle, it is expected that the signals 

from these two measurements are similar. Finally, 4) as shown in blue arrows, pair A-D are 

measuring across the stiffener, whereas pair C-B are placed on the nominal plate with an 

identical 178 mm separation distance as pair A-D, with the purpose of showing the effects of the 

flat stiffener. These four measurements are repeated 3 times Despite some amplitude variations 

between sets, all three sets of results support the same conclusion and only the results from the 

first measurement are presented for brevity.  

5.1.3 Experimental and Global-Local Model Results 

Experimental Results 

Figure 5-3 shows the measured waveforms from the four sets of experiments. By 

comparing the transducer response and the different wave paths, the effects of the stiffener can 

be isolated.  
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(a) Transducer pairs response 

 

(b) Comparing transducer pairs on nominal plate 

(green arrow) 

 

(c) Comparing the response between the two 

plates without the stiffener (red arrow) 

 

(d) Waveform change due to the stiffener (blue 

arrow) 

Figure 5-3 Simultaneous waveform measurements between the nominal and the stiffened plates 

Figure 5-3a shows that the two pairs of transducers have very similar amplitude response under 

the ideal contact condition. Noticeable ringing in the transducer can be observed, and larger 

difference in the waveform can be seen in the time period in which the piezo element is free from 

excitation. This suggests that under excitation, the transducer response, is highly comparable. 

Figure 5-3b shows the results when both transducer pairs are placed on the same place 

propagating in the same direction. Assuming reasonable homogeneity in the nominal plate, the 

two waveforms shall be similar. It can be seen that the phase of the two measurements is 

identical but there is a difference in amplitude. Since the face-to-face response report similar 
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amplitudes, this difference in Figure 5-3b is likely to be attributed to the contact conditions 

between the plate and the transducer. Therefore, only the time shift information shall be 

considered in the subsequent discussion. Figure 5-3c shows that the time difference between the 

waveforms measured on the two plates are not noticeable, despite the amplitude difference in the 

latter half of the packet after 0.1 ms. This is attributed to the difference in transducer ringing as 

pointed out in Figure 5-3a. Therefore, Figure 5-3c suggests that the time of flight in the nominal 

region of the two plates is highly comparable.  Finally, Figure 5-3d shows that the waveform is 

delayed by half a period in the case of the passing the stiffener when compared to the wave path 

with the same distance and orientation in the nominal plate. This phase shift is certainly due to 

the change in group velocities as observed in the dispersion curves of the corresponding 

thickness.  

Global Local Model Prediction 

In order to mimic the experimental measurements, two GL models are used to simulate 

the wave path with the without the stiffener. Figure 5-4 shows the configuration of the two 

models. The source model is represented by a 54 mm wide local region subjected to 8 mm wide 

top surface load with a Gaussian distribution, and the time dependency is using the transducer 

pair C-B face-to-face measurement presented in Figure 5-3a. The red dot indicates the vertical 

displacement reporting point that is separated to the center of the source by 180 mm (~7 in) as in 

the experiment. For the model that represents the reading in the stiffened plate, the source model 

is coupled with the stiffener local model with the source time dependency using A-D pair 

transducer response.  
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Figure 5-4 GL model configuration to represent the experiment with and without the stiffener 

 

(a) GL model prediction of vertical displacement 

reported at red dot 

 

(b) Normalized experimental measurement 

Figure 5-5 Comparing the effects of stiffener reported by GL model and experiment 

Figure 5-5 shows the comparison between GL model predicted waveforms and the experimental 

waveforms. Since the amplitude in the experimental measurement (Figure 5-3d) varies due to the 

transducer to plate contact condition, Figure 5-5b shows the waveform with peak amplitude 

normalized to unity. Figure 5-5a shows that the GL mode predicted waveforms indicate a half 

period delay if the wave has passed the stiffener, agreeing with the experimental observation. 

Furthermore, the time of arrival of the wave packet agrees between the predicted and the 

experimental result at around 0.15 ms. However, the packet shape in the model prediction has a 

larger reduction in the second half of the packet than that observed in the experiment.    

Local 

Local Local 

80 mm 

Un-stiffened Plate 

Plate with stiffener 

180 mm 

54 mm 

100mm 



189 

5.2 T-Shape Stiffener 

5.2.1 Finite Element Models and Composite Specimen 

The composite structure studied in this work is a CFRP plate with a T-shaped stiffener on 

one side. The plate is manufactured with woven prepreg made with T300 fibers and CYCOM970 

epoxy where the cured lamina properties are given in Table 5-1. Figure 5-6 shows the model of 

the stiffened region, where the base plate has a quasi-isotropic layup of [-60/ 0/ 60/ 60/ 0/ -60]s  

and the 50 mm × 50 mm  

 

(a) Model Geometry and layup of T-stiffened area  (b) FE mesh 

Figure 5-6 The FE region of the T-shaped stiffener and CFRP panel for the global-local model 

T-stiffener are co-cured by combining two L-shape stiffeners. In the local FE model, the stiffener 

is located at the center of a 100 mm wide segment of the base plate (440 mm × 440 mm) 

transverse to the 0° direction (x-direction). The nominal element size is 75 µm × 75 µm, and the 

mesh is comprised of linear quadrilateral and triangular elements Figure 5-6b. The width of the 

local region is verified to be sufficient such that the effects of the non-propagating mode at the 

left and right boundaries are negligible [94]. 

5.2.2 Experimental Observation 

Prior to a detailed numerical analysis, experiments are carried out for the case of a single 

stiffener on a CFRP panel to determine a baseline for the global-local model. The general 

experimental setup is shown in Figure 5-7. The actuating transducer (Digital Wave B225) is 
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driven by a 5-cycle Hann-windowed sine burst with 175 kHz center frequency at 10 Vpp. An 

identical model (B225) transducer is used as a receiver and the receiving signal is filtered and 

amplified through a signal conditioner (Digital Wave FM-1) and is digitized by an oscilloscope 

(Agillent 54624A). Experimental measurements are conducted through the stiffener as well as 

parallel to it to capture a nominal wave signal. Note, due to the quasi-isotropic stacking 

sequence, the different wave propagation direction is not affected by the generally anisotropic 

nature of the composite. 

 

(a) Unstiffened wave path  (b) Wave path through T-stiffener 

Figure 5-7 Experimental setup for guided ultrasonic wave measurements on a stiffened CFRP panel 

The measured waveforms, shown in Figure 5-8, indicate that the amplitude reduction and the 

waveform changes is significant. Furthermore, the tail of the wave packet behind the main packet 

is due to the ringing in the transducer, which can be seen more clearly for the unstiffened case, as 

shown in Figure 5-8a. 
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(a) Unstiffened wave path (see Figure 5-7a) (b) Wave path through T-stiffener (see Figure 5-7b) 

Figure 5-8 Measured signals on CFRP specimen from unstiffened and stiffened region 

The latter phenomenon is studied further: as shown in Figure 5-9, where the input tone burst 

signal is plotted as a solid blue line, and the transducer face-to-face response is plotted as a red 

dash line, the signal is substantially affected by ringing, despite the broadband nature of the 

transducers. 

 
Figure 5-9 Measured signals from face-to-face experiment compared to the “ideal” source signal 
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(a) at 85 mm from source (no stiffener)  (b) at 100mm from source (50 mm after stiffener) 

Figure 5-10 Vertical displacements from GL model with and without single T-shaped stiffener 

In order to improve the waveform predictions of the global-local model, the transducer response 

is used as the input time signal instead of the original “ideal” tone burst. The waveform 

prediction in accordance with the experimental setup with such input is shown in Figure 5-10. In 

the case of no stiffener, the prediction using the transducer response reflects wave trail of the A0 

mode much better and is comparable to the experimental measurement. Furthermore, in the case 

of the waves crossing the stiffener, the model predicts two main wave packets followed by 

several scattered packets as in the experiment. However, the waveform from the global-local 

fails to predict the relative amplitudes of the two packets correctly. 

5.2.3 Global Local Simulations with T-shaped Stiffeners 

It is the interest of this work to investigate the feasibility of detecting damage in a more 

realistic situation where several stiffeners are in the path between the source and the receiving 

transducers. Figure 5-11 outlines the problem of interest with four T-shaped stiffeners that are 

150 mm apart (center to center).  
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Figure 5-11 Sketch of the coupled GL problem with four T-shaped stiffeners in the wave propagation path 

ach stiffener is modeled with the identical local FE model. Using the coupled GL formulation, 

the forward propagating waves' scattering is investigated, that is the right propagating waves 

from the upstream scattering problem is used as the incident waves for the next stiffener. Note 

that this formulation does not consider multiple reflections between the neighboring stiffeners. 

Since the reflected waves from a single stiffener has approximately one fourth of the transmitted 

waves peak amplitude, it is believed that the right going waves contributions from the secondary 

wave scattering is small, in particular for dissipative materials. Thus, the model is still indicative 

of the physical experiment. Here, the simplified source for the subsequent simulations is a 5-

cycle Hann-windowed A0 mode at 175 kHz and is excited at x=0 mm. This simplified source is 

used to ease the analysis of the scattered waves the stiffeners. To capture the response of the 

system and all scattered waves, the vertical displacement signal at x=550 mm (see Figure 5-11) is 

extracted, i.e., at the end of the forth stiffener (if present). 

As seen from the experimental signals (see Figure 5-8), even the case of Lamb waves 

crossing a single T-shaped stiffener are complex. Therefore, the case of a single stiffener is first 

studied to identify important wave form features. That is, only the first stiffener remains in the 

GL model from Figure 5-11 for this study. Snapshots of the wave fields at the stiffener are 

shown in Figure 5-12.  
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(a) t = 45 µs, incident wave splits at the vertical 

part of the stiffener 

 

(b) t = 75 µs, first transmitted wave reaches end of 

local model and the scattered waves begin to 

return from the end of vertical part of the stiffener 

Figure 5-12 Resultant displacement fields at the single stiffener subjected to an A0 incident wave 

 

(a) waveform showing the directly reached wave 

and the subsequent scattered waves 

 

(b) in a shorter time window showing the directly 

reached wave and the wave packet that traversed 

the vertical stiffener 

Figure 5-13 GL model vertical displacement for a single defect free stiffener at  x=550 mm 

At t = 45 µs, the incident A0 has reached the root of the vertical stiffener, as shown in Figure 

5-12a. The incident wave is splitting with the major portion of the energy traveling to the right, 

and another significant portion traveling upward into the vertical part of the stiffener. In the 

discussion below, the former is referred to as the directly transmitted wave, and the later waves is 

referred to as the vertical returned waves. Furthermore, the (small) reflection of the incident 

waves from the first thickness increase has begun to travel back and is leaving the local region to 
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the left. At a later time at t = 75 µs, as shown in Figure 5-12b, the directly transmitted wave is 

about to leave the local region forming the biggest packet as labeled with the right going arrow 

in Figure 5-13b, whereas the vertical returned waves continues to scatter in the stiffener, travel to 

the left and to the right leaving the stiffener. Furthermore, the wave field should be viewed in 

conjunction with the vertical displacement measured at the x=550 mm location, which is shown 

in Figure 5-13.  It can be seen that the incident A0 mode is minimally converted into the faster S0 

mode that arrives approximately 0.15 ms. The transmitted A0 mode appears as many pulses of 

consecutively diminishing packets arriving after 0.35 ms. The right going portion of the vertical 

returned waves forms the second packet in the zoomed-in time signal shown in Figure 5-13b. 

These two packets are, in theory, the easiest to analyze and will be the focus for the remainder of 

this paper. The additional scattering forms a relatively continuous tail of waves as shown in 

Figure 5-13a. However, due to their relatively low amplitudes and complex superposition, these 

parts of the signal are difficult to analyze. 

5.2.4 Effects of Multiple Stiffeners without Defects 

In order to analyze the wave propagation when multiple stiffeners are present, the vertical 

displacements at x=550 mm are reported for every added stiffener. That is, stiffeners are 

“activated” from left to right in Figure 5-11, by using the “output” of the previous model as the 

input for the added stiffener model in the GL coupling scheme. The results are shown in Figure 

5-14. 
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Figure 5-14 Vertical displacement at x=550 mm with different number of stiffeners with a longer and a 

shorter time window 

It can be seen that the directly transmitted and the vertical returned waves are the dominant wave 

packets. Furthermore, the first dominant packet monotonically reduces in amplitude with an 

increasing number of stiffeners, whereas the amplitude of the second dominant packet remains 

relatively constant. A summary of these findings is given in Table 5-2. 

Table 5-2 Summary of main effects (changes in amplitude of main wave packets) of multiple stiffeners in 

wave path 

Case / Peak Amplitude 1st Packet [nm] 2nd Packet [nm] 

1 Stiffener 5.064 1.786 

2 Stiffeners 3.327 2.488 

3 Stiffeners 2.300 2.463 

4 Stiffeners 1.601 2.166 
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The continuous amplitude reduction of the first dominant packet is attributed to the consecutive 

conversion of the directly transmitted waves into vertical return waves (and other smaller 

scattered waves) in each passing of a new stiffener. For the second dominant wave packet, the 

different waves that have traveled only once into the vertical portion of a stiffener but are 

transmitted directly in the rest of the stiffeners superpose and thus the amplitude of the 

corresponding wave packet remains close to constant. In other words, since the wave paths are 

the same for the waves that a) are directly transmitted at the first stiffener and travel into the 

vertical region of the second stiffener and b) the vertical returned waves from the first stiffener 

travelling directly through the second stiffener etc. Thus, these waves all experience the same 

path length and superpose. The coda waves, i.e. those waves trailing the directly transmitted and 

the vertical returned waves, contain additionally scattered waves from the stiffeners. However, it 

is nearly impossible to identify the contributions from individual waves or stiffeners. 

Nonetheless, it should be noted that in the case of four stiffeners, the amplitude of the first packet 

is only slightly higher than the coda waves. 

5.2.5 Effects of Damage in the Stiffener 

Before the final investigation on the feasibility to detect damages in a multi-stiffener 

configuration, a few prototypical delamination cases are studied in a single stiffener 

configuration to observe for the waveform changes. The defect is designed at the joining 

locations of the left and right portions of the stiffener. That is, typically two L-shaped portions 

are merged to form a T, with additional (fiber) filling at the joint corner. Thus, this localized area 

is prone to small defects that may lead to a growing delamination in the stiffener and may require 

additional mitigation strategies in the manufacturing process [95]. Figure 5-15 shows the four 



198 

cases being considered, where two cases are 14.5 mm long delamination to the left and to the 

right of the root of the stiffener, a shorter 7.7 mm long delamination at the stiffener's root 

separating the base plate and the T-structure, and finally a 14.5 mm long vertical delamination at 

the mid-plane of the T-shape starting from the top of the base plate. 

 

(a) 14.5 mm long at left   (b) 14.5 mm long at right 

 

(a) 7.7 mm long at base   (b) 14.5 mm long vertically 

Figure 5-15 Different delamination cases and their location (highlighted in green) in the T-shape stiffener 

 

In this section, the wave propagation problem is a single A0 incident (5 cycle Hann windowed 

sine) with 175 kHz center frequency enters at 50 mm to the left of the center of the T-stiffener, 

and the vertical displacements at 50 mm to the right of the center of the stiffener are compared. 

The left, and right base delamination is studied first, with the goal to determine whether it is 
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possible to determine the relative location of the defect w.r.t. the vertical region in the 

transmitted signal.  

 

(a) Comparing defect free signal with left based 

delamination 

 

(b) comparing left base delamination and right 

base delamination 

Figure 5-16 Vertical displacement 50 mm to the right of the center of the stiffener 

Figure 5-16a shows the waveform comparison between the defect free cases and the left base 

delaminated case. The changes in the directly reached and the vertical returned packets are 

relatively small with small amplitude reduction, and the phase change is small. In a realistic 

inspection scenario, it would be difficult to observe such small changes. By observing the 

wavefield animation, the small degree of waveform changes can be explained by the fact that the 

defect does not impede the path for the scattered waves to travel into the vertical region, which is 

the dominating waveform feature. Figure 5-15b shows a somewhat unexpected result in which 

the waveform for the left and the right base delamination has indistinguishable differences, 

despite the scattering due to the delamination occurs in one case before the vertical stiffener and 

the other case after. This would imply that with the transmitted waves, it is not possible to 

determine the two relative defect locations.  
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(a) Comparing defect free signal with center-

based delamination 

 

(b) comparing center base delamination and left 

base delamination 

Figure 5-17 Vertical displacement 50 mm to the right of the center of the stiffener 

Figure 5-17 concerns the 7.7 mm long delamination right beneath the vertical portion of the 

stiffener. Comparing the damaged and the pristine signals in Figure 5-17a, the directly reached 

waves has negligible amplitude drop whereas the vertical return waves has a significant 

amplitude reduction. From the wavefield animation (not shown), it is determined that the 

incident waves in the base plate is not as effective in propagating into the vertical region with the 

delamination spanning more of the root region. Thus, much of the incident waves are 

propagating through the base plate making the reduction in the amplitude of the vertical return 

waves a useful indicator in base delamination. Figure 5-17b shows the differences between the 

center base and the left base delamination, indicating the directly reached waves for the left base 

defected cases is noticeably smaller in amplitude than the center base case. Furthermore, due to 

the scattering in the left base delamination, the vertical returned waves form a more continuous 

packet with a larger amplitude. These distinctions make it possible to differentiate these two 

types of defects.  
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As for the case of a delamination in the vertical portion of the stiffener, the waveform 

shown in Figure 5-18 indicates that the differences between the defect free and the damaged 

cases is highly distinguishable.  

 

(a) Comparing defect free signal with the vertical 

delamination 

 

(b) Comparing vertical delamination and left base 

delamination 

Figure 5-18 Vertical displacement 50 mm to the right of the center of the stiffener 

The directly reached waves has a significant drop in amplitude and the vertical returned waves 

has a significantly earlier arrival time and an increased in amplitude compared to the defect free 

case. 

 

(a)  t= 0.045 µs when the incident waves begin to 

split into the left portion of the vertical stiffener 

 

(b) t= 0.055 µs, at upper end of the delamination, 

the elastic waves are reflected back to the base 

plate 

Figure 5-19 Resultant displacement field around the single stiffener subjected to A0 incident 
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The wave fields shown in Figure 5-19 suggests that the incident waves are prone to travel on the 

left side of the delamination upward along the vertical stiffener. Once the waves reached the end 

of the delamination tip, the wave field mismatch causes a strong reflection returning to the base 

plate. Therefore, less waves are traveling into the vertical portion of the stiffener and an earlier 

arrival time for the vertical return waves. Figure 5-18a, b suggests that sufficient signal 

differences that can be appreciated to identify and distinguish this type of damage. 

5.2.6 Feasibility to Detect Damage across Multiple Stiffeners 

In an attempt to determine the likelihood of using Lamb waves to inspect for damages 

across several stiffeners, a vertical delamination (same location and extends as in the previous 

section) is introduced in the last of the four stiffeners, as shown in Figure 5-20. With equal 

spacing of 150 mm apart, the 4th stiffener has the 14.5 mm long vertical delamination, and the 

vertical displacement is reported for the pure A0 incident at 175 kHz.  

 

Figure 5-20 Embedded delamination, highlighted in green, in the last stiffener in a four-stiffener 

configuration 

The vertical displacement is calculated with the GL methodology for a pure A0 incident wave at 

175 kHz. Since this model does not consider the material attenuation and the geometric 

spreading in circular wave fronts, it represents the best-case scenario in which the amplitude 

drops are only the result of the scattering of the stiffeners. 
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(a) signal between 0.2 ms to 0.6 ms  (b) signal between 0.3 ms to 0.5 ms 

Figure 5-21 GL model predicted vertical displacement reported at the red dot (top surface, 50 mm to the 

right of the center of the last stiffener). Solid blue line representing signal for no delamination in the last 

stiffener whereas the red dash line for the case with the delamination 

The two main contribution from the pristine case of the initial incident A0 are labeled A and C. 

At marker A, it can be seen that the defect causes a decrease in amplitude. Instead, in additional 

wave of significant amplitude can be observed at marker B. That is, it appears that the same 

waveform features (see Figure 5-18) for the vertical delamination in a single stiffener are present 

here as well. Similarly, marker C and D shows the same feature in which a packet with smaller 

amplitude is followed by a packet with larger amplitude when the delamination is present. Most 

likely, the directly transmitted and the vertical return waves, having the strongest amplitude, 

arrive at the fourth stiffener as separate wave packets, and thus each packet is scattered in a 

similar fashion as the single stiffener case. In summary, all of the four mentioned waves (A-D) 

may serve as an indicator of a delamination in one of the stiffeners, as all exhibit noticeable 

differences compared to the pristine case. 

5.2.7 Summary 

In this work, the well-known global-local method is modified such that multiple wave-

scattering features can be studied simultaneously in combination with an arbitrary source 

problem. That is, the “outgoing” Lamb waves from the first GL problem are propagated as the 
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incident waves to the subsequent GL problem. The modeling method is demonstrated to be 

efficient in simulating one-way ultrasonic wave propagation in composite structures.  

The modeling tool is applied to study the feasibility of detecting damage in a stiffened 

composite structure with four T-shaped stiffeners. First, a simpler case of a single T-stiffener is 

analyzed, and the waveform features are compared with experimental measurement. The 

ultrasonic Lamb waves entering the stiffener primarily split into the directly transmitted waves, 

which travel along the base plate, and the vertical return waves, which travels into and return 

from the vertical region of the stiffener. These two wave packets are the most noticeable 

waveform features and are trailed by a significant amount of additional scattered waves. When a 

vertical delamination is embedded into the stiffener, the first packet experiences a significant 

amplitude drop whereas the second packet appears to have an earlier arrival time.  

In the multi-stiffener configuration, the waveforms for one to four pristine stiffeners are 

studied to show that the directly transmitted wave packet has a monotonic amplitude drop with 

an increase of the number of stiffeners, whereas the vertical return wave packet does not. In fact, 

after four stiffeners, the directly transmitted wave nearly diminishes and exhibits similar 

amplitude as the coda waves. Since the model represents the most ideal condition without 

geometric and material attenuation, in physical experiments, it would be difficult to observe this 

wave packet. Finally, a vertical delamination is embedded into the last of the four stiffeners, 

showing that both the directly transmitted and the vertical return waves show noticeable changes. 

These findings indicate that it could be possible to detect damage in a multi-stiffener 

configuration with those wave packets in NDE applications if the sensitivity problem is solved 

with adequate excitation amplitude. 
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Chapter 6 Concluding Remarks 

This dissertation presents the fundamental research work for using ultrasonic guided 

wave for non-destructive evaluation on launch vehicles made with advanced composites. The 

complexity of Lamb wave interactions with hidden defects makes it difficult to infer the defect 

characteristics from the ultrasonic waveform changes. In this work, the existing global-local 

method (GLM) is extended to model Lamb wave propagation in composite structures with 

various defects and the extended method is validated through other analytical tools and 

laboratory experiment. The global local method is extended in the following aspects 

• Using the global matrix method with appropriate boundary conditions, the matrix size 

for the modal function calculations is reduced by half for multilayered media with a 

balanced layup. The alternative form of the global matrix is analytically reduced to the 

well-known dispersion equation for a single layer medium with transversely isotropic 

properties 

• Using the waveguide finite element (WFE) method, the free wave propagation 

characteristics for various multilayered plates are analyzed for time of flight analysis. 

The dispersion curves calculated using WFE are validated against analytical solution and 

experimental measurement. The dispersion curve and the modal functions are then used 

in GLM. 

• The improved GLM couples the solution for the source problem and the scattering 

problem with dissimilar modal functions on either side. In addition, wave attenuation is 

implemented with complex material properties. These extensions can better represent the 

source transducers and to model defects in a more complex structure. The extended 

GLM is validated with analytical tools such as the conventional transient FEM, and the 
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global-matrix method, and experimental measurements. The numerical performance is 

also investigated in terms of different FE region size, and FE discretization.  

• The validated GMM is then used to create damage signal library for various defects in 

fiber-metal laminate (hybrid composites) and stiffened composite structures.  

• Using the waveform library for the hybrid composites, the effectiveness of serval 

damage indices is discussed and are used to process damage signals with unknown 

damage. The library is then used to successfully differentiate the type of damage and to 

estimate the defect size.  

This work has presented the framework of using the global-local method as a numerically 

efficient model tool to create a waveform library for damage characterization in complex 

composite structures.   
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Appendix 

Chapter 2 Lamb Wave in Thin Plates 

2.1 Isotropic Plate 

Consider an isotropic plate of thickness 2H, have elastic constants E, and ν, and density ρ.  

 

The longitudinal and shear wave velocities 𝑐1 and 𝑐2 are respectively, 

𝑐1 = √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
 

(2-1) 

𝑐2 = √
𝐸

𝜌2(1 + 𝜈)
 

(2-2) 

Define the wavenumber 

𝑘 =
𝜔

𝑐
   𝑘𝑗 =

𝜔

𝑐𝑗
 

(2-3) 

Such that 

𝜂𝑗 = √𝑘2 − 𝑘𝑗
2 

(2-4) 

 

𝑥 

z 
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2.1.1  Symmetric Mode 

Dispersion Equation 

tanh(𝜂1𝐻)

tanh(𝜂2𝐻)
=
(2𝑘2 − 𝑘2

2)2

4k2η1η2
 

(2-5) 

Modal Displacement and Stress Functions 

𝑈𝑥(𝜔, 𝑘, 𝑧) = 𝑖𝐴𝑠 [𝑘𝑐𝑜𝑠ℎ(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2)2 cosh(𝜂1𝑧)

4k2η1η2 cosh(𝜂1𝐻)
cosh(𝜂2𝑧)] 

(2-6) 

𝑈𝑧(𝜔, 𝑘, 𝑧) = 𝐴𝑠 [𝜂1𝑠𝑖𝑛ℎ(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2)2 cosh(𝜂1𝑧)

4k2η1η2 cosh(𝜂1𝐻)
sinh(𝜂2𝑧)] 

(2-7) 

𝑆𝑥𝑥(𝜔, 𝑘, 𝑧) =  𝜇𝐴𝑠 [(2𝜂1
2 + 𝑘2

2)cosh(𝜂1𝑧) − (
(2𝑘2 − 𝑘2

2) cosh(𝜂2𝑧)

cosh(𝜂2𝐻)
) sinh(𝜂2𝑧)] 

(2-8) 

𝑆𝑧𝑧(𝜔, 𝑘, 𝑧) =  𝜇𝐴𝑠(2𝜂1
2 + 𝑘2

2)cosh (𝜂1𝐻) [
cosh(𝜂1𝑧)

cosh (𝜂1𝐻)
−
cosh(𝜂2𝑧)

cosh (𝜂2𝐻)
] 

(2-9) 

𝑆𝑥𝑧(𝜔, 𝑘, 𝑧) =  𝑖𝜇𝐴𝑠2𝑘𝜂1sinh (𝜂1𝐻) [
sinh(𝜂1𝑧)

sinh (𝜂1𝐻)
−
sinh(𝜂2𝑧)

sinh (𝜂2𝐻)
] 

(2-10) 

2.1.2  Anti-Symmetric Mode 

Dispersion Equation 

tanh(𝜂2𝐻)

tanh(𝜂1𝐻)
=
(2𝑘2 − 𝑘2

2)2

4k2η1η2
 

Modal Displacement and Stress Functions 

(2-11) 
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𝑈𝑥(𝜔, 𝑘, 𝑧) = −𝑖𝐴𝑎 [𝑘𝑠𝑖𝑛ℎ(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2) sinh(𝜂1𝐻)

2k sinh(𝜂2𝐻)
sinh(𝜂2𝑧)] 

(2-12) 

𝑈𝑧(𝜔, 𝑘, 𝑧) = −𝐴𝑎 [𝜂1𝑐𝑜𝑠ℎ(𝜂1𝑧) −
(2𝑘2 − 𝑘2

2) sinh(𝜂1𝐻)

2η2 sinh(𝜂2𝐻)
cosh(𝜂2𝑧)] 

(2-13) 

𝑆𝑥𝑥(𝜔, 𝑘, 𝑧) =  𝜇𝐴𝑎 [(2𝜂1
2 + 𝑘2

2)sinh(𝜂1𝑧) − (
(2𝑘2 − 𝑘2

2) sinh(𝜂2𝑧)

sinh(𝜂2𝐻)
) sinh(𝜂2𝑧)] 

(2-14) 

𝑆𝑧𝑧(𝜔, 𝑘, 𝑧) =  −𝜇𝐴𝑎(2𝑘
2 − 𝑘2

2) sinh(𝜂1𝐻) [
sinh(𝜂1𝑧)

sinh(𝜂1𝐻)
−
sinh(𝜂2𝑧)

sinh(𝜂2𝐻)
] 

(2-15) 

𝑆𝑥𝑧(𝜔, 𝑘, 𝑧) =  −𝑖𝜇𝐴𝑎2𝑘𝜂1cosh (𝜂1𝐻) [
cosh(𝜂1𝑧)

cosh (𝜂1𝐻)
−
cosh(𝜂2𝑧)

cosh (𝜂2𝐻)
] 

(2-16) 

 

2.2 Transversely Isotropic Material 

For a plate that is isotopic about the 𝑥3 axis, the stress-strain law can be written as  

{

𝜎11
𝜎33
𝜎13
} = [

𝐶11 𝐶13 0
𝐶13 𝐶33 0
0 0 (𝐶11 − 𝐶13)

] {

𝑢1,1
𝑢3,3

1

2
(𝑢1,3 + 𝑢3,1)

} 

 

Define bulkwave velocities to be 

𝑐1𝐿 = √
𝐶11

𝜌
 𝑐3𝐿 = √

𝐶33

𝜌
 𝑐3𝑇 = √

𝐶44

𝜌
 

Define 
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±𝐴1,2 = 𝑘√
−𝐴 ± √𝐴2 − 4𝐵

2
 

Where  

𝐴 =  
𝑐2

𝐶3𝐿
2 +

𝑐2

𝐶3𝑇
2 −

𝐶11𝐶33−𝐶13
2 −2𝐶13𝐶44

𝐶33𝐶44
 and 𝐵 = (

𝑐2

𝐶3𝑇
2 − 1) (

𝑐2

𝐶3𝐿
2 −

𝐶11

𝐶33
) 

2.2.1  Symmetric Mode 

Dispersion Equation 

tanh(𝑘𝐴1𝐻)

tanh(𝑘𝐴2𝐻)
=

𝐴1 [𝐴2
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴1
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

𝐴2 [𝐴1
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴2
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

 

(2-17) 

 

2.2.2  Anti-Symmetric Mode 

Dispersion Equation 

tanh(𝑘𝐴2𝐻)

tanh(𝑘𝐴1𝐻)
=

𝐴1 [𝐴2
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴1
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

𝐴2 [𝐴1
2 −

𝐶11
𝐶13
(
𝑐2

𝐶1𝐿
2 − 1)] [

𝐶13
𝐶33

(
𝐶13
𝐶44

+ 1) + 𝐴2
2 +

𝐶11
𝐶44

(
𝑐2

𝐶1𝐿
2 − 1)]

 

(2-18) 

2.3 Anisotropic Material Constants 

𝐶11 =
𝐸11

1 − 𝜈13𝜈31
 

𝐶13 =
𝐸11𝜈31

1 − 𝜈13𝜈31
 

𝐶33 =
𝐸33

1 − 𝜈13𝜈31
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Chapter 3  

3.1Shape functions for linear elements 

 

 

3.2 Analytical Solution to Surface Load Response in an Isotropic Plate 

The solution is derived in [29], a summary is given here. The surface load displacement response 

of an anti-symmetric problem is 

𝑈𝑥(𝜔, 𝑥, 𝑧) = −∑
𝑖𝜂2𝑎𝑃̅(𝑘𝑎, 𝜔)

2𝜇𝑅𝑎′ (𝑘𝑎)
[(2𝑘𝑎

2 − 𝑘2
2) sinh(𝜂1𝑎𝐻) sinh(𝜂2𝑎𝑧)

𝑘𝑎

− 2𝑘𝑎
2 sinh(𝜂1𝑎𝑧) sinh(𝜂2𝑎𝐻)]𝑒

𝑖𝑘𝑎𝑥 

(3-1) 

𝑈𝑧(𝜔, 𝑥, 𝑧) = −∑−
𝑘𝑎𝑃̅(𝑘𝑎, 𝜔)

2𝜇𝑅𝑎′ (𝑘𝑎)
[2𝜂1𝑎𝜂2𝑎 cosh(𝜂1𝑎𝑧) sinh(𝜂2𝑎𝐻) − (2𝑘𝑎

2

𝑘𝑎

− 𝑘2
2) sinh(𝜂1𝑎𝐻) cosh(𝜂2𝑎𝑧)]𝑒

𝑖𝑘𝑎𝑥 
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(3-2) 

For the symmetric problem, 

𝑈𝑥(𝜔, 𝑥, 𝑧) = −∑
𝑖𝜂2𝑠𝑃̅(𝑘𝑠, 𝜔)

2𝜇𝑅𝑠′(𝑘𝑎)
[(2𝑘𝑠

2 − 𝑘2
2) cosh(𝜂1𝑠𝐻) cosh(𝜂2𝑠𝑧)

𝑘𝑠

− 2𝑘𝑠
2 cosh(𝜂1𝑠𝑧) cosh(𝜂2𝑠𝐻)]𝑒

𝑖𝑘𝑠𝑥 

(3-3) 

𝑈𝑧(𝜔, 𝑥, 𝑧) = −∑−
𝑘𝑠𝑃̅(𝑘𝑠, 𝜔)

2𝜇𝑅𝑠′(𝑘𝑠)
[2𝜂1𝑠𝜂2𝑠 sinh(𝜂1𝑠𝑧) cosh(𝜂2𝑠𝐻) − (2𝑘𝑠

2

𝑘𝑠

− 𝑘2
2) cosh(𝜂1𝑠𝐻) cosh(𝜂2𝑠𝑧)]𝑒

𝑖𝑘𝑠𝑥 

(3-4) 

Where R’ are the derivative of the left-hand side of the dispersion equation w.r.t k and evaluate at 

the root of the dispersion equations. 

 

Anti-symmetric mode 

𝑅′𝑎  =  8𝑘(2(𝑘
2 − 𝑘2

2)sinh(𝜂1𝐻)cosh(𝜂2𝐻) +
((2(𝑘2) − 𝑘2

2)2)𝑘𝐻

𝜂1
cosh(𝜂1𝐻)cosh(𝜂2𝐻) 

+
((2𝑘2 − 𝑘2

2)2)𝑘𝐻

𝜂2
sinh(𝜂1𝐻)sinh(𝜂2𝐻) − 8𝑘𝜂1𝜂2cosh(𝜂1𝐻)sinh(𝜂2𝐻)

−
4𝑘3𝜂2
𝜂1

cosh(𝜂1𝐻)sinh(𝜂2𝐻) −
4𝑘3𝜂1
𝜂2

cosh(𝜂1𝐻)sinh(𝜂2𝐻) 

− 4𝑘3𝜂2𝐻sinh(𝜂1𝐻)sinh(𝜂2𝐻) − 4𝑘
3𝜂1𝐻cosh(𝜂1𝐻)cosh(𝜂2𝐻) 

Symmetric mode 

𝑅′𝑠  =  8𝑘(2(𝑘
2 − 𝑘2

2)cosh(𝜂1𝐻)sinh(𝜂2𝐻) +
((2(𝑘2)− 𝑘2

2)
2
)𝑘𝐻

𝜂1
sinh(𝜂1𝐻)sinh(𝜂2𝐻) +

((2𝑘2− 𝑘2
2)
2
)𝑘𝐻

𝜂2
cosh(𝜂1𝐻)cosh(𝜂2𝐻) − 8𝑘𝜂1𝜂2sinh(𝜂1𝐻)cosh(𝜂2𝐻) −
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4𝑘3𝜂2

𝜂1
sinh(𝜂1𝐻)cosh(𝜂2𝐻) −

4𝑘3𝜂1

𝜂2
sinh(𝜂1𝐻)cosh(𝜂2𝐻) − 4𝑘

3𝜂2𝐻cosh(𝜂1𝐻)cosh(𝜂2𝐻) −

4𝑘3𝜂1𝐻sinh(𝜂1𝐻)sinh(𝜂2𝐻)  

 

Chapter 4  

4.1 FML Sample ABD Matrices 

 

4.2 Manufacturing of FML Panel 

A 12”x12” Ti/CFRP plate is made for experiments, and the details are shown in Figure 4-1. 
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Figure 4-1 FML sample to be manufactured for different experimental program 

 

The plate would be sectioned into tensile test, bending test, bearing test, and fracture test after 

some ultrasound inspection. In the following section, a brief description of the manufacturing 

process is described. The layup procedure is very similar to conventional CFRP. The layup is 

done on a glass plate mold, and it is done with care to avoid wrinkle in the lamina (Figure 4-2). 

 

Figure 4-2 Layup of the composite ply shall be done to avoid ply wrinkle 
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The Ti plies are first treated with So-gel surface treatment agent. The So-gel is a non-hazardous 

and can yield good surface bonding with composite [96] and thus being chosen. One additional 

debulking step (apply vacuum pressure, Figure 4-3) is required for the Ti ply because the original 

Ti sheet stock has a slight curvature and before curing the adhesion between the Ti surface and 

the CFRP pre-preg is small. 

 

Figure 4-3 The Ti plies have slight curvature and does not adhere to composite plies well and a debulking 

step (apply vacuum pressure) is added 

A release film of 1.5[in] by 2[in] is placed at the location shown in Figure 4-4 to create a disbond 

between the Ti and composite ply.  

 

Figure 4-4 A release film is placed at a specific location to create a disbond between the Ti and CFRP ply 

The FML panel is then placed into an autoclave to be cured with the curing profile as shown in 

Figure 4-5 
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Figure 4-5 FML in autoclave, under vacuum pressure, subjected to the temperature and pressure as shown 

in curing profile 

The FML panel quality is inspected by a water submersion C-scan. Figure 4-6 shows the part has 

good surface finishing. C-scan also shows no significant variation in the pristine area, and the 

disbond is clearly visible.  

 

Figure 4-6 The post cure panel on the mold, and the C-scan of the panel 

Table 4-1 shows the thickness measurement, done by micrometer at the four corners, the total 

weight of the specimen. The computed effective density is found to be 2.365 [g/cc]. 
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Table 4-1 FML sample post cure measurements 

Measurement Measure 1 Measure 2 Measure 3 

Weight [kg] 0.9285 0.9280 0.9280 

Thickness at 0,0 [mm] 3.571 3.576 3.583 

Thickness at 12”, 0 

[mm] 

3.591 3.614 3.614 

Thickness at 12”, 12” 

[mm] 

3.561 3.604 3.576 

Thickness at 0”, 12” 

[mm] 

3.581 3.583 3.578 

1 Ply Thickness [mm] 0.396 0.398 0.391 
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