UCLA

UCLA Electronic Theses and Dissertations

Title
VRKitchen: A 3D Dynamic Interactive Environment for General Computer Vision Research

Permalink
https://escholarship.org/uc/item/20r9k1md

Author
Gong, Ran

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/20r9k1md
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

VRK:itchen:
A 3D Dynamic Interactive Environment

for General Computer Vision Research

A thesis submitted in partial satisfaction
of the requirements for the degree Master of Science

in Computer Science

by

Ran Gong

2019

(© Copyright by
Ran Gong
2019

ABSTRACT OF THE THESIS

VRKitchen:
A 3D Dynamic Interactive Environment

for General Computer Vision Research

by

Ran Gong
Master of Science in Computer Science
University of California, Los Angeles, 2019
Professor Song-chun Zhu, Chair

One of the main challenges of advancing task-oriented learning such as visual task plan-
ning and reinforcement learning is the lack of realistic and standardized environments for
training and testing Al agents. Previously, researchers often relied on ad-hoc lab environ-
ments. There have been recent advances in virtual systems built with 3D physics engines
and photo-realistic rendering for indoor and outdoor environments, but the embodied agents
in those systems can only conduct simple interactions with the world (e.g., walking around,
moving objects, etc.). Most of the existing systems also do not allow human participation in
their simulated environments. In this work, we design and implement a virtual reality (VR)
system, VRKitchen, with integrated functions which i) allow human teachers to perform
demonstrations to train agents (i.e., learning from demonstration). ii) allow users to collect
multi-modal sensor data to perform other computer vision tasks. We provide standardized
evaluation benchmarks and data collection tools to facilitate a broad use in research on gen-
eral computer vision research. Especially, we evaluate our collected data on human attention

prediction task.

11

The thesis of Ran Gong is approved.
Demetri Terzopoulos
Kai-wei Chang

Song-chun Zhu, Committee Chair

University of California, Los Angeles

2019

11

To my tamily and friends who made this possible

Y

TABLE OF CONTENTS

1 Imtroduction. 1
1.1 Generating multi-modal dataset in a dynamic environment. 1

1.2 Collecting human demonstrations to bootstrap agents’ models. 2

2 Related Work 5
2.1 Simulation platformso oo 5

2.2 Imitationlearning 6

23 VRfor Al. e 7

2.4 Datasets for computer visiontasks L., 7

3 VRKitchen Environment 0000000000 9
3.1 Architecture Overview 9

3.2 Physics Engine and Photo-realistic Rendering 9
3.2.1 Humanoid Agents 10

322 Scenes e 11

3.2.3 ObjectState Changes 13

3.2.4 Fine-grained Actions 13

33 Userlnterface L 13

34 Python-UE4Bridge 14

3.5 Performance 14

3.6 Environment Interactions Lo 15
3.6.1 Atomic Actions 16

3.6.2 Ingredient Setsand States 16

3.63 Goals 17

4 Data Generation from Virtual Environment 20

4.1 Gather Data from Human Demonstrations 20

4.1.1 Gather Human Demonstration from VR Device 20

4.1.2 Gather Human Demonstration from Web Interface 21

4.2 Generate Data from Ground Truth 23
42,1 Human Attention e 24

4.2.2 Dataset OVEIVIEW v v v v v e e e e e e 25

4.2.3 Dataset Benchmark Results 26

5 Conclusion 35
References s, 36

vi

1.1

1.2

1.3

1.4

2.1

3.1

3.2

33

3.4

3.5

3.6

3.7

3.8

39

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

LIST OF FIGURES

Four humanoid avatars designed using MakeHuman
VRKitchenscenes L
animation states forouragents Lo
Sample decomposed kitchen cabinet. Manually decomposed through blender. .
Small window shows a tomato before a cutting action
Small window shows a tomato after a cutting action
An example of human demonstrations for making a pizza.
An example of human demonstrations for making roast meat.

Examplesof dishes

Usinga VR deviceathome
Usinga VR deviceinoffice
web interface instructions Lo
web interface tutorial
web interface atomic actions
Samples of AttentionObject-VR dataset
Example videos

Samples qualitativeresultso L

vii

10

10

11

11

2.1

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

LIST OF TABLES

Comparisons with other 3D virtual environments 5
The goals for five available dishes 17
Human Demonstration Statistics 23
Statistics of dataset 26
Accuracy of different methods oL L. 26
Dataset Tasks part] 31
Dataset Tasks part2 e 32
Dataset Tasks part3 L 33
Objectdetectionresults 34

viil

ACKNOWLEDGMENTS

I’d like to express my sincere gratitude towards my advisor Dr. Song-Chun Zhu for his
guidance and mentorship. I am especially grateful for providing me an opportunity to work
with a group of extremely talented students. I am thankful for Xue Xie and Qing Li for a lot
of helpful discussions. I am also very thankful for Xiaofeng Gao for his detailed guidance

and long time support.

X

CHAPTER 1

Introduction

Thanks to the recent success in many domains of Al research, humans now have built ma-
chines that can accurately detect and recognize objects [KH12, HGD17], generate vivid
natural images [BDS18], and beat human Go champions [SSS17]. However, a truly intel-
ligent machine agent should be able to solve a large set of complex tasks in the physical
world by adapting itself to unseen surroundings and planning a long sequence of actions to
reach the desired goals, which is still beyond the the capacity of current machine models. To
achieve the state of the art results, these systems often need a simulation environment which
agents can interact with. However, in some domains, collecting dataset for agents is very
expensive, slow and often inaccurate. This gives rise to the need of an environment capable
of synthesizing interactive dataset for different tasks. In particular, we are interested in the

following two dataset generation approaches for the present work.

1.1 Generating multi-modal dataset in a dynamic environment.

According to psychology studies [SG05], humans learn from multi-modal inputs (Vision,
Sound, Touches etc.). Different input modules self-teach each other so that infants can
obtain a rich and compact experience about the world. Recent works [NKK11] have been
using sensor fusion-like algorithm to merge different modality of inputs. Therefore, an
environment that can obtain different modality of sensor inputs with interactivity should be

designed and implemented.

Researchers [SG0S5] also indicate that learning experience for infants are physical, and
infants often explore around the environment to find out what task to be learned and the
solutions to these tasks. To better simulate the real world scenario where the appearance of

the same object may change dramatically as a result of actions [ILA15, FR13, LWZ17], the

dataset generation environment needs to have rich fluent changes. To capture such variation
in object appearance, the agent is required to have a better visual representation of the envi-
ronment dynamics. For example, the agent should recognize the tomato even if it is cut into
pieces and put into container. To acquire such visual knowledge, it is important for an agent
to learn from physical interactions and reason over the underlying causality of object state

changes. Therefore, it is critical to have an interaction-based dynamic world.

Long sequences of events are often needed for certain tasks: for example, human at-
tention prediction and human intention prediction. In order to perform these tasks, current
systems often need a large amount of annotated data. Therefore, a system that is capable of
generating a large number of highly customizable annotated data will potentially be helpful

to the future research.

There have been work on implementing interaction-based learning in lab environments
[LGF16, ACMI15, HKB15], but the limited scenarios greatly restrict scalability and repro-
ducitibility of prior work, plus the ad-hoc environments often do not come with dataset
generation capability. We believe that building a realistic simulation platform is a good alter-
native since 1) performance of different algorithms can be easily evaluated and benchmarked,
i1) a large set of diverse and realistic environments and tasks can be designed and cus-
tomized. ii1) customizable multi-modal data can be relatively easily generated (Figure 1.1,

Figure 1.2, Figure 1.3).

| < F ./
. .

Figure 1.1: RGB

1.2 Collecting human demonstrations to bootstrap agents’ models.

Training an agent from scratch is extremely difficult in complex environments. To boot-

strap the training, it is common to let an agent to imitate human experts by watching human

2

Figure 1.2: Depth

Figure 1.3: Segmentation

demonstrations [NR0O, ZMBO08, GGC16]. Previous work has shown that learning from
demonstrations (or imitation learning) significantly improves the learning efficiency and
achieves a higher performance than reinforcement learning does [ZGK17, HVP17]. How-
ever, it is expensive and time consuming to collect diverse human demonstrations with high
qualities. We believe that virtual reality games can provide us with an ideal medium to

crowd source demonstrations from a broad range of users [ADO8].

In this work, we focus on simulating cooking activities in a virtual kitchen environment,
VRKitchen. We illustrate how this system can address the emerging needs for the learning
problems in an example shown in Figure 1.4, where an agent makes a sandwich in one of

the kitchens created in our system.

e The environment allows the agent to interact with different fools and ingredients and
simulates a variety of object changes. E.g., the bread changes its color when it is
being heated in the oven, and the tomato turns into slices after it is cut. The agent’s
interactions with the physical world when performing cooking tasks will result in
large variations and temporal changes in objects’ appearance and physical properties,

which calls for a task-oriented visual representation.

e To make a sandwich, the agent needs to perform a long sequence of actions, including

3

O HETEETERT

o Fa P R ML
TR ﬁﬁ
= B b b

Figure 1.4: A sample sequence of an agent making a sandwich. Rectangles on the left graph

represents five necessary sub-tasks, including (1) taking ingredients from fridge, (2) putting
ham and cheese on the bread, (3) use the oven, (4) cut tomato and (5) add some sauce. Each

rectangle on the right graph indicates atomic actions required to finish a sub-task.

taking ingredients from a fridge, putting cheese and ham on the bread, toasting the
bread, adding some sliced tomato and putting some sauce on the bread. To quickly
and successfully reach the final goal, it is necessary to equip the agent with the ability

to conduct long-term planning.

e We build two interfaces to allow an Al algorithm as well as a human user to control the
embodied agent respectively, thus humans can give demonstrations using VR devices
at any places in the world, and the AI algorithms can learn from these demonstrations

and perform the same tasks in the same virtual environments.
In summary, our main contributions are:

e A configurable virtual kitchen environment in a photo-realistic 3D physical simula-
tion which enables a wide range of cooking tasks with rich object state changes and

compositional goals;

e A toolkit including a VR-based user interface for collecting human demonstrations,
and a Python API for training and testing different Al algorithms in the virtual envi-

ronments.

e A new human demonstration dataset of various cooking tasks — UCLA VR chef

dataset.

e A multi-view dataset automatically generated from VRKitchen with automatically

generated annotations.

CHAPTER 2

Related Work

Env. Large-scale | Physics | Realistic | State | Manipulation | Avatar | Demon

Malmo [JHH16] vV Vv

DeepMind Lab [BLT16]

VizDoom [KWR17]

MINOS [SCD17]

HoME [BPA17]

Gibson [XZH18]

X

House3D [WWG18]

AI2-THOR [KMG17]

S NGNGB

<.

S S NG NG S A
<

VirtualHome [PRB18]

<_
<
<

SURREAL [FZZ18]

<

v

<

VRKitchen (ours) v v v v v

<

Table 2.1: Comparison with other 3D virtual environments. Large-scale: a large number
of scenes. Physics: physics simulation. Realistic: photo-realistic rendering. State: change-
able object states. Manipulation: enabling object interactions and manipulations. Avatar:

humanoid virtual agents. Demonstration: user interface to collect human demonstrations.

2.1 Simulation platforms

Traditionally, visual representations are learned from static datasets. Either containing pre-
recorded videos [RAA12] or images [JWS09a], most of them fail to capture the dynamics in
viewpoint and object state during human activities, in spite of their large scale. Some early
systems [QTO8, RT00, TR95, LGS16] try to simulate the dynamics of human activities in

order to support the development of smart visual surveillance systems and research into ac-

5

tive computer vision for navigation. However, agents in the environment cannot be trained
in a fined grained level for compositional tasks, and environments often do not have a lot of

dynamic changes caused by agents’ actions.

To address this issue, there has been a growing trend to develop 3D virtual platforms for
training embodied agents in dynamic environments. Typical systems include 3D game en-
vironments [KWR17, BLT16, JHH16], and robot control platforms [TET12, CB16, FZZ18,
PARI18]. While these systems offer physics simulation and 3D rendering, they fail to provide

realistic environments and daily tasks humans face in the real world.

More recently, based on 3D scene datasets such as Matterport3D [CDF18] and SUNCG
[SYZ17], there are have been several systems simulating more realistic indoor environments
[BPA17, WWG18, SCD17, MHL17, XZH18] for visual navigation tasks and basic object
interactions such as pushing and moving funitures [KMG17]. While the environments in
these systems are indeed more realistic and scalable compared to previous systems, they still
can not simulate complex object manipulation that are common in our daily life. [PRB18]
took a step forward and has created a dataset of common household activities with a larger
set of agent actions including pick-up, switch on/off, sit and stand-up. However, this system
was only designed for generating data for video understanding. In contrast, our system
emphasizes training and evaluating agents on virtual cooking tasks, which involves fine-
grained object manipulation on the level of object parts (e.g., grasping the handle of a knife),
and flexible interfaces for allowing both human users and Al algorithms to perform tasks.
Our system also simulates the animation of object state changes (such as the process of
cutting a fruit) and the gestures of humanoid avatars (such as reaching for an object) instead
of only showing pre-conditions and post-effects as in [KMG17]. A detailed comparison

between our system and other virtual environments is summarized in Table 2.1.

2.2 Imitation learning

Learning from demonstration or imitation learning is proven to be an effective approach to
train machine agents efficiently [AN04, SS08, RGB10]. Collecting diverse expert demon-
strations with 3D ground-truth information in real world is extremely difficult. We believe

the VR interface in our system can greatly simplify and scale up the demonstration collec-

6

User Interface Python-UE4

Bridge
World
States
Python API [1. Controller
Discrate
Actions Mator T8 \inrd

Control | | gatey
Signals

Com

... Egooentric
Confinuous™._ 'H&'EW
Actions e

Request | | Response

— . 4

Interactions %i ~ _h“"\
Scenes &
_ Agent
lems : Ohbservations H___’,./J

UE4

Figure 2.1: Architecture of VRKitchen. Users can either directly teleoperate the agent using

VR device or send commands to the agent by Python API.
tion.

2.3 VRfor Al

VR provides a convenient way to evaluate Al algorithms in tasks where interaction or
human involvement is necessary. Researches have been conducted on many relevant do-
mains, including physical intuition learning [LGF16], human-robot interaction [LRM17,
GROI17], learning motor control from human demonstrations [HKB15, KNMO1, BCCO1].
Researchers have also used VR to collect data and train computer vision models. To this end,
several plugins for game engines have been released, such as UETorch [LGF16] and Unre-
alCV [QY16]. To date, such plugins only offer APIs to control game state and record data,
requiring additional packages to train virtual agents, or to gather data for other computer

vision tasks.

2.4 Datasets for computer vision tasks

Deng et al.[JWS09b] started the big data era for modern computer vision research. With the
increasing popularity of deep learning, there are a lot of datasets catering for different tasks.
For human attention predictions, CAD120 [KGS13], has been commonly used. However,
creating these dataset will require a significant amount of man power to design tasks, record
videos, and annotate data. Amazon Mechanical Turks are commonly used for annotation

purposes; however, according to our own experiences, turker annotations are often noisy, so

7

it takes a large amount of time for researchers to design a protocol to make sure annotations
gathered from turkers are reliable. For tasks like object recognition, researchers often want
to label the smallest bounding box around the object; however, in real annotation scenarios,
it is really hard for humans to find the smallest bounding box around the object. This might
due to the fact that turkers are paid by the number of images they annotated not by how
accurate their boxes are. As long as, their annotations are reasonable, researchers will often
give them a pass. However, recent studies [RBE17] has demonstrated that inaccuracy in the
data annotations can often produce meaningful differences in the final model. Therefore, it
is crucial to have accurate annotations for the dataset. In an virtual environment, since we
have all the information about the object model, it is relatively easy to obtain ground truth

information through transformation matrices and projection matrix.

CHAPTER 3

VRKitchen Environment

Our goal is to enable better learning of autonomous agents for tasks with compositional
goals and rich object state changes. To this end, we have designed VRKitchen, an interactive
virtual kitchen environment which provides a testbed for training and evaluating various
learning and planning algorithms in a variety of cooking tasks. With the help of virtual
reality device, human users serve as teachers for the agents by providing demonstrations in

the virtual environment.

3.1 Architecture Overview

Figure 2.1 gives an overview of the architecture of VRKitchen. In particular, our system
consists of three modules: (1) the physics engine and photo-realistic rendering module con-
sists of several humanoid agents and kitchen scenes, each has a number of ingredients and
tools necessary for performing cooking activities; (2) a user interface module which allows
users or algorithms to perform tasks by virtual reality device or Python API; (3) a Python-
UE4 bridge, which transfers high level commands to motor control signals and sends them

to the agent.

3.2 Physics Engine and Photo-realistic Rendering

As a popular game engine, Unreal Engine 4 (UE4) provides physics simulation and photo-
realistic rendering which are vital for creating a realistic environment. On top of that, we

design humanoid agents, scenes, object state changes, and fine-grained actions as follows.

Figure 3.2: VRKitchen scenes

3.2.1 Humanoid Agents

Agents in VRKitchen have human-like appearances (shown in Figure 3.1) and detailed em-
bodiment representations. The animation of the agent can be broken into different states,
e.g. walking, idle. Each agent is surrounded by a capsule for collision detection: when it’s
walking, it would fail to navigate to a new location if it collides with any objects in the scene.

When it is idle, the agent can freely interact with objects within certain range of its body.

There are in total 12 different animation states as shown in Figure 3.3. Each animation
state has an associated animation. The transitions of the animation states are determined
by python api data. When appropriate, the python api will issue an animation transition
command. There are two types of animations: i) node manipulation through inverse kine-
matics(IK) ii) blended animations from different online resources. IK systems are more
flexible; however the final animation might not look natural at all. This is because the IK
system will try to reach the location of specification regardless of the pose of the character.
Blended animations, on the other hand, are more natural, but can not reach any arbitrary po-
sition in the environment. Therefore, for animation states that require object manipulations
or related to object manipulations: reaching for an object, crouching down, we are using

IK system. For animation states like holding object and walking, turning around, standing

10

Figure 3.4: Sample decomposed kitchen cabinet. Manually decomposed through blender.

up, we are using blended animations. The transition between animation states are blend-
ing using the tool provided by UE4. We chose the Hermite cubic transition mode with a
transition duration between 0.2 seconds to 0.5 seconds based on different transitions. We
manually tried different modes and transition duration, and found out this parameter setting
looks more natural. Even though all agents share the same animation states, different agents
may exhibit different behaviors when using IK animations. This is because different agents

have different limb length, so the computed IK trajectory might be different.

3.2.2 Scenes

VRKitchen consists of 16 fully interactive kitchen scenes as shown in Figure 3.2. Agents
can interact with most of the objects in the scenes, including various kinds of fools, recep-
tacles and ingredients. Each kitchen is designed and created manually based on common
household setting. 3D models of furniture and appliances in kitchens are first obtained from

the SUNCG dataset [SYZ17]. SUNCG dataset provides a script to create an entire kitchen

11

Figure 3.6: Small window shows a tomato after a cutting action

from different 3D models. However, the created kitchens do not support any interactions
at all. For example, agents cannot open the doors in the kitchen (stove door, cabinet doors
etc.), because doors are fixed, not movable. To solve this issue, we use blender to manually
separate door from the rest of the 3D model for various different 3D models as shown in
Figure 3.4. We also decompose other parts of the objects according to our need. Sometimes
decomposing objects are not enough. A decent amount of SUNCG models do not have in-
teriors at all. In order to make it functional in our kitchen setting, we also manually design
and create the functional interiors for our 3D models using blender. After we have basic
furniture and appliances in the scene, we then add cooking ingredients and tools. Instead
of sampling their locations randomly, we place the objects according to their utility, e.g.
tools are placed on the cabinets while perishable ingredients such as fruits and vegetables

are available in the fridge. On average, there are 55 interactive objects in a scene.

12

3.2.3 Object State Changes

One key factor of VRKitchen is the ability to simulate state changes for objects. Instead
of showing only pre-conditions and post effects of actions, VRKitchen simulates the con-
tinuous geometric and topological changes of objects caused by actions. This leads to a
great number of available cooking activities, such as roasting, peeling, scooping, pouring,

blending, juicing, etc. Overall, there are 18 cooking activities available in VRKitchen.

The environment mainly consists discrete changes as well as shown in Figure 3.5 and
Figure 3.6. We believe for most tasks, discrete fluent changes that specifying pre-conditions

and post-effects are sufficient for task planning.

3.2.4 Fine-grained Actions

In previous platforms [KMG17, BPA17], objects are typically treated as a whole. However,
in real world, humans apply different actions to different parts of objects. E.g. to get some
coffee from a coffee machine, a human may first press the power button to open the machine,
and press the brew button afterwards to brew coffee. Thus we design the objects in our
system in a compositional way, i.e., an object has multiple components, each of which
has its own affordance. This extends the typical action space in prior systems to a much
larger set of fine-grained actions and enables the agents to learn object-related causality and

commonsense.

3.3 User Interface

With a detailed human embodiment representation, multiple levels of human-object-interactions

are available. In particular, there are two ways for users to provide such demonstrations:

(1) Users can directly control the agent’s head and hands. During teleportation, actions
are recorded using a set of off-the-shelf VR device, in our case, an Oculus Rift head-mounted
display (HMD) and a pair of Oculus Touch controllers. Two Oculus constellation sensors
are used to track the transforms of the headset and controllers in 3D spaces. We then apply
the data to a human avatar in the virtual environment: the avatar’s head and hand move-

ments correspond to the human user’s, while other parts of its body are animated through a

13

built-in Inverse Kinematics solver (Forward And Backward Reaching Inverse Kinematics,
or FABRIK). Human users are free to navigate the space using the Thumbsticks and grab
objects using the Trigger button on the controller. Figure ?? gives an example of collecting

demonstrations for continuous actions.

(2) The Python API offers a way to obtain discrete action sequences from users. In
particular, it provides world states and receives discrete action sequences. The world state
is comprised of the locations and current states of nearby objects and a RGB/depth image
of agent’s first person view. Figure 3.7 and Figure 3.8 show examples of recorded human

demonstrations for tasks pizza and roast meat from a third person view.

3.4 Python-UE4 Bridge

The Python-UE4 bridge contains a communication module and a controller. The Python
server communicates with the game engine to receive data from the environment and send
requests to the agent. It is connected to the engine through sockets. To perform an action,
the server sends a command to UE4 and waits for response. A client in the game engine
parses the command and applies the corresponding animations to the agent. A payload
containing states of nearby objects, agent’s first person camera view (in terms of RGB,
depth and object instance segmentations) and other task-relevant information are sent back

to the Python server. The process repeats until terminal state is reached.

The controller enables both low level motor controls and high level commands. Low
level controls change local translation and rotation of agent’s body, heads and hands, while
other body parts are animated using FABRIK. High level commands, which performs atomic
actions such as taking or placing an object, are further implemented by taking advantage of
the low level controller. To cut a carrot with a knife, for example, the high level controller

iteratively updates the hand location until the knife reaches the carrot.

3.5 Performance

We run VRKitchen on a computer with Intel(R) Core(TM) 17-7700K processor @ 4.50GHz

and NVIDIA Titan X (Pascal) graphics card. A typical interaction, including sending com-

14

Figure 3.7: An example of human demonstrations for making a pizza.

mand, executing the action, rendering frame and getting response, takes about 0.066 seconds
(15 actions per second) for a single thread. The resolutions for RGB, depth and object seg-
mentation images are by default 84 x84, but can be changed to any resolution if needed(will

affect performance).

3.6 Environment Interactions

In VRKitchen, we design all atomic actions and object state changes available in several dish
preparing tasks. Using these atomic actions, the agent can interact with the environments

until a predefined goal is reached. Figure 3.9 shows some examples of dishes.

15

3.6.1 Atomic Actions

Each atomic action listed below can be viewed as a composition of a verb (action) and a
noun (object). Objects can be grouped into three types: fools, ingredients and receptacles.
(1) Ingredients are small objects needed to make a certain dish. We assume that the agent
can hold at most one ingredient at a time. (2) For receptacles, we follow the definition in
[KMG17]. They are defined as stationary objects which can hold things. Certain receptacles
are called containers which can be closed and agents can not interact with the objects within
them until they are open. (3) Tools can be used to change the states of certain ingredients.

Atomic actions and object affordance are defined in a following way:

Take {ingredient}: take an ingredient from a nearby receptacle;

e Place into {receptacle}: put a held ingredient into a nearby receptacle;

e Use {tool}: use a tool to change the state of a ingredient in a nearby receptacle;
e Go To {1r00l, receptacle}: move to a tool or receptacle;

e Toggle (open/close) {container}: change state of a container in front of the

agent.

e Turn: rotating the agent’s facing direction by 90 degrees.

Note that actions including Take, Place into, Use, and Toggle would fail if

the agent is not near the target object.

3.6.2 Ingredient Sets and States

Meanwhile, there are seven sets of ingredients, including fruit, meat, vegetable, cold-cut,
cheese, sauce, bread and dough. Each set contains a number of ingredients as variants: for
example, cold-cut can be ham, turkey or salami. One ingredient may have up to four types
of state changes: cut, peeled, cooked and juiced. We manually define affordance for each
set of ingredients: e.g. fruit and vegetable like oranges and tomatoes can be juiced (using a
juicer) while bread and meat can not. 7ools include grater, juicer, knife, oven, sauce-bottle,

stove and receptacles are fridge, plate, cut-board, pot and cup.

16

Task Goal states Target location

o fruitl: cut, juiced;
Fruit juice cup
fruit2: cut, juiced

fruit: cut, juiced, cooked;
Roast meat pot

meat: cooked

veg: cut, cooked;
Stew pot

meat: cooked

veg: cut, cooked;
cold-cut: cooked;
Pizza cheese: cooked; plate
sauce: cooked;

dough: cooked

veg: cut; sauce;
) cold-cut: cooked;
Sandwich plate
cheese: cooked;

bread: cooked

Table 3.1: The goals for five available dishes. In each task, the agent should change required

ingredients to the goal states and move them to a target location.

3.6.3 Goals

Based on the atomic actions defined in 3.6.1, agents can prepare five dishes: fruit juice, stew,
roast meat, sandwich and pizza. Goals of each tasks are compositionally defined upon (1)
goals states of several sets of ingredients and (2) target locations: to fulfill a task, all required
ingredients should meet the goal states and be placed in a target location. For example, to
fulfill the task fruit juice, two fruits should be cut, juiced and place into the same cup.
Here, the target locations are one or several kinds of containers. Table 3.1 defines the goal

states and target locations of all tasks.

17

Figure 3.8: An example of human demonstrations for making roast meat.

4 Dishes h
Orange & lemon Roast meat with Sandwich with ham,
juice orange juice cheese & cucumber

[/

Pizza with salami, Stew with
cheese & tomato chicken & potato

e
&S e
[= r

Figure 3.9: Examples of dishes made in VRKitchen. Note that different ingredients leads

to different variants of a dish. For example, mixing orange and kiwi juice together would

make orange & kiwi juice.

19

CHAPTER 4

Data Generation from Virtual Environment

4.1 Gather Data from Human Demonstrations

Gathering Human demonstrations is an essential component for policy-learning tasks. DAG-
GER [RGBI10] requires humans continuously provide feedback to the learned policy, and
take over when human sees a mismatch between agents’ policy and human’s belief. A
distributed data collection tool also provide future opportunity for crowd sourcing human
demonstrations. Here, we provide two different ways for human to take over when appro-
priate: 1) through VR device 2) through a web-based interface in case not having a VR

device available.

4.1.1 Gather Human Demonstration from VR Device

UEA4 has built-in VR support. Here we use Oculus Rift to perform our experiment. In the
VR Setting, a lot of actions are continuous; however, in VR Kitchen, atomic actions are
discrete. In order to mitigate this difference, we propose to decompose continuous actions
into discrete ones. Users use Touch Pad ”A” Button and pointers to navigate around the
world to make appropriate actions. As long as users have VR device, they are not constraint

on their locations as shown by Figure 4.1 and Figure 4.2 .

1) When the user pressed ”A” button, provided the user is far away from the location of
interest, the system will teleport the user to the nearest valid location around his pointer. In

the back end, the system will interpret this user action as GoTo location.

i1) When the user pressed ”A” button, provided the user is close to the location of interest,
the system will interpret the action as one of the following according to the current state of

the agent: Use item, Take item, Place into item, Toggle(Open/Close) item.

20

Figure 4.2: Using a VR device in office

4.1.2 Gather Human Demonstration from Web Interface

VR device is still quite expensive until this date. Therefore, not everyone has VR device
available in their home. In order to alleviate this problem, we propose to use a web-based
interface for the purpose of data collection for the general public. The web-based interface

is built using Flask, JavaScript, HTMLS and CSS.

At first, the web-based interface will provide some initial text-based instructions about
the task as shown in figure 4.3, and the users are asked to solve this problem with their

commonsense knowledge.

After users choose a task and a scene id, the web-based interface will provide a short

and quick demo about the environment set-up, and a sample demonstrations done by the

21

Naotice: You can only grab one thing at a time.

Figure 4.3: web interface instructions

ceneln:2
eeeeeeeeeee Notice: You can only grab one thing at a time.

................

Figure 4.4: web interface tutorial

machine for that task. As shown by figure 4.4. However, the ingredients are randomized.

Therefore, users are most likely to use a different set of ingredients.

Then the web-based interface will display all the valid atomic actions to the users and
provide users with a text-based description about the goal state of the current task and the
user’s current state as shown in figure 4.5. Users can simply click buttons on a web browser
to execute an action. All actions are recorded in the back-end. The actions and the associated

user RGB image can be used for imitation learning.

In the data collection process, users will first solve a simple task ”Cut Fruit”, which is

not recorded so that users are familiar with the tools and the environment.

‘We record the human demonstrations from 9 different users, and we found out that user’s
background has a significant impact on task completion steps. For example, users’ from a

western background can finish the "Make Pizza” task way faster than others. We also find

22

Notice: You can only grab one thing at a time.

,,,,,,,,,,

Fidge

Figure 4.5: web interface atomic actions

Task Average(Number of steps to solve the task) | Median | Variance
Cook Meat 16.67 16 7.8
Cook Soup(only 8 data points are valid) 15.38 14.5 9.9
Make Juice 17.67 17 6.9
Make Pizza 34.11 33 28.8
Make Sandwich 30.67 29 12.67

Table 4.1: Human Demonstration Statistics

out that simple tasks tend to have a lower variance. Detail statistics are shown in Table 4.1

4.2 Generate Data from Ground Truth

In General Computer vision tasks, we often need to annotate data. With our environment,
we can automatically provide some annotated data with low noise. We can provide RGB
image, depth image and instance segmentation from multi-view cameras. We also has the
capacity to automatically generate bounding boxes on a 2D image. Apart from those general
computer vision annotations, we can also provide annotations tailored to a specific computer

vision task.

Here we demonstrate our environment’s capacity through a AttentionObject-VR dataset.

23

4.2.1 Human Attention

Attention is an important topic in the computer vision field and has been widely used for ob-
ject detection, video tracking , image retrieval, and other applications. Eye fixation saliency
map estimation and saliency object estimation are two important problems in the study of
visual attention, and their focus is inferring saliency regions or objects in an image that draw
the attention of the human (outside the image) who is looking at the image. In this paper,
we study the attention of a human inside a third-person view video, we call it Inside-video
human attention. To infer human attention, the foremost thing is to make clear what the
human attention is. Originally, attention is a concept in philosophy. Nowadays, it is well
known as a concept in psychology. One dominant definition in psychology is that attention
is the process of attending to objects. This definition indicates that the attention is based on
objects. Actually, some studies [Chel2, CY12, PR14] in psychophysics and biology fields
as well as some inter-discipline studies in neuro image filed and brain image field also claim
the object-based attention. These studies provide the strong theory support for defining hu-
man attention as objects. Another widely accepted definition in psychology is that attention
is something that happens in the mind - a mental ’inside” which is linked with the perceiv-
able “outside” [Seel1]. This definition indicates that attention is related with the high-level

invisible information in human mind.

Based on these studies, we define human attention as the attentional objects that coincide
with the task a human is doing. With a task in the mind, a human finishes the task by doing
several sub-tasks in certain temporal order. For example, when a human is doing the task
of take the water from the drinking fountain”, the human firstly finds the cup, then goes to
the drinking fountain, and finally takes the water. To finish each sub-task, a human behaves
purposely to operate on or approach to the attentional objects. For example, when the human
is doing the sub-task of finding the cup”, the human uses the hand to catch the cup. When
the human is doing the sub-task of going to the drinking fountain”, the human walks to

approach to the drinking fountain.

24

4.2.2 Dataset Overview

Though there exists a large number of datasets for the studies of human gaze, visual atten-
tion, and human-object interaction, to our best knowledge, no publicly available dataset is
targeted for inferring the task-driven inside video human attention. Therefore, we collect a
video dataset in VR (Virtual Reality) scenes. With the development of VR technique, the
VR data has become extremely life-like as real data. In VR scenes, all objects are configured
with accurate locations and sizes, allowing the automatic object annotations and large-scale
data collection. To collect the dataset, we use 8 different existing kitchen scenes. In each
scene, many furniture and objects are configured, objects can be divided into two categories:
tools (e.g., knife, juicer, oven, etc.) and ingredients (e.g. bread, orange, tomato, etc.). A hu-
man can use tool to change the state of an ingredient. For example, to do the task of making
orange juice, a human uses a knife to cut an orange into halves and put them into a juicer to
get juice.

The dataset has several characteristics:

e Diverse and large. The dataset consists of 8 scenes, 10 tasks, 33 subtasks, and 4
humans. As shown in Figure 4.6, different scenes vary significantly in the scene scale,
furniture configuration, and object placement. For each scene, we collect videos from
3 different camera views to make the data more diverse. The camera views are fixed
in certain scene, and are manually chosen to make the views cover the 360-degree
scene. the images of different camera views notably differ from each other. The
10 tasks are: bake bread, cook soup, cut meat, fry steak, make coffee, make juice,
make sandwich, microwave food, pour coke, and turn on light. The dataset is large,
consisting of 133,419 images and 1,887,858 object annotations in total. Averagely,

each video consists of 171 images. The video resolution resolution is 1280 x 720

e Well-organized. To make the dataset qualified for inferring human attentional objects,
it is necessary to guarantee humans and attentional objects are inside images. There-
fore, we remove the images and videos that do not satisfy this requirement. To divide
the dataset into training set and testing set, the data collected in scene 7 and scene 8 is

used for testing, and the data collected in other scenes is used for training.

25

e Well-annotated. Figure 4.7 shows an example of annotating a video. Given a video
with a task label, it is segmented as several sub-tasks to guarantee that the attentional
object in each sub-task is determinate. To accurately segment a task into several sub-
tasks, three volunteers are asked to find the key frames in a video to segment sub-tasks.
For most cases, the key-frame is not controversial. For controversial ones, the average
key-frame is taken as the final key-frame. For each frame, the attentional objects and
non-attentional objects are annotated with the detailed information like the location,
size, and types. Averagely, each image contains 1.16 attentional object annotations
(two attentional objects are annotated in some images) and 13 non-attentional object
annotations. Benefiting from the good annotations, the dataset can also be used for

other studies like task/event recognition, video segmentation, and action recognition.

- Vidoes | Images | Attentional Objects | Other Objects

Train | 596 100,951 117,643 1,330,431
Test 184 32,468 37,211 402,573
Total | 780 133,419 154,854 1,733,004

Table 4.2: The statistics of the AttentionObject-VR dataset. Videos: video number, Im-
ages: image number, Attentional objects: attentional object annotation number, other ob-

jects: non-attention object annotation number

Methods T1 T2 | T3 | T4 | TS | T6 | T7 | T8 | T9 | T10 | All

PRNet 041 0.28 | 029 | 0.28 | 0.26 | 0.29 | 0.31 | 0.34 | 0.27 | 0.07 | 0.30

Hopnet 0.54 | 0.36 | 0.36 | 0.37 | 0.17 | 0.37 | 0.39 | 0.39 | 0.29 | 0.00 | 0.35

ResNet-BinCls | 0.49 | 0.51 | 0.46 | 0.55 | 0.19 | 0.53 | 0.48 | 0.71 | 0.50 | 0.48 | 0.48

Table 4.3: Accuracy of different methods on the AttentionObject-VR dataset. ”All” corre-
sponds to the overall accuracy. T1 to T10 correspond to the accuracy on different tasks. T1:
bake bread, T2: cook soup, T3: cut meat, T4: fry steak, T5: make coffee, T6: make juice,

T7: make sandwich, T8: microwave food, T9: pour coke, and T10: turn on light.

4.2.3 Dataset Benchmark Results

We run object detection algorithm RetinaNet [LGG17] on this dataset, and the results are in

Table 4.7. Then we benchmark our dataset on human attention task.
26

We study the problem of inferring the task-driven attentional objects of a human inside
third-person view videos, to our best knowledge, there does not exist exactly same work
with ours. The most related work is to estimate where a human is looking. Therefore, we
select two state-of-the-art human face and head direction estimation methods as baselines.

We briefly describe the three baseline methods as follows.

e PRNet [FWS18]. PRNet is a face alignment method that can estimate human face
direction. It takes the raw image and human face as input, and the output is the dense
(more than 40K) aligned face key points. These dense points are compared with a
pretrained model to compute the camera matrix, which is further combined with 68

facial key points to estimate the human face direction.

e Hopenet [RCR18]. Hopenet is a head pose estimation method. It takes the raw image
and human face as input, and the output is the three Euler angles that signal human

head direction.

e ResNet-BinCls [HZR16]. ResNet-BinCls is a binary classification method based on
ResNet-18 [HZR16]. It first detects the objects in an image, then a binary classifier
estimates the scores of each object being and not being the attentional object. To esti-
mate the score of a candidate object, the human skeleton and the candidate object are
represented as a binary 1 x H x W mask, which is concatenated with 3timesHtimesW
raw image to serve as the input of the trained binary classifier. The RetinaNet model
[LGG17] and OpenPose model [CSW17] are respectively used for attentional object

candidate detection and human pose estimation.

Benchmark results are shown in Table 4.3, and qualitative results are shown in Figure 4.8

27

Viewl View2 View3

Scene2

SceneT ©

Figure 4.6: Samples of the AttentionObject-VR dataset. The dataset is collected in eight
scenes. In each scene, videos are captured from three difierent camera views. In this figure,
each row shows three images from the three camera views at the same time in the same

scene

28

Approach to refrigerator Take meat Approach to board Put down meat Use knife to cut meat
-

Figure 4.7: An example of annotating a video. Given a video with the task label of meat”,

vl 2. 2 2

the video is segmented as several sub-tasks (“approach to refrigerator”, “take meat”, ”ap-
proach to board”, ”put down meat”, and “use knife to cut meat”). In each sub-task, the
attentional object (red bounding boxes) and other non-attentional objects (green bounding
boxes) are annotated. To conclude, the annotations include task label, sub-task labels, atten-

tional objects, and non-attentional objects.

29

Figure 4.8: Samples of qualitative results of different methods in three typical scenarios.
(a) Human facial information is available and conveys the distinct cue to infer attentional
objects. (b) Human facial information is not available, but the human pose provides the
informative cue to infer attentional objects. (¢) Human facial cue and human pose cue are not
sufficient, and invisible high-level task information is needed to infer attentional objects. In
this Figure, the red bounding boxes represent the ground truth attentional object annotations,
the blue lines represent the face and head directions estimated by the PRNet model and
Hopenet model, and blue bounding boxes represent the attentional objects estimated by the

ResNet-BinCls method.

30

Task

Task definition(attention objects in parenthesis)

Make Coffee

Approach cup (cup)

Take cup (cup)

Approach coffee machine(coffee machine)

Put the cup under coffee machine (cup and coffee machine)

Press make button to make coffee(cup and coffee machine)

Microwave Food

Approach fridge (fridge)

Open door of fridge (fridge)

Take the bread(bread)

Close fridge(fridge)

Approach plate(plate)

Put bread on plate (bread and plate)

Take the plate and bread to approach microwave(microwave)

Use microwave(microwave)

Cook Soup

Approach tomato (tomato)
Use knife (knife and tomato)
Pick up tomato (tomato)
Approach pot (pot)

Put the tomato into pot (pot and tomato)

Pour Coke

Approach fridge (fridge)
Take coke from fridge (coke)
Close fridge (fridge)
Approach a cup (cup)

Pour coke into the cup (cup and coke)

Table 4.4: Dataset Tasks part1

31

Task

Task definition(attention objects in parenthesis)

Make Juice

Approach Fridge (Fridge)
Open Fridge (Fridge)

Take up orange (orange)
Close Fridge(Fridge)
Approach board (board)
Use knife (knife and orange)
Take the orange (orange)
Approach juicer (juicer)

Put the orange into juicer (orange and juicer)

Fry Steak

Approach fridge (fridge)

Open door of fridge (fridge)

Take the steak(bread)

Close fridge(fridge)

Approach pot (pot)

Put the steak into pot (pot and steak)

Operate stove (stove)

Make Sandwich

Approach fridge (fridge)
Open door of fridge (fridge)
Take the bread(bread)
Close fridge(fridge)
Approach plate(plate)

Put the bread onto plate(bread and plate)
Approach fridge (fridge)
Open door of fridge (fridge)
Take the ham(ham)

Close fridge(fridge)
Approach bread(bread)

Put the ham onto bread (ham and bread)

Table 4.5: Dataset Tasks part2

32

Task

Task definition(attention objects in parenthesis)

Bake bread

Approach fridge (fridge)
Open door of fridge (fridge)
Take the bread(bread)
Close fridge(fridge)
Approach oven (stove)

Use oven (stove, bread)

Cut Meat

Approach Fridge(Fridge)
Open fridge door(fridge)
take the beef(beef)

Close fridge door(fridge)
Approach Board(Board)
use Knife (knife, beef)

Turn on the light

Approach light switch (light switch)
push/pull switch (light switch)

Table 4.6: Dataset Tasks part3

33

Class Num. of Instances | Accuracy(mAp)
Bread 4409 0.1665
Cut Board 29828 0.0340
Microwave 26144 0.4670
Fridge 28912 0.7911
Light Switch 8146 0.4900
Coke 3014 0.2539
Stove 28640 0.6707
Juicer 30402 0.9961
Coffee Machine 21487 0.0351
Plate 57606 0.7812
Ham 838 0.0021
Beef 2602 0.0987
Tomato 1780 0.1883
Cup 61534 0.5512
Pot 30678 0.6622
Eggplant 1129 0.0153
Knife 29488 0.2207
Orange 1417 0.1404
Average by class 0.3647
Weighted Average 0.5390

Table 4.7: Object detection results

34

CHAPTER 5

Conclusion

We have designed a virtual reality system, VRKitchen, which offers physical simulation,
photo-realistic rendering of multiple kitchen environments, a large set of fine-grained ob-
ject manipulations, and embodied agents with human-like appearances and gestures. We
have implemented toolkits for training and testing Al agents as well as for collecting human
demonstrations in our system. We are also able to compile a video dataset of human demon-
strations of the cooking tasks using the user interface and scripting files in the system. In the
future, we plan to enrich the simulation in our system and conduct more experiments includ-
ing visual representation learning, world model learning, reinforcement learning, imitation

learning, visual task planning, language grounding etc.

35

[ACM15]

[ADO8]

[ANO4]

[BCCO1]

[BDS18]

[BLT16]

[BPA17]

[CB16]

[CDF18]

[Chel2]

[CSW17]

[CY12]

[FR13]

REFERENCES

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. “Learning to see by moving.”
In Proceedings of the IEEE International Conference on Computer Vision, 2015.

Luis von Ahn and Laura Dabbish. “Designing games with a purpose.” Commu-
nications of the ACM, 2008.

Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learning via inverse rein-
forcement learning.” In Twenty-first international conference on Machine learn-
ing - ICML "04, p. 1, 2004.

Igor R. Belousov, Ryad Chellali, and Gordon J. Clapworthy. “Virtual reality
tools for Internet robotics.” Proceedings - IEEE International Conference on
Robotics and Automation, 2001.

Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN Train-
ing for High Fidelity Natural Image Synthesis.” CoRR, abs/1809.11096, 2018.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wain-
wright, Heinrich Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir
Sadik, Julian Schrittwieser, Keith Anderson, Sarah York, Max Cant, Adam Cain,
Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis, Shane Legg, and
Stig Petersen. “DeepMind Lab.” pp. 1-11, 2016.

Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti,
Florian Strub, Jean Rouat, Hugo Larochelle, and Aaron Courville. “HoME: a
Household Multimodal Environment.” Number Nips, pp. 1-6, 2017.

E Coumans and Y Bai. “Pybullet, a python module for physics simulation for
games, robotics and machine learning.” GitHub repository, 2016.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Nieb-
ner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. “Matter-
port3D: Learning from RGB-D data in indoor environments.” Proceedings -
2017 International Conference on 3D Vision, 3DV 2017, pp. 667-676, 2018.

Zhe Chen. “Object-based attention: A tutorial review.” Attention, Perception,
& Psychophysics, 74(5):784-802, 2012.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. “Realtime multi-
person 2d pose estimation using part affinity fields.” In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7291-7299, 2017.

Wei-Lun Chou and Su-Ling Yeh. “Object-based attention occurs regardless of
object awareness.” Psychonomic bulletin & review, 19(2):225-231, 2012.

Alireza Fathi and James M. Rehg. “Modeling actions through state changes.”
In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2013.

36

[FWS18]

[FZZ18]

[GGC16]

[GRO17]

[HGD17]

[HKB15]

[HVP17]

[HZR16]

[ILA15]

[JHH16]

[JWS09a]

[JWS09b]

Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. “Joint 3d face
reconstruction and dense alignment with position map regression network.” In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 534—
551, 2018.

Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan
Creus-Costa, Silvio Savarese, and Li Fei-Fei. “SURREAL: Open-Source Rein-
forcement Learning Framework and Robot Manipulation Benchmark.” (CoRL),
2018.

A. Giusti, J. Guzzi, D. C. Ciresan, F. He, J. P. Rodriguez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D. Scaramuzza, and L. M.
Gambardella. “A Machine Learning Approach to Visual Perception of Forest
Trails for Mobile Robots.” IEEE Robotics and Automation Letters, 1(2):661—
667, July 2016.

Andrea de Giorgio, Mario Romero, Mauro Onori, and Lihui Wang. “Human-
machine Collaboration in Virtual Reality for Adaptive Production Engineering.”
Procedia Manufacturing, 2017.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross B. Girshick. “Mask R-
CNN.” CoRR, abs/1703.06870, 2017.

Andrei Haidu, Daniel Kohlsdorf, and Michael Beetz. “Learning action fail-
ure models from interactive physics-based simulations.” In IEEE International
Conference on Intelligent Robots and Systems, 2015.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal
Piot, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou,
Joel Z. Leibo, and Audrunas Gruslys. “Learning from Demonstrations for Real
World Reinforcement Learning.” CoRR, abs/1704.03732, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition.” In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778, 2016.

Phillip Isola, Joseph J. Lim, and Edward H. Adelson. “Discovering states and
transformations in image collections.” In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2015.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. “The
malmo platform for artificial intelligence experimentation.” IJCAI International
Joint Conference on Artificial Intelligence, 2016-Janua:4246-4247, 2016.

Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet:
A large-scale hierarchical image database.” In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 248-255, 2009.

Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet:
A large-scale hierarchical image database.” In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 248-255. IEEE, jun 2009.

37

[KGS13]

[KHI12]

[KMG17]

[KNMO1]

[KWR17]

[LGF16]

[LGG17]

[LGS16]

[LRM17]

[LWZ17]

[MHL17]

[NKK11]

[NROO]

Hema Swetha Koppula, Rudhir Gupta, and Ashutosh Saxena. “Learning human
activities and object affordances from rgb-d videos.” The International Journal
of Robotics Research, 32(8):951-970, 2013.

Alex Krizhevsky and Geoffrey E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks.” In Neural Information Processing Systems,
2012.

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and
Ali Farhadi. “AI2-THOR: An Interactive 3D Environment for Visual AL” pp.
3-6, 2017.

H. Kawasaki, K. Nakayama, T. Mouri, and S. Ito. “Virtual teaching based on
hand manipulability for multi-fingered robots.” Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No.01CH37164),
2001.

Michal Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Woj-
ciech Jaskowski. “ViZDoom: A Doom-based Al research platform for visual
reinforcement learning.” IEEE Conference on Computatonal Intelligence and
Games, CIG, 2017.

Adam Lerer, Sam Gross, and Rob Fergus. “Learning Physical Intuition of Block
Towers by Example.” Technical report, 2016.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. “Fo-
cal loss for dense object detection.” In Proceedings of the IEEE international
conference on computer vision, pp. 2980-2988, 2017.

Jenny Lin, Xingwen Guo, Jingyu Shao, Chenfanfu Jiang, Yixin Zhu, and Song-
Chun Zhu. “A virtual reality platform for dynamic human-scene interaction.”
In SIGGRAPH ASIA 2016 virtual reality meets physical reality: Modelling and
simulating virtual humans and environments, p. 11. ACM, 2016.

Oliver Liu, Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “Understanding
human-robot interaction in virtual reality.” In RO-MAN 2017 - 26th IEEE Inter-
national Symposium on Robot and Human Interactive Communication, 2017.

Yang Liu, Ping Wei, and Song Chun Zhu. “Jointly Recognizing Object Fluents
and Tasks in Egocentric Videos.” In Proceedings of the IEEE International
Conference on Computer Vision, volume 2017-Octob, pp. 2943-2951, 2017.

John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J. Davison.
“SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-
training on Indoor Segmentation?” In Proceedings of the IEEE International
Conference on Computer Vision, volume 2017-Octob, pp. 2697-2706, 2017.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and
Andrew Y Ng. “Multimodal deep learning.” In Proceedings of the 28th inter-
national conference on machine learning (ICML-11), pp. 689-696, 2011.

Andrew Y. Ng and Stuart Russell. “Algorithms for inverse reinforcement learn-
ing.” In International Conference on Machine Learning (ICML), 2000.

38

[PAR18]

[PR14]

[PRB18]

[QTO8]

[QY16]

[RAAI12]

[RBE17]

[RCR18]

[RGB10]

[RTOO]

[SCD17]

[Seell]

[SGO5]

[SS08]

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen
Baker, Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter
Welinder, Vikash Kumar, and Wojciech Zaremba. “Multi-Goal Reinforcement
Learning: Challenging Robotics Environments and Request for Research.” feb
2018.

Arezoo Pooresmaeili and Pieter R Roelfsema. “A growth-cone model for the
spread of object-based attention during contour grouping.” Current Biology,
24(24):2869-28717, 2014.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler,
and Antonio Torralba. “VirtualHome: Simulating Household Activities via Pro-
grams.” jun 2018.

Faisal Qureshi and Demetri Terzopoulos. ‘“Smart camera networks in virtual
reality.” Proceedings of the IEEE, 96(10):1640-1656, 2008.

Weichao Qiu and Alan Yuille. “UnrealCV: Connecting computer vision to un-
real engine.”, 2016.

Marcus Rohrbach, Sikandar Amin, Mykhaylo Andriluka, and Bernt Schiele. “A
database for fine grained activity detection of cooking activities.” In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 1194-1201, 2012.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. “Snorkel: Rapid training data creation with weak supervision.”
Proceedings of the VLDB Endowment, 11(3):269-282, 2017.

Nataniel Ruiz, Eunji Chong, and James M Rehg. “Fine-grained head pose es-
timation without keypoints.” In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 2074-2083, 2018.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. “A Reduction of
Imitation Learning and Structured Prediction to No-Regret Online Learning.”
In Proceedings of AISTATS, volume 15, pp. 627-635, 2010.

Tamer F Rabie and Demetri Terzopoulos. “Active perception in virtual humans.”
In Vision Interface, volume 2000, 2000.

Manolis Savva, Angel X. Chang, Alexey Dosovitskiy, Thomas Funkhouser,
and Vladlen Koltun. “MINOS: Multimodal Indoor Simulator for Navigation
in Complex Environments.” pp. 1-14, 2017.

Axel Seemann. Joint attention: New developments in psychology, philosophy of
mind, and social neuroscience. MIT Press, 2011.

Linda Smith and Michael Gasser. “The development of embodied cognition:
Six lessons from babies.” Artificial life, 11(1-2):13-29, 2005.

Umar Syed and Robert E Schapire. “A Game-Theoretic Approach to Appren-
ticeship Learning.” In Advances in Neural Information Processing Systems 20,
volume 20, pp. 1-8, 2008.

39

[SSS17]

[SYZ17]

[TET12]

[TR95]

[WWGIS]

[XZH18]

[ZGK17]

[ZMBO08§]

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. ‘“Mastering the game of Go
without human knowledge.” Nature, 550(7676):354-359, oct 2017.

Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang, Manolis Savva, and
Thomas Funkhouser. “Semantic scene completion from a single depth image.”
In Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, volume 2017-Janua, pp. 190-198, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for
model-based control.” In IEEE International Conference on Intelligent Robots
and Systems, 2012.

Demetri Terzopoulos and Tamer F Rabie. “Animat vision: Active vision in arti-
ficial animals.” In Proceedings of IEEE International Conference on Computer
Vision, pp. 801-808. IEEE, 1995.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. “Building General-
izable Agents with a Realistic and Rich 3D Environment.” jan 2018.

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio
Savarese. “Gibson Env: Real-World Perception for Embodied Agents.” In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2018.

Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-Fei, Abhinav Gupta,
Roozbeh Mottaghi, and Ali Farhadi. ‘“Target-driven Visual Navigation in In-
door Scenes using Deep Reinforcement Learning.” Proceedings of the IEEE
International Conference on Computer Vision, 2017-Octob(1):483-492, 2017.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. “Maxi-
mum Entropy Inverse Reinforcement Learning.” In Proc. AAAI pp. 1433-1438,
2008.

40

