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Classical-Limit Quantization of Non-Separable Systems: Phase Space 

* Derivation and Its Equivalence to the Dynamical Quantum Condition 

William H. Miller* 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

ABSTRACT 

On the basis of simple phase space arguments a classical-limit 

quantization rule is derived for general non-separable systems. Although 

quite different in appearance, it is shown that this statistical quantum 

condition is actually equivalent to a dynamical quantum condition obtained 

previously. This equivalence is seen to imply a direct relation between 

the acti~n integral f d~ • £ along the periodic trajectory whose energy 

is E and the volume of phase space with energy less than or equal to E. 
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I. INTRODUCTION 

In a previous study of classical-limit eigenvalues for non-separable 

systems the classical quantization condition was derived and applied to 

several simple systems. 1 The derivation followed the approach of Gutzwiller2, 

and classical quantization was seen to be intimately related· to the periodic 

trajectories of the multi-dimensional system. The Bohr-Sommerfeld quantum 

condition for one-dimensional systems 

- ~-· -

(n + ~ )v = J dx {2m [ E - V(x) J /fl2 } ~ 

1 is the one-dimensional case of the general result • 

In this paper we derive a classical-limit quantum condition for 

(1) 

general non-separable systems from a completely different point of view, 

one based on classical phase space arguments. It is shown, however, that 

this statistical quantum condition is completely equivalP.nt to the 

dynamical quantum condition obtained before1• This equivalence is quite 

a remarkable feature when one realizes that the dynamical quantum condition
1 

involves action integrals (i.e., line integrals along classical trajectories) 

evaluated along certain specific classical trajectories (the periodic 

trajectories of the system), whereas the statistical quantum condition to 

be developed below involves only phase space integrals. From a practical 

point of view the equivalence of the two approaches is important since 

one expects the statistical form of the quantum condition to be much 

simpler to apply to complicated systems. 

Section II derives the statistical form of the quantum condition, 

shows its canonical invariance, and carries out the momentum part of the 

phase space integration. Section III discusses the connection with the 

,.._ 
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dynamical form of the quantum condition; this is based on a classical-

limit approximat.ion which is derived for the microcanonical density matrix. 
I 

Section IV shows how constants of the motion other than the energy (e.g., 

total angular momentum and one of its components) can be accounted for in 

a unified manner. 

II. STATISTICAL QUANTIZATION 

Consider a general non-separable system with N degrees of freedom. 

If 51= (q
1

, q2 , ••• , qN) and ;e = ( p1 , p2 , ••. , pN) are a set of 

canonical variables (i.e., coordinates and momenta) for the system, then 

the density of quantum states at any point (51, ;e) in phase space is the 

-N I constant value h , where h = 2rr~ is Planck s constant; this is standard 

classical statistical mechanics.3 The total number n of quantum states 

with an energy less than or equal to E is therefore 

(2) 

where H(q,p)is the classical Hamiltonian for the system, G(x) is the 

unit step-function 

8(x) = 1, if X > 0 

0, if X < 0 ' 

and the integration is over all phase space. For the present we assume 

that there are no integral constants of the motion for the system other 
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than the energy itself; Section IV shows the simple modification that 

is required to remove this restriction. 

If there are n(E) quantum states below E, however, then n(E) must 

be the quantum number for the eigenvalue whose energy is E; i.e., the 

fUnction n(E) defined in Equation (2) is the inverse function of the 

classical-limit eigenvalue function E(n). When one al)..ows n to take on 

only integer values, therefore, Equation (2) is the desired classical 

quantum ~ondition. 

It is quite simple to show that the form of Equation (2) is 

invariant to a canonical transformation. If~= (Q1, Q2, .•• , ~)and 

~ = (P1 , P2, ••. , PN) are any other set of canonical variables, then one 

knows that 

dq dp = dQ dP 

H(q,p) = H(Q,P) 

so that Equation (2) has the same form regardless of the particular set 

of canonical variables one chooses in order to carry out the calculation. 

One may without restriction, therefore, take the variables to be 

the Cartesian coordinates and momenta of the system, so that the Hamil-

tonian is of the form 

N 

H(q,p) = 2:::: pi 
2

/ 2mi + V(q) 

i=l 

(3) 

Because of the relatively simple way the momenta enter in the Hamiltonian 

in Equation (3), the integral over them in Equation (2) can be performed. 

The momentum integral 

•. 

f 
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with the ranges of integration 1estricted to account for the step-function 

integrand, 

N 

~pi2/2mi :5 E - V('l) ' 

is the form of a Dirichlet integral, and using standard integral formulas4 

one obtains 

= [<2ml)(~) ••• (~)]~ 
x r(~)N r(l + ~ )~ 1 [E- V(~)JN/2 

With Equation (4), therefore, the classical quantum condition in 

Equation (2) becomes 

( 
2m ) N/2 

n(E) = -
4'17fl2 ' 

where 

One can quite readily veri:fy that Equation (5) reduces to the Bohr­

Sommerfeld condition [Equation (l~ for the case of one degree of 

freedom (N = 1). 

The quantum number function n(E) of Equations (2) and (5) is the 

(4) 

(5) 

microcanonical (fixed energy) version of the partition function Q(T) for 

canonical (fixed temperature) systems. The relation between the two is: 

00 00 

Q(T) f dn exp [ -E(n)/kT]= f dE n' (E) exp [ -E/kTJ ; 

0 0 
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Q(T) is also given by Equation (2) with the replacement 

and by Equation (5) with the replacement 

III. DYNAMICAL QUA.N'I'IZATION AND ITS EQUIVALENCE 

TO STATISTICAL QUANTIZATION 

First we re-derive, in a somewhat different manner, the classical 

quantization condition obtained previously; 1 not only is the derivation 

below simpler and more physically transparent, but it also clears up the 

inconsistencies in some of Gutzwiller's results. 2c 

Consider matrix elements of the fixed~energy projection operator 

this is the microcanonical density matrix. The delta fUnction operator is 

conveniently expressed as the Fourier transorm of the propagator (time 

evolution operator) 

00 

o(E- H)= (2~)-l s dt exp(iEt/!1) exp(-iHt/fl.), (7) 

-00 

so that Equation (6) becomes 

00 

P(22, ~1;E) = (~)-l f dt exp(iEt/fl.) < 22lexp(-iHt/~)~~l >. (8) 

-oo 

- ., 

• .. 

... 
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We seek the classical-limit approximation for the diagonal elements 

of this density matrix, i.e., the classical-limit approximation for tile 

particle density at fixed energy E. This is accomplished by using 

Equation (8) with the classical-limit approximation for 5 2a the propagator, ' 
_1 

<~l•xp(-il!tfll> I:J1 > =2:[<2ID!i>N det~~r 

x exp [ i<f>( ~' q1 ; t) /ii J 

where the phase fUnction <f> is the classical action computed along the 

classical trajectory that goes from ~l to ~ in time t, 

t 

<t>(~,_ch;t) = f dt' £·A - H(.9,,;e) ' 
0 

(9) 

and the summation in Equation (9) indicates a sum over all such trajectories 

that go from ~l to ~ in time t. 

Proceeding as in references 1 and 2d, one evaluates the time integral 

in Equation (8) by stationary phase. For the diagonal elements 

(~1 = ~ = ~) one argues as before1' 2d that only periodic trajectories can 

contribute, so that stationary phase evaluation of the integral in 

Equation (8) gives 

00 

The phase <P(E) in Equation ( 10) is the action integral 

T 

¢(E) = J dt £·~ = f d~·£ 
0 

(11) 

where r~(t), £(t)J is the
6 

periodic trajectory with energy E, and Tis 
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its period. The sum in Equation (10) is a sum over all times t = k~, 

k = 0, ±1, ±2, ••. which are the points of stationary phase in the 

integral over t in Equation (8); physically this corresponds to the fact 

that there are classical trajectories that go from q back to q in time 

t = o, ±-r, ± 2~, All the dependence on q in Equation (10) is 

contained in the function f(q) which will be discussed in detail below. 

[rn reference 1 it appears implicitly that the function f(q)may be dif­

ferent for different terms in the sum in Equation (10); this is not the 

case. Since reference l made no use of the coordinate dependence, this 

had no effect on the conclusions therein~ 
I 
The integer £ in Equation 

(10) is a constant which is defined and discussed in reference 1. 

Since it is a geometric series, one can readily show that 

00 L exp(ikA) = 0 

k=-oo 

provided 

A! ~ x (integer) , 

if A = ~ x (integer), however, the sum is oo. More generally, one has 

that 

00 00 

L exp(ikA) = L o(A/~ - n) ' 
(12) 

k=-oo n=-oo 

so that Equation (10) becomes 

00 

P(~,E) = f(~.) L o[cl>CE)/h 1/4- n], (13) 

n=O 

.. ' 

... ' 
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where the sum is started at 0 since~(E)/h- L/4 > -1. Each term in 

Equation (10) thus contributes ~qually to the particle density, anQ all 

the multiple passes over the periodic trajectory enter simply to give 

the delta function factor in Equation (13). 

The formal quantum mechanical expression for the particle density 

is 

00 

P(q,E) = L ~~ (q)l 2 
5(E- E) 

n "' n ' 
n=O 

where E are the eigenvalues and ~ (q) the corresponding normalized 
n n"' 

eigenfUnctions for the system; i.e., the density for energy E has a 

delta function singularity when E is equal to an eigenvalue E and is 
-n 

zero otherwise. It is seen that the classical-limit approximation in 

Equation (13) also has this property7, and that the classical-limit 

eigenvalue relation is (as obtained previously1) 

~(E) = h (n + l/4) 
' 

n = o, 1, ••• : i.e., the quantum number function n(E), the inverse 

function of which the classical eigenvalue function E(n), is 

I 

nd (E)::: h -l~(E) 
' 

(14) 

(15) 

(16) 

where the subscript "d" signifies that this is the quantum number fUnction 

. obtained by this dynamical derivation. In Equation (16) we have discarded 

the fraction /./4 and will not bother with it in f'urther discussion. 

With the definition in Equation (:6), the classical-limit approxi­

mation for the particle density [Equation (13)] may be written 
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00 

P(~,E) = f'(q) ~ o[nd(E) - n J ,..., (17) 
·n=O 

or since 

o[nd(E) - n] = o(E - En)/nd' (E) ' 

this becomes 

00 

P(q,E) = ~~~ [r(~/na' (E)] 5(E - En) (18) 

Comparing this classical-limit approximation in Equation (18) with the 

f'ormal quantum mechanical expression in Equation (14), one identifies 

the classical-limit approximation f'or the square of' the wavef'unction f'or 

eigenstate n, 

(19) 

It is of' considerable interest, therefore, to determine more 

precisely the function f'(q) appearing above, not only f'or its interpreta-,.,. 

tion in terms of' the wavef'unction (Equation (19)] , but also because it 

is essential in making the connection between the dynamical quantum 

condition derived in this section and the statistical quantum condition 

derived in the previous section. 

Since f'(~ is the same f'or all terms in Equation (10), we may 

determine it by considering any single term. In particular, we choose 

to evaluate it f'or the term k = 0; this term is the contribution to the 

particle density f'rom the "trajectory" that goes f'rom q back to q in 

zero time. To determine its contribution to the integral over t in 

' 

•• 
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Equation ( 8), it is easiest to return to Equation (8) itself; for in the 

limit ~ ~ ~l' and small t, the classical-limit propagator in Equaticn (9) 

can be constructed explicitly. Thus in this limit 

so that 

and also 

V(q)t ; 
"' 

the diagonal elements of the propagator in the limit of small t are 

thus given by 

N 
<q! exp( -iHt/~) 1,2- > = (27Tiht/m)- 2 exp[-iv(-2-)t/.fi. J (20) 

The contribution to the diagonal elements of the density matrix from this 

t = 0 trajectory, denoted by P (q,E), is therefore 
o-

00 
N 

dt (27Tiflt/m)- 2 exp { i [E - v(~) ]t/fi} (21) P (q,E) = (2~)-l J 
0.-v 

-oo 

If the path of the t-integral is distorted infinitesimally below the 

re13-l axis at t = 0 
' 

tpen one can evaluate the following integral 

oo. N l r(~)-1 J dt t -N/2 iAt (iA)2 -e = 27Ti 

-oo 

by closing the path of integration in the upper half complex t-plane. 

With the integral formula of Equation (22), Equation (21) becomes 

(22) 
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Po(_~,E) ~(~2) N/2 r(¥)-1 [E - V(~f - 1 (23) 

Equation (23) is the contribution to the integral over t in 

Equation (8) which is associated with the "zero-time trajectory"; since 

this contribution is identified with the k = 0 term in Equation (10), 

one sees that the sought-after function f(g_) which appears in Equations 

(10), (13), (17), (18), and (19) is precisely the function P of 
0 

Equation (23): 

f(q) = P (q,E) 
"" 0 

This is a most important relation. Another important property of the 

function P is 
0 

' 

(24) 

(25) 

where n (E) is the statistical quantum number function of Equation (5) s 

of the previous section; Equation (25) is easily obtained by differentia~ 

ing Equation (5) with respect to E and noting Equation (23). 

With f(q) now determined to be P (q,E) of Equation (23), one may 
"" 0"" 

integrate Equation (19) over coordinate space. Since the wavefunctions 

are normalized and in light of Equation (25), one obtains 

or 

ns (E) = nd (E) (26) 

to within a possible constant. This equality of the statistical and 

dynamical quantum number functions is the desired connection; i.e~, the 

.. 

,,. 

\,.; 

' 
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two quantization conditions are identical. 

In terms of' the :function P (q,E) of' Equation (23), the square of' 
0 '"" 

the wavef'unction f'or state n is 

' (27) 

with E = E . Fer the one-dimensional case (N = 1) one can readily verif'y 
n 

that Equation (27) gives the usual classical result. 

In concluding this section we again note the quite dissimilar 

origins of' the two quantum number f'unctions ns(E) and nd(E). Equation 

(2) def'ines n (E) as a rather straight-f'orward phase space integral, s 

which can be reduced to the configuration integral in Equation (5). 

Equation (16), on the other hand, def'ines nd(E) in terms of' the action 

integral of' Equation (~1); this action integral is evaluated along one 

specif'ic trajectory, namely the periodic trajectory with energy E. As 

has been shown, however, these two prescriptions give the same result 

Equation (26) , implying the f'ollowing relation between the action 

integral over the periodic trajectory with energy E and the volume of' 

phase space with energy less than or equal to E: 

-1' -N f f h ' ~. ~ = h d~ d2 ' 
. (28) 

c 

the closed curve C over which the line integral is taken being the 

periodic trajectory with energy E. 
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IV. CONSTANTS OF THE MOTION OTHER THAN THE ENERGY 

All of the discussion so far has assumed that there were no constants 

of the motion other than the energy itself; in this case n is the only 

quantum number of the system, it being simply the "counting quantum nuinber" 

that orders the states in a sequence with increasing energy. If other 

constants of the motion exist (e.g., total angular momentum and one of 

its components), the f'unction n(E) is still the total number of states 

less than or equal to E- but this is not the most usefUl quantity in 

this case. 

Consider, for example, the system which is one particle in three 

dimensions in a spherically symmetric potential well, so that £ and m are 

conserved quantities. Then the fUnction n(E) is 

n(E) = L: ' 
£,m 

where n £ (E) is the radial quantum number; i.e. , n £ (E) is the number of 

states, ~ of whose angular momentum is .!;_, that lie below the value E. 

In situations where such conserved quantities exist, one wishes to take 

account of them and construct the "counting quantum number" for each 

subspace separately [such as n/E) J , rather than the gross "counting 

quantum number" n(E) which orders all eigenvalues irrespective of their 

classification according the other "good quantum numbers". 

Proceeding more generally, suppose there are L conserved quantities 

P
1

, P2, ••• , PL; the quantities Pi are functions of the coordinates and 

momenta (q,p) and will typically be some kind of angular momentum. One 

first carries out a canonical transformation to a new set of canonical 

' 

' I 
~f 
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variables Q and P such that the first L of the new momenta are the con-
"' "' 

served quantities P. themselves. If P. = hk., i = 1, .•• , L are the 
1 1 1 

fixed values of the conserved quantities, then the number of states less 

than or equal to E with these fixed values of the conserved quantities is 

... ' kJ:,) = h-(N - L) Jd~ + 1 ... d~ 

(29) 

The coordinates Q. , i = 1, •.. , L conjugate to the conserved momenta P. 
. 1 1 

do not appear in the Hamiltonian, and the fixed values of P. appear only 
1 

as parameters in the Hamiltonian; i.e., Equation (29) is simply an example 

of the general Equation (2) for the reduced system of (N - L) degrees of 

freedom. 

8 
Noting, however, that 

fori·= 1, ... , L, one may equivalently write Equation (29) as 

n(E, kl' ••. , k]:,) = h-N Sds s~ o(P~~- kl) 

x ••• o(PJfl - kJ:,) e[E - H(_§,!')] ' 
i 

and if variables of integration .are changed back to the original set of 

of canonical variables (q,p), one obtains the final result 

n(E, k 1, ••• , k]:,) = h-N fdfj. fdE o[P1 (,9.,_g)/-fl- k 1 ] 

x ••• o[PL(2,E)/fi - kJ:,] e[E H(q,p)J (30) 

The only modification of Equation (2), therefore, is that one inserts 
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delta fUnctions in the integrand of the phase space integral to insure 

that only that region of phase space contributes for which the~conserved 

quantities have their specified values. The inverse fUnction of 

n(E, k1, .•• , kL) gives En(k1, .•• , ~), the eigenvalues of the system 

as a fUnction of the quantum numbers k. 
l 

for the conserved momenta and 

the "count"ing quantum number" n which orders the eigenvalues of each 

subspace. 
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