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Abstract:  We evaluate the relative impact of three sources of epistemic uncertainty on probabilistic seismic 
hazard analyses in California: source model uncertainty, ground motion model (GMM) uncertainty, and site 
parameter uncertainty. Seismic source model uncertainty is inherently contained in the source model 
framework applied by the USGS in the 2023 National Seismic Hazard Model (NSHM23); we have added tools 
to extract this uncertainty for California sites in the open-source seismic hazard software OpenSHA. GMM 
uncertainty is generally accounted for using alternative models in PSHA or a single backbone model with a 
defined uncertainty. Site parameter uncertainty refers to uncertainty in the shear wave velocity of the upper 30 
meters of the site profile (VS30) and potentially other independent site parameters. 

We demonstrate the impacts of these major sources of epistemic uncertainty at the sites of two UC campuses, 
Berkeley, which is located near the active Hayward fault, and Davis, which is located in the relatively quiescent 
Central Valley. We investigate potential correlations between the different sources of uncertainty and find that 
source uncertainty is practically independent of GMM and VS30 uncertainty at Berkeley but dependent on GMM 
and VS30 at Davis. At both locations, GMM and site parameter uncertainty are correlated (i.e., inter-dependent). 
We represent epistemic uncertainty in ground motion with a period-dependent log-normal standard deviation 
term that is specific to a given site location, site condition, and exceedance frequency. We show that at 
Berkeley, the total epistemic uncertainty can be well approximated by the square root sum of squares (SRSS) 
of source uncertainty (i.e., uncertainty in ground motions related solely to the source model) and the combined 
GMM and site parameter uncertainty. We find that combined GMM and VS30 uncertainty is comparable to or 
greater than the source uncertainty at many oscillator periods at both sites. Combined uncertainties range 
from natural log standard deviations of about 0.2 at short periods to 0.6 at Berkeley and 0.3-0.7 at Davis at 
long periods.   

Keywords: Epistemic uncertainty, source model uncertainty, OpenSHA, NSHM23, UCERF3 
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1. Introduction 
Two broad classes of uncertainty affect seismic hazard modeling: Epistemic uncertainty and aleatory 
variability. Epistemic uncertainty results from a lack of knowledge and aleatory variability results from inherent 
randomness in a physical process that cannot be reduced with additional knowledge (Pate-Cornell 1996, 
Bommer 2005, Faber 2005, Der Kiureghian and Ditlevson 2009, and Stafford 2015). In probabilistic seismic 
hazard analysis (PSHA), there is epistemic uncertainty associated with both the ground motions models 
(GMMs) and source models used to generate hazard curves. This is because both GMMs and source models 
are developed from limited data that does not fully constrain the models over the required parameter space. 
For example, GMMs are largely developed using data from moderate to small magnitude earthquakes but are 
applied in hazard calculations for large-magnitude and often close-distance conditions – the limited knowledge 
associated with these extrapolations is a major source of epistemic uncertainty. Likewise, seismic source 
models are developed from mapped (generally visible at the ground surface) faults and a limited 
(approximately 100 years) record of seismicity; earthquakes can happen on previously unmapped faults and 
can involve complex series of fault segments that might not have been anticipated pre-event. The manner in 
which these different rupture scenarios, and their rates of occurrence in time, are modelled is highly uncertain.  

Traditionally, epistemic uncertainty is considered in hazard analyses by considering alternative models or 
alternative parametric inputs into models with corresponding weights using a logic tree approach (McGuire 
2004, Bommer et al. 2005). Hazard analyses are performed using each combination of models, thus producing 
many hazard curves, each with their own weight. The mean hazard that is derived from this process is often 
used for design purposes (McGuire et al. 2005). If the hazard curves follow a log-normal distribution, the mean 
hazard can be represented as:   

                                                                  𝜆𝜆𝐼𝐼𝐼𝐼 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜇𝜇𝑙𝑙𝑙𝑙 𝜆𝜆 + 𝜎𝜎𝑙𝑙𝑙𝑙𝜆𝜆
2

2
�                                                                  (1) 

where 𝜆𝜆𝐼𝐼𝐼𝐼 is the mean rate of exceedance of an intensity measure and 𝜇𝜇𝑙𝑙𝑙𝑙 𝜆𝜆 and 𝜎𝜎𝑙𝑙𝑙𝑙 𝜆𝜆2  are the median and 
variance (sampling across the range of results from epistemic uncertainty).  The choice of the mean is 
motivated in part by its sensitivity to the spread of results as shown in Eq. 1. 

The goals of this work are to (1) develop tools to facilitate practical means by which source-related epistemic 
uncertainty can be accounted for in seismic hazard analyses for California sites and (2) evaluate the relative 
contributions of the major sources of epistemic uncertainty. Quantifying the relative contributions of each 
individual source of uncertainty is useful for demonstrating where resources should be directed to reduce 
uncertainties in hazard curves. 

The major sources of epistemic uncertainty that are considered are: 

1. Source Model Uncertainty  
2. Ground Motion Model (GMM) Uncertainty  
3. Site Parameter Uncertainty  

 
As shown subsequently, the effects of these uncertainties produce approximately log-normal ground motion 
distributions. As such, ln standard deviations can be assigned to each source, which are denoted 𝜎𝜎𝑆𝑆, 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺, 
and 𝜎𝜎𝑉𝑉𝑉𝑉, respectively. 

Ground motion hazard calculations are performed considering the above uncertainties for a range of return 
periods. The results are checked to investigate potential correlations between the effects of different 
uncertainties. Subsequent sections present specific features of the analyses, describe how uncertainties in 
model components were defined, and present the results.  

2. Locations, Site Parameters, and Analysis Tools for Hazard Calculations 
The quantification of epistemic uncertainty is location-specific. We select two sites that reflect different seismo-
tectonic conditions in California. As shown in Figure 1, the UC Berkeley site is located adjacent to a major 
active fault (Hayward Fault) and is 30 km away from the San Andreas Fault plate boundary. The UC Davis 
site, while still in a region classified as an active tectonic region, is relative far from the plate boundary faults 
(105 km from San Andreas) and has no immediately adjacent mapped Quaternary faults. 
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Figure 1. (a) Locations of UC Berkeley and UC Davis used for analysis along with UCERF3 Fault Models 3.1 
and 3.2 and relevant geologic units, Quaternary Alluvium (Qal1(flat)) and Franciscan Complex Rock (KJf) (b) 
Close up of UC Berkeley and (c) UC Davis campuses with campus boundaries and locations of Vs30 
measurements used for analysis. 

The source model used for most recent applications in California has been the Third Uniform California 
Earthquake Forecast (UCERF3; Field et al. 2014, 2017). For the development of the 2023 National Seismic 
Hazard Model (NSHM23), the source model has been updated (Field et al. 2023; Milner and Field 2023) in a 
manner that more accurately captures uncertainties in fault event rates and connectivity. Our selection of the 
two target sites was intended to produce different levels of source model uncertainty. The UC Berkeley site 
was expected to have lower source model uncertainties as the site is close to known seismic sources (namely 
the Hayward fault) with a relatively well constrained geometry and rupture history (Waldhauser and Ellsworth, 
2002). The UC Davis site was expected to have higher source model uncertainty as it is relatively far from 
high-activity mapped faults and thus might be expected to be strongly influenced by relatively poorly 
constrained faults near the western boundary of the Central Valley and background seismicity, which were 
expected to be more uncertain. 

The site parameter used for analysis is the time-averaged shear wave velocity in the upper 30 meters of the 
site, VS30. For each site, 14 VS30 values were used to calculate hazards. Seven representing a distribution 
appropriate for measured VS30 values (small uncertainty) and seven representing distributions appropriate for 
inferred VS30 values (large uncertainty). This was done so that the effects of different levels of site parameter 
uncertainty could be investigated. The values within each set of seven correspond to percentiles considered 
optimal for approximating a cumulative distribution function using Gaussian quadrature (Miller and Rice, 1983). 
The mean value of each set was obtained from site investigation data. The mean VS30 for UC Berkeley was 
acquired from a geotechnical investigation performed as part of a campus-wide seismic hazard study (URS, 
2015). The mean VS30 for UC Davis was based on a shallow shear wave velocity measurement obtained from 
a report titled “Phase 1 Geotechnical Data Report (P1GDR): Davis Study Area, Urban Levee Geotechnical 
Evaluations Program, September 2008”. Both VS profiles were retrieved from the shear wave velocity database 
(Kwak et al. 2021). When the Vs profile did not extend to 30 m, the model proposed by Dai et al. (2013) was 
used to estimate VS30 based on the shallow measurement (Kwak et al., 2017). The inferred VS30 for both the 
Berkeley and Davis sites were obtained from correlations with surface geology and ground slope, which include 
natural log standard deviations (Wills et al., 2015). For the measured VS30, the natural log standard deviation 
was taken as 0.1. Table 1 summarizes the VS30 values used. 
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Table 1. VS30 values used to calculate hazards and site parameter uncertainty. 

Site Measured 
or 

Inferred 

Number 
within 

set 

lnSD  Mean 
Vs30 
(m/s) 

Percentile Z-score Vs30 
Value 
(m/s) 

UC Berkeley Measured 1 0.1 633 0.019 -2.075 514 
UC Berkeley Measured 2 0.1 633 0.115 -1.194 562 
UC Berkeley Measured 3 0.1 633 0.285 -0.567 598 
UC Berkeley Measured 4 0.1 633 0.500 0 633 
UC Berkeley Measured 5 0.1 633 0.715 0.567 670 
UC Berkeley Measured 6 0.1 633 0.885 1.194 713 
UC Berkeley Measured 7 0.1 633 0.981 2.075 779 
UC Berkeley Inferred 1 0.38 633 0.019 -2.075 288 
UC Berkeley Inferred 2 0.38 633 0.115 -1.194 402 
UC Berkeley Inferred 3 0.38 633 0.285 -0.567 510 
UC Berkeley Inferred 4 0.38 633 0.500 0 633 
UC Berkeley Inferred 5 0.38 633 0.715 0.567 785 
UC Berkeley Inferred 6 0.38 633 0.885 1.194 996 
UC Berkeley Inferred 7 0.38 633 0.981 2.075 1393 

UC Davis Measured 1 0.1 266 0.019 -2.075 216 
UC Davis Measured 2 0.1 266 0.115 -1.194 236 
UC Davis Measured 3 0.1 266 0.285 -0.567 251 
UC Davis Measured 4 0.1 266 0.500 0 266 
UC Davis Measured 5 0.1 266 0.715 0.567 281 
UC Davis Measured 6 0.1 266 0.885 1.194 299 
UC Davis Measured 7 0.1 266 0.981 2.075 327 
UC Davis Inferred 1 0.19 266 0.019 -2.075 179 
UC Davis Inferred 2 0.19 266 0.115 -1.194 212 
UC Davis Inferred 3 0.19 266 0.285 -0.567 238 
UC Davis Inferred 4 0.19 266 0.500 0 266 
UC Davis Inferred 5 0.19 266 0.715 0.567 296 
UC Davis Inferred 6 0.19 266 0.885 1.194 333 
UC Davis Inferred 7 0.19 266 0.981 2.075 394 

 

Seismic hazard analyses were run in OpenSHA (Field et al. 2003). The implementation of the UCERF3 model 
in OpenSHA had been set up to return mean hazard only, i.e., the epistemic uncertainties contained within the 
model are considered in the analyses, but were not reflected in the output. As part of this work, new capabilities 
have been developed within OpenSHA to export percentiles of ground motion for a given hazard level using 
either the UCERF3 or NSHM23 models. No particular distribution is assumed in this process, rather the 
percentiles reflect the model output for the particular site and the selected ground motion parameter. In the 
case of the NSHM23 model, the analyses reported here randomly sampled ~10,000 branches from the suite 
of 121,500 earthquake rupture forecast branches to streamline computations. 

The OpenSHA tool was run 2464 times to generate hazard curves for 14 different VS30 values, 4 NGA-West2 
ground motion models (Abrahamson et al. 2014, Boore et al. 2014, Campbell & Bozorgnia 2014, and Chiou & 
Youngs 2014), and 22 different oscillator periods at each site. This prototype version of OpenSHA allows for 
the generation of the hazard curves associated with each logic tree branch of the UCERF3 or the NSHM23 
source models. For each run, 16 hazard percentiles with respect to source model uncertainty were generated: 
0.1, 1.3, 2.5, 5, 9.25, 16, 33, 50, 67, 84, 90.75, 95, 97.5, 98.7, 99.9, and the mean. This calculation took over 
two days on 36 computer nodes at the Center for Advanced Computing Research at the University of Southern 
California. This paper is related to an ongoing effort to parameterize the source epistemic distribution at various 
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sites across California so that individual practitioners, who may not have access to the computing resources 
needed to run calculations at this scale, can include uncertainties in their analyses. 

3. Source Model Uncertainty 
To isolate source model uncertainty, we consider hazard results for a single GMM and single VS30 value, and 
then sample the ground motion distribution for a particular hazard level as described in Section 2. The NSHM23 
source model was applied. The results were found to be log-normally distributed based on visual inspection of 
the corresponding ground motion cumulative distribution functions. Using the python library, SciPy (Virtanen 
et al., 2020), log normal distributions were fit to all of the ground motion - percentile distributions for 20 return 
periods, as demonstrated in Figure 2. This standard deviation quantifies source model uncertainty, which is 
𝜎𝜎𝑆𝑆=0.053 for the example in Figure 2. This process can be repeated for different GMMs and different VS30 
values to test sensitivities. 

 

 
Figure 2: Source model uncertainty calculation example (NSHM23 source model). 

For each site, oscillator period, and VS30 type (measured or inferred), source model uncertainty for each GMM 
and VS30 value combination (28 for each location, oscillator period, and VS30 type) were graphed against return 
period to see general trends and check dependencies. Figure 3 shows these graphs for inferred VS30 values 
for oscillator periods of 0.2 and 1.0 sec at both Berkeley and Davis. 

Figure 3 demonstrates that for the shown oscillator periods, source model uncertainty has only modest 
dependence on GMM and VS30 value at Berkeley but is strongly dependent on GMM and VS30.at Davis. At 
Berkeley, source uncertainty gets slightly smaller as return period increases and at Davis, source uncertainty 
gets slightly larger as return period increases. As expected, mean source uncertainty is higher for the Davis 
site than for the Berkeley site at all return periods for oscillator periods of 0.2 and 1.0 sec.  
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Figure 3: NSHM23 source model uncertainty vs. return period for every GMM and inferred VS30 combination 
for (a) Berkeley site, 0.2 sec. (b) Berkeley site, 1.0 sec (c) Davis site, 0.2 sec. (d) Davis site, 1.0 sec.  

4. Ground Motion Model Uncertainty 
To evaluate GMM uncertainty (i.e., uncertainty in ground motions resulting from alternate GMMs), we consider 
changes in median hazard (from source uncertainty) across different GMMs for fixed VS30 values. This 
uncertainty was quantified by calculating the standard deviation of the log of the median ground motions from 
the four NGA-West2 GMMs for each location, oscillator period, and VS30 value. For each location, oscillator 
period, and VS30 type, GMM uncertainty for each VS30 value (seven for each location, oscillator period, and VS30 
type) was graphed against return period to see if GMM uncertainty is dependent on VS30. Figure 4 shows these 
graphs for inferred VS30 values for oscillator periods of 0.2 and 1.0 sec. at both Berkeley and Davis sites. 

Figure 4 demonstrates that for both oscillator periods, GMM uncertainty is nearly independent of VS30 at Davis 
and more strongly dependent on VS30 at Berkeley. At both Berkeley and Davis, GMM uncertainty increases 
with increasing return period. The mean GMM uncertainty value across all return periods is higher at Davis for 
both oscillator periods of 0.2 and 1.0 sec.  
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Figure 4: GMM uncertainty vs. return period for every inferred VS30 for (a) Berkeley site, 0.2 sec. (b) Berkeley 
site, 1.0 sec. (c) Davis site, 0.2 sec. (d) Davis, 1.0 sec.  

5. Site Parameter Uncertainty 
To evaluate site parameter uncertainty (i.e., uncertainty in ground motions resulting from alternate VS30 values), 
we consider changes in median hazard (from source uncertainty) for a given GMM for a range of VS30 values 
that sample a distribution. Two distribution types are considered, one for measured VS30 and one for estimated 
(inferred) VS30; each has the same median for a given site but different natural log standard deviations of VS30. 
For a given GMM, the standard deviation of the natural log of the median ground motions from the seven VS30 
values was computed for each location, oscillator period, and VS30 type. Figure 5 shows results for each site 
and GMM for the case of measured VS30, and Figure 6 shows similar results for the case of inferred VS30.  

Figure 5 demonstrates that for the Berkeley site at an oscillator period of 0.2 seconds, measured site parameter 
uncertainty is dependent on GMM. This occurs because different GMMs have different dependencies (i.e., 
scaling) of site amplification with VS30. Figure 6 shows the expected result that site parameter uncertainty is 
much greater when VS30 is inferred instead of measured. Both measured and inferred site parameter 
uncertainties are greater at Berkeley than Davis. This occurs because the Berkeley site has a large VS30, which 
produces limited nonlinearity, whereas the Davis site is softer and has appreciable nonlinearity. Nonlinearity 
in the site response is known to decrease the dispersion of ground surface motions (e.g., Stewart et al. 2017). 
Figure 6 also shows larger site parameter uncertainty at a 1.0 sec. oscillator period than at 0.2 sec. The 
increased uncertainty at long periods results from stronger VS30 scaling as period increases from 0.2 to 1.0 
sec.   
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Figure 5: Site parameter uncertainty vs. return period for VS30 distribution associated with measurements for 
each NGA-West2 GMM for (a) Berkeley site, 0.2 sec (b) Berkeley site, 1.0 sec (c) Davis site, 0.2 sec (d) Davis 
site, 1.0 sec.  

 

 
Figure 6: Site parameter uncertainty vs. return period for VS30 distribution associated with estimates for each 
NGA-West2 GMM for (a) Berkeley site, 0.2 sec (b) Berkeley site, 1.0 sec (c) Davis site, 0.2 sec (d) Davis, 1.0 
sec. 
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6. Total Epistemic Uncertainty 
Total epistemic uncertainty is computed by jointly considering the alternate percentiles representing source 
uncertainty, the four GMMs, and the 7 VS30 values (both for measured and inferred conditions). This combined 
uncertainty is shown in Figure 7 for the case of an oscillator period of 0.2 seconds at a 2475-year return period 
for inferred VS30 values at the Berkeley site. The cumulative distribution function is well-represented as log-
normal with a standard deviation of 0.264. Figure 8 shows the total uncertainty as a function of oscillator period 
for both sites. Values range from about 0.20 to 0.50 (PGA to 3.0 sec) for the Berkeley site and are about 0.32-
0.38 for the Davis site (over the same period range).  

We investigated whether the calculation of total epistemic uncertainty could be simplified by considering the 
source uncertainty independently of the GMM and VS30 uncertainty. If this were found to be effective, the total 
epistemic uncertainty could be calculated using the following equation: 

𝜎𝜎�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝜎𝜎𝑆𝑆2 + 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺/𝑉𝑉𝑉𝑉
2                                                                  (2) 

where 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺/𝑉𝑉𝑉𝑉 is the combined GMM and site parameter uncertainty, which would not be allowed to drop 
below the minimum values suggested by Al Atik and Youngs (2014). The reason this hypothesis was tested 
was because, in concept, 𝜎𝜎𝑆𝑆 values could be evaluated for different regions across the state a priori, and 
𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺/𝑉𝑉𝑉𝑉 could be evaluated for a given site of interest, which requires much less computational cost that jointly 
considering all three sources of uncertainty.  

In addition to total epistemic uncertainty, Figure 8 also shows values of 𝜎𝜎�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 using Eq. (2). For the plot in 
Figure 8, the 𝜎𝜎𝑆𝑆 values were computed for each GMM and VS30 and averaged (as variances). The values of 
𝜎𝜎�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  from Eq. (2) are less than the total epistemic uncertainty (𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) across all periods. This shows that the 
total uncertainty is underestimated by Eq. (2), although the level of underestimation is small and arguably not 
significant at Berkeley but larger at Davis.  

 
Figure 7: Total epistemic uncertainty for inferred VS30 calculation example. 
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Figure 8: Total epistemic uncertainty vs oscillator period for inferred VS30 at a 2475-year return period for (a) 
UC Berkeley (b) UC Davis. 

7. Relative Contributions of Different Sources of Epistemic Uncertainty 
To understand the relative contributions of different elements of a PSHA to the total uncertainty, it is useful to 
examine the individual uncertainties together for a given site and exceedance frequency. This is provided in 
Figure 9, where we show for the Berkeley and Davis sites the component and total uncertainties as a function 
of period for a return period of 2475 years. Five uncertainties are shown: source uncertainty computed in the 
same manner as in Figure 8, combined GMM and VS30 uncertainty for the case of measured VS30, combined 
GMM and VS30 uncertainty for the case of inferred VS30, total uncertainty as calculated in Figure 7 for measured 
VS30 and total uncertainty as calculated in Figure 7 for inferred VS30. 

 
Figure 9: Total and component epistemic uncertainties vs oscillator period at a 2475-year return period for (a) 
Berkeley site and (b) Davis site. 

Figure 9 demonstrates that at both locations and for oscillator periods above approximately 0.2 seconds, the 
GMM/site parameter uncertainty is larger than the source uncertainty. However, at oscillator periods at or 
below approximately 0.2 seconds, source uncertainty is higher than GMM / site parameter at Davis and 
comparable to GMM / site parameter for measured VS30 values at Berkeley. At Berkeley, the GMM / site 
parameter uncertainties grow with period for periods beyond about 0.2-0.3 sec. This likely occurs because of 
the relatively strong effects of VS30-scaling at these longer periods.  The strongest contributor to the GMM / 
site parameter uncertainty is controlled by whether VS30 is based on measurement or inference, with the GMMs 
exerting the largest influence when VS30 is measured and the VS30-related uncertainty otherwise having the 
largest influence, particularly at long periods.  
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Figure 10 shows Uniform Hazard Spectra (UHS) for a 2% probability of exceedance in 50 years (2475 return 
period) for the Berkeley and Davis sites. Results are shown for two representations of epistemic uncertainty: 
(1) full uncertainty as described in this paper and (2) partial uncertainty considering GMM and VS30 but with 
source uncertainty only represented through the mean hazard. The second representation is presented 
because prior to the recent update to OpenSHA, this is the only manner in which uncertainties could practically 
be considered. For each representation, we show three percentiles (5, 50, 95) and the mean hazard. 

  
Figure 10: UHS (2475-year return period) with hazard percentiles and mean hazard for two representations of 
epistemic uncertainty with and without explicit consideration of source uncertainties in percentiles for (a) 
Berkeley site (b) Davis site. 

The results show that a broader distribution of hazard is obtained when source uncertainties are considered, 
as expected. The median hazards are nearly the same and the mean hazards match. The match of the mean 
hazards occurs because source uncertainty is considered in the derivation of the mean hazard in OpenSHA, 
even before the updates described in Section 2 were implemented.  

For all the results presented to this point, the source-related epistemic uncertainty has been based on the 
model applied in the 2023 update to the National Seismic Hazard Map (NSHM23). This source model (from 
Field et al. 2023) represents an update to the UCERF3 (Field et al. 2014, 2017), which had been in use for 
nearly a decade. Repeating the calculations presented previously with the older UCERF3 source model shows 
a notably smaller impact of source-related uncertainties, as shown in Figure 11 (which matches the form of 
Figure 9). 

   
Figure 11: Total and component epistemic uncertainties vs oscillator period at a 2475-year return period for 
(a) Berkeley site and (b) Davis site, now using the UCERF3 source model (Field et al. 2014). 
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8. Conclusions 
We consider three major sources of epistemic uncertainty in PSHA for California sites, which are seismic 
source, GMMs, and site parameters. We have adapted OpenSHA to return percentiles representing source 
uncertainties, which are found to be log-normally distributed and much larger for the Field et al. (2023) source 
model than the earlier UCERF3 model (Field et al. 2014, 2017). GMM uncertainties are considered by applying 
multiple models with a lower limit uncertainty from Al Atik and Youngs (2014). Site parameter uncertainties are 
captured by log-normal distributions of VS30, with the spread of the distribution being narrow when VS30 is based 
on measurement and wide when inferred. To illustrate these procedures, we apply the presented framework 
for sites in Berkeley and Davis. We show that above oscillator periods of about 0.2 sec, combined GMM/site 
parameter uncertainty is a larger contributor to epistemic uncertainty than source model uncertainty for both 
measured and inferred VS30 values at both locations. However, at oscillator periods below approximately 0.2 
sec, source uncertainty is the largest contributor to epistemic uncertainty at Davis. We further show that 
combined GMM/site parameter uncertainty is most strongly influenced by site parameter uncertainty when VS30 
is estimated, and by between-model uncertainties when VS30 is measured.  

We demonstrate that total epistemic uncertainty exceeds the estimates provided by combining source and 
GMM / site parameter uncertainties under the assumption of independence, although the amount of increase 
is arguably only significant at the Davis site This indicates that the different uncertainty types are correlated. 
We will attempt to quantify this correlation in future work. 
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