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ABSTRACT 

 

Tick-borne disease ecology in a changing world: The influence of climate, habitat and abiotic 

conditions, and forest disturbance on Lyme disease ecology and risk in California 

 

by 

 

Andrew John MacDonald 

 

Globally, the rate of emergence of infectious diseases has increased significantly over 

time. Vector-borne diseases in particular present one of the biggest threats to public health 

globally. Many of these diseases are zoonotic in nature, meaning they cycle in animal 

populations but can spillover to infect humans. As such, risk to humans of acquiring a 

zoonotic disease depends in large part on the distribution and abundance of the reservoir 

hosts, the species of animals that the pathogen naturally infects, as well as of the vector 

species. The ecology of many reservoir hosts and vectors is rapidly changing due to ongoing 

environmental change, which will fundamentally alter human disease risk in the future. To 

understand how disease risk may be forecasted to change requires an understanding of the 

drivers of the distribution and abundance of pathogens, disease vectors and reservoir hosts. 

This research uses Lyme disease in California as a model system to understand the 

drivers of zoonotic disease risk on a rapidly changing planet, particularly for vector-borne 

diseases. Specifically, it investigates the following questions: 1) are there latitudinal 

differences in the seasonal activity patterns of the primary tick vector, Ixodes pacificus, in 

California, and might these differences be driven by climate? 2) What abiotic and 
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environmental factors drive tick abundance and infection prevalence with the causative agent 

of Lyme disease, Borrelia burgdorferi sensu stricto, in southern California? 3) What are the 

effects of large-scale, intense ecological disturbances, namely wildfire, on the ecology of 

Lyme disease in the far western US?   

To address these questions, I use a combination of field, laboratory and statistical 

methods including field collection of samples (ticks and tissue samples from host animals), 

DNA extraction and polymerase chain reaction (PCR) in the laboratory for analysis of 

infection, and statistical and GIS-based analysis of field-derived and public data sets.  

I find that tick vector activity patterns in southern California are highly truncated, and 

tick density is significantly lower than in northern California where human Lyme disease 

incidence is higher. This suggests much lower tick-borne disease risk in southern California, 

which I broadly attribute to the hotter, drier climate in this region. This has implications for 

reduced tick-borne disease risk under future climate change, in contrast with the predictions 

made for numerous other emerging diseases (Chapter 1). Additionally, I identify dense oak 

woodlands as the highest risk habitats for I. pacificus tick encounter in southern California. I 

also find densities of small vertebrate hosts to be significant predictors of tick abundance, 

though found a shift in the relative importance of host availability and habitat characteristics 

in predicting juvenile tick abundance as California’s historic drought intensified. This finding 

suggests that habitat providing suitable microclimates for tick survivorship became centrally 

important to patterns of abundance in the face of adverse abiotic conditions. This further 

suggests that predicted climate change in California may act as an important limiting factor 

on I. pacificus populations. And, despite the low risk of human Lyme disease infection posed 

by I. pacificus in southern California, comparatively high rates of infection were found in 

other tick species, suggesting that enzootic transmission of tick-borne borreliae may be more 
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common in southern California than previously suspected (Chapter 2). 

Finally, I find that wildfire disturbance, which is projected to become more severe 

under climate change, initially increases tick-borne disease risk in the year following fire, 

with this effect reversing in subsequent years. Tick abundance was elevated in plots sampled 

within the perimeter of a recent wildfire in Santa Barbara County, California in the year 

following the fire, though declined precipitously in following years. Also notable was the 

finding that populations of one of the primary reservoir hosts for the Lyme bacteria, dusky-

footed woodrats (Neotoma fuscipes), were eliminated within the perimeter of the fire. In 

contrast, populations of western fence lizards (Sceloporus occidentalis), considered to be 

“non-competent hosts” for the bacteria because they cleanse feeding ticks of infection and do 

not carry the pathogen, were unaffected by the wildfire. Taken together with significantly 

reduced tick populations within the fire perimeter following the fire, this evidence suggests 

that wildfire disturbance may ultimately reduce tick-borne disease risk for multiple years 

following wildfire in California. 

Ongoing environmental change has already led to disease emergence across the 

globe, with consequences for human health. Further, the way in which environmental change 

is expected to impact the ecology of infectious diseases is challenging to predict and poorly 

understood for many disease systems. My dissertation research informs some of these key 

gaps in our understanding of tick-borne disease in the western US under environmental 

change. 
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I. Truncated seasonal activity patterns of the western blacklegged 

tick (Ixodes pacificus) in central and southern California  

This chapter appeared as a manuscript in February 2016 in Ticks and Tick-Borne 

Diseases, volume 7, issue 1, pages 234-242. The doi is: 10.1016/j.ttbdis.2015.10.016. 

Authorship on the published manuscript is as follows: Andrew J. MacDonald and Cheryl J. 

Briggs. 

A. Introduction 

Globally, there has been an increase in the rate of emergence of vector-borne zoonotic 

diseases in recent decades, presenting new challenges and threats to public health (Jones et 

al. 2008, Kilpatrick and Randolph 2012). A number of large-scale anthropogenic changes, 

such as land use and climate change, are contributing to the amplification of emerging 

infectious zoonotic diseases. For example, the distribution of vector species may shift or 

expand as a result of climate change, and lead to subsequent shifts in vector-borne disease 

burden (Bounoua et al. 2013, Ogden et al. 2008b). In the case of pathogens with complex 

transmission cycles involving multiple hosts and vector life stages, changing host ecology 

resulting from land use or environmental change may also alter human disease risk through 

vector abundance (Ogden et al. 2014), infection prevalence with the pathogen (Allan et al. 

2003, Patz et al. 2004), or vector activity patterns (Ogden et al. 2008a). Thus, understanding 

when and where vector species are active and how these patterns may be expected to change 

given ongoing climate or environmental change is crucial to prevention and control of 

vector-borne diseases. 

Lyme disease is the most commonly reported vector-borne disease in the United 

States, and is increasing in incidence and geographic range (Bacon et al. 2008). In the United 
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States, Lyme disease is caused by an infection with Borrelia burgdorferi, a spirochete that is 

transmitted to humans by blacklegged ticks—Ixodes scapularis in the eastern United States 

and Ixodes pacificus in the western United States. In addition to B. burgdorferi, both 

blacklegged and western blacklegged ticks vector a number of other emerging pathogens 

including the causative agents of tick-borne relapsing fever (Borrelia miyamotoi), 

anaplasmosis (Anaplasma phagocytophilum), and babesiosis (Babesia spp.). Ixodes spp. ticks 

have a four-stage life cycle, comprised of the egg stage and the parasitic larval, nymphal and 

adult stages, and maintain enzootic transmission of B. burgdorferi in complex cycles 

involving many different vertebrate hosts (Gray et al. 2002, Kurtenbach et al. 2006). Borrelia 

burgdorferi is not transmitted transovarially and can be acquired by larval and nymphal ticks 

only through blood meals taken from infected hosts, and thus infections may be transmitted 

only by infected nymphal or adult female ticks (Clover and Lane 1995, Falco et al. 1999, 

Gray et al. 2002, Kurtenbach et al. 2006). Seasonal activity and density of potentially 

infectious tick life stages are thus critical components of Lyme disease risk. 

In the eastern US where human Lyme disease is most common, larval I. scapularis 

peak in activity in the early fall (August-October) in the northeastern US, and in the summer 

months (June-August) in the upper Midwestern US, while nymphal I. scapularis peak in 

activity during the summer months (June-August) and adult I. scapularis have bimodal peaks 

in activity during the fall and spring (Falco et al. 1999, Gatewood et al. 2009, Hamer et al. 

2012, Ostfeld et al. 1996). Consequently, because nymphal Ixodes spp. are the primary 

vector, peak Lyme disease transmission in the eastern US occurs during the summer months 

when nymphal ticks are most active (Falco et al. 1999), and Lyme disease risk is absent 

during the winter months when much of the northeast and upper Midwest is blanketed in 
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snow or experiencing temperatures consistently below 0° C. In contrast, in western North 

America, the area of highest risk for acquiring Lyme disease is northwestern California, 

where vector ticks have been found to be active throughout the year, presenting a year-round 

risk of Lyme disease transmission (Salkeld et al. 2014).  

 In central and southern California, infected I. pacificus ticks have been identified, but 

transmission of B. burgdorferi to humans is less common (Padgett et al. 2014). A handful of 

previous studies suggest that infection prevalence in vector tick populations in central and 

southern California—with both B. burgdorferi as well as the relapsing fever spirochete, B. 

miyamotoi—is low (Lane et al. 2013, Padgett et al. 2014), which is likely contributing 

significantly to the low rate of transmission to humans in this region. However, the 

underlying mechanism producing low infection prevalence in southern California tick 

populations is not well understood. Here we examine one possible mechanism, namely the 

seasonal activity patterns of the western blacklegged tick, and investigate whether this vector 

species exhibits a truncated period of seasonal activity in southern California. We report on 

seasonal activity patterns of I. pacificus in sites in Santa Barbara County and Los Angeles 

County, California in which weekly to monthly tick collection was undertaken over multiple 

years. We show that I. pacificus activity patterns, particularly of the juvenile stages, are 

truncated relative to those observed in northwestern California. We discuss possible causes 

of these observed patterns, implications for human tick-borne disease risk in central and 

southern California, as well as implications for tick-borne disease risk under projected 

climate change in the western US. 

B. Methods 
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I. pacificus ticks were collected at three sites in Santa Barbara and Los Angeles 

County, California to determine seasonal activity patterns and timing of peak density in 

central and southern California. Santa Barbara County collection locations included 

Sedgwick Reserve, part of the University of California Natural Reserve System and located 

in the Santa Ynez Valley, and Paradise Reserve located in the Los Padres National Forest on 

the north side of the Santa Ynez Mountains (Figure 1). Collection sites in Sedgwick Reserve 

were characterized by oak woodland, consisting of coast live oak (Quercus agrifolia), blue 

oak (Quercus douglasii) and occasional valley oak (Quercus lobata). The understory was 

dominated by introduced grasses including brome (Bromus spp.), wild oats (Avena spp.) and 

occasional native bunch grasses, as well as common vetch (Vicia sativa) and California 

sagebrush (Artemisia californica). Collection sites in Paradise Reserve were characterized by 

similar plant communities, notably coast live oak woodland with occasional California bay-

laurel (Umbellaria californica) and an understory dominated by introduced grasses and 

western poison-oak (Toxicodendron diversilobum). In Los Angeles County, ticks were 

collected from Stunt Ranch Reserve, also a part of the University of California Natural 

Reserve System, in the Santa Monica Mountains (Figure 1). Collection sites in Stunt Ranch 

Reserve were also characterized by coast live oak woodland with an understory dominated 

by introduced grasses and western poison-oak. 

1. Tick Sampling for all parasitic life stages: Southern California 

Western blacklegged ticks were collected at Sedgwick, Paradise and Stunt Ranch 

Reserves using the flagging method, in which a 1m2 white flannel cloth is dragged over 

understory vegetation and leaf litter, and attached, questing ticks are counted and removed 

(e.g. Daniels et al. 2000). Adult ticks were primarily encountered on understory shrubs and 
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grasses, and juvenile ticks were only encountered in patches of leaf litter, so two distinct 

habitat types were sampled for the different stages. Adult ticks were collected from 

understory shrubs and grasses along established transects at each reserve, and an area of 500 

m2 of oak woodland was sampled during each sampling event. Adult ticks were collected 

weekly to biweekly from sites established at Sedgwick Reserve from December 2012 to 

December 2013, and monthly from January 2014 through June 2014. Adult ticks were 

collected from Paradise Reserve weekly to monthly from November 2013 through June 

2015, and from Stunt Ranch Reserve approximately monthly from December 2013 through 

June 2014, and from December 2014 through June 2015.  

Larval and nymphal ticks were collected using the same flagging method as adult 

ticks, with flagging effort focused on dense patches of leaf litter. Juvenile ticks were 

collected at each reserve on the same sampling schedule as adult ticks, and an area of 200 m2 

of leaf litter was sampled in oak understory each time (a smaller area was sampled for 

juvenile ticks than adults due to the general rarity and patchiness of dense leaf litter habitat in 

these southern California oak woodland sites). Juvenile ticks were not found to be questing 

on vegetation above the surface of the leaf litter, so no juvenile ticks were encountered or 

collected on adult tick transects. Adult ticks were, however, occasionally collected in patches 

of leaf litter in which juvenile tick sampling took place. These adult ticks were not included 

in the analysis in order to maintain consistency in area sampled for the various parasitic life 

stages for the duration of the study. 

2. Tick seasonality data: Northwestern California 

We compared our data from southern California collection sites to previously 

published data from northern California. Northwestern California tick data are from China 



 

 

  
6 

Camp State Park in Marin County and were published in a recent study by Salkeld and 

colleagues (2014). In this study, all parasitic life stages were sampled concurrently over 

multiple years, producing estimates of tick density through time. This is the only published 

study from northern California with comparable data to the present study for all parasitic life 

stages, and data were provided in raw form to be re-analyzed. Details of the sampling 

methodology are described in Salkeld and colleagues (2014). Sampling methodology in 

southern California sites matched the methodology used in northern California, though total 

area sampled over the duration of the studies differed between sites (e.g., due to the number 

of times each site was sampled). For comparison between sampling locations, density of ticks 

was calculated for each stage over time for each site, and standardized between sites. 

3. Weather station data 

Weather station data (precipitation, temperature and relative humidity) were obtained 

from the nearest weather station to each sampling location in this study—from the Point San 

Pedro weather station (http://www.ipm.ucdavis.edu/WEATHER/wxactstnames.html) 

adjacent to China Camp State Park in Marin County, from the UCSB department of 

geography weather station (http://www.geog.ucsb.edu/ideas/) at Sedgwick Reserve for both 

Sedgwick and Paradise Reserves in Santa Barbara County, and from the Stunt Ranch Reserve 

weather station in Los Angeles County (http://www.wrcc.dri.edu/weather/ucsr.html). The 

variables chosen—seasonal temperature, relative humidity and timing of precipitation 

events—are thought to regulate the life cycle of I. pacificus (Padgett and Lane 2001, Salkeld 

et al. 2014), and are included to illustrate broad climatic differences between the two regions 

that may be driving seasonal activity patterns of questing I. pacificus ticks. 

4. Statistical analyses 
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The Welch’s t-test (for unequal variances and unequal sample sizes) was employed to 

determine whether mean peak density of each parasitic life stage of I. pacificus was 

significantly lower at the southern California sampling locations than at China Camp State 

Park. The Welch’s t-test was chosen due to the unequal number of samples taken from each 

study site over the duration of the two years of sampling. 

C. Results 

1. Adult tick activity (Santa Barbara and Los Angeles Counties) 

At Sedgwick Reserve in the Santa Ynez Valley, the earliest observation of questing 

adult I. pacificus was in mid-December—12/15/2013, and peak density occurred in 

February-March (Figure 2c; Tables 1 and 2). At Paradise Reserve on the north side of the 

Santa Ynez Mountains, earliest observation was in late November—11/23/2013, and peak 

density occurred in February-March, though there appeared to be bimodal peaks in January 

and May of 2014 (Figure 2b; Tables 1 and 2). At Stunt Ranch Reserve in the Santa Monica 

Mountains, adult ticks became active in late December 2013 and 2014, peaked in density in 

February-March, and were no longer active by late April to early May (Figure 2d; Tables 1 

and 2). Peak density of adult ticks was significantly lower at Sedgwick Reserve 

(t(17.118)=4.6154, p < 0.001), Paradise Reserve (t(17.583)=4.1437, p < 0.001) and Stunt 

Ranch Reserve (t(17.956)=4.4816, p < 0.001) than at China Camp State Park in northern 

California. As in previous studies (Salkeld et al. 2014), adult tick activity generally began 

following the first substantial rains of the wet season, with adult ticks becoming rare or 

absent following the last major rain events of the season. For this study, adult I. pacificus 

became rare or absent by late April to early May at all sites sampled in central and southern 
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California, which mirrored patterns of precipitation, with final major rain events occurring in 

late March to early April. 

2. Immature tick activity (Santa Barbara and Los Angeles Counties) 

Nymphal I. pacificus were first observed in late February and absent by mid-April at 

Sedgwick Reserve (Figure 3c). At Paradise Reserve, patterns were similar with first 

observations occurring in early March, and questing nymphs absent by mid-May (Figure 3b). 

At Stunt Ranch Reserve, nymphs were first observed in early March and active through early 

June (Figure 3d). Density of nymphal ticks was significantly lower at Sedgwick 

(t(26.994)=2.3209, p < 0.05), Paradise (t(24.248)=2.2309, p < 0.05), and Stunt Ranch 

(t(18.827)=3.861, p < 0.001) Reserves than at China Camp State Park in northern California. 

Questing nymphal ticks were rare throughout the entire season at all southern California sites 

(Table 2), with no clear peaks in activity when density of ticks was substantially higher than 

at other times of the year. 

 Patterns of larval tick activity were similar to those of nymphal ticks, with first 

observations occurring in late February and questing larval ticks absent by mid-May at 

Sedgwick Reserve (Figure 4c). At Paradise Reserve, questing larval ticks were first observed 

in early March and were absent by mid-May (Figure 4b). At Stunt Ranch Reserve, larval 

ticks were first active by early to late February and absent by early to late May (Figure 4d). 

Peak density of larval ticks was significantly lower at Sedgwick (t(15.051)=1.9921, p < 

0.05), Paradise (t(10.042)=3.0555, p < 0.01), and Stunt Ranch (t(12.848)=2.4215, p < 0.05) 

Reserves than at China Camp State Park in northern California. Timing of peak larval 

activity varied between years and sampling locations, though consistently fell within the 

months of March and April (Table 1). 
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Abiotic conditions differed substantially between northern and southern California 

collection locations, and weather station data show that average relative humidity was ~10% 

higher at China Camp State Park (71.48%) in Marin County than at Sedgwick Reserve 

(61.71%) in Santa Barbara County, and ~23% higher at China Camp State Park than Stunt 

Ranch Reserve (48.70%), throughout the duration of the tick sampling periods at each site 

(Figure 5a). Similarly, average maximum temperature was ~5° C lower at China Camp State 

Park (20.32° C) than at Sedgwick Reserve (25.01° C), and ~6° C lower at China Camp State 

Park than at Stunt Ranch Reserve (26.76° C), over the same period (Figure 5b). Further, 

seasonal trends of relative humidity and temperature illustrate that the differences between 

northwestern and southern sites are particularly apparent during the seasonal summer 

drought. Finally, timing between precipitation events was shorter at China Camp State Park 

than at Sedgwick or Stunt Ranch Reserves over the duration of each respective study period 

(Figure 6a-c). The first rains of the season occurred earlier and last rains of the season 

occurred later at China Camp State Park than at either Sedgwick or Stunt Ranch Reserves, 

which experience a more protracted summer drought. 

D. Discussion 

 In this study, the season for questing adult I. pacificus ticks in Los Angeles and Santa 

Barbara counties began in late November to late-December, depending on the sampling 

location, peaked between January and May, and ended by late April to early May. 

Differences between sampling locations are likely due to the microclimatic conditions within 

each site, which have previously been shown to drive local-scale differences in tick density 

(Eisen et al. 2003). The observed patterns of adult tick activity generally follow those 

reported from northwestern California (Salkeld et al. 2014), though activity in central and 
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southern California consistently begins later in the season and ends earlier than in 

northwestern California (Figure 2), displaying a truncated pattern. Furthermore, density of 

adult ticks is much lower at sites sampled in Santa Barbara and Los Angeles County than in 

sites sampled in northwestern California (Salkeld et al. 2014) (Figure 2; Table 2).  

Seasonal activity patterns of juvenile I. pacificus were also found to be truncated 

relative to those reported for China Camp State Park, as well as other study sites in 

northwestern California (Salkeld et al. 2014) (Figures 3 and 4; Table 1). Nymphal tick 

activity reported in northwestern California began as early as the beginning of February, 

lasting throughout the summer months and in some cases as late as October (Salkeld et al. 

2014). In southern California sites, nymphal ticks were found to be active only from late 

February through early June. Larval I. pacificus displayed a similarly abbreviated pattern of 

seasonal activity as nymphal ticks in southern California sites. In a previous study conducted 

in southern California (Lane et al. 2013) during the months of March, April and May of 

2010, juvenile I. pacificus activity was found to be broadly similar to seasonal patterns of 

activity reported for northern California, based on flagging and tick removal from western 

fence lizards (Sceloporus occidentalis), which are a primary host for juvenile I. pacificus in 

northern California (Lane and Loye 1989). However, due to the short duration of sampling 

for juvenile ticks in this study, seasonal trends could not easily be discerned.  

Ixodid ticks, especially those species that spend a significant proportion of their life-

cycle off-host, are highly susceptible to adverse abiotic conditions (e.g. high temperatures 

and low humidity), and avoid such conditions by entering states of inactivity or behavioral 

diapause (Needham and Teel 1991, Padgett and Lane 2001). I. pacificus, which spends >90% 

of its three year life cycle off-host, has been found to be particularly susceptible to high 
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temperatures and low humidity and precipitation, which likely drive seasonal activity 

patterns of this tick (Eisen et al. 2002, Eisen et al. 2003, Padgett and Lane 2001, Swei et al. 

2011). Thus, while the variation in patterns of seasonal activity between the sites sampled in 

northwestern and southern California may be due to interannual differences in weather and 

abiotic conditions (Figures 5 and 6; Table 1), especially given the drought conditions that 

California experienced during the course of the present study, broader climatic differences 

between northern and southern California are consistent. Therefore, they may be expected to 

produce consistent differences in tick density and seasonal activity between the two regions 

(Eisen et al. 2003). This effect of climate could manifest as a direct negative effect on tick 

survivorship during off-host periods throughout the protracted summer drought, or could be 

indirect through a negative effect on the densities of vertebrate hosts resulting in fewer 

successful juvenile tick blood meals in southern California.  

The observed patterns of seasonal activity in central and southern California thus 

have potential implications for tick-borne disease risk in the western US under future climate 

change. In California, temperatures are expected to increase by 1.5 °C to 5.8 °C, depending 

on emissions scenarios and the climate model used, by the end of the century (Cayan et al. 

2008, Hayhoe et al. 2004). Much of this warming is expected to occur during the summer 

months (Hayhoe et al. 2004). Additionally, average precipitation is expected to decline in 

California, primarily in the winter months (Hayhoe et al. 2004). These projected impacts of 

climate change in California are predicted to be more pronounced in northern and north 

pacific coastal regions of the state (Cayan et al. 2008, Hayhoe et al. 2004), where tick-borne 

disease risk is currently higher (Eisen et al. 2006b, Salkeld et al. 2014), than elsewhere in the 

state. If climate change leads to hotter, longer summers and drier winters in northwestern 
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California, more closely approximating the current climate in southern California, this could 

lead to reduced tick-borne disease risk in northwestern California via climate impacts on tick 

density and seasonal activity (Eisen et al. 2006b, 2003, 2006a). This prediction contrasts with 

those made for tick-borne disease in the eastern US (e.g., Ogden et al. 2014), as well as with 

the often reported result that climate change will exacerbate infectious disease burden and 

increase risks to human health (Patz et al. 2005, Altizer et al. 2013). Interactions between 

climate change and infectious disease are complex, and impacts will vary regionally and by 

disease agent (Lafferty 2009, Holt et al. 2009). 

However, given the uncertainties surrounding the magnitude and direction of climate 

change impacts, as well as uncertainty surrounding species adaptation to changing climate—

in this case ticks and their vertebrate hosts, particularly reservoir hosts for B. burgdorferi and 

other pathogens—impacts of climate change on tick-borne disease risk in California remain 

challenging to predict. Future studies should examine patterns of tick activity and density, 

host-feeding, and infection prevalence across California’s extensive latitudinal and climate 

gradients, to better inform our understanding of current, as well as predictions of future, tick-

borne disease risk in California. 

The truncated period of seasonal activity of the juvenile stages in particular, also has 

important implications for enzootic pathogen transmission dynamics in southern California. 

I. pacificus has three parasitic life stages, and one opportunity for pathogen acquisition 

during the larval stage before molting into the epidemiologically important nymphal stage. 

Given the highly reduced period of activity of the larval stage in this study, there exists a 

shorter period of time and fewer opportunities for larval ticks to feed successfully on an 

infected host. This could lead to lower infection rates in the nymphal stage, as observed in 
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previous studies (Lane et al. 2013, Padgett et al. 2014), than in northwestern California as 

well as lower risk of human infection. However, to determine whether this mechanism is 

indeed operating, additional studies are needed that explore the seasonality of host feeding 

across various species of hosts including reservoir hosts as well as western fence lizards, a 

dilution host in this system (Lane and Quistad 1998). Additionally, the proportion of blood 

meals coming from reservoir hosts may differ between southern and northern California, 

which may also be playing an important role in the ecology of tick-borne pathogens in this 

region. 

The low number of nymphs retrieved in the central and southern California study 

sites may be due to regional behavioral differences in tick questing. For example, other 

studies have yielded similar results in which nymphal I. scapularis in the southeast exhibit 

different questing behavior than I. scapularis in the northeast (Arsnoe et al. 2015), and 

nymphal I. pacificus in southern California were found at similarly low densities by flagging, 

which did not track densities of host feeding nymphs on western fence lizards (Lane et al. 

2013). Thus, while southern California nymphal ticks may be active below the surface of the 

leaf litter or exhibit more nidicolous questing behavior than in northern California, they are 

not found at high densities using the drag method, which closely approximates human risk of 

tick encounter. Such low encounter rates using the drag method with nymphal ticks, the most 

epidemiologically important tick life stage for pathogen transmission to humans, coupled 

with low rates of enzootic pathogen transmission and tick infection prevalence (Lane et al. 

2013, Padgett et al. 2014) suggests that human risk of tick-borne disease is exceedingly low 

in central and southern California. If human cases of Lyme disease are acquired in southern 

California, dates of onset are expected to fall within a brief window between early March to 
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early June, given observed nymphal I. pacificus questing activity in this region, and the 

average delay in occurrence of 10 days following tick bite of erythema migrans rash, the 

characteristic skin lesion associated with human Lyme disease (Nadelman et al. 1996). 

In conclusion, based on this and other recent studies (Lane et al. 2013, Padgett et al. 

2014), risk of I. pacificus tick encounter and human tick-borne disease appear to be 

comparatively low in southern California. The period of seasonal activity of questing I. 

pacificus, particularly the juvenile stages, was truncated in this study in the three sites 

sampled in southern California relative to activity patterns reported from one recent study, as 

well as historical data and long-term monitoring of sites in northwestern California (Salkeld 

et al. 2014). Additionally, density of questing nymphal ticks—the most important life stage 

for human disease risk—collected using the flagging method, which is a good proxy for risk 

of human tick encounter, was found to be very low in various sites across central and 

southern California (Lane et al. 2013, and the present study). Given the potential role of 

weather and climate, including seasonal precipitation patterns, relative humidity and 

temperature, in producing the observed differences in density and seasonal activity between 

regions in California (Eisen et al. 2006b, 2006a, 2003), these results also have implications 

for reduced tick-borne disease risk under future climate change in the western United States. 
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G. Figure Captions 

Figure 1. Map of tick sampling sites in northwestern, and southern California. California 
hillshade data layer was obtained from Cal-Atlas (www.atlas.ca.gov/download.html) through 
https://koordinates.com. 

 
Figure 2. Seasonal activity patterns of adult western blacklegged ticks, Ixodes pacificus, in 
California sampling sites. Polygons represent tick density through time, and points represent 
sampling events. (a) Adult I. pacificus ticks per 100m2 collected at China Camp State Park, 
2011-2012; (b) adult I. pacificus ticks per 100m2 collected at Paradise Reserve, 2014-2015; 
(c) adult I. pacificus ticks per 100m2 collected at Sedgwick Reserve, 2013-2014; and (d) 
adult I. pacificus ticks per 100m2 collected at Stunt Ranch Reserve, 2014-2015. Note that the 
y-axes are scaled differently, illustrating marked differences in tick density between the 
northern site and the southern sites. Data are not available from China Camp State Park after 
March 19, 2012, where density appears to drop precipitously to zero in panel (a) of the 
figure.  

 
Figure 3. Seasonal activity patterns of nymphal western blacklegged ticks, Ixodes pacificus, 
in California sampling sites. Polygons represent tick density through time, and points 
represent sampling events. (a) Nymphal I. pacificus ticks per 100m2 collected at China Camp 
State Park, 2010-2012; (b) nymphal I. pacificus ticks per 100m2 collected at Paradise 
Reserve, 2014-2015; (c) nymphal I. pacificus ticks per 100m2 collected at Sedgwick Reserve, 
2013-2014; and (d) nymphal I. pacificus ticks per 100m2 collected at Stunt Ranch Reserve, 
2014-2015. Note that the y-axes are scaled differently, illustrating marked differences in tick 
density between the northern site and the southern sites. Data are not available from China 
Camp State Park after May 2, 2012, where density appears to drop precipitously to zero in 
panel (a) of the figure.  
 
Figure 4. Seasonal activity patterns of larval western blacklegged ticks, Ixodes pacificus, in 
California sampling sites. Polygons represent tick density through time, and points represent 
sampling events. (a) Larval I. pacificus ticks per 100m2 collected at China Camp State Park, 
2010-2012; (b) larval I. pacificus ticks per 100m2 collected at Paradise Reserve, 2014-2015; 
(c) larval I. pacificus ticks per 100m2 collected at Sedgwick Reserve, 2013-2014; and (d) 
larval I. pacificus ticks per 100m2 collected at Stunt Ranch Reserve, 2014-2015. Note that the 
y-axes are scaled differently, illustrating marked differences in tick density between the 
northern site and the southern sites.   

 
Figure 5. Weather station data from Sedgwick, Stunt Ranch and China Camp State Park 
collection sites. (a) Average weekly relative humidity (%) from 2008-2015; solid lines 
represent a smoothing loess for each site illustrating seasonal patterns. (b) Average weekly 
temperature (°C) from 2008-2015; solid lines represent a smoothing loess for each site 
illustrating seasonal patterns. Shaded boxes overlying the data in each panel of the figure 
illustrate the dates over which tick sampling took place at each of the three sites. Weather 
station data is not available prior to 2013 at Stunt Ranch, and no data is available for Paradise 
Reserve.  
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Figure 6. Seasonal precipitation (mm) from 2008-2015: (a) China Camp State Park, (b) 
Sedgwick Reserve, and (c) Stunt Ranch Reserve. Timing between rain events is longer at 
both Sedgwick and Stunt Ranch Reserves producing a more protracted summer drought at 
these sites than is experienced at China Camp State Park in northwestern California. Data are 
not available for Stunt Ranch Reserve prior to 2013, and no data are available for Paradise 
Reserve.  
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Figure 2. 
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Figure 3.  
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Table 1. Summary of observed seasonal patterns of questing Ixodes pacificus in southern 
California sites, and China Camp State Park in northwestern California. Length of season for 
each stage is presented including number of days that each season lasted at each site, as well 
as dates of peak density—sites sampled over multiple seasons have two numbers in 
parentheses, indicating the number of days each season lasted. 
 

Sampling 
Location 

Date of 
Investigation 

Adult 
Season  

(# of days) 

Nymphal 
Season  

(# of days) 

Peak 
Nymphal 
Density 

Larval 
Season  

(# of days) 

Peak 
Larval 

Density 
China Camp 
State Park 
(Marin Co.) 

April 2010 – 
March 2012 

November 
– Mid June 

(210) 

Early 
February – 

August 
(175, 158)  

April – June April – 
June (81, 

80) 

May 

Paradise 
Reserve 
(Santa 

Barbara 
Co.) 

November 
2013 – June 

2015 

Late 
November 

– April 
(194, 161) 

Early 
March – 
Mid May 
(63, 34) 

March – 
April 

Early 
March – 
Mid May 
(63, 62) 

March 

Sedgwick 
Reserve 
(Santa 

Barbara 
Co.) 

December 
2012 – June 

2014 

Mid 
December 
– April (94, 

107) 

Late 
February – 
Mid April 
(47, 38) 

March – 
April 

Late 
February – 
Mid May 
(47, 38) 

March 

Stunt Ranch 
Reserve 

(Los 
Angeles 

Co.) 

December 
2013 – June 

2015 

December 
– April (67, 

70) 

Early 
March – 

Early June 
(82, 98) 

March – 
April 

Early 
February – 
May (117, 

72) 

February – 
March 

 



 

 

 
28 

Table 2. Peak density per 100m2 of each parasitic life stage (mean and standard deviation 
over sampling events during seasonal peak activity are presented in parentheses), and total 
number of collected adults, nymphs and larvae per site over the course of the two years 
sampled for each site. Density of adults is expressed as average density per 100m2 of 
understory vegetation, and juvenile tick density is expressed as average density per 100m2 of 
leaf litter, following the sampling protocol employed. Total area sampled differs between 
sites, thus density and total number of ticks collected do not scale by the same factor across 
all sites sampled. 
 

Sampling 
Location 

Adult Peak 
Density/100m2 

(Mean, SD) 

Total 
Adults 

Collected 

Nymph Peak 
Density/100m2 

(Mean, SD) 

Total 
Nymphs 
Collected 

Larva Peak 
Density/100m2 

(Mean, SD) 

Total 
Larvae 

Collected 
China 

Camp State 
Park (Marin 

Co.) 

15.75 
(5.03, 3.46) 

364 
 

21 
(8.33, 5.28) 

336 
 

500 
(232.08, 
151.38) 

277 

Paradise 
Reserve 
(Santa 

Barbara Co.) 

2.8 
(0.86, 0.54) 

194 
 

3.6 
(1.18, 1.22) 

34 
 

27.5 
(8.64, 8.57) 

125 

Sedgwick 
Reserve 
(Santa 

Barbara 
Co.) 

0.75 
(0.44, 0.15) 

132 
 

3.4 
(2.86, 2.54) 

58 
 

76 
(61.00, 83.42) 

308 

Stunt 
Ranch 

Reserve 
(Los 

Angeles 
Co.) 

0.9 
(0.51, 0.36) 

52 
 

1.6 
(0.97, 0.50) 

34 
 

146.4 
(46.65, 67.08) 

1020 
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II. Lyme disease risk in southern California: abiotic and 

environmental drivers of Ixodes pacificus (Acari: Ixodidae) density 

and infection prevalence with Borrelia burgdorferi 

This chapter was submitted for publication in Parasites and Vectors on September 2, 

2016. Authorship on the manuscript is as follows: Andrew J. MacDonald, David W. Hyon, 

John B. Brewington III, Kerry O’Connor, Andrea Swei and Cheryl J. Briggs. 

A. Introduction 

In recent decades numerous vector-borne zoonotic diseases (VBZDs) have emerged, 

and endemic regions have experienced increases in human incidence and transmission 

intensity in vector populations and wildlife hosts (Weaver and Reisen 2010, Kilpatrick and 

Randolph 2012). Transmission of VBZDs to humans requires the interaction of human 

populations with natural pathogen transmission cycles between competent vectors and 

reservoir hosts at the human-animal interface (Gortazar et al. 2014). Understanding the 

factors influencing the distribution and abundance of vector species (Kilpatrick and 

Randolph 2012), as well as infection prevalence in vector populations is thus critical to an 

understanding of human risk of infection with VBZDs. For VBZDs, infection prevalence in 

vector populations, and thus risk of human transmission, are driven primarily by wildlife 

reservoirs and enzootic pathogen transmission cycles (Kilpatrick and Randolph 2012). 

Management and control of such zoonoses is quite difficult because vaccination or treatment 

of human populations has no effect on underlying enzootic transmission, and infection is 

determined largely by contact with vectors (Barrett and Higgs 2007, Kilpatrick and Randolph 

2012). Strategies for disease control involving environmental management or land use 

planning (Jackson et al. 2006, Larsen et al. 2014) may be increasingly important due to 
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development of resistance to insecticides in vector populations and the challenges associated 

with managing enzootic transmission cycles (Lindsay and Birley 2004, Beaujean et al. 2016). 

Such management strategies require an understanding of the abiotic and environmental 

conditions that promote both vector populations and elevated infection prevalence with 

zoonotic pathogens on the landscape. 

 In this study, the influence of environmental and abiotic factors on densities of the 

primary vector of Lyme disease in the western United States (US), Ixodes pacificus, as well 

as infection prevalence of vector ticks with the causative agent, Borrelia burgdorferi sensu 

stricto (s.s.), were investigated in southern California. Tick-borne diseases, such as Lyme 

disease, are particularly challenging to manage because tick populations are difficult to 

control (Beaujean et al. 2016) and environmental or landscape risk factors conducive to high 

tick abundance are often not well understood (Killilea et al. 2008). Lyme disease, which is 

caused by the spirochete bacterium B. burgdorferi s.s. and vectored by ticks in the genus 

Ixodes, is one of the most common tick-borne diseases globally. In North America, there are 

distinct Lyme disease foci in the eastern, upper midwestern and far western regions of the US 

and Canada. In the far western US, human incidence of Lyme disease is highest in 

northwestern California and investigations of the ecology of this disease system have largely 

focused on that region. In northern California, dense oak woodland habitats tend to harbor 

the highest densities of I. pacificus ticks, particularly for the larval and nymphal stages; they 

also experience higher nymphal infection prevalence with B. burgdorferi s.s., both key 

elements of entomological risk of human infection (Eisen et al. 2003, 2006a, 2009). Within 

oak woodland habitats, temperature—particularly maximum summer temperatures—relative 

humidity, elevation, aspect and presence of dense leaf litter have been found to be important 

predictors of tick density and/or infection prevalence (Padgett and Lane 2001, Eisen et al. 
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2010, Swei et al. 2011). These associations suggest that a combination of direct—e.g. 

accelerated molting and mortality due to high summer temperatures (Padgett and Lane 2001), 

and indirect—e.g. influences on densities of key tick hosts and pathogen reservoirs, effects of 

abiotic and habitat conditions determine tick density and infection prevalence in 

northwestern California (Swei et al. 2011).  

However, there is evidence suggesting that these abiotic and environmental factors 

may not be predictive of entomological risk in central and southern California where 

nymphal I. pacificus questing behavior appears to differ markedly from that observed in 

Lyme-endemic northwestern California (Lane et al. 2013, MacDonald and Briggs 2016). 

Densities of questing nymphal I. pacificus are extremely low in oak woodland sites in 

southern California (Lane et al. 2013, MacDonald and Briggs 2016) relative to infestation of 

western fence lizards (Sceloporus occidentalis), a key host for juvenile I. pacificus and 

effective sentinel animal for detecting juvenile tick activity in this region (Lane et al. 2013). 

This suggests both that: 1) risk of human exposure to nymphal I. pacificus in southern 

California is relatively low and likely to be highly localized to areas with habitat types, 

abiotic conditions and host assemblages that promote nymphal questing activity; and 2) due 

to comparatively high densities of questing adult I. pacificus relative to nymphs, possibly due 

to differences in questing behavior in the nymphal stage (MacDonald and Briggs 2016), 

exposure to adult female ticks may present greater risk in central and southern California 

than exposure to nymphal ticks (Lane et al. 2013, MacDonald and Briggs 2016). 

Thus, in this study we were interested in determining whether dense oak woodland 

habitats are associated with elevated densities of nymphal I. pacificus and whether different 

habitat and abiotic conditions might be better predictors of exposure to adult I. pacificus, and 

therefore aggregate entomological risk, in southern California. Given the low densities of 
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nymphal I. pacificus observed in previous studies (Lane et al. 2013, MacDonald and Briggs 

2016), we expected to find elevated densities of nymphal ticks to be narrowly associated with 

dense oak woodland habitat, higher in elevation, with dense leaf litter in the understory, 

which together promote microclimatic conditions found to be important to nymphal tick 

abundance in northern California (Eisen et al. 2003, 2006a, 2010, Swei et al. 2011). 

Similarly, we expected elevated adult tick density to be associated with dense oak woodland, 

or forest edge habitats where deer, important reproductive hosts for adult ticks, tend to 

forage. Additionally, we were interested in investigating whether these same abiotic and 

habitat conditions predict vector tick infection with B. burgdorferi s.s. on the landscape, or 

whether this pathogen may be associated with different habitats and environmental 

conditions in southern California. Again, we expected a similar pattern, with elevated 

infection prevalence associated with dense oak woodland habitats as in northern California 

(Eisen et al. 2003, 2010, Swei et al. 2011). To address these questions, tick surveys were 

conducted in plots representing a range of habitats, environmental and abiotic conditions in 

Santa Barbara County, California across two years to elucidate the habitat and abiotic factors 

associated with elevated entomological risk (e.g. elevated densities of infected ticks) for 

Lyme disease in this understudied region. 

B. Methods 

1. Field sites, tick sampling and environmental data collection 

 Questing ticks were collected in 24, 50 x 50m plots across three sites in Santa 

Barbara County, California. Climatic conditions in this region are Mediterranean with cool, 

wet winters and warm, dry summers with microclimatic variation driven largely by 

topography and habitat characteristics. The three sites selected were: 1) Sedgwick Reserve 

(34°42’04.38” N, 120°02’50.81” W), a 2,388 ha reserve that is part of the University of 
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California Natural Reserve System (UCNRS) and located in the Santa Ynez Valley (x10 

plots); 2) Paradise Reserve (34°32’22.07” N, 119°47’51.89” W), a ~67 ha privately owned 

natural area located on the north side of the Santa Ynez Mountains in the Los Padres 

National Forest (x4 plots); and 3) Coal Oil Point Reserve (34°24’52.96” N, 119°52’48.59” 

W), a 69 ha coastal reserve that is part of the UCNRS and located west of the University of 

California, Santa Barbara campus (x10 plots) (Figure 1). These three sites were chosen 

because they represent a range of habitat types, abiotic conditions and degree of maritime 

influence common in this region. Coal Oil Point experiences a significant marine influence, 

which moderates temperature extremes and provides fog water subsidies, with habitat 

dominated by coastal scrub, grassland and patches of coast live oak (Quercus agrifolia). 

Sedgwick experiences less maritime influence, with generally warmer summers and colder 

winters, with habitats dominated by oak woodland on north facing slopes, oak savannah in 

valleys, as well as grassland and chaparral/scrub. Paradise Reserve is dominated by oak 

woodland with patches of open grassland and chaparral/scrub habitat interspersed, and 

experiences lower temperature extremes than Sedgwick, but less maritime influence than 

Coal Oil Point. Plots were chosen within each of these three sites using a stratified random 

design to ensure that different habitat types (oak woodland, oak savannah and 

chaparral/grassland) with a range of abiotic and environmental conditions were sampled 

equally across all three sites. Habitat types were classified based on satellite imagery from 

Google Earth and subsequently ground-truthed (see below). Plots were chosen randomly, and 

located at least 200 m apart, within each broad habitat type with the aid of Quantum GIS, an 

open source Geographic Information System (Quantum GIS Development Team 2016). 

 Data on plot-specific habitat, abiotic and environmental variables were collected each 

year of the study (2013-2015), and chosen based on previous studies (Padgett and Lane 2001, 



 

 
34 

Eisen et al. 2003, Swei et al. 2011). Data loggers, placed in each plot just above ground level 

and protected from direct solar radiation, collected hourly temperature data during both 

summer and winter months (iButtons, Maxim Integrated, San Jose CA). From the data 

loggers, we calculated average maximum and minimum daily temperature over the dry (1 

May-31 October) and rainy (1 November-30 April) seasons. We estimated overstory canopy 

cover in each plot using satellite imagery derived from Google Earth and processed in 

Quantum GIS (Quantum GIS Development Team 2016), which we subsequently ground-

truthed with a densitometer. We estimated percent cover of leaf litter greater than 5cm in 

depth, grass/herbaceous vegetation, understory woody vegetation (e.g. Artemisia californica, 

Baccharis pilularis, Toxicodendron diversilobum) and bare ground following the same 

procedure as above. Additionally, we measured stem density (number of stems greater than 5 

cm in diameter at breast height and greater than 1.5 m in height), slope and elevation at the 

center of each plot, as well as density of inhabited dusky-footed woodrat (Neotoma fuscipes) 

middens (Hamm et al. 2002). Woodrat middens were censused because N. fuscipes is an 

important reservoir for B. burgdorferi s.s. in California, the nests are conspicuous on the 

landscape and density of active nests may be indicative of small vertebrate host availability 

for the immature stages of I. pacificus more generally in this region (Bolger et al. 1997, 

Tietje et al. 1997). Measurements of relative humidity, while thought to be an important 

driver of tick survivorship during the summer dry season (Padgett and Lane 2001, Eisen et al. 

2010), were not collected at the plot level. However, weather station data from the region 

indicate that high summer- and winter-time temperatures are negatively correlated with 

measures of relative humidity (MacDonald and Briggs 2016), suggesting that plot level 

temperature and habitat characteristics alone are a good proxy for this metric of 

microclimatic conditions. 
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Questing ticks were collected at each site using the flagging method, in which a 1 m2 

white flannel cloth is dragged over understory vegetation and leaf litter, and attached, 

questing ticks are removed (e.g. Daniels et al. 2000). This method is effective for collection 

of Ixodid ticks and provides a proxy for human risk of tick encounter. An area of 500 m2 was 

sampled on each sampling event in each of the 24 plots, which were sampled weekly to bi-

weekly from late November to early June, the period of seasonal activity for I. pacificus in 

southern California (MacDonald and Briggs 2016) in order to determine both peak and 

average density of each life stage of I. pacificus in each plot. All 24 plots across the three 

reserves were sampled during the 2013-14 and 2014-15 seasons. All ticks encountered were 

collected and preserved in 70% ethanol for species identification and subsequent testing in 

the lab for infection with B. burgdorferi s.s. 

2. DNA extraction and pathogen detection 

DNA from all Ixodes spp. ticks was extracted using a DNeasy blood and tissue kit 

(Qiagen, Valencia, CA) following the manufacturer’s instructions. All tick samples were then 

screened for infection with spirochetes in the B. burgdorferi sensu lato (s.l.) complex, of 

which B. burgdorferi s.s. is a part, via nested polymerase chain reaction (PCR) targeting the 

5S-23S rRNA spacer region of all borreliae belonging to this group, following the methods 

outlined in Lane et al. 2004 (Lane et al. 2004). PCR-positive samples were sequenced at the 

5S-23S intergenic spacer region following Lane et al. 2004 (Lane et al. 2004), and sequenced 

on an AB 3100 (Applied Biosystems, CA). 

While I. pacificus is the primary vector of B. burgdorferi s.s. to humans, other species 

of ticks in the genus Ixodes have been implicated in enzootic transmission of this pathogen 

(Brown and Lane 1992). Given the relative dearth of previous studies on Lyme disease 

ecology in central and southern California, and the low prevalence in vector populations from 
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these few investigations (Lane et al. 2013, Padgett et al. 2014), all adult and nymphal Ixodes 

spp. ticks were extracted and tested individually for infection with B. burgdorferi s.l. 

complex spirochetes. 

3. Statistical analyses 

 Habitat and abiotic predictor variables, which were selected a priori based on 

previous studies (Padgett and Lane 2001, Eisen et al. 2003, Swei et al. 2011), were highly 

collinear in this study, and a comparatively large number of predictor variables of interest 

were measured relative to the number of observations (i.e. 10 to 13 predictor variables, 

depending on the model, and 24 sampled plots). To address the problem of multicollinearity 

and sample size, data dimensionality reduction was necessary in the statistical analyses 

employed. Partial least squares regression (PLSR) is particularly well suited to addressing 

these problems and has been shown to perform better than multiple regression or principal 

components regression techniques in similar ecological data analysis contexts (Carrascal et 

al. 2009).  

PLSR generalizes and combines features of principal component analysis and 

multiple regression to 1) eliminate the problem of multicollinearity in the independent 

variables (X) that plagues the ordinary multiple regression approach, and 2) eliminate the 

problem of choosing an optimum subset of predictors that remains in the principal 

components regression approach. In principal components regression, orthogonal 

components are chosen that explain as much of the variance in X as possible, which does not 

guarantee that the components chosen are relevant to the dependent variable of interest (Y) 

when subsequently used as predictors in a regression framework. In contrast, in PLSR a set 

of components, or latent vectors, are chosen that explain as much of the covariance between 

X and Y as possible. This is followed, as in principal components regression, by a regression 
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step in which the set of orthogonal components chosen through the simultaneous 

decomposition of X and Y are used to predict Y. 

PLSR models were specified using the abiotic and environmental data described 

above as predictors, and both peak and average density of adult, nymphal and larval I. 

pacificus ticks as well as infection prevalence of Ixodes spp. ticks with B. burgdorferi s.l. as 

outcome variables. Environmental data measured in the year prior to tick collection were 

used in the models because abundance and infection prevalence of adult and nymphal ticks in 

year t are largely determined by survivorship and activity of nymphal and larval ticks in year 

t – 1, due to the 3-year lifecycle of I. pacificus (Padgett and Lane 2001). Concurrent 

temperature and relative humidity may also influence tick questing activity (Padgett and 

Lane 2001, Eisen et al. 2010), so average daily maximum rainy season temperature from the 

year of collection was also included in all models. Models specified for the first year of the 

study include only concurrent rainy season temperature, and no measure of lagged summer or 

winter temperature, because data were not available for the previous year. Models were 

specified independently for the different years of the study to both investigate the robustness 

of the core results, as well as to separate natural interannual variation in tick density that 

might be influenced by variation in environmental conditions from year to year. All statistical 

analyses were conducted in R 3.2.4 (R Core Team 2016), and PLSR models were run using 

the package ‘plsdepot’ (Sanchez 2012). 

C. Results 

1. Drivers of tick density 

In total, 765 I. pacificus ticks—288 adults, 67 nymphs and 410 larvae—were 

collected over the duration of the study across all 24 plots. In addition, 9 Ixodes spinipalpis, 6 

Ixodes peromysci, 178 Ixodes brunneus, 257 Haemaphysalis leporispalustris (rabbit tick), 
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544 Dermacentor variabilis (American dog tick), and 525 Dermacentor occidentalis (pacific 

coast tick) were collected over the course of the study. Both average and peak density of 

adult and nymphal I. pacificus declined slightly from the 2013-14 to the 2014-15 season, 

though not significantly (Table 1). In contrast, average and peak larval I. pacificus density 

increased slightly, though not significantly, from 2013-14 to the 2014-15 seasons (Table 1). 

Separate PLSR models were constructed for each tick response variable for each year of the 

study. Results were remarkably consistent between models predicting peak and average 

density of adult, nymphal and larval I. pacificus within a given year, due to significant 

positive correlation between these two measures, so multivariate PLSR models were run with 

both peak and average tick density as outcome variables in the same model. The results of 

the multivariate models of tick density, as well as the models predicting infection prevalence 

are presented here.  

 In the multivariate model predicting average and peak density of adult I. pacificus in 

2013-14, 2 significant components were extracted that explained 71.8% of the original 

variance in the response variables (Table 2). The first component accounts for a reasonably 

large proportion of the overall variance (~45%), while the second component accounts for a 

smaller, but significant proportion (~27%). The underlying drivers of these two components 

can be deduced from the variable weights and variable importance in the projection (VIP) 

scores (Table 2). The sum of squared variable weights for each component is equal to one, so 

the relative contribution of individual variables to the meaning of each component, and thus 

to the interpretation of the factors driving tick density, can be estimated (Carrascal et al. 

2009). In the multivariate model predicting average and peak density of adult I. pacificus in 

2013-14, the first component is primarily determined by woodrat nest density (~43%), with 

stem density, canopy cover and elevation all contributing >10% of the information content of 
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the first component (Table 2). These four variables are not independent, but rather define an 

environment/habitat type that can be characterized as dense oak woodland. The significance 

of woodrat nest density here also suggests that host availability is an important driver of this 

first component. The VIP scores—which are calculated as the weighted sum of squares of the 

PLS weights, taking into account the explained variance of each PLS component—confirm 

that these same four variables (woodrat density, stem density, canopy cover and elevation) 

are driving the relationship between the first component and adult tick density. The 

correlation between average and peak adult tick density in 2013-14 and the position of the 24 

plots in the first component of this PLSR model are shown in Figure 2a and 2b (r=0.592, 

p<0.01; and r=0.707, p<0.0001, respectively). The second component is applied to the 

residual variation not explained by the first component, illustrated in Figure 2c and 2d 

(r=0.742, p<0.0001; and r=0.592, p<0.01, respectively). Variable weights and VIP scores 

indicate that the residual variation in adult tick density is primarily explained by woodrat 

density, as well as a negative association with slope, canopy cover and stem density (Table 

2). This set of explanatory variables suggests an association with both forested and more 

open grassland/chaparral habitats, due to the woodland habitat requirements of dusky-footed 

woodrats (N. fuscipes) and the more open habitats indicative of the other set of significant 

predictor variables. This association with both woodland and more open habitats may be 

indicative of an association with the forest edge ecotone. Additionally, the significance of 

woodrat nest density may indicate the importance of juvenile tick host availability for 

predicting adult tick density. 

 The multivariate model of average and peak adult tick density the following year, in 

2014-15, yielded 2 significant components explaining 72.8% of the variance in the outcome 

variables (~44% and ~29% for component 1 and 2, respectively). VIP scores indicate that 
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woodrat density, stem density and a negative association with average daily maximum rainy 

season temperature in the year of tick collection are driving the relationship between the first 

component and adult tick density in 2014-15 (Table 2). Again, the residual variation is 

primarily explained by woodrat density, as well as a negative association with slope, stem 

density and canopy cover (Table 2). The multivariate PLSR models of average and peak 

adult I. pacificus density specified for each year of the study thus yielded remarkably 

consistent results. 

 Results of the multivariate models of average and peak nymphal I. pacificus density 

were not as strong as those predicting adult tick density and not as consistent between the 

two years of the study. In 2013-14, 2 extracted components explained 66% of the variation in 

the outcome variables (~48% and ~18% by component 1 and 2, respectively). VIP scores 

indicate that woodrat density, stem density and canopy cover are driving the relationship 

between the first component and nymphal tick density (Table 3; Figure 3). The residual 

variation is primarily explained by woodrat nest density, bare ground cover, as well as 

negative associations with stem density, slope and canopy cover. In the second year of the 

study, 2 extracted components explained only 54% of the variation in average and peak 

nymphal tick density (~30% and ~25% by component 1 and 2 respectively). The VIP scores 

indicate that woodrat density was no longer a significant predictor in 2014-15, instead 

percent leaf litter cover was the strongest predictor with stem density, canopy cover, 

elevation and a negative association with grass/herbaceous cover also contributing to the 

relationship between the first component and nymphal tick density (Table 3). Residual 

variation was explained primarily by leaf litter cover, as well as negative associations with 

woodrat density, stem density and canopy cover (Table 3). 
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The multivariate models of average and peak larval I. pacificus density show very 

similar patterns to models of nymphal ticks, suggesting immature stages responded similarly 

to abiotic conditions in this study. In 2013-14, 2 extracted components explained 48% of the 

variation in the outcome variables (~40% and ~8% by component 1 and 2, respectively). VIP 

scores indicate that woodrat density, stem density, canopy cover, leaf litter cover, as well as 

negative associations with grass cover are driving the relationship between the first 

component and larval tick density (Table 4; Figure 4). The residual variation is primarily 

explained by woodrat nest density, as well as negative associations with leaf litter cover, 

canopy cover, grass cover and stem density. In the second year of the study, 2 extracted 

components explained 63% of the variation in average and peak larval tick density (~36% 

and ~27% by component 1 and 2 respectively). The VIP scores again indicate that woodrat 

density was no longer a significant predictor in 2014-15, instead percent leaf litter cover was 

the strongest predictor with stem density, canopy cover, elevation and a negative association 

with grass/herbaceous cover also contributing to the relationship between the first component 

and larval tick density (Table 4). Residual variation was explained primarily by leaf litter 

cover, as well as negative associations with stem density, grass cover and canopy cover 

(Table 4). 

2. Drivers of infection prevalence 

Infection with Borrelia burgdorferi s.l. was extremely uncommon throughout the 

study area (Table 5). No I. pacificus, the primary vector of B. burgdorferi s.s. to humans, 

were infected with any spirochete in the B. burgdorferi s.l. complex out of 288 adults and 67 

nymphs that were tested in this study. However, other Ixodes spp. ticks were positive for 

infection with B. burgdorferi s.s., the causative agent of Lyme disease, as well as Borrelia 

bissettii, another spirochete in the B. burgdorferi s.l. complex that is involved in Lyme 
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borreliosis in central and southern Europe (Rudenko et al. 2008, 2009, Hulínská et al. 2009). 

B. bissettii has also been isolated from ticks and hosts throughout the US (Fedorova et al. 

2014), and DNA resembling B. bissettii has been isolated from the serum of Lyme disease 

patients in northern California (Girard et al. 2011), so may be involved in Lyme borreliosis in 

the US. Specifically, in this study three of five (60%) Ixodes peromysci tested were positive 

for B. burgdorferi s.l., all from Coal Oil Point Reserve (Figure 1). I. peromysci is a specialist 

on deer mice (Peromyscus maniculatus) and other small rodents (Lane et al. 1982). One 

nymph was infected with B. burgdorferi s.s. and two nymphs were infected with B. bissettii 

(Table 5). In addition, one out of three (33%) Ixodes spinipalpis tested were positive for B. 

burgdorferi s.l., again from Coal Oil Point Reserve. I. spinipalpis is thought to play a role in 

the enzootic maintenance of B. burgdorferi s.l. in California (Brown and Lane 1992) and one 

adult female was found to be infected with B. bissettii in this study (Table 5).  

Due to the lack of infection in ticks in 2013-14, PLSR models predicting infection 

were only run for the 2014-15 season. In addition to the environmental and habitat variables 

used in the models predicting tick density, tick species diversity (Shannon’s H) was included 

in the set of predictors for the model of infection prevalence (Table 6). The two extracted 

components explained 62% of the variation in infection prevalence (~53% and ~9% by 

component 1 and 2, respectively). In contrast to models predicting density of I. pacificus, 

VIP scores indicate that infection prevalence in the tick community was most strongly 

influenced by vector diversity and both summer and winter temperature. There was a strong 

positive association between tick diversity and infection prevalence with B. burgdorferi s.l. 

spirochetes in the tick community (Table 6). In addition, there was a strong negative 

association with maximum summer temperature, and positive association with maximum 

winter temperature (Table 6). 
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D. Discussion 

In order to better understand and manage risk of vector-borne and zoonotic disease an 

understanding of the environmental conditions that promote vector populations and infection 

prevalence with zoonotic pathogens on the landscape is increasingly necessary (Lindsay and 

Birley 2004, Jackson et al. 2006, Kilpatrick and Randolph 2012, Larsen et al. 2014, Ferreira 

and Castro 2016). In northwestern California, the region of western North America with the 

highest human incidence of Lyme disease (California Department of Public Health 2016), the 

abiotic, habitat and environmental conditions that might promote vector density and infection 

prevalence have been investigated in numerous studies (Padgett and Lane 2001, Eisen et al. 

2002, 2003, 2006a, 2006b, Lane et al. 2007, Eisen et al. 2010, Swei et al. 2011). While there 

is substantial natural heterogeneity in density and infection prevalence of I. pacificus in 

California, both over space and through time (Killilea et al. 2008, Swei et al. 2011), these 

previous studies have largely identified dense oak woodlands with microclimates that 

maintain high relative humidity and small temperature fluctuations, particularly in the 

summer months, as high risk areas for Lyme disease (Padgett and Lane 2001, Eisen et al. 

2002, 2003, 2006a, 2006b, Lane et al. 2007, Eisen et al. 2010, Swei et al. 2011). In southern 

California, one of the most densely populated regions of the US, Lyme disease ecology and 

environmental risk factors have not been well explored, though there is evidence to suggest 

the ecology and epidemiology of the disease differs from northwestern California (Lane et al. 

2013, MacDonald and Briggs 2016). 

 In this study, density of I. pacificus ticks across all life stages—particularly the 

nymphal stage, and across all plots and years sampled was very low in comparison to 

previous density estimates from similar studies conducted in northwestern California (Swei 

et al. 2011, Salkeld et al. 2014). For example, previous estimates of peak adult density in 
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northern California range from ~15 to ~380 ticks per 100m2 (Salkeld et al. 2014) compared 

to <1 in the present study to ~3 ticks per 100m2 in a recent study conducted in southern 

California (MacDonald and Briggs 2016), with similar patterns observed for nymphal and 

larval ticks. This may be due in part to the worsening drought conditions experienced in 

California over the course of the present study, but may also suggest actual differences in 

baseline density of I. pacificus between these two regions. For example, a previous study 

(Lane et al. 2013) found nymphal density to be extremely low in southern California in years 

prior to the recent drought. Furthermore, interannual patterns of nymphal and adult tick 

density in southern California suggest a significant difference in questing behavior of this life 

stage between northwestern and southern California. Adult tick density in year t should be 

determined by nymphal tick density in year t – 1, yet nymphal tick density in year t – 1 is 

substantially lower than adult tick density in year t in both the present study as well as in a 

recent study conducted in southern California (MacDonald and Briggs 2016). This hourglass-

shaped demographic distribution, resulting from much higher densities of adult and larval 

ticks than nymphal ticks, contrasts with the expected pyramid-shaped distribution found in 

other studies in northern California (Salkeld et al. 2014). This curious demographic pattern 

suggests that nymphal ticks are not being captured at the same rate by the flagging method in 

southern California as they are in northern California, which may indicate a regional 

difference in questing behavior of this stage similar to patterns observed in the southeastern 

US with nymphal I. scapularis (Arsnoe et al. 2015). 

 In this study, the abiotic and environmental drivers of variation in tick density and 

infection prevalence in southern California were investigated using a partial least squares 

regression approach. Results from models predicting adult I. pacificus density were 

consistent across years and suggest that host availability for juvenile ticks was the most 
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significant factor predicting adult tick density (i.e. VIP scores were substantially higher for 

woodrat density in both extracted components than for other significant predictors). Dense 

oak woodland and concurrent average daily maximum rainy season temperature were also 

found to be important drivers of adult tick density, as predicted, though not as strong as host 

availability for juvenile I. pacificus. The significance of rainy season temperature, concurrent 

with tick questing, for adult I. pacificus density suggests that high rainy season temperatures 

may preclude adult tick questing activity. Rainy season temperatures may be as significant as 

summer dry season conditions and average maximum daily temperature in the previous 

summer (Padgett and Lane 2001, Swei et al. 2011) in determining the likelihood of 

encountering adult I. pacificus ticks in southern California, and suggests that winter 

temperatures may also be an important limitation on adult tick populations. 

 Results from models predicting both nymphal and larval I. pacificus density were less 

consistent between years, and explained less of the variation in tick density than did models 

for adult tick density. In the first year of the study, results suggest that host availability for 

juvenile ticks was the strongest predictor of both nymphal and larval density, with variables 

characteristic of dense oak woodland also found to be significant predictors. However, in the 

second year of the study leaf litter cover was the strongest predictor of both nymphal and 

larval density, and host availability for juvenile ticks was no longer significant. This may 

suggest that as drought conditions worsened in California from 2013 through 2015, habitat 

characteristics—like dense leaf litter and overstory canopy—that promote the microclimatic 

conditions necessary for tick survivorship (i.e. lower temperatures and higher relative 

humidity) became more important than host availability as predictors of larval and nymphal 

tick density.  
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While the finding that no I. pacificus ticks were infected with B. burgdorferi s.l. 

spirochetes in this study suggests that human risk of Lyme disease in this region is 

exceedingly low, the identification of infected I. spinipalpis and I. peromysci ticks is 

significant. This finding suggests that despite enzootic transmission of the pathogen, 

populations of I. pacificus in southern California are avoiding infection, leading necessarily 

to lower human risk. Perhaps this lack of infection in I. pacificus populations is the result of 

low rates of blood feeding on reservoir hosts relative to non-competent hosts like western 

fence lizards (S. occidentalis). The exact mechanism behind this pattern of infection warrants 

further investigation, but suggests that pathogen transmission to humans through the bite of 

infected I. pacificus ticks in this region is highly unlikely. This pattern of infection also 

suggests that enzootic transmission of B. burgdorferi s.l. in natural transmission cycles 

involving alternative vector species may be more common than studies focusing solely on the 

role of I. pacificus in the ecology of tick-borne borreliae in California would suggest. This 

may be particularly relevant in the comparatively understudied central and south coastal 

regions of the state.  

Furthermore, PLSR model results suggest that diversity in the vector community may 

predict infection prevalence in tick populations, and perhaps in the host community as a 

result, though further investigation is necessary to explore this possible relationship. In this 

study, low diversity vector communities were comprised of common generalist species like I. 

pacificus and D. occidentalis, while higher diversity communities included both common 

generalist species as well as less common specialists like I. brunneus, I. spinipalpis and I. 

peromysci. The higher diversity communities thus included vector species thought to be 

involved in enzootic maintenance of B. burgdorferi s.l., explaining the relationship between 

vector diversity and infection prevalence. Additionally, due to the lack of explanatory power 
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of dusky-footed woodrat density for infection prevalence in ticks, this suggests that 

alternative reservoir hosts may be playing a more important role in the enzootic transmission 

of tick-borne borreliae in southern California. The significant negative relationship between 

maximum summer temperature and infection prevalence further corroborates the results of 

earlier studies suggesting that microclimates characterized by high relative humidity and 

small temperature fluctuations are more likely to harbor infected ticks in California. This also 

suggests that the protracted drought in California is negatively impacting tick populations 

and disease risk.  

These results, in addition to identifying possible abiotic and environmental risk 

factors for Lyme disease in southern California, have implications for tick-borne disease risk 

in the western US under climate change. Evidence suggests that the geographic range of the 

vector in the eastern US, Ixodes scapularis, is increasing as a result of climate change, 

driving increases in regional Lyme disease risk (Ogden et al. 2005, 2006, 2008, 2014, Levi et 

al. 2015). This is likely due to increases in the basic reproductive number, R0, of the vector, 

resulting from increased molting success and survivorship and accelerated phenology of I. 

scapularis due to milder winters, for example (Ogden et al. 2014). However, it is currently 

unknown whether Lyme disease foci in the western US will experience similar range shifts 

and changes in Lyme disease risk due to climate change. While growth and survival of I. 

scapularis appears to be limited primarily by winter conditions, I. pacificus, the primary 

Lyme disease vector in the western US, in contrast is largely limited by abiotic conditions in 

the summer dry season (Padgett and Lane 2001, Eisen et al. 2003, Swei et al. 2011). The 

results of this study further substantiate the importance of habitat and abiotic conditions that 

create microclimates that protect desiccation prone ticks from high temperatures and low 

relative humidity, as well as promote the necessary host populations for maintenance of B. 
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burgdorferi s.l. in enzootic transmission cycles. Moreover, in this study it appears that these 

factors were increasingly important as California’s historic drought progressed. In California, 

temperatures are expected to increase, and precipitation decrease into the future, particularly 

in northern coastal California (Hayhoe et al. 2004, Cayan et al. 2008), exacerbating seasonal 

drought. These expected climate change impacts will likely further directly limit I. pacificus 

populations, leading to reduced human risk. However, the response of the pathogen to 

climate change, through altered interactions between reservoir hosts and competent vectors, 

remains uncertain.  

While this study corroborates results of earlier studies conducted in northern 

California, identifying dense oak woodlands with abundant small vertebrate hosts to present 

the highest risk of I. pacificus tick encounter, particularly the nymphal stage, overall density 

of I. pacificus was found to be quite low in comparison to well studied sites in northwestern 

California (Swei et al. 2011, Salkeld et al. 2014). Furthermore, habitat types and 

microclimatic conditions thought to buffer juvenile ticks from desiccation over the summer 

dry season were found to be increasingly important as the study, and California’s historic 

drought, progressed. These results suggest that climate change in California may act as an 

important limiting factor on I. pacificus populations. Additionally, infection prevalence with 

B. burgdorferi s.l. was exceedingly low or zero across all plots sampled in this study, in 

contrast with northwestern California. However, despite the low risk of human Lyme disease 

infection posed by I. pacificus in southern California, comparatively high rates of infection 

were detected in other Ixodes spp. ticks. Further, infection prevalence was not associated 

with habitats characterized by oak woodland nor with the presence of dusky-footed woodrats, 

which suggests both that enzootic transmission of tick-borne borreliae may be more common 
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in southern California than suspected, and that different vector species and reservoir hosts 

may be playing a key role in the ecology of the transmission cycle in this region. 
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G. Figure captions 
 
Figure 1: Map of study sites. State of California is inset on the bottom left; Santa Barbara 
County is in the main frame with study site boundaries included. California hillshade data 
layer was obtained from Cal-Atlas (www.atlas.ca.gov/download.html) through 
https://koordinates.com. 

 
Figure 2: Density (a) and peak density (b) of adult I. pacificus in 2013-14 plotted against the 
position of each sampled plot in the first PLSR component; and residual variation in density 
(c) and residual variation in peak density (d) plotted against the position of each sampled plot 
in the second PLSR component. Correlation coefficients and p-values are presented in each 
panel. 
 
Figure 3: Density (a) and peak density (b) of nymphal I. pacificus in 2013-14 plotted against 
the position of each sampled plot in the first PLSR component; and residual variation in 
density (c) and residual variation in peak density (d) plotted against the position of each 
sampled plot in the second PLSR component. Correlation coefficients and p-values are 
presented in each panel. 

 
Figure 4: Density (a) and peak density (b) of larval I. pacificus in 2013-14 plotted against the 
position of each sampled plot in the first PLSR component; and residual variation in density 
(c) and residual variation in peak density (d) plotted against the position of each sampled plot 
in the second PLSR component. Correlation coefficients and p-values are presented in each 
panel. 
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Figure 3. 
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Figure 4. 
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Table 1: Average and peak density of I. pacificus adults, nymphs and larvae in 2013-14 and 
2014-15. Densities are presented as number of ticks per 100m2 with standard errors in 
parentheses (SE). 
 

  Average Density/100m2 (SE) Peak Density/100m2 (SE) 
Life Stage 2013-14 2014-15 2013-14 2014-15 

Adults 0.118 (0.047) 0.115 (0.053) 0.367 (0.096) 0.328 (0.122) 
Nymphs 0.021 (0.011) 0.012 (0.008) 0.085 (0.034) 0.067 (0.044) 
Larvae 0.06 (0.036) 0.148 (0.089) 0.318 (0.178) 0.914 (0.564) 
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Table 2: PLSR Model results for multivariate adult I. pacificus average and peak density in 
2013-14 and 2014-15. VIP scores greater than 1 indicate significant contributions of those 
variables to the variation explained by each component; variable weights indicate the 
direction of the effect; “ * ” indicates the variable contributing most significantly to the 
variation in the component, and the strongest predictor of tick density. The second 
component acts on residual variation not explained by the first component. 
 
  2013-14 2014-15 

                            Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Avg. Max. Winter 
Temp. 2013-14   -0.313 (0.990) -0.152 (0.837) -0.298 (1.033) 0.015 (0.806) 

Elevation (M) 0.337 (1.067) -0.136 (0.885) 0.272 (0.944) -0.089 (0.761) 
Slope 0.144 (0.454) -0.490 (1.012) 0.109 (0.379) -0.499 (1.122) 

Canopy Cover 
(%) 0.355 (1.122) -0.298 (1.058) 0.298 (1.032) -0.306 (1.043) 

Litter Cover (%) 0.246 (0.777) -0.389 (0.972) 0.229 (0.792) -0.330 (0.946) 
Shrub Cover (%) 0.021 (0.067) 0.077 (0.158) 0.041 (0.143) 0.066 (0.181) 
Grass Cover (%) -0.136 (0.431) 0.092 (0.384) -0.147 (0.508) 0.063 (0.419) 

Bare Ground 
Cover (%) 0.023 (0.071) 0.082 (0.167) 0.021 (0.074) 0.146 (0.321) 

Stem Density 
(#/Plot) 0.367 (1.160) -0.310 (1.097) 0.351 (1.216) -0.255 (1.098) 

Woodrat Density            0.654 (2.067)* 0.601 (2.007)* 0.631 (2.187)* 0.615 (2.165)* 

Avg. Max. Winter 
Temp. 2014-15 NA NA -0.350 (1.211) 0.036 (0.947) 

Avg. Max. 
Summer Temp. 

2014 
NA NA -0.128 (0.444) 0.257 (0.656) 

R-squared 0.45 0.268 0.442 0.285 
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Table 3: PLSR Model results for multivariate nymphal I. pacificus average and peak density 
in 2013-14 and 2014-15. VIP scores greater than 1 indicate significant contributions of those 
variables to the variation explained by each component; variable weights indicate the 
direction of the effect; “ * ” indicates the variable contributing most significantly to the 
variation in the component, and the strongest predictor of tick density. The second 
component acts on residual variation not explained by the first component. 
 
  2013-14 2014-15 

                            Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Avg. Max. Winter 
Temp. 2013-14   -0.187 (0.590) 0.081 (0.522) 0.021 (0.073) 0.377 (0.882) 

Elevation (M) 0.312 (0.986) -0.237 (0.929) 0.313 (1.083) -0.162 (0.885) 
Slope 0.071 (0.223) -0.637 (1.059) 0.228 (0.789) -0.238 (0.806) 

Canopy Cover 
(%) 0.386 (1.220) -0.225 (1.107) 0.307 (1.063) -0.308 (1.065) 

Litter Cover (%) 0.299 (0.946) -0.278 (0.929) 0.706 (2.445)* 0.403 (2.036)* 
Shrub Cover (%) 0.055 (0.173) 0.116 (0.241) 0.007 (0.026) 0.005 (0.023) 
Grass Cover (%) -0.235 (0.742) -0.082 (0.649) -0.317 (1.098) -0.184 (0.918) 

Bare Ground 
Cover (%) 0.249 (0.788) 0.534 (1.104) -0.068 (0.235) -0.025 (0.183) 

Stem Density 
(#/Plot) 0.470 (1.485) -0.043 (1.273) 0.365 (1.266) -0.234 (1.082) 

Woodrat Density            0.533 (1.686)* 0.310 (1.529)* 0.121 (0.419) -0.413 (1.013) 

Avg. Max. Winter 
Temp. 2014-15 NA NA -0.063 (0.218) 0.372 (0.885) 

Avg. Max. 
Summer Temp. 

2014 
NA NA 0.017 (0.059) 0.346 (0.809) 

R-squared 0.484 0.177 0.295 0.247 
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Table 4. PLSR Model results for multivariate larval I. pacificus average and peak density in 
2013-14 and 2014-15. VIP scores greater than 1 indicate significant contributions of those 
variables to the variation explained by each component; variable weights indicate the 
direction of the effect; “ * ” indicates the variable contributing most significantly to the 
variation in the component, and the strongest predictor of tick density. The second 
component acts on residual variation not explained by the first component. 
 
  2013-14 2014-15 

                            Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Avg. Max. Winter 
Temp. 2013-14   -0.178 (0.561) 0.112 (0.533) -0.017 (0.057) 0.395 (0.895) 

Elevation (M) 0.281 (0.890) -0.258 (0.878) 0.304 (1.054) -0.123 (0.849) 
Slope 0.124 (0.391) -0.647 (0.901) 0.214 (0.741) -0.254 (0.804) 

Canopy Cover 
(%) 0.351 (1.111) -0.281 (1.078) 0.311 (1.078) -0.293 (1.052) 

Litter Cover (%) 0.446 (1.411) -0.048 (1.292) 0.674 (2.335)* 0.443 (2.032)* 
Shrub Cover (%) 0.155 (0.491) 0.287 (0.580) 0.056 (0.194) 0.049 (0.184) 
Grass Cover (%) -0.356 (1.126) -0.315 (1.106) -0.343 (1.189) -0.238 (1.049) 

Bare Ground 
Cover (%) 0.046 (0.145) 0.381 (0.504) -0.088 (0.306) -0.054 (0.261) 

Stem Density 
(#/Plot) 0.438 (1.385) -0.046 (1.268) 0.372 (1.289) -0.215 (1.090) 

Woodrat Density            0.455 (1.438)* 0.305 (1.371)* 0.176 (0.609) -0.365 (0.946) 

Avg. Max. Winter 
Temp. 2014-15 NA NA -0.101 (0.351) 0.377 (0.895) 

Avg. Max. 
Summer Temp. 

2014 
NA NA -0.043 (0.150) 0.312 (0.716) 

R-squared 0.398 0.078 0.359 0.267 
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Table 5. Summary of infection results by tick species. 
 

Tick Species Number Tested Number 
Infected B. burgdorferi s.l. Type Species-Level 

Prevalence 

I. pacificus 288 adults; 67 
nymphs 0 NA NA 

I. brunneus 2 adults; 4 
nymphs 0 NA NA 

I. spinipalpis 1 adult; 2 
nymphs 1 adult B. bissettii 33.33% 

I. peromysci 0 adults; 5 
nymphs 3 nymphs B. burgdorferi s.s. (1);     

B. bissettii (2) 60% 

 



 

 
64 

Table 6. PLSR Model results for infection prevalence with Borrelia burgdorferi s.l. in Ixodes 
spp. ticks, 2014-15. VIP scores greater than 1 indicate significant contributions of those 
variables to the variation explained by each component; variable weights indicate the 
direction of the effect; “ * ” indicates the variable(s) contributing most significantly to the 
variation in the component, and the strongest predictor of infection. The second component 
acts on residual variation not explained by the first component. 
 
  2014-15 

                            Weights (VIP) 
Comp. 1 

Weights (VIP) 
Comp. 2 

Avg. Max. Winter 
Temp. 2013-14   -0.040 (0.144) 0.442 (1.594)* 

Elevation (M) -0.278 (1.001) -0.025 (0.092) 
Slope -0.103 (0.373) -0.186 (0.670) 

Canopy Cover (%) -0.091 (0.328) -0.239 (0.861) 
Litter Cover (%) 0.123 (0.443) -0.211 (0.761) 
Shrub Cover (%) 0.156 (0.561) -0.373 (1.344) 
Grass Cover (%) -0.144 (0.518) 0.381 (1.375) 

Bare Ground Cover 
(%) -0.296 (1.068) 0.311 (1.120) 

Stem Density 
(#/Plot) -0.065 (0.234) -0.202 (0.729) 

Woodrat Density            -0.144 (0.518) -0.185 (0.667) 

Tick Diversity 
(Shannon's) 0.603 (2.174)* 0.224 (0.807) 

Avg. Max. Winter 
Temp. 2014-15 0.012 (0.044) 0.401 (1.446) 

Avg. Max. Summer 
Temp. 2014 -0.605 (2.181)* -0.034 (0.124) 

R-squared 0.529 0.086 
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III. Boon and bust: Wildfire initially increases Lyme disease risk in 

California, but subsequently leads to persistent risk reduction 

This chapter is in preparation for submission for publication in Ecology. Authorship on 

the manuscript is as follows: Andrew J. MacDonald, David W. Hyon, and Cheryl J. Briggs. 

A. Introduction 

 Understanding the role of disturbance in shaping ecological communities remains a 

central aim in ecology, and is particularly salient in zoonotic disease systems on an 

increasingly altered and human-dominated planet (Bellard et al. 2012, Cardinale et al. 2012, 

Kilpatrick and Randolph 2012, Lawler et al. 2014). While disturbances, such as habitat 

fragmentation (Brownstein et al. 2005) or species invasions (Benedict et al. 2007) have been 

extensively studied in zoonotic and vector-borne disease systems, far less is understood about 

how the ecology of disease responds to catastrophic disturbance events such as hurricanes or 

wildfires.  

In the fire-prone western United States (US), ticks vector dozens of pathogens 

causing a range of debilitating diseases including Lyme disease, tick-borne relapsing fever, 

babesiosis and Rocky Mountain spotted fever. Many of these disease cycles, including Lyme 

disease, rely on transmission between tick vectors and a suite of animal hosts. While the 

spirochete bacteria that causes Lyme disease, Borrelia burgdorferi sensu stricto (s.s.), is 

amplified and transmitted most efficiently by small mammal hosts such as rodents (Brown 

and Lane 1992, Salkeld et al. 2008, Swei et al. 2012), maintenance of populations of the 

primary tick vector, Ixodes pacificus, is tied to large, wide ranging mammals like deer (Lane 

and Burgdorfer 1986). Further, host preference is specific to tick life stage, where larval and 

nymphal ticks feed primarily on small vertebrate hosts living and feeding in the leaf litter, 
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while the more robust adult ticks seek large mammal hosts from understory vegetation (Eisen 

et al. 2001, Casher et al. 2002, Eisen et al. 2003, Lane et al. 2009, MacDonald and Briggs 

2016). Due to the variable habitat requirements and spatial ranges of these different groups of 

key hosts, and the catastrophic impacts of large-scale, intense disturbance events like wildfire 

on important host and tick habitat, the effects of such disturbances on the Lyme disease 

system will strongly depend on how each group of hosts and each tick life stage responds to 

the disturbance event.  

In the western US, wildfire is one of the most important and significant natural, as 

well as anthropogenic, disturbances and plays a central role in the ecology of Californian 

forests and oak woodlands. In California, wildfire activity has increased in recent years and is 

expected to increase into the future (Westerling and Bryant 2007, Westerling et al. 2011). 

Wildfires have cascading impacts on entire communities from direct effects of mortality 

associated with fire itself (Smith et al. 2012), to post-fire succession and associated impacts 

on herbivores and their predators (Swanson et al. 2011). These impacts may have important 

implications for tick populations, both directly from mortality during wildfire events or 

associated with changes in environmental conditions following fire resulting from loss of 

vegetation, as well as indirectly through effects on vertebrate hosts (Lawrence 1966, 

Alverson et al. 1988, Allan 2009). Given the widespread distribution and frequency of 

wildfire disturbance in California, and expectations that wildfire frequency and intensity are 

likely to increase under climate change (Westerling and Bryant 2007, Westerling et al. 2011), 

better understanding the impacts of fire on ticks and their vertebrate hosts will be critical to 

predicting changing patterns of human disease risk associated with tick-borne pathogens 

throughout California and the West more generally. 
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While investigating the effects of fire on tick abundance and tick-borne disease risk 

has been of interest to disease ecologists and public health practitioners in its possible 

application as a control strategy or intervention measure for the prevention of human disease 

(Stafford et al. 1998, Padgett et al. 2009), these effects have only been explored utilizing 

controlled burns. Studies of the impacts of controlled burns largely have found minimal 

effects on tick populations or disease risk (Hoch et al. 1972, Scifres et al. 1988, Spickett et al. 

1992, Davidson et al. 1994, Stafford et al. 1998, Cully 1999, Horak et al. 2006, Allan 2009, 

Padgett et al. 2009). However, such fires are relatively small in geographic area as well as 

low in intensity and severity. Wildfires, on the other hand, can burn very large areas of forest 

and other habitat, and have the potential to burn at higher temperatures leading to more 

destruction of leaf litter, duff and below ground biomass (Neary et al. 1999). Wildfires thus 

have the potential to have greater impacts on tick abundance, both directly as well as 

indirectly through effects on vertebrate hosts, than do controlled or prescribed burns. Yet, the 

impact of wildfire on vector ticks and the community of key hosts in the transmission of 

Lyme disease has not been investigated.   

In this study we investigated the effect of wildfire on tick and vertebrate host 

abundance in southern California using the 2013 White Fire in the Los Padres National 

Forest of Santa Barbara County as a natural experiment. Given the comparatively large area 

(~800 ha) of oak woodland that burned in this wildfire and the destruction of both understory 

and overstory habitat, we expected that ticks would experience direct mortality from the fire 

due to destruction of leaf litter and duff, but that this effect may differ by life stage. 

Similarly, small vertebrate hosts like dusky-footed woodrats (Neotoma fuscipes)—important 

amplification hosts, and western fence lizards (Sceloporus occidentalis)—important dilution 

hosts, were expected to decrease in abundance in response to the fire due to direct mortality 
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and destruction of nests and burrows (Lawrence 1966). On the other hand, deer (Odocoileus 

hemionus californicus) which are important reproductive hosts for adult ticks were expected 

to increase in abundance following the fire due to an attraction to new vegetation for forage 

and reduced predation risk associated with more open habitats (Allan 2009). Thus, in 

aggregate, we expected initial reductions in tick populations and tick-borne disease risk in the 

year following the fire, with tick populations rebounding due to increased deer activity and 

recovery of vegetation providing necessary microclimates for tick survivorship in subsequent 

years (i.e. two years post-fire and beyond). To test these hypotheses, we sampled tick 

populations and vertebrate host communities within and adjacent to the White Fire burn 

extent for three years following the fire in order to track the response of each stage of the 

vector, and key vertebrate hosts in the transmission cycle of B. burgdorferi s.s., to wildfire 

disturbance. 

B. Methods 

1. Study site and habitat characterization 

Field sampling was conducted in Santa Barbara County, California, northwest of 

greater Los Angeles. This region is characterized by a Mediterranean climate with relatively 

cool, wet winters and warm, dry summers. With the onset of the summer dry season in 

California comes elevated wildfire risk, when live fuel moisture declines, increasing the 

chance of ignition (Roberts et al. 2006). This study took advantage of the May 2013 White 

Fire, which burned ~800 ha of oak woodland and oak savannah habitat in Los Padres 

National Forest while leaving neighboring oak woodland habitat unaffected (Figure 1).  

Within the Los Padres National Forest, six 1-hectare sites were chosen, three in oak 

woodland habitat within the burn extent and three in oak woodland habitat adjacent to the 

burn to sample abundance of ticks and hosts. These six sites were located within a ~4 km2 
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area and were chosen to minimize variation in background (pre-fire) microclimate or habitat 

differences between sites. We selected only dense oak woodland sites because this habitat 

type has been found to be associated with elevated densities of I. pacificus (Eisen et al. 2003, 

2006, Swei et al. 2011a), as well as with higher abundances of competent reservoir hosts for 

B. burgdorferi s.s. (as evidenced by higher infection prevalence in I. pacificus tick 

populations found in these habitat types) (Eisen et al. 2003).  

Site-specific habitat, abiotic and environmental data were collected each year of the 

study (2014-2016), and chosen based on previous studies (Padgett and Lane 2001, Eisen et 

al. 2003, Swei et al. 2011a), in order to track environmental conditions and recovery of 

vegetation following the fire. Data loggers, placed in each site just above ground level and 

protected from direct solar radiation, collected hourly temperature data during both summer 

and winter months (iButtons, Maxim Integrated, San Jose CA). From the data loggers, we 

calculated average maximum and minimum daily temperature over the dry (1 May-31 

October) and rainy (1 November-30 April) seasons. We also measured overstory canopy 

cover, stem density (number of stems greater than 5 cm in diameter at breast height and 

greater than 1.5 m in height), slope and elevation, percent cover of dense leaf litter (>5cm in 

depth), grass/herbaceous vegetation, understory woody vegetation (e.g. Artemisia 

californica, Toxicodendron diversilobum) and bare ground microhabitats in each site. Site-

specific data on abiotic and habitat characteristics were included in models of the effect of 

wildfire on tick and host abundance (see below) to control for habitat and abiotic factors that 

have previously been shown to influence tick and host populations (Padgett and Lane 2001, 

Eisen et al. 2003, Swei et al. 2011a). 

2. Tick and vertebrate host sampling 
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Ticks were sampled within each of the 1-ha sites approximately monthly between 

early February and early June of 2014-15, and between early March and early May of 2016. 

A total area of 4,000 m2 was sampled at each of the six sites in 2014 and 2015, and 2,000 m2 

each in 2016. Sampling in 2016 was interrupted by flooding of roads, which limited access to 

the field sites early in the season, so a smaller total area was sampled over fewer months in 

2016 than in 2014-15. Ticks were collected using the flagging method (e.g. Daniels et al. 

2000) in which a 1m x 1m white flannel cloth is dragged along the ground and understory 

vegetation and periodically checked for attached ticks. Collected ticks were stored in 70% 

EtOH for later identification, DNA extraction and pathogen testing by polymerase chain 

reaction (PCR).  

Small mammals like dusky-footed woodrats (Neotoma fuscipes) and western gray 

squirrels (Sciurus griseus) are important reservoir hosts for B. burgdorferi s.s., while other 

common species like deer mice (Peromyscus maniculatus) can act as pathogen reservoirs, 

even though they are less competent (Lane and Brown 1991, Brown and Lane 1992, Lane et 

al. 2005, Salkeld et al. 2008, Salkeld and Lane 2010, Swei et al. 2012). A 10 x 10 trapping 

grid was established at each of the six sites to estimate relative abundance of small mammal 

hosts. Each trap station was located 10 m apart from adjacent trap stations and included two 

extra-large Sherman live traps (7.6 x 9.5 x 30.5 cm; H.B. Sherman Traps, Tallahassee, FL, 

USA), for a total of 200 traps per grid. Mark-recapture trapping took place for three 

consecutive nights at each of the six sites between mid-March and mid-May, 2014. Captured 

mammals were anesthetized in order to collect tissue samples and attached ectoparasites, as 

well as tagged with an individually numbered eartag (National Band and Tag Company) for 

identification of recaptured animals.  
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Western fence lizards (Sceloporus occidentalis) are important hosts for immature I. 

pacificus (Casher et al. 2002). They also act as dilution hosts for B. burgdorferi s.s. in 

California, by cleansing ticks of infection with the pathogen (Lane and Quistad 1998). Lizard 

abundance was estimated using a “sight-re-sight” protocol in which five of the ten transects 

of each of the six trapping grids were surveyed for lizards between mid-March and mid-May, 

2014. Lizards were marked with a diluted latex paint mixture using a tree-marking gun (Swei 

et al. 2011b). Three different colors of paint were used, one for each of three consecutive 

days to determine lizard encounter history (Swei et al. 2011b). Lizards were also captured at 

each of the six sites between early March and early May, 2014 in order to estimate tick 

burdens.  

Because small vertebrate host sampling was undertaken in only the first year 

following the fire (2014), density of inhabited dusky-footed woodrat (Neotoma fuscipes) 

middens (Hamm et al. 2002) was also surveyed as a proxy for small vertebrate host 

abundance (Bolger et al. 1997, Tietje et al. 1997) to include as a covariate in models of tick 

abundance (see below). Density of N. fuscipes middens was used because it has been found 

to be a good proxy for small vertebrate host abundance both in this (Spearman’s correlation 

coefficient between sampled small vertebrate host abundance in 2014 and density of 

inhabited woodrat middens, ρ = 0.64) and in previous studies (Bolger et al. 1997, Tietje et al. 

1997). In addition, N. fuscipes is an important reservoir for B. burgdorferi s.s. in California, 

and a previous study found that controlled burns in northern California removed N. fuscipes 

from the system for at least one year following the burn (Padgett et al. 2009).  

Finally, deer are important reproductive hosts for adult I. pacificus (Lane and 

Burgdorfer 1986). California mule deer (Odocoileus hemionus californicus) use of each site 

was estimated using standardized pellet-group counts in which five, 4 x 22 m, randomly 
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assigned sub-plots within each site were surveyed for pellet-groups (>4 pellets/group) and 

subsequently cleared. Each of these sub-plots was then re-surveyed and new pellet groups 

quantified (White and Eberhardt 1980, Rowland et al. 1984). Pellet-group data were summed 

across all subplots within a site to obtain relative measures of deer use. Pellet-groups were 

surveyed and cleared in fall 2013, spring 2014, fall 2014, spring 2015, fall 2015 and spring 

2016. 

3. Infection with Borrelia burgdorferi 

DNA was extracted from collected ticks and small mammal tissue samples using a 

Qiagen DNeasy extraction kit (Qiagen, Valencia, CA) following manufacturers instructions. 

All tick and tissue samples were then screened for infection with B. burgdorferi sensu lato 

(s.l.) spirochetes via nested PCR targeting the 5S-23S rRNA spacer region of all borreliae 

belonging to this group, which includes B. burgdorferi s.s., following the methods outlined in 

Lane and colleagues (2004). 

4. Statistical analysis 

Generalized linear mixed-effects models (GLMMs) were used to determine the effect 

of wildfire on abundance of I. pacificus of each life stage. Counts of I. pacificus per 

collection date, per site were the outcome variables, regressed against whether the site was 

burned or not, year of the study (2014-2016, 1 year post-fire to 3 years post-fire), Julian day2 

(to account for temporal autocorrelation), site-specific habitat characteristics, as well as 

density of inhabited woodrat middens (as a proxy for small vertebrate host abundance) all 

included as fixed effects. Site was included as a random effect to control for repeated 

measures in each of the six sites sampled in each year of the study. An interaction term 

between burn status and year was included to determine whether the effect of being burned 

changed from year to year as the system recovered following the fire. In addition, lagged 
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relative deer activity was included in the model predicting larval tick abundance. Adult 

female I. pacificus ticks lay eggs in the spring at the site where they drop off of deer and 

other hosts following blood meals; these eggs hatch into larval ticks in the summer and 

emerge to seek hosts the following spring (Padgett and Lane 2001). Thus, deer activity in the 

previous spring would be expected to predict larval tick abundance in the current year, which 

has been found in similar systems (Ostfeld et al. 2006). In contrast, nymphal and adult tick 

abundance would be expected to respond more directly to small vertebrate host abundance 

(Ostfeld et al. 2006), because small vertebrate hosts account for the majority of blood meals 

taken by larval and nymphal ticks, respectively (Ostfeld et al. 2006). Thus, measures of deer 

activity would not be expected to be predictive of nymphal and adult tick abundance (Ostfeld 

et al. 2006), and were not included in these models. The full model of tick abundance for 

each life stage included each of these fixed and random effects described above. Subsequent 

candidate models were constructed that included combinations of subsets of covariates from 

the full model that did not display high levels of collinearity (determined by calculation of 

variance inflation factors), and model selection was based on Akaike weights derived from 

AICc and WAIC.  

The effect of wildfire on key hosts in the transmission of B. burgdorferi s.s. (e.g. 

dusky-footed woodrats) as well as keys hosts in the maintenance of tick populations (e.g. 

deer and western fence lizards) was also of interest, in order to understand and predict 

potential longer-term impacts of wildfire on Lyme disease risk. Thus, GLMMs were also 

used independently to determine the effect of wildfire on relative abundance of deer in each 

of the six sites in each year of the study. The measure of relative deer activity was regressed 

against whether the site was burned or not, year of the study (2014-2016, 1 year post-fire to 3 

years post-fire) and site-specific habitat characteristics (with the exception of temperature for 
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which there was no a priori argument for inclusion) all included as fixed effects, with site 

included as a random effect to control for repeated measures in each of the six sites sampled 

in each year of the study. An interaction term between burn status and year was included to 

determine whether the effect of being burned changed from year to year as the system 

recovered following the fire. Again, candidate models were constructed that included 

combinations of subsets of covariates from the full model that did not display high levels of 

collinearity and model selection was based on AICc and WAIC.  

GLMMs with Poisson error distributions for count data were implemented using the 

package ‘lme4’ (Bates et al. 2015) in R (R Core Team 2016) for adult I. pacificus abundance 

and relative abundance of deer, because they produced the best fit to the data. GLMMs with 

zero-inflated negative binomial error distributions were implemented using the package 

‘pscl’ (Zeileis et al. 2008) in R (R Core Team 2016) for nymphal and larval I. pacificus 

abundance, due to overdispersion in the data as well as the relatively low probability of 

encountering these life stages in southern California (MacDonald and Briggs 2016), resulting 

in excess zeroes in the data.  

In order to estimate relative abundance of small vertebrate hosts in the year following 

the fire (2014) within and adjacent to the burn extent, a Huggins closed population mark-

recapture model was used (Huggins 1989). Each species (P. maniculatus, N. fuscipes and S. 

occidentalis) was analyzed individually by site, for each of the six sampling sites using the 

‘mra’ package (McDonald 2015) in R (R Core Team 2016). Population estimates for small 

vertebrate hosts were only produced for the year following the fire (2013-14), because host 

sampling was conducted only in this year. Due to the resulting small sample size (6 

population estimates per host species, 3 in each treatment), and the comparatively large 

number of predictor variables, a partial least squares regression (PLSR) approach (Carrascal 
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et al. 2009) was utilized to determine the effect of wildfire, and other abiotic and habitat 

covariates, on populations of important host species in the year following the fire. PLSR is 

particularly well suited to data analysis problems involving larger numbers of predictor 

variables than data points, as well as collinearity if it is present in the set of predictors, 

outperforming multiple regression and principal components regression techniques 

(Carrascal et al. 2009). Separate PLSR models were specified for each host species to 

determine whether wildfire had a significant impact on relative abundance of each species, 

while controlling for other abiotic and habitat characteristics that might also be influencing 

small vertebrate host populations. PLSR models were similarly used to determine whether 

wildfire had a significant impact on average tick burdens for each species of small vertebrate 

host. PLSR models were run in R (R Core Team 2016) using the package ‘plsdepot’ 

(Sanchez 2012). 

C. Results 

1. Tick responses to wildfire 

Tick communities sampled in this region were dominated by western blacklegged 

ticks (I. pacificus), which made up ~94.4% of all 551 ticks collected. Pacific coast ticks 

(Dermacentor occidentalis) were also encountered, making up the other ~5.6% of ticks 

collected. In 2014, the first year post-fire, adult I. pacificus abundance was higher within the 

burn extent than in adjacent unburned woodland (Figure 2). However, this pattern reversed in 

the second (2015) and third (2016) years post-fire (Figure 2). GLMM model results further 

indicate a significant positive effect of wildfire on adult tick abundance, but the interaction of 

year and wildfire reveals a significant negative effect of wildfire on adult tick abundance in 

the second (2015) and third (2016) years post-fire (Table 1). Nymphal I. pacificus display a 

similar pattern, with abundance elevated within the burn extent in the first year following the 
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fire, relative to adjacent unburned oak woodland (Figure 3). In the second and third years 

post-fire, nymphal tick abundance dropped to zero within the burn extent, yet remained low 

and stable in adjacent unburned sites (Figure 3). GLMM model results indicate a significant 

positive effect of wildfire on nymphal tick abundance, but no significant interaction between 

burn status and year (Table 1), despite the absence of nymphal ticks from the burned sites in 

2015 and 2016. Larval I. pacificus on the other hand appeared to be more negatively 

impacted by the wildfire with reduced abundance within the burn extent relative to adjacent 

unburned sites in the first year following the fire (Figure 4). Similar to the pattern observed 

for nymphal ticks, larval abundance dropped to zero in years two and three post-fire (Figure 

4). In the case of larval I. pacificus, GLMM model results indicate a significant negative 

effect of wildfire on larval tick abundance, though again no significant interaction between 

burn status and year (Table 1). Unexpectedly, abundance of deer in the previous year was not 

found to be a significant driver of larval tick abundance. 

2. Host responses to wildfire 

Deer herds in the Los Padres National Forest of Santa Barbara County are comprised 

primarily of California mule deer (Odocoileus hemionus californicus) (USDA Forest Service 

2016). Relative abundance of deer in the year following the fire was substantially lower 

within the burn extent than in adjacent sites, though rebounded in subsequent years to levels 

similar to those observed in adjacent unburned sites (Figure 5). GLMM model results 

indicate a significant negative effect of wildfire on the relative abundance of deer (Table 2). 

However, the interaction of burn status and year indicates that deer activity was less 

negatively impacted in the second year post-fire, and recovered to pre-fire levels by the third 

year post-fire (Table 2 and Figure 5). 
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Small vertebrate host communities were dominated by western fence lizards (S. 

occidentalis), deer mice (P. maniculatus), and dusky-footed woodrats (N. fuscipes), though 

southern alligator lizards (Elgaria multicarinata), Merriam’s chipmunks (Tamias merriami), 

and California ground squirrels (Otospermophilus beecheyi) were also captured over the 

course of the study. In the year following the fire, abundance of deer mice was 

indistinguishable between burned and unburned sites (Figure 6), and PLSR model results 

indicate no significant contribution of wildfire to the observed patterns of abundance across 

the six sites sampled (Table 3). Similarly, abundance of fence lizards was not impacted by 

wildfire (Figure 6, Table 3). However, wildfire did have a substantial impact on the 

abundance of dusky-footed woodrats, with populations being reduced to zero within the fire 

extent (Figure 6) and PLSR model results indicating a significant negative contribution of 

wildfire to patterns of woodrat abundance across the six sites sampled (Table 3). Woodrat 

nests were also censused each year of the study, with little evidence of post-fire 

recolonization of burned sites until the third and final year of the study. Even so, 

recolonization and construction of new nests was extremely limited by the end of the three 

year study, representing only a small fraction of all inhabited nests across all study sites 

(~5%). The distribution of tick blood meals largely followed this same pattern of host 

abundance, with no detectable effect of wildfire on deer mouse tick burdens, but a small 

positive effect of wildfire on the residual variation in fence lizard tick burdens (Table 4), 

though tick burdens appeared to be slightly lower in sites impacted by wildfire on these two 

host species (Figure 7). However, due to the absence of dusky-footed woodrats from the sites 

impacted by wildfire, no tick blood meals came from individuals of this species within the 

burn extent (Figure 7, Table 4). The reduced deer activity, as well as lower tick burdens on 

small vertebrate hosts and loss of woodrat hosts observed in sites impacted by wildfire may 
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explain the elevated abundance of questing adult and nymphal I. pacificus, respectively, in 

the year immediately following wildfire in this study. 

3. Infection results 

A total of 397 adult and 52 nymphal I. pacificus ticks, as well as 72 P. maniculatus 

and 31 N. fuscipes were assayed for infection with B. burgdorferi s.l. None of these tick or 

host samples screened for B. burgdorferi s.l. were PCR-positive in this study. 

D. Discussion 

 Wildfire is one of the most significant and important natural disturbances in the 

western US, with impacts on everything from patterns of biodiversity to nutrient cycling and 

carbon storage (North and Hurteau 2011, Steel et al. 2015). Moreover, wildfire risk, extent 

and severity are expected to increase in California into the future under projected climate 

change, with particularly apparent impacts on forested habitats of northern California 

(Westerling and Bryant 2007, Westerling et al. 2011). These same habitats support the tick 

and host populations necessary for maintenance and transmission of numerous tick-borne 

diseases including babesiosis, anaplasmosis, relapsing fever and Lyme disease. Using the 

White Fire, which burned ~800 ha of oak woodland and oak savannah habitats in the Los 

Padres National Forest of Santa Barbara County, California, as a natural experiment, our 

study found that, in contrast with expectations, wildfire initially amplified tick-borne disease 

risk, with subsequent dampening of risk through time. Specifically, our study investigated the 

effect of wildfire on important host species, as well as on populations of I. pacificus, the 

primary vector of the causative agent of Lyme disease, for three years following the 2013 

White Fire in Santa Barbara County to determine the aggregate effect of fire on tick-borne 

disease ecology and disease risk. 
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Notably, abundance of both adult and nymphal I. pacificus, which can both carry and 

transmit B. burgdorferi s.s., was amplified by wildfire in the year immediately following the 

White Fire. Because this fire occurred during the last week of May of 2013, at the very end 

of the period of seasonal activity of I. pacificus in southern California (MacDonald and 

Briggs 2016), it is unlikely that a significant number of ticks were transported into the burn 

extent by wide ranging hosts, such as deer, prior to tick sampling in winter and spring of 

2013-14. Due to the timing of the fire, this suggests that any questing ticks collected in 

winter and spring of 2013-14 had survived the fire, likely in soil refugia (Padgett et al. 2009). 

Increases in abundance of questing adult and nymphal ticks may have been due to these life 

stages failing to successfully locate hosts (e.g. Perkins et al. 2006), because of the reduced 

abundance of deer and small vertebrate hosts within the burn extent. This increased 

abundance of questing adult and nymphal ticks on the landscape translates into elevated tick-

borne disease risk in the winter and spring immediately following summer wildfires.  

In contrast, adult and nymphal tick abundance declined substantially within the burn 

extent in the second and third years following the fire, suggesting a decrease in tick-borne 

disease risk through time. Reduced adult tick populations in years two and three following 

the fire could have been the result of lower nymphal tick survivorship over the summer dry 

season, due to adverse abiotic conditions resulting from the fire, or to fewer successful 

nymphal tick blood meals resulting from reduced host populations. Given comparable small 

vertebrate host populations and immature tick burdens between burned and unburned sites in 

the year following the fire, adult tick population reduction in subsequent years was more 

likely the result of reduced survivorship over the summer dry season. Nymphal tick declines 

in the second and third years post-fire may have also been due to adverse abiotic conditions 

and reduced larval tick populations immediately following the fire. Larval ticks appear to 
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have been most directly impacted by the fire, with decreased abundance within the fire extent 

in every year of the study, leading necessarily to lower nymphal tick abundance in 

subsequent years. Again, these effects may have been the result of adverse microclimate and 

abiotic conditions created by the fire, leading to reduced survivorship over the summer dry 

season, or direct mortality resulting from the wildfire itself. 

California mule deer (O. hemionus californicus), which are important reproductive 

hosts for adult I. pacificus (Lane and Burgdorfer 1986), showed patterns of reduced activity 

and abundance within the fire extent in the first two years following the fire, recovering to 

levels comparable to adjacent unburned woodland habitat by the third year of the study. This 

lagged recovery was unexpected, as new growth following fire has been shown to provide 

additional forage and attract deer (Allan 2009). The pattern observed may have been due to 

the interaction of wildfire and severe drought, which was impacting California throughout 

the course of this study, leading to a more protracted recovery of pre-fire vegetation. The 

ongoing drought may have also served to reduce interannual tick survivorship within the 

burn extent due to lack of suitable microclimates resulting from loss of soil organic matter, 

duff and herbaceous vegetation cover (Padgett and Lane 2001, Lane et al. 2009). Due to the 

lower deer activity observed within the fire extent, fewer successful adult tick blood meals 

and lower tick reproductive success would be expected to result from wildfire, serving to 

reduce local tick populations, as observed.  

Furthermore, despite the lack of a significant effect of wildfire on abundance of P. 

maniculatus and S. occidentalis, or on tick burdens on these two host species, the loss of N. 

fuscipes, an important pathogen reservoir in California (Lane and Brown 1991, Brown and 

Lane 1992, Swei et al. 2012), from sites impacted by wildfire is significant and corroborates 

earlier results from studies of prescribed burns (Padgett et al. 2009). Coupled with 
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significantly reduced tick populations within the burn extent, the loss of this relatively long-

lived pathogen reservoir could serve to reduce tick-borne disease risk for multiple years 

within California oak woodlands impacted by wildfire. While no ticks or hosts were infected 

with Borrelia burgdorferi s.s. in this study, similar to the results of previous studies 

conducted in southern California (Lane et al. 2013, Padgett et al. 2014), the effect of wildfire 

on tick populations and abundance of key hosts in the Lyme disease transmission cycle is 

expected to be consistent throughout the far western US. Thus, in aggregate, based on 

patterns of tick and host abundance that were monitored for three years following wildfire, 

tick-borne disease risk is expected to increase in the winter and spring immediately following 

summer wildfires in California and subsequently decline for a minimum of three additional 

years. 

Much of our understanding of the effects of disturbance on tick-borne disease systems 

comes from recent research focused on the impacts of forest fragmentation on Lyme disease 

ecology in the northeastern United States (LoGiudice et al. 2003, Allan et al. 2003, 

Brownstein et al. 2005, Jackson et al. 2006, Larsen et al. 2014, Seukep et al. 2015). In the 

northeast, forest fragmentation may have an indirect positive effect on the density of infected 

nymphal blacklegged ticks (Ixodes scapularis) through its effect on the community of hosts, 

namely through increases in abundance of highly competent hosts like white footed mice and 

loss of dilution hosts in more highly fragmented forests (LoGiudice et al. 2003, 2008). 

However, the evidence for this effect of fragmentation is mixed (e.g. Zolnik et al. 2015) and 

may be scale and context-dependent (Cohen et al. 2016). The ecology of Lyme disease in the 

far western United States is also influenced by perturbations resulting from disturbance 

events. For example, Swei and colleagues (2011b) found that the invasion of the plant 

pathogen Phytophthora ramorum, causing sudden oak death, leads to increases in the density 
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of nymphal I. pacificus ticks, the primary Lyme vector in the western US, and an increase in 

Lyme disease risk in more heavily impacted forests (Swei et al. 2011b).  

However, unlike forest fragmentation resulting from human development or sudden 

oak death, destruction of forested habitats by wildfire is much more sudden and catastrophic, 

which may have very different effects on the ecology of Lyme disease. Investigating the 

effects of fire on tick-borne disease systems has been of interest to disease ecologists and the 

public health community as a potential control strategy to protect human health (Stafford et 

al. 1998, Padgett et al. 2009). As such these effects have been explored utilizing controlled 

burns initiated for management purposes. Previous studies have found that controlled burns 

tend to reduce tick populations only temporarily (Hoch et al. 1972, Stafford et al. 1998, Cully 

1999), but that these effects do not last beyond the year of the controlled burn (Stafford et al. 

1998, Cully 1999). Other studies have even found an amplification of tick populations 

following fire (Scifres et al. 1988, Spickett et al. 1992, Horak et al. 2006), however, burn 

frequency may modify these effects (Davidson et al. 1994, Allan 2009). In one of the only 

studies of the effects of controlled burns on tick-borne disease ecology in the fire-prone 

western US, Padgett and colleagues (2009) found that controlled burns in northern California 

reduced populations of rodent hosts, but had no real effect on density of I. pacificus. In that 

study, adult I. pacificus were found to have survived in soil refugia and immature stages of I. 

pacificus were found infesting rodent hosts at similar, or even higher densities in the 

controlled burns as compared to unburned control plots suggesting that controlled burns have 

little impact on tick-borne disease risk in California (Padgett et al. 2009). 

Given the remarkable consistency of the results of these studies exploring the effects 

of controlled burns on tick and host populations, the logical expectation is that the effects of 

wildfire should follow the same pattern, namely that wildfire should have little effect on tick 
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populations and tick-borne disease risk. In this study wildfire was found to have similar 

effects on tick and host populations in the year immediately following fire; namely, tick 

abundance was elevated within the burn extent and small vertebrate host populations were 

unaffected with the exception of dusky-footed woodrats, an important pathogen reservoir in 

California. However, in contrast with expectations from studies of prescribed burns, in this 

study wildfire was found to substantially reduce tick populations and tick-borne disease risk 

in subsequent years, with potential long-term reductions in risk due to loss of amplification 

hosts (N. fuscipes) from the system, no change in populations of dilution hosts (S. 

occidentalis), slow recovery of reproductive hosts (O. hemionus californicus) and substantial 

reductions in populations of the primary tick vector (I. pacificus). 

Large-scale disturbances resulting from human activity and climate change are 

increasing in frequency and intensity (Dale et al. 2001). As the pace of environmental change 

increases, resulting from land use and climate change as well as globalization, so too may the 

rate of emergence of zoonotic and vector-borne infectious disease (Patz et al. 2000, Jones et 

al. 2008, Lambin et al. 2010, Kilpatrick and Randolph 2012, Jones et al. 2013). It is thus 

increasingly important for ecologists to study the impacts of disturbance and environmental 

change on human disease emergence and risk. In California, Lyme disease is most common 

in the northwestern region of the state, where dense oak woodlands and mixed forests 

provide suitable habitat and microclimates for the tick vector, as well as key hosts in the 

maintenance and transmission of the pathogen. The forests of this region are also expected to 

experience the greatest impacts of climate change and increasing wildfire frequency and 

intensity of any region in the state (Hayhoe et al. 2004, Westerling and Bryant 2007, 

Westerling et al. 2011). Thus, increasing understanding of the effects of wildfire, and 

potential interactions with climate change, on tick-borne disease risk is of critical importance. 
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In this study, we find that wildfire results in elevated tick-borne disease risk immediately 

following fire, but that risk is subsequently reduced substantially for multiple years into the 

future. 
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G. Figure captions 
 
Figure 1: Map of study area, including 6, 1 ha. plots within and adjacent to the perimeter of 
the White Fire (May 2013), Santa Barbara County, CA. White Fire perimeter data layer was 
obtained from Cal Fire (http://frap.cdf.ca.gov/data/frapgisdata-sw-fireperimeters_download), 
and the California hillshade data layer was obtained from Cal-Atlas 
(www.atlas.ca.gov/download.html) through https://koordinates.com. 
 
Figure 2: Adult I. pacificus abundance by year, by burn status. Data represented as box plots 
with standard errors and individual sample points. 
 
Figure 3: Nymphal I. pacificus abundance by year, by burn status. Data represented as box 
plots with standard errors and individual sample points. 
 
Figure 4: Larval I. pacificus abundance by year, by burn status. Data represented as box plots 
with standard errors and individual sample points. 
 
Figure 5: Deer (O. hemionus californicus) plot use/activity by year, by burn status. Data 
represented as box plots with standard errors. 
 
Figure 6: Small vertebrate host (P. maniculatus, N. fuscipes and S. occidentalis) population 
estimates/abundance in 2014 (1 Yr. post-fire), by burn status. Data represented as box plots 
with standard errors. 
 
Figure 7: Small vertebrate host (P. maniculatus, N. fuscipes and S. occidentalis) immature I. 
pacificus tick burdens in 2014 (1 Yr. post-fire), by burn status. Data represented as box plots 
with standard errors. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Table 1: GLMM results for tick abundance for the 2013-14 through 2015-16 seasons (1-3 
Yrs. post-fire). Bold results indicate significant effects of wildfire on tick abundance. 
 

  Adult I. pacificus 
estimate (P) 

Nymphal I. pacificus 
estimate (P) 

Larval I. pacificus 
estimate (P) 

Intercept 0.49 (P=0.047)* -2.07 (P=0.004)** 7.14 (P<0.001)*** 
Burned 2.57 (P<0.001)*** 4.87 (P<0.001)*** -16.69 (P<0.001)*** 

Year: 2015 -0.81 (P<0.001)*** -0.82 (P=0.114) -2.33 (P<0.001)*** 
Year: 2016 -0.11 (P=0.72) 0.08 (P=0.889) -0.74 (P=0.187) 

Julian Day Squared -0.50 (P<0.001)*** 0.53 (P=0.006)** -0.43 (P=0.018)* 
Max. Summer Temp. NA -1.70 (P<0.001)*** NA 
Max. Winter Temp. NA NA -1.40 (P<0.001)*** 
Bare Ground Cover NA NA 6.08 (P=0.001)** 

Leaf Litter Cover NA NA -1.04 (P=0.013)* 
Stem Density NA NA 0.72 (P<0.001)*** 

Woodrat Nest Density 1.08 (P<0.001)*** NA NA 
Burned*Year: 2015 -1.10 (P<0.001)*** -0.20 (P=0.996) -10.63 (P=0.997) 
Burned*Year: 2016 -1.12 (P=0.03)* -0.24 (P=0.998) -0.32 (P=0.999) 

GLMM results for Adult (Poisson, log link), Nymphal (negative binomial, log link) and Larval 
(negative binomial, log link) I. pacificus abundance. Results are shown as model estimates and 
P values. Levels of significance are: * ≤ 0.05, ** ≤ 0.01, and *** ≤ 0.001 
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Table 2: GLMM results for Deer plot use for the 2013-14 through 2015-16 seasons (1-3 Yrs. 
post-fire). Bold results indicate significant effects of wildfire on deer activity. 
 

  O. hemionus californicus  
estimate (P) 

Intercept 3.12 (P<0.001)*** 
Burned -1.62 (P<0.001)*** 

Year: 2015 0.38 (P<0.001)*** 
Year: 2016 0.38 (P<0.001)*** 

Canopy Cover 0.15 (P<0.001)*** 
Burned*Year: 2015 0.96 (P<0.001)*** 
Burned*Year: 2016 1.75 (P<0.001)*** 

GLMM (Poisson, log link) results for O. hemionus californicus plot 
use. Results are shown as model estimates and P values. Levels of 
significance are: * ≤ 0.05, ** ≤ 0.01, and *** ≤ 0.001 
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Table 3: PLSR results for small vertebrate host abundance in 2014 (1 Yr. post-fire). Weights 
and VIP scores indicate that wildfire (“Burned”) had a significant negative effect on 
abundance of N. fuscipes, but no measurable effect on abundance of P. maniculatus or S. 
occidentalis. Other variables that contributed significantly to host abundance are in bold. R-
squared values indicate the amount of variation explained by each component, and the 
second component acts on residual variation not explained by the first component. 
 

  P. maniculatus N. fuscipes S. occidentalis 

  Comp. 1     
wts. (VIP) 

Comp. 2    
wts. (VIP) 

Comp. 1    
wts. (VIP) 

Comp. 2   
wts. (VIP) 

Comp. 1    
wts. (VIP) 

Comp. 2    
wts. (VIP) 

Canopy 
Cover -0.20 (0.63) 0.62 (1.96) 0.03 (0.11) 0.47 (1.49) 0.58 (1.84) 0.17 (0.55) 

Shrub Cover -0.29 (0.93) 0.20 (0.65) 0.39 (1.24) 0.16 (0.50) 0.39 (1.25) -0.33 (1.05) 

Herbaceous 
Cover 0.25 (0.81) -0.13 

(0.42) 0.35 (1.10) -0.18 (0.56) 0.03 (0.11) -0.17 (0.55) 

Bare Ground 
Cover -0.13 (0.40) 0.07 (0.22) -0.39 (1.22) 0.11 (0.33) -0.12 

(0.36) 0.24 (0.77) 

Litter Cover -0.21 (0.66) -0.25 
(0.78) 0.29 (0.91) -0.001 

(0.00) 
-0.14 
(0.43) -0.52 (1.66) 

Stem 
Density -0.70 (2.21) 0.19 (0.59) 0.16 (0.49) 0.37 (1.16) 0.55 (1.74) -0.004 

(0.01) 
Woodrat 

Nest Density 0.30 (0.96) 0.22 (0.69) 0.43 (1.36) 0.22 (0.69) 0.21 (0.67) -0.27 (0.85) 

Max. 
Summer 
Temp. 

0.09 (0.27) 0.01 (0.02) -0.36 (1.13) 0.13 (0.43) -0.06 
(0.21) 0.47 (1.48) 

Max. Winter 
Temp. -0.38 (1.21) -0.64 

(2.01) 0.05 (0.17) -0.71 (2.23) -0.34 
(1.06) -0.33 (1.03) 

Burned -0.11 (0.36) 0.05 (0.17) -0.39 (1.23) 0.11 (0.34) -0.09 
(0.28) 0.31 (0.98) 

R-Squared 0.73 0.18 0.88 0.08 0.89 0.04 

PLSR results for P. maniculatus, N. fuscipes and S. occidentalis abundance in 2014 (1 Yr. post-
fire). Results are presented as variable weights, indicating direction of the effect, and VIP scores in 
parentheses. Significant variables (VIP > 1) are in bold. 
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Table 4: PLSR results for small vertebrate host tick burdens in 2014 (1 Yr. post-fire). 
Weights and VIP scores indicate that wildfire (“Burned”) had a significant negative effect on 
N. fuscipes tick burdens (due to absence of N. fuscipes from burned plots), but no measurable 
effect on tick burdens of P. maniculatus or S. occidentalis, with the exception of a marginally 
significant contribution to the residual variation in tick burdens on S. occidentalis. Other 
variables that contribute significantly to host tick burdens are in bold. R-squared values 
indicate the amount of variation explained by each component, and the second component 
acts on residual variation not explained by the first component. 
 

  P. maniculatus Ticks N. fuscipes Ticks S. occidentalis Ticks 

  Comp. 1     
wts. (VIP) 

Comp. 2    
wts. (VIP) 

Comp. 1    
wts. (VIP) 

Comp. 2   
wts. (VIP) 

Comp. 1    
wts. (VIP) 

Comp. 2    
wts. (VIP) 

Canopy 
Cover 0.16 (0.52) 0.40 (1.28) -0.34 (1.07) -0.35 (1.11) -0.51 

(1.61) -0.34 (1.09) 

Shrub Cover 0.50 (1.59) 0.17 (0.55) 0.08 (0.26) -0.53 (1.66) 0.04 (0.12) -0.37 (1.16) 

Herbaceous 
Cover 0.12 (0.39) -0.58 

(1.84) 0.48 (1.51) 0.13 (0.40) 0.25 (0.79) -0.35 (1.10) 

Bare Ground 
Cover -0.23 (0.73) 0.43 (1.35) -0.42 (1.31) 0.03 (0.10) -0.23 

(0.72) 0.36 (1.15) 

Litter Cover 0.31 (0.99) 0.02 (0.07) 0.22 (0.69) -0.26 (0.83) 0.43 (1.35) 0.11 (0.34) 
Stem 

Density 0.19 (0.60) 0.13 (0.41) -0.25 (0.78) -0.48 (1.52) -0.19 
(0.61) -0.10 (0.33) 

Woodrat 
Nest Density 0.24 (0.76) -0.34 

(1.07) 0.38 (1.20) -0.01 (0.04) 0.09 (0.28) -0.47 (1.49) 

Max. 
Summer 
Temp. 

-0.53 (1.69) -0.22 
(0.70) -0.22 (0.69) 0.43 (1.37) -0.26 

(0.83) 0.25 (0.79) 

Max. Winter 
Temp. 0.29 (0.92) 0.14 (0.43) 0.15 (0.49) -0.29 (0.93) 0.52 (1.63) 0.26 (0.83) 

Burned -0.30 (0.95) 0.29 (0.93) -0.39 (1.24) 0.11 (0.34) -0.25 
(0.78) 0.34 (1.09) 

R-Squared 0.36 0.28 0.64 0.24 0.63 0.27 

PLSR results for P. maniculatus, N. fuscipes and S. occidentalis I. pacificus burdens in 2014 (1 Yr. 
post-fire). Results are presented as variable weights, indicating direction of the effect, and VIP 
scores in parentheses. Significant variables (VIP > 1) are in bold. 

 
 




