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't}:belief, the: exponential decay law P = e

Lo An investigation is made of the possible time-:ﬂ.-f- N
; ﬁdependence of decay laws for unstable particles T

B _yfnThe probability, (t), that an unstable particle has
."tt}not decayed at time t is expressed in terms of S-matrix3j5';¥¥;§:

Hsffquantities.: It is concluded that contrary to popularv-ftf“r

-re iS.only one’lfii

S of a discrete set of possible decay 1aws

!
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’pﬁt-ﬁff_ It is generally accepted that the’ intuitive notions of stable. .5§

particles (or bound states) and unstable particles (or resonances

O " 1n scattering reactions) make their appearance in S-matrix theory

l
- R ’ .3

fﬁ}n °'”'A as singularities of S-matrix elements when the latter are regarded“4dﬁ

R . . . L l

4737_“ .'\'as functions of a complex energy variable.™ Thus poles of the AR

[;" e S—matrix on the.real energy axis correSpond to stable particles
- while those occurring near the real axis on so-called unphysical

n;f.gz],ﬂ . Sheets are resonances, or 1f you prefer, unstable particles.

" . - . . N

'-;gffhfi ‘These concepts, which: are carried over into the relativistic L

A

'

oo .hf.regime, are based largely on experience gained in -the laboratoryf{;
i;L._l lf. of non-relativistic quantum theory and direct examination of',l;f&j

| " solutions of the time dependent Schrbdinger equation.~’There are'

,;: " -.  4in addition some rather convincing discussions based on approxi—i;ig“

mations in quantum electrodynamics2

3

and simple field theoretical
models, Finally, there are a number of papers which attempt to

':f~~'- relate unstable particle decays to properties of propagators in :29'“
o ‘quantum f‘ield'theory‘.l‘t A very complete'discussion'of the general}::i

"é_f:a.f;'decay problem may be' found in Chap. 8 of ourlforthcoming book.5

‘ ficr: One might conclude from the above remarks that there l1sn't.
'“]%; much motivation for the present'work._ In Spite of the fact that
. " one understands qulte well the connection between S-matrix:. .

element singularities and resonant states on the one hand and

less transparent than might be desired.

One of the purposes of-

oot . . ’ * 4 ;
PO . . ' ¥ ' . y -



- . simple and physically satisfying connection between the two .;"ﬂ“;“:‘Ll

“'fl-approaches. .Another purpose is to continue our study of the role
m{;isense) in what is generally called S-matrix theory where SUCh

' %ﬁ;that in approaching these questions we have neither the zeal of
‘fi %z,a true S-matrix fanatic nor. the rigidness of the axiomatic field \;?';E
::;:z;theoretician,‘we are ‘completely dedicated to integration and will.;qféi
‘:¥Linot hesltate to use any convenient technique at our disposal ) | i
I-z‘Finally, we address ourselves to the question of the exponential
"r;fidecay law. We are not concerned with the frequently discussed

'-f but essentially trivial ‘and uninteresting fact that in reality,.

‘. "Q;;decay laws is worth studying.

-

f“-this paper is to clarify this, and in o doing we find a remarkably

'ﬂlfof familiar ‘space-time: concepts ‘of quantum theory (and common. " .L¢5~x},

4;{pconcepts are rather obscure. (It is perhaps worth remarking -

for very long times, one has to do with a power dependence on time.‘ff‘ﬁ

Rather, we are interested in exploring the kinds of .decay laws ' éﬁf'r

that could be expected on the baslis of ‘either provable or possible 5;vi{

singularities of S-matrix elements.' As we shall see, the conven-.ﬁfﬁfﬁ

tional association of,simple poles of the S-matrix on unphysicai_'aln
‘sheets 1s notirequired by any knownzphysical principle and the

.7 possibility of the consequent deviations from simple exponential

Ordinarily one. produces resonances or unstable particles in

:reactions and observes. the subsequent decay products as. a function

.e.,"u.

K

;- of time measured more or less from the timeof production. It 18,0 b

N3

i of course, meaningful and useful to Speak of an unstable partiole yéfﬁf

75‘(

only ifiit.lives for_a_time long compared;to thé production readtion;73:

2 i
+
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time}. For 5nly*fhen.can'oné_reasdnabl; regard the production and -
décéy as a two—stép‘progess, an oﬁvious idealization in which the
S-matrix elemént factors into a product, té a very good appfoxima—
'tioﬁ. | | : '

Our intereét in-thelquesfion of thé exponential decay law '
aroée directiy from discuséions with Professor V. L. Fitch. BHe
pointed out thqt tﬁe_supporting evidence for such a law was
" far from convincing in unstable pérticle decays. Since we had
already been led.to considering S-matrix element singularities
which naturally give a'more complex time behaviof, we were
stimulated to explbre_this-Question in moré detail. -~ We wouid-like %
to suggest that the time-honored study of decay curves (rather.' 
than the Simple determination of mean lifetimes) might be
worthwhile. | _

We describe in Sec. IT a simple.énd stfaightfdrward treat-
meht of the decay of unstabie states wifﬁiﬁ the framework of -
| conventlonal noh—relativisfic quantum'theory. vThe result of
. these considerations is such that a more general'fdrmulation is.
attempted in Sec. III which would seem to ﬁave validity in the
relativistic‘regime,v In Sec. IV a specific calculation ié,
presented and the_bossibility of non—eprnential aecaYS is
discussed in detail. A highly idealized experiment for the detection of
pnstable particle decays is described in Section V and & short summary given -

in Section VI.



IT. DECAY OF UNSTABLE STATES ACCORDING TO NON-RELATIVISTIC-
QUANTUM MECHANICS. | | o

-The undefstanding of  the decay of a'radibactivevnucleus is

an old problem and its description is properly regarded as one

of the important successes of quahtum theory. One imagines that
at time zero the ﬁnstable system 1s spatially confined and bne
aéks fdr thé probablility ﬁhét after a certain time theAsystem |
will be found in the ihitial state. The Simplicity of this |
physiéal situation 1is unfortunately frequently obscured by thé

detalled considerations of barrier penetration, introduction of

~complex elgenvalues, etc. We shall attempt to formulate the

problemAin'such a simple way that the extension.of the descrip-

tion to-the;relativiétic regime of unstable particle production
and decay is almost immediate.

We imagine that we'are‘dealing with a system which decays

_inté,two particles and work in the barycehtric coordinate system

of the'decayihg_state.- The wave function at £t = 0 1s called

 ¥(0) and is taken to have a.definite'anguiar momentum, £. It

is important for our purposes to think of ¥(0) as being localized

in space within'a distance characterized by a parameter 1/8B.

- [For example, B might represent an exponential fall-off rate for

¥(0).] We shall later discuss in more detall the significance -
of the choice fOr.B; for the presént it will-bé_convenient to

assume the réstriction that

Wi

<< v At , B (2.1) #

-



vwhere v 1is the velocity of the decay products and .At is a measure -
of the "lifetime" of the state Y(O) |

The meaning of the condition (2.i)’is,~of course, the:
requirement that the initial packet be small in spatial extent
compared with the distance which the decay products‘canvtravel
during.the characteristic time At. Were thils not the case a
detailed study of the decay as a function of time would not
appear possible.

The wave function describing the relative motion of the decay
products is ‘WK+(r) where r is the relative coordinate and the
superscript + carries the usual connotation of outgoing spherical

waves, and K 1is the wave number related to the energy E and

reduced mass m according to E = /ém (withh = 1). Quite
specifically |
| oo A o
sin(kr - S + 8,) ,
Vit (2/m)1/2 1# exp(18,,) z 4 (2.2)

Kr

for large r; QZ is the phasefshift corresponding to the scattering
of the decay products. The factors are chosen to correspond to

the continuism normalization
~/-r er? rﬂ*'y (r) &—5(K' K) . ) (&3)';
0 K K2 , o :

'f We ‘shall assume that the‘wk form a complete set so that the'

. prepared decaying state may be expressed as.

R
el
Yy

\r(o f K2aK c(K) glf - (2.4a)



or
S (s U0 = [ Tor LRI x0) L (2)

At any time t > O, the state ¥(t) is given by

'>

¥(t) = 7 ¥(0) = fo“’@ax () B Y, (25)

where H 1s the cqmpiete Hamiltonian for the system. The Quantity,

of interest 1s the probability amplitude, A(t), fof finding the

system, at time t, in the state Y(O)'giVen by
A(t) = (¥(0), ¥(¢)) = /O K2aK le(k)12 e™1EE . (2.6)

It is ciear that the e(K) mus? have eome special properties.
.which reflect the fact that ¥(0) corresponds to a more or less
localized statez(ﬁhaf is, that Y(O)”is‘squafe:ihtegrable) and
further that we are dealing with a'lohg—lived system which has aev

reasonably well-defined energy. ‘ The 1atter‘feature implies that

(K) will be particularly large in the neighborhood of some energy

Ex E ‘We must evidently exhibit explicitly this energy

o
dependence of c(K) if we are to have any hope of describing A(t)

‘}in a general way. Of course, frem the'standpoint of the prepara-

tion of Y(O) in a collision between the decay products one cannot

entirely disentangle the confined character of Y(O) from the

v‘

relatively sharp energy Eo and the assumed long lifetime of the »;-

‘state, We shall see below the connection between these aspects

by

7



of the probiem. Just to set thévstage %e rémark'thét for a very

5

narrow Brelt-Wigner resonance one has

00 o-iEt -
At) = L /g dE T -+F/# gl.éxp(-iEot)éxp(-Pt/é) ,

(2.7)

where I" 1s the so-called width of thé resonance. In this example

le(K) 1< = . (2.8)
. “MK (B - E)° + re/b |
Our problem is to isolate this typical resonance structure in a
general way. ' |
The method we first describe leans heavily on well-known prop-
erties of solutions of the Schrddinger equation in non-relativistic

5,6

quantum mechénics. The form of the resuit suggests, however, .
that 1t has much greater generality and in Sec. iII we present
arguments 1n support -of this contenﬁioﬁ; Theré.is a very ciose
and scarceiy surprising connecfion between the theory of'final
state interaction described in Chap. 9 of reference 5, and the

‘decay problem.

We begin by remarking that‘PWJ'may be written as

V) = (2/m) Y1/ Q%Lﬂé——;l (29

s

where ¢(K}r) 1s a real solution (for real K) of the Schr&dinger;i

*

equation‘dorrespondingvtdAangular momentum.é and the boundary .



10.
dondition fsée, for examplelEq. (6-259) of referenééISj

1im (244—1)"x»£ -1

¢(K,r) =1, (2.10)
r—0 -

‘and £(-K) is the so-called Jost function. It is in turn defined

in terms of ¢ and a solution of the same SchrBdinger equation

‘satisfying the bpundary condition

lim - ™% £(k,r) = 12 N (2.11)

N e X

according to

£() - lf(m)—ﬁg’—l e 51"""1‘)} (2.12)

The function ¢(K,r) 1s an éntire_function of K and, of course,

f(K,r) 1s defined by the boundary'cohdition'(2.11) only in the

_ half-plane ImK < 0. For real K, we can define another solution

f(-K,r) according to -
L y _ .
f(-hr) = (-1 £x(kx) . (2a3)

The function ¢(K, may be expressed in-terms of f£(K,r) and

( K,I‘) by

PUKr) =~y [£(- 0 2(Kom) + (-1 20 £(-K2)]
‘ (2. 14)
1

>, by 2010 em(-ilke-L B) + 2(0) explalee-£ BT, 4

redoeo 2ig
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from which 1t follows by comparison with Eq. (2.2) that the S-

matrix element §€ = exp(21§£) is given by
SL=£-LK—)—- . . (2.15)
£(-K _

The important'feature of-thié expresslon for §£ for our
purpose 1s that the singularities of §g are associlated with the
vanishing of the denominator, f(-K). Bound states make their
appearance at points K = + iKﬁ’ K, > O such that f(—iKn) = 0;
provided f(iKn) # 0 this leads to a simple pole in the S-matrix
element. On the other hand pcles of %é in the lower half
K-plane, say at K = —Kf - 1y, v >0, are evidentlyvassociated“
with zeros of f(K) in the upper half K-plane, and it is not
possible, in‘general, to say anything about the multiplicity
of these.! Tt can be shown that f(K) is an analytic function
in the lower half K-plane. Under certain circumstances this
domain of analyticity may be extended to the upper half plane
(for example for potentials which fall off like exp(-ur), |
one has a strip of analyticity, ImK< ﬁ/é)._ In such a- case we
have f*(;K*) = £(K), so that if f(—Kf,+ iv) = 0, so is f(+K% + ivy).
Similarly if there is a pole of Sl at 'Kr - 1y there i1s also -one
at-+K} - iv. The singularity structure of %Z in the neighborhood
of é.pole then is

(K= Ky = AV (K + K, - 1)
.“%?(K - Kp t 1Y)(K + K, + 1v) t

(2.16).



12. .

It is conventionalitoiconsider the'fundtion £(-x) which is 
~analytic in the uppef half.K—plane as a function of the energy,
E, called D(E), defined in the whole E plane cut along the
'positive real axis, the physical values being obtained as the
1imit on n—> (0+) of D(E + 1v). The following things are.

8 _ .

important:
arg D(E + 1iy):= -,oL(E)

_.1iri1 D(E + 1m) =
B | | | (2.17)

1 ' -
D(E) = ﬂ(l - ——) exp %-Jr (E ) ,
_ 0 E'" - E - 17 -
where the EB are bound state energles. We shall assume hereafter
that there are no bound states and as already instituted in the
last of (2.17) interpret D(E) to be the limit as M —>0 of D(E + iT])

We may now express the expansion coefficients c(K) in terms

of‘?(K,r) and D(E). We write

c(x) = (\VK \y(o)) _ (2/7r)1/2 (- iK) {W(K,I'),/I', Yoy | -
| (2.18)
This ie, of course; Just what we ‘are looking for The zeros of
D*(= f(K)) near the real axis are Just the resonances anticipated

',.._‘I
i

in Eq. (2.8) and this structure of D* will give the important B
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long-time dependence of A(t) defined by Eq. (2 6). This is not

- an, exact statement since as t—oo, as 1is well-known, A(t)

shows a power dependence on t whereas we are interested in the
essentially;equnential regime (see Chap. 8 of reference 5 for
a complete discussion). The numerator of c(K) will in general

have singularities in the E- or K-plane far from the real axis.

The reason is that ¢(K,r) is an entire function of K2 so that

‘the only sihgularities of the‘numerator-cah arise from a failure

of the integral over r, implied in the scalar product, to converge

for complex K. Such singularities are related to the detailed

~ fall-off of the localized state ¥(0). If the latter be expressed

by exp(-Pfr) we expect in general a branch line extending from

E=-0 toE=~-8 /2m (or in the K plane from K= 1B to

K = 1ie0); hence the larger B (and thus the greater the localization)

. the farther are these singularities from the physical region

¥/
E > 0. Tt is furthermore clear that (-1K) (£, ¥(0)) must approach
zero for large K sufficiently fast (since D(E) => 1) that the

normalization condltion

A(0) = jgw KZax le(K)1? ='l, | (2.19)

can hold,

On the baslis of the above discussion we write .-

c(K) = (- iKYZ =  (2.20)

where - L C e S Y



1k,

g<E>(-4<—’;—I’l w<o>) M (e

is regarded és a function of E, since ¢ depends ohly on K?.

We anticipate that g(E) is a slowly varying function of E inv

the neighborhood of the reai E axis. It is,eof course, g(E)
which contains the detailed infermation about ¥(0) which would
te required-for an exact etaluation of A(t). "However the factor

o*(E)]1 "%

is the thing which expresses the fact that ¥(0) is
supposed to be nearly an elgenstate of H; that is, we are deéling

with a long-lived resonance, one for which ¥(0) contains components

- with energies all in the neighborhood of some EO. As long as we

are in‘neither the very short nor very long time period for A(t);‘
we can expect that the most important effects are contained in
D*¥(E) and that our predictions will be 1argely independent of

¥(0) and hence of the production mechanism.

- It is perhaps worthwhile to show the manner in which the

'reeognition'of the singuiar'behavipr of c(k) indeed allows for a

description of the localized ¥(0) and further, how if this feature

is not recognized no such localization would be possible. Using

~our explicit expressions for c(K) and for the wave functidn\rk+

in terms of Jost functions we have (writing D*(E) = £(K))

w(o)— (2/r) 1/2f KdK-gT'EL—g— (E)——(%ZT[ (Kr

+ ot 8l e

(continued)

~
\
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- _iigﬁ[%f [:KGK a(z) kb £

In the last iine we have used the factvthat‘g(E)-is an even
function of K2; rNQw we look at W(O) for large r, in the region
where f(K,r)-»'iz ekp{;ikr} . Since f(K) by hypothesis has‘no
zeros 1n the lower half plane (these of necessity belng bound
states) and g(E) has no singularities until we reach K = - ip
where 1/B is associated with the “size" of ¥(0), we may lower
"the contour to this point and 1t is clear that ¥(0) will indeed
go, as 1t should, like exp(-Pr). |

| Now suppose we had been so nalve to expect the expansion
coefficients_c(K, to be Jjust any old smoethly varying function
of K. Then

o | ,!_ -

\-I‘-,(o) (2/7’_)1/2 f K dK C(K) EKI' . [_—f(K,I") + ‘('1)'& %E;E% f(-K,I')
— ‘(2/7r)1/2 5-2-;7- é KaK o(k)  (2.23)
T —>oo - - |

X |-exp(-iK(r -‘ZW)) + exp(Qi?Z(K)) exp(iK(r‘— %;-]r

If we are concerned with a sharp resonance, so that %8 exp{gl,e}
has the structure (2. 16), a simple stationary phase argument
shows that Y(O)4~ exp{r-gr}-which 18 ordinarily much too "egt!

a wave packet to correspond to physically sensible, 1nitial



R O S L R S R R T NGB W ot S
16.

conditions. Since ¥ =~ (vAt)'l, this choice for c(K) would
violate our fundamental conditiodn (2.1).
We are now prepared to complete our discussion of the ampli- -
. - A

tude A(t) for finding.the initial state present at time t. We

have : v v

o fiEt
a(t) = [ KBaxk K% g2(E) &
| 0 - In(E) ]
, (2.24)
_ (™ 4 __B(E) ' _-1Et )
| fo EhmiEt
where
’é?(E) K21+2 dK = B(E).dE . , .(2.25).

The probability that at. time t, the unstable system has not

decayed is
B(t) = |A(%)]%  (2.26)

and the probabllity that the decay takes place during the interval

dt is clearly ‘ _ _
p(t) at = ._a%_l ¢ . S (2.27) -~

Our expression for A(t) involving lD(E).l'2 s Eq. (2.24%) .

would seem to express the decay amplitude so far as possible in

terms of Sématrix quantities. It should be noted that whereas &
. : _ Ly
: : "

I
5
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- knowledgé of D(E) implies-a knowledge of Sp » the converse is not

‘sj(E);%(&%l. : o h(2.2v8)

In many ways, D(E) can be regarded as a "more fundamental"

true, since Sz‘inV01VeS only arg D(E) = —'QZ(E),'and

quantity than §£(E). It enters quite naturally into a varlety
.of problems such aé the electromagnetic structure of perticles
and in the theory-ef multichanhel scattering processes, juet to
<name two. One might even conjecture that the'formulation of a
D-matrix theory rather than an S-matrix theory might be very
worthwhile. This is not the purpose of the present paper so we
shéll not pursue the. question further.. (Another reason fertnot
doing so is that we don't know precisely‘how to do it! Needless
to say, D(E) 1is the same quantity that'eceurs‘in the so-ealled'
N/D method of solving partial wave dlspersion relations. ) We
shall return in Sec. IV to the explicit evaluatlon of P(t)
after we address ourselves to the general validity of our
. expression for the decay probability given by Egs. (2.24) anad
(2.26). . |
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ITI. A MORE GENERAL FORMULATION OF THE DECAY PROBLEM
Our treatment of the decay -problem would appear Super-

flecially to'depend rather heavily on detailed propertiesvof
solutions of the Schrbdinger equation. 1In fact we feel that
| this is not at all the case and that the .same conclusions can -
be drawn without explicltly mentioning things whieh might be |
unpalatable for a pﬁre S4ﬁetrix theorist. The point.is simply
that our principal problem was the isolation of thevfactor
[f(K)J'l = [D*(E)J"l in the expressien for the amplitude of s
the decaying stete.- The latter in turn necessarily is determined,
since we are dealing with continuum states largely with the |
behavior of asymptotic wave functions.which are quite legitimate
targete of discussion for S-matrix theorists. That is, we argue |
that asymptotic wave functions must eiist in any acceptable
physical theory.

4 We fecall the weil-known fact (see, for example, Sec.- 5.2
of refereneev5) that 1f one prepares a pre-collision packet of
"asymptotic states for a scatteringvprocess with certaln wave-
packet amplitudes c(K)bthenvthe interacting state vector at the
time of interadtionfis a supeﬁZboéition with precisely the same
émplitudes c(K) ef the,exact eigenfunctions. This implies that . =
a study of.the asymptotic wave functions_suffices to deterﬁine
the‘nature‘of the expansion ceeffieients. .In our problem the
desire tO'repreEentva epatially cdhfined deeaying system requifes
.>the presence in the aeymptoticvwave paeket amplitude of a factor )
which will permit such a des'cription° We cannot specify by

" this argument that we require exactly [£(K)]™' but this is a "
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sufficient condition to insure. the possibility of describing a
localized state; 'Wé certainly cannot-desiénate any other
reasonable factor reflecting the presence of a resonance without -
disastrous effecté.on the asymptotic states.

Another way to see the above advertised behavior is to
consider the following eimple example: Considerlthe scattering
of two particles'Which can form a long-lived resonant state and
then decay into the initial pair. We prepare a pre-collision |
'packet which 1s so arranged that the colliding particles reach’
the origiln ofycoordinates at a time we agree to call zero. The

wave function at any positive time t after the collision is over

is represented by

wo) = [ ade [k o ETEE G g
| | - (3.1)

-~

- ori 6EE(K')Tf E(x")) TK|5}' a(K - 50)

where a(k - K,) describes the initial pre-collision packet, and

T is the T-matrix element describing the scattering. I we

K'K
i;egine a resonance in a particular angulér momentum state, the
1mportant part of TK35 will contain 2 term N/D Q£(~ K) and the
resonant character of the reaction appears in the factor D.
Thus the scattered wave function amplitude has the factor v
:a(g KO [D(E)] l, a(K - KO) knows nothing about the resonance,
but D(E) of course does. The numerator function N( K) is also
_expected to be smooth in the resonance region. We see the‘natural

o
B}

_ occurrence of D(E) in the scattered wave function.
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The asymptotic:wave'backet states;maj be sﬁown to bé an
essentiaily complete orthonbrmal set 1n a wéll—dgfined éense
(see reference 5, Chap. 3 and 4). Thus the'asymptotic form of
a résonant state may sureiy‘be represented in the form originally
suggested, Eq. (2,45). The condition (2.1) instructs us to
fequire that ¥(0) vanish in the asymptotic region for distances
greater than B_l.' That this Suggests‘very strongly the form

- (2.20). for c(K) may be seen on repeating the argument given in

connection with Eqs. (2.22) and (2.23), but using only the

asymptotic form, for large r of.these equations.
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Iv. IMPLICATIONS OF A LONG~LIVEDfUNSTABLE‘STATE

It is appareht froonur general expression (2.6) that any
decay time can be achieved for any unstablelphysical‘syStem.
’The,feeson fer this is that Eq. (2;6) invol&es only the wave
_paeket expansionvcoeffieients—;and does hot contain any reference
'tQ the dynamical chafaeteristics of the'deoaying system. In the
previous two'seetioﬁs we have attempted to explain why many
rclasses of unstable physical systems shpw similar characteristics.
That is, for considerable variation ef initial boundary conditions.
Such systems exhibit remarkably uniform properties--so much so,
- in fact, that one‘tends to think of unstable "particles" as
having unique properties.9 | ,

The physical conditiens required for such uniform properties
seem to require that the decaying system (1) heve a fairly shafpiy
. defined energy near, saﬁ, EO; (2) that it have a long lifetime Aﬁ;
and'(3) that 1t be confined in space asIfequired by the conditien
(2.1). | | |

In Chap. 8 of reference (5) we investigated the consequence
of a long-lived state in a scattering experiment. Fer_fhe'ceee
~that‘both incident and'finai channels contaln two pafticles, and
eWhen'the lifetime At is large compared to the,free flight time,
ofvthe'interacting‘pafticles acrosSItheir region of mutual:inter;

action, the eigenvalues of the S-matrix were shown to have. the

unique form

S() - [E - Ey -1

kot eam .
- Byt 1 L

=3 ol
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Here r = 1, 2, ... 1s a positive integer, and.v(E) represents
the "background", or "potential", scattering (as it is sometimes
called). The constant I in Eq.-(4;1) is the level width, or more
precisely, %'is the Wigner lifetime5'of the interacting system.
When At(g‘%) 1s very large (in the sense Just described) we may
treat w(E) as a constant and ignore it. |

The case r = 1 in Eqg. (%.1) corresponds, of course, to a
conventional Breit-Wigner resonance. It was shown in reference_
(5), Chap. 8, that r 2 2 corresponds to a more general class og
résonances. | | |

We return now to our discussion of the decay problem and ask
what are the general characteristics of an unétable system having
a long lifétime At and initially confined in space as required
by (2.1). We have just said that the condition of a long lifetime

permits us to write

: _ i E )
sru:)e[E e iglr, | (+.2)

E-'Eo"-l?'

where [0 is "small".  This and the condition (2.1) permits us to
treat B(E) as constant in Eq. (2.24).. |
- We shall restrict ourselves to the case that there are no

bound states having energles near EO’ within a range large compared

to I". Then we may writet©

f'oo dE' 1n S,(E')
" ET - E - 1 2 ° '-‘.‘,;:‘
By T Y

A=z
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correspbnding to a givén integer r in Eq. (4.2). Evidently, we

have

e = DEdTL (e

‘where Dl(E) corresponds to a‘¢onventional Breit-wWigner résonance{‘

‘Near the energy EO we may writell

pl(E) e N(E - Ej, + 1 -g-) ) o (4.5)

‘where N is a constant. From Eq. (4.4) we obtain the general

résult

D,(E) = N'(E - Eg + 1‘2)1' : - (4.6)

The decay characteristics of the'system described may‘now

~ be obtained from Eq. (2.24%):

t

| o g) o-1E
A(t) = f dE Pr(E) © — (4.7)
_ 0 2 f1r
e - 5" + 17
-where |
ﬂ.ﬁ : o ’ " | Pr(E) = ﬁ-r@)_ . *

S Since B(E) 18 considered to be nearly constant overvan interval

oy comparable to I' at E = EO,_we may re-write thisvin the approximate

form EherevE

17 E

n
o~ 15]
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o ~‘ | " < dE e EF o
Ar(t) = Pr(Eo') L [E - El)(E - El*)]r

 ap o-1Et
| . | | (4.8)
2r1 PL(Eg) [ar-l o-1Et- ] : '
T - BEFT(E- R TE- B

' r-l-%
= — exp( iE t) exp(- e 2 tr+,€, K(i f:f)_i %
(I’ - l). _ , 2 0

On choosing p,(E,) to satisfy the condition (2.19) that A_(0) = 1,

we find

Ar(‘t) = exp(f-iEo - —— z (rt) r-1-4 (I’(f +{;17%)' (gr—_l%)'

. (%.9)
Except for small corrections associated with the mode of

formation of the state [that is, with the detailed properties of

-B(E) in Eq. (2.24)], the decay laws

P.(t) - la ()17,

r=1, 2, ...,'are'believed to represent the most géneral alloWed
for long-lived systems  which are initially localized in accordance

with Eq. (2.1).%2
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We_list'thé decay ampiitudes for-r”='1, 2, +..b:

(a,) = -1t /2

(ap) = e~Mt/2 {1. + 0E)

(83) = e4'"t/2 @+ Lt r‘ffﬁ (4.10
(Ay) = e—pt(Q {1 +-%? + Figg + Pigi} | N

- ' , 3 ek
| (AB)'= e~ /2 £L+-%;~+ 5%-(ft)2 + (gz) + %gg% 3.

Tn Fig. 1 we show 1n P.(t) = 1n [Ar(t)lz as a function of
t. The obvious feature of these curves is that Pr(t) tends to
stay closer to unity as time increases the larger the value of
r. We know of no examples showing other than the pure exponen-
tial behavior characteristic of » =1 but a careful study of
decay curves may be worthwhile. [As.noted in the In‘cr'oduc‘cion_‘J
there are relatively few measurements of P(t) for the unstable
particles.] | |

There is a natural tendency to ihtérbreﬁ a pole of fhe

S-matrix of order higher than the first as an accidental

degeneracy; this implies, however, that the "primeval" poles are

simple and we can find no déep theoretical basis for such an

allegation..

.y .
Fr o A
7
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V. A COMMENT ON THE OBSERVATION'OF‘DECAY LAWS
For the simple exponential decay corresponding'to r = l;
[see Egs. (4.10)]
R -e™, (s

the choice of t-= 0 has no effect on the shape of the decay

»law.' This is evidently not the case for r Z 2, although the

exponential factor tends to dominate the time dependence of these

Cfor It >> 1 [see Fig. (1)]. To compare these laws with experi-

'-mental’observations one must therefore.discuss'the initial condi-

tions with some care. We shall now‘iliustrate this with a
somewhat idealized example. v
Referring to Fig. (2), we ilmagine that the unstable particle

1s created within a sphere S in a bubble chamber. The size of

| thic sphere 1s limited'by the range of'secondary electrons along

the path of'charged particles. We have seen that the actual size
of S is not.relevant,-as long as it'is compatible‘with the condi-.

tion (2.1L_that is'that the region be small compared tovvzﬁt{

~ Since we. are studying the decay as a function of time, we assume

that the time of creation (say t = 0) of the particle is known
4
p !

We next suppose that the decaying particle passes through

to within an interval small compared with At =

' (and 1s registered by) counter Cl at time t1 and then is stopped

in the block.B. Here 1t decays and the decay product is counted

in C2 at time t Errors in registering the times t1 and t2 are

o
again considered small compared with At = —

At
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' The wave function in fhe interval '0 < t < tl then has the.
form (2.5) with c(K) giveh by Eq. (2.20).  To take account of
the'infofmation'provided by Cl that an unstable particle passed

through it at time tl; we introduce a projection operatorl3

1 for r within counter

il

E(r)

0 for r outside counter.

Then, immediéte1y folloWing the time ti the wave function isl4

¥1(0) = Ny B(r) ¥(ty) - (52)

. where Ng is the_normalizatibn constant. We may treat ¥Y'(0) as
a new initlal wave function and follow the,argﬁment leading to

Eq;.(2;5)to ébtain,.for € >t
vi(t) - /o " Cax o1 (K) expl-15(5-5,)) ey (5'.3).
Where ’ N
.-c.'"(.'('),'—‘.(_V’KﬁI’): ‘w"(o).) S (5.5)

 The,?fo5éb1l1tyvamplitude.for decay is.then obtained for t_$ £ty
'vusing.Eq.'(é;6) wiﬁh the c(K) replaced byvé’(K).» The arguments
of Sec. iI aﬁd’III would iead us to expect that'the.result

(4.9) would_agaih_be obtéined with ¢ repléCed by (t - t4),

unless the size of counter ¢, is such that the conditlon (2.1) ‘.

)
L%

is poorlyvsatisfied.
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We repeat that the exémple Just given is quite 1dealized
and was presented oniy to emphasize'that attention to initial
and'subéequent information may be important in studying'particlé_

degéys.

R
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| VI coi\rcjI,ﬂsim\'rs*é
. wT We have glven avfonnulatlon'of decay of unstable states whdch lnvolvesjf'
]7!5: ‘ 'p'r rytffln‘its essentlals only what mlght be termed S-matrlx quantltles In fact .
j;da knowledge of the S—matrlx does not. sufflce in general since what enters.
lls really the so-called denomlnator functlon D(E) which contalns more”
”:hflnformation, it 1s, hovever, somethlng Wthh can be legltlmately sought
' J1n a pure S-matrlx theory It 1s obvious that a- detalled descrlptlon of
f‘a decay process requlres a preclse spec1flcat10n of the productlon mechanlsmrb
,vdehere does not appear in prlnc1ple to’ be any dlfflculty 1n formulatlng the »
’:fggproblem although one can expect s1mpllclty only under the. c1rcumstance
Tﬁthat the overall S-matrix factors into. a productlon part and a decay part;
Ve have explored the poss1b111ty of flndlng decay laws more compll-
cated than a s1mple exponentlal resultlng from resonance poles whlch are
i-"not of flrst order. There seem to be no veryvconv1nc1ng.arguments to say_“
d that there are»in nature only first order'poles.i'(lf Onelwere to flnd'
cexperimentally only pure exponentlal decays we yould be’led to a postu:l”'
5 late in S-matrix theory whlch could be called the prlnc1ple of mlnlmal »
::pollc1ty.) It is clear that non-exponent1al decays mlght result 1f the S
. production mechanlsm had some w1ld energy dependence. In general what onea
':—_1pmight expect however is something llke what happens when the decay pro-
'53 ducts of a- radloactlve decay are themselves unstable. Thls glves a mlxture
HE»xl,of pure exponentlals but nothlng oscillatory or very spectacular.; (See"
ifi reference 5, Chap 8 for a complete treatment ) If there did happen to =
» y;fhc 'c_;fdsi'be two nearby resonances 1n the decay channel one would find an osc1llatory

W ,'fifff;gfftime dependence superimposed on the decaylng exponentlals. _
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© APPENDIX
: weidescribe~here7the,evaluation'of Eq. (4.3) for r =v1 ”
- to obtain the expression (4.5). First, we consider a model for
which D (E)vmay be.evaluated explicitly‘and‘then give a more
'.general argument

- For the model chosen we write the scattering phase shift

as (here 0< E <<0)
(A-1)

where a <<.(Ed)l/2. This corresponds to a W(E) in Eq. (%.1)

which has the value V= - /2 for E <K E,. Then

I 1.1/ |
w0 dE' tan"1(a(E //// Z ey

E“'E""lq -

" The evaluation of Dl(E) is_mdet easilyiearriedvout noting
that 1t must be analytic in the entire\energy plane except
dlong the real positivevaxis, must be reai for E {'O, must"‘
approach unity as E-e=ﬂ ~and must have the prescribed phase
- The function which has all of these virtues is-

: \1/2 - |
b, () - E - E, +Ei a(E) L (5-3)

 The approximate form (4 5) follows on setting P = 2a(Eo)l/?,

and restricting E to values close to EO

&
L

=
AL
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To argue more generélly, we substitute the expression (4.2)
into (4.3), setting'r = 1. It is convenient to define the zero

of energy so that E, = 0 and to introduce a cutoff M for the .

M
upper limit. Then we have

] . . .
where-
M 1n(E' - Ey + 1 L)
—_ 1
1, - fo e (a-5)

The substitution

= _ . D
z = E! EO + 1 >
permits us to write
E dz in Z
I+’=f z=a -’ - (A-6)
" whéere
o, =E-E. +15L (A-7)
-+ O —~7Z°

The gontoufs C, are illustfated»in»Figa (3).
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As ]E - EOI and F become very sméll the points a, épproach
‘the branch point. 6nlin+ becomes singular in this c;se. Its
singularity may be exhibited by moving the contoﬁr up intb the.
positive imagihéry z—piane and keéping the reéidue of the pole

at a . The leading (singular) term in I_ is

H
!

. 2ri 1n a,

‘or

A= - 1n a (A-8)

+ 2

\.from which Eq. (4.5) follows.

}\:Sf N
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We are indebted to Professors Bargmann and'Wigner for a
 'd1scussion of this point. '

See, for example, Eq. (6- 281)of reference (5).

In e strict sense, for example, no two neutrons are quite
the same, since.the set of wave packet'amplitudes c(K)

describing the set of "neutron-like" systems 18 not countable

and since (presumably) the precise cenditions of creation of

a gilven "neutron" cannot be duplicated.
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See, forlexample, Eq. (6-283) of reférence (5). The integral

(4.3)Vcan,be made finité on introducing‘suitable subtractions.
This is shown in the Appendix.

Ah.exééption.can occuf, however, 1f two. or more “resdnances"

happen to be separated by distances comparable to their

- respective widths,

Strictly speaking, we require that the coordinates of both

"decay products lie within the counter. For simplicity of

presentation we are ignoring the center-of-mass coordinate

of the unstable system.
See, for example, M. L. Goldberger and K. M. Watson, Phys.

Rev. (in press) where such sequential observations are

discussed.
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¢ . ’ ‘This report was prepared as an account of Government

sponsored work. Neither the United States, nor the Com-
. mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, -with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

"Assumes any liabilities with respect to the use of,

or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, oOr emp]oyee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

o

r








