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ABSTRACT 

·_An it1vestigation is made. of the possible time­

dependen6e of decay laws .for unstable particles. 

The probability, P(t}, that an unstable particle has 

·not decayed at time t is expressed in terms of S-matrix 

quantities. rt·is concluded 

belief, the exponential decay 

that,· 

law P 

contrary to popular 
-rt = e is only one 

Of a discrete set of possible decay laws. 
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>r. . . · · · >. · ·.; ·i~: .'·.~ :~: (;.: ... : , ;: .;. , .. . : ·· · · • . • • ... · '>., .: ·.:·:,:)::·.;;:~i·~:L·:;}·~;~··.< . 
:· ... ;,~---, · ·- · .t .• _ :: ~ · ·.,, ..... :·,'.' •· ·: :.·· .. INTRODUCTION .··::· . .... · .. · :·. -:: ... : .. !_~·''.n··,~. ···:..e:··r;, "'· :· ~~, i: ~ .: o • I'' ,- 0. -;'' •• ,'., .... • o 'o + ,f\.' • I, ~ t • o ~ •:-, ._•, :.- .; ,•,- ·:· ~'• }~•''o~l·f \,'! ~?:\",•,: !, ,•'( f. I 

-~~·;.· ·: . ·::_~ ...... >:.:(It·:i.s·~en~~ai.ly ;gcepted that the~ ':i~tuitive.~h~tio~s·~ ·of:.::st~bie·,\:~~ ·.,, 
' ~ ~ ~ ' • • • :. • • . • •• . • • • ' • • ' • • . • •• t • • ... \. • ·~ •• + " ~ 

. : ·: .• .. - ... "partic:).es' (or' l;>ou~d s~a'tes) and unstabi'e partic~-~s ( (n~· res'o.nance~. ', :;. '· 
o'lo l, o o 0 o I " 

·/ ( . .- · .,: :. ·in scattering reactions) make their ap~earance in. S-matri~ theory·~··~.'.··· .. 
. ' . . .. 

' ' ',. 
'• 

o,! ,_: • r i 

...... !_·: 
,.. -~ .f 

• r I, ~ •. I' 

' ' .. ' 

r• .• as 
'\ 

, • • ' • •' •J . 

singularities. of S-matrix elements when the latter are regarded . · 
. •.'J ... 

.. , :as functions of a complex energy variable •1 Thus poles of· the 

,·S-matrix on the-real .energy axis correspond to·stable particles 

,' . 
· .. · .. 
.. ' 

\ .... while those occurring near the re.al axis on so-called unph_ysica~ . : ·.: · . 
•• •• • t' •••• 4. ,. •.· 

"'" .. · ··, 
'•t ::~ · . r ·, : .. . ::SheetS are resonanceS 1 _Or 
~ ' . . • , t, . ~ >r • 

if'you pr~fer, unstable particles. 

carried over into the relativistic 
" •f I 

.-· • 1:::· •• •• :· .... •• ; :.:These concepts 1 which· are 
,; f ' • 

• I "",".,-~· • ... 

l • • ~ .• l. . ' . ··t: 

• I 'r 

.. 

. 
: ;-" ... 

regime, are based largely 
. '· I . ~ -

~n experi~nce gained in -the laboratorY'.'·-: 

of non-relativistic 'quantum theory and direct examination of·. .;. ( .. . . ~ . 
. ~ .- ~· •. 

· solutions of the time dependent SchrBdinger equation. · There are ' . . : · · 
~ .. ' . ' . . 

in addition some rather convincing discussions based. on approxi-: ;: ; 
• .t t ~ 

mations in quantum electr.ody~am1cs2 and simple field theoretical:.·.>:.:, .. 
~ ') . 

models. 3 Finally, there are a nu~be~ -of papers which attempt to~··;:_-.' .. . 
relate unstable particle· decays to properties 'of pro~agators fn ·. · ·:.:: ; . 
. . 4 . . .... 
quantum field. theory. A very compl~te discussion· of the general · 

. -: decay problem may be· found in Chap. 8 of our· forthcoming book. 5 .-·.•.· 
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' ~ ·,: ~ . . - ... '.-

. •_:_·· .. ,.. ·.:-: --~-. ~· ... --.·~· i,·.:·.::_·f···. ·.'·_:~4: .(·."~.-.. :. . f 
• :•.(.:;~~-- .... :': ·, .. _ - • . • ._:·.-:. ---. ,:•, •.• f 

: • ~ , • • , ~ .. • . , \ : '-~ • • t' • , ''r · · : ' f . . . . . . . . . . . • .. ··. ' . ·- . . - . . -... . ~ ~ 

. ·-~-:~hi·~ .. pap~-~- --~-5-.:·~~~-:~1-~rify .·thi~~. ~~din ·s~o .doin~ ~e fi-~~ a -;~-~rkab·~; ·.- ~ .J 
. .. : . . . . . . . . : 

: < • . , ,·,· ' .... 
. . . . . ..- .. ~ ~ . 

•• t • .· ·.' 

'I •:, 

.. . . .' . . . : . . . . . ·. ~ ~ l 

· · - · · simple and ·physically·· satisfying. co:~nection between the' two, . .' · , ·-' : ~~: ·; 
. . . . - - . . . • . - - ' .. i .-;-~ 

~- .·;··~=:·.:_:_·!.·approaches; .. Another purpos~. ~s to continue our study_-·or the -r~l~:::/.~;.>i::i 
.. _-·_: ·.·::_·of familiar space-time· concepts· of quantum theory (and co~o~. · _. .· · < ,;·_~~t 

, .. - . . · .. :;. --. ,, •I <'- " . -· .. f 
.. _. ,·<-.;-:sense) in what is genera~ly called S-matrix theory where such /-~.> ·: ·. ·~ 

~ • • ; • • • • i • ~ t ·- . . 
· ·. :... Y<f concepts are rather ~bscure. , · (It ~s perh~ps worth r~marking. -.. -_: .. : :_:·./.:~:·:::·.··;I 
,. · .. that in approaching these questions _we have neither the zeal. of ··· · '-· 
' ~ • t j '.#.> •:'• :~'.,<.'~, .. :: I • '.• 

, •• '· - r • • I • . ~ '\· ~- ".: ~ 

. . .. ·~·-. a true S-matrix fanatic· no~. the rigidness of .the axiomatic field.·. :- .-::':: 
• • ' ·, •·; I' ;-,.. ' • • • o ~ + • • /' '• 

· :_: _,·_- .. · ··· __ .- theoretician; we .. are· completely dedicated to integration and ~ill _ _.::· .. ···:: '. f 
. ' .. ,_>_·· .. • :· . . - . - . . : .. . ; . ~ 

~ ; . ~:. '-. _ not hes1 tate to us~ any convenient technique. at our disposal. ) · .. :'. ·: ;· 
, _. • o ' j f I " ~- ,t 'o 

· · · · · Finally, we addr-ess ourBel ves to the question of the exponential l .... \~. ·. ~ 
• I ,- o 

- ·:, _·,_: decay law. We are not conce~ned w1 th the frequently discussed ; . 
' f 

· but essentially trivial and uninteresting fact _that 1ri reality, . - : : ·_ : ·1 
I 

for very long times,· one has to do with a power dependence on time·. . . f 
' - .. , ., • .. ·I 

Rather, we. are interested in_ exploring the kinds of .decay laws : ::· -<:··.- -- ~ 
that could be expected on th~ b~e1e of 'either provable or possible:·.:.:· .l 
singular! ~1es of S-matrix elements.- As we shall see, the conven-. ~:,:: _· ·--1: 

• ~ • <" • • • •• l: 

'·- tional association of. simple poles of the S-matrix on unphysical_ \ .. :. :'-.J 
-.... :1 . \ ... ·. ·.:; · _· ... sheets is no~· required by any known physical principle and the . .~· 

: . . ' - . . . . . . ~ '/ ..... · . 
. . ;·· · poss1b1l1 ty of .the consequent 'deviations· from s·imple exponential..'.·::.-'.-- .. 
, . '.:'. -~.:· .. 1:. ., - . . . . ':- f ;~ ·,'. 
:··.; .... :.':,/·,,decay laws is worth studying.- .... l • • • • • .-:.;-:'-.<; .< ~·r 
·_::.~;:·!·;:~ >/(> Ordinarily one. produ'ces resonance~-. or': un~table particles -in·.·.<·_· _ _::,~:~~) 
~f-' .. ~<·.·.~\\~~:\t:.-:reac~ions and observes. the s~bseque.nt .·d:ca; ~;~d~~ts .as_ ~ func·t~·~~··:·;~_: ;'_. : 
: ·>.r ~:·~ ·,.-~ ~~:.··.:"#-~ . . . . - . 1 ~ .-. • • .., • •• c ...... ·~ ·~ 

:.)'::;:: .. :::,_,;;·-,:.>.·of time measured more- or less from the time ·or produ~tio~· •. rt' is·,, .. .-.::(.) 

~i,~~··i.;:::~i;t o; coUrse.: mea n1n~ful and use ;,1 to speak oi ~~ unstable. part1~~~ ;' ',- .<l 
~V;:/' .. :·\:::_:.;;:~:,: only 1r _it -lives ror a. time long compared.-to· the production· reaotion. :·:.:} 
~;-~.~~:::!;/~~~~--~.:. . . 0 •• • • • ,·~~~ ' •.• 0 -! 

.. : ... , ·:. :~-~.! ...... ::" ~ . . .. . , .o. ·'i ~. . I 
• 1 ' ! I oo 0 

·.:·F<_.~·~;·;:tF~~·:·;_.·: .:·. . ·:.:_··.; · ... ) ' . I. • ' • '- •• : .';:-, • • ,". t 
'!:: :, ~. . . .o .. • ~ 0 ! • : • • 

,· • . . - ·.-.. •• .. '·' f 
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time. For only· .then can one reasonably regard the production and 

decay as a two-step pro?ess, an obvious ~dealization in which the 

S-matrix element factors into a product, to a very good approxima-

tion . 

Our interest in the•question of the exponential decay law 

arose directly from discussions with P~ofessor v. L. Fitch. He 

pointed out tha.t the supporting evidence for· such a law was 

far from convincing in unstable particle decays. Since we had 

already been led.to considering S-matrix element singularities 

which naturally give a more complex time behavior, we were 

stimulated to explore this question in more detail. We would like 

to suggest that the time-honored study of decay curves (rather 

than the simple determination of mean lifetimes) might be 

worthwhile. 

We describe in Sec. II a simple _and straightforward treat­

ment of the decay of unstable states within the framework of 

conventional non-relativistic quantum theory. The result of 

-·.these considerations is such that a more general fo'rmulation is 

attempted in Sec. III which would seem to have validity in the 

relativistic regime. In Sec. IV a specific calculation is 

presented and the possibility of non-exponential decays is 

discussed in detail. A highly idealized experiment for the detection of' 

~stabie particle decays is described in Section V and a short summary given 

in Section VI • 



II. DECAY OF UNSTABLE STATES ACCORDING. TO NON-RELATIVISTIC 

QUANTUM MECHANICS. 

6. 

The understanding of the decay of a radioactive nucleus is 

an old problem and its description is properly regarded as one 

of the important successe.s of quantum theory. One imagines that 

at time zero the unstable system is spatially confined and one 

asks for the probability that after a certain time the system 

will be found in the initial state. The simplicity of this 

physical situati~n is unfortunately frequently obscured by the 

detailed considerations of barrier penetration, introduction of 

complex eigenvalues, etc. We shall attempt to formulate the 

problem in such a simple. way that the extension .. of the descrip­

tion to the relativistic regime of unstable particle production 

and decay is almost immediate. 

We imagine that we ·are dealing with a system which decays 

into two particles and work in the barycentric coordinate system 

of the decaying state. The wave function at t == 0 is called 

Y(O) and is taken to have a. definite an$ular momentum, ,L. It 

is important for our purposes to think of Y(O) as being localized 

in space within'a distance characterized by a parameter 1/t). 

[For example, t3 might represent an exponential fall-off rate for 

Y(O).J We shall later discuss in mo~e detail the significance 

of the choice for t); for the present it will be convenient to 

assume the restriction that 

. 1 t3 <.< v At , 

"'. 

·:..· 
\ . 



• 

··, 

'. 
7. 

::-
' .. 

where v is the velocity of . the decay products and. ~t is a measure 

of the "lifetime" of the state '.¥(0). . 
The meaning of the condition ( 2.1) 'is, of course, the' 

requirement that the initial packet be small in spatial extent 

compared with the distance which the decay products can travel 

during the characteristic time ~t. Were this not the case a 

detailed study of the decay as a function of time would not 

appear possible. 

The wave function describing.the relative motion of the d~cay 

products is fK+(r) where r is the relative coordinate and the 

superscript + carries the usual connotation of outgoing spherical 

waves, and K is the wave number related to the energy E and 

reduced mass m according toE= 1( 2/2m (with11 = 1). Quite 

specifically 

, (2.2) 

for large r; ~ is the phase shift corresponding to the scattering 

of the decay products. The factors are chosen to correspond to 

the continuism normalization 

(
110
r2 [''' + .1 ' + 1 ' J 

0 
. dr 't' I( 1 ( r )..J * '(I( ( r) 1 = 2 . 5 ( K 1 

- . I( ) 
.· K . 

(2.3)· 

We shall assume that the "/!'/(+ fo:r:n ·a complete set so that the 

prepared decaying state may be expressed as 

II!",. "~ 

( 2. 4a) ~r 
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·(2.4b) 

At any time t > 0, the state !(t) is given by 

(2.5) 

where H is the c~mplete Hamiltonian for the system. The quantity 

of interest is the probability amplitude, A(t), for finding the 

system, at time t, in the state !(0) given by 

-iEt e . (2.6) 

It is clear that the c(K) musy have some special properti~s 

which reflect the fact that !(0) corresponds to a more or less 

localized state. (that is, that !(0) is square integrable) and 

further that we are dealing with a long-lived system which has a 

reasonably well-defined energy. The latter feature.implies that 

c ( K) will be. particularly large in the neighborhood of s orne. energy 

E ~ E0 . We must evidently exhibit exp~icitly this energy 

dependence of c(K) if we are to have ~ny hope of describing A(t) 

in a general way. Of course, from the standpoint of the prepara­

tion of !(0) in a collision b~tween the decay products one cannot 

entirely disentangle the confined character of !(0) from the 
' h<.> 

relatively sharp energy E0 and the assunied long lifetime of the ~~.; ., 
state .. We shall see below the connection between these aspects 



. ., 
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g. 

of the problem. Just to set the stage we remark· that for a very 

narrow Breit-Wigner ~esonance one has5 

exp(-iE0t)ex:p(-rt/2) , 

(2.7) 

where r is .the so-called width of the resonance. In this example 

lc(K) 12 = r 
2mk (E 

1 (2.8) 

Our problem is to isolate this typical resonance structure in a 

general way. 

The method we first describe leans heavily on well-known prop~ 

erties of solutions of the Schr5dinger equation in non-relativistic 
. . 5 6. 

quantum mechanics. ' The form of the ~esult suggests, however, 

that it has much greater generality and in Sec. III we present 

arguments in support·of this contention. There is a very close 

and scarcely surprising connection between the theory of final 

state interaction described in Chap. 9 of_reference 5, and the 

decay problem. 

We begin by remarking that 1" tt may be written as ' 

(2.9) 

wheve <p ( K, r) is a real solution (for real K) of the Schr5dinger ~~ 
~,,, 

equation ·corresponding t6 angular moinentumL and the boundary 
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~ondi tion [see, for example Eq. ( 6-259 )· of reference 5] 

. ( /) )' . -f -1 ( ) lim 2~+ 1 !! r ~ K,r = 1, _( 2.10) 
r40 . 

and f(-K) is the so~called Jost function. It is in turn defined 

in terms of 1 and a solution of the same SchrBdinger equation 

satisfying the boundary condition 

i .... r ( . ) . . .1.. lim · e '\ f K,r ·= ~ , . (2.11) 
r~oo 

according to' 

(2.12) 

' 2 
The function ~ ( f\, r) is an entire function of I( and, of course, 

f(~,r) is defined by the boundary coridition (2.11) orily in the 

half plane Im I( < 0. For real I(, we can define another solution 

f(-~r) according to 

f ( - K, r) = ( -1 ) l f* ( I(, r) (2.13) 

The function <P(I(,r) may·be expressed in terms of f(l{,r) and 

.f ( -1\, r) by 

<P ( /(, r) '= 21 ~+1 [~f(-1() f( 1(, r) + ( -1/- f(K) f( -I(, r )] 

(2.14) 
i 

2
i:l+l [-f( -K) exp( -i(}(r-l ;)). + f( K) · exp( i(Kr-_t ~) )J, 



I 

I 
I 
I 

I .· 
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•• 

from which i:t follows by comparison with Eq. (2.2) that the. S­

matrix element S~ 5 exp(2i6t) is· given by 

11. 

s _ f( K) 
'L- f(- ~) 

(2.15) 

The important feature of this expression for SL for our 

purpose is that the singularities of ~ are associated with the 

vanishing of the denominator, f(-~. Bound states make their 

appearance at points I{= + ift\n' Kn > 0 such that f( -il(n) = 0; 

provided f(il{n) =/ 0 this leads to a simple pole in the S-matrix 

element. On the ot~er hand poles of S.L in the lower half 

K-plane, say at K = - ~ - i 'Y, 'Y > 0, are evidently associated 

with zeros of f(K) in the upper half K-plane, and it is not 

possible, in general, to say anything about the multiplicity 

of these.7 It can be shown that f(K) is an analytic function 

in the lower half ~-plane. Under certain circumstances this 

domain of analyticity may be extended to the upper half plane 

(for example for potentials which fall off like exp(-~J.r), 

one has a strip of analyticity, Im I{< IJ./2). In such a case we 

have f*(-K~) = f(K), so that if f(-Kr.+ i'Y) = 0, so is f(+~ + i'Y)· 

Similarly if there is a pole of SLat-~- i'Y there is also -one 

at +~ - i'Y. The singularity stP~cture of S~ in the neighborhood 

of a pole then is 

(K - '<r - i'Y)(K + ~-- i'Y) 
~ ~ (K - K r + i 'Y )( K + Kr + i 'Y) . 

(2.16); 
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It is conventional to consider the function f(-~) which is 

analytic in the upper half K-plane as a function of the energy, 

E, called D(E), defined in the whole E plane cut along the 

positive real axis, the physical values being obtained as ·the 

limit on '1 ~ ( 0+) of D(E .+ i "Yj). The following ·things are 

important: 8 

.lim 
E~CX) 

D(E + i7J) = 1 

D( E) = 7TB( 1 - ? ) exp [ ~ (O :E 1 5...t ( E 
1 

) . } l Jf"\ E 1 
- E - i~ ' 

(2.17) 

where the ~ are bound state energies. We shall assume hereafter 

that there are no bound states and as already instituted in the. 

last of (2.17.) interpret D(E) to be the limit as "Y) ~0 of D(E + iYj). 

We may now express the expansion coefficients c(~) in terms 

of f(~,r) and D(E). We write 

(2.18) 

i 

This is, of course, just what we·are looking for. The zeros of • 

D*(= i(K)) near the r~al axis are just the resonances anticipated 
. ' 

in Eq. (2.8) and this structure of D* will give the important wt 
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13. 

long-time dependence of A(t) defined by Eq. (2.6). This is not 

an. exact statement since· as t~~, as is well-known, A(t) 

shows a power dependence on t whereas we are interested in the 

essentially· expe.nential regime (see Chap. 8 of reference 5 for 

a complete discussion). The numerator of c(l'() will in general 

have singularities in the E- or ~-pline far from the real axis. 

The reason is that ~(K.,r) is an entire function of 1\.
2 so that 

the only singularities of the· numerator· can arise from a failure 

of the integral over r, implied in the.scalar product, to converge 

for complex 1{. Such singularities are related to the detailed 

fall-off of the localized state ~(0). If the latter be expressed 
-· 

by exp(-f3r) we expect in general a branch line extending from 
2 . . 

E = -00 to E = ·- f3 /2m (or in the K plane from K = if3 to 

f( = ioo); hence the larger f3 (and thus the great_er the localization) 

the farther are these singularities from the physical region 
J, . 

E > 0. It is furthermore clear that (-iK) ($, ~(0)) must approach 

zero for large K sufficiently fast (since D(E) ~ 1) that the 

normalization condition 

oO 

A(O)=la lt\
2

dl( fc(K)I 2 =1 

can hold • 

On the basis of the above discussion we write 

c(K) = ( -il\.)~- ~i(~) 

where 

(2.19) 

( 2. 20) 

:~:' 
~~\J 
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(2.21) 

2 is regarded as a function of E, since~ depends only on K-· 

We anticipate that g(E) is a slowly varying function of E in 

the neighborhood of the real E axis. It is, of course, g(E) 

which contains the detailed information about !(0) which would 

be required for an exact evaluation of A(t). However the factor 

[D*(E)]-l is the thing which expresses the fact that !(0) is 

supposed to be n~arly an eigenstate of H; that is, we are dealing 

with a long-lived resonance, one for which !(0) contains components 

with.energies all in the neighborhood of some E0 . As long as we 

are in neither the very short nor very long time period for A(t), 

we can expect that the most important effects are contained in 

D*(E) and that our predictions will be largely independent of 

!(0) and hence of the production mechanism. 

It is perhaps worthwhile to show the manner in which the 

recognition of the singular behavior of. c (I() indeed allows for a 

description of the localized !(0) and further, how if this feature 

is not recognized no such localization would be possible. Using 

our explicit expressions for c ( K) and for the wave function r I{+ 

in terms of Jost functions we have (writing D*(E) = f(l{)) 

!(0) 
00 i, . .t[ 

= (2/7r)l/2 f· 1<2dK ( -iK)-v g(E) ___(_& -f( l{,r) 
0 ~ 2ir~+l · 

1, f(K) ] + ( -1) 1T=1Q f( -I(, r) 

(continued) 

... 
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= (2{I;l/2 fa"" f<.dt< g(E) r/· [- r}~K)l + ( -ll.e r}(~rl J < 2.22) 

In the last line we have used the fact that g(E) is an even 

function of 1( 2 . ·Now we look at 1'(0) for large r, in the r,~gion 
1.. . 

where f(l<',r) ~ i exp{;-il<r} . Since f(l<) by hypothesis has no 

zeros in the lower half plane (these of necessity being bound 

states) and g(E) has no singularities until we reach K = - i~ 

where 1/!3 is associated with the "size" of 1'(0), we may lower 

·the contour to thi~ point and it is clear that 1'(0) will indeed 

go, as it should, like exp(-!3r). 

Now suppose we had been so naive to expect the expansion 

coefficients c(l{) to be just any old smoothly varying function 

of K. Then 

;: r~ J. -1 [ .t f ( K ) 1 
1' ( 0 ) = ( 2 /7r) 1 2 J 

0 
1<'

2 d K c ( K ) ~ Kr . - f ( K, r) + ( -1 ) 1T-I<J f ( - K, r) 

;. l-1 !00 
~ (2/7r)lt2 i 2r l{dK c(K) 
r~oo 0 

( 2. 23) 

X [-exp(-~t<(r -171")) + exp(2i~(K)) exp(iK(r- ~71" ] .. 

··If we are concerned with a sharp resonance, so that S,.t = exp{.2i~} 

has the structure (2.16), a simple stationary phase argument 

shows that 1'(0) - exp{- ~r} which is ordinarily much too "fat'1 

a wave packet to correspond to physically sensible, initial 
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conditions. Since~~ (v6t)-1 , this choice for c(K) would 

violate our fund~me~tal conditi6n (2.1). 

16. 

We are now prepared to complete our discussion of the ampli- · 

tude A(t) for finding the initial state present at time t~ We 

have 

A(t) =·faa K2dK ,fl g2(E) e~iEt 2 
0 ID(E)/ 

(2.24) 

=. (~dE B(E) · -iEt 
Jo fD(E)I 2 e • ' 

where 

(2.25) 

The probability that at time t, the unstable system has not 

decayed is 

. P(t) =I A(t) 12 ( 2. 26) 

and the probability that the decay takes place du,ring the interval 

dt is clearly 

p(t) dt = -~ dt (2.27) 

Our expression for A(t) involving ID(E)I-2 ~· Eq. (2.24) 

·; would seem to e.:xpress the decay amplitude so far as possible in 

terms of S-matrix quanti ties. It s.hould be noted that whereas ,a_ 
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knowledge of D(E) implies a knowledge .of S_g, the converse is not 

true, since S,.e involves only ar~ D( E) = - · 5.e, (E), and 

(2. 28) 

In many ways, D(E) can· be regarded as a "more fundamental" 

quantity than S,t (E). It enters quite naturally into a variety 

of problems such as the electromagnetic structure of particles 

and in the theory .of multichannel scattering processes, just to 

name two·. One might even conjecture tha·t the formulation of a 

D-matrix theory rather than an S-matrix theory might be very 

worthwhile. This is not the purpose of the present paper so we 

shall not pursue the question further .. (A,nother reason for not 

doing so .is that we don't know precisely how to do it! Needless 

to say, D(E) is the same quantity that occur.s in the so-called 

N/b method of solving partial wave dispersion relations.) We 

shall return in Sec. IV to the explicit evaluation of P(t) 

after we address ourselves to the general validity of our 

expression for the decay probability given by Eqs. ( 2. 24) .and 

(2.26). 

. . 
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III. A MORE GENERAL FORMULATION OF THE DECAY PROBLEM 

Our treatment of the decay.problem would appear super-

ficially to depend ratherlheavily on detailed properties of 

solutions of the Schr8dinger equation. In fact we feel that 

this is not at all the case and that the .same conclusions can 

be drawn witho~t explicitly mentioning things which might be 

unpalatable for a pure S-matrix theorist. The point is simply 

that our principal problem was the isolation of the factor 

[f(l\)]-1 = [D*(E)] -l in the expression for the amplitude of/ 

the decaying state. The latter in turn necessarily is determined, 

since we are dealing with continuum states largely with the 

behavior of asymptotic wave functions which are quite legitimate . 
targets of discussion for S-matrix theorists. That is; we argue 

that asymptotic wave functions must exist in any acceptable 

physical theory. 

We recall the well-known fact (see, for example, Sec.- 5.2 

of reference 5) that if one prepares a pre-collision packet of 

asymptotic states for a scattering process with certain wave­

packet amplitudes c(l{) then the interacting state vector at the 

time of interac'tion ,:is a suoeP.posi tion with precisely the same 
- -

amplitudes c ( K) of the _exact eigenfunctions. This implies that . 

a study of. the asymptotic wave functions suffices to determine 

the nature of the expansion coefficients. _In our problem the 

desire to represent-a spatially confined decaying system requires 

the presence in the asymptotic wave packet amplitude of a factor 

wh_ich will perrp.i t such a description. We cannot specify by 

this argument that we require exactly [.f(J<)] -l but this is a 

(", 
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sufficient condition to insure the possibility of describing a 

localized state. We certainly ~annot designate any other 

reasonable factor reflectins the presehce of a resonance without 

disastrous effects on the asymptotic states. 

Another way to se~ the above advertised behavior is to 

consider the following simple example~ Consider the scattering 

of two particles which can form a 'long-lived resonant state and 

then decay into the initial pair~ We prepare a pre-collision 

packet which is so arranged that the colliding particles reach' 

the origin of coordinates at a time we agree to call zero. The 

wave function at any positive time t after the collision is over 

is represented by 

(3.1) 

- 2'1fi 6 [ E ( K 1 
) - E ( K' 1 

)] T ~ 1 ~} a ( ~ - ~) 

where a(~- !So) describes the initial pre-collision. packet, and 

T K.1 K is the T-matrix element describing the scattering. If\ we 
,., - . 

imagine a resonance in a particular angular momentum state, the 
1\ 1\ 

important part of T ~~ ~ will contain a term N/D P,e ( ~! 15) and the 

.~esonant character of the reaction appears in the factor D. 

Thus the scattered wave function amplitude has the factor 

.a(tS,- ~) [D(E)]-1; a(~- JSo) knows nothing about the resonance, 

but D(E) of course does. The numerator function N(K) is also 

expected to be smooth in the resonance region. We see the natural 

occurrence of D(E) ·in the scattered wave· function. 

,. . 
.. /" 

':.if~ 
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The asymptotic-wave packet states may be shown to be an 

essentially complete orthonormal set in a well-defined sense 

(see reference 5, Chap. 3 and 4). Thus the asymptotic form of 

20 .. 

a resonant state may surely be represented in the form originally 

suggested, Eq. (2_.4a). The condition (2.1). instructs us to 

require that ~(0) vanish in the asymptotic region for distances 

greater than f3-l. That this suggests very strongly the form 

(2.20).for c(K) may be seen on repeating the argument given in 

connection with Eqs. (2.22) and '(2.23), but using only the 

asymptotic form, for larger ofthese equations. 
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IV. IMPLICATIONS OF A LONG-LIVED UNSTABLE STATE 

It is apparent from our general expression (2.6) that any 

decay time can be achieved for any unstable physical system. 

The .reason for this is that Eq. (2.6) involves only the wave 

.packet expansion coefficients--and does not contain any reference 

to the dynamical characteristics of the decaying system. In the 

previous two se~tions we have attempted to explain why many 

classes of unstablephysical systems show similar characteristics. 

That is, for considerable variation of initial boundary conditions 

such systems exhibit remarkably uniform properties--so much so, 

in fact, that one tends to think of unstable "pa.rticles'r as 

having unique properties.9 

The physical conditions required for such uniform properties 

seem to require that the decaying system (1) have a fairly sharply 

. defined energy near, say, E0 ; (2) that it have a long lifetime .6t; 

and (3) that it be confined in space as required by the condition 

(2.1). 

In Chap. 8 of reference (5) we investigated the consequence 

of a long-lived state in a scattering experiment. For the case 

that both incident and final channels contain two particles, and 

when. the lifetime 6. t is large compared to the free flight time 

of the interacting particles across their region of mutual inter­

action, the eigenvalues of the S-matrix were shown to have the 

unique form 

- Eo -
i ~r e2iY(E) S(E) = (4.1) . r + ·i~ [: Eo J. 2 

~~: 
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Here r = 1, 2, is a positive integer, and Y(E) represents 

the "background", or "potential'', scattering (as it is sometimes 

called). The constant r in Eq. (4.1) is the.level width, or more 

precisely,~ is the Wigner lifetimes·of the ir:teracting system. 

When At(~~) is very large (in the sense just described) we may 

treat v(E) ·ai a constant and ignore it. 

The case r = 1 in Eq. (4.1) corresponds, of course, to a 

conventional Breit-W~gner resonance. It w~s shown in reference 

(5), Chap. 8, that r? 2 corresponds to a more general class of 

resonances. 

We return now to our· discussion of the decay problem and ask 

what are the general characteristics of an unstable system having 

a long lifetime ~t and initially confined in space as required 

by (2.1). We have just said that the condition of a long lifetime 

permits us to write 

[

E - E -
S (E) ~ . O 

r E - E + 
0 

i ~]r 
. r. , 
J. 2 

(4.2) 

where r is ·11 small". This and the condition ( 2.1) permits us to 

treat .B(E) as constant in Eq. (2.24). 

We .shall restrict ourselves to the case that there are no 

bound states having energies near E0 , within a range large compared 

to r. Then we may write 10 

-~ = e ' 

(4.3) 
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corresponding to a given integer r in Eq. (4.2). Evidently, we 

have 

(4.4) 

where n1(E) corresponds to a conventional Breit-Wigner resonance. 

Near the energy E0 we may write11 

( 4. 5) 

where N is a constant. From Eq. (4.4) we obtain the general 

result 

(4.6) 

The decay characteristics of the system described may now 

be obtained from Eq. (2.24): 

(4.7) 

where 

Since B(E) is considered to be nearly constant over an interval 

comparable to r at E.= E0, we may re-write this in the approximate 

form [here E1 = E0 - i ~ ] 
"t,_~ 

"'\; 
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(4.8) 

= 

= 
27r P (E ) . . r-1 tr-1-..l 

r 0 exp( -iEot) exp(- r2t."' tr + J., - 1)! 
(r _ l).! 1-J rr+Z r - 2)! £) 

.f..=O 

On choosing Pr(E0 )' to sat:l,sfy the condition (2.19) that Ar(O) = 1, 

we find 

r-1 
Ar( t) = exp( -iEo t - ~t) 2: 

1.=0 

(rt)r-1-.£ · (r + ,t;.. 1)! tr - 1)! 
( r - ..e - 1) 1 2 ! 2r · - 2) ! 

Except for small corrections associated with the mode of 

formation of the state [that is, with the detailed properties of 

· B(E) in Eq. (~.24)], the decay laws 

r = 1, 2, • • • J are believed to represent the most general allowed 

for long-lived systems which a.re initially localized' in accordance 
12 with Eq. ( 2 . 1) . 

,• 
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We list the decay amplitudes for .r·= 1, 2, •.. 5: 

(A2) = e- rt /2 {1 + ~t } 

(11.3) = e -rt/2 {.1 + fi + r~~2 )} (4.10 

(A4) = e -rt/2 rt r2t 2 r3t3 
{1 + 2 + """TC) + 120} 

(A
5

) ·= e-rt/2 r1 + rt + 3 (rt)2 + (rt)3 + (rt)
4

} 
l 2 2E 84 1:08"0 . 

In Fig. 1 we show ln Pr(t) = ln I.Ar(t)f 2 as a function of 

·rt. The obvious feature of these curves is that Pr(t) tends to 

stay closer to unity as time increases the larger the value of 

r. We know of no examples showing other than the pure exponen-

tial behavior charac~eristic of r = 1 but.a careful study of 

decay curves may be worthwhile. [As noted in the Introduction, 

there are relatively few measurements of P(t) for the unstable 

pa,rticles .] 

There is a natural tendency to interpret a pole of the 

S-matrix of order higher than the first as an accidental 

degeneracy; this implies, however, that the "primeval" poles are 

simple and we can find no deep theoretical basis for such an 

allegation.· . 
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V. A COMMENT ON THE OBSERVATION OF 'DECAY LAWS 

For the simple exponential decay c,orresponding to r ~ 1, 

(see Eqs. (4.10)] 

( 5.1) 

the choice of t = 0 has no effect on the shape of the decay 

law. This is evidently not the case for r ~ 2, although the 

26. 

exponential factor tends to dominate the time dependence of these 

for rt >> l ($ee Fig. ( 1 )] . To compare these laws. with experi-

mental observations one must therefore.discuss the initial condi-

tions with some care. We shall now illustrate this with a 

somewhat idealized example. 

Referring to Fig. (2), we imagine that the unstable particle 

is created within a sphere S in a bubb.le chamber. The size of 

this sphere is limited by the range of secondary electrons along 

the path of charged particles. We have seen that the actual size 

of S is not relevant, as long as it is compatible with the condi­

tion (2.1), that is that the region be ~mall compared to v .6t. 

Since we.are studying the decay as a function of time, we assume 

that the time of creation (say t = 0) of the particle is known 

to within an interval small. compared with b.t = ~ ~ 
We next suppose that the decaying particle passes through 

(and _is registered by) dounter c1 at time t 1 and then is stopped . ' 

in the block B. Here it decays and the decay product is counted 
' 

in c2 at time t2. Errors in registering the times t 1 and t 2 are 

again considered small compared with 6t = 11 
r. 
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The wave function in the interval '0 < t < t 1 then has the 

form (2.5) with c(KJ given by Eq. (2.20) •· To take account of 

the information· provided by c
1 

that an unstable particle passed 

through it at time t 1 , we introduce a projection operator13 

E(r) = 1 for r within counter 

= 0 for r outside counter. 

Then, immediately following the time t 1 the wave function is14 

( s. 2) 

where NE i~ the normalization constant. We may treat ~'(0) as 

a new initial wave function and follow the argument leading to 

Eq. (2.5) to obtain, for t > t 1 , 

( s. 3) 

where 

c'(K) = (t,t(r), ~'(0)) ( s. 4) 

The probability: amplitude for decay is then obtained for t > t 1 

. using. Eq. (2.6) ~1th the c(l{) replaced by c'(l(). The arguments 

.of Sec. II and III would lead us to expect that the result 

( 4. 9) would again be obtained with t r·eplaced by ( t - t 1 ), 

27. 

... unless the size
1 

of counter c1 is such that the condition ( 2.1) \~~ 

1 is poorly satisfied. 
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We repeat that the example just given is quite idealized 

and was presented only to emphasize that attention to initial 

. 28. 

and subsequent information may be important in studying particle 

decays . 



' ~ .. 

. {. 

,;· 
'.• 

· .. 

•. , I 

. ' 

'• . ~: 

. · . . . 

... . , 

'.·• 

29. 
·. . ~ . 

·vr.,: CONCLUSIONS 

. We. have given a . formulation of decay- of unstable states which involves 

in its essentials only what might be termed 8-:-matrix quantities. · In fact 

a knowledge of the S-matrix dq_es not suffice .in general since whatenters 

is really the. so~called denominator function D(E) which contains more 

.iqfo:rmation; ;it is, however, something which can be legitimately sought 
.· 

... in a pure S -matrix theory. It is obvious that a-detailed description of· 

a decay process requires a precise specification of the production me,chanism. 

There does.not appear in principle tobe any'difficulty in formulating the 

·problem although one can expect simplicity onjly under the circumstance 

· that the overall S-matrix factors into. a production part and a decay part. 

We have explored the possibility of finding decay laws more compli-

cated than a s;i.mple exponential, resulting from resonance poles which are 

·.not of first order. There seem to be no very convincing arguments to say 

that there are in nature only first order poles. (If one were to find 

.. ~x.:perimentally only pure exponential decays, we would be led to a postu­

late inS-matrix theory which could be called.the principle of minimal 

polici ty. ) It is cl'ear that non-exponential decays might result if the 

production mechanism had some wild energy-dependence. In generalwhat one 

might expect however is something like what happens when the d~cay pro-

ducts of a radioactive decay are themselves unstable. Th±s gives a mixture. 

of' pure exponentials but nothing oscillatory or very spectacular. (See· 

reference 5, Chap. 8 for a complet~ treatment.) If there did happen to 

be two nearby resonances iri the decay channel one would find an oscillatory 

time dependence superimposed on the decaying exponentials • 
. · .. '·~ . 
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APPENDIX 

We describe here the evaluation of Eq. (4.3) for r = 1 

to obtain the expression (4.5). First, we consider a model for 

which D1 (E) ma~ be evaluated explicitly and then give a more 

general argument. 

For the model chosen we write the scattering phase shift 

as (here 0 < E <oo) 

· 1 -1 a(E) 112 ' 
5 = 2i ln s - tan Eo _ E , (A-1) 

where a<< (E0)112 . This corresponds to a v(E) in Eq. (4.1) 

which has the value v::::::: - 1r /2 for E << E0 . Then 

, 1 J~oo dE' tan- 1 (a(E') 1~·-E0 -- E') 1 
n1 (E) = exp ) - :;;: 

0 
!-L II E' - E- ~~ .)· 

(A-2) 

The evaluation of n1 (E) is most easily carried out noting 

that it must be analytic in the entire _energy plane except 

along the real positive axis, must be real for E ~ 0, must 

approach unity as E...:, ca, and must have the prescribed phase. 

The function which has all ~these virtues is 

(A-3) 

The approximate form (4.5), follows on setting r = 2a(E0 )1/ 2, 

and restricting E to values close to E0 . 

• 

.. 
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To argue more generally, we substitute the expression (4.2) 

into (4.3), setting·r = 1. It is convenient to define the zero 

of energy so that EM = 0 and to introduce a cutoff M for the ,. 

upper limit. Then we have 

where 

The _substitution 

permits us . to write · 

where 

} [I+ - I_] , 
C:1T 

r z - E' - E0 ± i 2 

dz ln z 
z - a+ ' 

The contours C+ are illustrated in Fig. (3) . 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

.·,, 
::.:~· 



..... . 

•:. \ 

As IE - E0 1 and r. become very small the points a+ approach 

the branch point. Only•I+ becomes singular in this case. Its 

singularity may be exhibited by moving the contour up into the 

positive imaginary z-plane and keeping the residue of the pole 

at a+. The leading (singular) term in !+ is 

·' 
or 

(A-8) 

, from which Eq. ( 4. 5) follows . 

32. ~ 
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