UCSF UC San Francisco Previously Published Works

Title

Association of Carotid Plaque Lp-PLA2 with Macrophages and Chlamydia pneumoniae Infection among Patients at Risk for Stroke

Permalink

https://escholarship.org/uc/item/20m91401

Journal PLOS ONE, 5(6)

ISSN 1932-6203

Authors

Atik, Berna Johnston, S Claiborne Dean, Deborah

Publication Date

2010

DOI

10.1371/journal.pone.0011026

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Association of Carotid Plaque Lp-PLA₂ with Macrophages and *Chlamydia pneumoniae* Infection among Patients at Risk for Stroke

Berna Atik¹, S. Claiborne Johnston², Deborah Dean^{1,3,4,5}*

1 Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, United States of America, 2 Department of Neurology, University of California San Francisco, San Francisco, California, United States of America, 3 Department of Medicine, University of California San Francisco, San Francisco, California, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California San Francisco, San Francisco, California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California San Francisco, San Francisco, California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, University of California, United States of America, 5 Department of Bioengineering, Universi

Abstract

Background: We previously showed that the burden of *Chlamydia pneumoniae* in carotid plaques was significantly associated with plaque interleukin (IL)-6, and serum IL-6 and C-reactive protein (CRP), suggesting that infected plaques contribute to systemic inflammatory markers in patients with stroke risk. Since lipoprotein-associated phospholipase A2 (Lp-PLA₂) mediates inflammation in atherosclerosis, we hypothesized that serum Lp-PLA₂ mass and activity levels and plaque Lp-PLA₂ may be influenced by plaque *C. pneumoniae* infection.

Methodology/Principal Findings: Forty-two patients underwent elective carotid endarterectomy. Tissue obtained at surgery was stained by immunohistochemistry for Lp-PLA₂ grade, macrophages, IL-6, *C. pneumoniae* and CD4+ and CD8+ cells. Serum Lp-PLA₂ activity and mass were measured using the colorimetric activity method (CAMTM) and ELISA, respectively. Serum homocysteine levels were measured by HPLC. Eleven (26.2%) patients were symptomatic with transient ischemic attacks. There was no correlation between patient risk factors (smoking, coronary artery disease, elevated cholesterol, diabetes, obesity, hypertension and family history of genetic disorders) for atherosclerosis and serum levels or plaque grade for Lp-PLA₂. Plaque Lp-PLA₂ correlated with serum homocysteine levels (p=0.013), plaque macrophages (p<0.01), and plaque *C. pneumoniae* (p<0.001), which predominantly infected macrophages, co-localizing with Lp-PLA₂.

Conclusions: The significant association of plaque Lp-PLA₂ with plaque macrophages and *C. pneumoniae* suggests an interactive role in accelerating inflammation in atherosclerosis. A possible mechanism for *C. pneumoniae* in the atherogenic process may involve infection of macrophages that induce Lp-PLA₂ production leading to upregulation of inflammatory mediators in plaque tissue. Additional *in vitro* and *in vivo* research will be needed to advance our understanding of specific *C. pneumoniae* and Lp-PLA₂ interactions in atherosclerosis.

Citation: Atik B, Johnston SC, Dean D (2010) Association of Carotid Plaque Lp-PLA₂ with Macrophages and *Chlamydia pneumoniae* Infection among Patients at Risk for Stroke. PLoS ONE 5(6): e11026. doi:10.1371/journal.pone.0011026

Editor: David M. Ojcius, University of California Merced, United States of America

Received March 24, 2010; Accepted May 11, 2010; Published June 9, 2010

Copyright: © 2010 Atik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Pacific Vascular Research Foundation (www.pvrf.org), the National Institutes of Health, R01 Al039499 (to DD) in addition to reagents from diaDexus (www.diadexus.com). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ddean@chori.org

Introduction

Carotid atherosclerosis is a major risk factor for an ischemic stroke [1]. While lipid metabolism and inflammation have been the major focus of atherosclerosis research for many years, there has been a growing interest in lipoprotein-associated phospholipase A2 (Lp-PLA₂) because it is a key enzyme both in lipid metabolism and in stimulating inflammation [2].

Lp-PLA₂ is a calcium-independent member of the phospholipase A2 enzyme family. Monocytes, macrophages, T-lymphocytes, mast cells and liver cells are the main sources for Lp-PLA₂ [3,4]. It is carried primarily by low-density lipoprotein (LDL). Lp-PLA₂ catalyzes the hydrolysis of oxidized LDL, which produces proinflammatory mediators lysophosphatidylcholine (LysoPC) and oxidized fatty acid (oxFA) [5]. Many clinical studies have found an association between increasing serum levels of Lp-PLA₂ mass and/or activity at the time of a cardiovascular incident in addition to an elevated risk of mortality and morbidity over time [6,7,8]. One study showed that Lp-PLA₂ mRNA and protein levels were six times higher in atherosclerotic lesions compared to normal tissue samples [9].

Cumulative evidence suggests that *C. pneumoniae* also plays an important role in atherosclerosis [10,11,12,13,14]. The organism is thought to infect pulmonary monocytes that are then transported via the vasculature to localize in arteries where infection can spread [15]. *C. pneumoniae* is a ubiquitous pathogen that frequently causes upper and lower respiratory tract infections worldwide [16]. More than half of the patients with atherosclerosis have evidence for *C. pneumoniae* infection based on a variety of studies using detection methods such as immunohistochemistry

(IHC) and electron microscopy of plaques [17,18], PCR or real time RT-PCR of DNA/RNA extracted from plaques [18,19,21], and seroepidemiologic analyses among different populations [20,21]. Other studies have shown viable organisms in the carotid arteries of stroke patients [19,22] and patients with CAD [11,23]. Furthermore, recent studies in murine and rabbit models suggest that *C. pneumoniae* can target the vasculature, induce inflammation and initiate or promote the development of atherosclerosis [14,24,25]. In the same models, *C. pneumoniae* accelerated atherosclerotic development, while treatment with azithromycin prevented the disease [12,14]. However, treatment did not have the same effect on chronically infected mice [26], where organism persistence may have contributed to resistance to therapy. Recent *in vitro* studies also strongly suggest a role for *C. pneumoniae* in the genesis and progression of atherosclerosis [27,28]

More recently, we have shown that the burden of *C. pneumoniae* infection was significantly associated with up-regulation of plaque interleukin (IL)-6 expression, which correlated with elevated serum levels of IL-6 and C-reactive protein (CRP) [18]. IL-6 stimulates liver CRP production, an acute phase reactant associated with risk of myocardial infarction (MI) and stroke. IL-6 secretion in *C. pneumoniae*-infected plaques could explain elevated systemic markers of inflammation among individuals at risk for vascular events.

There is currently no research, to our knowledge, correlating serum Lp-PLA₂ mass and activity levels with plaque Lp-PLA₂ or the interaction of *C. pneumoniae* infection and Lp-PLA₂ on arterial disease and inflammation. We hypothesized that serum Lp-PLA₂ mass and activity levels as well as plaque Lp-PLA₂ would be significantly elevated in the presence of plaque *C. pneumoniae* infection, suggesting an interactive role in accelerating inflammation in atherosclerosis.

Materials and Methods

Ethics Statement

The University of California at San Francisco (UCSF) and Children's Hospital Oakland Research Institute (CHRCO) Institutional Review Board committees approved the study. Informed written consent was obtained for all study subjects. The study was conducted according to the principles of the Declaration of Helsinki.

Study subjects

In this cross-sectional study, subjects underwent elective carotid endarterectomy at UCSF, as described previously [19]. The treated carotid artery was associated with signs and/or symptoms of neurologic disease.

Lipoprotein-associated phospholipase A2 (Lp-PLA₂) detection by immunohistochemistry (IHC) in carotid artery tissue

Lp-PLA₂ was detected by IHC using three, five-micron sections per carotid plaque in optimal cutting temperature (OCT) medium. The carotid plaque tissue was stored at -80° C in OCT until sectioning. Briefly, each section was blocked with casein (Biocare Medical, Concord, CA) and stained with anti-Lp-PLA₂ monoclonal antibody (diaDexus, Inc., South San Francisco, CA) diluted 1:400 in diluent (Biocare). Samples were washed with TBS, blocked with avidin (Biocare), washed again and blocked with biotin (Biocare) prior to applying goat, anti-mouse IgG antibody (Biocare). Streptavidin was applied followed by alkaline phosphatase chromagen-fast red (Biocare). The section was counterstained with hematoxylin to detect each cell. In independent experiments, excess primary antibody and, separately, excess secondary antibody was used on adjacent sections to ensure no non-specific staining of either antibody for Lp-PLA₂. In addition, a mouse nonimmune IgG (Biocare) was used as a final negative control.

Using light microscopy at 400×, samples were read independently by two individuals who were blinded to all patient data. Samples were graded based on percentage of the tissue staining for Lp-PLA₂ for the entire plaque section. We used 1, 2 or 3+ for the entire carotid section for each patient sample (3 sections per patient carotid sample) where a grade of \geq 1 was considered positive for Lp-PLA₂; 1, 1–25% of the tissue; 2, 26–50% of the tissue; 3, >50% of the tissue. The three sections from each carotid sample were used to determine the within-sample variation, and the average of the three was used for analysis. Because of the ease of visualization of the staining for Lp-PLA₂ (see Fig 1A), software was not required for quantitation.

All sections that stained positive for Lp-PLA₂ were probed with chlamydial-specific heat shock protein 60 (CHsp60) MAb (Affinity Bioreagents) to determine the precise co-localization of Lp-PLA₂ and infection using the methods as described above except that a horseradish peroxidase–conjugated secondary antibody with chromogen diaminobenzidine (DAB; Biocare) was used to detect chlamydiae. Positive and negative controls were as described previously [18,19]. All three sections for each patient were read in entirety and analyzed as described for Lp-PLA₂ except that the cells were counted to determine the number with Lp-PLA₂ alone, *C. pneumoniae* alone, and the number with both for each section as quantitative measures.

Two additional adjacent sections for each patient sample were used to co-localize *C. pneumoniae* with macrophages. The sections were stained for *C. pneumoniae* as above, and macrophages were stained with fast red as for Lp-PLA₂ except that the primary monoclonal antibody was macrophage specific (CD68; Biocare).

While other infectious agents may also be involved in atherosclerosis, the evaluation of these pathogens was beyond the scope of this study.

Prior data on the patient population used for analyses

In our prior studies, plaque tissues were noted to have a high grade of atherosclerosis [18,19]. Data on the same population from our previous publications were also used for analyses [18,19]. These included IHC to detect macrophages, CD4+ cells, CD8+ cells, IL-6, and *C. pneumoniae* in the adjacent sections of the same block of carotid tissue used for Lp-PLA₂ IHC above. In addition, we previously determined plaque IL-6 gene expression by quantitative (q)RT-PCR, plaque *C. pneumoniae* burden by qRT-PCR, serum C-reactive protein (CRP) levels, and IL-6 serum protein levels, the methods of which are described in detail in our references [18,19].

Measurement of serum mass and activity levels for lipoprotein-associated phospholipase A2 (Lp-PLA₂) and homocysteine levels

All serum biochemical analyses were performed on serum from blood or blood plasma obtained at the time of carotid endarterectomy.

Lp-PLA₂ mass was determined by ELISA (PLAC[®] Test; diaDexus) in serum according to the manufacturers instructions using two specific monoclonal antibodies in a 96-well format. Quantitation was calibrated to a recombinant Lp-PLA₂ antigen standard. The lower detection limit was 2 ng/mL; interassay coefficient of variation (CV) was between 6% and 7%. Lp-PLA₂ activity levels were measured by CAMTM assay (diaDexus) in

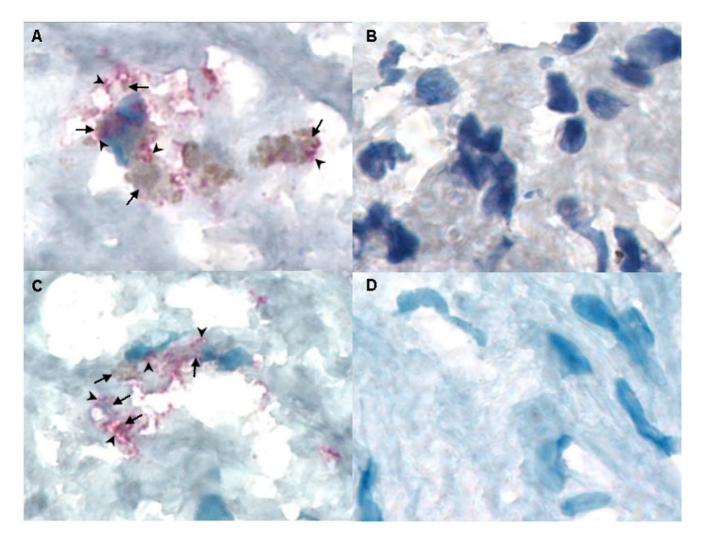


Figure 1. Carotid plaque sections showing co-localization of Lp-PLA₂ and *C. pneumoniae*, and macrophages and *C. pneumoniae*. A) Lipoprotein-associated phospholipase A2 (Lp-PLA₂) was detected by Immunohistochemistry (IHC) using anti- Lp-PLA₂ specific monoclonal antibody (diaDexus) and chromagen fast red (arrowheads); *C. pneumoniae* was detected by IHC using a CHsp60-specific MAb and chromagen DAB (arrows); ×1000. B) Negative control of a positive carotid plaque section (same patient as in A); ×1000. C) Carotid plaque section showing co-localization of *C. pneumoniae* (DAB; arrows) and macrophages detected by IHC using CD68 macrophage-specific monoclonal antibody and chromagen fast red (arrowheads); ×1000. D) Negative control of a positive carotid plaque section (same patient as in C).

serum according to the manufacturers instructions. Samples were analyzed in a 96-well microplate with a colorimetric substrate converted on hydrolysis by phospholipase enzyme. Briefly, 25 μ L of sample, standard, or control was added per well, followed by addition of assay buffer plus substrate. Change in absorbance was measured at 405 nm. Lp-PLA₂ activity in nmol/min/mL was calculated from the slope, based on a standard conversion factor from a p-Nitrophenol calibration curve. Activity levels between 13.5–46.1 were considered as quartile-1, 46.2–69 as quartile-2, 69.1–89.2 as quartile-3, and 89.3–143.2 as quartile-4.

Homocysteine levels in serum (the preferred sample type) were measured by fluorometric high-performance liquid chromatography (HPLC; Quest Diagnostics).

Statistical analysis

Clinical and laboratory characteristics of patients were compared by serum Lp-PLA₂ mass and activity levels and Lp-PLA₂ plaque grade. Before comparing continuous variables for Lp-PLA₂ plaque grades, the normality assumption was checked by Shapiro-Wilk test and the distributional diagnostic plots for these variables: age, Lp-PLA₂ serum activity, and homocysteine levels. All except homocysteine had a normal distribution. Square root transformation of homocysteine levels was performed to achieve the normality assumption.

Student t-test was used to compare plaque Lp-PLA₂ positive vs. negative groups for continuous variables with normal distribution. Pearson chi-square test was used to compare plaque Lp-PLA₂ positive vs. negative groups for binomial variables: history of smoking, coronary artery disease, elevated cholesterol, diabetes, obesity, hypertension and family history of genetic disorders, elevated serum CRP, serum IL-6, C. pneumoniae by qRT-PCR and plaque IL-6, CD4+, CD8+, macrophages, and C. pneumoniae. Multiple logistic regression was also performed for these comparisons, including all variables associated with Lp-PLA₂ (at p<0.20) with a stepwise removal of any that did not contribute (at p>0.10). Since Lp-PLA₂ serum activity results were categorized into four quartiles, Kruskal-Wallis test was used for comparing serum Lp-PLA2 quartiles for clinical characteristics. Nonparametric Spearman Rank test was used to calculate correlation coefficients between variables with Bonferroni adjustment. A P

value of <0.05 was considered statistically significant. STATA version-9 (College Station, TX) was used for all analyses.

Results

Patient characteristics and association with serum Lp-PLA₂ activity and plaque Lp-PLA₂

Characteristics of the 42 study patients are shown in Tables 1 and 2 stratified by Lp-PLA₂ plaque status and Lp-PLA₂ serum activity, respectively. We considered the 42 patients to be a representative cohort of patients with neurologic signs and/or symptoms consistent with carotid vascular disease in addition to the fact that they were enrolled consecutively after informed consent from the pre-operative evaluation clinic at UCSF as previously described [18,19]. None of the patients had stroke but all had neurologic symptoms, indicating carotid ischemia: 30 (71.4%) had symptoms on the left side, 11 (26.2%) on the right, and 1 (2.4%) bilaterally. It should be noted that the treated carotid artery was associated with symptoms on the ipsilateral side. There were no significant correlations of risk factors (smoking, coronary artery disease, elevated cholesterol, diabetes, obesity, hypertension and family history of genetic disorders) or clinical characteristics with Lp-PLA₂ serum levels or tissue Lp-PLA₂ grade ≥ 1 (Tables 1 and 2) or with C. pneumoniae infection as defined by qRT-PCR or IHC as described previously [18,19] (Tables 3 and 4).

Correlation among carotid plaque characteristics and serum levels of inflammatory markers

Serum Lp-PLA₂ mass and activity levels were significantly correlated (r = 0.76, p = 0.001, Table 3). High Lp-PLA₂ activity was also correlated with Lp-PLA₂ mass ($r_3 = 0.37$ and $r_4 = 0.48$, $p_3 = 0.015$ and $p_4 = 0.001$, respectively, Table 4).

Interestingly, 94.7% (18/19) of patients who had plaque Lp-PLA₂ also had plaque *C. pneumoniae*. Plaque Lp-PLA₂ presence (for all quantitative grades above 1) was significantly correlated with *C. pneumoniae* (r = 0.39, p = 0.001) and macrophages (r = 0.37, p = 0.01, Table 3), and with higher serum homocysteine levels (r = 0.38, p = 0.013, Table 3). Plaque Lp-PLA₂ co-localized with *C.*

pneumoniae, macrophages and CD4+ lymphocytes by IHC in the shoulder and necrotic core of the plaques as has been noted by others [9]. We found that 52% of cells showed evidence for Lp-PLA₂ protein and infection with *C. pneumoniae* (Figure 1A). In addition, 39% of macrophages were infected with *C. pneumoniae* (Figure 1B).

In Table 3, the correlation between carotid plaque Lp-PLA₂ and plaque IL-6 expression, IL-6 detected by IHC, serum IL-6, and CRP was statistically insignificant for all plaque Lp-PLA₂ grades. Serum Lp-PLA₂ mass levels were negatively correlated with plaque IL-6 expression and IL-6 detected by IHC (r = -0.31, p = 0.048; r = -0.34, p = 0.03, respectively), and not correlated with serum IL-6 or CRP. Serum Lp-PLA₂ activity levels were negatively correlated with IL-6 detected by IHC (r = -0.32, p = 0.04) and not correlated with plaque IL-6 expression, serum IL-6 or CRP.

Figure 2A shows staining of Lp-PLA₂ (red) in the perivascular necrotic area of carotid plaque. This region was rich in macrophages in addition to *C. pneumoniae* infected macrophages. Figure 2B shows the adjacent section stained with secondary antibody and omission of primary antibody against Lp-PLA₂ as a control for specificity. There were similar results for staining with the control mouse non-immune IgG antibody (data not shown).

Discussion

This is the first study, to our knowledge, that evaluates the correlation between Lp-PLA₂ serum mass and activity levels with presence of Lp-PLA₂ in carotid plaques, and the association of these indicators with plaque *C. pneumoniae* and other inflammatory mediators. Lp-PLA₂ serum mass and activity levels correlated well with one another but not with plaque Lp-PLA₂. However, plaque Lp-PLA₂ was significantly correlated with plaque *C. pneumoniae* infection, macrophages and serum homocysteine levels. A high percentage of macrophages were infected, and many cells showed co-localization of Lp-PLA₂ with *C. pneumoniae*. Thus, a possible mechanism for *C. pneumoniae* in the atherogenic process may involve infection of macrophages that induce Lp-PLA₂ production

Table 1. Clinical characteristics of study population by plaque Lp-PLA₂.^a

Characteristics	Total (n = 42)	Plaque Lp-PLA ₂ negative (n = 23)	Plaque Lp-PLA ₂ positive (n = 19)	<i>P</i> Value ^b
Age (mean +/- s.d.)	72 (9.4)	72.4 (+/-10.6)	72.3 (+/-8)	0.987
Sex:				0.327
Male	30 (71.4%)	15 (65.2%)	15 (78.9%)	
Female	12 (28.6%)	8 (34.8%)	4 (21.1%)	
Smoker	33 (78.6%)	17 (73.9%)	16 (84.2%)	0.418
CAD	23 (54.8%)	11 (47.8%)	12 (63.2%)	0.320
Hypertension history	36 (85.7%)	20 (87%)	16 (84.2%)	0.800
High cholesterol	27 (64.3%)	14 (60.8%)	13 (68.4%)	0.611
Diabetes mellitus	9 (21.4%)	4 (17.4%)	5 (26.3%)	0.483
Symptomatic				0.264
Left side	30 (71.4%)	18 (78.3%)	12 (63.2%)	
Right side	11 (26.2%)	4 (17.4%)	7 (63.7%)	
Both	1 (2.4%)	1 (4.3%)	0	

Abbreviations: Lp-PLA₂, Lipoprotein-associated phospholipase A2; CAD, Coronary Artery Disease.

^aValues expressed are for plaque Lp-PLA₂ grade of ≥ 1 as the results were the same for any grade ≥ 1 .

^bP values were generated by chi-square test except for age, where t-test was used for comparison.

doi:10.1371/journal.pone.0011026.t001

Table 2. Clinical characteristics of study population by serum Lp-PLA₂ activity.^a

Characteristics	Lp-PLA ₂ Activity 1 st quartile (n=10) ^c	Lp-PLA ₂ Activity 2 nd quartile (n = 10) ^c	Lp-PLA ₂ Activity 3 rd quartile (n = 10) ^c	Lp-PLA ₂ Activity 4 th quartile (n = 11) ^c	P Value ^b
Age (mean +/- s.d.)	67.9 (+/-10.1)	71 (+/-10.1)	75.9 (+/-7.8)	73.7(+/-8.5)	0.519
Sex:					0.403
Male (n = 29^{b})	8 (27.6%)	5 (17.2%)	8 (27.6%)	8 (27.6%)	
Female (n = 12 ^b)	2 (17%)	5 (41%)	2 (17%)	3 (25%)	
Smoker	8 (25%)	7 (21.9%)	6 (25%)	11 (28.1%)	0.916
CAD	2 (9.1%)	7 (31.8%)	6 (27.3%)	7 (31.8%)	0.101
Hypertension	7 (20%)	9 (25.7%)	8 (22.9%)	11 (31.4%)	0.243
High cholesterol	4 (15.4%)	8 (30.8%)	5 (19.2%)	9 (34.6%)	0.115
Diabetes mellitus	3 (33.3%)	1 (11.1%)	1 (11.1%)	4 (44.5%)	0.337
Symptomatic:					0.095
Right side	9 (31%)	7 (24.2%)	4 (13.8%)	9 (31%)	
Left side	1 (9.1%)	2 (18.2%)	6 (54.6%)	2 (18.2%)	
Both sides	0	1 (100%)	0	0	

Abbreviations: Lp-PLA₂, Lipoprotein-associated phospholipase A2; Lp-PLA₂.

Activity, range measured in nmol/min/mL; CAD, Coronary Artery Disease.

^aLp-PLA₂ Activity range measured in nmol/min/mL.

^b*P* values were generated by chi-square test except for age, where t-test was used for comparison.

^cSerum Lp-PLA2 activity information was missing for one person.

doi:10.1371/journal.pone.0011026.t002

leading to upregulation of inflammatory mediators in plaque tissue.

We found no significant correlation between patient risk factors for atherosclerosis and serum levels or plaque grade for Lp-PLA₂ in our study. Our findings are similar to those of others [29] but in contrast to some publications that reported a correlation between clinical characteristics or risk factors and serum Lp-PLA₂ mass or activity levels [30,31]. Earlier publications initially found strong correlations between serum Lp-PLA₂ levels and clinical characteristics, which decreased significantly after adjustment for

Table 3. Correlations among plaque characteristics and serum levels of inflammatory markers.

	Carotid Plaque Lp-PLA ₂	Serum Lp-PLA ₂ mass (ng/mL)	Serum Lp-PLA ₂ activity
Carotid Plaque			
Cpn by qRT-PCR	0.21	-0.28	-0.23
Cpn by IHC	0.39 ^a	-0.24	-0.08
IL-6 expression	0.23	-0.31 ^d	-0.22
IL-6 by IHC	0.11	-0.34 ^d	-0.32 ^d
Macrophages	0.37 ^b	0.06	0.11
CD4+	0.17	-0.04	-0.13
CD8+	-0.02	-0.10	-0.13
B-cell	-0.11	-0.22	-0.32
Lp-PLA ₂	1	0.14	0.19
Serum			
Lp-PLA ₂ mass (ng/mL)	0.14	1	0.76 ^a
Lp-PLA ₂ activity	0.19	0.76 ^a	1
CRP	0.18	-0.25	-0.21
IL-6	0.08	-0.27	-0.19
Homocysteine	0.38 ^c	-0.006	0.12

Abbreviations: Lp-PLA₂, Lipoprotein-associated phospholipase A2; Cpn, C. pneumoniae; qRT-PCR, quantitative real-time reverse transcription PCR; IL-6, interleukin-6; IHC, immunohistochemistry; CRP, C-reactive protein.

^ap<0.001.

^bp<0.01.

^cp<0.013.

^dp<0.05.

doi:10.1371/journal.pone.0011026.t003

Serum Lp-PLA ₂ activity (range in nmol/min/mL)	Plaque Lp-PLA ₂ ^a	Serum Lp-PLA ₂ mass (ng/mL)
1 st quartile (13–46.1)	0.04 (p = 0.822)	-0.47 (p<=0.001)
2 nd quartile (46.2–69)	-0.14 (p=0.375)	-0.31 (p=0.043)
3 rd quartile (69.1–89.2)	0.02 (p=0.987)	0.37 (p=0.015)
4 th quartile (89.3–143.2)	0.13 (p=0.417)	0.48 (p=0.001)

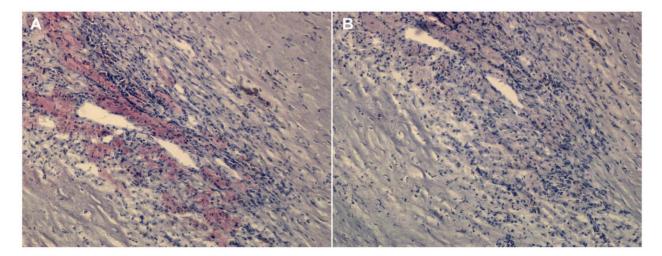
Table 4. Correlations between serum Lp-PLA₂ activity, and plaque and serum Lp-PLA₂ mass.

Abbreviations: Lp-PLA₂, Lipoprotein-associated phospholipase A2.

^aValues expressed are for plaque Lp-PLA₂ grade of \geq 1 as there were no significant correlations with grades >1.

doi:10.1371/journal.pone.0011026.t004

measures of atherosclerosis [32,33]. In our study, the lack of correlation between either clinical characteristics or risk factors and Lp-PLA₂ might be explained by the small sample size. However, serum Lp-PLA₂ mass and activity levels may not be consistently reliable risk markers for atherosclerosis.


There is prior evidence that both serum Lp-PLA₂ mass and activity levels are influenced by infection such as hepatitis C, malaria and influenza [34,35,36]. For example, malaria researchers have shown a positive correlation between circulating levels of Lp-PLA₂, parasitemia and severity of disease [35]. Studies of the interrelationship of influenza with inflammatory responses and atherosclerosis were initiated based on the observation of a strong association between acute respiratory infections, acute MI and sudden death in winter [36]. In a murine model of influenza, Lp-PLA₂ activity in high density lipoproteins (HDL) was found to decrease two days after inoculation of influenza, reaching the lowest levels within a week, while Lp-PLA₂ modification of LDL and lipid peroxide products increased as monocyte migration was induced [36].

In our study, only plaque Lp-PLA₂, but not serum Lp-PLA₂ mass or activity levels, was significantly associated with the presence of *C. pneumoniae*. Prior studies have shown that persistent *C. pneumoniae* infection, characterized by up-regulation of chlamydial heat shock protein 60 expression, induced LDL oxidation that leads to macrophage activation [37]. It is well known that oxidized LDL is also a substrate of Lp-PLA₂ catalyzed reactions,

resulting in LysoPC and oxFA [5]. LysoPC induces proinflammatory cytokines and chemokines, such as IL-1 β , IL-6, TNF- α , and monocyte chemoattractant protein 1 (MCP-1) [38]. IL-1 β , IL-6 and TNF- α trigger atherogenesis by sensitizing vascular smooth muscle cells [39] and inducing secretion of cellular adhesion molecules [40] and matrix metalloproteinase (MMP) by monocytes during later stages of atherosclerosis [41]. MCP-1 recruits T cells and monocytes, inhibits endothelial nitric oxide (causing endothelial dysfunction), induces monocyte-macrophage colonystimulating factor (M-CSF) secretion by smooth muscle cells and stimulates macrophage proliferation [42,43,44]. In our study, we found that plaque Lp-PLA₂ was significantly correlated with plaque macrophages, which is consistent with these studies.

Several studies have shown that *C. pneumoniae* activated macrophages induce pro-inflammatory cytokine/chemokines, such as IL-6, IL-8 and MCP-1 [18,45,46]. In our previous evaluation of the same tissue samples as in the present study, we found that macrophages in the carotid plaques co-localized with CD4+ lymphocytes [18], which can secrete pro-inflammatory cytokines and further fuel the atherogenic process. Both CD4+ cells and macrophages release interferon gamma (IFN- γ), which can resolve chlamydial infection or stimulate a non-replicative persistent state that can result in chronic infection that is likely resistant to antimicrobial treatment.

IL-6 is an acute phase reactant secreted by activated macrophages, Th2 cells and B cells. We previously showed that

Figure 2. Carotid plaque section from a patient with atherosclerosis. A) Lipoprotein-associated phospholipase A2 (Lp-PLA₂) was detected by Immunohistochemistry (IHC) using anti- Lp-PLA₂ specific monoclonal antibody (diaDexus) and chromagen fast red; $400 \times$. B) The five micron adjacent carotid plaque section from the same patient was stained as in A but the primary antibody was omitted as a control for specificity; $400 \times$. doi:10.1371/journal.pone.0011026.g002

quantitatively higher levels of carotid plaque C. pneumoniae measured by qRT-PCR and semi-quantitative IHC was associated with higher IL-6 expression in both plaques and serum [18]. Subsequent studies have also shown that atherosclerotic progression, based on intima-media wall thickness, was associated with higher serum IL-6 levels among C. pneumoniae patients [47]. In in vitro studies, C. pneumoniae induces the production of IL-6 in peripheral monocytes and smooth muscle cells [45]. Neither serum nor plaque IL-6 correlated with serum Lp-PLA₂ activity or mass levels or with plaque Lp-PLA2 grade in our study. However, one other study also failed to show a correlation between serum IL-6 and Lp-PLA₂ activity [48]. This might be due to the indirect pathways induced by Lp-PLA₂ where the temporal influence of Lp-PLA₂ and up-regulation of serum IL-6 are missed because only a single serum sample is obtained at the time of endartectomy. Similarly, given that we found a lack of association of serum Lp-PLA₂ mass or activity levels with plaque Lp-PLA₂ and with plaque C. pneumoniae, it is possible that either the timing of sample collection yields a false negative result or that what is occurring locally in the tissue does not always reflect the circulating systemic levels of Lp-PLA₂. Thus, some patients may not express elevated serum Lp-PLA₂ levels in association with risk factors or disease [32,33] or with infection.

There was a significant correlation of plaque Lp-PLA₂ with serum homocysteine levels. Homocysteine exerts an independent effect on vascular smooth muscle cell proliferation, although the mechanism(s) is not well understood [49]. It is unclear from our data whether there is a direct interaction between homocysteine

References

- 1. Chambless LE, Folsom AR, Clegg LX, Sharrett AR, Shahar E, et al. (2000) Carotid wall thickness is predictive of incident clinical stroke: the Atherosclerosis Risk in Communities (ARIC) study. Am J Epidemiol 151: 478-487.
- Mohler ER, 3rd, Ballantyne CM, Davidson MH, Hanefeld M, Ruilope LM, et al. (2008) The effect of darapladib on plasma lipoprotein-associated phospholipase A2 activity and cardiovascular biomarkers in patients with stable coronary heart disease or coronary heart disease risk equivalent: the results of a multicenter, randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 51: 1632-1641
- 3. Asano K, Okamoto S, Fukunaga K, Shiomi T, Mori T, et al. (1999) Cellular source(s) of platelet-activating-factor acetylhydrolase activity in plasma. Biochem Biophys Res Commun 261: 511-514.
- Tarbet EB, Stafforini DM, Elstad MR, Zimmerman GA, McIntyre TM, et al. (1991) Liver cells secrete the plasma form of platelet-activating factor acetylhydrolase. J Biol Chem 266: 16667-16673.
- 5. MacPhee CH, Moores KE, Boyd HF, Dhanak D, Ife RJ, et al. (1999) Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 338 (Pt 2): 479-487.
- 6. Koenig W, Twardella D, Brenner H, Rothenbacher D (2006) Lipoproteinassociated phospholipase A2 predicts future cardiovascular events in patients with coronary heart disease independently of traditional risk factors, markers of inflammation, renal function, and hemodynamic stress. Arterioscler Thromb Vasc Biol 26: 1586–1593.
- 7. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, et al. (2004) Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 109: 837-842
- 8. Packard CJ, O'Reilly DS, Caslake MJ, McMahon AD, Ford I, et al. (2000) Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group. N Engl J Med 343: 1148–1155.
- Hakkinen T, Luoma JS, Hiltunen MO, Macphee CH, Milliner KJ, et al. (1999) Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol 19: 2909-2917.
- 10. Saikku P (1992) The epidemiology and significance of Chlamydia pneumoniae. J Infect 25 Suppl 1: 27-34.
- 11. Kuo CC, Grayston JT, Campbell LA, Goo YA, Wissler RW, et al. (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). Proc Natl Acad Sci U S A 92: 6911-6914.

Plaque Lp-PLA₂ & C. pneumoniae

Overall, we found that macrophages, many of which were infected with C. pneumoniae, co-localized with Lp-PLA₂. A high percentage of cells demonstrated co-localization of Lp-PLA₂ and C. pneumoniae. These findings suggest that macrophages may be activated by C. pneumoniae infection, inducing Lp-PLA₂ production and subsequent proinflammatory mediators, and, under the influence of Lp-PLA₂ byproducts, result in macrophage proliferation that in turn release inflammatory mediators. This scenario indicates a possible indirect mechanism for C. pneumoniae involvement in the atherogenic process. However, additional research focused on in vitro cell and in vivo animal models will be needed to advance our understanding of the interaction of C. pneumoniae infection with Lp-PLA₂ in inflammation and atherosclerotic disease.

Acknowledgments

sion

We would like to thank the nurses and doctors in the surgery department for their assistance with this study, and the excellent technical expertise of Catherine McDonough.

Author Contributions

Conceived and designed the experiments: SCI DD. Performed the experiments: BA. Analyzed the data: BA SCJ DD. Contributed reagents/materials/analysis tools: DD. Wrote the paper: BA SCJ DD.

- 13. Ramirez JA (1996) Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann Intern Med 125: 979–982.
- 14. Laitinen K, Laurila A, Pyhala L, Leinonen M, Saikku P (1997) Chlamydia pneumoniae infection induces inflammatory changes in the aortas of rabbits. Infect Immun 65: 4832–4835.
- 15. Sessa R, Nicoletti M, Di Pietro M, Schiavoni G, Santino I, et al. (2009) Chlamydia pneumoniae and atherosclerosis: current state and future prospectives. Int J Immunopathol Pharmacol 22: 9-14.
- 16. Grayston JT (2000) Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis 181 Suppl 3: S402-410.
- 17. Chiu B, Viira E, Tucker W, Fong IW (1997) Chlamydia pneumoniae, cytomegalovirus, and herpes simplex virus in atherosclerosis of the carotid artery, Circulation 96: 2144-2148.
- 18. Johnston SC, Zhang H, Messina LM, Lawton MT, Dean D (2005) Chlamydia pneumoniae burden in carotid arteries is associated with upregulation of plaque interleukin-6 and elevated C-reactive protein in serum. Arterioscler Thromb Vasc Biol 25: 2648-2653
- Johnston SC, Messina LM, Browner WS, Lawton MT, Morris C, et al. (2001) Creactive protein levels and viable Chlamydia pneumoniae in carotid artery atherosclerosis. Stroke 32: 2748-2752.
- 20. Mayr M, Kiechl S, Willeit J, Wick G, Xu Q (2000) Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102: 833-839
- 21. LaBiche R, Koziol D, Quinn TC, Gaydos C, Azhar S, et al. (2001) Presence of Chlamydia pneumoniae in human symptomatic and asymptomatic carotid atherosclerotic plaque. Stroke 32: 855-860.
- 22. Apfalter P, Loidl M, Nadrchal R, Makristathis A, Rotter M, et al. (2000) Isolation and continuous growth of Chlamydia pneumoniae from arterectomy specimens. Eur J Clin Microbiol Infect Dis 19: 305-308.
- 23. Ramirez JA, Ahkee S, Ganzel B, Ogend L, Gaydos CA, et al. (1996) Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group. Ann Intern Med 125: 979-982.
- 24. Hauer AD, de Vos P, Peterse N, ten Cate H, van Berkel TJ, et al. (2006) Delivery of Chlamydia pneumoniae to the vessel wall aggravates atherosclerosis in LDLr-/- mice. Cardiovasc Res 69: 280-288.
- 25 de Kruif MD, van Gorp EC, Keller TT, Ossewaarde JM, ten Cate H (2005) Chlamydia pneumoniae infections in mouse models: relevance for atherosclerosis research, Cardiovasc Res 65: 317-327.
- 12. Muhlestein JB (1999) Animal models of chlamydia and atherosclerosis. Am Heart J 138: S514-515.
- 26. Blessing E, Campbell LA, Rosenfeld ME, Chesebro B, Kuo CC (2005) A 6 week course of azithromycin treatment has no beneficial effect on atherosclerotic

lesion development in apolipoprotein E-deficient mice chronically infected with *Chlamydia pneumoniae*. J Antimicrob Chemother 55: 1037–1040.

- Bunk S, Susnea I, Rupp J, Summersgill JT, Maass M, et al. (2008) Immunoproteomic identification and serological responses to novel *Chlamydia pneumoniae* antigens that are associated with persistent *C. pneumoniae* infections. J Immunol 180: 5490–5498.
- Gieffers J, Solbach W, Maass M (2001) In vitro susceptibility and eradication of *Chlamydia pneumoniae* cardiovascular strains from coronary artery endothelium and smooth muscle cells. Cardiovasc Drugs Ther 15: 259–262.
- Oldgren J, James SK, Siegbahn A, Wallentin L (2007) Lipoprotein-associated phospholipase A2 does not predict mortality or new ischaemic events in acute coronary syndrome patients. Eur Heart J 28: 699–704.
- Tsimikas S, Willeit J, Knoflach M, Mayr M, Egger G, et al. (2009) Lipoproteinassociated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10year cardiovascular and non-cardiovascular mortality: results from the Bruneck study. Eur Heart J 30: 107–115.
- Persson M, Berglund G, Nelson JJ, Hedblad B (2008) Lp-PLA2 activity and mass are associated with increased incidence of ischemic stroke: a population-based cohort study from Malmo, Sweden. Atherosclerosis 200: 191–198.
- Kardys I, Oei HH, van der Meer IM, Hofman A, Breteler MM, et al. (2006) Lipoprotein-associated phospholipase A2 and measures of extracoronary atherosclerosis: the Rotterdam Study. Arterioscler Thromb Vasc Biol 26: 631–636.
- Kiortsis DN, Tsouli S, Lourida ES, Xydis V, Argyropoulou MI, et al. (2005) Lack of association between carotid intima-media thickness and PAFacetylhydrolase mass and activity in patients with primary hyperlipidemia. Angiology 56: 451–458.
- Caini P, Guerra CT, Giannini C, Giannelli F, Gragnani L, et al. (2007) Modifications of plasma platelet-activating factor (PAF)-acetylhydrolase/PAF system activity in patients with chronic hepatitis C virus infection. J Viral Hepat 14: 22–28.
- Vadas P, Taylor TE, Chimsuku L, Goldring D, Stefanski E, et al. (1993) Increased serum phospholipase A2 activity in Malawian children with falciparum malaria. Am J Trop Med Hyg 49: 455–459.
- Van Lenten BJ, Wagner AC, Nayak DP, Hama S, Navab M, et al. (2001) Highdensity lipoprotein loses its anti-inflammatory properties during acute influenza a infection. Circulation 103: 2283–2288.
- Kalayoglu MV, Hoerneman B, LaVerda D, Morrison SG, Morrison RP, et al. (1999) Cellular oxidation of low-density lipoprotein by *Chlamydia pneumoniae*. J Infect Dis 180: 780–790.

- Carlquist JF, Muhlestein JB, Anderson JL (2007) Lipoprotein-associated phospholipase A2: a new biomarker for cardiovascular risk assessment and potential therapeutic target. Expert Rev Mol Diagn 7: 511–517.
- Jaulmes A, Thierry S, Janvier B, Raymondjean M, Marechal V (2006) Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J 20: 1727–1729.
- Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, et al. (1997) Coexpression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2: 94–103.
- Rajavashisth TB, Xu XP, Jovinge S, Meisel S, Xu XO, et al. (1999) Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 99: 3103–3109.
- Quinn MT, Parthasarathy S, Steinberg D (1988) Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 85: 2805–2809.
- Kume N, Cybulsky MI, Gimbrone MA, Jr. (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90: 1138–1144.
- Chang MY, Tsoi C, Wight TN, Chait A (2003) Lysophosphatidylcholine regulates synthesis of biglycan and the proteoglycan form of macrophage colony stimulating factor. Arterioscler Thromb Vasc Biol 23: 809–815.
- Rodel J, Woytas M, Groh A, Schmidt KH, Hartmann M, et al. (2000) Production of basic fibroblast growth factor and interleukin 6 by human smooth muscle cells following infection with *Chlanydia pneumoniae*. Infect Immun 68: 3635–3641.
- Högdahl M, Söderlund G, Kihlström E (2008) Expression of chemokines and adhesion molecules in human coronary artery endothelial cells infected with Chlamydia (*Chlamydophila*) pneumoniae. APMIS 116: 1082–1088.
- Jitsuiki K, Yamane K, Nakajima M, Nakanishi S, Tasaki N, et al. (2006) Association of *Chlamydia pneumoniae* infection and carotid intima-media wall thickness in Japanese Americans. Circ J 70: 815–819.
- Furberg CD, Nelson JJ, Solomon C, Cushman M, Jenny NS, et al. (2008) Distribution and correlates of lipoprotein-associated phospholipase A2 in an elderly cohort: The Cardiovascular Health Study. J Am Geriatr Soc 56: 792–799.
- Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C (2009) Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J 30: 6–15.