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Elastic properties of FeSi

J.L. Sarrao**, D. Mandrus?, A. Migliori®, Z. Fisk?, E. Bucher®

* Los Alamos Naticnal Laboratory, Los Alamos, NM 87545, USA
b AT&T Bell Laboratories, Murray Hill, NJ 07974, USA

Abstract

We present measurements of the complete elastic constants of single-crystal FeSi using resonant ultrasound spectro-
scopy (RUS). FeSi is a narrow-gap (0.05 eV) semiconductor whose physical properties are similar to a class of compounds
known as hybridization gap semiconductors or Korido insulators. The narrow gap is rcflected in the temperature

dependence of the elastic moduli.

FeSi is a cubic, transition-metal, narrow-gap (0.05 eV)
semiconductor which has been studied for over 30 years.
Many of its physical prop :rties show activated behavior,
and its magnetic susceptibility exhibits a maximum near
500 K [1]. Recently, FeSi has attracted attention in the
context of hybridization gap physics as a possible non-
rare-earth Kondo insulator [2].

We present measurements of the elastic moduli of FeSi
using Resonant Ultrasound Spectroscopy (RUS) [3].
RUS permits the determination of the complete elastic
moduli of small single crystals, as well as measuring
ultrasonic attenuation, as a function of temperature.

For most solids the elastic moduli vary with temper-
ature according to the Varshni function {4]

Tenh - (n

This form assumes an Einstein tnodel for the excitations
of the system and produces the familiar linear temper-
ature dependence of the elastic moduli at high temper-
atures. Our measured meduli for FeSi are shown in
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Fig. 1. While thc data are fit well by Eq. (1) below 200 K,
at higher temperatures the data deviate significantly.

In order to fit the data better, we consider a deforma-
tion potential coupling which explicitly includes the con-
tribution of conduction electrons to the elastic moduli
through a rigid two-band model (E(k) = E°(k) + dr(k)er,
where d(k) is defined as 0E(k)/der, and e is a symmetry
strain) [5]. Such modeis have been successfully applied to
the study of other dense Kondo systems such as CeNiSn
[6] and SmB¢ [7]. Consider the free energy for conduc-
tion electrons with band index i and energy E'(k):

Fo= ~kgT ) In [l + exp (Eﬂ)] (2)
ik kT

where u 1s the chemical potential. Explicitly calculating
the symmetry elastic moduli, ¢y = ¢2F/¢¢, and assum-
ing conservation of the total number of quasiparticles 5]
vields
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Fig. 1. Elastic moduli of FeSi as a function of temperature. The
dashed curves are fits to the Varshni function (Eq. (1), for
11,8=T70.7GPa, 1=365K; c44,5=395GPa, r=366K;
and for 1/2(c,y — ¢12), s =40.0GPa, = 374K). The solid
curves are fits using a deformation potential coupling model.
The parameters for these fits are given in Table 1.

where the band index is suppressed, f; is the Fermi
distribution function, and ¢} is the background elastic
constant.

For simplicity, we assume a symmetric, rectangular
density of states. Fitting this form to our data (see Fig. 1)
yields the parameters in Table 1. While the fitted value of
the gap is a little large and the bandwidths are unphysi-
cally small, the qualitative picture of a small gap between
two narrow bands with large density of states does seem
to reflect the fundamental physics of FeSi [1].

The small gap in FeSi can also be seen explicitly in
ultrasonic attenuation. In Fig. 2 we show the temperature
dependence of 1/Q (where Q for a resonance is defined as
the center frequency divided by the FWHM) for cne of
the sample’s resonance frequencies. A clear peak in the
attenuation can be seen at 340 K. This peak is cons:stent
with the activation energy, 4/2, as determined by tran.port.

Measurements of the elastic moduli reveal signztures
of the narrow gap in FeSi, While the data are well-fi* by
a deformation potential coupling model, the fitted para-
meters are somewhat unphysical and point to the need
for a more sophisticated model of the density of staws or,
perhaps, a temperature-dependent gap. Preliminary
measurements of CoSi {8] also reveal that when the CoSi
moduli are subtracted from the FeSi values to remove
a lattice contribution, the temperature dependence of
the resulting “electronic” contribution resemblcs the
Schottky anomaly expected for a two-level system.

Table 1

Parameters used to fit the clastic moduli of FeSi. A symmetric.
rectangular, rigid-band model with energy gap 4, band width 1,
and density of states D is assumed

Modulus 4 (K) W(K) {(d} — d3)?D (GPa)
n 1295 12 13072
Caa 1296 17 4951
ey —¢12) 1250 7 10600
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Fig. 2. 1°Q. which is proportional to attenuation. is plotted {or
one of the measured resonance frequencies. The peak in attenu-
ation occurs at the activation energy (4,2).
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