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ABSTRACT 

Repression of germline-promoting genes in somatic cells is critical for somatic development 

and function.  To study how germline genes are repressed in somatic tissues, we analyzed 

key histone modifications in three Caenorhabditis elegans synMuv B mutants, lin-15B, lin-35, 

and lin-37, all of which display ectopic expression of germline genes in the soma.  LIN-35 and 

LIN-37 are members of the conserved DREAM complex.  LIN-15B has been proposed to 

work with the DREAM complex but has not been shown biochemically to be a member of the 

complex.  We found that in wild-type worms synMuv B target genes and germline genes are 

enriched for the repressive histone modification dimethylation of histone H3 on lysine 9 

(H3K9me2) at their promoters.  Genes with H3K9me2 promoter localization are evenly 

distributed across the autosomes, not biased toward autosomal arms like broad H3K9me2 

domains are.  Both synMuv B targets and germline genes display dramatic reduction of 

H3K9me2 promoter localization in lin-15B mutants, but much weaker reduction in lin-35 and 

lin-37 mutants.  This difference between lin-15B and DREAM complex mutants likely 

represents a difference in molecular function for these synMuv B proteins.  In support of the 

pivotal role of H3K9me2 in regulation of germline genes by LIN-15B, global loss of H3K9me2 

but not H3K9me3 results in phenotypes similar to synMuv B mutants, high temperature larval 

arrest and ectopic expression of germline genes in the soma.  We propose that LIN-15B-

driven enrichment of H3K9me2 at promoters of germline genes contributes to repression of 

those genes in somatic tissues.  
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INTRODUCTION 

Repression in somatic cells of genes that promote germline development and function is a 

vital cell fate regulatory mechanism, which when disrupted leads to developmental problems 

and is a hallmark of aggressive cancer (Janic et al. 2010; Petrella et al. 2011; Whitehurst 

2014; Al-Amin et al. 2016).  Repression of germline genes in the soma poses a unique 

challenge for cells.  First, like other genes expressed in specific tissues, germline genes can 

be found clustered along chromosomes; however, within a given cluster genes with 

ubiquitous, germline, and non-germline expression are interspersed (Spellman and Rubin 

2002; Roy et al. 2002; Reinke and Cutter 2009).  Therefore, somatic cells require a 

mechanism to repress germline genes without disrupting expression of important flanking 

genes.  Second, because embryos start life as the fusion of two germline cells, an egg and a 

sperm, they inherit an epigenetic state associated with driving germline gene expression 

(Furuhashi et al. 2010; Rechtsteiner et al. 2010; Zenk et al. 2017; Tabuchi et al. 2018; Kreher 

et al. 2018).  This chromatin state must be reset during development to turn off germline gene 

expression in differentiating somatic cells (Morgan et al. 2005; Fraser and Lin 2016).  There 

has been no investigation to date of the unique patterns of chromatin modifications or 

regulatory protein binding that lead to repression of germline genes in somatic tissues in C. 

elegans. 

 

synMuv (for synthetic Multivulva) B proteins are a diverse class of transcriptional 

repressors that are involved in a number of different cell fate decisions in C. elegans 

(Unhavaithaya et al. 2002; Wang et al. 2005; Fay and Yochem 2007).  A subset of synMuv B 

genes show a distinct set of mutant phenotypes, which include ectopic expression of 

germline genes in somatic cells and larval arrest at high temperature (called HTA for high 

temperature arrest) (Wang et al. 2005; Petrella et al. 2011; Wu et al. 2012).  Of this subset, a 
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large proportion encode proteins that exist in two complexes: the HP1-containing 

heterochromatin complex (HPL-2, LIN-13, LIN-61), and the DREAM complex (EFL-1, DPL-1, 

LIN-35, LIN-9, LIN-37, LIN-52, LIN-53, LIN-54) (Coustham et al. 2006; Harrison et al. 2006; 

Wu et al. 2012).  Several additional synMuv B mutants, including lin-15B and met-2, also 

display ectopic germline gene expression in the soma, but have not been shown 

biochemically to encode members of the HP1 or DREAM complex (Wu et al. 2012; Petrella et 

al. 2011).  lin-15B mutants, like mutants in genes encoding DREAM complex members, also 

display an HTA phenotype, show changes in regulation of somatic RNAi, and cause 

transgene silencing in the soma (Wang et al. 2005; Petrella et al. 2011; Wu et al. 2012).  

While mutations in genes encoding the HP1 complex, the DREAM complex, LIN-15B, and 

MET-2 all lead to ectopic expression of germline genes in the soma, the precise way these 

different complexes/proteins function in parallel or together to repress germline genes in the 

somatic tissues of wild-type animals is not understood.   

 

Several lines of evidence point to synMuv B complexes repressing gene expression by 

altering chromatin.  First, synMuv B mutant phenotypes, including HTA and ectopic germline 

gene expression, are strongly suppressed by loss of chromatin factors (Unhavaithaya et al. 

2002; Wang et al. 2005; Cui et al. 2006; Petrella et al. 2011; Wu et al. 2012).  Second, the 

DREAM complex has been shown to promote enrichment of the H2A histone variant HTZ-1 

in the body of a subset of genes that the DREAM complex represses in L3 larvae (Latorre et 

al. 2015).  Finally, HPL-2 is a homolog of heterochromatin protein 1 (HP1) (Couteau et al. 

2002).  HPL-2, in a complex with LIN-13 and LIN-61, localizes to genomic regions enriched 

for histone H3 methylated at lysine 9 (H3K9me) and helps create repressive heterochromatin 

(Wu et al. 2012; Garrigues et al. 2015).  Together these data indicate that changes to 

chromatin may underlie the ectopic expression of germline genes in synMuv B mutants.  
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One of the best studied aspects of chromatin regulation is covalent modifications on 

histone tails.  Specific histone modifications are often associated with repressive or active 

chromatin compartments and can be a read-out of the expression state of a gene.  Histone 

H3 lysine 4 methylation (H3K4me) and H3 lysine 36 methylation (H3K36me) are generally 

associated with areas of previous or active gene expression (Ho et al. 2014; Evans et al. 

2016).  In contrast, histone H3 lysine 9 methylation (H3K9me) and histone H3 lysine 27 

methylation (H3K27me) are associated with areas of low/no expression of coding genes and 

repression of repetitive elements (Ahringer and Gasser 2018).  Of particular interest for the 

regulation of germline gene expression in somatic cells is histone H3K9 methylation.  In C. 

elegans, mono- and dimethylation of H3K9 (H3K9me1 and H3K9me2, respectively), are 

primarily catalyzed by MET-2.  met-2 mutants lose 80-90% of H3K9me1 and H3K9me2 in 

embryos (Towbin et al. 2012).  met-2 is a synMuv B gene, and mutants have been previously 

shown to ectopically express germline genes in somatic cells (Wu et al. 2012).  

Trimethlyation of H3K9 (H3K9me3) is catalyzed by a separate histone methyltransferase, 

SET-25 (Towbin et al. 2012).  set-25 is not a synMuv B gene and its potential role in 

regulating germline gene expression in the soma has not been tested.  Several studies have 

analyzed the roles in C. elegans of H3K9me2 and H3K9me3 in regulating the interaction of 

heterochromatin with the nuclear periphery and repression of repetitive elements (Meister et 

al. 2010; Towbin et al. 2012; Guo et al. 2015; Zeller et al. 2016).  Both of these functions 

primarily rely on high enrichment of H3K9 methylation on the heterochromatic arms of the 

autosomes (Ikegami et al. 2010; Liu et al. 2011; Garrigues et al. 2015; Evans et al. 2016).  

However, little work has been done to look at how H3K9 methylation localizes to or regulates 

protein-coding genes in the euchromatic central regions of autosomes, where a large 

percentage of germline genes reside.  To fill this gap, we sought to identify changes in the 
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levels and distributions of active and repressive histone modifications in the soma of synMuv 

B mutants and test whether such changes underlie ectopic expression of germline genes.  

 

 In this study we used chromatin immunoprecipitation with genome-wide high-

throughput sequencing (ChIP-seq) to analyze histone modifications in wild type and three 

synMuv B mutants, lin-15B, lin-35, and lin-37.  We found that in wild-type L1 larvae, which 

are composed of 550 somatic cells and 2 germ cells and are therefore primarily somatic, 

H3K9me2 is enriched at the promoters of a subset of genes that display germline-specific 

expression.  The genes that have H3K9me2 at their promoters in wild type are generally up-

regulated in synMuv B mutants, suggesting that H3K9me2 plays a role in their repression.  In 

support of this, the localization of H3K9me2 at gene promoters is largely lost in lin-15B 

mutants and is diminished but not lost in lin-35 and lin-37 mutants.  Loss of H3K9me2 at 

promoters in mutants is associated with an increase in H3K4me3 at promoters and 

H3K36me3 in gene bodies, modifications associated with gene expression, suggesting that 

these genes go from a repressed state to an expressed state.  Global loss of H3K9me2 but 

not H3K9me3 results in both the HTA and ectopic germline gene expression phenotypes 

seen in lin-15B mutants.  We propose that LIN-15B and DREAM repress a subset of germline 

genes in somatic tissues by promoting enrichment of H3K9me2 at those genes’ promoters.  	

 

MATERIALS AND METHODS 

C. elegans strains and culture conditions  

C. elegans were cultured using standard conditions (Brenner 1974) at 20°C unless otherwise 

noted.  N2 (Bristol) was used as wild type.  Mutant strains were as follows:  

MT10430 lin-35(n745) I 

SS1183 hpl-2(tm1489) III 



 

8	

MT5470 lin-37(n758) III 

MT13293 met-2(n4256) III 

MT17463 set-25(n5021) III 

GW638 met-2(n4256) set-25(n5021) III 

MT2495 lin-15B(n744) X 

 

ChIP-seq from L1s  

Worms were grown from synchronized L1s in standard S-basal medium with shaking at 230 

rpm and fed HB101 bacteria until gravid.  Embryos were harvested using standard bleaching 

methods, and L1s were synchronized in S-basal medium with shaking for 14-18 hours in the 

absence of food.  For 26°C samples, worms were grown to the L4 stage at 20°C, then up-

shifted to 26°C until gravid, and L1s were harvested as described above.  Extracts were 

made as described in (Kolasinska-Zwierz et al. 2009) with the following modifications.  Cross-

linked chromatin was sonicated using a Diagenode Bioruptor at high setting for 30 pulses, 

each lasting 30 sec followed by a 1 min pause.  ChIP was performed as described by 

(Kolasinska-Zwierz et al. 2009) with the modification of using 0.5 mg of protein and 1 µg 

antibody or by using an IP-Star Compact Automated System (Diagenode) as described in 

(Tabuchi et al. 2018).  Sequencing libraries were prepared in two ways.  Some libraries were 

prepared with the NEBNext Ultra DNA library Prep Kit (NEB) following the manufacturers’ 

instructions.  1 ng of starting DNA was used, adapters were diluted 1:40, and AMPure beads 

were used for size selection before amplification to enrich for fragments corresponding to a 

200 bp insert size.  The other libraries were prepared using Illumina Truseq adapters and 

primers.  ChIP or input DNA fragments were end repaired with the following: 5 µl T4 DNA 

ligase buffer with 10 mM ATP, 2 µl dNTP mix, 1.2 µl T4 DNA polymerase (3U/µl), 0.8 µl 1:5 

Klenow DNA polymerase (diluted with 1X T4 DNA ligase buffer for a final Klenow 
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concentration of 1U/µl), 1 µl T4 PNK (10U/µl).  This 50 µl reaction was incubated at 20°C for 

30 minutes and purified with a QIAquick PCR spin column (elution volume 36 µl).  ‘A’ bases 

were then added to the 3’ end of the DNA fragments with the following: 5 µl NEB buffer 2, 10 

µl dATP (1 mM), 1 µl Klenow 3’ to 5’ exo- (5U/µl).  This mixture was incubated at 37°C for 30 

min, and the DNA was purified with a QIAquick MinElute column (11 µl of DNA was eluted 

into a siliconized tube).  Illumina TruSeq adapters were ligated to DNA fragments with the 

following: 15 µl 2x Rapid Ligation buffer, 1 µl adapters (diluted 1:40), 1.5 µl Quick T4 DNA 

Ligase.  This 30 µl reaction was incubated at 23°C for 30 min.  The mixture was then cleaned 

up 2X with AMPure beads (using 95% volume beads), and DNA was eluted in 22 µl.  The 

Adapter-Modified DNA fragments were amplified by PCR with the following mixture: 6 µl 5X 

Phusion Buffer HF, 2 µl Primer cocktail (from TrueSeq kit), 0.5 µl 25 mM dNTP mix, 0.5 

Phusion polymerase (2U/µl) using the following PCR program: 98°C 30 min, 98°C 10 min, 

60°C 30 min, and 72°C 30 min repeated 16 cycles, followed by 72°C 5 min. The amplified 

DNA was concentrated and loaded onto a 2% agarose gel, and DNA between 250-350 bp 

was recovered from the gel.  The multiplexed libraries were sequenced on an Illumina 

HiSeq4000 or HiSeq2000 at the Vincent J. Coates Genomics Sequencing Laboratory at 

University of California, Berkeley.  

 

ChIP-chip from embryos 

Late-stage embryos were obtained and chromatin extracts prepared as described in (Latorre 

et al. 2015).  Chromatin immunoprecipitation and subsequent LM-PCR, microarray 

hybridization, and scanning were performed as in (Garrigues et al. 2015). 
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Antibodies used for ChIP  

Mouse monoclonal antibodies for H3K9me2 (Fujifilm Wako MABI0307, #302-32369), 

H3K36me3 (Fujifilm Wako MABI0333, #300–95289), H3K27me3 (Fujifilm Wako MABI0323, 

#309–95259), and H3K4me3 (Fujifilm Wako MABI0304, #305–34819) were used as 

described in (Liu et al. 2011; Egelhofer et al. 2011).  Rabbit polyclonal LIN-15B antibody 

(SDQ2330, Novus Biologicals #38610002) was used at a concentration of 2.5 µg per mg of 

chromatin extract. 

 

Analysis of ChIP-seq data  

Raw sequence reads from the Illumina HiSeq (50 bp single-end reads) were mapped to the 

C. elegans genome (Wormbase version WS220) using Bowtie with default settings 

(Langmead et al. 2009).  MACS2 (Zhang et al. 2008) was used to call peaks and create 

bedgraph files for sequenced and mapped H3K4me3 ChIP samples and corresponding Input 

DNA samples with the following parameters:  

callpeak -t H3K4me3.mapped.reads.sampleX -c Input.mapped.reads.sampleX -g ce --bdg --

keep-dup=auto --qvalue=0.01 --nomodel --extsize=250 —call-summits 

MACS2 was used to call peaks and create bedgraph files for sequenced and mapped 

H3K9me2 ChIP samples and corresponding Input DNA samples with slightly different 

parameters to account for the broader domains of H3K9me2:  

callpeak -t H3K9me2.mapped.reads.sampleX -c Input.mapped.reads.sampleX  -g ce --bdg --

keep-dup=auto --broad --broad-cutoff=0.01 --nomodel --extsize=250.  Replicate 1 of 

H3K9me2 in lin-15B at 20°C had significantly fewer peaks than replicate 2, so we relaxed the 

peak call significance cutoff to –broad-cutoff=0.05 for replicate 1.  This makes our reported 

results of H3K9me2 peak loss in lin-15B compared to N2 a conservative estimate, as peaks 

were called with the more stringent cutoff for both replicates of N2.  A peak was considered to 
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be associated with a gene’s promoter if it overlapped at least 100bp with the region 750bp 

upstream from the gene’s TSS (transcript start site) to 250bp downstream from the TSS.  A 

peak was considered to be associated with the body of a gene if it overlapped at least 250bp 

with the region from 250bp downstream from the TSS to the TES (transcript end site).  A 

gene’s promoter or gene body was considered bound by H3K4me3 or H3K9me2 in one of the 

conditions if for all replicates of that condition a peak was associated with the gene’s 

promoter or body, respectively.  Whenever we refer to genes with an H3K9me2 promoter 

peak, we mean genes that have an H3K9me2 peak solely at their promoter and not also in 

their gene body.  The distribution of genes with promoter or gene body H3K9me2 peaks 

along an autosome are shown in Figure 3A in 200kb windows. 

Bedgraph files for genome browser displays were scaled to 5 million total reads for all 

H3K4me3 ChIP samples, 10 million reads for all H3K36me3 samples, 15 million reads for all 

H3K9me2 samples, and 20 million reads for all H3K27me3 samples.  The different scaling 

factors roughly correspond to the different genome-wide coverages of the different ChIP 

factors, e.g. H3K4me3 being found mostly at promoters of expressed genes, H3K36me3 

mostly on gene bodies of expressed genes, and H3K9me2 mostly on chromosomal arms.  

Further data analysis below was based on these scaled read coverages.  Scaled bedgraph 

files were converted to bigwig using the bedGraphToBigWig UCSC Genome Browser tool 

(Kent et al. 2010) and displayed on the UCSC Genome Browser.  

 

Analysis of LIN-15B ChIP-chip data  

NimbleGen 2.1M probe tiling arrays (DESIGN_ID = 8258) with 50 bp probes designed 

against WS170 (ce4) were used.  Two independent ChIPs were performed.  Amplified 

samples were labeled and hybridized by the Roche NimbleGen Service Laboratory.  ChIP 

samples were labeled with Cy5 and their input reference with Cy3.  For each probe, the 
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intensity from the sample channel was divided by the reference channel and log2 

transformed.  The enrichment scores for each replicate were calculated by standardizing the 

log ratios to mean zero and standard deviation one (z-score) and the average z-score across 

replicates was calculated and displayed in the UCSC Genome Browser (Figure S3).  Peak 

calling was performed with the MA2C algorithm (Song et al. 2007) using Nimblegen array 

design files 080922_modEncode_CE_chip_HX1.pos and 

080922_modEncode_CE_chip_HX1.ndf and MA2C parameters METHOD = Robust, C = 2, 

pvalue = 1e-5, BANDWIDTH = 300, MIN_PROBES = 5, MAX_GAP = 250.  The resulting 

peak calls were associated with gene promoters and bodies as described in the previous 

section.  

 

Correlation heatmap of samples  

The scaled bedgraph files were used to calculate for each sample the average read coverage 

in 1kb windows across all autosomes and the X chromosome.  The resulting read coverage 

data were log transformed and normalized for each ChIP sample by dividing by the standard 

deviation across all 1kb windows and subtracting the 25th percentile across all 1kb windows.  

For each 1kb window and condition, the resulting data were averaged across replicates.  The 

data were used to calculate the Pearson Correlation coefficient r between all conditions once 

for autosomes and once for the X chromosome. The distance d = 1 - r was calculated, and 

hierarchical clustering was used with the complete linkage method to cluster the conditions.  

The results are displayed in a heatmap where the cell coloring indicates r between two 

conditions (Figure S2).  The analysis was performed in R version 3.5.1 (R Core Team 2018). 

 

 

 



 

13	

Metagene plots 

Metagene plots for the various ChIP targets and conditions (e.g. Figure 2C and Figure 4A 

and Figure S7 and Figure S9) were generated by aligning genes of length greater than 1.25 

kb at their TSS and TES using WormBase WS220 gene annotations.  Regions 1 kb upstream 

to 1 kb downstream from the TSS and TES were divided into 150bp windows stepped every 

50bp.  The mean read coverage within each of these 150bp windows was calculated and 

normalized for each ChIP data set by dividing by the standard deviation across all 150bp 

windows and subtracting the 25th percentile across all 150bp windows.  For each 150bp 

window, the normalized data were averaged across replicates.  A metagene profile for a set 

of genes was generated by averaging and plotting for each 150bp window the data across 

the genes in the set.  Light vertical lines indicate 95% confidence intervals for the mean of 

each 150bp window.  The analysis was performed in R version 3.5.1. 

 

Scatterplots  

To display scatter plots (Figure 4B and Figure S10 and Figure S11), the mean read coverage 

for each protein-coding gene was calculated over the region 250bp upstream and 

downstream from the TSS. In scatterplots the wild-type log2 normalized read coverage was 

subtracted from the mutant log2 normalized read coverage for each promoter, resulting in a 

log2 fold change of mutant over wild-type promoter signal.  

 

Gene set definitions  

Ubiquitous genes (2576), originally defined and discussed in (Rechtsteiner et al. 2010), are 

genes that were found to be expressed in germline, muscle, neural, and gut tissues (Wang et 

al. 2009; Meissner et al. 2009).  Germline-enriched genes (2229) are as defined in (Reinke et 

al. 2004).  Germline-expressed genes (5373) are defined as genes found to be expressed in 
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the germline based on SAGE (Wang et al. 2009) or genes whose expression was found to be 

enriched in the germline by microarray (Reinke et al. 2004).  Germline-specific genes (169) 

are genes whose transcripts were found to be expressed exclusively in the adult germline 

and maternally loaded into embryos; these genes were defined using multiple datasets as 

described in (Rechtsteiner et al. 2010).  Soma-specific genes (1181) are genes expressed in 

at least 1 of 3 somatic tissues (muscle, gut, and/or neuron) with at least 8 SAGE tags 

(Meissner et al. 2009) but not enriched (Reinke et al. 2004) or detectably expressed (Wang et 

al. 2009) in the adult germline.  Silent genes are 415 serpentine receptor genes that are 

expressed in a few mature neurons and are not detectably expressed in L1 larvae, originally 

defined in (Kolasinska-Zwierz et al. 2009).  lin-15B up-regulated genes in L1 larvae (1355) 

and lin-35 up-regulated genes in L1 larvae (656) were defined in (Petrella et al. 2011).  HTA 

germline genes (48), as defined in (Petrella et al. 2011), are genes that were significantly up-

regulated in lin-35(n745) mutants versus wild type and also significantly down-regulated in 

lin-35(n745) mes-4(RNAi) versus lin-35(n745), and that have germline-enriched expression 

(Reinke et al. 2004).  Whenever p-values are reported for enrichment of gene sets in other 

categories of genes, we used the hypergeometric test.  

HTA larval arrest assays  

L4 larvae were placed at 26°C for ~18 hours and then moved to new plates and allowed to 

lay embryos for 8 hours.  Progeny were scored for L1 larval arrest (Petrella et al., 2011).  

 

Immunohistochemistry  

Immunostaining of L1 larvae was adapted from Strome and Wood (1983).  L4 worms were 

placed at 26°C overnight and then moved into drops of M9 buffer as gravid adults.  L1 larvae 

were obtained by allowing embryos to hatch in the absence of food in the M9 buffer.  L1 
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animals were placed on a polylysine-coated slide, a coverslip was placed over the sample, 

excess liquid was wicked away, and the slide was immersed in liquid nitrogen for at least 5 

minutes.  Slides were removed from liquid nitrogen, the coverslip was removed, and the 

samples were fixed in methanol at 4°C for 10 minutes and acetone at 4°C for 10 minutes.  

Slides were air dried, and blocked for 30 minutes at room temperature.  Slides were 

incubated with anti-PGL-1 primary antibody at 1:30,000 for ~18 hours at 4°C (Kawasaki et al. 

1998).  Slides were washed two times in PBS for 10 minutes, blocked for 15 minutes at room 

temperature, and incubated with Alexa Fluor 488 (Invitrogen) secondary antibody at 1:500 for 

2 hours at room temperature.  Slides were washed four times for 10 minutes each in PBS at 

room temperature and were mounted in Gelutol mounting medium.  Images were acquired 

using a Nikon A1R laser scanning confocal unit controlled by NIS-Elements fitted on a Nikon 

inverted Eclipse Ti-E microscope with a Nikon DS-Qi1Mc camera and Plan Apo 60X/1.2 

numerical aperture oil objective. 

 

Reagent and Data Availability 

All strains and non-commercially available reagents are available upon request.  All ChIP-

seq, ChIP-chip, and expression data are available in the NCBI's Gene Expression Omnibus 

(Edgar et al., 2002) under accession number GSE126884.  Supplemental data are available 

at Figshare: ##. 
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RESULTS 

lin-15B mutants lose a large proportion of H3K9me2 promoter peaks; lin-35 and lin-37 

mutants lose fewer  

To better understand how synMuv B proteins regulate germline gene expression in somatic 

cells, we sought to identify changes in histone modification patterns in mutants compared to 

wild type.  We profiled the distributions of two histone modifications associated with active 

chromatin (H3K4me3 and H3K36me3) and two histone modifications associated with 

repressive chromatin (H3K9me2 and H3K27me3) using chromatin immunoprecipitation 

followed by high-throughput sequencing (ChIP-seq).  Experiments were done on L1 animals 

that experienced embryogenesis at 20°C or 26°C for four genotypes: wild type and three 

synMuv B mutants, lin-15B(n744), lin-35(n745), and lin-37(n758).  Because L1 stage worms 

have 550 somatic cells and only 2 germline cells, extracts from L1s contain genomic material 

primarily from somatic tissues.  Analysis of H3K4me3 and H3K36me3 patterns showed 

increased enrichment of these modifications in mutants compared to wild type on classes of 

genes that are up-regulated in synMuv B mutants (Figure S1, discussed below).  As the 

presence of these modifications generally correlates with gene expression, this change was 

expected.  We saw no changes in the pattern of the repressive modification H3K27me3 

between mutants and wild type (Figure S2).  However, we observed significant changes in 

the pattern of the repressive modification H3K9me2 between synMuv B mutants and wild 

type, especially on germline-expressed genes (Figure 1B).  We analyzed the changes to 

H3K9me2 patterns in detail to investigate whether this particular histone modification is 

important for repression of germline gene expression by synMuv B proteins. 

Analysis of H3K9me2 showed that most of the localization of H3K9me2 on autosomes 

and the X chromosome is unchanged between mutants and wild type (Figure 1A and Figure 

S2).  However, a subset of H3K9me2 peaks were observed to be lost or reduced in synMuv 
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B mutants (Figure 1B).  To investigate the pattern of this loss/reduction, we performed peak 

calling for H3K9me2 and designated two types of peaks depending on the location of 

H3K9me2 relative to gene bodies.  “Gene body peaks” are those peaks where H3K9me2 

overlaps with at least a portion of the coding region of the gene that is more than 250bp 

downstream of the transcript start site (TSS) (Figure 1A and Table S1).  The distribution of 

genes with gene body peaks mirrors what has been previously described for the general 

pattern of H3K9me2 and H3K9me3 enrichment in the C. elegans genome (Figure 3A; Liu et 

al. 2011; Evans et al. 2006).  “Promoter peaks” are those peaks where H3K9me2 overlaps 

with a region 750 bp upstream to 250 bp downstream of the TSS, but not further than 250bp 

downstream of the TSS (Figure 1B and Table S1).  Whenever we refer to genes with an 

H3K9me2 promoter peak, we mean genes that have an H3K9me2 peak solely at their 

promoter and not also in their gene body.  In wild type, H3K9me2 gene body peaks are 

generally broader than promoter peaks (Figure 1, A and B and Figure S3A), and genes with 

body peaks (2991 at 20°C/2871 at 26°C) are about three times more abundant than genes 

with only a promoter peak (984 at 20°C/981 at 26°C) (Figure 1, C and D and Table S1). 	

Our analysis showed that loss of synMuv B proteins had a smaller effect on H3K9me2 

in gene bodies than at promoters.  lin-15B mutants had ~12% fewer genes with a gene body 

peak compared to wild type when grown at 20°C and no reduction in the number of genes 

with H3K9me2 gene body peaks at 26°C (Figure 1C and Table S2).  In contrast, lin-15B 

mutants had significantly fewer genes with H3K9me2 promoter peaks at both 20°C (~42% 

fewer) and 26°C (~25% fewer) when compared to wild type (Figure 1D and Table S3).  The 

genes with an H3K9me2 promoter peak found in lin-15B are for the most part a subset of the 

genes with an H3K9me2 promoter peak found in wild type (Figure S3).  In both lin-35 and lin-

37 mutants, there was no decrease in the number of genes with H3K9me2 gene body peaks 

(Figure 1C and Table S2).  Unlike the significant loss of H3K9me2 promoter peaks in lin-15B 
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mutants, fewer H3K9me2 promoter peaks were lost in lin-35 and lin-37 mutants at 20˚C, and 

no significant loss was observed at 26˚C (Figure 1D and Table S3).  This is the first 

description of a molecular difference in phenotypes seen between mutants in DREAM 

complex members and lin-15B mutants and may represent a difference in their molecular 

function at target loci.	

 

Genes with an H3K9me2 promoter peak are enriched for DREAM and LIN-15B target 

genes in wild type but not in lin-15B mutants 	

If localization of H3K9me2 to promoters is driven by synMuv B binding and functions to 

repress gene expression, we predicted that genes with H3K9me2 promoter peaks would be 

bound by synMuv B proteins in wild-type animals and would be up-regulated in synMuv B 

mutants.  To test this prediction, we identified genes bound by LIN-15B using previously 

unpublished LIN-15B ChIP-chip data from late embryos.  We observed a high co-occurrence 

of LIN-15B binding and published DREAM complex binding in wild type, with 70% of DREAM 

bound loci also bound by LIN-15B (Figure S4).  To determine if synMuv B protein binding, 

repression of target loci, and H3K9me2 promoter peaks co-occur, we defined two sets of 

synMuv B target genes: 170 DREAM complex targets are those genes bound by the DREAM 

complex at their promoter by ChIP-seq in late embryos (Goetsch et al. 2017) and also 

significantly up-regulated in lin-35 mutant L1s at 26˚C (Petrella et al. 2011); 115 LIN-15B 

targets are those genes bound by LIN-15B at their promoter by ChIP-chip in late embryos 

(this paper) and also significantly up-regulated in lin-15B mutant L1s at 26˚C (Petrella et al. 

2011) (Table S1).  Genes with an H3K9me2 promoter peak were enriched for DREAM 

complex and LIN-15B target genes in wild type, lin-35, and lin-37 mutants but not in lin-15B 

mutants (Figure 2A).  Thus, genes that have H3K9me2 promoter localization in wild type are 
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correlated with DREAM complex and LIN-15B binding and repression, and this correlation is 

disrupted when LIN-15B is absent.	

 

Germline genes lose H3K9me2 from their promoter in lin-15B mutants	

One of the major phenotypes of many synMuv B mutants, including lin-15B mutants, is the 

ectopic expression in somatic cells of genes whose expression is normally restricted to the 

germline (Wang et al. 2005; Petrella et al. 2011; Wu et al. 2012).  We investigated if genes 

that have an H3K9me2 promoter peak in wild-type L1s are enriched for genes that are 

specifically expressed in the germline.  We analyzed four categories of expression: genes 

that are broadly expressed in all tissues (2576: ubiquitous), genes that are repressed in most 

tissues (415: silent), genes that are expressed specifically in somatic tissues (1181: soma-

specific), and genes that are expressed specifically in the germline (169: germline-specific).  

Genes with an H3K9me2 promoter peak in wild-type L1s are enriched for genes with 

germline-specific expression, but not for genes with ubiquitous, silent, or somatic expression 

(Figure 2B and Figure S5).  These enrichments are mirrored when plotting H3K9me2 ChIP-

seq signal around the transcript start site (TSS) averaged over the genes in each expression 

category (Figure 2C).  If H3K9me2 at germline gene promoters is correlated with synMuv B 

repression of germline gene expression in the soma, then we would predict that germline 

genes would lose H3K9me2 promoter peaks in synMuv B mutants.  Indeed, in lin-15B 

mutants, there were many fewer germline-specific genes with an H3K9me2 promoter peak, 

and there was a large decrease in the signal of H3K9me2 at the TSS of germline-specific 

genes (Figure 2, B and C).  lin-35 and lin-37 mutants resembled wild type in having genes 

with an H3K9me2 promoter peak enriched for germline-specific genes (Figure 2, B and C).  	

We also examined germline genes whose misregulation is correlated with the high 

temperature larval arrest (HTA) phenotype (Petrella et al. 2011).  HTA-germline targets are 
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defined as genes normally expressed in the germline that are up-regulated in arrested lin-35 

mutant L1s at 26˚C and whose expression returns to near wild-type levels in HTA-

suppressed lin-35; mes-4(RNAi) double mutant L1s at 26˚C (48: HTA-germline) (Petrella et 

al. 2011).  Similar to what was seen with germline-specific genes, genes with an H3K9me2 

promoter peak were enriched for HTA-germline genes in wild type, lin-35, and lin-37 mutants, 

but this enrichment was much reduced in lin-15B mutants (Figure 2, B and C).  These data 

together reveal a striking loss of H3K9me2 at the promoters of germline-specific and HTA-

germline genes in lin-15B mutants, but not in lin-35 or lin-37 mutants. 	

 

H3K9me2 promoter peaks are distributed along the whole length of autosomes	

Previous work on H3K9me2 in C. elegans focused on its distribution in broad domains on 

autosomal arms and the role of H3K9me2 in repressing repetitive sequences (Ikegami et al. 

2010; Liu et al. 2011; Guo et al. 2015; Zeller et al. 2016).  Little investigation has been done 

into what role the more narrowly focused H3K9me2 found at promoters may be serving in 

gene regulation.  In C. elegans, genes with expression that is higher in the germline than 

other tissues (germline-enriched genes) or with expression exclusive to the germline 

(germline-specific genes) show a biased localization to the centers of autosomes compared 

to the localization of all coding genes (Figure S6).  Therefore, if H3K9me2 promoter peaks 

are associated with regulation of germline gene expression, we would predict that H3K9me2 

promoter peaks would also be found in the center regions of chromosomes and not be biased 

toward arm localization.  We compared the distributions along autosomes of genes with 

H3K9me2 in their gene body versus at their promoter.  In wild type, genes with H3K9me2 in 

their gene body demonstrated the previously reported pattern of H3K9me2 enrichment on 

autosomal arms compared to centers (Figure 3, A and B).  For genes with an H3K9me2 gene 

body peak, all mutants showed the same autosomal arm bias as seen in wild type (Figure 3, 
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A and B and Figure S7).  In contrast, genes with an H3K9me2 promoter peak in wild type 

were more evenly distributed across autosomes, with weak or no depletion from autosomal 

centers (Figure 3, A and B).  Notably, lin-15B mutants showed reduction of H3K9me2 

promoter peaks in the center of all autosomes (Figure 3, A and B), suggesting that LIN-15B is 

needed for H3K9me2 localization at gene promoters in autosomal centers where germline 

genes are enriched.  lin-35 mutants showed a distribution of genes with H3K9me2 at their 

promoter similar to wild type (Figure S7).  lin-37 mutants were intermediate between lin-15B 

and lin-35 mutants (Figure S7).  H3K9me2 promoter peaks in chromosome centers in wild 

type represent a pattern not previously described for H3K9me2 in C. elegans and place 

H3K9me2 promoter peaks in mainly euchromatic regions where they may affect coding gene 

expression.  Additionally, the loss of H3K9me2 from promoters in autosomal centers in lin-

15B mutants suggests that LIN-15B plays a specific role in directing H3K9me2 to areas of the 

genome where there are fewer repeats and more coding genes, especially germline genes.   

 

Loss of H3K9me2 in mutants is associated with increased H3K4me3 on germline 

genes 

Trimethylation of histone H3 on lysine 4 (H3K4me3) and lysine 36 (H3K36me3) are 

correlated with active gene expression (Liu et al. 2011; Ho et al. 2014; Evans et al. 2016).  

Thus, we expected to see increases in H3K4me3 and H3K36me3 on germline genes in 

synMuv B mutants.  Indeed, synMuv B mutants displayed increases in H3K4me3 and 

H3K36me3 on germline-expressed, germline-specific, and HTA-germline genes but not on 

other categories of genes (Figure 4 and Figure S8 and Figure S9).  64% of genes (130 of 

204, p-value < 1x10-28, hypergeometric test) with at least a 1.5-fold increase in H3K4me3 at 

their promoter in lin-15B compared to wild type were found to be germline-expressed (Figure 

4, B and C).  Increased levels of H3K36me3 and especially H3K4me3 on germline-specific 
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genes were observed at 20°C and 26°C in both lin-15B and lin-35 mutants, but were 

observed only at 26°C in lin-37 mutants (Figure S8 and Figure S9).  This is consistent with 

previous data showing that misexpression of germline genes in lin-37 mutants is more 

sensitive to temperature than in lin-15B and lin-35 mutants (Petrella et al. 2011).  HTA-

germline genes showed larger increases in H3K4me3 and H3K36me3 than germline-specific 

genes.  This is expected as HTA-germline genes were defined partly by requiring these 

genes to be up-regulated in lin-35 mutants (Petrella, 2011), while not all germline-specific 

genes are up-regulated in synMuv B mutants.  The increased levels of both H3K4me3 and 

H3K36me3 on germline-specific and HTA-germline genes in mutants is consistent with these 

genes being expressed at higher levels, most likely in a larger population of cells (i.e. somatic 

cells in addition to the 2 primordial germ cells) in these mutants.  

 We investigated if there is a correlation between loss from promoters of the repressive 

H3K9me2 chromatin modification and acquisition of H3K4me3, which is associated with gene 

activation.  To compare those marks at promoters, we calculated the log2 fold change of the 

signal of each modification in lin-15B mutant/wild type within 250bp upstream and 

downstream of the transcript start site (TSS).  A higher histone modification signal in lin-15B 

mutants than wild type would result in a positive log2 fold change; a lower histone 

modification signal in lin-15B mutants than wild type would result in a negative log2 fold 

change.  In lin-15B mutants, 25% of all genes (122 of 448) that had at least a 1.5-fold 

reduction of H3K9me2 promoter signal also had at least a 1.5-fold increase of H3K4me3 

promoter signal (Figure 4B).  Strikingly, 40% of germline-specific (6 of 15) and 75% of HTA-

germline genes (12 of 16) that had reduced H3K9me2 promoter signal also had increased 

H3K4me3 promoter signal (Figure 4B).  We investigated if more of the 122 genes that 

showed reduced H3K9me2 and increased H3K4me3 promoter signal in lin-15B mutants had 

an indication of being germline-expressed and regulated by synMuv B mutants.  We found 
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that 74% (90 of 122, p-value < 1x10-27) of those genes have evidence of being germline-

expressed (Reinke et al. 2004; Wang et al 2009) and 44% (54 of 122, p-value < 1x10-31) are 

up-regulated in lin-15B mutants (Petrella et al. 2011).  The same analysis of genes that have 

a concurrent loss of H3K9me2 and gain of H3K4me3 in lin-35 and lin-37 mutants compared 

to wild type showed similar but muted trends as observed in lin-15B mutants (Figure 

S10).  However, unlike in lin-15B mutants, there was a subset of genes that in lin-35 and lin-

37 mutants displayed increased H3K4me3 promoter signal without reduced H3K9me2 

promoter signal (Figure S10).  Because we did not observe H3K9me2 at the promoter of 

these genes in wild type, we surmise that repression of this subset of genes in wild type does 

not depend on H3K9me2 at their promoter.  Altogether, the germline genes that have 

enrichment of H3K9me2 at their promoter in wild type lose that enrichment when up-

regulated in any of the three mutants.   

 

Global loss of H3K9me2 leads to phenotypes similar to lin-15B and DREAM complex 

mutants 

To investigate if loss of H3K9me2 promoter localization plays an important role in lin-15B 

mutant phenotypes, we analyzed mutants for the histone methyltransferases (HMTs) 

responsible for H3K9 methylation.  Loss of these HMTs leads to a global loss of all H3K9 

methylation (Towbin et al. 2012; Garrigues et al. 2015), which may phenocopy lin-15B 

mutants.  H3K9 methylation in C. elegans embryos is catalyzed by two HMTs, MET-2 and 

SET-25, which primarily catalyze H3K9me1/2 and H3K9me3, respectively (Towbin et al. 

2012).  If loss of H3K9 methylation is associated with ectopic germline gene expression and 

the HTA phenotype, we would expect that met-2 and set-25 mutants would show these 

phenotypes.  set-25 single mutants, which lose H3K9me3, showed neither an HTA 

phenotype nor an ectopic germline gene expression phenotype, as assessed by staining for 
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the germline-specific protein PGL-1 (Figure 5, A and B).  Therefore, H3K9me3 does not 

appear to be important for repression of germline genes in the soma.  In contrast, met-2 

single mutants, which lose 80-90% of H3K9me2 and ~70% of H3K9me3 (Towbin et al. 2012), 

displayed ~80% larval arrest around the L3 stage at 26˚C, but no larval arrest at 24˚C (Figure 

5A).  Thus, met-2 mutants show an HTA phenotype similar to but weaker than lin-15B 

mutants (Figure 5A; Petrella et al. 2011).  We also observed ectopic expression of PGL-1 in 

met-2 mutants at 26˚C similar to lin-15B mutants, with the PGL-1 protein being primarily 

cytoplasmic and diffuse in intestinal cells (Figure 5B).  To test if the remaining 10-20% of 

H3K9me2 catalyzed by SET-25 in met-2 mutants (Towbin et al. 2012) partially represses 

germline gene expression in somatic cells, we analyzed met-2 set-25 double mutants, which 

have been shown to completely lack H3K9 methylation during embryonic stages (Towbin et 

al. 2012; Garrigues et al. 2015).  Consistent with residual SET-25-mediated H3K9me2 

serving a role in repression of germline genes in somatic cells, met-2 set-25 double mutants 

showed significantly enhanced larval arrest at 26˚C when compared to met-2 single mutants 

(Figure 5A).  Similar to lin-15B, lin-35, and lin-37 mutants, met-2 set-25 double mutants did 

not show increased larval arrest at 24˚C.  Ectopic PGL-1 in met-2 set-25 double mutants at 

26˚C was similar to that seen in met-2 single mutants (Figure 5B).  Altogether, our results 

show that a global loss of H3K9me2 phenocopies both the HTA and ectopic germline gene 

expression seen in synMuv B mutants.   

 One of the known proteins that binds to methylated H3K9 to create a repressive 

chromatin environment is HP1 (Couteau et al. 2002; Nestorov et al. 2013; Garrigues et al. 

2015).  In C. elegans there are two HP1 homologs, HPL-1 and HPL-2.  hpl-2 is a synMuv B 

gene.  hpl-2 mutants display a variety of phenotypes including HTA and ectopic germline 

gene expression in the soma (Figure 5) (Couteau et al. 2002; Petrella et al. 2011), while hpl-1 

mutants generally lack observable phenotypes (Schott et al. 2006).  Therefore, we compared 
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genes with H3K9me2 promoter peaks with previously published data on genes bound by 

HPL-2 in embryos (Garrigues et al. 2015).  We confirmed that most of the genes with an 

H3K9me2 promoter peak in our L1 wild-type samples also have such a peak in wild-type 

embryos (Figure S11A).  We found that genes with an H3K9me2 promoter peak in wild type 

that is lost in lin-15B mutants are enriched for promoter-bound HPL-2 (Figure 

S11).  Additionally, the 122 genes that have decreased H3K9me2 and increased H3K4me3 in 

lin-15B mutants as compared to wild type are enriched for promoter-bound HPL-2 (Figure 

S11).  These data suggest that HPL-2 binding may contribute to regulation of germline genes 

that are repressed in somatic cells through an H3K9me2 promoter peak.  However, we noted 

differences in the pattern of PGL-1 accumulation in the soma of hpl-2 mutants compared to 

either lin-15B or met-2 set-25 mutants.  75% (15/20) of hpl-2 mutant L1s displayed intestinal 

PGL-1 staining that was perinuclear and punctate, reminiscent of PGL-1 staining in the 

germline (Figure 5B) (Petrella et al. 2011; Wu et al. 2012).  In contrast, none of the lin-15B, 

met-2, or met-2 set-25 mutants analyzed (n=19-20) displayed that pattern of intestinal 

staining (Figure 5B), unlike the previously published analysis of met-2 (Wu et al. 2012).  

These differences in the pattern of ectopic PGL-1 suggest that loss of H3K9me2 either at a 

subset of genes in lin-15B mutants or globally in met-2 set-25 mutants is not equivalent to 

loss of HPL-2.   

 

Discussion 

Repression of germline gene expression in the soma is vital, as loss of germline gene 

repression is a hallmark of various disease states including cancer.  Investigating the 

changes to chromatin that occur when germline genes are misexpressed in the somatic cells 

of mutants is a first step in understanding the mechanisms that repress germline genes to 

protect somatic fates and development.  Here we investigated the changes to histone 
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modifications that occur in a subset of C. elegans synMuv B mutants that misexpress 

germline genes in the soma.  We defined a new localization pattern for the repressive histone 

modification H3K9me2 in wild type, at the promoter of coding genes; unlike the previously 

described broad domains of H3K9me2, promotor peaks of H3K9me2 are not enriched on 

autosomal arms (Liu et al. 2011; Garrigues et al. 2015; Evans et al. 2016; Ahringer and 

Gasser 2018).  Promoter enrichment of H3K9me2 in autosomal centers provides a new 

regulatory role for H3K9me2, in addition to its well-described regulation of repetitive elements 

on autosomal arms.  We also found that in wild-type somatic cells genes with an H3K9me2 

promoter peak are enriched for genes expressed specifically in the germline and genes that 

are synMuv B targets.  The localization of H3K9me2 to germline genes and synMuv B targets 

is disrupted strongly in lin-15B mutants and weakly in DREAM complex mutants.  We 

additionally showed that loss of H3K9me2 but not H3K9me3 phenocopies synMuv B mutants.  

Our data implicate H3K9me2 promoter enrichment as an important aspect of repression of 

germline gene expression in somatic cells.    	

There is strong evidence that a memory of gene expression/repression and associated 

chromatin modifications are transmitted from the parental germline to the developing embryo 

(Furuhashi et al. 2010; Rechtsteiner et al. 2010; Zenk et al. 2017; Tabuchi et al. 2018).  For 

example, genes that were expressed in the germline continue to be marked with MES-4-

generated H3K36me3 in embryos, even in the absence of ongoing transcription in embryos 

(Furuhashi et al. 2010; Rechtsteiner et al. 2010; Kreher et al. 2018).  It is thought that 

H3K36me3 marks these genes for re-expression in the germline during post-embryonic 

development.  How then are germline genes repressed properly in somatic tissues when 

those tissues inherit germline genes with marks of active expression that potentially set those 

genes up for re-expression?  Our data, along with other recent work, strongly implicate 

deposition of H3K9me2 at the proper time in development as necessary to create proper 
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patterns of repressive chromatin in differentiating somatic cells.  In C. elegans H3K9me2 and 

H3K9me3 levels are very low in the nuclei of early stage embryos and only start to 

accumulate when cells are transitioning from early embryogenesis to mid-embryogenesis at 

about the 50-cell stage (Mutlu et al. 2018).  This is in part driven by the nuclear import of an 

active MET-2 complex that catalyzes conversion of H3K9me1 to H3K9me2.  The timing of 

MET-2 import just precedes the stage in embryogenesis when zygotic transcription is up-

regulated and when tissue-specific expression patterns emerge (Spencer et al. 2011; Levin et 

al. 2012; Robertson and Lin 2015; Mutlu et al. 2018).  Concurrent with MET-2 import and 

increased global H3K9 methylation is the creation of regions of compact chromatin within the 

nucleus (Mutlu et al. 2018).  In support of the role of synMuv B proteins in the timing of 

chromatin compaction during embryogenesis, the formation of compact chromatin is delayed 

in lin-15B, and lin-35 mutants (Costello et al. 2019).  Developmental chromatin compaction 

likely plays a role in lineage-specific gene repression and is proposed to be driven at least in 

part by H3K9 methylation.  Our data suggest that loss of H3K9me2, either through loss of the 

MET-2 and SET-25 HMTs that catalyze the mark or through loss of proper localization of 

H3K9me2 to germline genes in lin-15B mutants, leads to misexpression of germline genes in 

somatic cells.  We hypothesize that specific localization of H3K9me2 to germline gene 

promoters facilitated by LIN-15B is an important aspect of resetting the chromatin landscape 

of germline genes to prevent their expression in somatic lineages.   

A striking aspect of our findings is the difference in changes to promoter-enriched 

H3K9me2 between lin-15B mutants and DREAM complex mutants.  It was previously 

proposed, based on phenotype analysis, that LIN-15B is a member of the DREAM complex 

(Wu et al. 2012).  Our data indicate that, although LIN-15B binds to and represses many of 

the same genes as the DREAM complex, its molecular function at those genes is probably 

distinct.  The proposed DNA-binding domain of LIN-15B may allow it to be independently 



 

28	

recruited to similar targets as the DREAM complex, where the two may function together to 

repress genes.  This scenario has implications for regulation of gene expression in the 

germline as well as in the soma.  Recent work from the Seydoux lab has implicated the loss 

of LIN-15B protein in the germline as important for germline development (Lee et al. 2017).  

Maternally provided LIN-15B is normally removed from the primordial germ cells (PGCs), 

while DREAM components are not (Lee et al. 2017).  Our work suggests that loss of LIN-15B 

from the PGCs may protect essential germline genes from being H3K9 methylated and 

repressed in those cells.  How the different synMuv B complexes work together to fully 

repress germline genes in somatic cells is still an open question.  The establishment of 

H3K9me2 may be an initiating step in germline gene repression or may be one aspect of a 

series of redundant steps necessary to repress germline genes.  Analysis of the order and 

dependency of MET-2, LIN-15B, and the DREAM complex binding to germline genes is 

necessary to address these questions. 	

The work presented here focuses on a subset of germline genes that are regulated 

through the LIN-15B/H3K9me2/DREAM complex pathway.  Although this pathway may only 

regulate a subset of genes in this way, the repercussions to development are clear: 

organisms defective in this regulation cannot thrive in the face of challenges (e.g. high 

temperature) when somatic fates are compromised.  Recent work in Drosophila underscores 

the importance of H3K9 methylation in repression of a subset of coding genes to maintain 

proper cell fate.  In the Drosophila ovary, loss of H3K9me3 leads to up-regulation of testis-

specific transcripts and changes the fate of ovarian germ cells, leading to sterility (Smolko et 

al. 2018).  As in C. elegans, prior investigations of H3K9 methylation loss in Drosophila had 

focused primarily on up-regulation of repetitive elements (Rangan et al. 2011; Wang et al. 

2011; Guo et al. 2015; Zeller et al. 2016).  However, it is clear that H3K9me2/3 loss leading 

to up-regulation of small sets of coding genes in a tissue-specific manner can have profound 
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effects on cell fate and function.  As more studies investigate the roles of H3K9me2/3 in 

repression of coding genes, it seems likely that new pathways will be uncovered that are 

necessary to create different patterns of H3K9me2/3 in different tissues for maintenance of 

proper cell fate. 

The expression of germline genes in somatic tissues leads to a variety of adverse 

consequences in diverse animal species.  These include L1 starvation and reduced apoptosis 

during development in C. elegans synMuv B mutants, tumor formation in Drosophila l(3)mbt 

mutants, and poor outcomes in human tumors that express germline genes (Janic et al. 

2010; Petrella et al. 2011; Whitehurst 2014; Al-Amin et al. 2016).  Thus, there is a need 

across species to repress germline gene expression in the soma to facilitate proper 

development and somatic function.  Our data suggest that repression of germline genes 

during development in somatic tissues through H3K9me2 may be a conserved mechanism.  

As in C. elegans embryonic somatic cells, mammalian ES cells also repress expression of 

germline genes (Blaschke et al. 2013).  Mouse ES cells have been shown to lose repression 

of germline genes when H3K9me2 marking of those genes is compromised by either Vitamin 

C treatment or knock-down of Max (myc-associate factor X) (Blaschke et al. 2013; Maeda et 

al. 2013; Sekinaka et al. 2016; Ebata et al. 2017).  The conservation of H3K9me2 on 

germline genes and its role in repressing those genes in developing somatic lineages may 

represent an ancient regulatory role for H3K9me2.  Since in both C. elegans and Drosophila, 

repression of germline genes in the soma is through complexes known to interact with 

chromatin (Janic et al. 2010; Petrella et al. 2011; Wu et al. 2012), it will be interesting to 

investigate if ectopic expression of germline genes in human somatic tumors is due to loss of 

these conserved complexes.  Finally, not all germline genes, but only a specific subset, are 

ectopically expressed in these models.  Why only certain germline genes are vulnerable to 

misexpression, if those genes are the same across species, and which cellular processes are 



 

30	

disrupted as a result of germline gene misexpression singularly or as a group, are open 

questions.  Further investigation could have broad implications for understanding conserved 

basic chromatin mechanisms and therapeutic targets for cancer treatment.  
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Figure 1: H3K9me2 promoter peaks are lost in lin-15B mutant L1s.  (A, B) H3K9me2 

ChIP-seq data visualized on the UCSC genome browser at one gene eat-2 (A) with an 

H3K9me2 gene body peak (purple) and at two germline-expressed genes hrde-1 and sgo-1 

(B) with an H3K9me2 promoter peak (green).  The vertical lines and arrows indicate the 

location of the transcript start site (TSS) and the direction of transcription.  Signals shown are 

ChIP-seq reads scaled to 15 million total reads (see Materials and Methods).  (C, D) Number 

of genes in each genotype with a called H3K9me2 peak in the gene body (C) or at the 

promoter (D).  Genotypes with the statistically same number of genes with a called peak are 

designated with the same letter (Chi squared p-value < 0.01).  Exact p-values can be seen in 

Tables S2 and S3.	
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Figure 2: H3K9me2 promoter peaks are associated with synMuv B targets and 

germline-specific genes in wild-type L1s.  (A) Enrichment analysis of genes with an 

H3K9me2 promoter peak expected by chance and observed among genes that are DREAM 

complex or LIN-15B targets in the 4 genotypes indicated.  DREAM complex targets are 

defined as genes that are both bound at their promoter by the DREAM complex (Goetsch et 

al. 2017) and up-regulated in lin-35 mutants at 26°C (Petrella et al. 2011).  LIN-15B targets 

are defined as genes that are both bound at their promoter by LIN-15B (this study) and up-

regulated in lin-15B mutants at 26°C.  Significant over-enrichment (red) or under-enrichment 

(black) was determined by the hypergeometric test (*p-value < 0.01, **p-value < 1x10-5, ***p-

value < 1x10-10).  (B) Enrichment analysis of genes with an H3K9me2 promoter peak 

expected and observed among genes that are normally expressed specifically in the soma 

(soma-spec, 1181 genes), expressed specifically in the germline (gl-spec, 169 genes), and 

genes in the HTA-germline category (HTA-gl, 48 genes) in the 4 genotypes indicated (see 

Materials and Methods for definitions of gene categories).  Significant over-enrichment (red) 

or under-enrichment (black) was determined by the hypergeometric test (*p-value < 0.01, **p-

value < 1x10-5, ***p-value < 1x10-10).  (C) Metagene profiles of mean H3K9me2 ChIP-seq 

signal 1kb upstream and downstream from the transcript start site (TSS) for the categories of 

genes analyzed in B and also genes that are normally expressed in all tissues (ubiquitous, 

2576 genes) and repressed in most tissues (silent, 415 genes).  Reads were scaled by 

dividing by the standard deviation and subtracting the 25th percentile.  Error bars indicate 

95% confidence intervals for the mean (also see Materials and Methods).	
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Figure 3: Genes with an H3K9me2 promoter peak in wild-type L1s are not biased 

toward autosomal arms.  (A) Binned distribution of genes with an H3K9me2 gene body or 

promoter peak at 20°C in 200 kb windows across chromosome III in wild-type and lin-15B 

mutant L1s.  (B) Enrichment analysis of genes with an H3K9me2 gene body peak or 

promoter peak expected by chance and observed in chromosome centers in wild-type and 

lin-15B mutant L1s.  The expected number is based on the percentage of coding genes in the 

center versus arm regions of each chromosome; the observed number is the number of 

genes in the chromosome centers at 20°C.  The locations of chromosome arm and center 

boundaries are from (Liu et al. 2010).  Significant under-enrichment (black) was determined 

by the hypergeometric test (*p-value < 0.01, **p-value < 1x10-5, ***p-value < 1x10-10). 	
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Figure 4: H3K4me3 increases on germline genes that lose H3K9me2.  (A) Metagene 

profiles of mean H3K4me3 ChIP-seq signal 1kb upstream and downstream from the 

transcript start site (TSS) for genes that show ubiquitous, silent, soma-specific, germline-

specific, or HTA-germline expression at 20°C (see Materials and Methods for definitions of 

gene categories).  Horizontal dotted line is located at the highest level of reads over the TSS 

in wild type for genes in the germline-specific category.  Reads were scaled by dividing by the 

standard deviation and subtracting the 25th percentile.  Error bars indicate 95% confidence 

intervals for the mean.  (B, C) Scatter plots of log2 fold change of the H3K9me2 signal over 

the TSS in lin-15B mutant/wild type vs. log2 fold change of the H3K4me3 signal over the TSS 

in lin-15B mutant/wild type.  The signal was calculated within 250bp upstream and 

downstream of the TSS at 20°C.  (B) All coding genes and genes with ubiquitous, silent, 

soma-specific, germline-specific, or HTA-germline expression.  (C) Genes up-regulated in lin-

15B mutants and germline-expressed genes.  Dotted lines represent 1.5-fold cutoffs; the 

numbers of genes above and below the cutoffs are indicated.  r values show the Pearson 

correlation between changes in H3K9me2 and changes in H3K4me3 for each set of genes.  	
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Figure 5: Complete loss of H3K9me2 during development phenocopies synMuv B 

mutants.  (A) The percentage of F1 animals that arrested before the L4 larval stage was 

assessed for all genotypes indicated after parent hermaphrodites were upshifted from 20°C 

to 24°C or 26°C.  (B) Assessment of ectopic expression of PGL-1 in L1 animals at 26°C.  

Yellow asterisks indicate the two primordial germ cells in which PGL-1 is solely expressed in 

wild type.  Arrowheads indicate ectopic perinuclear punctate PGL-1 in intestinal cells.  Arrows 

indicate ectopic punctate PGL-1 that is not perinuclear.  Scale bar: 10µm.	




