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Improving molecular property prediction through
a task similarity enhanced transfer learning strategy

Han Li,1 Xinyi Zhao,1 Shuya Li,1 Fangping Wan,2 Dan Zhao,1,3,* and Jianyang Zeng1,3,*

SUMMARY

Deeply understanding the properties (e.g., chemical or biological characteristics)
of small molecules plays an essential role in drug development. A large number
of molecular property datasets have been rapidly accumulated in recent years.
However, most of these datasets contain only a limited amount of data, which hin-
ders deep learning methods from making accurate predictions of the correspond-
ing molecular properties. In this work, we propose a transfer learning strategy to
alleviate such a data scarcity problem by exploiting the similarity between molec-
ular property prediction tasks.We introduce an effective and interpretable compu-
tational framework, named MoTSE (Molecular Tasks Similarity Estimator), to pro-
vide an accurate estimation of task similarity. Comprehensive tests demonstrated
that the task similarity derived from MoTSE can serve as useful guidance to
improve the prediction performance of transfer learning on molecular properties.
We also showed thatMoTSE can capture the intrinsic relationships betweenmolec-
ular properties and provide meaningful interpretability for the derived similarity.

INTRODUCTION

With the development of high-throughput experimental techniques in the fields of biology and chemistry

(Macarron et al., 2011), the number of available datasets of diverse molecular properties has increased

significantly over the past few years (Ramakrishnan et al., 2014; Papadatos et al., 2015; Kim et al., 2016).

This offers an unprecedented opportunity to design accurate computational models for molecular prop-

erty prediction, thus facilitating the comprehension of molecular properties and accelerating the drug

discovery process. However, as huge experimental efforts are often required for obtaining large-scale mo-

lecular property labels, the available data of the majority of the properties are still extremely scarce. For

example, although the preprocessed ChEMBL dataset (Gaulton et al., 2012; Mayr et al., 2018) contains

1,310 bioassays and covers over 400K small molecules, the numbers of available labels of over 90% of

the bioassays are below 1K. This data scarcity problem has limited the applications of data-driven compu-

tational models, especially deep learning models, in making accurate predictions of the corresponding

molecular properties.

To alleviate the data scarcity problem, transfer learning strategies have been widely applied to improve the

prediction performance of tasks with limited data in the field of computer vision (Zamir et al., 2018; Li et al.,

2020; Chen and He, 2021). The general idea of transfer learning strategies is to transfer the knowledge

learned from a source task with sufficient data to enhance the learning of a target task with limited data.

The superior performance of transfer learning has also been well validated inmolecular property prediction

tasks (Simoes et al., 2018; Shen and Nicolaou, 2020; Cai et al., 2020; Li and Fourches, 2020). Nevertheless,

the success of transfer learning is not always guaranteed. A number of studies have indicated that transfer

learning can harm prediction performance (termed negative transfer) (Rosenstein et al., 2005; Fang et al.,

2015; Wang et al., 2019b; Zhuang et al., 2021). It has been observed that negative transfer usually occurs

when there exists only weak (or even no) similarity between the source and target tasks (Zhang et al.,

2020). Therefore, to facilitate the effective applications of transfer learning in molecular property prediction

and avoid the negative transfer problem, it is necessary to accurately measure the similarity between

different molecular property prediction tasks.

It is generally hard to explicitly and manually measure the similarity between molecular property prediction

tasks, even for experienced experts, as fully understanding the behaviors of molecules in the chemical and

biological systems is extremely difficult owing to the high complexity of these systems. Fortunately,
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data-driven computational methods can provide an implicit way to enable us to define and measure task

similarity. The seminal work of Taskonomy (Zamir et al., 2018) has made a pioneering attempt toward

modeling the similarity between computer vision tasks through a deep learning approach. The results

have shown that incorporating the similarity derived from Taskonomy can improve the performance of

transfer learning on computer vision tasks. In addition, the similarity tree constructed according to the

derived similarity is highly consistent with human conceptions, indicating that such approaches can poten-

tially capture the intrinsic relationships between tasks. This thus inspires us to develop a computational

method for estimating the similarity betweenmolecular property prediction tasks, which can not only guide

the source task selection to avoid negative transfer in transfer learning but also provide useful hints in un-

derstanding the relationships between tasks.

To this end, we proposeMoTSE, an interpretable computational framework, to efficiently measure the sim-

ilarity between molecular property prediction tasks. MoTSE is based on the assumption that two tasks

should be similar if the hidden knowledge learned by their task-specific models is close to each other.

More specifically, MoTSE first pre-trains a graph neural network (GNN) model for each task. Then an attri-

bution method and a molecular representation similarity analysis (MRSA) method are introduced to repre-

sent the hidden knowledge enclosed in the pre-trained GNNs as embedded vectors and project individual

tasks into a unified latent space. Finally, MoTSE calculates the distances between the vectors in the latent

space to derive the similarity between different tasks. Based on the task similarity derived from MoTSE, we

design a novel transfer learning strategy to enhance the learning of themolecular property prediction tasks

with limited data.

Our extensive computational tests demonstrated that the task similarity estimated by MoTSE can succ-

essfully guide the source task selection in transfer learning, with superior prediction performance over a

number of baseline methods, including multitask learning, training from scratch, and nine state-of-the-

art self-supervised learning methods, on several molecular property datasets from various domains. Mean-

while, by applying MoTSE to a dataset measuring the physical chemistry properties and a dataset

measuring the bio-activities against cytochrome P450 isozymes, we also demonstrated that MoTSE was

able to capture the intrinsic relationships between molecular properties and provide meaningful interpret-

ability for the derived similarity.

RESULTS

Overall design of MoTSE

Figure 1 illustrates the overall architecture of MoTSE. Given a set of molecular property prediction tasks

with the corresponding datasets, MoTSE estimates the task similarity via the following three main steps:

(1) Representing molecules as graphs, where nodes represent atoms and edges represent covalent bonds

A B C

Figure 1. An illustrative diagram of MoTSE

(A) Given a task, MoTSE first pre-trains a GNN model using the corresponding dataset in a supervised manner.

(B) By means of a probe dataset, MoTSE extracts the task-related knowledge from the pre-trained GNN and projects the task into a latent task space. The

knowledge extraction is achieved by two methods: an attribution method extracting the task-related local knowledge by assigning importance scores to

atoms in molecules; and a molecular representation similarity analysis (MRSA) method extracting the task-related global knowledge by pair-wisely

measuring the similarity between molecular representations.

(C) Finally, MoTSE calculates the similarity between tasks by measuring the distances between the corresponding vectors in the task space.

ll
OPEN ACCESS

2 iScience 25, 105231, October 21, 2022

iScience
Article



(see Figure S1), MoTSE pre-trains a graph neural network (GNN) model on the dataset for each task in a

supervised manner. (2) By means of a probe dataset (i.e., a set of unlabeled molecules, see STAR Methods

for more details), MoTSE extracts the task-related knowledge from the pre-trainedGNNs and then projects

the tasks into a unified latent task space. The knowledge extraction is achieved by an attribution method

and a molecular representation similarity analysis (MRSA) method. These two methods are effectively com-

plementary to each other: the attribution method extracts the local knowledge by assigning importance

scores to atoms in molecules and the MRSA method extracts the global knowledge by pair-wisely

measuring the similarity between molecular representations. (3) MoTSE estimates the similarity between

tasks by calculating the distances between the corresponding vectors in the projected latent task space.

Based on the task similarity derived from MoTSE, we design a novel transfer learning strategy to improve

the prediction performance for molecular properties with limited data. More specifically, given a target

task, we first select the most similar task according to the task similarity estimated by MoTSE as its source

task and then finetune the model pre-trained on the source task to exploit its related knowledge to

enhance the learning of the target task. As GNN models have shown superior capability in learning hid-

den knowledge and modeling various kinds of molecular properties (Gilmer et al., 2017; Li et al., 2019;

Xiong et al., 2019), here we also adopt the GNN models to capture the hidden knowledge contained

in individual tasks. Note that, MoTSE is orthogonal to different GNN architectures. We use graph convo-

lutional networks (GCNs) (Kipf and Welling, 2016) in our computational experiments if not specially spec-

ified (see Figure S2 for an illustrative diagram for our model architecture). More details about MoTSE, the

transfer learning strategy, the model architecture, and the training process can be found in STAR

Methods.

The MoTSE-guided transfer learning strategy outperforms baseline methods

We systematically evaluated the performance of our MoTSE-guided transfer learning strategy onmolecular

property prediction. Wemade comparison with eleven baseline methods with different learning strategies,

including multitask learning (MT), training from scratch (Scratch), and nine state-of-the-art self-supervised

learning methods, i.e., EdgePred (Hamilton et al., 2017), DGI (Velickovic et al., 2019), Masking (Hu et al.,

2020), ContextPred (Hu et al., 2020), JOAO (You et al., 2021), EdgePredsup (Hu et al., 2020), Maskingsup

(Hu et al., 2020), ContextPredsup (Hu et al., 2020) and DGIsup (Hu et al., 2020) (see STAR Methods for

more details about these baseline methods). A schematic illustration of our MoTSE-guided transfer

learning strategy and other learning schemes is shown in Figure 2.

We first applied the following two representative datasets QM9 (Ramakrishnan et al., 2014) and PCBA

(Ramsundar et al., 2015) for performance evaluation, in which the QM9 dataset measured the quantum

chemical properties and the PCBA dataset measured the bio-activities of small molecules (see Table S1

A B C D

Figure 2. Schematic illustration of different learning strategies

(A) Training from scratch directly trains a model on the dataset of each target task without exploiting any extra knowledge. (B) Multitask learning learns the

target task and source tasks simultaneously. (C) Self-supervised learning first leverages a proxy task to learn general knowledge from a large-scale unlabeled

dataset and then finetunes the pre-trained model on the dataset of the target task. (D) MoTSE-guided transfer learning first pre-trains a model on the most

similar task with the target task according to the task similarity estimated by MoTSE and then finetuned the pre-trained model on the dataset of the target

task.DT stands for the dataset for the target task,DS1 andDS2 stand for the datasets for the source tasks, andDU stands for the large-scale unlabeled dataset.

The numbers between the datasets represent the similarity estimated by MoTSE between the corresponding tasks.
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and STAR Methods for more details about the datasets used in our tests). To evaluate the effectiveness of

different learning strategies, we further preprocessed the datasets to (1) mimic a specific scenario of trans-

fer learning, in which the data size of the source task was relatively larger than that of the target task, and (2)

reduce the influence of other factors (e.g., data size) that might affect the performance of transfer learning

and thus only focus on the effect of learning strategies themselves. In particular, we first created two sub-

sets QM910k and PCBA10k as the datasets for the source tasks, in which each task had about 10,000 data

samples, and then randomly partitioned the datasets into training, validation, and test sets with a ratio

of 8:1:1. Next, we constructed another two subsets QM91k and PCBA1k as the datasets for the target tasks

by: (1) constructing training and validation sets by sampling 800 and 100 data samples from the corre-

sponding training and validation sets of QM910k and PCBA10k, respectively, to avoid data leakage in the

transfer learning; and (2) sharing the test sets with QM910k and PCBA10k, respectively, for an accurate per-

formance evaluation (see Figure S3 for an illustrative diagram of the dataset generation process).

For each dataset of QM9 and PCBA, we sequentially treated one task in the dataset as a target task and the

others as the source tasks. MoTSE measured the task similarity based on the models trained on the QM91k
and PCBA1k datasets. We performed three repeated tests with different random seeds and reported the

averaged R2 and AUPRC scores on the QM9 and PCBA datasets, respectively (see Figure 3A). We found

that MoTSE can make accurate predictions and outperformed all the baseline methods. As mentioned pre-

viously, transfer learning can lead to negative transfer (i.e., the performance of a transfer learningmethod is

worse than that of training from scratch) when the source task is not properly defined. We plotted the pre-

diction performance of each task from eleven transfer learning methods versus that from the training from

scratch method (see Figure 3B). We observed that MoTSE perfectly avoided the negative transfer problem

A

DC

B

Figure 3. MoTSE outperforms baseline methods and alleviates negative transfer on the QM9 and PCBA datasets

(A) The prediction performance of MoTSE and eleven baseline methods on the QM9 and PCBA datasets, measured in terms of R2 and AUPRC, respectively.

(B) The prediction performance of eleven transfer learning methods versus that of the Scratch method on the QM9 and PCBA datasets.

(C) The comparison results of R2 between MoTSE and eleven baseline methods on the QM9 dataset after filtering every molecule from the test set if it has a

Tanimoto similarity score greater than 0.8 to any molecule in the training set (also see Figure S4A).

(D) The comparison results of AUPRC between MoTSE and eleven baseline methods on an unbalanced PCBA dataset with only 10% positive samples (also

see Figure S4B).
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on the QM9 and PCBA datasets, while all the baseline methods suffered from this problem to varying

degrees.

Next, we benchmarked MoTSE in more challenging scenarios. For the QM9 dataset, we filtered the test set

of QM91k by excluding every molecule from the test set if it had a Tanimoto similarity score greater than 0.8

to any molecule in the training set (denoted by QM9filtered). For the PCBA dataset, we generated an unbal-

anced dataset with only 10% positive samples (denoted by PCBAunbalanced). We found that MoTSE still

consistently outperformed baseline methods (see Figures 3C and 3D), and overcame negative transfer

on all the tasks of these two representative challenging test cases (see Figure S4).

We also evaluated our method in more practical scenarios in which the source tasks and the target tasks

were from different domains. More specifically, we first employed the FreeSolv dataset (Mobley and Gu-

thrie, 2014), which produced a regression task measuring the solubility of 614 molecules. We derived

the task similarity using the QM91k and FreeSolv datasets and used the tasks from the QM910k dataset

as the source tasks. We employedMoTSE to enhance the transfer learning process andmade a comparison

with baseline methods. As shown in Figure 4A, MoTSE achieved better performance in comparison with

baseline methods. Then we testedMoTSE on the BACE dataset (Subramanian et al., 2016), which measured

whether each of 1513 molecules can act as an inhibitor of human b-secretase 1 (BACE-1). We first derived

the task similarity using the PCBA1k and BACE datasets, and then used the tasks from the PCBA10k dataset

as the source tasks. The comparison results between MoTSE and the baseline methods are shown in Fig-

ure 4B, which showed that our method still outperformed baseline methods. These results indicated that

MoTSE can still accurately model the underlying similarity between molecular property prediction tasks

even for the properties from different domains.

To further evaluate the ability ofMoTSE in enhancing the prediction ofmolecular properties on extremely small

datasets, we also accessed its performance on the HOPV dataset (Lopez et al., 2016), which contained only 350

molecules andmeasured eight quantum chemical properties. Here, we employed the tasks in theQM910kdata-

set as the source ones and used MoTSE to select the source task for each target task in the HOPV dataset. In

comparison with baseline methods, MoTSE made more accurate predictions on the HOPV dataset and also

achieved better results in addressing the negative transfer problem (see Figures 4C and 4D).

We also conducted additional tests to investigate the impact of the sizes of target and source datasets on

the prediction performance of MoTSE (see Figures S6). Our analyses showed that the prediction

A

DC

B

Figure 4. The prediction performance of MoTSE and baseline methods on the FreeSolv, BACE, and HOPV datasets

(A) The comparison results between MoTSE and eleven baseline methods on the FreeSolv dataset, measured in terms of root-mean-square-error (RMSE).

(B) The comparison results between MoTSE and eleven baseline methods on the BACE dataset, measured in terms of AUPRC.

(C) The comparison results between MoTSE and eleven baseline methods on the HOPV dataset, measured in terms of R2.

(D) The prediction performance of eleven transfer learning methods versus that of the Scratch method on the HOPV dataset, measured in terms of R2.
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performance of MoTSE was improved with the increase of the sizes of source and target datasets and

MoTSE consistently outperformed Scratch, which demonstrated the robustness of MoTSE to the sizes of

source and target datasets. Note that, MoTSE can still offer performance gain even when the source data-

sets only contain equal or fewer data samples than the target dataset (see Figures S6C and S6D). Based on

these observations, we empirically recommended applying MoTSE on those target datasets with relatively

limited data samples (e.g., less than 3,000) and employing source datasets that contain more data samples

than target datasets, as MoTSE can achieve relatively larger performance gain under these conditions.

Furthermore, we sought to define a proper threshold value of the similarity between the source task and

target task that can effectively enable MoTSE to guide the transfer learning process. We first plotted the

similarity between source and the target tasks versus the performance improvement on the QM9 and

PCBA datasets, respectively. As shown in Figure S7, MoTSE achieved better prediction performance

when the similarity between the source and target tasks was larger than 0.7.

The task similarity estimated by MoTSE is generalizable across models with different

architectures and datasets with different distributions

We next sought to explore whether the similarity estimated by MoTSE was generalizable across models

with different architectures and datasets with different distributions, that is, whether the task similarity

derived from MoTSE equipped with a certain model or on a certain dataset was generalizable to enhance

the learning of other model architectures or datasets with different data distributions.

We first considered three models with different architectures in the tests, including a graph attention

network (denoted as GAT) (Veli�ckovi�c et al., 2017), an ECFP (i.e., extended connectivity fingerprint) (Rogers

and Hahn, 2010) based fully connected network (denoted as FCN) and a SMILES (i.e., simplified molecular

input line entry specification) (Weininger, 1988) based recurrent neural network (denoted as RNN) (more

details about these three types of models can be found in STAR Methods). Then, with the guidance of

the similarity estimated by MoTSE equipped with the GCN model, we evaluated the transfer learning per-

formance of the above three types of models on the QM9 and PCBA datasets and made comparisons with

the baseline methods. Here we omitted the results of the nine self-supervised learning strategies on the

FCN and RNN models, as they were particularly designed for GNNs and cannot be easily generalized to

the FCN and RNN models. We observed that MoTSE consistently achieved significant improvement on

the QM9 and PCBA datasets using different model architectures in comparison with all the baseline

methods (see Figures 5A-5C). Moreover, we constructed similarity trees of tasks in the QM9 dataset using

the hierarchical agglomerative clustering algorithm (Jain et al., 1999) according to the task similarity esti-

mated based onGCN andGAT, respectively (see Figure S8). The similarity trees were highly consistent with

each other. These results indicated that the task similarity estimated by MoTSE was generalizable across

different model architectures.

Next, to evaluate the generalizability of the similarity estimated by MoTSE across datasets with different

data distributions, we employed the Alchemy dataset (Chen et al., 2019), which shared the same tasks

but had a different data distribution compared with the QM9 dataset, that is, the QM9 dataset contained

molecules comprising up to nine non-hydrogen atoms while the molecules in the Alchemy dataset con-

sisted of nine to fourteen non-hydrogen atoms. We first preprocessed the Alchemy dataset and created

Alchemy10k and Alchemy1k following the preprocessing process shown in Figure S3. Then, for each source

task, we pre-trained the models on the Alchemy10k dataset. Next, for each target task in the Alchemy1k da-

taset, we selected the source task from the Alchemy10k dataset according to the task similarity estimated

based on the QM91k dataset and fine-tuned on the Alchemy1k dataset. We found that MoTSE still outper-

formed the baseline methods in this case (see Figure 5D). Moreover, we constructed the similarity trees ac-

cording to the similarity estimated by MoTSE on the QM9 and Alchemy datasets, respectively. We

observed that the structures of the derived similarity trees were highly consistent with each other (see

Figure 5E).

These results demonstrated that the task similarity derived from MoTSE was generalizable across models

with different architectures and datasets with different data distributions, which indicated that MoTSE can

capture the model and dataset independent similarity between molecular property prediction tasks.

Therefore, once the similarity between molecular property prediction tasks was estimated by MoTSE, it

can be directly applied to enhance the learning of diverse model architectures and novel datasets in future

studies.
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Task similarity derived from MoTSE reflects intrinsic relationships between physical

chemistry properties

Next, we asked whether the task similarity derived from MoTSE was consistent with the intrinsic relation-

ships between molecular properties. We constructed a dataset containing 10K molecules labeled with

four well-studied physical chemistry tasks, including NHA (number of hydrogen acceptors contained in a

molecule), NHD (number of hydrogen donors contained in a molecule), NOcount (number of nitrogen

(N) and oxygen (O) atoms contained in a molecule), and NHOHCount (number of N and O atoms that

are covalently bonded with hydrogens in a molecule) (see STAR Methods for more details of this dataset).

Then we applied MoTSE to estimate the similarity between these tasks.

From the chemical perspective, NHD is expected to bemore similar to NHOHCount thanNOCount, as only

those N and O atoms with covalently bonded hydrogens can serve as hydrogen donors. NHA is expected

to be more similar to NOCount than NHOHCount, as those N and O atoms both with or without covalently

bonded hydrogens can be hydrogen acceptors. We observed that the task similarity derived from MoTSE

was entirely consistent with these facts (see Figure 6).

Meanwhile, we visualized the importance scores of the atoms derived from the attribution method em-

ployed in MoTSE (see Figure 6). We found that MoTSE precisely assigned high importance scores to those

target atoms related to the properties. For example, the N andO atoms were emphasized for the NOCount

task, and the NH and OH atoms with hydrogen bonds were emphasized for the NHOHCount task. We also

found that similar tasks tended to assign similar importance scores to the same atoms in molecules. For

instance, NHD and NHOHCount both assigned higher importance scores to the N and O atoms with cova-

lently bonded hydrogens. These observations interpreted how MoTSE estimated similarity between tasks

A

D E

CB

Figure 5. The task similarity derived from MoTSE is generalizable across models with different architectures and datasets with different data

distributions

(A-C) The comparison results between MoTSE and baseline methods on the QM9 and PCBA datasets (measured in terms of R2 and AUPRC, respectively),

using the graph attention network (GAT), fully connected network (FCN), and recurrent neural network (RNN) models, respectively.

(D) The comparison results between MoTSE and baseline methods on the Alchemy dataset, measured in terms of R2.

(E) The similarity trees constructed based on the task similarity estimated by MoTSE on the QM9 and Alchemy datasets, respectively.
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and indicated that our method was able to capture the intrinsic similarity between tasks by exploiting the

chemical concepts behind the corresponding molecular properties.

Measuring and interpreting similarity between the tasks of estimating the bio-activities of

molecules against cytochrome P450 isozymes

To further evaluate the ability of MoTSE in estimating and interpreting the similarity between molecular

properties, we carried out a more challenging experiment, which included five tasks of predicting the

bio-activities of small molecules against cytochrome P450 isozymes. The cytochrome P450 (CYP) family

plays important roles in drug metabolism, especially for five isozymes—1A2, 2C9, 2C19, 2D6 and 3A4 (Wil-

liams et al., 2004; De Montellano, 2005). Here, we obtained the binary bio-activity labels between around

17Kmolecules and the above five CYP isozymes from the preprocessed ChEMBL dataset (Mayr et al., 2018).

We then applied MoTSE to estimate the similarity of the tasks.

According to the similarity estimated by MoTSE, we first constructed a similarity tree using the hierarchical

agglomerative clustering algorithm (Jain et al., 1999) (see Figure 7A). We observed that the similarity be-

tween CYP2C9 and CYP2C19 estimated by MoTSE was the highest among all pairs of CYP isozymes, which

was consistent with the fact that CYP 2C9 and 2C19 genetically shared the most (91%) sequence homology

(Attia et al., 2014). Meanwhile, we found that the structure of this tree was exactly the same as that derived

by self-organizing maps (SOMs) (Schneider and Schneider, 2003; Selzer and Ertl, 2006) offered in previous

research (Veith et al., 2009), in which the SOMs of individual isozymes were constructed based on the struc-

tural similarity of molecules and reflected the activity patterns (i.e., the scaffolds enriched in active or inac-

tive molecules) of corresponding isozymes. According to this observation, we expected that MoTSE may

capture the activity patterns of the CYP bioactivity prediction tasks and fully exploit such knowledge to es-

timate the similarity between these tasks.

To validate this hypothesis, we further visualized several molecules with the importance scores assigned by

the attribution method employed in MoTSE. As shown in Figures 7B-7F, we found that similar tasks tended

to share the same active patterns. For example, CYP 2C9 and CYP 2C19 shared the same five active pat-

terns. In addition, the active patterns highlighted by our attribution method can be supported by previous

research (Kho et al., 2006; Veith et al., 2009; Lee et al., 2017). For example, the substructure in Figure 7B was

also previously considered as an active pattern of CYP 2C9, CYP 2C19 and CYP 3A4 by substructure search-

ing (Veith et al., 2009) and fingerprint analysis (Lee et al., 2017).

The above results demonstrated that MoTSE can successfully extract task-related knowledge and thus

accurately estimate the intrinsic similarity between the tasks (e.g., the similarity between active patterns

and the genetic similarity between CYP isozymes). Therefore, MoTSE can potentially provide a novel

perspective to help understand the mechanisms behind the bio-activities of small molecules.

Figure 6. The similarity estimated by MoTSE between four physical chemistry tasks and the example molecules with importance scores assigned

by the attribution method employed in MoTSE

The numbers between tasks denote the task similarity derived from MoTSE. In the visualized molecules, darker colors represent higher importance scores.

See the main text for the definitions of the four physical chemistry task.
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Conclusion

In this article, we present MoTSE, a computational method to efficiently estimate the similarity between

molecular property prediction tasks. Specifically, we first pre-train a GNN to automatically capture task-

related knowledge from the corresponding datasets. Then we employ the attribution method and the

MRSA method to, respectively, extract both local and global knowledge contained in the pre-trained

GNNs with the help of a probe dataset and project individual tasks as vectors into a unified latent

task space. Finally, the similarity between the tasks can be measured by calculating the distances be-

tween the corresponding embedded vectors in the latent task space. The derived task similarity can

be applied to design an accurate transfer learning strategy to enhance the prediction of molecular prop-

erties with limited data sizes. To ensure effective transfer learning, we empirically recommend applying

MoTSE on the target datasets with limited data samples (e.g., less than 3,000) and employing the source

datasets that contain more data samples than the target datasets. We also recommend selecting tasks

with a similarity greater than 0.7 to the target task as the source tasks. In comparison with current transfer

learning strategies, which attempt to leverage one proxy task to learn knowledge that can be general-

ized to molecular properties from different domains (i.e., self-supervised learning) or arbitrarily learn

the target task and multiple source tasks simultaneously (i.e., multitask learning), our proposed transfer

learning strategy offers a more reasonable and effective way to select a proper source task for each

target task individually, thus fully taking advantage of the knowledge from the source task with sufficient

data samples.

A

D

E F

C

B

Figure 7. Measuring and interpreting the similarity between the tasks of estimating the bio-activities of molecules against cytochrome P450

isozymes

(A) The task similarity tree constructed using the similarity estimated by MoTSE.

(B-F) Five active patterns highlighted by our attribution method. The filled or hollow circles below a functional group represent whether the corresponding

functional group is an active pattern for individual isozymes 1A2, 2C9, 2C19, 2D6 and 3A4 or not. The functional groups are shown on the left, while the

molecules with the active patterns are shown on the right.
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Comprehensive test results showed that the MoTSE-guided transfer learning strategy significantly outper-

formed the baseline learning strategies in predictingmolecular properties and avoiding the negative trans-

fer problem, especially on those datasets with limited data. MoTSE was also robust to different sizes of

target and source datasets. Moreover, we validated that MoTSE achieved superior performance in the sce-

narios where the source and target tasks were from different domains. All these results demonstrated that

MoTSE can be applied to molecular property prediction tasks from various scenarios. Therefore, MoTSE

can provide a useful tool to fully exploit the increasing number of large-scale molecular property datasets

to enhance the learning of properties with only limited training data, which is of great importance to accel-

erate the early stage of finding drug candidate molecules. In addition, we demonstrated that MoTSE can

capture the intrinsic relationships between molecular properties and provide meaningful interpretability

for the derived similarity, which can potentially help biologists/chemists understand the underlying mech-

anisms behind molecular properties.

Limitations of the study

In our proposed learning strategy, we select the most similar source task to enhance the learning of one

target task in a one-to-one transfer manner (i.e., transferring one source task to one target task). Although

the test results have demonstrated the superior performance of such a strategy, there is still room for

further explorations about improving the learning strategy. For example, we can design effective strategies

to simultaneously take advantage of the top-n (n> 1) similar tasks in the pre-training stage. In addition, a

curriculum learning strategy can be designed by building effective learning paths (e.g., source task A /

source task B / target task) based on the similarity derived from MoTSE. These points were not fully

explored in our current work but will be interesting directions in future studies.
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Wang, Z., Dai, Z., Póczos, B., and Carbonell, J.
(2019b). Characterizing and avoiding negative
transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pp. 11293–11302. https://doi.org/
10.1109/CVPR.2019.01155.

Weininger, D. (1988). Smiles, a chemical language
and information system. 1. introduction to
methodology and encoding rules. J. Chem. Inf.
Model. 28, 31–36. https://doi.org/10.1021/
ci00057a005.

Williams, J.A., Hyland, R., Jones, B.C., Smith,
D.A., Hurst, S., Goosen, T.C., Peterkin, V., Koup,
J.R., and Ball, S.E. (2004). Drug-drug interactions
for udp-glucuronosyltransferase substrates: a
pharmacokinetic explanation for typically
observed low exposure (auci/auc) ratios. Drug
Metab. Dispos. 32, 1201–1208. https://doi.org/
10.1124/dmd.104.000794.

Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li,
X., Li, Z., Luo, X., Chen, K., Jiang, H., and Zheng,
M. (2019). Pushing the boundaries of molecular
representation for drug discovery with the graph
attention mechanism. J. Med. Chem. 63, 8749–
8760. https://doi.org/10.1021/acs.jmedchem.
9b00959.

You, Y., Chen, T., Shen, Y., and Wang, Z. (2021).
Graph contrastive learning automated. In
Proceedings of the 38th International Conference
on Machine Learning, ICML 2021 (PMLR),
pp. 12121–12132. https://doi.org/10.48550/arXiv.
2106.07594.

Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik,
J., and Savarese, S. (2018). Taskonomy:
disentangling task transfer learning. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3712–3722.
https://doi.org/10.1109/CVPR.2018.00391.

Zhang, W., Deng, L., and Wu, D. (2020).
Overcoming negative transfer: a survey. Preprint
at arXiv. https://doi.org/10.48550/arXiv.2009.
00909.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. (2021). A comprehensive
survey on transfer learning. Proc. IEEE 109, 43–76.
https://doi.org/10.1109/JPROC.2020.3004555.

ll
OPEN ACCESS

12 iScience 25, 105231, October 21, 2022

iScience
Article

https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://doi.org/10.48550/arXiv.1502.02072
https://doi.org/10.1021/ci100050t
http://refhub.elsevier.com/S2589-0042(22)01503-6/sref37
http://refhub.elsevier.com/S2589-0042(22)01503-6/sref37
http://refhub.elsevier.com/S2589-0042(22)01503-6/sref37
http://refhub.elsevier.com/S2589-0042(22)01503-6/sref37
https://doi.org/10.1002/qsar.200330825
https://doi.org/10.1002/qsar.200330825
https://doi.org/10.1021/ci0600657
https://doi.org/10.1016/j.ddtec.2020.05.001
https://doi.org/10.1016/j.ddtec.2020.05.001
https://doi.org/10.5555/3305890.3306006
https://doi.org/10.5555/3305890.3306006
https://doi.org/10.3389/fphar.2018.00074
https://doi.org/10.3389/fphar.2018.00074
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.6b00290
https://doi.org/10.1038/nbt.1581
https://doi.org/10.1038/nbt.1581
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1809.10341
https://doi.org/10.48550/arXiv.1809.10341
https://doi.org/10.48550/arXiv.1909.01315
https://doi.org/10.48550/arXiv.1909.01315
https://doi.org/10.1109/CVPR.2019.01155
https://doi.org/10.1109/CVPR.2019.01155
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1124/dmd.104.000794
https://doi.org/10.1124/dmd.104.000794
https://doi.org/10.1021/acs.jmedchem.9b00959
https://doi.org/10.1021/acs.jmedchem.9b00959
https://doi.org/10.48550/arXiv.2106.07594
https://doi.org/10.48550/arXiv.2106.07594
https://doi.org/10.1109/CVPR.2018.00391
https://doi.org/10.48550/arXiv.2009.00909
https://doi.org/10.48550/arXiv.2009.00909
https://doi.org/10.1109/JPROC.2020.3004555


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contacts, Dan Zhao (zhaodan2018@tsinghua.edu.cn) and Jianyang Zeng (zengjy321@mail.

tsinghua.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d The source code and datasets of MoTSE can be found at https://github.com/lihan97/MoTSE.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Notation and problem setting

Suppose that we are given a set of molecular property prediction tasks T = ft1;t2;.;tNg, where N stands

for the total number of tasks involved. Accordingly, we have a set of datasets D = fD1;D2;.;DNg, where
Di = fðx; yÞg stands for the dataset related to task ti, and ðx; yÞ represents a pair of molecule and its label for

task ti. We represent each molecule as a graph G = ðV;EÞ, where V stands for the set of nodes (i.e., heavy

atoms) and E stands for the set of edges (i.e., covalent bonds). We use uk ˛RNd to represent the initial fea-

tures (e.g., atom type) of the k-th node in V, where Nd stands for the dimension of node features.

Our goal mainly lies in the following 2-folds: (1) efficiently estimate the similarity between each pair of tasks

in T ; and (2) design an accurate transfer learning strategy based on the derived task similarity.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MoTSE This study https://github.com/lihan97/MoTSE

Python Version 3.6.13 https://www.python.org/downloads/

PyTorch Version 1.1.0 https://pytorch.org/

RDKit Version 2018.09.3 https://www.rdkit.org/docs/Install.html

Deep Graph Library (DGL) Version 0.4.2 https://www.dgl.ai/pages/start.html

Other

QM9 (Ramakrishnan et al., 2014) http://quantum-machine.org/datasets/

PCBA (Ramsundar et al., 2015) https://doi.org/10.48550/

arXiv.1502.02072

Alchemy (Chen et al., 2019) https://www.dgl.ai/pages/start.html

FreeSolv (Mobley and Guthrie, 2014) https://alchemy.tencent.com/

BACE (Subramanian et al., 2016) https://doi.org/10.1021/

acs.jcim.6b00290

HOPV (Lopez et al., 2016) https://doi.org/10.1038/sdata.2016.86
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Key steps of MoTSE

Step 1: Pre-training the task-specific GNNs

The calculation of the similarity between tasks can be regarded as measuring the similarity of the intrinsic

knowledge that needs to be learned from these tasks. Since deep learning models, especially the GNNs,

have shown their superior capability of learning hidden knowledge and modeling various kinds of molec-

ular properties (Gilmer et al., 2017; Li et al., 2019; Xiong et al., 2019), we adopt GNNs to capture such hid-

den knowledge contained in individual tasks. More specifically, for each task t, we pre-train a GNN model

m = pðeð ,ÞÞ using the corresponding dataset D, where eð ,Þ acts as an GNN encoder to extract the latent

feature representations of the molecule graphs and pð ,Þ serves as a classifier or regressor (implemented

through a multi-layer perceptron) to make prediction for t.

Step 2: Projecting tasks into task space

After pre-training the task-specific GNNs for individual tasks, the problem of measuring the similarity be-

tween tasks is converted into finding a way to quantitatively represent the knowledge enclosed in the pre-

trained GNNs. MoTSE employs two knowledge extraction methods, including an attribution method and a

molecular representation similarity analysis (MRSA) method, to derive the hidden knowledge from GNN

models as represented vectors in a latent space.

Before elaborating on the task projectionmethods, we first define a probe datasetDprobe = fx1;x2;.;xNpg,
which is a set of unlabeled molecules, where Np denotes the number of molecules. This probe dataset is

shared across all tasks involved and acts as a proxy in the knowledge extraction process of each task to

ensure that all the tasks can be projected into a unified latent space.

Attribution method

The attribution method is a way of interpreting deep learning models by assigning importance scores for

individual input features to explain the prediction. Here, we use an attribution method to assign impor-

tance scores to individual atoms in each molecule from the probe dataset. The specific attribution method

we use is Gradient*Input (Shrikumar et al., 2016), which refers to a first-order Taylor approximation of how

the output will change if a specific input feature is set to zero, thus indicating the importance of this input

feature with respect to the output.

More formally, given the graph representation G for a molecule x from Dprobe, the importance score ak of

the k-th atom uk with respect to the task t can be computed as:

ak =
1

Nd

XNd

f = 1

uk;f 3
vby
vuk;f

; (Equation 1)

where uk;f stands for the f-th element of the feature vector uk ,Nd stands for the dimension of the input atom

features, and by = mðGÞ stands for the prediction result of x for task t from the corresponding pre-trained

GNN model m. Here, the importance score ak of the k-th atom is derived by averaging the importance

scores of all dimensions of the atom features. After assigning the importance scores to individual atoms

of molecule x, we obtain an attribution vector, denoted by A = ½a1;a2;.;ajVj�, where jVj stands for the num-

ber of atoms in x. By applying the above attribution method to every molecule in Dprobe, we can derive the

attribution vectors of all molecules in the probe dataset, denoted by A = ½A1;A2;.;ANp
�.

Molecular representation similarity analysis

As the attribution method scores each atom separately without considering the global information of mol-

ecules, we define such knowledge extracted by the above attribution method as local knowledge. Here, we

also present a molecular representation similarity analysis (MRSA) method (Groen et al., 2018; Dwivedi and

Roig, 2019) to extract the global knowledge learned from the pre-trained GNNs. In particular, for each task,

we compute the pairwise correlations between the hidden molecule representations (i.e., the outputs of

the encoders of the pre-trained GNNs) to depict the relationships between molecules in the latent molec-

ular representation space.

More formally, for a task t and the encoder e from the corresponding pre-trained model, we first

perform forward propagation for all molecules in Dprobe to generate their latent molecular representations
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Z = ½z1;z2;.;zNp
�, where zm stands for the latent molecular representation of molecule xm ˛Dprobe. Then for

each pair of molecular representations zm and zn ðmsnÞ, we compute their correlation score rm;n, that is,

rm;n = rðzm; znÞ; (Equation 2)

where rð ,Þ stands for the Pearson’s correlation coefficient. After that, we obtain amolecular representation

correlation vector R = ½r1;2;.; r1;Np
; r2;3;.; rNp � 1;Np

� as another vector representation of task t.

For individual tasks in T , MoTSE adopts the attributionmethod and theMRSAmethodmentioned above to

extract both local and global task-related knowledge and projects them as vectors into two latent task

spaces, denoted by T A and T R, respectively.

Step 3: Estimating the task similarity

Once step 2 is completed, for each pair of tasks ti;tj ˛ T ðisjÞ, their similarity can be computed in the latent

task spaces T A and T R:

sAi;j =
1

N p

XN p

m = 1

cosine sim
�
Ai

m;A
j
m

�
; (Equation 3)

sRi;j = cosine sim
�
Ri;Rj

�
; (Equation 4)

where sAi;j and sRi;j represent the task similarity derived in T A and T R, respectively, and cosine simð ,Þ stands
for the cosine similarity between two vectors.

The above two kinds of task similarities focus on different aspects to represent the hidden knowledge and

are calculated under different assumptions. The attribution method mainly aims to extract local knowl-

edge, and the assumption behind sAi;j is that similar tasks should have similar importance scores for the

same atoms in a molecule. On the other hand, MRSA mainly aims to extract the global knowledge, and

sRi;j measures the similarity on the basis that similar tasks should result in similar latent molecular represen-

tation spaces. To fully exploit the merits of both similarity estimation methods, we unify them into a more

comprehensive formula:

si;j = ð1 � lÞsAi;j + lsRi;j ; (Equation 5)

where l stands for the weighting factor.

The MoTSE-guided transfer learning strategy

After deriving the similarity between pairs of tasks in T , for a target task ti ˛T , we can select the task tj ðisjÞ
with the highest similarity to ti as the source task. As such, we can fine-tune the model pre-trained on data-

set Dj to exploit the related knowledge from task tj and thus enhance the prediction of target task ti .

Implementation of MoTSE

Training details

The full network architecture for the GCN model is illustrated in Figure S2. We adopted a graph convolu-

tional network (GCN) (Kipf and Welling, 2016) implemented by the deep graph library (DGL) (Wang et al.,

2019a) as the encoder to model the molecular graphs and a two-layer perceptron as the predictor to make

prediction for molecular properties. More specifically, the GCN encoder had three 256-dimensional GCN

layers and the predictor was a two-layer (512-256-1) fully connected network. We employed weighted sum

pooling and max pooling as readout functions to produce the global feature representations of molecules

and used a concatenation operation to combine these two derived feature representations as the final mo-

lecular feature representation. We employed ReLU as the activation function and set the dropout rate to

zero. The pre-training and fine-tuning shared the same set of hyper-parameters. All the models were

trained with the Pytorch framework (Paszke et al., 2017). The MSELoss and CrossEntropyLoss functions

were employed tomeasure themean-squared error and the cross entropy for the regression tasks and clas-

sification tasks, respectively. We used the Adam optimizer (Kingma and Ba, 2014) for gradient descent opti-

mization with the following hyper-parameters: learning rate 1 3 10�4 and weight decay 1 3 10�5. All the

models were trained for 200 epochs with early stopping, which aimed to terminate training when the vali-

dation accuracy had not been improved in the last 20 epochs. As MoTSE and baseline learning strategies
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are orthogonal to different model architectures, we did not tune the model configurations. The model and

the training configurations of MoTSE were shared with baseline learning strategies for a fair comparison.

The probe dataset

In our tests, we constructed a probe dataset by randomly sampling 500 small molecules from the ZINC da-

taset (Sterling and Irwin, 2015). Although a larger probe dataset with carefully selected molecules may

serve as a better proxy in the knowledge extraction process, intuitively, the empirical results demonstrated

that 500 randomly selected molecules were sufficient to provide reliable estimations. More details about

the effects of the randomness and the size of the probe dataset on the performance of MoTSE are provided

in supplementary section 1.1.

Task similarity estimation

We empirically set the weighting factor l to 0.7 in our computational experiments (see supplementary sec-

tion 1.2 for more details).

Datasets and data processing

Datasets used to evaluate the prediction performance

Wemainly used four representative datasets, includingQM9 (Ramakrishnan et al., 2014), PCBA (Ramsundar

et al., 2015), FreeSolv (Mobley and Guthrie, 2014), BACE (Subramanian et al., 2016), HOPV (Lopez et al.,

2016) and Alchemy (Chen et al., 2019), to evaluate the effectiveness of our proposed method in molecular

property prediction. QM9 is a dataset that provides twelve quantum chemical properties, such as geomet-

ric, energetic, electronic and thermodynamic properties of roughly 130K small molecules, associated with

twelve regression tasks (Ramakrishnan et al., 2014). PCBA is a dataset consisting of biological activities of

small molecules generated by high-throughput screening, associated with 128 classification tasks (Ramsun-

dar et al., 2015). The FreeSolv dataset measures the hydration free energy of 642 small molecules in water

from both experiments and alchemical free energy calculation (Mobley and Guthrie, 2014). The BACE data-

set measures whether each of 1,513 molecules can act as an inhibitor of human b-secretase 1 (BACE-1)

(Subramanian et al., 2016). HOPV is a dataset that provides eight quantum chemical properties containing

350 organic donor compounds (Lopez et al., 2016). The Alchemy dataset (Chen et al., 2019) shares the same

tasks as the QM9 dataset but has different data distributions, that is, the QM9 dataset contains molecules

comprising up to nine non-hydrogen atoms while the molecules in the Alchemy dataset consist of nine to

fourteen non-hydrogen atoms.

We summarized the details of the tasks for the preprocessed QM9 and PCBA datasets, the FreeSolv data-

set, the BACE dataset, the HOPV dataset and the Alchemy dataset in Table S1.

Dataset measuring physical chemistry properties

We constructed a dataset containing 10K molecules labeled with four physical properties, including counts

of N and O atoms (NOCount), counts of NH and OH atoms (NHOHCount), number of H acceptors (NHA)

and number of H donors (NHD). More specifically, We randomly sampled 10K molecules from the ZINC da-

taset (Sterling and Irwin, 2015) and derived the four properties from RDKit (Landrum, 2006).

Dataset measuring the bio-activities against cytochrome P450 isozymes

We also obtained a dataset that estimates the bio-activities of 17K molecules against five cytochrome P450

isozymes, including 1A2, 2C9, 2C19, 2D6 and 3A4, from a preprocessed ChEMBL dataset (Mayr et al., 2018).

Learning strategies

The task similarity derived from MoTSE was employed to guide the source task selection in transfer

learning. More specifically, for each target task in QM91k/PCBA1k, we selected n tasks with the top similarity

scores as the source tasks from QM910k/PCBA10k according to the task similarity estimated by MoTSE, and

took the best fine-tuning results as the final results. We set n to three and five for QM9 and PCBA datasets,

respectively. The effect on the choice of n is provided in supplementary section 1.2.

To benchmark our proposed transfer learning strategy, we employed various previously defined transfer

learning strategies, which mainly differed in the ways of defining source tasks and leveraging the knowl-

edge from source tasks. More specifically, we employed multitask learning (denoted as MT), which learned
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the target task and all the available source tasks simultaneously, five self-supervised learning methods,

including Masking (Hu et al., 2020), EdgePred (Hamilton et al., 2017), ContextPred (Hu et al., 2020),

DeepGraphInfomax (Velickovic et al., 2019) (denoted as DGI) and JOAO (You et al., 2021), which first lever-

aged different proxy tasks to learn general knowledge from a large-scale unlabeled dataset and then fine-

tuned the pre-trainedmodel on the target dataset (here we used the ZINC dataset (Sterling and Irwin, 2015)

with two million molecules to pre-train the self-supervised learning methods), and another four self-super-

vised learning methods, including EdgePredsup (Hu et al., 2020), Maskingsup (Hu et al., 2020),

ContextPredsup (Hu et al., 2020) and DGIsup (Hu et al., 2020), which first pre-trained the models using

self-supervised strategies, then further pre-trained them on a preprocessed ChEMBL dataset (Mayr

et al., 2018) by learning to predict bio-activities in a supervised fashion and finally fine-tuned the pre-trained

models on target datasets. Moreover, we introduced the training from scratch scheme (denoted as Scratch)

as a baseline method, which directly trained the model on the dataset of the target task and did not exploit

any extra knowledge in the learning process.

Note that, our method is orthogonal to different GNN architectures. Here, for a fair comparison, we imple-

mented all the learning strategies on the basis of GCNs if not specially specified, and we also used the same

set of hyper-parameters for each method.

Model configurations

To evaluate whether the similarity estimated using GCNs can be generalized to guide the source task se-

lection of other model architectures, we also considered other models, including graph attention networks

(GATs) (Veli�ckovi�c et al., 2017), fully-connected networks (FCNs) and recurrent neural networks (RNNs) in

our tests. The details of the models are provided below.

� GAT: GAT is a kind of graph neural network that employs the attention mechanism when performing

message passing over nodes. We constructed a GAT model with three 256-dimensional GAT layers

followed by a two-layer (512-256-1) fully connected network with the ReLU activation function

(Agarap, 2018) for molecular representation extraction and property prediction.

� FCN: We built a five-layer (2048-1024-512-256-128-1) fully connected network with the ReLU activa-

tion function (Agarap, 2018) that took the ECFP (extended connectivity fingerprints) (Rogers and

Hahn, 2010) representations of molecules as input to make molecular property prediction.

� RNN: RNN is a deep learning model particularly designed for processing sequential data, which has

been proven to be effective in making molecular property prediction with SMILES (simplified molec-

ular input line entry specification) representations (Weininger, 1988; Goh et al., 2018; Arús-Pous

et al., 2019). Here, we employed a three-layer 128-dimensional LSTM (Hochreiter and Schmidhuber,

1997) (a classical variant of RNN) to encode SMILES representations of molecules into

64-dimensional latent vectors and a two-layer (64-32-1) fully connected neural network with the

ReLU activation function (Agarap, 2018) to make predictions.

ECFP is a representation of 2D binary fingerprints (i.e., a series of bits) which can dynamically index the

presence or absence of particular substructures of molecules. SMILES is a string-based molecular repre-

sentation for describing molecular structures using short ASCII strings. Figure S1 gives an example for

the ECFP and SMILES representations. In our computational experiments, we used DeepChem (Ramsun-

dar et al., 2019) to calculate a 2048-bit ECFP for each molecule. For the SMILES string, we used one-hot

vectors to encode the unique characters.
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