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Abstract 

This paper describes a transport system architecture called ADAPTIVE that we are developing to support 
multimedia applications utilizing high-speed networks. ADAPTIVE stands for "A Dynamically Assembled 
Protocol Transformation, Integration, and Validation Environment." It is a transformation-based system with 
the goal of providing policies and mechanisms for interactively specifying and configuring a flexible and 
adaptive transport system. In addition, it aims to provide a controlled prototyping environment for monitoring, 
analyzing, and experimenting with the effects of different transport system designs and implementations on 
application performance. 





1 Introduction 

The performance of distributed applications (such as remote terminal access, network file servers, distributed 
databases, collaborative work activities, bulk data transfer, computer imaging, audio- and video-conferencing, 
full-motion video, scientific computation and visualization) is influenced by network factors and transport 
system1 factors. Several key network factors include channel speed, bit-error rate, and congestion levels at 
the intermediate switching nodes (ISNs). Transport system factors include both protocol processing activities 
(such as connection management, transmission control, and error protection) and general operating system 
hardware and software factors (such as memory latency, CPU speed, interrupt and context switching overhead, 
process architecture, and message buffering). 

Advances in fiber optics and VLSI technology have increased network channel speed by several orders of 
magnitude [1]. Coupled with the increase in application and network diversity described in Section 2, these 
changes are shifting performance bottlenecks from the network factors to the transport system factors. There­
fore, transport system architectures must be more flexible and adaptive to handle the diversity and dynamism 
in network characteristics and application communication requirements [2]. However, existing transport sys­
tems, which typically offer only a small number of monolithic protocols, are unable to meet these flexible and 
adaptive requirements adequately [3]. 

This paper is organized as follows: in Section 2 we define four important research problems involving 
transport systems and describe how existing systems do not adequately solve these problems, Section 3 in­
troduces the ADAPTIVE system and outlines its design, and Section 4 summarizes the paper and describes 
future work. 

2 Research Problems 

Our research is investigating solutions to the following four problems involving transport systems: 

(A) The Throughput Preservation Problem: As noted by [1, 4, 5], only a limited fraction of the available 
bandwidth in high-speed networks is being delivered to applications. This situation results from transport sys­
tem overhead not decreasing as rapidly as the network channel-speed is increasing. The overhead results from 
activities such as memory-to-memory copying and process management operations like interrupt handling, 
context switching, and scheduling. 

(B) The Multimedia Application Diversity and Dynamism Problem: Another issue (which is related 
to the throughput preservation problem) is how to support the communication requirements of distributed 
multimedia applications2 that are more demanding and dynamic than those found in traditional data applica­
tions such as remote terminal access, file transfer, and electronic mail. For example, multimedia applications 
involve combinations of requirements such as extremely high throughput (e.g., full-motion video), strict real­
time delivery (e.g., manufacturing control systems), low latency (e.g., on-line transaction processing), low 
delay jitter (e.g., voice conversation), multicast capability (e.g., collaborative work activities), high-reliability 
(e.g., bulk data transfer), temporal synchronization (e.g., audio- and video-conferencing), and some degree 
of loss tolerance (e.g., hierarchically-coded voice and video). Moreover, multimedia applications impose 
different network traffic patterns. For instance, some applications generate highly bursty traffic (e.g., vari­
able bit-rate video applications), some generate continuous traffic (e.g., constant bit-rate video applications), 
and others generate short, interactive, transaction-oriented traffic (e.g., network file systems using remote 

1Transport systems are composed of both general-purpose operating systems (such as UNIX and Mach) and the protocols (such 
as TCP, TP4, XTP, VMTP, and Delta-t) that utilize the OS services. In particular, transport systems provide services to applications 
that encompass more functionality than that provided by the transport layer. 

2We will refer to these as simply "application requirements" from now on. 
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Transport Example Average Burst Delay Jitter Order Loss Multicast 
Service Applications Throughput Factor Sens. Sens. Sens. Toler. 
Class 

Voice low low high high low moderate no 
Interactive Conversation 
Isochronous Tele- moderate moderate high high low moderate yes 

conferencing 
Distributional Full-Motion very high high(*) high high(*) low moderate yes 
Isochronous Video 
Real-Time Manufachlring moderate moderate high somewhat variable low yes 
Non-Isochronous Control 

Ftle Transfer moderate low low low high low no 
Non-Real-Time ""Kemote J::Ogm very Tow high high Tow lllgll Tow no 
Non-Isochronous On-Line low high high low variable low no 

Transaction 
Processing 

Table 1: Application Transport Service Classes 

procedure calls (RPC)). In addition, application requirements may change dynamically (e.g., consider an 
audio-conferencing application that switches between unicast and multicast as participants join and leave the 
conversation). Table 1 illustrates the diversity of transport requirements for several representative classes of 
distributed applications [6].3 

(C) The Network Diversity and Dynamism Problem: Network diversity involves both the static archi­
tecture and dynamic state of the underlying network (or more generally, the internetwork). For example, 
different network characteristics include diameter (e.g., LANs, MANs, and WANs), channel speeds (e.g., To­
ken Ring (4/16 Mbps), Ethernet (10 Mbps), FDDI (100 Mbps), and ATM (155/622 Mbps)), channel bit-error 
rate probability (e.g., approximately 10-4 for copper vs 10-9 for fiber), network service type (e.g., datagram 
vs. virtual circuit), media access control (e.g., CSMA!CD vs. token passing), and maximum transmission 
unit (e.g., 4,500 bytes for an FDDI frame vs. 1,500 bytes for Ethernet packets vs. 48 bytes for ATM cells). 
However, applications may continue to interoperate between three typical network environments, including 
(1) low-utilization, low-latency LANs (e.g., Ethernet), (2) congestion-prone, high latency WANs (e.g., the 
current Internet), and (3) high-bandwidth, high latency WANs (e.g., ATM-based B-ISDN public access net­
works) [3].4 Problems arising from handling this diversity and dynamism involve determining appropriate 
end-to-end congestion and error protection schemes that effectively utilize the high bandwidth channels and 
adapt quickly to dynamically changing network conditions (such as congestion). 

(D) The Communication Software Development Complexity Problem: Communication software has 
traditionally been difficult to develop, due in part to the complexity arising from trying to simultaneously 
maximize performance, functionality, and portability across heterogeneous operating environments [7]. This 
heterogeneity is reflected in the complexity of software architectures that must support (1) diverse applications 
communicating via (2) diverse transport systems that interoperate over (3) diverse network environments 
[8]. To effectively support this network and application diversity, it is increasingly important to structure 
communication software in a manner that is maintainable, flexible, extensible, and efficient. 

3Note, the "values" in the table cells are rough approximations; items marked with a (*) are coding dependent. 
4Network diversity and dynamism are problems that will not completely disappear even if there were only one standardized network 

infrastructure. In this case, there would still be considerable diversity in network diameter and dynamism in network congestion 
characteristics. 
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2.1 Inadequacy of Existing Transport System Solutions 

Existing transport systems do not provide effective solutions for all four problems described above. This 
section describes several reasons for the inadequacy of existing systems. 

(A) High Transport System Overhead: Effectively supporting multimedia applications requires suitable 
levels of performance from both the network as well as from the transport system [9]. However, most general­
puxpose operating systems do not provide adequate support for transport system activities such as real-time 
process scheduling, interrupt handling and context switching, message buffer management, layer-to-layer 
flow control, and multiplexing and demultiplexing [10]. Therefore, due to the transport system overhead, the 
available bandwidth actually delivered to applications in a high-speed network is reduced by several orders of 
magnitude [5]. Moreover, this throughput preservation problem persists despite an increase in CPU speeds. 
There are several explanations for this: (1) networks have increased by 5 or 6 orders of magnitude (i.e., from 
kbps to Gbps), whereas CPU speeds have only increased by 2 or 3 orders of magnitude (i.e., from 1 MIP up 
to 100 MIPS) [1], (2) network host interfaces typically generate interrupts for every transmitted and received 
packet, which lead to increased CPU context switching overhead [l, 11], and (3) despite increasing total 
MIPS, RISC architectures (such as the SPARC) penalize this interrupt-driven network communication, since 
they typically exhibit high context switch overhead, resulting from the cost of flushing instruction and data 
caches and pipelines, storing and retrieving large register windows, etc. [12]. 

(B) Inflexible and Non-Adaptive Transport System Architectures: Another reason why existing trans­
port systems are unable to meet the demands of diverse applications and networks are that they typically 
provide orily a fixed, statically configured suite of protocols [3]. For instance, it is not possible to dynamically 
tailor most general-puxpose protocols to account for specific application requirements or network character­
istics [13]. Moreover, communication software tends to be very inflexible and difficult to modify [3], and is 
often written in a manner that tightly couples it to a particular transport system environment (e.g., TCP/IP 
on BSD UNIX) [10, 14]. These factors increase the difficulty of maintaining, extending, and adapting the 
software to support diversity in networks and applications. 

To illustrate the variety of transport system architectures, we distinguish them below by how capable they 
are of adapting their configurations to support changes in application requirements and network characteris­
tics: 

1. Non-adaptive transport systems are statically configured at operating system boot time. In this case, 
the transport system often provides protocol support based upon general usage assumptions such as 
unreliable datagram service (e.g., UDP) versus reliable byte stream service (e.g., TCP). Many well­
known transport systems belong to this category [15, 16, 17, 18, 19]. 

2. Semi-adaptive transport systems permit postponing complete configuration until connection establish­
ment time. Such transport systems may be configured by negotiating with local and remote hosts and 
the network. This negotiation process specifically tailors the transport system to account for the ap­
plication requirements and the available host and network resources such as buffer space, CPU load, 
virtual circuits, and congestion. Only a handful of transport systems provide any support at all for semi­
adaptive configuration of their protocol suites [3, 20, 21]. Furthermore, this support typically involves 
only operations on the local hosts (i.e., network and remote hosts conditions are not considered in the 
configuration process). 

3. Fully-adaptive transport systems extend semi-adaptive systems by allowing reconfiguration during 
the data-transfer phase (e.g., to accommodate changes in application requirements, transport system 
conditions5, or network characteristics). Very few transport systems even attempt to provide any sup-

5 These conditions involve changes in transport system resources such as buffer space, processor load, and available communication 
ports. 
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port for fully adaptive reconfiguration, and those that do are experimental research projects [6, 22]. 

Given the increasing diversity of application requirements and network characteristics (combined with the 
fact that both may change dynamically), it appears that semi-adaptive and fully-adaptive transport systems 
may support application/network pairings more effectively than non-adaptive systems. 

(C) No Explicit Support for Multimedia Applications and High-Speed, Multi-Service Networks: Many 
popular transport systems were designed and implemented before the new generation of multimedia appli­
cations and high-speed, multi-service networks became widely available. For example, the BSD 4.3 UNIX 
TCP /IP implementation was originally designed for traditional data applications that require 100 percent error­
free transmission over low-bandwidth, high-error network links (e.g., ARPANET). Therefore, TCP/IP (and 
in many cases the ISO TP[0-4] transport protocols) may provide inadequate support for modem applica­
tion requirements by not incorporating efficient header6, fast connection establishment, multicast, security, 
or quality of service parameters such as prioritized real-time guarantees and application-selectable levels of 
loss-tolerance [2, 24]. Moreover, many existing protocols suites were designed for low-speed, unreliable, 
congestion-prone, datagram networks, rather than high-speed, congestion-controlled, virtual-circuit networks 
such as ATM [25]. For example, the TCP /IP suite does not provide explicit access control7, rate control, selec­
tive retransmission, or support for large flow control windows. Although extensions to TCP and IP have been 
proposed that address these limitations, these proposals have not yet been integrated into the base standards 
requirements. 

2.2 Related Work 

A growing number of projects address flexible and adaptive protocols and architectures for high-speed trans­
port systems.8 The ADAPTIVE system is primarily influenced by the Programmable Network Prototyping 
System (PNPS) [29], thex-kemeVAvocaprojects [3, 10], and the Multi-Stream Protocol (MSP) [22]. 'PNPS is 
a flexible environment for prototyping and experimenting with hardware implementations of MAC-layer pro­
tocols. ADAPTIVE, on the other hand, focuses on prototyping and experimenting with flexible and adaptive 
software architectures for higher-layer protocols. 

The x-kernel is a communications-oriented operating system kernel that supports protocol development 
and experimentation. It provides a "protocol backplane" consisting of uniform interfaces for reusable com­
munications services such as message handling, multiplexing and demultiplexing, and event management. 
Relationships between entities in protocol suites are described and implemented via dynamic, modular, and 
highly-layered protocol graphs9 composed from virtual- and micro-protocols. Avoca uses x-kernel as a run­
time environment to support protocol implementation and experimentation. It focuses primarily on flexible 
implementations of protocols like RPC, UDP, and TCP that support traditional data applications running on 
traditional networks. ADAPTIVE, on the other hand, focuses on flexible and adaptive transport systems that 
support multimedia applications running on high-speed networks. 

MSP ("Multi-Stream Protocol") is a "feature-rich" transport protocol designed to execute in parallel. In 
addition, MSP permits protocol configurations to change their mechanisms "on-the-fly" without data loss 
(e.g., allowing the retransmission implementation to switch from go-back-n to selective repeat within an active 
connection). Like the x-kemel, MSP focuses more on mechanisms (i.e., how to implement the changes) rather 

6For example, TCP and TP4 's checksum is not in the trailer, which precludes simultaneous transmission and checksum computation 
[23]. Moreover, many fields in the TCP header are not word-aligned and the option formats are not fixed-sized. 

7Note, TCP's slow start and multiplicative decrease algorithms are used to simulate access control. 
8In addition to the research described in this section, other projects focusing on various aspects of flexible and adaptive transport 

systems and protocols include [l, 21, 23, 24, 26, 27, 28]. 
9 A protocol graph is a generalization of a protocol stack; it represents the hierarchical relations between protocols in one or more 

protocol suites [3]. 
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than on policies (i.e., when to make the changes and what changes should occur). ADAPTIVE, on the other 
hand, focuses on both policies and mechanisms (as described in Section 3.1). 

3 The ADAPTIVE System 

The following section introduces the ADAPTIVE system and describes its distinctive features, compares it 
with alternative techniques, and outlines the architectural design of its major subsystems. 

3.1 ADAPTIVE Overview 

ADAPTIVE is "A Dynamically Assembled Protocol Transformation, Integration, and Validation10 Environ­
ment" used to specify, configure, experiment with, and analyze alternative transport system designs and imple­
mentations. We are developing ADAPTIVE to help ameliorate the inadequacies of existing systems described 
in Section 2.1 above. ADAPTIVE is distinguished by its integrated framework that exhibits: (1) support for 
application and network diversity and dynamism via a flexible and adaptive architecture, (2) reduction in 
transport system overhead, (3) focus on policies and mechanisms, and (4) feedback-guided monitoring and 
measurement. This section briefly describes these aspects of ADAPTIVE. 

(A) Support for Both Multimedia Application Requirements and Network Characteristics via a Flexible 
and Adaptive Architecture: ADAPTIVE provides services that flexibly configure and adaptively reconfig­
ure transport systems based upon network characteristics and communication requirements of applications.11 

It employs a library of reusable transport system mechanisms (e.g., buffer and event managers, connection 
management, error protection, and transmission control) to facilitate the synthesis of efficient transport sys­
tems. Flexibility is an important design criteria since it supports: 

• Prototyping - Compared with analysis and simulation, prototyping often facilitates more realistic per­
formance results, since it is able to detect and account for interactions between system components 
[29]. 

• Experimentation - Experimentation is important since there is no clear consensus on the best methods 
for developing transport systems that support network and application diversity. 

• Diversity - Transport systems of the future must operate effectively in both a standardized high-speed 
network environment (e.g., ATM-based WANS and LANS) as well as in a highly diverse intemetwork­
ing environment (e.g., the current Internet). 

Experience indicates that it is very difficult to specify one protocol that is optimal for all application/OS/network 
combinations [33]. Therefore, rather than developing a single complex all-encompassing protocol, it may be 
more feasible to construct an architecture that permits fine-grain selection and configuration of various pro­
tocol mechanisms [3]. 

ADAPTIVE also supports run-ti.me adaptive reconfiguration in response to feedback from changes in ap­
plications requirements, transport system conditions, and network characteristics. Adaptivity is important 
since applications and networks are dynamically changing entities, that are not necessarily served most effec­
tively by static solutions. Section 3.3 describes the ADAPTIVE architecture in detail. 

10We use the term "validation" to refer to the instrumentation and measurement of transport system performance within the ADAP­
TIVE framework, i.e., we are not investigating verification techniques for establishing protocol correctness [30]. 

u Other related work on transport systems typically focuses more on diverse application requirements than on network character­
istics [31, 32]. 
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(B) Reduction in Transport System Overhead: A large body of research exists on both network protocols 
(see [34] for a survey) and the transport systems that support them (see [35] for our survey). Techniques for 
reducing transport system overhead involve various combinations of the following (note, these techniques are 
listed roughly in increasing order of divergence from methods used in existing transport systems): 

1. Utilize faster hardware for CPUs, busses, network controllers, and memory hierarchies. 

2. Implement existing protocols more efficiently. For example, overall processing time may be reduced 
by shortening the typical instruction paths executed for each packet (e.g., using a "success-oriented" 
protocol implementation [1]) and improving the implementation of transport system "support" services 
(e.g., message management and demultiplexing) [13, 14, 36]. 

3. Design more flexible and lightweight protocols that are tailored for high-speed, low error, and low delay 
network environments [22, 37, 38, 39, 40, 41]. Lightweight protocols generally involve (a) a success­
oriented design (i.e., optimizing for the "common case" of error-free, in-sequence delivery), (b) fixed­
sized, "word-aligned" headers, along with "trailer checksums," (c) fewer packet exchanges (e.g., using 
implicit connection management and/or block acknowledgments), ( d) reduction in the number of timers 
(e.g., using sender-independent acknowledgments), and (e) reduction in unnecessary functionality (e.g., 
making checksums optional and/or eliminating retransmissions for loss-tolerant applications). 

4. Implement selected functions (e.g., checksum calculations, message buffering, and demultiplexing) in 
special-purpose hardware [42, 43]. 

5. Migrate the protocol processing activities to "off-board" processors [11, 23, 44]. This helps to reduce 
CPU interrupts and operating system context switches. 

6. Use alternative transport system architectures such as those based on (a) parallelism [l, 22, 27], (b) 
vertical processing architectures [10, 45], (c) flexible protocol stacks that require few layer and/or are 
dynamically assembled [26, 28, 31, 32], and (d) flexible transport system software that supports these 
flexible protocol stacks [3, 21, 38, 46]. 

The ADAPTIVE architecture we are developing extends prior research on flexible and adaptive transport 
system architectures [l, 22, 26, 28, 31, 32]. In particular, ADAPTIVE employs techniques from categories 
2 (efficient implementations), 3 (flexible, lightweight designs), and 6 (alternative transport system architec­
tures), emphasizing software that supports flexible and adaptive transport systems.12 

(C) Focus on Both Policies and Mechanisms: Much of the the related work on transport systems focuses 
on providing infrastructure mechanisms (e.g., buffering, acknowledgment schemes, retransmission timers, 
etc.) that determine how to configure and reconfigure the transport system. For example, [22] describes a 
variety of adaptive mechanisms that allow "on-the-fly" protocol reconfigurations. However, most existing 
research places less emphasis on the policies that determine when to adaptively reconfigure transport system 
mechanisms and what mechanisms the subsequent reconfigurations should contain. 13 The ADAPTIVE trans­
port system architecture, on the other hand, is designed to specifically address both policies and mechanisms. 
The following are two examples of policies and mechanisms: 

• The transport system may have a policy that causes the retransmission mechanism to switch from go­
back-n to selective repeat in the event that (1) an application's requirements change from multicast to 
unicast [47] or (2) if the congestion in the network suddenly increases beyond a specified threshold 

12Tci further improve its performance and versatility, the ADAPTIVE architecture may be enhanced with techniques from categories 
1, 4, and 5. However, these categories are predominately hardware-oriented, and therefore are not necessarily suitable as the primary 
implementation strategy for a flexible and adaptive transport system architecture. 

13 Conversely, related work that addresses policies (26, 31, 32] is not specific with respect to the mechanisms that actually provide 
global policy enforcement. For example, adequately supporting application requirements (e.g., hard real-time delivery and constrained 
latency) involves complicated interactions between the network and the transport systems on both local and remote hosts. 
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(causing packet loss due to queue overflows) [l, 2]. Note that at a later time, it may be possible to 
switch back, thereby reducing buffering requirements at receivers. 

• The transport system may also have a policy that causes the error protection mechanism to switch from 
being retransmission-based to one based on forward error correction when the round-trip delay time 
increases beyond some threshold, (e.g., when a route switches from a terrestrial link to a satellite link). 

Note that in each of these cases, it is just as important to understand when and what to switch the mechanism, 
as it is to know how the mechanism works. 

(D) Support for Controlled, Empirical Experimentation via Performance Monitoring and Measure­
ment: It is difficult to empirically evaluate the advantages and disadvantages of different transport system 
designs without (1) a controlled implementation environment and (2) systematic methods for monitoring and 
measuring the performance [ 13]. Measurement is an explicit part of the ADAPTIVE methodology, which em­
ploys an iterative, feedback-driven process consisting of: (1) transport system specification and configuration, 
(2) experimentation, (3) analysis of the results, and (4) using feedback from (3) to refine (1). 

Monitoring and measuring the performance of different transport system configurations provides feedback 
on the impact of selecting alternative policies and mechanisms [29]. In addition, certain metric information 
(e.g., packet loss or round-trip delay) may be used at run-time to help determine when to reconfigure the trans­
port system mechanisms. Metrics for monitoring and measuring transport systems include throughput, data 
transmission latency, jitter, packet loss, connection establishment time, and number of packet retransmissions 
[48, 49]. Section 3.3.3 describes these issues in greater detail. 

3.2 Comparison with Alternative Solution Techniques 

As mentioned above, the ADAPTIVE system is based upon a prototype-driven transport system development 
and experimentation methodology. The ADAPTIVE architectural design requires the following in order to 
support this methodology: (1) it must exhibit performance that allows realistic comparisons between alterna­
tive transport system configurations, (2) it must be flexible (to support fine-grain control over configurations), 
(3) it must be adaptive (to support dynamic reconfiguration), and ( 4) it must run in multiple host OS environ­
ments (e.g., BSD and System V UNIX, the x-kernel, and Mach). To achieve all these goals, we considered 
the following four alternative approaches for implementing network protocols in transport systems [7]: 

1. General-Purpose Programming Language/OS Approach - Many transport systems are hand-coded in 
a general-purpose language (e.g., C or C++) using standard OS services (e.g., the BSD UNIX kernel 
networking facilities). The primary advantage of this approach is efficiency, due to the close mapping 
from the source language to the OS and underlying hardware. The disadvantages are it is difficult to 
(1) verify the correctness of the solution, (2) port the software to a different OS environment, and (3) 
modify and extend the design and implementation. 

2. Derive from a Formal Definition Technique (FDT) - By using an FDT such as Estelle [50], PASS [51], 
Petri-Nets [28], or RTAG [8], it is possible to automatically derive part of the transport system imple­
mentation based on formal specifications. The main advantages of this approach result from working 
at a higher-level of abstraction, which simplifies the verification and validation of protocol correctness. 
The primary disadvantage, however, is that these implementations may be very inefficient compared 
with those coded by hand. In particular, this inefficiency may bias the performance results, thereby 
obscuring the subtle interactions between factors being investigated (e.g., PDT-generated retransmis­
sion schemes may stress the memory management facilities of the operating system differently than 
hand-coded versions, thus skewing packet-loss measurements). 
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3. Use a Domain-Oriented Language-Based Approach - This approach is more efficient (though less gen­
eral) than using an PDT. It applies domain-specific knowledge about transport systems to define special­
purpose languages (such as Morpheus [7]) for describing certain common protocol functions such as 
multiplexing and demultiplexing, addressing, error detection, and message buffering. The advantage of 
this approach is it enables performance optimizations that are difficult to detect with a general-purpose 
PDT or programming language. However, the disadvantages are that this approach does not necessarily 
address adaptivity, nor are domain-oriented programming language implementations available on all 
the platforms that host the ADAPTIVE system. 

4. Use a Reusable Software Component Library-Based Approach - This approach uses a modular frame­
work that comprises the basic building blocks of transport system functionality. For example, Avoca 
[3] uses the x-kernel as a run-time environment to support its micro- and virtual-protocol processing 
activities such as connection management, error detection, and block (re)transmission. The advan­
tages of this approach are that it is efficient, flexible, adaptive, and fairly easy to port to different host 
OSs. The primary disadvantage is that it is not necessarily as efficient as the completely hand-coded 
or domain-oriented language-based approaches. However, we chose this approach for the ADAPTIVE 
system since it most closely fulfills the four goals of our system, compared with the other three methods 
described above. 

3.3 The ADAPTIVE System Design 

This section describes the architecture of the ADAPTIVE system and examines the major subsystems in 
detail. As shown by the shaded rectangles in Figure 1, ADAPTIVE's three main subsystems are: 

1. MANTTS ("Map Applications and Networks To Transport Systems") - MANTTS negotiates with peer 
hosts and intermediate switching nodes (ISNs) to determine policies and mechanisms that will fulfill 
an application's grade of service (GoS)14 requirements, taking into account the dynamically changing 
network environment. Section 3.3.1 describes MANTTS in detail. 

14 Al; described in Section 3.3.1, specifying an application's grade of service requirements involves both "quality of service" (QoS) 
and "functionality of service" (FoS) parameters. 
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Figure 2: MANTIS Transformation Model 

2. TKO ("Transport Kernel Objects") - TKO synthesizes specially-tailored, lightweight transport system 
session configurations from a library of reusable mechanisms. Whereas MANTTS is responsible for 
choosing a set of policies and mechanisms, TKO is responsible for instantiating the selected mechanisms 
into executable session objects. Section 3.3.2 describes TKO in detail. 

3. UNITES ("UN!form Transport Evaluation Subsystem") - UNITES supports network traffic monitor­
ing, metric select and collection, and performance evaluation. In addition to enabling meaningful com­
parisons between different transport system session configurations, UNITES provides feedback to help 
MANTTS and TKO determine when and how to dynamically alter certain transport system session 
configurations. Section 3.3.3 describes UNITES in detail. 

The following sections describe each ADAPTIVE subsystem in detail. Details of the interface to the native 
transport/operating system are excluded for clarity. 

3.3.1 Map Applications and Networks To Transport Systems (MANTTS) 

MANTTS manages various resources (e.g., message buffers and available communication ports) and services 
(e.g., providing configuration and reconfiguration support) on ADAPTIVE host systems and intermediate 
switching nodes (ISNs). For instance, MANTTS coordinates multiple related communication sessions (e.g., · 
prioritized scheduling of synchronized multimedia streams), guides the "policy driven" transformation pro­
cess that synthesizes transport system session configurations, and monitors the network to detect and respond 
to dynamic changes in traffic conditions. MANTTS is involved in several phases of communication: (1) 
during the connection negotiation phase, where it coordinates the initial configuration, (2) during the data 
transfer phase, where it coordinates the reconfiguration process. We discuss the activities undertaken during 
the configuration and reconfiguration phases below. 

(A) Connection Negotiation and Configuration Phase: MANTTS interactively negotiates the requested 
GoS requirements when an application initiates a connection. Negotiation occurs between the local/remote 
application and MANTTS entities and the ISNs. This negotiation is based upon factors such as samples 
of the current network state and traffic volume, ISN queue lengths, and host processing loads. As shown 
in Figure 2, MANTTS configures a transport system session on behalf of the application via the following 
three-stage transformation process: 

1. MANTTS transforms the GoS requirements into an appropriate set of policies known as a Transport 
Service Class (TSC) (described further below). 
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2. MANTIS then transforms the TSC into a Transport System Session Configuration Specification (TSSCS), 
which specifies a set of mechanisms selected to implement the TSC policies. The TSSCS is based upon 
information regarding static and dynamic network characteristics together with information obtained 
from negotiating with remote application and MANTIS entities and ISN s. 

3. The mechanisms specified by the TSSCS are automatically synthesized by the Transport Kernel Objects 
(TKO) subsystem. TKO dynamically composes and instantiates specially-tailored session configura­
tions that deliver the requested communication service to applications. 

The following paragraphs describe each stage of the transformation process in greater detail. 

Stage I - Transport Service Class Selection: During the first transformation stage, MANTTS selects 
a transport service class (TSC) corresponding to the application-specified communication requirements. As 
shown in Table 1, TSCs represent general classes of application requirements such as interactive and distri­
butional isochronous traffic (e.g., voice conversation and full-motion video), real-time traffic (e.g., robotics 
and manufacturing control), and non-isochronous, non-real-time traffic (e.g., file transfer and remote login) 
[6]. Each TSC embodies a set of related policy decisions selected to provide the application-requested GoS. 
Classifying applications by their TSC helps simplify the subsequent transport system session configuration 
process.15 

The MANTTS Application Programmatic Interface (MANTTS-API) provides a service interface to the 
ADAPTIVE system. For example, when an application initiates a connection it passes the following param­
eters via the MANTTS-API: 

1. Address( es) of remote session participants - This parameter specifies one or more addresses correspond­
ing to the endpoints of the requested communication association (i.e., if multicast is required, there will 
be multiple remote addresses). These addresses help to determine certain characteristics of ISNs such 
as MTU, propagation delay, and error rates.16 

2. A tuple consisting of ADAPTWE Communication Descriptors (ACD )s - As shown in Table 2, ACDs 
specify several types of information involving quality of service, functionality of service, related session 
synchronization groups, metric collection, and reconfiguration requests. 

Stage II -Transport System Session Configuration Specification: During the second stage MANTTS 
transforms the selected TSC into a corresponding TSSCS.17 The resulting TSSCS represents the set of mecha­
nisms that enforce the policies embodied in the TSC. MANTIS produces the TSSCS by reconciling the TSC 
with the network characteristics associated with the indicated remote addresses. A network state estimate 
(NSE) [53] is used by the MANTIS Network Monitor Interface (MANTTS-NMI) to sample the current state 
of dynamic network characteristics. 

The initial configuration of an ADAPTIVE transport system session (in both local and remote hosts) may 
chose between one of two alternatives: 

1. Explicit Negotiation - When an application requests either explicit connection management and/or peer­
to-peer negotiation, the initiating (i.e., local) MANTIS entity uses an out-of-band signaling18 channel 

15Simplifying the configuration process is important, since the benefits from a flexible and adaptive architecture are reduced if 
configuration and/or reconfiguration becomes too time-consuming. 

16Knowledge of these characteristics helps MANITS determine the appropriate policies and mechanisms. For example, if the local 
application is communicating with one or more hosts on the same high-speed physical subnet the latency and error-rate may be very 
low compared to a wide area network. In such a situation, a specially-tailored lightweight transport system session configuration may 
be more effective than a general-purpose protocol such as TCP or TP4 [52]. 

17We distinguish between the TSC and TSSCS stages to emphasize the software engineering principle of "separation of concerns." 
This separation allows the decoupling of MANITS 's negotiation/specification-based TSC transformation policies from TKO's con­
figuration/instantiation of the TSSCS mechanisms. 

18Using out-of-band signaling helps to optimize the main data transfer path, since the data path is not required to interpret control 
packets [34]. 
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II Parameter Name I Description I Example Specifiers II 
Specifies the performance criteria Peak and average throughput, minimum 

Quality of Service (QoS) requested by the application. and maxim.um latency and jitter, 
error-rate probabilities, duration, etc. 

Specifies the functionality of Sequenced/non-sequenced delivery, 
Functionality of Service (FoS) behavior requested by the (byte/packet/block)-based transmission 

application. and acknowledgment, etc. 
Session S}'nchronization Indicates the group of sessions that The identifiers of related sessions. 
Group (SSG) are synchronized with this session. 
Transport Measurement Specifies performance metrics to Parameter selection, sampling 
Component (TMC) collect for this particular rate, presentation format, etc. 

communication session. 
Transport Service Specifies the actions to perform <condition, action> pairs that _ 
Adjustment (TSA) when changes occur in the network, indicate the actions to perform 

local or remote hosts, or ISNs. when certain conditions are true. 

Table 2: ADAPTIVE Communication Descriptor Format 

to exchange and negotiate configuration parameters19 with remote MANTTS entities. The negotiation 
phase determines the GoS that the transport system is capable of providing at this point in time. N ego­
tiation is necessary since the available GoS may be lower than that requested by the application.20 If 
the negotiation process is successful, the local and remote transport system session configurations are 
instantiated (as described in Stage ill below). On the other hand, if the negotiation/transformation is 
unsuccessful (e.g., due to resource limitations or network partitioning) there are two alternatives: (1) 
refuse the connection and (2) re-negotiate at a lower grade of service. 

2. Implicit Negotiation - Latency-sensitive applications (e.g., transaction-oriented applications like net­
work file servers) may not be able to incur any GoS negotiation delay. In such cases, MANTTS supports 
several types of fast connection establishment: 

• implicit connection management may be used, with configuration information piggybacked along 
with the application's first POU. To support implicit negotiation, remote MANTIS entities must 
supply reasonable values for default configurations. 

• Another method for reducing latency is to allow applications to send small quantities of data over 
the signaling channel (this is similar to the VMTP Message Control Block feature, which allows 
small amounts of data to be transmitted inside the packet header [24]). 

Figure 3 illustrates the separate control and data paths used by MANTIS signaling and data units during 
the negotiation process and subsequent data transfer. For long-term, high-bandwidth connections the ad­
ditional time spent negotiating GoS does not significantly impact the overall performance. In fact, overall 
performance should improve, since the configurations more accurately reflect the application requirements 
and network characteristics [34]. In addition, the negotiation process may be combined with explicit connec­
tion management (e.g., during the initial 3-way handshake). Finally, the ISNs may also become involved in 
the negotiation process, if resource reservation is required [55]. 

19Negotiated parameters include buffer space, initial window advertisements and scaling factors [54], segment size and maximum 
transmission unit (MTU) sizes, priorities for message delivery and scheduling, different mechanisms for error protection and trans­
mission control, timer settings for delayed acknowledgments and retransmissions, etc. 

20N ote that negotiation need not determine an optimal configuration, as long as it produces one that meets application requirements 
(which may have ranges of tolerance, for instance). 

11 



A 
D 
A 
p 
T 
I 
v 
E 

A 
D 
A 
p 
T 
I 
v 
E 

MAHTTS Conlfguratlon/Nogotlotlon Slg,.llng 

Appllcatlon Dm 

Figure 3: Connection Configuration 

Stage ill - Transport System Synthesis: In the third stage, MANTIS submits the TSSCS to the Trans­
port Kernel Object (TKO) subsystem via the MANTTS Transport System Interface (MANTTS-Tsn. TKO 
transforms the TSSCS into a transport system session configuration that is specially-tailored for the particular 
applications and networks involved. This final transformation stage involves (1) synthesizing the specified 
mechanisms (e.g., transmission control and error protection) from the TKO class object library, (2) instantiat­
ing a protocol interpreter that invokes operations on these objects in a particular order, and (3) instrumenting 
the synthesized mechanisms using the UNITES metric collection and reporting facilities to satisfy the appli­
cation's metric collection requests.21 Section 3.3.2 describes the TKO subsystem in greater detail. 

(B) Data Transfer and Reconfiguration Phase: In order to adapt to dynamic changes in application re­
quirements and network characteristics, the ADAPTIVE architecture also supports the reconfiguration of 
transport system sessions. Reconfigurations may be triggered either explicitly or implicitly. Explicit recon­
figuration is initiated by a local or remote application request (e.g., changing from unicast to multicast com­
munication). If a new TSSCS is generated to satisfy the request, the remote MANTTS entities are notified, 
and the corresponding transport system session configurations are updated. Explicit reconfiguration requests 
are sent via the same out-of-band signaling channel used for connection negotiation. 

MANTTS automatically detects situations where implicit reconfiguration is necessary. These situations 
are typically initiated from either (1) requests by a local or remote MANTTS (e.g., in response to increase or 
decrease in buffer space or processor load) or (2) from a detected change in network conditions (e.g., increased 
congestion, ISN failure, or different route22). The reconfiguration process is similar to the initial configura­
tion process, and may involve decreasing or increasing the GoS. It is non-trivial to adaptively reconfigure a 
transport system once a connection is established. For example, it is essential that distributed session context 
is properly synchronized to insure error-free and hazard-free delivery. 

During reconfiguration, one of the following three actions occurs: 

1. Adjust the TSSCS - Replace or adjust one or more mechanisms used by the transport system to com­
pensate for the indicated change (e.g., increase inter-POU gap used by rate control mechanism due to 
perceived network congestion). No change occurs in the Transport Service Class. 

21Note, this involves metric-collection instrumentation based on both application TMC requests, along with global UNITES data 
collection requests (described in Section 3.3.3). 

22For example, if an active connection starts using a longer-delay path (e.g., if it switches from a terrestrial link to a satellite link) 
it may be necessary to reconfigure mechanisms (e.g., retransmission scheme or window scaling options. 
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2. Adjlfst the TSC - Change the Transport Service Class to provide a GoS that is better suited to the new 
conditions (e.g., benefitting an application that has changed video coding schemes and now requires 
isochronous service). This change potentially generates a completely new or partially modified TSSCS. 

3. Application-specific - Application is notified of changes in operating conditions (e.g., a reduction in 
receiver's buffer space) via a call-back mechanism, allowing it to react appropriately (e.g., begin trans­
mitting data using an application-specific compression scheme). 

3.3.2 Transport Kernel Objects (TKO) 

The Transport Kernel Objects (TKO) subsystem provides a modular, flexible, and extensible framework 
for configuring and reconfiguring transport systems. As shown in Figure 4, the TKO subsystem consists of 
two main components that are described below: (1) TKO OS Protocol Architecture (TKO-OSPA) and (2) 
TKO OS Session Architecture (TKO-OSSA). Each component performs a well-defined set of services for the 
transport system. 

(A) TKO OS Protocol Architecture (TKO-OSPA): TKO-OSPA is a library of C++ classes that insulate 
the transport system from the underlying operating system environment. 23 These classes provide a uniform 
interface for accessing protocol support services such as timers, message buffering, and protocol graph op­
erations (e.g., inserting, deleting, and/or altering protocol objects). There are four fundamental TKO-OSPA 
classes: TK..Event, TK....Message, TK_Protocol and TK_Session: 

1. TK_Event - Many protocols must respond to temporal events such as retransmission timer expiration 
or periodic update requests [57]. The TK_Event class defines an infrastructure for event management, 
with operations like TK..Event:: schedule, TK_Event: : happen, and TK..Event: : cancel. 

23The TKO-OSPA design is influenced by the x-kernel [10] and Conduit [56] communication systems. ADAPTIVE is presently 
being hosted on both the x-kernel and System V release 4 operating systems. 
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TK_Event objects schedule themselves to happen one or more times (i.e., they are one-shot or peri­
odic), they may be cancelled, and they are triggered to happen asynchronously by the operating system's 
timer facility. 

2. TK..Message - Empirical studies indicate that memory-to-memory copying is a significant source of 
transport system overhead [58]. Therefore, some form of buffer management is necessary to avoid 
unnecessary copying when (1) moving messages between protocol layers and (2) when adding or delet­
ing headers and trailers [59]. The TK..Message class provides a uniform interface for services that 
create, copy, prepend, and split messages. TK..Message objects are logically divided into two dis­
tinct regions: the header and the data. The data region efficiently supports "lazy copying" operations 
and fragmenting and assembling of data chunks. Likewise, the header region allows operations (e.g., 
TK..Message: : push and TK..Message: : pop) that efficiently prepend header information onto a 
message and later strip it off. 

3. TK_P rot o col - Protocol suites are typically specified as a hierarchy of layers, where each layer per­
forms a well-defined set of services for layers above it, and makes use of services from layers below 
it [60]. The TK_Protocol class provides uniform interfaces for protocol objects that compose pro­
tocol suites like TCP/IP, OSI, and XNS. The service interface for a TK_Protocol object includes (1) 
management operations that compose protocol graphs representing the relationships between various 
protocol entities and (2) operations that create, destroy, and pass messages to TK_S es s ion objects. 
Each TK_Protocol object contains 0 or more TK_Session objects. 

4. TK_Session -As shown in Figure 4, the TK_Session class forms the junction between the TKO­
OSPA and TKO-OSSA services (described in the following section). TK_Session objects encapsu­
late certain connection context information (e.g., local and remote addresses) that are needed to process 
incoming and outgoing messages. Associated with this context is a set of operations used for (1) send­
ing and receiving TK..Message objects that flow through TK_Session objects, (2) dynamic session 
attachment (i.e., allocating and linking together new sessions to form session graphs), and (3) dispatch­
ing system calls that store and/or retrieve session control information (e.g., determining host and peer 
network addresses or determining the M11J for a given network interface, etc.). 

These four fundamental classes, along with several auxiliary classes, provide the infrastructure to support 
TKO-OSSA configurations described below. 

(B) TKO OS Session Architecture (TKO-OSSA): As with the TKO-OSPA, the TKO-OSSA also con­
tains a library of reusable C++ transport system mechanisms. However, each class in the TKO-OSSA library 
encapsulates "finer-grain" mechanisms associated with session processing activities (e.g., connection man­
agement, error protection, and data transmission control). The following paragraphs describe the organization 
of components in the TKO-OSSA, explains how the components are synthesized and combined, and discusses 
several standard performance optimization techniques. 

Base Cl~es and Derived Subclasses: To support flexible configuration and adaptive reconfiguration, 
TKO-OSSA is organized as a set of C++ inheritance hierarchies.24 These hierarchies are "rooted" at abstract 
base classes (AB Cs) that provide uniform interfaces for common protocol processing activities. To synthesize 
the appropriate protocol functionality that flexibly supports application-specific requirements involves ( 1) de­
riving (i.e., inheriting the context and operations) specialized subclasses from the ABCs and (2) instantiating 
objects of these subclasses. As shown in Figure 5, TKO-OSSA provides a standard set of abstract base classes 
that correspond to the basic mechanisms used in protocol processing (e.g., Connection..Managernent, 
Synchronization_Managernent, Reliability..Managernent, and Transrnission_Managernent). 

24The TKO library is implemented in C++ since (1) it directly supports dynamism and specialization via dynamic binding and 
inheritance and (2) it integrates context information with operations to support object-oriented design and programming. 
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Figure 5: TKO Context 

Particular instances of these mechanisms are derived from the appropriate base class (e.g., Sliding_Window 
is derived from Transmission_Management). The Reliability_Management class shown in Fig­
ure 5 is an example of a Composite Component. Composite components are used to manage objects of sev­
eral related subcomponents that interoperate in well-defined ways (e.g., the detection, recovery and reporting 
mechanisms of a Reliability_Management mechanism). Mechanisms implemented using composite 
components allow the replacement of one or more submechanisms, facilitating rapid prototyping and incre­
mental protocol development. 

As illustrated in Figure 4, each open TK_Ses s ion object points to a specially-tailored table containing 
sessioncontextinformation(TK_Context). Figure 5 enlarges the view of the TK_Context, which contains 
a collection of pointers to abstract base classes that together comprise the protocol state machine. 25 Each entry 
in the TK_Context points to a derived subclass that (1) is specialized to perform the appropriate protocol 
processing function, (2) maintains the necessary context information (e.g., round-trip time estimates, sequence 
numbers, or flow control window advertisements) to support the function, and (3) provides the means for 
replacing itself with a different derived class (i.e., to support reconfiguration by dynamically changing the 
referenced objects). This encapsulation of context and function allows protocol mechanisms to be replaced 
and recombined without incurring time-consuming overhead. 

TK..Dispatcher: The TK_Dispatcher is responsible for overseeing the configuration and reconfig­
uration of TK_Context objects. It receives the TSSCS from the MANTTS-TSI and transforms it into an 
efficient, economical instantiation. TK..Dispatcher is responsible for monitoring the transport system 
conditions specified in the Transport System Adjustment (TSA), and for coordinating reconfiguration of the 
transport system by instantiating the correct object(s) and initiating the replacement(s) via the segue mech­
anism built into all abstract base classes. 

25The entries in this table may be selected at either configuration-time or run-time. This differs from the BSD 4.3 UNIX approach, 
which statically binds protocol operations to TCBs through pointers to C functions, i.e., all sessions associated with a particular 
protocol object use the same bindings. TKO-OSSA, on the other hand, supports fine-grain, per-session control over these bindings. 
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UNITES METRIC REPOSITORY 

Figure 6: UNITES Architecture 

Performance Optimizations: By default, the TKO-OSSA dynamism is supported by the C++ dynamic 
bind.?1g mechanism (using C++'s "virtual functions" [61]). Although dynamic binding enhance flexibility 
(and thereby facilitates prototyping and experimentation), it increases processing overhead somewhat due to 
the extra level of indirection required to dispatch the C++ virtual functions. To reduce this overhead, TKO 
employs a technique known as customization [62], which instantiates non-dynamically bound configurations 
for circumstances where performance is preferred over flexibility. 

To further optimize the instantiation process, the TKO-OS SA maintains a cache of customized "TK_Temp 1 ates" 

that provide default transport system session configurations for commonly requested TSSCSs. These "fast 
path" templates reduce the complexity and the duration of the option negotiation phase. There are two general 
types of TK_Templates: 

1. Static - i.e., guaranteed not to change. This allows more efficient implementation, since the mechanisms 
can be completely customized (e.g., inline expanded rather than dynamically dispatched). 

2. Reconfigurable - i.e., may change at some point during the communication session. This is generally 
more flexible, but less efficient, since there is some additional indirection required (though not as much 
as is needed by a dynamically synthesized configuration). 

If a pre-assembled TK_template does not exist to match a TSSCS request, TKO-OSSA dynamically syn­
thesizes one [ 63]. 

3.3.3 Uniform Transport and Evaluation Subsystem (UNITES) 

A fundamental goal of the ADAPTIVE system is to provide a framework that supports controlled hypoth­
esis testing of different transport system session configurations. For example, we are currently experimenting 
with alternative protocol designs to determine configurations that best serve a particular set of multimedia 
application requirements and underlying network characteristics. The UNITES subsystem facilitates exper­
imentation by coordinating metric specification, metric collection, metric analysis, and metric presentation. 
Information obtained from UNITES metrics quantifies trade-offs and interactions among different configura­
tions, allowing meaningful design and implementation evaluations. 

16 



UNITES metrics are divided into two classes: blackbox and whitebox, that differ depending on whether 
or not the metric collection mechanisms require internal instrumentation of transport system configurations. 
Blackbox metrics are collected without knowledge of implementation details. They include throughput (de­
fined as the number of packets transmitted per second), latency (defined as response time for interactive traf­
fic), jitter, and packet loss (defined as the number of "successful" packet~). Whitebox metrics, on the other 
hand, require internal instrumentation of the configurations. Whitebox metrics include latency of connection 
establishment and termination, number of packet (re)transmissions, the number of instructions required to ex­
ecute a protocol function, and interrupt and scheduling overhead. Both blackbox and whitebox metrics assist 
the tuning of transport system configurations by indicating the performance consequences of certain design 
and implementations decisions. 

As illustrated in Figure 6, the UNITES Metric Repository stores the metric information in a database.27 

Users can access this information in various ways such as interactive graphic displays or standard network 
management protocols such as SNMP or CMIP. This metric data is presented in either a systemwide, per-host, 
or per-connection manner. There are two primary ways that UNITES is used to instrument transport system 
sessions: 

1. Application programs indicate metrics they want UNITES to collect via the Transport Measurement 
Component (TMC) parameter in the ADAPTIVE Communication Descriptor (ACD). The TKO sub­
system then selectively instruments the synthesized configurations and the metrics are automatically 
collected during run-time. 

2. To support experimentation, metrics also may be requested using either a graphics-based or language­
. based interface. Sjodin et al. 's work is an example of a language-based approach. They define a speci­

fication language that indicates what measurements to collect and what traffic to generate [ 48]. Figure 6 
shows a graphical interface for specifying certain metrics to collect on a per-host basis. 

4 Summary 

ADAPTIVE is an integrated framework that exhibits: ( 1) support for application and network diversity and dy­
namism via a flexible and adaptive architecture, (2) reduction in transport system overhead, (3) focus on poli­
cies and mechanisms, and ( 4) feedback-guided monitoring and measurement. A flexible software architecture 
like ADAPTIVE is essential for supporting an "experimentation-based" methodology. ADAPTIVE facilitates 
precise measurement of the application and network performance that results from selectively changing cer­
tain transport system mechanisms (e.g., measuring the effect of switching from implicit to explicit connection 
management or from selective repeat to go-back-n retransmission). 

We are currently designing and implementing a prototype implementation written in C++ that runs on both 
the x-kemel and System V STREAMS. We plan to use this prototype to experiment with different transport 
system configurations that support multimedia applications (e.g., network voice and video) running on several 
different networks (e.g., Ethernet, Tree Network [64], DQDB, and FDDI). 
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