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Abstract

Cosserat Curves: Descriptions of Peristalsis and a Discrete Model

by

Evan Grant Hemingway

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Oliver O‘Reilly, Chair

In this work, problems and developments in the mechanics of slender, or rod-like bodies,
are presented. We begin by offering a modern perspective on Green and Naghdi’s devel-
opments of the latter half of the 20th century for a directed rod. This review serves as
background material to the more novel parts of this dissertation, which include applications
and a discretization of the continuous theory. Governing equations for rods are developed by
derivation from three-dimensional continuum mechanics and by direct approach. A treat-
ment of constraints is also presented.

After the background material is reviewed, we thoroughly describe a model for peristaltic
locomotion using Green and Naghdi’s directed rod theory. The resulting model is applied to
simulating motions of a compressible soft robot which uses Poisson’s effect for peristalsis. In
addition, a calibration of parameters results in a validation of the model for use in biomimetic
modeling of earthworm locomotion. Incompressibility of the worm is enforced as an internal
constraint of the directed rod. In addition, a pair of muscle actuation models for a single
continuum is included in our discussion.

Finally, a discrete model for elastic rods undergoing planar motions is presented based on
the theory of the directed rod. Discrete edge vectors and directors are used to capture
cross section deformations including stretch, stretch gradients, shear, shear gradients, and
the Poisson effect. In addition, deformations such as longitudinal stretch and bending are
also incorporated. The model is validated with the help of known analytical solutions to
benchmark problems from Green and Naghdi’s continuous rod theory.
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Chapter 1
Introduction

The work presented in this dissertation makes use of a directed rod model due to Green
and Naghdi that was developed in the late 20th century. A directed rod is sometimes also
referred to as a Cosserat curve, an acknowledgement of the Cosserat brothers’ impressive
work on the mechanics of materials in the early 20th century. In their endeavor to properly
model a continua comprised of a polar material, the Cosserats employed the use of a vec-
tor called a director to give the sense of direction of the couple stresses and body couples
acting in the body (see [69] for a historical background). Eventually, the Cosserat brothers
extended the concept of the director to additionally have a kinematical meaning for non-
polar continua [34]. They then applied this perspective to their work on theories of rods and
shells. Continuum models that employ the use of a director to capture observed phenomena
have come to be called Cosserat continua. A model for rods that utilizes directors is called
a Cosserat curve. Green and Naghdi picked up on the Cosserat’s kinematical perspective
of the director when they developed a thorough derivation for rods from three-dimensional
continuum mechanics [25] and an alternative approach, called the direct approach, where
the directed curve was simply postulated [26]. In this work, we will frequently refer to a
Cosserat curve as a directed rod.

In Chapter 2 of this dissertation, we use Green and Naghdi’s rod theory to develop a
continuous description of peristaltic locomotion (Figure 1.1). Our description for peristalsis
is motivated by the growing field of soft robotics in the 21st century. Many bio-inspired soft
robots are making use of peristalsis as inspiration for a locomotion scheme. In Chapter 2, we
design a scheme for peristalsis and apply Green and Naghdi’s rod model to a description of
the rod-like body that comprises the soft robot. In order to validate the model, kinematical
and kinetic data on earthworm locomotion is gathered from the biological literature. A
biomimetic model of the earthworm is then applied, and we show that our description of
peristalsis is valid.



CHAPTER 1. INTRODUCTION 2

Model Validation

Figure 1.1: The continuous biomimetic model for peristalsis and its validation that is pre-
sented in Chapter 2.

In Chapter 3 of this dissertation, we develop a discrete model for rod-like bodies (Figure
1.2). The theory uses the concept of the director as a relative position vector to the lateral
boundary of a rod, and a set of discrete edge vectors make up the rod’s centerline. Inspired
by Green and Naghdi’s work, a balance of director momentum is postulated to help establish
the governing equations for the discrete rod. A strain energy for non-linear deformations
is put down, and the resulting equations are validated against known solutions for linearly
elastic rods. Following a calibration of stiffnesses, the discrete model is dynamically validated
by comparing with the expected natural frequency of vibration for a first mode shape of a
Bernoulli-Euler beam.
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Model Validation

Figure 1.2: The discrete directed rod model and its validation that is presented in Chapter 3.

In this introductory chapter, we seek to establish the main equations from the mechanics
of rods that are used in the research presented in later chapters. We begin with an overview
of classical three-dimensional continuum mechanics, which serves as the basis of knowledge
from which our rod models are developed. A reduced model for rod-like bodies is then
presented as an approximation of three-dimensional continuum mechanics. We proceed by
contrasting the developed equations with the direct approach, where an abstract directed
curve is postulated. Following the presentation of the overall theory, we demonstrate how
to treat internal and external constraints when using the directed rod model.

1.1 Background from continuum mechanics

In this section, classical continuum mechanics will be built until we reach the constitutive
equations of linear elasticity for isotropic materials, which is the basis of the model for
peristaltic locomotion that is presented in Chapter 2 and the inspiration for the non-linear
discrete strain energy of Chapter 3. In what follows, lowercase and uppercase Latin indices
are assumed to range from 1 to 3. Einstein’s summation convention applies to any repeated
indices, unless otherwise stated.

Material points in space

Continuum mechanics aims to describe how a body B distributes its material in space. We
define a body as a collection of material points, with a given point being denoted by X ∈ B.



CHAPTER 1. INTRODUCTION 4

A part P ⊆ B is defined as a sub-body of the body. We assume the presence of a Euclidean
three-space E3 into which material points are placed.

To define some of the ensuing kinematical quantities, it is necessary to identify a reference
configuration of the body. The bounded region of E3 that the body B occupies in its reference
configuration is called R0 ⊂ E3. A given part P occupies the region V0 ⊆ R0 in its reference
configuration. In its current configuration, the body is assumed to occupy the region R ⊂ E3

while the sub-part that occupies V0 is assumed to occupy V ⊂ E3. Infinitesimal volume
measures dV and dv exist in the reference and current regions, respectively. The reference
boundary ∂V0 goes to the surface ∂V in the current configuration and each have the respective
infinitesimal area measures dA and da. External stimuli will be postulated to exist in the
form of tractions acting on the body’s surface ∂R and body forces acting through its volume
R in its current configuration. For sub-regions, tractions acting on ∂V are understood to be
due to internal stress acting in B but may be viewed as being external to P, the sub-part
occupying V.

Taking any two points P1, P2 ∈ E3, one may construct a directed line segment
−−→
P1P2, with

a sense of direction from P1 to P2. A geometric vector space E3 may be constructed with the
usual rules for tip-to-tail vector addition and scalar multiplication. We then have a natural
identification between a directed line in E3 and an element of E3 as

−−→
P1P2 ∼ rP2

− rP1
, (1.1.1)

where rP1
and rP2

are position vectors pointing to P1 and P2 from an arbitrary common
reference point in E3. The space E3 may be made into a metric space by defining a distance
metric d(P1, P2) ∈ R which delivers the physical length of the line segment P1P2, where R is
the field of reals. A ruler with any demarcation of units can be used to measure the physical
distance.

Suppose a set of geometrically orthogonal line segments OP1, OP2, and OP3 are identified
in E3. A choice of O together with the fixed points P1, P2, and P3 is sufficient to constitute
an inertial reference frame to describe a material point’s motion. The points P1, P2, and P3

are used to define an orthonormal basis for E3 as follows:

E1 =
rP1

− rO

d(O,P1)
, E2 =

rP2
− rO

d(O,P2)
, E3 =

rP3
− rO

d(O,P3)
. (1.1.2)

The points P1, P2, and P3 are assumed to be ordered so that the basis {Ei} is right-handed:

E1 = E2 ×E3, (1.1.3)

where × is the usual cross-product of geometric three-vectors.
The vector space E3 may be made Euclidean by equipping it with the standard inner

product (also known as the dot product) a ·b = aibi and the induced norm ‖a‖ =
√
a · a for

any two vectors a = aiEi ∈ E3 and b = biEi ∈ E3. This additional mathematical structure
allows us to do geometry on E3. For example, the length of the segment P1P2 is given by

d(P1, P2) = ‖rP1
− rP2

‖, (1.1.4)
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and the angle between line segments OP1 and OP2 is given by

6 P1OP2 = cos−1

(
(rP1

− rO) · (rP2
− rO)

‖rP1
− rO‖‖rP2

− rO‖

)
. (1.1.5)

We choose to fix the reference point O ∈ E3 as the physical place from which all other
positions are referred. When writing rP it is understood that a directed line segment has
been constructed that stems from O to P . That is, rO = 0 serves as the zero element of E3.

For some point P ∈ E3, we may associate a triplet of numbers known as its Cartesian
coordinates as the components of rP on the basis {Ei}:

Y i = rP · Ei ∈ R. (1.1.6)

The numerical value of Y i depends on the choice of units for describing physical lengths.
A change of units corresponds to a change of coordinates where Y i and Ei co-vary and

contra-vary accordingly to Y
i
and Ei to keep rP invariant, or tensorial:

rP = Y iEi = Y
i
Ei. (1.1.7)

The components Y i additionally serve as a coordinate chart for all of E3, where the tip of
rP is mapped into the point P ∈ E3 that it coincides with.

Kinematics

A material point X is assigned the reference placement R∗ relative to O which is delivered
by the vector-valued function κ0:

R∗ = κ0(X). (1.1.8)

The shape that the body assumes at some time t ∈ R is called the current configuration. A
time-indexed sequence of current configurations of the body is delivered by the vector-valued
function χ on B and R, called the motion, which places material points into their current
positions:

r∗ = χ(X, t). (1.1.9)

It is tacitly assumed that r∗ is relative to O, just as R∗ is. All kinematical information is
known in a problem if χ is able to be determined. Using (1.1.8), we may define a function χ
on the subset of E3 containing all reference placements:

r∗ = χ(R∗, t) = χ
(
κ−1
0 (X), t

)
. (1.1.10)

Invertibility of χ and χ becomes attainable if they are considered as a collection of time-
indexed functions. For example, we may define

r∗ = χt(X) = χ(X, t), (1.1.11)



CHAPTER 1. INTRODUCTION 6

where t is understood to explicitly index a particular function.
Viewing Y i as Cartesian coordinates for E3, we find that material points in R0 are

coincident with some values of Y i. The material points of B are now identified by a triplet
of material coordinates. Therefore, we have the three mappings

Y i = f i(X). (1.1.12)

The coordinates Y i that coincide with material points in the reference configuration may
be considered to follow the material through E3. The convected coordinates serve as a
coordinate patch for E3 in the region R. Calling the convected coordinates X i, we have an
invertible non-linear change of coordinates on R for every time step as

X i = git
(
Y j
)
. (1.1.13)

If the body occupies R0, then X i = Y i, and git is the identity map. The current position
vector may now be considered as a function of X i:

r∗ = χ̂
(
X i, t

)
= χ
(
git
(
f j(X)

)
, t
)
. (1.1.14)

We define the displacement of X from its reference placement as the vector difference

u = r∗ −R∗. (1.1.15)

The velocity of X may be derived as a material time derivative from the position or the
displacement:

v∗ = ṙ∗ = u̇, (1.1.16)

where the superposed dot assumes that X i are held fixed. The deformation gradient is that
linear operator which delivers

dr∗ = F dR∗. (1.1.17)

Here, F is a second order tensor that may be expressed as a sum of tensor products indicated
by the symbol ⊗. The action of a tensor product on a vector is defined to be (a⊗ b)c =
a(b · c) for any a,b, c ∈ E3. The transpose of a tensor A is defined as that operator AT

which satisfies
Aa · b = a ·ATb, (1.1.18)

for any a,b ∈ E3. The trace of a tensor A is defined as

tr(A) =
Aa · (b× c) + a · (Ab× c) + a · (b×Ac)

a · (b× c)
, (1.1.19)

while the determinant of A is defined as

det(A) =
Aa · (Ab×Ac)

a · (b× c)
, (1.1.20)
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for any a,b, c ∈ E3. A tensor inner product may be defined for any two tensors A and B as

A ·B = tr
(
ABT

)
. (1.1.21)

An induced norm follows as
‖A‖ =

√
A ·A. (1.1.22)

Note that the symbols · and ‖ ‖ are used for both second order tensors and geometric vectors,
and context is required to distinguish the respective functions.

A small volume element in the reference configuration is given by

dV = dR∗
1 · (dR∗

2 × dR∗
3), (1.1.23)

where dR∗
i is the small difference between two neighboring reference placements. This ele-

ment gets carried into dv in the current configuration, where

dv = dr∗1 · (dr∗2 × dr∗3). (1.1.24)

The cofactor of F is defined as
FC = det(F)F−T. (1.1.25)

Applying (1.1.17) three times, and using the identities a · Ab = ATa · b and Aa ×Ab =
AC(a× b), we find

dv = JdV, (1.1.26)

where the Jacobian is defined as the tensor determinant of F:

J = det(F). (1.1.27)

The displacement gradient is defined as that linear operator which delivers

du = H dR∗, (1.1.28)

so that
H = F− I. (1.1.29)

The Lagrange strain is defined in terms of F and H as

E =
1

2

(
FTF− I

)
=

1

2

(
H+HT +HTH

)
, (1.1.30)

where I is the identity tensor: Ia = a for any a ∈ E3. To relate the foregoing kinematics to
applied loads, we must postulate balance laws for which the processes that B engages in are
assumed to obey.
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Balance laws

Every material point X ∈ B is assumed to contribute a small amount of inertia to the body
through a mass density per unit reference volume measure that is assigned as ρ∗0. The mass
of a given part P ⊂ B which occupies the region V0 ⊂ R0, may be computed using the
postulated mass density via

m(P) =

∫

V0

ρ∗0dV. (1.1.31)

We assume no supplies of mass into or out of P, so that the balance of mass becomes a
conservation law:

0 = ṁ. (1.1.32)

Since (1.1.32) holds true for all sub-bodies P ⊆ B, then the localization theorem yields

0 = ρ̇∗0, (1.1.33)

As a consequence, ρ∗0 is a conserved quantity for any X ∈ B for the course of the mo-
tion. Another density ρ∗ is found by pushing the integration (1.1.31) forward to the current
configuration:

m =

∫

V0

ρ∗0dV =

∫

V

ρ∗0
J
dv, (1.1.34)

so that

ρ∗ =
ρ∗0
J

(1.1.35)

is a mass density per unit current volume. The linear momentum of any part P is defined
to be

G∗ =

∫

V0

ρ∗0v
∗dV, (1.1.36)

while the angular momentum about the reference point O is defined as

H∗
O =

∫

V0

ρ∗0r
∗ × v∗dV. (1.1.37)

In contrast to the conservation of mass, we postulate that there exist supplies of linear and
angular momentum F and MO which satisfy the balances of linear and angular momentum:

F = Ġ∗, MO = Ḣ∗
O. (1.1.38)

Here, F is the net external force acting on P while MO is the net external moment about
point O acting on P. We assume there exists a traction t and a body force b acting on P,
where t is a contact force per unit current area acting on ∂V and b is a body force per unit
mass acting through V. Generally, t is from an adjacent body contacting B while b is due
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to a body at a distance from B. Using the current volume mass density (1.1.35), t and b

are defined as those vector fields which deliver F and MO according to

F =

∫

V

bρdv +

∫

∂V

tda, MO =

∫

V

r∗ × bρdv +

∫

∂V

r∗ × tda. (1.1.39)

Using Cauchy’s tetrahedron argument, we may presume that the components ti = t · Ei

should be linear in components of the unit normal located at da expressed on the same
basis: Ni = N · Ei. As a consequence, there exists a linear operator T such that

t = TN, (1.1.40)

where T is known as the Cauchy stress. Using the conservation of mass and assuming
(1.1.38) to hold for all sub-parts P ⊆ B, we may apply the divergence theorem and the
localization theorem to find the local version of the balance of linear momentum holding for
some material point X as

divT+ ρ∗b = ρ∗v̇∗. (1.1.41)

Here, the divergence of T may be computed from

divT = (gradT)I, (1.1.42)

where I is the second order identity tensor and gradT is defined to be that fourth order
tensor which delivers

dT = gradT dr∗. (1.1.43)

The local version of the angular momentum balance may also be derived. The local balance
of angular momentum for a material point X may be found to be equivalent to the symmetry
condition

T = TT. (1.1.44)

Condition (1.1.44) determines three components of the Cauchy stress and may be viewed as
a constitutive consequence of the media being non-polar, i.e., that it cannot sustain body
or surface torques. The constitutive requirement is implicit in (1.1.39)2, where we assumed
that MO is comprised only of torques due to moments of tractions and body forces, with no
contribution from stress couples.

To derive an engineering stress, we define a force per unit reference area p, the Piola
traction, such that it delivers the same amount of incremental force df as that delivered
across a boundary by t:

df = tda = pdA. (1.1.45)

Using Nanson’s formula, namely,

Nda = FCN0dA, (1.1.46)

we derive (
TFCN0 − p

)
dA = 0, (1.1.47)
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which holds for any non-zero reference area element dA. Applying the localization theorem
to an integration of (1.1.47), p is found to be delivered in the following way:

p = TFCN0 = PN0, (1.1.48)

where P = TFC is the first Piola-Kirchhoff stress tensor. Now, the local balance of linear
momentum (1.1.41) may be manipulated into a version based on reference configuration
quantities:

DivP+ ρ∗0b = ρ∗0v̇
∗, (1.1.49)

where
DivP = (GradP)I, (1.1.50)

and GradP is defined to be that linear operator which delivers

dP = GradP dR∗. (1.1.51)

The kinetic energy T ∗ of any sub-body P may be defined as

T ∗ =

∫

V0

1

2
v∗ · v∗ρ0dV. (1.1.52)

Projecting the local balance of linear momentum (1.1.41) along v∗ and integrating over V,
we obtain a power theorem for some part P:

∫

V0

p · v∗dA+

∫

V0

b · v∗ρ∗0dV = Ṫ ∗ +

∫

V0

P · ḞdV. (1.1.53)

That is, if the continuum obeys the balance of linear momentum, then the kinetic energy time
rate of change and stress power balance the power of the external loads. For a Green-elastic
material, we presume the existence of a scalar function, the strain energy, ρ∗0ψ

∗ = ρ∗0ψ
∗(F)

that is related to the stress power in the following way:

ρ∗0ψ̇
∗ = P · Ḟ. (1.1.54)

We deduce the implication (
P− ∂ρ∗0ψ

∗

∂F

)
· Ḟ = 0, (1.1.55)

which, for an internally unconstrained material, must hold true for the motion of any material
point X . Here, a second order tensor is defined such that it delivers

d(ρ∗0ψ
∗) =

∂ρ∗0ψ
∗

∂F
· dF. (1.1.56)

We are at liberty to construct a motion in which

Ḟ = c

(
P− ∂ρ∗0ψ

∗

∂F

)
, (1.1.57)
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where c is a strictly positive scalar of appropriate physical dimension. Using the positivity
of the norm, we deduce that

P =
∂ρ∗0ψ

∗

∂F
(1.1.58)

for an unconstrained material. Hence, a prescription for ρ∗0ψ
∗(F) is equivalent to a constitu-

tive equation for P.
For an internally constrained material, Ḟ may not be chosen arbitrarily. It must lie in

the tangent space at F, TFM, where M is the hypersurface on which the internal constraint
φ∗(F) = 0 holds:

M = {F : φ∗(F) = 0}. (1.1.59)

In this case, the orthogonality condition (1.1.55) implies

P− ∂ρ∗0ψ
∗

∂F
= λI∗

∂φ∗

∂F
, (1.1.60)

i.e., the left-hand side of (1.1.60) must lie in the orthogonal complement T⊥
F
M. The scalar

λI∗ is known as a Lagrange multiplier, which must be determined not constitutively, but
from satisfaction of the balance laws. We may decompose P into an active and a reactive
piece as follows:

P = P+ P̂ =
∂ρ∗0ψ

∗

∂F

∣∣∣∣
M

+ λI∗
∂φ∗

∂F
. (1.1.61)

By pulling p back to the reference configuration, we obtain another, practically useless,
traction s:

s = F−1p. (1.1.62)

However, if s is to be delivered by a stress tensor S acting on the reference unit normal N0

to ∂V0, then we find the mathematically appealing quality that it is symmetric, thanks to
the balance of angular momentum:

S = F−1P = JF−1TF−T. (1.1.63)

The tensor S is known as the second Piola-Kirchhoff stress tensor.
For psychological purposes, it is convenient to introduce another basis {EA}, which is

identical to {Ei} apart from the notation for indexing. Capitalized indices are to be associ-
ated with the reference configuration and will be used to aid our memory of “where” certain
tensors are meant to act. For example, a deformation gradient represented as F = FiAEi⊗EA

will remind us that F is meant to act on a geometrical element associated with the refer-
ence configuration and it delivers a quantity associated with the current configuration. The
components of P for an internally unconstrained material on the basis {Ei ⊗ EA} may be
computed from (1.1.58) as

PiA = P · Ei ⊗EA =
1

2

(
∂ρ∗0ψ

∗

∂EAB

+
∂ρ∗0ψ

∗

∂EBA

)
FiB. (1.1.64)



CHAPTER 1. INTRODUCTION 12

Linear elasticity

In linear elasticity, it is assumed that the magnitude of the displacement gradient ‖H‖ is
small at every material point. We have the following implication from (1.1.30)

E ≈ 1

2

(
HT +H

)
. (1.1.65)

We may define a small strain tensor as

ǫ =
1

2

(
HT +H

)
, (1.1.66)

so that E ≈ ǫ for small ‖H‖. For an isotropic material, the strain energy function must
depend on the three tensor invariants of ǫ. A quadratic approximation of the strain energy
for an isotropic material with no residual stress yields

ρ∗0ψ
∗ =

λ

2
tr2(ǫ) + µǫ · ǫ, (1.1.67)

where λ and µ are positive constants known as the Lamé moduli. Prescription (1.1.67) is
physically sound in that it obeys the principle of material frame indifference, which implies
invariance of ρ∗0ψ

∗ when B is subject to a superposed rigid body motion. By noting the
relations

P = (H+ I)S = T(H+ I)∗, (1.1.68)

we see that if ‖H‖ is small, then
P ≈ S ≈ T, (1.1.69)

and all stress tensors are approximately equivalent. In the linear theory, P becomes approxi-
mately symmetric. We denote this special case by indicating the stress as σ. The prescription
for stress (1.1.64) becomes

σiA ≈ 1

2

(
∂ρ∗0ψ

∗

∂ǫAB
+
∂ρ∗0ψ

∗

∂ǫBA

)
δiB =

1

2

(
∂ρ∗0ψ

∗

∂ǫAi
+
∂ρ∗0ψ

∗

∂ǫiA

)
, (1.1.70)

and (1.1.67) is written as

ρ∗0ψ
∗ =

λ

2
tr2(ǫ) + µǫ · ǫ =

λ

2
(ǫ11 + ǫ22 + ǫ33)

2

+µ
(
ǫ211 + ǫ222 + ǫ233 + ǫ212 + ǫ221 + ǫ213 + ǫ231 + ǫ223 + ǫ232

)
. (1.1.71)

We compute the constitutive equation for the stress of the linear theory as

σ = λtr(ǫ)I+ 2µǫ. (1.1.72)

The foregoing presentation is the knowledge needed to understand the rod theories detailed
in the remainder of this dissertation. Formulae similar to (1.1.72) will be developed but for
various internal forces associated with the directed rod. There are two methods for obtaining
the governing equations of the directed rod: a derivation from three-dimensional continuum
mechanics or the direct approach. A discussion of each approach follows.
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1.2 Derivations for a rod-like body from

three-dimensional continuum mechanics

(a)

(b)

E1

E3

E1

E2A0(ξ)

V0

Figure 1.3: (a) The reference configuration of a solid cylindrical rod-like body with sub-volume
V0 and (b) cross-sectional area A0(ξ) at some cross-section located at ξ.

In this section, we aim to obtain the governing equations for rods using knowledge from
three-dimensional continuum mechanics. The developments of this section are simplified
versions of the procedures developed by Green and Naghdi [25, 26, 40, 41]. In what follows,
Greek indices are assumed to range from 1 to 2. All repeated indices are once again summed
per Einstein’s convention, unless otherwise stated.

Consider a rod-like body B whose stress-free reference configuration is displayed in Fig-
ure 1.3. We say that a body is “rod-like,” or slender, if two of its characteristic length
dimensions are smaller compared to another direction, called the longitudinal direction. The
body is oriented in its reference configuration so that the straight line (0, 0, Y 3) identifies
a curve called the centerline with Y 3 taking on values between 0 and ℓ0, where ℓ0 is some
physical length determined by the choice of units for Y i. A new coordinate ξ is introduced
to parametrize points on the centerline, where ξ ∈ {Y 3 : 0 ≤ Y 3 ≤ ℓ0}.

Kinematics of a rod-like body

A position vector to the reference centerline relative to O may be constructed as a function
of ξ:

R = R(ξ) = R∗(0, 0, ξ). (1.2.1)
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The reference placement of some material point X has the decomposition

R∗ = R∗(Y α, ξ) = R+ Y βDβ, (1.2.2)

where Y βDβ is the position of X relative to R. The vectors Dα are known as the reference
directors and are defined as

Dα = Dα(ξ) =
∂R∗

∂Y α

∣∣∣∣
Y α=0

= Eα. (1.2.3)

Since we chose Y α to have a physical length dimension of length, Dα are unit vectors. A
cross-section of the rod-like body is defined as the collection of material points lying in the
span of the set {Dα} at some ξ. We may think of ξ as a continuous index for a cross-section.
A third director may be introduced as

D3 =
∂R∗

∂Y 3

∣∣∣∣
Y α=0

=
∂R

∂ξ
. (1.2.4)

The third director is generally seen as being auxiliary to Dα and is introduced to take full
advantage of indicial notiation.

The three-dimensional placement of material points into the current configuration (1.1.14)
has been constructed to depend on the convected coordinates. Assuming the motion to be
smoothly varying in space, we may expand (1.1.14) in a Taylor series about the centerline
Xα = 0 for any fixed time t and cross-section ξ:

r∗(Xα, ξ, t) = r∗(0, ξ, t) +
∂r∗

∂Xβ

∣∣∣∣
Xα=0

Xβ +
1

2

∂2r∗

∂Xβ∂Xγ

∣∣∣∣
Xα=0

XβXγ + · · · . (1.2.5)

If the body B is slender, then the coordinates Xα are small relative to ξ. Therefore, the
following approximation for the motion is descriptive for rod-like bodies where the cross-
sections are assumed to be small in diameter compared to the overall length:

r∗(Xα, ξ, t) ≈ r∗(0, ξ, t) +
∂r∗

∂Xβ

∣∣∣∣
Xα=0

Xβ. (1.2.6)

In the current configuration, we assume the following approximation for the location of
three-dimensional material points to hold:

r∗ = r∗(Xα, ξ, t) ≈ r+Xβdβ, (1.2.7)

where
r = r(ξ, t) = r∗(0, ξ, t) (1.2.8)

is the placement of the centerline in the current configuration and

dα = dα(ξ, t) =
∂r∗

∂Xα

∣∣∣∣
Xβ=0

(1.2.9)
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are the current configuration directors. The typical problem of determining the motion χ from
continuum mechanics has been reduced to finding the three functions r(ξ, t) and dα(ξ, t). A
consequence of approximation (1.2.7) is that planar cross-sections should remain planar and
cross-section deformations are homogeneous through the entire section. In addition to dα, a
third current configuration director is derived as:

d3 = d3(ξ, t) =
∂r

∂ξ
. (1.2.10)

Since the coordinates X i are convected with the material, their material time derivatives are
Ẋ i = 0. We obtain the velocity of a three-dimensional point as the material time derivative

v∗ = ṙ∗ = v +Xβwβ, (1.2.11)

where v = ṙ(ξ, t) and wα = ḋα(ξ, t) are the centerline velocity and director velocities at ξ,
respectively. The quantity Xβwβ may be seen as a relative velocity between any X ∈ B
and the material point occupying the centerline point of its cross-section. The acceleration
is similarly given by

v̇∗ = r̈∗ = v̇ +Xβẇβ, (1.2.12)

where v̇ = v̇(ξ, t) and ẇα = ẇα(ξ, t) are the centerline acceleration and director accelerations
at some ξ, respectively.

Let s = s(ξ, t) denote the arc-length to a material point of the centerline in its current
configuration. A centerline stretch µ3 may then be calculated as

µ3 =
ds

dξ
= ‖d3‖. (1.2.13)

Additionally, we may introduce the cross-section stretches µ1 and µ2 as

µα =

∥∥∥∥
∂r∗

∂Xα

∣∣∣∣
Xβ=0

∥∥∥∥ = ‖dα‖. (1.2.14)

The current configuration centerline tangent vector is found as

et =
∂r

∂s
= µ−1

3 d3. (1.2.15)

It is convenient to introduce the basis {ei}, defined as the unit directions of the current
configuration directors:

ei =
di

‖di‖
, (no sum). (1.2.16)

With (1.2.13) and (1.2.16) in view, it should be clear that e3 = et.
To characterize changes in shape of the rod-like body from its reference configuration,

we may introduce the director displacements

δi = δi(ξ, t) = di −Di. (1.2.17)



CHAPTER 1. INTRODUCTION 16

Using the directors, the displacement of a material point X (1.1.15) becomes

u = u(Xα, ξ, t) = r−R+Xβδβ. (1.2.18)

Additionally for the rod-like body, the following deformation measures are noted:

γij = γij(ξ, t) = di · dj −Di ·Dj , καi = καi(ξ, t) = d′
α · di −D′

α ·Di, (1.2.19)

where (·)′ = ∂(·)
∂ξ

. In the linear theory, small ‖H‖ implies small ‖δi‖, and we have the
approximations:

γij ≈ δi ·Ej + δj · Ei, καi ≈ δ′α · Ei. (1.2.20)

We may relate the following displacement gradients to director displacements and director
displacement gradients:

u,α ≈ δα u,3 ≈ r′ −E3 +Xβδ′β, (1.2.21)

and their components

ui,α ≈ δα ·Ei ui,3 ≈ r′ · Ei − δi3 +Xβδ′β ·Ei. (1.2.22)

Here, partial derivatives are with respect to the material coordinates and are denoted with
a comma so that u,α = ∂u

∂Xα . On the Cartesian basis, we have the linearized Lagrange strain
measures

ǫij = ǫ · Ei ⊗ Ej =
1

2
(ui,j + uj,i), (1.2.23)

The linearized Lagrange strains become

ǫαα = δα · Eα =
1

2
γαα, ǫ33 = r′ · E3 − 1 +Xβδ′β · E3 =

1

2
γ33 +Xβκβ3,

ǫ12 =
1

2
(δ2 · E1 + δ1 · E2) =

1

2
γ12,

ǫα3 =
1

2

(
r′ · Eα +Xβδ′β · Eα + δα ·E3

)
=

1

2
γα3 +

1

2
Xβκβα. (1.2.24)

Special sub-volumes

To develop one-dimensional quantities for a rod theory, we select our sub-bodies P ⊆ B
specially so that V0 is as displayed in Figure 1.3. The special sub-volume V0 is bounded by
two cross-sections, A0(ξ1) and A0(ξ2), and the lateral surface of the rod which is defined as
the union of cross-section boundaries:

L0(ξ1, ξ2) =
⋃

ξ1≤ξ≤ξ2

∂A0(ξ). (1.2.25)
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We may think of V0 now as being determined by two endpoints, ξ1 and ξ2:

V0(ξ1, ξ2) = A0(ξ1)
⋃

L0(ξ1, ξ2)
⋃

A0(ξ2). (1.2.26)

This prescription for V0 ensures that an external boundary to B is always included in V0.
That is,

∂V0

⋂
∂R0 6= ∅. (1.2.27)

In what follows, the same material that occupies the surfaces A0 and L0 occupies A and L
in the current configuration, respectively.

Kinetic energy, inertias, and momenta

We may substitute approximation (1.2.11) into the definition (1.1.52) for the kinetic energy
of a part P to yield the decomposition:

T ∗ =
1

2

∫

V0

(
v · v + 2Xβwβ · v +XβXγwβ ·wγ

)
ρ∗0dV. (1.2.28)

Since the quantities in parentheses of (1.2.28) only depend on ξ and t, we may factor the
integral assuming that V0 was chosen specially to have the form in (1.2.26):

T ∗ =
1

2

∫ ξ2

ξ1

(
v · v

∫

A0(ξ)

ρ∗0dA+ 2wβ · v
∫

A0(ξ)

Xβρ∗0dA+wβ ·wγ

∫

A0(ξ)

XβXγρ∗0dA

)
dξ,

(1.2.29)
where dξ is an infinitesimal length measure which characterizes the small width of a small
cross-sectional volume that contains a cross-section. Decomposition (1.2.29) is similar to
the one due to König in the context of rigid body dynamics, but we do not assume here
that Xβwβ is perpendicular to v, since the cross-sections are allowed to deform. König’s
decomposition exploits the orthogonality of the velocity of a material point of a rigid body
relative to the center of mass. Regardless, we can make definitions to extract quantities for
the one-dimensional theory that are dependent only on ξ and/or t.

The one-dimensional mass density per reference arc-length is defined as:

ρ0 = ρ0(ξ) =

∫

A0(ξ)

ρ∗0dA. (1.2.30)

An interesting consequence of the one-dimensional theory is that it allows for ρ∗0 to tend to
infinity if the area of A0 collapses towards zero. In that event, ρ0 would remain finite. The
one-dimensional reference first inertias, y0α0 = y0α0 (ξ), are defined as

ρ0y
0α
0 =

∫

A0(ξ)

Xαρ∗0dA. (1.2.31)
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We may think of the vector y0β0 Dβ as locating the center of mass relative to (X1, X2) = (0, 0)
for the small cross-sectional volume of width dξ centered at ξ. Many authors will fix the
centerline so that y0α0 = 0, as in [47] and [25, (2.9)]. In that case, a decomposition of
the kinetic energy identical to König’s is recovered. The one-dimensional reference second
inertias, yαβ0 = yαβ0 (ξ) are defined as

ρ0y
αβ
0 =

∫

A0(ξ)

XαXβρ∗0dA. (1.2.32)

The mass moment of inertia tensor of P in its reference configuration about some centerline
point ξ ∈ [ξ1, ξ2] is

J∗
0 =

∫ ξ2

ξ1

(∫

A0(ξ)

(
‖R∗ −R‖2I− (R∗ −R)⊗ (R∗ −R)

)
ρ∗0dA

)
dξ

=

∫ ξ2

ξ1

(
(Dβ ·Dγ)I

∫

A0(ξ)

XβXγρ∗0dA−Dβ ⊗Dγ

∫

A0(ξ)

XβXγρ∗0dA

)
dξ

=

∫ ξ2

ξ1

(
ρ0y

βγ
0 (Dβ ·Dγ)I− ρ0y

βγ
0 Dβ ⊗Dγ

)
dξ. (1.2.33)

We extract the one-dimensional mass moment of inertia tensor about the centerline for a
cross-sectional lamina as

J0 = J0(ξ) = ρ0y
βγ
0 (Dβ ·Dγ)I− ρ0y

βγ
0 Dβ ⊗Dγ. (1.2.34)

Hence, yαβ0 are related to moments and products of inertia of cross-sectional laminae. As in
the spectral theorem of linear algebra, it is possible to orient the Cartesian coordinates Y α

so that y120 = y210 = 0. If the material is homogenous in its mass density, then (1.2.31) and
(1.2.32) become

ρ0y
0α
0 = ρ∗0S

α, ρ0y
αβ
0 = ρ∗0I

αβ, (1.2.35)

where

Sα =

∫

A0(ξ)

XαdA, Iαβ = Iβα =

∫

A0(ξ)

XαXβdA, (1.2.36)

are the first and second moments and products of area, respectively, of the reference cross-
section A0(ξ). Since I

22 is actually the second moment of area about the X1 axis, it will be
useful to denote

S1 = S2, S2 = S1, I11 = I2, I22 = I1, I12 = I12, (1.2.37)

where the subscript now identifies which axis the moment of area is taken about.
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Using the newly defined one-dimensional inertias, decomposition (1.2.29) becomes

T ∗ =
1

2

∫ ξ2

ξ1

(
ρ0v · v + 2ρ0y

0β
0 wβ · v + ρ0y

βγ
0 wβ ·wγ

)
dξ. (1.2.38)

The linear momentum of a cross-sectional lamina per unit reference arc-length is defined as

G = ρ0v + ρ0y
0β
0 wβ =

∫

A0(ξ)

ρ∗0v
∗dA. (1.2.39)

Note that the linear momentum of P (1.1.36) is related to the one-dimensional linear mo-
mentum as

G∗ =

∫ ξ2

ξ1

Gdξ. (1.2.40)

Director momenta are defined as follows:

Lα = ρ0y
0α
0 v + ρ0y

αβ
0 wβ =

∫

A0(ξ)

Xαρ∗0v
∗dA. (1.2.41)

Using the one-dimensional momenta, the kinetic energy decomposition (1.2.38) becomes

T ∗ =
1

2

∫ ξ2

ξ1

(
G · v + Lβ ·wβ

)
dξ, (1.2.42)

so that

T =
1

2

(
G · v + Lβ ·wβ

)
(1.2.43)

may be defined as the kinetic energy per unit reference arc-length for the one-dimensional
theory. We may expand and factor the definition for the angular momentum of a part P
(1.1.37) to obtain the decomposition

H∗
O =

∫ ξ2

ξ1

(
r×

(
ρ0v + ρ0y

0γ
0 wγ

)
+ dβ ×

(
ρ0y

0β
0 v + ρ0y

βγ
0 wγ

))
dξ

=

∫ ξ2

ξ1

(
r×G+ dβ × Lβ

)
dξ. (1.2.44)

The one-dimensional angular momentum about point O of a cross-sectional lamina is defined
as

HO = HO(ξ, t) = r×G+ dβ × Lβ . (1.2.45)

To relate changes in the one-dimensional quantities developed heretofore to external stimuli,
it remains to derive the one-dimensional balance laws.
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Balance of mass

For the chosen coordinates, one may establish a relation between volume and area measures
as

dV = dY 1dY 2dξ = dAdξ. (1.2.46)

An implication of (1.2.7) is that all volume elements dV in a given reference cross-sectional
volume deform the same way into their dv counterparts in the current configuration. There-
fore, for the current configuration we have

dv = (d1 × d2) · d3dAdξ = (e1 × e2) · e3daµ3dξ, (1.2.47)

where da = µ1µ2dA is a small (rectangular) cross-sectional area measure for the current
configuration. We may now define the one-dimensional current configuration mass density
as

ρ = ρ(ξ, t) = (e1 × e2) · e3
∫

A(ξ)

ρ∗da. (1.2.48)

Recall the conservation of mass for a sub-body P from (1.1.34) written as

∫

V0

ρ∗0dV =

∫

V

ρ∗dv. (1.2.49)

Factoring the integration along the centerline out of balance law (1.2.49) we find:

∫ ξ2

ξ1

(∫

A0(ξ)

ρ∗0dA− µ3(e1 × e2) · e3
∫

A(ξ)

ρ∗da

)
dξ = 0. (1.2.50)

With definitions (1.2.30) and (1.2.48) in view, the balance of mass for any sub-body occu-
pying V0(ξ1, ξ2) becomes ∫ ξ2

ξ1

(ρ0 − µ3ρ)dξ = 0, (1.2.51)

which contains quantities that are only a function of ξ and time. Since (1.2.51) is assumed
to hold true for all sub-volumes V0(ξ1, ξ2), then the quantity in the parentheses must be zero
by the localization theorem, and we arrive at the local one-dimensional conservation of mass:

ρ0 = µ3ρ. (1.2.52)

The local conservation of mass (1.2.52) is not necessarily “point-wise” in the sense that it
does not hold for a single material point X , but for a collection of material points comprising
a cross-section. An implication of (1.2.52) is that

d

dt
(µ3ρ) = 0, (1.2.53)

so that µ3ρ at some ξ is constant in time.
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Balances of inertia

Starting from the point-wise conservation of mass ρ∗0 = ρ∗J from three-dimensional contin-
uum mechanics, which holds true for any X , we are free to write

Xαρ∗0 = Xαρ∗(d1 × d2) · d3, (1.2.54)

where the Jacobian J has been computed using approximation (1.2.7). An integration over
the specially chosen V0 yields

∫ ξ2

ξ1

(∫

A0(ξ)

Xαρ∗0dA− (d1 × d2) · d3

∫

A0(ξ)

Xαρ∗dA

)
dξ = 0. (1.2.55)

We may define a current first inertia as

y0α = y0α(ξ, t) = (e1 × e2) · e3
∫

A0(ξ)

Xαρ∗da, (1.2.56)

so that the modified conservation of mass (1.2.55) becomes

∫ ξ2

ξ1

(
y0α0 − µ3y

0α
)
dξ = 0. (1.2.57)

Since this holds true for any V0, we arrive at a local conservation of first inertia as

y0α0 = µ3y
0α. (1.2.58)

We therefore have the implication

d

dt

(
µ3y

0α
)
= 0, (1.2.59)

so that the quantity µ3y
0α at some ξ is constant in time.

The point-wise conservation (1.2.7) may be further modified as

XαXβρ∗0 = XαXβρ∗(d1 × d2) · d3. (1.2.60)

A similar procedure will result in the definition of the current second inertia as

yαβ = yαβ(ξ, t) = (e1 × e2) · e3
∫

A0(ξ)

XαXβρ∗da. (1.2.61)

Hence, a local conservation of second inertia is recovered as

yαβ0 = µ3y
αβ, (1.2.62)

and we have that
d

dt

(
µ3y

αβ
)
= 0, (1.2.63)

which implies that the quantity µ3y
αβ at some ξ is conserved for all time.
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Balance of linear momentum

To get at the one-dimensional balance of linear momentum, we integrate (1.1.49) over the
specially chosen V0 described in (1.2.26) and factor the integral:

∫ ξ2

ξ1

∫

A0(ξ)

(DivP+ ρ∗0b− ρ∗0v̇
∗)dAdξ = 0. (1.2.64)

An application of the divergence theorem yields the identity

∫ ξ2

ξ1

∫

A0(ξ)

DivPdAdξ =

∫

A0(ξ1)

P(−E3)dA+

∫

A0(ξ2)

PE3dA+

∫ ξ2

ξ1

∮

∂A0(ξ)

pdUdξ, (1.2.65)

where dU is a small length measure on the external boundary. It is understood that p in
(1.2.65) is not delivered by P, but is supplied externally on the boundary ∂R. We define the
contact force n as the net force acting on a cross-section with reference unit normal N0 = E3

from a neighboring cross-section:

n = n(ξ, t) =

∫

A0(ξ)

PE3dA. (1.2.66)

The assigned force is net force per unit reference arc-length acting on a cross-sectional lamina:

ρ0f = ρ0f(ξ, t) =

∮

∂A0(ξ)

pdU +

∫

A0(ξ)

ρ∗0bdA. (1.2.67)

Since A0(ξ) does not change in time, we may write
∫

A0(ξ)

ρ∗0v̇
∗dA =

d

dt

∫

A0(ξ)

ρ∗0v
∗dA = Ġ. (1.2.68)

Applying the foregoing definitions, the balance of linear momentum for the part P occupying
V0 becomes

n(ξ2, t)− n(ξ1, t) +

∫ ξ2

ξ1

(
ρ0f − Ġ

)
dξ = 0. (1.2.69)

Assuming continuity of n(ξ, t) in ξ, using the fundamental theorem of calculus, and noting
that the endpoints of the interval (ξ1, ξ2) are fixed in time, expression (1.2.69) may be written
as ∫ ξ2

ξ1

(n′ + ρ0f)dξ =
d

dt

∫ ξ2

ξ1

Gdξ. (1.2.70)

The domain of integration is now one-dimensional and all integrand quantities are spatially
dependent only on ξ, as the dependence on cross-section coordinates has been integrated
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away. Since (1.2.70) holds true on all sub-lengths (ξ1, ξ2) of the whole length [0, ℓ0], then it
must be the case that

n′ + ρ0f = Ġ, (1.2.71)

which is the local form of the one-dimensional balance of linear momentum. If n in (1.2.69)
is not continuous in ξ, we may use Leibniz rule to establish a jump condition at the singular
point ξ = γ. Assuming a stationary singular point, i.e., γ̇ = 0, we find

JnKγ + Fγ = 0, (1.2.72)

where
JnKγ = n

(
γ+, t

)
− n

(
γ−, t

)
, (1.2.73)

is the jump in n across the singularity and

Fγ = Fγ(t) = lim
χ→0

∫ γ+χ

γ−χ

ρ0fdξ (1.2.74)

is a singular force acting in or on the cross-section located at ξ = γ.

Balances of director momenta

We will now derive the one-dimensional balance of director momentum. The balance of
linear momentum (1.1.49) holds for any X . Therefore, we are free to scale it by Xα just as
we did when manipulating the mass densities:

XαDivP+Xαρ∗0b = Xαρ∗0v̇
∗. (1.2.75)

Proceeding in the same manner as before and integrating over some sub-volume V0(ξ1, ξ2),
we work out the identity:

∫

V0

XαDivPdV =

∫

A0(ξ1)

XαP(−E3)dA+

∫

A0(ξ2)

XαPE3dA

+

∫ ξ2

ξ1

∮

∂A0(ξ)

XαpdUdξ −
∫

V0

PEαdV. (1.2.76)

We define the contact director forces as

mα = mα(ξ, t) =

∫

A0(ξ)

XαPE3dA, (1.2.77)

the intrinsic director forces as

kα = kα(ξ, t) =

∫

A0(ξ)

PEαdA, (1.2.78)
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and the assigned director forces as

ρ0l
α = ρ0l

α(ξ, t) =

∫

A0(ξ)

Xαρ∗0bdA+

∮

∂A0(ξ)

XαpdU. (1.2.79)

Using conservation of mass in noting that Xαρ∗0v̇
∗ = d

dt
(Xαρ∗0v

∗), we find

∫

A0(ξ)

Xαρ∗0v̇
∗dA =

d

dt

∫

A0(ξ)

Xαρ∗0v
∗dA = L̇α. (1.2.80)

We now arrive at the one-dimensional balance of director momentum:

mα(ξ2, t)−mα(ξ1, t) +

∫ ξ2

ξ1

(
ρ0l

α − kα − L̇α
)
dξ = 0. (1.2.81)

Assuming continuity of mα in ξ, the local version is derived:

mα′ − kα + ρ0l
α = L̇α. (1.2.82)

If mα in (1.2.81) is not continuous at some ξ = γ, we may once again apply Leibniz rule to
obtain the jump conditions for a stationary singular point γ:

JmαKγ + Fα
γ = 0, (1.2.83)

where

Fα
γ = Fα

γ (t) = lim
χ→0

∫ γ+χ

γ−χ

ρ0l
αdξ (1.2.84)

are singular director forces acting in or on the cross-section at ξ = γ.

Balance of angular momentum

A one-dimensional balance of angular momentum is also desired. The three-dimensional
postulate is recalled as:

∫

V

r∗ × ρ∗bdv +

∫

∂V

r∗ × tda = Ḣ∗
O. (1.2.85)

From the definition of the one-dimensional angular momentum (1.2.45), we assume there are
no singular sources of mass and inertia to compute

Ḣ∗
O =

∫ ξ2

ξ1

ḢOdξ =

∫ ξ2

ξ1

(
r× Ġ + dβ × L̇β

)
dξ. (1.2.86)

We remind ourselves from (1.1.45) that the small amount of force transmitted across a
current boundary with area element da relates the Cauchy traction to the Piola traction as
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tda = pdA. Applying assumption (1.2.7) and factoring the integral, we find the balance of
angular momentum for some specially chosen part P as:

−r(ξ1, t)× n(ξ1, t) + r(ξ2, t)× n(ξ2, t)

−dβ(ξ1, t)×mβ(ξ1, t) + dβ(ξ2, t)×mβ(ξ2, t)

+

∫ ξ2

ξ1

(
r× ρ0f + dβ × ρ0l

β − r× Ġ− dβ × L̇β
)
dξ = 0. (1.2.87)

Under the usual continuity assumptions, and noting that, barring fracture, r and dα are
never expected to jump in ξ, we arrive at the one-dimensional local version:

(
r× n+ dβ ×mβ

)′
+ r× ρ0f + dβ × ρ0l

β = r× Ġ+ dβ × L̇β. (1.2.88)

Note that we may view
m = dβ ×mβ (1.2.89)

as a couple acting on the cross-section at ξ due to stress and

ma = dβ × ρ0l
β (1.2.90)

as an external couple due to applied loads. Using the balances of linear and director mo-
mentum (1.2.71) and (1.2.82), we recover the identity

r′ × n+ dβ × kβ + d′
β ×mβ = 0, (1.2.91)

which is analogous to the symmetry condition on the Cauchy stress (1.1.44) in the three-
dimensional theory.

A one-dimensional strain energy

For Green-elastic solids, we would like to develop a one-dimensional strain energy. From
ρ∗0ψ

∗ = ρ∗0ψ
∗(F), we derive the one-dimensional version as

ρ0ψ =

∫

A0(ξ)

ρ∗0ψ
∗dA, (1.2.92)
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where the reason for the overline on ρ0ψ will be discussed shortly. Insertion of (1.2.24) into
(1.1.71) yields the resulting ρ0ψ as

ρ0ψ =
(λ+ 2µ)A

8

(
γ211 + γ222 + γ233

)

+
µA

2

(
(γ21 + γ12)

2

4
+ γ213 + γ223

)
+
λA

4
(γ11γ22 + γ11γ33 + γ22γ33)

+
µI11

2

(
κ211 + κ212

)
+
µI22

2

(
κ222 + κ221

)

+
(λ+ 2µ)I11

2
κ213 +

(λ+ 2µ)I22

2
κ223

+µI12(κ11κ21 + κ12κ22) + (λ+ 2µ)I12κ13κ23

+
λS1

2
(γ11 + γ22 + γ33)κ13 +

λS2

2
(γ11 + γ22 + γ33)κ23

+µS1(γ33κ13 + γ13κ11 + γ23κ12) + µS2(γ33κ23 + γ13κ21 + γ23κ22),

(1.2.93)

where (1.2.36)1,2 have been used. The centerline may be chosen so that S1 = 0 = S2 and
the coordinates oriented so that I12 = 0. If the material is homogeneous in its mass density,
then these choices are equivalent to y010 = 0 = y020 and y120 = 0. Now the strain energy for
the one-dimensional rod becomes

2ρ0ψ = k1γ
2
11 + k2γ

2
22 + k3γ

2
33 + k4

(γ21 + γ12)
2

4
+ k5γ

2
13 + k6γ

2
23

+k7γ11γ22 + k8γ11γ33 + k9γ22γ33 + k10κ
2
11 + k11κ

2
22 + k12κ

2
12 + k13κ

2
21

+k14κ
2
13 + k15κ

2
23, (1.2.94)

where the stiffnesses are

k1 = k2 = k3 =
(λ+ 2µ)A

4
, k4 = k5 = k6 = µA, k7 = k8 = k9 =

λA

2
,

k10 = k12 = µI2, k11 = k13 = µI1, k14 = (λ+ 2µ)I2, k15 = (λ+ 2µ)I1, (1.2.95)

and formulae (1.2.37)3,4 have been used. We recall for completeness the relationships between
elastic moduli:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (1.2.96)

where E and ν are Young’s modulus and Poisson’s ratio, respectively. It is well known
that (1.2.94) fails to produce results that are consistent with exact solutions from three-
dimensional elasticity. In [47] it is explained that a more ideal set of stiffness coefficients



CHAPTER 1. INTRODUCTION 27

which more closely match exact solutions from elasticity is

2ρ0ψ = k1γ
2
11 + k2γ

2
22 + k3γ

2
33 + k4

(γ21 + γ12)
2

4
+ k5γ

2
13 + k6γ

2
23

+k7γ11γ22 + k8γ11γ33 + k9γ22γ33 + k10κ
2
11 + k11κ

2
22 + k12κ

2
12 + k13κ

2
21

+k14κ
2
13 + k15κ

2
23 + k16κ12κ21, (1.2.97)

where

k1 = k2 = k3 =
(λ+ 2µ)A

4
, k4 = µA, k5 = k6 = kµA, k7 = k8 = k9 =

λA

2
,

k10 = µI2, k11 = µI2, k12 = k13 =
1

4
(µI2 + µI1 − D), k14 = EI2, k15 = EI1,

k16 =
1

2
(µI2 + µI1 − D). (1.2.98)

Here, k is the shear correction factor [15] and D is the torsional rigidity. We note that I1+I2
may be considered as a polar area moment of inertia.

While one should proceed with caution in applying (1.2.97) to the modeling of isotropic
rod-like bodies undergoing small deformations, we have found (1.2.97) to be sufficiently
descriptive for use in many problems. For example, (1.2.97) is the basis for a validated
model of peristaltic locomotion that is presented in Chapter 2 which is dominated by the
Poisson effect. In addition, we have used (1.2.97) as inspiration for the non-linear strain
energy postulated for the discrete elastic rod that is presented in Chapter 3. There, we
validate the discrete theory against known solutions of Timoshenko beams involving shear
deformation and necking problems, which involve cross-sectional strain gradients. If one
attempts to model behavior such as bending and warping of cross-sections, (1.2.97) has been
found to be in poor agreement with solutions from linear elasticity, as approximation (1.2.7)
becomes invalid in those problems.

1.3 The direct approach

In the direct approach, we proceed by presuming the existence of an abstract directed curve.
Rather than starting with a rod-like body and adopting approximation (1.2.7), primitive
quantities associated with the curve are postulated. To make any practical use of this
approach, a mapping from real three-dimensional material to the abstract directed curve
will need to be established. For that mapping, (1.2.7) is assumed to be exact. Balance
laws for the directed curve are postulated for finite segments, and the localization procedure
can be considered to yield point-wise laws, in contrast to the preceding approach from three
dimensions. Indicies in this section are to identify quantities associated with the first, second,
or third director, rather than being components of objects that are tensorial under a change
of convected coordinates.
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Kinematics of the abstract curve

Referring to Figure 1.4, the directed curve BA comprises the centerline, which is an extensible
space curve of material points, and two directors, which are vector fields defined on the
centerline. Since we have no access to the convected coordinates Xα, the directors are
introduced as a primitive field, rather than as partial derivatives of a three-dimensional
placement with respect to material coordinates. The abstract directed curve is assumed
to occupy a reference configuration with the parameter ξ assigned physical meaning as the
reference centerline arc-length: ξ ∈ [0, ℓ0]. Here, ℓ0 is the total physical length of the reference
centerline, as in the three-dimensional case. A pair of reference directors Dα are placed at
every value of ξ in the reference configuration. A part PA of the abstract directed curve is
specified by two endpoints ξ1 and ξ2: PA = {ξ,Dα(ξ)|ξ ∈ [ξ1, ξ2]}, where we have used ξ to
indicate a centerline material point.

The vector-valued functionR(ξ) delivers the reference placement R of centerline material
points in E3. Making use of ξ as a Cartesian spatial coordinate for E3 and aligning a unit
vector E3 along the long axis of the rod-like body, we may write

R = ξE3. (1.3.1)

The reference configuration of the abstract curve is assumed to be straight and in its natural
state. In contrast to κ0 in (1.1.8), the reference configuration is specified by the triplet of
vector-valued functions {R(ξ),Dα(ξ)}. We choose to make the identification

D1 = E1, and D2 = E2. (1.3.2)

The reference configuration region R0 occupied by the three-dimensional body B is related
to the abstract directed curve as shown in Figure 1.4 by

R∗ = R+XβDβ, (1.3.3)

where Xα are the material coordinates for B that were introduced in the prior sections.
The current configuration of the directed curve is given by the vector fields r = r(ξ, t) and
dα = dα(ξ, t). It is assumed that B is placed into the region R by the relation

r∗ = r+Xβdβ. (1.3.4)

Relationships (1.3.3) and (1.3.4) are sufficient for constructing images of the three-dimensional
body B given the reference and current configurations of the abstract directed curve. The
centerline velocity and director velocities are defined as the material derivatives

v = ṙ, wα = ḋα. (1.3.5)

The solution process amounts to finding r = r(ξ, t) and dα = dα(ξ, t), which are responsive
to external influences acting on the curve. These influences will be related to the kinematics
via the balance laws for the directed curve.
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RD1

RD2 R′

R

O

E1

E2 E3

Figure 1.4: The reference configuration mapping between the abstract directed curve and the
real material of the rod-like body.

We denote the arc-length parameter for the current configuration centerline by s. As
before, to take full advantage of indicial notation, the shorthand D3 = R′ and d3 = r′ is
useful. Since any motion where a director di tends to 0 or is coincident with another director
is unphysical and therefore unanticipated, we are safe to use {di} as a basis for E3. The unit
length basis {ei} is re-introduced as ei = di/‖di‖. The vector e3 = et additionally serves as



CHAPTER 1. INTRODUCTION 30

the current centerline’s unit tangent. The stretches µi are found as the length of di:

µi = ‖di‖. (1.3.6)

An engineering strain for material line elements along ei may be calculated as µi − 1. Cen-
terline gradients of field quantities may be computed as directional derivatives along the
centerline in the direction of increasing ξ. In terms of the directors, µ′

α may be computed as

µ′
α =

dα · d′
α

‖dα‖
, (no sum). (1.3.7)

We may refer to µ′
α either as a stretch gradient or a strain gradient. The deformation

measures γij and καi are accepted from the previous section.

Balance laws

Several primitive quantities are assumed to exist that belong to the directed curve. These
quantities are defined in Table 1.1 and they are not thought to be derivable from quantities
associated with three-dimensional continuum mechanics. The following quantities for the

Table 1.1: Primitive quantities associated with the abstract directed curve.

Definition Primitive

Reference configuration directors Dα(ξ)
Current configuration directors dα(ξ, t)

Reference configuration centerline mass density per unit reference length ρ0(ξ)
Reference configuration first inertias per unit reference length y0α0 (ξ)

Reference configuration second inertias per unit reference length yαβ0 (ξ)
Centerline assigned force per unit mass f(ξ, t)
Director assigned forces per unit mass lα(ξ, t)

Contact force n(ξ, t)
Intrinsic director forces kα(ξ, t)
Contact director forces mα(ξ, t)

Helmholtz free energy per unit mass ψ(di,d
′
α)
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directed curve are defined from the primitive quantities:

G = ρ0v + ρ0y
0β
0 wβ,

Lα = ρ0y
0α
0 v + ρ0y

αβ
0 wβ,

HO = r×G+ dβ × Lβ,

m = dβ ×mβ ,

ma = dβ × ρ0l
β, (1.3.8)

which are, respectively, the linear momentum, the director momenta, the angular momentum
about O, the internal torque, and the applied torque, all per unit reference length of the
centerline.

To model the effect of the external loading on the kinematics, it suffices to postulate five
balance laws involving the primitive quantities for any part PA ⊆ BA. In order, the balance
laws are: six conservations of mass and inertia, a balance of linear momentum, two balances
of director momentum, and a balance of angular momentum. They are listed for any part
PA as

d

dt

∫ ξ2

ξ1

ρ0dξ = 0,

d

dt

∫ ξ2

ξ1

ρ0y
0α
0 dξ = 0,

d

dt

∫ ξ2

ξ1

ρ0y
αβ
0 dξ = 0,

d

dt

∫ ξ2

ξ1

Gdξ = [n]ξ2ξ1 +

∫ ξ2

ξ1

ρ0fdξ,

d

dt

∫ ξ2

ξ1

Lαdξ = [mα]ξ2ξ1 +

∫ ξ2

ξ1

(ρ0l
α − kα)dξ,

d

dt

∫ ξ2

ξ1

HOdξ = [r× n+m]ξ2ξ1 +

∫ ξ2

ξ1

(r× ρ0f +ma)dξ. (1.3.9)

The assigned forces f and lα may contain singular pieces at some stationary point γ. The
conditions (1.2.74) and (1.2.84) apply in this abstract approach since they are derived from
primitive quantities associated with the directed curve. The current configuration inertias
may be defined from the conservation laws for mass and inertia as

ρ = ρ(ξ, t) =
ρ0
µ3
, y0α = y0α(ξ, t) =

y0α0
µ3

, yαβ = yαβ(ξ, t) =
yαβ0
µ3

. (1.3.10)

Using the localization theorem on the balance laws (1.3.9) we recover the local versions from
the previous section, namely: (1.2.53), (1.2.59), (1.2.63), (1.2.71), (1.2.82), and (1.2.91).



CHAPTER 1. INTRODUCTION 32

In the next chapter, peristaltic locomotion is described as a quasistatic process. In such a
process, inertial forces are small compared to elastic, constraint, and applied forces, and the
rod is assumed to pass through a succession of equilibrium configurations during its motion.
We obtain the governing equations for such a case by neglecting the rates of change of linear
and director momenta in (1.3.9).

As in the case of Green-elastic materials, we presume the existence of a scalar function
ρ0ψ (cf. (1.1.54)). This function is assumed to satisfy the balance of energy

ρ0ψ̇ = ṙ′ · n+ ḋβ · kβ + ḋ′
β ·mβ , (1.3.11)

where the right hand side of (1.3.11) is the stress power of the directed curve. For a quasistatic
process, the material time derivatives of (1.3.11) are retained as there are non-negligible
differences in the strain energy between successive equilibria.

Constitutive relations

Constitutive relations between the internal forces and gradients of the strain energy per unit
mass ρ0ψ must be derived. A representation of the strain energy may be given in terms of
the directors and their centerline gradients:

ρ0ψ = ρ0ψ̂(di,d
′
α). (1.3.12)

A notation such as f = f̂(di,d
′
α) means that f̂ is a function of d1,d2,d3,d

′
1 and d′

2 while
one such as f = f̃(µi, µ

′
α) means that f̃ is a function of µ1, µ2, µ3, µ

′
1, and µ

′
2. The functional

dependence of (1.3.12) on the directors and their gradients is to be constructed in such a
way that the strain energy remains invariant under superposed rigid motions so as to obey
the principle of material frame indifference. We will make use of a strain energy function
of the form ρ0ψ = ρ0ψ̃(µi, µ

′
α), which is automatically properly invariant under superposed

rigid motions, no matter the functional form, since µi and µ
′
α are unaltered under a uniform

translation and rotation. To ease the notational burden, we will call the specific strain energy
ρ0ψ, a Helmholtz free energy, as w:

w = ρ0ψ = ŵ(di,d
′
α) = w̃(µi, µ

′
α). (1.3.13)

By inserting ŵ into (1.3.11), an expression which must hold true for all kinematically ad-
missible motions is derived:

(
n− ∂ŵ

∂r′

)
· ṙ′ +

(
kβ − ∂ŵ

∂dβ

)
· ḋβ +

(
mβ − ∂ŵ

∂d′
β

)
· ḋ′

β = 0. (1.3.14)

If the medium we are seeking to model is internally unconstrained, then we are at liberty to
construct a motion in which

(
ṙ′, ḋα, ḋ

′
α

)
= c

(
n− ∂ŵ

∂r′
, 0, 0

)
, (1.3.15)
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where c is any strictly positive constant of the appropriate physical dimension. We find a
necessary condition following from (1.3.11) as

c

∥∥∥∥n− ∂ŵ

∂r′

∥∥∥∥
2

= 0, (1.3.16)

i.e.,

n− ∂ŵ

∂r′
= 0. (1.3.17)

Through an identical set of arguments and noting that d′
α may be varied independently from

dα at fixed ξ, the following implications of (1.3.11) are derived:

n =
∂ŵ

∂r′
, kα =

∂ŵ

∂dα
, mα =

∂ŵ

∂d′
α

. (1.3.18)

The internal forces for an unconstrained medium are thus constitutively determined by ŵ.
With the help of (1.3.6) and (1.3.7), we calculate the gradients

∂µj

∂di
= δji ej (no sum),

∂µ′
β

∂dα

= δαβ (I− eβ ⊗ eβ)
d′
β

µβ

(no sum),

∂µ′
β

∂d′
α

= δαβeβ (no sum). (1.3.19)

Here, ⊗ is the tensor product, defined so that (a⊗ b)c = a(b · c) for any three vectors
a,b, c ∈ E3 and I is the identity tensor: Ia = a. Using a chain rule, one can establish the
relations

∂ŵ

∂dα
=

∂w̃

∂µα
eα +

∂w̃

∂µ′
α

(I− eα ⊗ eα)
d′
α

µα
(no sum),

∂ŵ

∂r′
=
∂w̃

∂µ3

e3,
∂ŵ

∂d′
α

=
∂w̃

∂µ′
α

eα (no sum). (1.3.20)

The internal forces of (1.3.18) may now be constitutively determined when w̃ is prescribed.

Internal constraints and reactions

To model incompressibility, we admit an internal constraint of the form

φI = φI(r′,dα,d
′
α) = 0, (1.3.21)

which yields a restriction on the class of allowable deformations. The deformation of a single
cross-section of the rod at ξ is determined by (r′,dα,d

′
α) which may be considered as an

element of the direct sum

V =

5⊕

i=1

E
3. (1.3.22)
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Equation (1.3.21) may now be thought to describe a constraint hypersurface, M, contained
in V. Barring any material property changes during the motion, (1.3.21) holds for all time,
which implies the orthogonality condition:

φ̇ =
∂φI

∂r′
· ṙ′ + ∂φI

∂dβ
· ḋβ +

∂φI

∂d′
β

· ḋ′
β = 0. (1.3.23)

Thus, a basis vector has been identified for the one-dimensional orthogonal complement to
the tangent space of M at some value of the deformation:

Span

(
∂φI

∂r′
,
∂φI

∂dα
,
∂φI

∂d′
α

)
= T⊥

(r′,dα,d′

α)
M. (1.3.24)

Reexamining the requirement for kinematic admissibility in (1.3.14), we see that an arbi-
trarily constructed motion using ṙ′, ḋα, and ḋ′

α could violate the internal constraint. For
the internal constraint (1.3.21) to remain true, (1.3.14) holds only in motions for which(
ṙ′, ḋα, ḋ

′
α

)
is along the tangent space of M. Therefore, an element of the orthogonal

complement is found:(
n− ∂ŵ

∂r′
,kα − ∂ŵ

∂dα
,mα − ∂ŵ

∂dα

)
∈ T⊥

(r′,dα,d′

α)
M. (1.3.25)

A Lagrange multiplier λI now contributes to the contact force, the intrinsic director force,
and the contact director force as an unknown scalar along the orthogonal complement:

n− ∂ŵ

∂r′

∣∣∣∣
M

= λI
∂φI

∂r′
, kα − ∂ŵ

∂dα

∣∣∣∣
M

= λI
∂φI

∂dα
,

mα − ∂ŵ

∂d′
α

∣∣∣∣
M

= λI
∂φI

∂d′
α

. (1.3.26)

The multiplier λI cannot contribute to changes in strain energy and is therefore to be de-
termined by satisfaction of the balance laws and not by the deformation. Since the internal
constraint is assumed to hold throughout the material, λI = λI(ξ). In the context of consti-
tutive relations, the part of the internal force attributable to the deformation is termed the
active piece while the part containing the Lagrange multiplier is termed the reactive piece.

The strain energy ŵ in (1.3.26) is evaluated on M only after gradients are taken. Alter-
natively, one may enforce the internal constraint prior to taking gradients. Proceeding this
way, a constrained strain energy is defined:

ŵc = ŵ|M, (1.3.27)

where ŵ is restricted to be evaluated on M. Using ŵc over ŵ results in different associated
Lagrange multipliers. We call the multiplier associated with ŵc as λ

I
c, so that

n− ∂ŵc

∂r′
= λIc

∂φI

∂r′
, kα − ∂ŵc

∂dα
= λIc

∂φI

∂dα
,

mα − ∂ŵc

∂d′
α

= λIc
∂φI

∂d′
α

. (1.3.28)
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The resulting equations will yield the same state of deformation. A relationship between λI

and λIc may also be established. In general, λIc will contain an active piece attributable to
the strain energy. We use the constrained strain energy approach in Section 2.4.

External constraints and reactions

Consider an external constraint of the form

φE = φE(r∗) = 0. (1.3.29)

This constraint defines a surface, N , in the configuration space E3 of the placement of a
material point with label

(
X1

γ , X
2
γ , γ
)
. If the constraint is to hold for all time, we derive an

orthogonality condition on admissible directions for ṙ∗:

φ̇E =
∂φE

∂r∗
· ṙ∗ = 0. (1.3.30)

Hence,
∂φE

∂r∗
∈ T⊥

r∗
N , (1.3.31)

and the required singular three-dimensional external constraint (or reaction) force, F∗
γ , as-

sumed to be powerless given admissible virtual velocities, is unknown in magnitude but not
direction as

F∗
γ = λE

∂φE

∂r∗
. (1.3.32)

The assumption r∗ = r+Xβdβ, gives us a relation of the form r∗ = r∗(r,dα). Using a chain
rule, we find

φ̇E =
∂φE

∂r
· ṙ+ ∂φE

∂dβ
· ḋβ = 0, (1.3.33)

where φE = φE(r,dα) is another representation of the external constraint. We obtain the
singular one-dimensional centerline and director forces:

Fγ = λE
∂φE

∂r
, Fα

γ = λE
∂φE

∂dα
. (1.3.34)

In the case of distributed external constraints where (1.3.30) holds for a range of ξ values,
λE turns into a continuous function of ξ. The constraint forces are then distributed into
assigned centerline and director forces as

ρ0fC = λE(ξ)
∂φE

∂r
, ρ0l

α
C = λE(ξ)

∂φE

∂dα
, (1.3.35)

where λE now has a different physical dimension to that in (1.3.34). In this circumstance,
the exact form of λE = λE(ξ) may be statically indeterminate and additional assumptions
may be required.



36

Chapter 2
Worm locomotion

2.1 Introduction

The locomotion strategy of the worm has attracted attention in the growing field of bio-
inspired soft robotics. With seemingly minimal structure and control, the worm is capable
of using peristalsis both to locomote and burrow tunnels into the earth. The principles
of crawling locomotion [12] have many practical uses in, for example, robots for medical
endoscopies [59]. One engineering challenge is to develop actuators that achieve the desired
locomotion strategies [17]. A recent approach to mimicking muscle contractions has been to
use pneumatic artificial muscles (PAMs) [1]. A connection of several PAMs in series may be
a good starting point for achieving peristaltic locomotion. Some peristalsis-based soft robots
have been successfully designed [9, 37, 38, 61, 62] and analyzed [16, 60].

A worm locomotes by making use of its hydrostatic skeleton. Each segment of the worm
contains an incompressible medium called the coelomic fluid. In the broadest terms, the
worm advances forward by exploiting the shape-changing properties that come with volume
conservation of its skeleton [14, 22, 45]. Pulses of longitudinal and circular muscle contraction
are propagated rearward causing regions where the worm fattens and thins. Where the worm
longitudinally contracts and fattens, it digs its setae into the soil and establishes an anchor.
Other regions of the worm are then either pushed or pulled by an actuation or release of
circular muscle contraction. The locomotion strategy of the worm is therefore similar to the
stick-slip locomotion seen in some robots [73]. During the locomotion cycle, the connective
tissue in the worm’s body walls provides a source of elasticity [33] that balances the muscle
actuation forces and the internal hydrostatic pressure of the coelomic fluid.

If the engineer of the soft robot wishes to mimic locomotion via peristalsis, they could be
aided by a model of the desired locomotion. Some mathematical and numerical descriptions
of worm locomotion are available [31, 32, 70]. However, none of the models to date have
made use of a continuous director formulation which cleanly facilitates the incompressibility
constraint. The goal of this chapter to develop continuous models for compressible and
incompressible rod-like bodies engaging in peristaltic locomotion. After development, the
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novel model is calibrated and then validated using Quillin’s [51, 50] set of experimental
measurements for the earthworm Lumbricus terrestris (see Figures 2.1 and 2.2). In addition,
some data from Kurth and Kier [35] is also used in the benchmarking.

E3

E2

t1 t2 t3 t4 t5 t6

∆ = 39.0 mm

Figure 2.1: The simulated stride of an earthworm of mass 10 g. Segment 50 is tracked with
a black marking. Samples of the worm’s current configuration are taken at t1 = 0, t2 = tp

3
,

t3 = 2tp
3
, t4 = tp, t5 = tp +

ts
2
, and t6 = tp + ts. Further details on the parameters of the

model can be found in Section 2.8.

The basis for the model is the director formulation that is central to Green and Naghdi’s
rod theory [41, 46]. In particular, the worm or soft robot’s rod-like (slender) body is mapped
into an abstract directed curve that exhibits the key kinematical features of peristaltic loco-
motion. Lateral and longitudinal stretches, incompressibility constraints, and strain energies
are all related to the director fields defined on the abstract curve. The spirit of this chapter
is similar to Plaut’s article where he describes caterpillar anchoring motion using Euler’s
elastica [49].

An ansatz

For the deformations in the present chapter, we anticipate that all cross-sections will remain
vertical. Our strain energy will be constructed so that there is no resistance to the type of
shearing that accompanies such deformations. We hereby adopt the following ansatz for the
solution:

d′
α = µ′

αeα = µ′
αEα, (no sum). (2.1.1)



CHAPTER 2. WORM LOCOMOTION 38

Time, t (s)Time, t (s)

1

2

00

S
tr
et
ch
es

in
se
gm

en
t
50

0.5

1

ts
ts

p c
o
el
o
m
in

se
gm

en
t
50

(k
P
a)

tp
tp

(a) (b)

µ1
µ3

22 44 66 88 1010

µ1 = 0.85
µ3 = 1.35

0.24 kPa

0.79 kPa

µ1 = 1.09
µ3 = 0.82

Figure 2.2: Validation of the biomimetic model of an earthworm of mass 10 g. Plots of
(a) stretches and (b) pressures for segment 50 during multiple strides are displayed. The
results presented in this chapter are in general agreement with those measured and predicted
by Quillin [51, 50] for the earthworm Lumbricus terrestris. Further details on the parameters
of the model can be found in Section 2.8.

Now, using (1.3.20), we have expressions for the internal forces under the ansatz:

n =
∂w̃c

∂µ3
e3 + λIc

∂φI

∂r′
, kα =

∂w̃c

∂µα
Eα + λIc

∂φI

∂dα
,

mα =
∂w̃c

∂µ′
α

Eα + λIc
∂φI

∂d′
α

. (2.1.2)

2.2 Modeling muscle contractions, hydrostatic

skeletons, and the ground reaction force

Mechanical models for muscle contraction have been heavily developed [71], with the Hill
muscle model being one of the simplest and most elegant models for representing human
muscle. The longitudinal and circular muscle contractions of the worm, the elasticity from
connective tissues in its body wall, and its hydrostatic skeleton that enables volume conserva-
tion is not as well represented in the biomechanical literature. In this section, we address the
challenges of modeling constrained multi-directional actuation in the presence of elasticity
and how to incorporate these effects into our single continuum model.
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Two types of actuators

In this chapter, we consider two types of mechanical actuators: a uni-directional actuator and
a tri-directional actuator (Figure 2.3). While a soft robot typically makes use of compliant
actuators, such as the compressible PAM, a hybrid soft-hard robot could be designed where
a compliant “soft” material encapsulates “hard” actuators. The uni-directional actuator
of Figure 2.3(a) is best modeled as a system of three interconnected rigid bodies. Upon
longitudinal actuation, pairs of equal but opposite internal forces are generated between the
main body and the two sliding arms. If the uni-directional actuator is considered as a single
entity, then an overall contraction of the device is effected and the volume of an imaginary
cylinder bounding the actuator decreases.

Instead of representing the uni-directional actuator as a multibody rigid system, suppose
it is modeled as a single continuum. This approach allows us to simultaneously incorporate
the elasticity of a surrounding material. Since the modeling of the forces inside the actuator
requires multiple bodies that slide past one another, how do we represent the actuation
effects on a single continuum? A pair of external compressive forces of strength P acting
on the sliding arms would result in an equivalent contraction as in the real actuator (see
the bottom row of Figure 2.3(a)). The difference between the single body and multibody
approaches in the rigid system lies only in the internal material forces of the actuator parts:
all bodies are in tension during real actuation, while only the sliding arms are in compression
during the equivalent external loading.

The tri-directional actuator behaves in a similar manner to the uni-directional actuator.
In Figure 2.3(b), we model the main body as a circular disk. Suppose the device is internally
constrained so that the volume of the bounding cylinder is conserved. The tri-directional
actuator has two modes of actuation: longitudinal and circular. Under the internal con-
straint, circular contraction causes longitudinal extension. The equivalent effect of two pairs
of compressive external forces, all of strength P , may be used to model circular actuation,
much like in the case of the uni-directional actuator.

Muscle contractions

Consider again the pair of mechanical actuators from Figure 2.3. We can use these actua-
tors as mechanical analogues to represent the contractile effects of muscles in humans and
worms. The musculature of the worm permits two types of contractions: longitudinal muscle
contractions that shorten the worm’s length and circular muscle contractions that contract
its circular cross-sections. Since we consider the worm as a single continuum, the concept of
the equivalent loadings in Figure 2.3 is used to model the contractile effects of muscle.

A mechanical analogue for human muscle contraction is the uni-directional actuator dis-
played in Figure 2.3(a). The sliding action between myosin and actin filaments may be
modeled in a continuum by the equivalent forces of strength P . In contrast, the longitudinal
and circular contractions of the worm may be modeled as the internally constrained tri-
directional actuator of Figure 2.3(b). If one supplies two pairs of external compressive forces
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(a) (b)

Resting

Resting

Longitudinal actuation
Circular actuation

Equivalent external loading
Equivalent external loading

P

P

P

PP

P

Figure 2.3: Examples of (a) uni-directional and (b) tri-directional actuators represented as
multiple rigid bodies that slide past one another. In its actuated state, the tri-directional
actuator is internally constrained to conserve the volume of an imaginary cylinder bounding
the sliding arms. Equivalent compressive loads effecting the same actuation are also shown.
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(a) (b)

Resting

Resting

Actuated
Actuated

Tendon

Connective
tissues

Skeleton
(rigid bone)

Longitudinal
muscle

Longitudinal
muscle

Skeleton
(incompressible fluid)

Circular
muscle

Figure 2.4: Section views of the mechanical analogues illustrating the difference between (a)
human muscle actuation and (b) earthworm muscle actuation. Human muscles engage with
an elastic element before pulling on the skeleton. In contrast, worm muscles change the
shape of the skeleton, which then engages elastic elements. Black dots indicate inertially
fixed points. The elastic element in a human are the tendons while in a worm it is the
connective tissue.
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of strength P to model circular muscle contractions, then the unloaded pair of sliding arms
extend to maintain the volume of the imaginary bounding cylinder, thereby representing the
hydrostatic skeleton.

We believe that the sequence of events during contraction is reversed for human muscles
as compared with worm muscles (Figure 2.4). As per the Hill muscle model, a human muscle
is attached in series to elastic tendons which are in turn attached to a rigid skeleton. In
addition, elastic elements in parallel to the muscle are also present that further increase
tension. Upon contraction, the muscle pulls on the tendons, making them tense. The
actuating load from the muscle is then transmitted via the tendons to the skeleton which is
comprised of rigid bone. When a worm’s muscles contract, they first push on the hydrostatic
skeleton which is comprised of an incompressible fluid. As the hydrostatic skeleton must
maintain its volume, it changes shape until it engages with elasticity from connective tissues
in the body wall. The end result is a pressure-loaded hydrostatic skeleton balancing muscle
actuation loads and connective tissues in tension. In both humans and worms, the skeleton
is ultimately manipulated to produce traction, leading to locomotion.

ρ0fA · e3

D1

E3

λ

P/λ

ξ

Figure 2.5: An example of an applied centerline load that would result in a centerline con-
traction. The function is displayed atop the material domain of the reference configuration,
and e3 is the centerline tangent of the current configuration.

Longitudinal contraction as an assigned force

The assigned forces used to model a worm’s muscle contractions are coined active loads.1

To model the longitudinal contractions, we propose an active centerline load ρ0fA of the
1These assigned forces should not be confused with the active piece of the internal forces in the presence

of an internal constraint.
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form displayed in Figure 2.5. Here, actuation loads of net strength P are represented by
distributed forces in windows of reference width λ. When considering real longitudinal
muscles in a worm, one realizes that there are many such muscles acting in each chamber
of the worm that contract in series. As it would be tedious to model many pairs of discrete
loads in series, we will instead construct singularity functions so that the loading is more
compatible with continuous equations.

A singularity function known as the doublet is used to model longitudinal contraction.
Singularity functions, including the doublet, have found use in modeling point forces, point
moments, and distributed couples as distributed forces in Bernoulli-Euler and Timoshenko
beams [13, 18, 19]. The doublet that is proposed here is similar in spirit but constructed
in a slightly different manner compared to the preceding papers. The active centerline load
ρ0fA applied at ξ = γ is expressed mathematically as

ρ0fA = D〈ξ − γ〉−2e3, (2.2.1)

where D > 0 is the doublet strength of physical dimension force times length, and the
function

〈ξ − γ〉−2 =





∞ at ξ = γ−

0 at ξ = γ

−∞ at ξ = γ+

0, otherwise

(2.2.2)

is the doublet singularity function, which carries a physical dimension of a length inverse
squared. The area under the curve of the doublet over its entire domain is zero, but the area
from γ− to γ is +1 while the area from γ to γ+ is −1. Other definitions of the doublet exist
where its integral is defined to yield the Dirac delta singularity function. The doublet here
may be obtained as the derivative of a Dirac delta function:

〈ξ − γ〉−2 =
d

dξ
δ(ξ − γ), (2.2.3)

where

δ(ξ − γ) =

{
∞ at ξ = γ

0, otherwise.
(2.2.4)

We may consider the doublet defined in (2.2.2) as a pair of opposing Dirac delta functions
centered at γ− and γ+. The anti-derivative of the doublet defined here is a switch function
of unit height that switches on at the singular value of γ.

A discrete sequence of doublets of equal strength acting at γ1, . . . , γn may be represented
as the series

ρ0fA = De3

n∑

i=1

〈ξ − γi〉−2. (2.2.5)

A continuous distribution of infinitely many equal strength doublets acting in a window
(ξ1, ξ2) is used to model longitudinal muscle contraction. We let n → ∞ and shrink the
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distance between doublets to zero. For any value ξ ∈ (ξ1, ξ2), the balance of linear momentum
(1.2.71) may be integrated from ξ− to ξ to yield

n(ξ) = −
∫ ξ

ξ−
ρ0fAdξ = −De3, (2.2.6)

where ξ is a dummy variable, D has the physical dimension of force, and we have used the
fact that n(ξ−) = 0. Applying this logic iteratively, we find that

n(ξ) = −De3 for ξ1 < ξ < ξ2. (2.2.7)

That is, n switches on to a constant magnitude inside the window of longitudinal muscle
contraction and becomes continuously nonzero in that window. The magnitude of the lon-
gitudinal muscle force is given by D. In the subsequent sections, we will develop the active
and reactive pieces that make up n. For the worm, D will balance an elastic piece from the
connective tissue and a constraint piece due to the pressurized hydrostatic skeleton.

Circular contraction as assigned director forces

Circular muscle contraction is modeled by a pair of equal strength active director forces.
They are derived from three-dimensional considerations (cf. (1.2.79)) assuming a constant
magnitude Piola traction p = −per acting around a cross-section at ξ = γ:

ρ0l
α
A =

∮

∂A0(γ)

−perXαdU, (2.2.8)

where p is a pressure supplying a compressive force per unit reference area of the lateral
boundary. If one wants to model the four compressive forces of strength P from the tri-
directional actuator of Figure 2.3(b), (1.2.79) may also be used to compute the assigned
director force. Noting the geometry defined in Figure 2.6, we compute the second assigned
director force due to the pressure loading as

ρ0l
2
A =

∮

∂A0(γ)

−perX2Rdφ = −pπR2e2.

Since the director load is centrally-directed, it will serve only to change the length of d2.
Carrying out an identical process for ρ0l

1
A reveals the first assigned director force per unit

reference length to be
ρ0l

1
A = −pπR2e1. (2.2.9)

We define the director force strength ρ0lA = ‖l1A‖ = ‖l2A‖ = pπR2 so that ρ0l
1
A = −ρ0lAe1

and ρ0l
2
A = −ρ0lAe2. If the pressure is defined over a window (ξ1, ξ2), then the director loads

vanish outside of it.
In the locomotion scheme soon to be described, the longitudinal centerline force will be

used to anchor the rod while the director forces will be used to advance the rod forwards.
We will refer to ρ0fA as an anchoring load and ρ0l

1
A and ρ0l

2
A as advancing loads.
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e1
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Equivalent to

ρ0l
1
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d2

ρ0l
2
A

Figure 2.6: Pressure Piola tractions applied to the lateral boundary of a rod-like body are
equivalent to a pair of equal strength, centrally-directed director forces acting on the abstract
directed curve.

Hydrostatic skeletons

A hydrostatic skeleton could be modeled by a global constraint: the total volume of the
body must be conserved. This condition may result in infinitely many deformed shapes that
satisfy global volume conservation as portrayed in Figure 2 of [14]. Mathematically, global
volume conservation may be expressed as

∫ ℓ0

0

[(d1 × d2) · r′ − 1]dξ = constant. (2.2.10)

To render the system determinate, we choose to model the hydrostatic skeleton using a local
internal constraint. That is, every cross-sectional volume of width dξ obeys a conservation
of volume. It is known that earthworms possess a segmented hydrostatic skeleton, with
muscular septae isolating fluid from adjacent segments [35]. Each chamber therefore acts as
its own hydraulic unit, conserving the volume of fluid within it for the course of the motion
[45]. On average, it has been shown that most worms have approximately 147 such chambers,
regardless of total body length [51]. The internal constraint for local volume conservation is
expressed as

φI = 0, (2.2.11)

where
φI = (d1 × d2) · r′ − 1. (2.2.12)



CHAPTER 2. WORM LOCOMOTION 46

Notice that local incompressibility implies global incompressibility. In terms of the stretch
variables, (2.2.11) becomes

µ1µ2µ3 = 1, (2.2.13)

which produces a constraint surface in a three-dimensional stretch space. Equation (2.2.13)
is nonlinear in the stretch variables. For µ1, µ2, and µ3 close to 1, an approximation of
(2.2.13) to first order in the stretches yields

µ1 + µ2 + µ3 ≈ 3, (2.2.14)

where µ1 + µ2 + µ3 − 3 may be thought of as a volumetric strain measure for small (linear)
deformations. While we may choose to adopt linear constitutive models for the material,
we will choose not to drop the nonlinearity of (2.2.13), as it would fundamentally alter the
shape of the constraint manifold, thereby allowing for deformations which could violate the
incompressibility constraint.

A rod-like body comprised of a nearly incompressible medium is aptly modeled by (2.2.11)
and (2.2.12). If ŵc(r

′,dα,d
′
α) is the constrained version of the specific strain energy function,

then the internal forces in the presence of the local incompressibility constraint become

n =
∂ŵc

∂r′
+ λIc

µ1µ2

µ3
r′, k1 =

∂ŵc

∂d1
+ λIc

µ2µ3

µ1
d1, k2 =

∂ŵc

∂d2
+ λIc

µ1µ3

µ2
d2,

mα =
∂ŵc

∂d′
α

. (2.2.15)

The ground reaction force

The rod is supported on a ground plane which contains the point (−R, 0, 0) and is spanned
by the set {E2,E3} by means of a line of external contact constraints of the form

φE = r∗(−R, 0, ξ) ·E1 +R = 0. (2.2.16)

The resulting external constraint forces are

ρ0fC = λEE1, ρ0l
1
C = −RλEE1. (2.2.17)

A three-dimensional body force in the form of gravity acts to push the rod into the ground
plane:

b = −gE1. (2.2.18)

Using (1.2.67) and (1.2.79), we find that in the presence of only gravity and no ground
reaction force, the rod experiences

ρ0f = −ρ0gE1, ρ0l
1 = 0, ρ0l

2 = 0. (2.2.19)
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The exact distribution of λE in (2.2.17) can only be determined by experimental means. We
assume that the ground reaction force at some point ξ supports exactly the weight of the
cross-sectional volume of width dξ above:

λE = ρg =
ρ0g

µ3
. (2.2.20)

Depending on how massive the rod is, the ground reaction force serves not only to increase
traction, but also to deform circular cross-sections into elliptical cross-sections.

2.3 Governing equations for a compressible rod

While a worm is incompressible, we first admit some compressibility in our constitutive
model for potential use in robotic devices. The following constitutive model for an isotropic,
internally unconstrained material is assumed:

2w = kS
[
(µ1 − 1)2 + (µ2 − 1)2 + (µ3 − 1)2

]
+ kG

[
(µ′

1)
2
+ (µ′

2)
2
]

+2kP[(µ1 − 1)(µ2 − 1) + (µ1 − 1)(µ3 − 1) + (µ2 − 1)(µ3 − 1)]. (2.3.1)

The proposed strain energy is a quadratic form in µi − 1 and µ′
α with off-diagonal stiffness

kP, which characterizes, in part, the influence of the Poisson effect. Here, the stiffnesses kS
and kP are analogous to the Lamé moduli of three-dimensional linear elasticity. Adopting
the ansatz (2.3.2) and using equation (2.1.2), we derive the internal forces as

k1 = (kS(µ1 − 1) + kP(µ2 + µ3 − 2))E1, k2 = (kS(µ2 − 1) + kP(µ1 + µ3 − 2))E2,

n = (kS(µ3 − 1) + kP(µ1 + µ2 − 2))e3, mα = kGµ
′
αEα, (no sum). (2.3.2)

These are the force-stretch relations for a compressible rod. Upon substitution, we are
assured that the constitutive relations given in (2.3.2) identically satisfy the balance of
angular momentum (1.2.91). No additional information may be gleaned from this balance
law and it is henceforth set aside.

We assume that the regions where the anchoring loads ρ0fA act are disjoint from the
regions where the advancing loads ρ0l

α
A act. The equations for the deformation are therefore

piecewise and must be developed independently. The subsequent solutions will be joined
together with a special application of boundary conditions.

Governing equations under an anchoring load

Suppose an anchoring load acts in a window of the rod. Assuming that e′3 ≈ 0, the governing
equations are

0 = kGµ
′′
1 −

Rρ0g

µ3
− kSµ1 − kP(µ2 + µ3) + kS + 2kP,

0 = kGµ
′′
2 − kSµ2 − kP(µ1 + µ3) + kS + 2kP,

−D = kSµ3 + kP(µ1 + µ2)− kS − 2kP. (2.3.3)
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The following non-dimensional parameters are defined:

z̃ =
ξ

ℓ0
, d̃ =

D

kS
, p̃ =

kP
kS
, g̃ =

kSℓ
2
0

kG
, m̃ =

Rρ0gℓ
2
0

kG
. (2.3.4)

Equation (2.3.3)3 is used to solve µ3(z̃) as a function of µ1(z̃) and µ2(z̃):

µ3 = µ3(µ1, µ2) = −d̃− p̃(µ1 + µ2) + 2p̃+ 1. (2.3.5)

By substituting (2.3.5) into (2.3.3)1 and (2.3.3)2, the governing equations for µ1(z̃) and µ2(z̃)
take on the non-dimensional forms

d2µ1

dz̃2
=

m̃

µ3(µ1, µ2)
+ g̃µ1 + p̃g̃(µ2 + µ3(µ1, µ2))− g̃ − 2p̃g̃,

d2µ2

dz̃2
= g̃µ2 + p̃g̃(µ1 + µ3(µ1, µ2))− g̃ − 2p̃g̃. (2.3.6)

Governing equations under advancing loads

We now consider a pair of advancing loads acting in a window of the rod. The governing
equations become

0 = kGµ
′′
1 −

Rρ0g

µ3
− pπR2 − kSµ1 − kP(µ2 + µ3) + kS + 2kP,

0 = kGµ
′′
2 − pπR2 − kSµ2 − kP(µ1 + µ3) + kS + 2kP,

µ3 = 1− kP
kS

(µ1 + µ2). (2.3.7)

An additional non-dimensional parameter is defined as

c̃ =
pπR2ℓ20
kG

. (2.3.8)

Following the same procedure as in the preceding subsection, the non-dimensional governing
equations for µ1(z̃), and µ2(z̃) become

d2µ1

dz̃2
=

m̃

µ̂3(µ1, µ2)
+ g̃µ1 + p̃g̃(µ2 + µ̂3(µ1, µ2)) + c̃− g̃ − 2p̃g̃,

d2µ2

dz̃2
= g̃µ2 + p̃g̃(µ1 + µ̂3(µ1, µ2)) + c̃− g̃ − 2p̃g̃, (2.3.9)

where
µ3 = µ̂3(µ1, µ2) = 1− p̃(µ1 + µ2). (2.3.10)
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Boundary conditions and disjoint regions of loading

The rod is assumed to be free from singular loads at its terminal ends. Therefore, (1.2.72)
and (1.2.83) yield the conditions

JnKξ=0 = 0, JmαKξ=0 = 0, JnKξ=ℓ0 = 0, JmαKξ=ℓ0 = 0.

Noting the lack of material at 0− and ℓ+0 , no internal loads may be supported there, and we
find conditions for the internal forces on the non-dimensional domain:

n(z̃ = 0) = 0, mα(z̃ = 0) = 0, n(z̃ = 1) = 0, mα(z̃ = 1) = 0. (2.3.11)

(2.3.12)

Applying (2.3.2)4 to (2.3.12)1 and (2.3.12)2, we find a set of four conditions that complete
(2.3.6) and (2.3.9) into boundary value problems:

dµα

dz̃
(z̃ = 0) = 0,

dµα

dz̃
(z̃ = 1) = 0. (2.3.13)

Notice from (2.3.5) and (2.3.10) that (2.3.12)3 and (2.3.12)4 are automatically satisfied given
(2.3.13).

At any given instant, the rod’s domain is broken up into disjoint regions where different
loading conditions apply. For generality, suppose there are three regions of loading: anchoring
loads in [0, γ), advancing loads in (γ, η), and anchoring loads in (η, ℓ0]. We introduce the
non-dimensional parameters

γ̃ =
γ

ℓ0
, η̃ =

η

ℓ0
, (2.3.14)

so that z̃ = γ̃, and z̃ = η̃ locate the singular points. Since the material is assumed never to
fracture,

µα

(
z̃ = γ̃−

)
= µα

(
z̃ = γ̃+

)
, µα

(
z̃ = η̃−

)
= µα

(
z̃ = η̃+

)
. (2.3.15)

To handle the three piecewise boundary value problems, the following dependent variables
are defined:

y1 = µ1, y2 =
dµ1

dz̃
, y3 = µ2, y4 =

dµ2

dz̃
, on 0 ≤ z̃ ≤ γ̃,

y5 = µ1, y6 =
dµ1

dz̃
, y7 = µ2, y8 =

dµ2

dz̃
, on γ̃ ≤ z̃ ≤ η̃,

y9 = µ1, y10 =
dµ1

dz̃
, on η̃ ≤ z̃ ≤ 1, y11 = µ2, y12 =

dµ2

dz̃
, on η̃ ≤ z̃ ≤ 1.

In order to input the problem into a boundary value problem numerical solver, it is necessary
to shift the coordinates so that they are on the same domain. We let

z̃1 =
z̃

γ̃
, z̃2 =

z̃ − γ̃

η̃ − γ̃
, z̃3 =

z̃ − η̃

1 − η̃
, (2.3.16)
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for certain z̃ values so that 0 ≤ z̃i ≤ 1. Defining a common variable ζ̃ = z̃i, the governing
equations are successfully redefined to be on the same domain:

dy1

dζ̃
= γ̃y2,

dy2

dζ̃
= γ̃

(
m̃

µ3(y1, y3)
+ g̃y1

)
+ γ̃(p̃g̃(y3 + µ3(y1, y3))− g̃ − 2p̃g̃),

dy3

dζ̃
= γ̃y4,

dy4

dζ̃
= γ̃(g̃y3 + p̃g̃(y1 + µ3(y1, y3))− g̃ − 2p̃g̃),

dy5

dζ̃
= (η̃ − γ̃)y6,

dy6

dζ̃
= (η̃ − γ̃)(p̃g̃(y7 + µ̂3(y5, y7)) + c̃− g̃ − 2p̃g̃),

dy7

dζ̃
= (η̃ − γ̃)y8,

dy8

dζ̃
= (η̃ − γ̃)(g̃y7 + p̃g̃(y5 + µ̂3(y5, y7))) + (η̃ − γ̃)(c̃− g̃ − 2p̃g̃),

dy9

dζ̃
= (1− η̃)y10,

dy10

dζ̃
= (1− η̃)

(
m̃

µ3(y9, y11)
+ g̃y9

)
+ (1− η̃)(p̃g̃(y11 + µ3(y9, y11))− g̃ − 2p̃g̃),

dy11

dζ̃
= (1− η̃)y12,

dy12

dζ̃
= (1− η̃)(g̃y11 + p̃g̃(y9 + µ3(y9, y11))− g̃ − 2p̃g̃). (2.3.17)

Applying (2.3.15) at γ̃ and η̃ and retaining the conditions of (2.3.13), we find the boundary
conditions on the unified domain as

y2(0) = 0, y4(0) = 0, y10(1) = 0, y12(1) = 0,

y1(1)− y5(0) = 0, y2(1)− y6(0) = 0, y3(1)− y7(0) = 0, y4(1)− y8(0) = 0,

y5(1)− y9(0) = 0, y6(1)− y10(0) = 0, y7(1)− y11(0) = 0, y8(1)− y12(0) = 0.
(2.3.18)

A collocation method for numerical integration of boundary value problems can fail to con-
verge in instances where it encounters a singular Jacobian. Thus, at the very least, the
following problem parameters should be avoided:

g̃ = 0, p̃ = 1, γ̃ ∈ {0, η̃, 1}, η̃ ∈ {0, γ̃, 1}. (2.3.19)
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There may be circumstances in which we want equations where there are no singular
points or a sole γ̃ or η̃. In those cases, the governing equations (2.3.17) and boundary
conditions (2.3.18) must be modified. The procedure detailed in this section is analogous
to those developments: only a redefinition of some variables and reordering of equations is
required. In the interests of brevity, these details are omitted.

2.4 Imposition of the local incompressibility

constraint

In terms of the stretch variables, the local incompressibility constraint may be expressed as

µ1µ2µ3 = 1. (2.4.1)

The internal constraint may be cast into the form (1.3.21) using the directors:
√

d1 · d1

√
d2 · d2

√
d3 · d3 = 1. (2.4.2)

Substituting (2.4.1) into the unconstrained strain energy (2.3.1) and choosing to eliminate
µ3 results in a non-quadratic strain energy function:

2wc = kS

[
(µ1 − 1)2 + (µ2 − 1)2 +

(
1

µ1µ2

− 1

)2
]
+ kG

[
(µ′

1)
2
+ (µ′

2)
2
]

+ 2kP

[
(µ1 − 1)(µ2 − 1) + (µ1 − 1)

(
1

µ1µ2
− 1

)
+ (µ2 − 1)

(
1

µ1µ2
− 1

)]
, (2.4.3)

where wc = ŵc(µ1, µ2) is the constrained strain energy for an incompressible medium. A
quadratic approximation of (2.4.3) close to µ1 = 1 = µ2 and µ′

1 = 0 = µ′
2 yields

2wc ≈ 2(kS − kP)
[
(µ1 − 1)2 + (µ2 − 1)2 + (µ1 − 1)(µ2 − 1)

]
+ kG

[
(µ′

1)
2
+ (µ′

2)
2
]
.

Applying (1.3.28) to the quadratic approximation, we derive the following force-stretch re-
lations:

k1 =

(
kI(2µ1 + µ2 − 3) +

λIc
µ1

)
E1, k2 =

(
kI(2µ2 + µ1 − 3) +

λIc
µ2

)
E2,

n = λIcµ1µ2e3, mα = kGµ
′
αEα, (no sum), (2.4.4)

where
kI = kS − kP (2.4.5)

is a new stiffness to be discussed in Section 2.6. A relationship between λIc and λ
I for linear

deformations is established as follows:

λIc = λI + kI(2− µ1 − µ2), (2.4.6)

where µ3 − 1 ≈ 2 − µ1 − µ2 close to µi = 1. We observe that λI is directly related to the
constraint pressure while λIc contains an additional constitutive piece.
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Governing equations under an anchoring load

In deriving the governing equations, we assume once again that e′3 ≈ 0 for the resulting
deformations. Using the contact force given by (2.2.7), we find a relation for the internal
constraint force:

λIc = − D

µ1µ2
. (2.4.7)

The balances of director momentum yield the equations for an incompressible rod subject
to an anchoring load of strength D along its length:

µ′′
1 =

Rρ0g

kG
µ1µ2 −

D

kGµ
2
1µ2

+
kI
kG

(2µ1 + µ2 − 3),

µ′′
2 = − D

kGµ1µ2
2

+
kI
kG

(2µ2 + µ1 − 3). (2.4.8)

Using the same non-dimensional variables as in (2.3.4)1 and (2.3.4)5 and introducing

ĩ =
kIℓ

2
0

kG
, δ̃ =

Dℓ20
kG

, (2.4.9)

we obtain the non-dimensional form of the governing equations:

d2µ1

dz̃2
= m̃µ1µ2 −

δ̃

µ2
1µ2

+ ĩ(2µ1 + µ2 − 3),

d2µ2

dz̃2
= − δ̃

µ1µ2
2

+ ĩ(2µ2 + µ1 − 3). (2.4.10)

Governing equations under advancing loads

In the case of an advancing load of pressure p applied to the rod, we cannot decouple λIc
from the equations and the balance of linear momentum is needed:

µ′′
1 =

pπR2

kG
+
Rρ0g

kG
µ1µ2 +

λIc
kGµ1

+
kI
kG

(2µ1 + µ2 − 3),

µ′′
2 =

pπR2

kG
+

λIc
kGµ2

+
kI
kG

(2µ2 + µ1 − 3),

λI
′

c = −λIc
(
µ′
1

µ1
+
µ′
2

µ2

)
. (2.4.11)

By introducing the non-dimensional variable

λ̃Ic =
λIcℓ

2
0

kG
, (2.4.12)
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the equations take on a more compact non-dimensional form:

d2µ1

dz̃2
= c̃+ m̃µ1µ2 +

λ̃Ic
µ1

+ ĩ(2µ1 + µ2 − 3),

d2µ2

dz̃2
= c̃+

λ̃Ic
µ2

+ ĩ(2µ2 + µ1 − 3),

dλ̃Ic
dz̃

= −λ̃Ic
(
dµ1

dz̃

1

µ1
+
dµ2

dz̃

1

µ2

)
. (2.4.13)

Boundary conditions

The procedure for defining variables and breaking up the domain is identical to the procedure
discussed in Section 2.3. Added care must be taken in the boundary condition for λIc. If
there is a singular point γ where γ− is in a region of anchoring loads and γ+ is in a region
of advancing loads, then we have a jump condition leading to the implication

JnKξ=γ = 0 =⇒ λ̃Ic
(
γ+
)
= − δ̃

µ1(γ−)µ2(γ−)
, (2.4.14)

where we have enforced continuity of µ1 and µ2 across γ. Similarly, if there is a singular
point η, where η− is in a region of advancing loads and η+ is in a region of anchoring loads,
then we find:

JnKξ=η = 0 =⇒ λ̃Ic
(
η−
)
= − δ̃

µ1(η+)µ2(η+)
. (2.4.15)

In the case of a region of anchoring loads followed by advancing loads followed by anchoring
loads, as in Section 2.3, the domain is decomposed using the following dependent variables:

y1 = µ1, y2 =
dµ1

dz̃
, y3 = µ2, y4 =

dµ2

dz̃
, on 0 ≤ z̃ ≤ γ̃,

y5 = µ1, y6 =
dµ1

dz̃
, y7 = µ2, y8 =

dµ2

dz̃
, y9 = λ̃Ic, on γ̃ ≤ z̃ ≤ η̃,

y10 = µ1, y11 =
dµ1

dz̃
, y12 = µ2, y13 =

dµ2

dz̃
, on η̃ ≤ z̃ ≤ 1. (2.4.16)

We once again let

z̃1 =
z̃

γ̃
, z̃2 =

z̃ − γ̃

η̃ − γ̃
, z̃3 =

z̃ − η̃

1 − η̃
. (2.4.17)
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Using the common variable ζ̃ = z̃i, the governing equations for the incompressible rod
become:

dy1

dζ̃
= γ̃y2,

dy2

dζ̃
= γ̃

(
m̃y1y3 −

δ̃

y21y3
+ ĩ(2y1 + y3 − 3)

)
,

dy3

dζ̃
= γ̃y4,

dy4

dζ̃
= γ̃

(
− δ̃

y1y23
+ ĩ(2y3 + y1 − 3)

)
,

dy5

dζ̃
= (η̃ − γ̃)y6,

dy6

dζ̃
= (η̃ − γ̃)

(
c̃+ m̃y5y7 +

y9
y5

+ ĩ(2y5 + y7 − 3)

)
,

dy7

dζ̃
= (η̃ − γ̃)y8,

dy8

dζ̃
= (η̃ − γ̃)

(
c̃+

y9
y7

+ ĩ(2y7 + y5 − 3)

)
,

dy9

dζ̃
= −(η̃ − γ̃)2y9

(
y6
y5

+
y8
y7

)

dy10

dζ̃
= (1− η̃)y11,

dy11

dζ̃
= (1− η̃)

(
m̃y10y12 −

δ̃

y210y12
+ ĩ(2y10 + y12 − 3)

)
,

dy12

dζ̃
= (1− η̃)y13,

dy13

dζ̃
= (1− η̃)

(
− δ̃

y10y212
+ ĩ(2y12 + y10 − 3)

)
. (2.4.18)

We use (2.4.14) in applying the boundary conditions on the unified domain:

y2(0) = 0, y4(0) = 0, y11(1) = 0, y13(1) = 0,

y1(1)− y5(0) = 0, y2(1)− y6(0) = 0, y3(1)− y7(0) = 0, y4(1)− y8(0) = 0,

y5(1)− y10(0) = 0, y6(1)− y11(0) = 0, y7(1)− y12(0) = 0, y8(1)− y13(0) = 0,

y9(0) +
δ̃

y1(1)y3(1)
= 0. (2.4.19)
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This completes the development of the boundary value problems for compressible and in-
compressible rods.

2.5 Kinematical integrating conditions and simulated

motion

Now that the boundary value problems have been developed for both the compressible and
incompressible rod, it remains to architect a locomotion scheme that allows for γ̃ and η̃ to
migrate along the centerline in order to simulate peristalsis. To that end, a discussion of
how to iteratively obtain position vectors and directors in time is needed.

Integrating conditions

Referring to Figure 1.4, the ground plane has unit normal E1 and passes through the point
(−R, 0, 0). We found earlier that the points from the lateral surface of the rod in contact
with the ground plane must obey r∗(−R, 0, ξ) · E1 = −R. Therefore,

(r∗(−R, 0, ξ) · E1)
′ = 0, (2.5.1)

and we have the relation
r′ · E1 = Rd′

1 · E1. (2.5.2)

Let x(ξ) and z(ξ) be Cartesian coordinates for the current centerline position vector, so that

r(ξ) = xE1 + zE3. (2.5.3)

As r′ does not come out of plane according to the ansatz, suppose that et = cos(θ)E3 +
sin(θ)E1. Now we have two representations for r′:

r′ = µ3(cos(θ)E3 + sin(θ)E1) = x′E1 + z′E3. (2.5.4)

The first order ordinary differential equations for the current centerline position given the
strains and strain gradients from integrating (2.3.17) or (2.4.18) are

x′ = Rµ′
1, z

′ = µ3 cos(θ), where θ = arcsin

(
Rµ′

1

µ3

)
. (2.5.5)

Hence,

z′ =
√
µ2
3 − R2µ

′2
1 . (2.5.6)

We note that it is expected that µ3 >> Rµ′
1 for all deformations. Integrating (2.5.5)1 and

noting that x should be zero when µ1 = 1, we find

x(ξ) = R(µ1(ξ)− 1). (2.5.7)
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To obtain z(ξ), we assume the existence of a singular fixed, or anchored, point with mate-
rial coordinates (−R, 0, ξA). If z(ξA) is a priori known from another analysis, then z(ξ) is
generated via forward and rearward integrations from this point:

z(ξ)− z(ξA) =

∫ ξ

ξA

√
µ2
3 −R2µ

′2
1 dξ. (2.5.8)

Peristalsis

The basis for the locomotion scheme requires the singular points γ and η to migrate rearward
through the material. A particular prescription for γ(t) and η(t) results in a model for
peristalsis with pulses of contraction propagating rearward along the rod. The continuous
time parameter t is selected so that t = 0 indicates the start of the motion. A discrete time
index it = itstep is introduced, where tstep is a time step, so that we can write

γ
(
it
)
= iγ, η

(
it
)
= iη. (2.5.9)

Note that when it comes to the numerical integration, neither γ nor η may actually occupy
ξ = 0, ℓ0, in accordance with the singular Jacobian conditions of (2.3.19).

The kinematics of the now time-indexed position vector ir are updated at every it to
advance the rod and simulate the motion. We have the anchoring condition

iz
(
iξA
)
= i−1z

(
iξA
)
. (2.5.10)

The update rule becomes

iz(ξ) = i−1z
(
iξA
)
+

∫ ξ

iξA

√
iµ3

2 −R2 iµ1
′2dξ. (2.5.11)

The vertical position ix(ξ) is updated according to iµ1(ξ) using (2.5.7). It remains to give
specific prescriptions for iγ and iη based on the application at hand.

2.6 Prescriptions for the stiffnesses

The one-dimensional moduli kS, kG, and kP should be physically motivated. We will relate
them to Poisson’s ratio and other moduli from linear elasticity. To that end, we contemplate
two simple experiments - one a simple tension test and the other an application of a uniform
hydrostatic load. Our main results are presented in (2.6.7) and (2.6.20).

To interpret the results from the forthcoming thought experiments, it is helpful to consider
an inversion of the force-strain relations (2.3.2) for a compressible rod:




µ1 − 1
µ2 − 1
µ3 − 1
µ′
1

µ′
2



= C




k1 · E1

k2 · E2

n · e3
m1 · E1

m2 · E2



, (2.6.1)
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where

C =
1

k




kP + kS −kP −kP 0 0
−kP kP + kS −kP 0 0
−kP −kP kP + kS 0 0
0 0 0 k/kG 0
0 0 0 0 k/kG



,

k = (kS − kP)(kS + 2kP). (2.6.2)

Simple tension

The first experiment is a simple tension. Suppose a pair of terminal tensile forces of strength
F are applied at the endpoints of a free-free compressible rod of reference cross-sectional
area A0 = πR2. Then, from the balance laws and jump conditions, n = Fe3 = FE3, k

α = 0,
and mα = 0, i.e., we have assumed no necking behavior since µα are free to change at the
terminal cross-sections. We may derive from (2.6.1) the stress-strain relation

E1D(µ3 − 1) =
F

A0
, (2.6.3)

where

E1D =
(kS − kP)(kS + 2kP)

A0(kP + kS)
(2.6.4)

is defined to be an elastic modulus derived from the one-dimensional theory. The stiffness
E1D is the ratio of engineering stress to the observed engineering strain in the longitudinal
direction. In the same experiment, the rod’s cross-sections contract in response to the Poisson
effect, and we additionally have the relations

µ1 − 1 = µ2 − 1 = −kP
k
F = − kP

kP + kS
(µ3 − 1). (2.6.5)

We may now define Poisson’s ratio as the ratio of lateral to longitudinal strain, as derived
from the one-dimensional theory:

ν1D =
kP

kP + kS
. (2.6.6)

The pair (E1D, ν1D) determine the Lamé pair (kS, kP) as

kS =
1− ν1D

(1 + ν1D)(1− 2ν1D)
E1DA0, kP =

ν1D
(1 + ν1D)(1− 2ν1D)

E1DA0. (2.6.7)

A hydrostatic pressure

We next consider an experiment where the rod is exposed to a uniform, or hydrostatic,
pressure p. In that case, k1 = −pA0E1, k

2 = −pA0E2, and n = −pA0E3 = −pA0e3. From
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the strain-force relations (2.6.1), we find that the isotropic material is subject to a pure
dilatation:

µ1 − 1 = µ2 − 1 = µ3 − 1 = −kS − kP
k

pA0. (2.6.8)

Therefore, we have the summation of strains as:

µ1 + µ2 + µ3 − 3 = −kS − kP
k

pA0. (2.6.9)

The deformation is homogeneous for uniform material properties. If V is the global post-
deformation volume, and V0 is the global reference configuration volume, then we have

V

V0
= µ1µ2µ3, (2.6.10)

which, for deformations close to µ1 ≡ µ2 ≡ µ3 ≡ 1, we may approximate to first order in the
stretches as

V

V0
≈ 1 + µ1 + µ2 + µ3 − 3. (2.6.11)

Consequently, the volumetric strain is approximately

∆V

V0
≈ µ1 + µ2 + µ3 − 3, (2.6.12)

where
∆V = V − V0 (2.6.13)

is the global volume difference. Expression (2.6.9) now becomes

κ1D
∆V

V0
= −p, (2.6.14)

where

κ1D =
kS + 2kP

A0
(2.6.15)

is a bulk modulus derived from the one-dimensional theory. Given the pair (E1D, κ1D), we
may combine (2.6.7) and (2.6.15) to find ν1D as

ν1D =
1−E1D/κ1D

2
. (2.6.16)

Hence, for the incompressible case where κ1D >> E1D, we have ν1D = 0.5 and, using
L’Hôpital’s rule on the difference between (2.6.7)1 and (2.6.7)2,

kI = kS − kP =
2

3
E1DA0. (2.6.17)
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To gain insight into kG for compressible and incompressible materials, we look towards results
from the direct approach.

Suppose a three-dimensional body is comprised of isotropic linearly elastic material.
Following [47], we can approximate the classical three-dimensional strain energy from linear
elasticity for such materials comprising a rod-like body as

2w = k1

[(
µ2
1 − 1

)2
+
(
µ2
2 − 1

)2
+
(
µ2
3 − 1

)2]
+ k2

[
(µ′

1µ1)
2
+ (µ′

2µ2)
2
]

+ 2k3
[(
µ2
1 − 1

)(
µ2
2 − 1

)
+
(
µ2
1 − 1

)(
µ2
3 − 1

)
+
(
µ2
2 − 1

)(
µ2
3 − 1

)]
, (2.6.18)

where

k1 =
E3DπR

2(1− ν3D)

4(1 + ν3D)(1− 2ν3D)
, k2 =

E3DπR
4

8(1 + ν3D)
, k3 =

ν3D
1− ν3D

k1.

Here, E3D and ν3D are, respectively, Young’s modulus and Poisson’s ratio from the three-
dimensional theory. If we approximate (2.6.18) to quadratic order near µ1 = µ2 = µ3 = 1
and µ′

1 = µ′
2 = 0, we find:

2w ≈ 4k1
[
(µ1 − 1)2 + (µ2 − 1)2 + (µ3 − 1)2

]
+ k2

[
(µ′

1)
2
+ (µ′

2)
2
]

+ 2k3[4(µ1 − 1)(µ2 − 1) + 4(µ1 − 1)(µ3 − 1) + 4(µ2 − 1)(µ3 − 1)]. (2.6.19)

We are therefore justified in assigning

kS =
E3DπR

2(1− ν3D)

(1 + ν3D)(1− 2ν3D)
, kG =

E3DπR
4

8(1 + ν3D)
, kP =

ν3D
1− ν3D

kS. (2.6.20)

Note that (2.6.20)1 and (2.6.20)3 reconcile with the stiffnesses developed in (2.6.7). We
conclude that E1D = E3D = E and ν1D = ν3D = ν. The one-dimensional bulk modulus
is therefore also equivalent to its three-dimensional counterpart, and so we may redefine
κ1D = κ. Using E and ν, which may be determined from an experiment, we assign

kG =
EπR4

8(1 + ν)
(2.6.21)

for compressible materials and

kG =
EπR4

12
(2.6.22)

for incompressible materials. Consequently, any one of the pairs (E, ν), (E, κ), or (κ, ν)
along with A0 define a compressible material while E along with A0 define an incompressible
material for the one-dimensional theory.
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Figure 2.7: A single cycle of a theoretical push-pull locomotion scheme effected by a particular
prescription for γ(t) (green) and η(t) (blue). The strategy is to (a) push using a rear anchor
point (red), (b) transition to a forward anchor point, and then (c) pull using a forward anchor
point. The time indices are ordered such that t1 < t2 < t3 < · · ·.

2.7 A peristalsis-driven soft robot

To drive a soft robot using peristalsis, we choose to architect a push-pull locomotion scheme,
with the anchor point being either ξA = 0 during pushing or ξA = ℓ0 during pulling (Figure
2.7). In this case, the equations developed in Section 2.3 are useful. A prescription for γ(t)
and η(t) is desired. Let tpause indicate a pause time between cycles. We assume that the
rod is fully longitudinally contracted for 0 ≤ t < tpause. At t = t+pause, γ begins to migrate
rearward from ℓ0 at a propagation speed v:

γ(t) = ℓ0 − v(t− tpause), tpause < t ≤ tpause +
ℓ0
v
. (2.7.1)

The rod begins to push itself forward using circular contractions and a rear anchor. At some
point, the rod transitions to a forward anchor point. Let T indicate the percentage of the rod
that γ has left to migrate through before an η is initiated at ℓ0. If, for example, T = 0.25,
then η appears at ℓ0 when γ reaches ℓ0/4, which is the scenario displayed in Figure 2.7. We
take the propagation speed for η(t) to be the same as that for γ(t). Hence, we have

η(t) = ℓ0 − v

(
t− tpause −

ℓ0
v
(1− T )

)
,

tpause +
ℓ0
v
(1− T ) < t ≤ tpause +

ℓ0
v
(2− T ). (2.7.2)
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When γ reaches ξ = 0, it vanishes and the rod becomes subject only to an η. In this period,
the rod is pulling itself forward using a forward anchoring point by sending a rearward pulse
of longitudinal contractions. When the time t = tpause +

ℓ0
v
(2− T ) is reached, another pause

elapses, and the cycle continues. The rod achieves a net forward displacement every cycle.
Discrete values of iγ̃ and iη̃ for the push-pull prescription are displayed in Figure 2.8. Care
must be taken so that neither iγ̃ = 0, ℓ0 nor iη̃ = 0, ℓ0.
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Figure 2.8: Push-pull prescriptions for iγ̃ and iη̃ according to (2.7.1) and (2.7.2). We do
not allow the discrete values of γ and η to get too close to 0 or ℓ0. Results are displayed for
a rod of reference length ℓ0 = 10 in = 25.4 cm and propagation speed v = 2.54 cm/s. The
time parameters are tstep = 0.01 s, tpause = 5 s, and T = 0.25 s.

Realistic parameters must be prescribed to demonstrate that the theory is useful in
practice. The variables remaining to be prescribed are: (1) an inertial parameter ρ∗0, (2)
geometric parameters R and ℓ0, (3) compressible material properties E and ν, and (4)
kinetic parameters D and p. With soft polymers in mind for a soft robot (see [36] for a
relevant perspective), we select for a simulation, in SI units,

ρ∗0 = 1 g · cm−3, R = 2.54 cm, ℓ0 = 25.4 cm, E = 10 kPa,

ν = 0.3, D = 1 N, p = 1 psi = 6.89 kPa. (2.7.3)

The propulsive kinematics is prescribed to be those graphed in Figure 2.8. For the case of
modeling a pneumatic artificial muscle (PAM), one might choose D = 0, and p could be neg-
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ative. If a hydraulic artificial muscle is desired to be modeled, then the governing equations
of Section 2.4 for incompressible media may prove to be more applicable. Simulation results
for the compressible soft robot described in this section are displayed in Figure 2.9.

t = 4.9 s

t = 8.4 s

t = 11.9 s

t = 13.6 s

t = 15.3 s

t = 18.8 s

t = 23.0 s

Push

Transition

Pull

E1

E3

Figure 2.9: A potential soft robot engaging in push-pull locomotion with the parameters of
(2.7.3) and locomotion scheme as in Figures 2.7 and 2.8.

2.8 Biomimetic modeling of an earthworm

The locomotory gait of the earthworm Lumbricus terrestris was studied in [50]. The worm is
described to advance by first protruding its anterior end in a push phase with the posterior
end serving as an anchoring “foot.” Next, a stance phase is initiated where the anterior end
serves as the foot for anchoring and the posterior end is dragged forwards in a pull phase.
Following Figure 2.10, we define tp as the protrusion time and ts as the stance time. A
prescription for γ̃ and η̃ in time is designed (Figure 2.11) based on the gait cycle displayed
in Figure 2.10 along with knowledge of the protrusion and stance times. We choose η̃ to
decrease from 0.5 to 0 over half the protrusion time, while γ̃ decreases from 1 to 0.75 over
the first half of the protrusion time and then speeds up to decrease from 0.75 to 0 over the
second half. When γ̃ reaches 0.5, the worm enters its stance phase and another wave of
circular contraction begins to pass rearward via the initiation of an η̃ traversing at a uniform
material speed. The resulting net displacement accomplished by the worm in a given cycle
is its stride length.

Quillin’s model [50] allows for a continuum of anchoring points. Our model includes
some strain gradient elasticity, meaning that actions at one location of the worm may effect
strains in another: sections of the worm that are contracting longitudinally versus circularly
may not be fully insulated from one another. Since we are choosing a singular point for
anchoring, “backslipping” may be accounted for in our model. For the stance phase, the
anchoring point is chosen as the anterior end. In the beginning part of the protrusion phase,



CHAPTER 2. WORM LOCOMOTION 63

Figure 2.10: The peristaltic crawling of an earthworm Lumbricus terrestris and its relevant
kinematic variables [50]. Reproduced with written permission from the author.
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Figure 2.11: Protrusion-stance prescriptions for iγ̃ and iη̃ intending to mimic the locomotion
scheme of Figure 2.10. Protrusion and stance times for a worm of 10 g are found to be
tp = 3.15 s and ts = 1.75 s, respectively.

the anchoring point is chosen to be the average of γ and η, while in the latter part of the
phase, it is chosen to be the rear. The prescribed anchoring behavior as displayed in Figure
2.12 reconciles with that displayed in Figure 2.10.

An average adult worm of mass 10 g [35] is chosen to be modeled. Empirical scaling
relationships for input to the model are collected in Table 2.1. The relationships in Table
2.1, from top to bottom, are: stance time-body mass, protrusion time-body mass, resting
length-body mass, and resting diameter-body mass, where the diameter of the 30th segment
from the anterior end was measured in [35]. For the worm of mass 10 g, geometric and
kinematical parameters are calculated and have been inserted into Table 2.1.

Some efforts have been made to quantify the amount of tension produced by longitudinal
and circular muscle contractions of a dissected strip of muscle from an earthworm, Pheretima
communissima [29, 66, 67]. These authors concede that their results are only qualitative,
as their dissected strips contained both circular and longitudinal muscle. Nonetheless, their
estimates can yield an order of magnitude estimate for the anchoring and advancing loads.
From [66], peak longitudinal and circular muscle tensions from phasic contractions of 10 mm
by 1 mm dissected strips of muscle were measured as

Tcirc,peak = 0.3 gf, and Tlong,peak = 0.186 gf, (2.8.1)
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Figure 2.12: Non-dimensional location of the anchoring point, designed to mimic the loco-
motion scheme of Figure 2.10.

where the units of tension are gram-force. A worm of diameter 7.6 mm has a circumference
of 23.88 mm. For a 10 mm by 1 mm dissected strip of circular muscle cut azimuthally, an
equivalent peak advancing pressure is derived as

ppeak = 5.7 kPa. (2.8.2)

If a ring of longitudinally cut muscle fibers are arranged circularly, then the net result is
23.88 linear actuators (recall Figure 2.3(a)) acting in parallel. The total amount of peak
longitudinal force generated in the worm is therefore derived as

Dpeak = 43.6 mN. (2.8.3)

We will assume that for the locomotory gait of the 10 g worm, only a certain percentage of
its peak load is used. This percentage is calibrated to match the anticipated kinematics and
coelomic pressure.

The elastic parameter E of the worm comes from connective tissue fibers that are arranged
helically in the body wall [33, 51, 63]. The passive tension of muscle was also measured in
[29, 67], but it is difficult to discern the resting length of the tissue that was stretched. In
a simple force-stretch experiment involving a worm, we would be required to separate the
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Table 2.1: Empirical scaling relationships collected from the literature on earthworm (Lum-
bricus terrestris) kinematics and geometry. Results are listed for an adult worm of mass 10
g.

Empirical Output Source

Relationship for m = 10 g

ts = 1.6m0.04 1.75 s Quillin [50]

tp = 2.5m0.1 3.15 s Quillin [50]

ℓ0 = 102m0.397 250 mm Kurth & Kier [35]

2R = 100.6m0.278 7.6 mm Kurth & Kier [35]

stress from the elastic tension from the compressive hydrostatic pressure. A procedure could
be devised where the coelomic fluid in each segment is drained prior to a tensile test. Given
the lack of empirical data in the literature and the inherent difficulty of extracting E from
a simple force-stretch test, we chose to calibrate the stiffness to match expected kinematic
results for a 10 g worm from [50].

Anticipated outcomes

Quillin [50] found a stride length-body mass scaling relationship as

∆ = 15m0.4, (2.8.4)

where ∆ is the stride length in units of mm. For an adult worm of 10 g, relationship (2.8.4)
yields a stride length of ∆ = 38.6 mm. According to our theory, the stride length may be
calculated as

∆ = (r(ℓ0, tp + ts)− r(ℓ0, 0)) · E3. (2.8.5)

In addition, Quillin [50] found the extremal cross-section and longitudinal strains during
contraction to be approximately constant irrespective of body mass. For segment 50 of an
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earthworm, Quillin measured a cycle-averaged longitudinal strain of 0.60 and a circumfer-
ential strain of -0.25, where the strains are between longitudinal and circular lengths of
segments. These observed strains yield a ratio of stretches as

µ1|circ
µ1|long

= 0.75,
µ3|circ
µ3|long

= 1.60, (2.8.6)

where (µ1|circ, µ3|circ) and (µ1|long, µ3|long) are evaluated at times of maximum circular and
longitudinal contraction, respectively. Segment 50 was found to be a distance of approx-
imately 2

5
ℓ0 from the anterior end of the worm in its reference configuration based on a

diagram in [51].
We assume the reactive piece of the Piola traction acting anywhere on the cross-section

is related to the coelomic pressure as

P̂E3 = −pcoelomE3, (2.8.7)

where P̂ is the reactive part of the Piola stress. Taking pcoelom to be uniform, assuming e3
to be near to E3, and applying (1.2.66) and (2.4.4)1, we derive:

pcoelom =
−λIµ1µ2

πR2
, (2.8.8)

where we recall from (2.4.5) the relation between the Lagrange multipliers:

λI = λIc − kI(2− µ1 − µ2). (2.8.9)

Quillin [51] measured a rest pressure of approximately 0.1 kPa. Our estimates do not account
for a resting pressure, other than the minimal (10 Pa) amount of pressure that is developed
under the deformation of the worm’s own weight. During peristalsis, Quillin reported pres-
sures of about 0.3 kPa for longitudinal muscle contraction and 0.8 kPa for circular muscle
contraction.

Results

To match the expected outcomes, we calibrated the elastic modulus to be E = 2 kPa,
which is on the order of the stiffness for the soft tissue comprising the human spleen [3].
Additionally, we chose the magnitude of the longitudinal and circular contractile loads to be
D = 0.6Dpeak and p = 0.238ppeak, respectively. For these parameters, our simulation results
for the biomimetic modeling of a worm are displayed in Figures 2.1 and 2.2.

We found the stretches in segment 50 to be µ1 = 0.85 and µ3 = 1.35 during circular
contraction and µ1 = 1.09 and µ3 = 0.82 during longitudinal contraction. To compare with
the result in (2.8.6), we compute

µ1|circ
µ1|long

= 0.78, and
µ3|circ
µ3|long

= 1.65, (2.8.10)
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yielding a percent error of 4% and 3%, respectively.
The theoretical coelomic pressure was found to swing between a low of 0.24 kPa when

segment 50 was subject to longitudinal contraction and a high of 0.79 kPa when segment 50
was subject to circular contraction. These values are in general agreement with the peaks
and troughs reported in [51]. Lastly, the stride length was found to be 39 mm. Compared to
the stride length of 38.6 mm predicted by scaling relationship (2.8.4), a percent error of 1%
is computed. We conclude that the directed rod model developed in this chapter appears to
be suitable for biomimetic modeling of an earthworm.

2.9 Conclusion

Boundary value problems for the static deformation of a directed rod that is permitted
to stretch in three directions have been developed. Two linearly elastic isotropic material
models were assumed with incompressibility being imposed as an internal constraint. The
elastic parameters have been related to empirical quantities that one can measure in an
experiment involving small deformations. Actuation effects, whether from robotic actuators
or muscle contraction, have been modeled as external compressive loads. The actuator loads
are treated mathematically using a doublet function for an assigned centerline force and a
uniform pressure for a pair of assigned director forces. Designs of push-pull and protrusion-
stance locomotion schemes were suggested along with suitable predictions for a singular
anchoring point. The theory has been demonstrated for use in the modeling of soft robotic
devices and the biomimetic modeling of an earthworm.

Biomimetic modeling of the worm could be improved if better data on the muscle forces
sustained during a locomotory gait cycle and the elastic properties due to connective tissues
in the body wall were collected. Regardless, we have demonstrated that the theory predicts
acceptable results after a reasonable calibration of the parameters.
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Chapter 3
A discretized model for planar

motions of a rod

3.1 Introduction

Modern computational models that aim to recreate and predict motions of slender continua
are continually being refined to improve their physical validity and computational efficiency.
The first algorithms to model these motions were established decades ago with the advent
of the finite element method. Simple cases of the finite element method involving one-
dimensional elements have been applied to model slender bodies such as bars, Bernoulli-
Euler beams, and Timoshenko beams. In order to improve speed and accuracy, many other
novel discretizations have recently been developed [11, 39, 72], including the absolute nodal
coordinate formulation (ANCF) which employs a set of gradient vectors to accommodate
large deformation problems [20, 48, 64]. One of the latest contributions to the field is
known as Discrete Elastic Rods (DER) ([4, 6, 5, 30]). This theory can be considered as
a discrete formulation of Kirchhoff’s rod theory. DER is well suited for simulating three-
dimensional motions of rods that can stretch, bend, and twist. The formulation has found
widespread adoption in the computer graphics community. Whether or not DER will gain
a similar acceptance with engineers interested in the accurate structural response of beams
and columns or the dynamic response of deforming soft robots remains to be seen. A planar
version of this theory has recently been championed by Goldberg et al. [21] for application
to locomoting soft robots.

In this chapter, we develop a novel discrete model for a rod undergoing planar motions.
The model is based on Green and Naghdi’s rod theory [25, 26, 42] as described in the first
chapter. Their rod theory is sufficiently general to capture stretching, bending, torsion, and
cross-sectional deformations. Thus, can view it as a generalization of Kirchhoff’s rod theory,
the basis for DER. Referring to Figure 3.1, we consider a rod theory to make use of a trio
of material curves. One of these curves is the centerline, while the other two will soon be
termed directorlines. In this chapter’s discrete planar theory, we model the rod using a pair
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of material curves. We will use results from Green and Naghdi’s theory as inspiration for
the discrete planar rod’s postulated strain energy function and balance laws (3.3.36).

KX

KD

Kx

K

Kd

(a) (b)

K−2X

K−2D

K+2X

K+2D

K+2x

K−2d

K−2x

K+2d

Figure 3.1: (a) A part of the reference configuration of the discrete directed curve which
is comprised of finitely many centerline vertices KX and directors KD attached at every
centerline vertex. (b) An arbitrary current configuration of the part of the rod in (a). The
solid lines indicate the centerline and directorline. The dashed lines help to show how the
material of the rod-like body is related to the abstract directed curve. In the case shown, the
centerline is chosen as the line of area centers, and the bottom boundary of the rod-like body
is gotten by a reflection of the directors across the centerline.

Our work deviates from that of DER in that it uses a different nonlinear elastic energy
postulate and incorporates additional deformation modes such as shearing, cross-sectional
stretch, and the Poisson effect. Some readers may find our formulation to be similar to
the efforts of Brand and Rubin [10] and Rubin [56, 57, 54, 55]. These researchers have
developed a numerical theory of a directed continua. Our work, though inspired by the same
theory, differs from that of Rubin’s in several ways. For one, the geometry established for
our strain measures and the postulated constitutive relations are different. Additionally, our
formulation focuses more on the minimal mathematical structure associated with using only
the centerline position vectors and directors rather than executing a rigorous discretization
of the higher-order tensors that are inherent to the continuous one-dimensional and three-
dimensional theories.

The objective for this work is to develop a discretization that is simple, computationally
efficient, and physically accurate. It is our hope that, alongside mechanicians, the computer
graphics community may find this work useful in their own simulations of slender continua.
We also aim to make the theory amenable to the modeling of situations that may involve
external actuators, constraints, and contact, as is standard in the modeling of soft robotics.
In essence, our formulation is similar in form to the Discrete Element Method (DEM) in
that a continuous rod is modeled as a system of particles with assigned inertias interacting
with one another as they exchange kinetic and elastic potential energies (cf. [39, 72]).

We begin by introducing the method for discretizing a continuous rod consisting of real
material into a system of abstract particles. We proceed by defining the limited mathematical
structure used in the theory: a set of centerline position vectors and relative position vectors
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in each cross-section. The desired strains are then devoloped using the geometry of the
directors and centerline edge vectors. These strains are used in a strain energy function
that is insensitive to superposed rigid body motions. Following the main postulates of the
chapter, we derive the internal elastic forces acting on each particle. Finally, a validation
of the discrete theory is performed by comparing the numerical solutions against analytical
solutions of static deformations of general beams.

3.2 Necessary elements from the continuous theory

Relevant ideas from the continuous theory of the first chapter are reiterated here in order
to reveal the underlying assumptions of the discrete theory. Recall that a “rod-like body”
is a three-dimensional continuum which satisfies a criterion based on length scales. Figure
3.2 shows a rod-like body with physical length scales L and D. L is measured along the
dominant length of the rod in its “longitudinal” direction. The length D is the largest
physical dimension that may be found in a direction transverse to that along which L is
measured. If the ratio D

L
<< 1, then the body is considered rod-like and is well-suited to

being modeled accurately by a directed curve.
As described in the direct approach of Chapter 1, the centerline of the directed curve is

imagined as being constituted of a new abstract material that is assigned material and inertial
properties. Then, the centerline is intrinsically a material curve that is allowed to stretch,
but it is not necessarily a material curve belonging to the rod-like body. The centerline
does not need to coincide with the line of area centers nor the line of mass centers of the
rod-like body, although the resulting equations tend to decouple and gain tractability if one
of these choices is made. A typical analysis involves determining the motion or equilibrium
configuration of a directed curve given boundary conditions and possibly initial conditions.
The behavior of the real material is then ascertained with a knowledge of how it is distributed
relative to the abstract directed curve in the reference configuration.

The main advantage of a rod theory is in its limited mathematical structure compared
to that found in three-dimensional continuum mechanics. Relative to the fixed point O,
the vector function R(ξ), ξ ∈ [0, ℓ0], places abstract centerline material points in Euclidean
three-space, thereby tracing out a smooth space curve, C. The two reference director fields
are delivered by the function Dα(ξ), α ∈ {1, 2}, which trace out smooth space curves Dα

that are placed relative to C. These two curves are termed “directorlines.” The directorlines
themselves are also thought of as being comprised of a new abstract elastic material that is
permitted only to stretch and compress.

As in prior chapters, the following equality is assumed to hold for material points in the
reference configuration:

R∗(Xα, ξ) = R(ξ) +XαDα(ξ), (3.2.1)

The assumed equality in Expression (3.2.1) implies a few restrictions on the chosen coor-
dinates {ξ,X1, X2}. Since R∗ is linear in Xα, the cross-section coordinates in their most
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L

D

A

C

Figure 3.2: A rod-like body in its natural state is one which satisfies L >> D. A sufficiently
close centerline is shown along with a possible cross-section of the rod-like body which is
shown as the hashed area.

general form are oblique Cartesian coordinates (Figure 3.3). Additionally, the cross-sections
must be planar since Span(Dα) = E2, where E2 is a two-dimensional plane of vectors.

The cross-section coordinates Xα may have arbitrary (but smoothly varying) numerical
values. In the scenario that we choose to change the values of Xα, the vectors Dα scale
accordingly so that XαDα remains an invariant position vector. It cannot be immediately
deduced which of these quantities is responsible for carrying the required physical dimension
of length. In contrast to previous chapters, it is convenient to choose a dimensionless Xα so
that the point (X1, X2) = (1, 1) is close to the boundary of the rod-like body, as portrayed
by the method shown in Figure 3.3. With this choice, the vectors Dα have a physical
dimension of length. We characterize the width W and height H of a cross-section A in its
reference configuration using the directions of Dα. These physical dimensions are obtained
by orthogonally projecting the cross-section onto lines spanned by Dα, and measuring the
length of the projected cross-section image (see Figure 3.3).
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As in prior chapters, a first-order Taylor expansion of the current position to a material
point yields the approximation for placement material points into the current configuration:

r∗(Xα, ξ) ≈ r(ξ) +Xαdα(ξ). (3.2.2)

Approximation (3.2.2) is acceptable only if ‖dα‖ are small compared to the overall length L,
so that higher-order terms in the Taylor expansion may be neglected. Thus, the centerline
is not a completely arbitrary smooth space curve. It must be at least sufficiently near
to the material of the rod-like body in its reference configuration for the first-order Taylor
expansion to be valid. As previously discussed, if the cross-sections remain plane throughout
the motion, and deformations in the cross-section plane are homogeneous, then (3.2.2) is
exact.

Define coordinates Scale coordinates

H

W

A

C

D2

D1

(X1, X2) = (1, 1)

D2

D1

Figure 3.3: Once an arbitrary but sufficiently close centerline has been chosen, a ξ-coordinate
surface intersected with the rod-like body defines a cross-section. The cross-section coordi-
nates may be chosen as oblique Cartesian and are scaled such that the reference directors
point to the lateral surface of the rod-like body.

The arbitrary nature of the centerline and cross-sections may present difficulties in inter-
preting quantities such as intrinsic curvature, intrinsic shear, and other “intrinsic” strains.
We observe that these quantities may be mathematically induced: they depend on the choice
of coordinates, of which there are limitless possibilities. Note that we have ruled out a priori
the possibility of an intrinsic centerline stretch by assigning ξ to be an arc length coordinate.
By ensuring that we always subtract away the “intrinsic” quantities in our strain measures,
the strain energy function is guaranteed to be sensitive to the relative displacements of mate-
rial points towards, away, or along one another. Take, for example, the function that delivers
the strain energy per unit reference arc length ρ0ψ associated with Euler’s inextensible elas-
tica:

ρ0ψ =
EI

2
(κ− κ0)

2, (3.2.3)

where ρ0 is a linear mass density per unit reference arc length, ψ is the specific strain energy
per unit mass, EI is the bending stiffness, κ is the current curvature of the centerline, and κ0
is the so-called intrinsic curvature of the centerline in the reference configuration. The strain
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that is used in the strain energy function must be a relative difference between real changes in
curvature of the centerline due to motion of material points and the mathematically induced
quantities due to a choice of coordinates. While κ0 may be mathematically induced, κ−κ0 is
a physical quantity that increments in the circumstance of nonzero displacement gradients.

The strain energy postulate (3.2.3) is a minimum when the rod is in its reference state,
which exposes yet another underlying assumption. The reference state of the three-dimensional
continuum must coincide with one of the rod-like body’s natural states, while the reference
state of the directed curve is arbitrary up to the foregoing restrictions. A natural state of
the continuum is a static configuration that it assumes when it is subject to a traction-free
boundary. In the discrete theory, we will assume the reference configuration is coincident
with one of the rod-like body’s natural states.

We will assume for the rest of this chapter that the motion of the rod-like body is planar.
Let E2 point in a direction opposite to that in which gravity acts. Suppose a set of planes
with unit normal E1 intersect the three-dimensional body in its reference configuration. The
material points in the intersection are assumed to remain confined to their respective plane
for all time, i.e., the body undergoes parallel-plane motion and displacements out of the
plane are unable to be modeled. Any equilibrium of the directed curve will leave the body in
a state of plane strain. We choose to identify the material planes oriented by unit normal E1

as X1 coordinate surfaces. The coordinate X2 is chosen to have coordinate curves that run
vertically in each cross-section with values positively varying along E2. The X1 coordinate
surface containing the centerline is the surface of interest for the model. We assume the
motion of all adjacent X1 coordinate surfaces to be identical to that which contains the
centerline. The director d2 lies in the centerline plane of motion for all time. With these
choices for the curvilinear coordinates, d1 becomes a fixed vector normal to the plane of
motion, i.e., d1 = WE1 for all time. In what follows, we drop the postscripts on X2 and d2

as we will be concerned with the through-the-thickness behavior only in this direction and
the related motion of d2.

3.3 The geometry of motion

Kinematic quantities for the discrete directed curve

We begin by dividing the centerline of the continuous directed curve into N − 1 equally
sized parts. The boundary of each part defines two centerline vertices, so that there are N
centerline vertices in all. By connecting the centerline vertices with straight lines hereafter
referred to as “edges,” we obtain the discrete reference centerline. We denote the total length
of the discrete reference centerline by L. The cross-sections are taken to be the intersection
of the Kξ coordinate surfaces with the material of the rod-like body, where

Kξ =
Kℓ0
N − 1

, (K = 0, . . . , N − 1). (3.3.1)
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Within each cross-section lies a director in the centerline’s plane of motion that points to the
boundary of the rod-like body. We let the tips of these vectors locate the director vertices. By
connecting the director vertices with straight lines in the reference configuration, we obtain
the discrete reference directorline, an approximation of the material boundary. Figure 3.1(a)
shows a discrete directed curve in its reference configuration. We obtain an approximate
image of the rod-like body with knowledge of how its continuous distribution of material
relates geometrically to the centerline and the directorline in the reference configuration.
While the directorline has already been chosen as a material line approximately on the
boundary of the rod-like body in this theory, we are still at liberty to choose a centerline
and directorline that are convenient for the particular problem being modeled.

We let KX indicate the reference position vector of the Kth centerline vertex relative
to some fixed point O while KD indicates the reference position vector of the Kth director
vertex relative to the Kth centerline vertex. Quantities assigned to vertices are ornamented
with a lower prescript while quantities that belong to an edge are ornamented with an upper
prescript. To facilitate an implementation of this theory in a programming language such as
C++, indices are ordered from 0 up to N − 1. The 0th and (N − 1)th centerline vertices are
referred to as the boundary centerline vertices, while the K = 1, . . . , N−2 vertices are called
interior centerline vertices. Note that, in view of the rod-like body we are trying to model,
all director vertices may be considered boundary vertices for our choice of directorline.

As the rod undergoes a motion, the Kth centerline vertex is located in E3 by the vector

Kx at the current time, t. Likewise, the Kth directorline vertex is positioned relative to Kx

by the vector Kd in the current configuration. The centerline displacement is therefore given
by

Ku = Kx− KX, (K = 0, . . . , N − 1), (3.3.2)

while the relative directorline displacement is

Kδ = Kd− KD, (K = 0, . . . , N − 1). (3.3.3)

Using the centerline position vectors, we can construct the centerline edge vectors in the
reference and current configurations:

KE = K+1X− KX,
Ke = K+1x− Kx, (K = 0, . . . , N − 2). (3.3.4)

Discrete reference and current edge unit tangent vectors may then be defined through a
scaling:

KT =
KE∥∥KE
∥∥ ,

Kt =
Ke

‖Ke‖ , (K = 0, . . . , N − 2). (3.3.5)

We can similarly define reference and current unit vectors in the Kth cross-section:

KD̂ = KD

‖KD‖ , K d̂ = Kd

‖Kd‖
, (K = 0, . . . , N − 1). (3.3.6)

For the continuous directed curve, the tangent vector at a point on the centerline is obtained
using an arc length derivative in which the change in position vector can be probed directly
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behind and ahead of the point of interest. The discrete edge tangent vectors of (3.3.5) reflect
a one-sided approximation to the centerline vertex tangent. A more accurate centerline
vertex tangent can be developed which uses information from the vertices directly behind
and ahead of the vertex of interest and is only defined at the interior vertices:

KT = K+1X− K−1X∥∥K−1E+ KE
∥∥ , Kt =

K+1x− K−1x

‖K−1e+ Ke‖ , (K = 1, . . . , N − 2). (3.3.7)

At the two boundary centerline vertices, we may set the vertex tangent equal to the edge
tangent, which reflects the use of one-sided limits:

0T = 0T, 0t =
0t, (3.3.8)

and

N−1T = N−2T, N−1t =
N−2t. (3.3.9)

To integrate quantities distributed along the rod such as the strain energy density, we need
to introduce a discrete integration measure in the reference configuration. Here, we choose
to use the Voronoi length, which is the average of the reference edge lengths surrounding an
interior centerline vertex:

KL =
1

2

(∥∥K−1E
∥∥+

∥∥KE
∥∥), (K = 1, . . . , N − 2). (3.3.10)

At the boundary nodes, we define the reference Voronoi lengths as

0L =
1

2

∥∥0E
∥∥, and N−1L =

1

2

∥∥N−2E
∥∥. (3.3.11)

It is helpful to notice that
N−2∑

K=0

∥∥KE
∥∥ = L =

N−1∑

K=0

KL. (3.3.12)

Similar discrete integration measures exist at each node (vertex) in the current configuration:

Kℓ =
1

2

(∥∥K−1e
∥∥+

∥∥Ke
∥∥), (K = 1, . . . , N − 2), (3.3.13)

with

0ℓ =
1

2

∥∥0e
∥∥, and N−1ℓ =

1

2

∥∥N−2e
∥∥. (3.3.14)

With the aim of quantifying a discrete curvature, a reference and current turning angle at
each interior centerline vertex is defined using the edge tangents:

|KΦ|= arccos
(
K−1T · KT

)
, |Kϕ|= arccos

(
K−1t · Kt

)
, (3.3.15)

(K = 1, . . . , N − 2).
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We may employ the following approximations to the turning angle at the boundary vertices:

|0Φ|= arccos(0T · 1T), |0ϕ|= arccos(0t · 1t), (3.3.16)

and
|N−1Φ|= arccos

(
N−2T · N−1T

)
, |N−1ϕ|= arccos

(
N−2t · N−1t

)
. (3.3.17)

Whether the rod is curving upwards or downwards is indeterminate with definitions (3.3.15)-
(3.3.17). To compute this, we assign to the turning angle the sign of the following scalar
triple product:

Kϕ

|Kϕ|
= sgn

(
−E1 ·

(
K−1t× Kt

))
, (3.3.18)

where E1 is the unit vector normal to the plane of motion. A positive value of Kϕ then
corresponds to an upward curving rod, where we remind the reader that E2 was defined to
point “up.” An analogous procedure may be carried out in the reference configuration.

Stretches and strains

We now use the preceding geometrical developments to construct strain measures which
are natural to the discrete theory. It is imperative that the measures to be introduced are
insensitive to rigid motions that are superposed on the rod. We will aim to satisfy this
physical requirement by construction, which will simultaneously satisfy the principles known
as “observer invariance” and “material frame indifference.” We first introduce the stretch
(or “stretch ratio”) Kµ associated with the Kth centerline edge as

Kµ =

∥∥Ke
∥∥

∥∥KE
∥∥ , (K = 0, . . . , N − 2). (3.3.19)

The stretch Kµ associated with the Kth centerline vertex is calculated using a ratio of the
Voronoi lengths:

Kµ = Kℓ

KL
, (K = 0, . . . , N − 1). (3.3.20)

Vertex and edge centerline stretching strains may be identified as Kµ − 1 and Kµ − 1,
respectively, which are discrete versions of engineering normal strain along the centerline.
One may also define a discrete version of the Green-Lagrange strain along the centerline as
1
2
(Kµ

2 − 1), if so desired. We choose not to confer symbols to these quantities and will later
prefer to postulate our strain energy directly in terms of stretches. The stretch associated
with the Kth cross-section is

Kλ =
‖Kd‖
‖KD‖ , (K = 0, . . . , N − 1), (3.3.21)

where Kλ − 1 is an engineering normal strain in the cross-section. Note that we have no
freedom to define a mathematical intrinsic stretch along the centerline or in the cross-section
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as we have assigned physical meaning to ξ and ‖KD‖, thereby constraining their numerical
values. We also make a note that the cross-section stretch defined in (3.3.21) is distinctly
different from the “normal cross-sectional stretch” defined by Rubin and Naghdi in [43, 53].
We prefer to conceive of the stretch Kλ as being associated with the material of a single
cross-section that we follow rather than for the instantaneous collection of material points
along the principal normal of the centerline, which vary in the presence of nonzero tangential
shear deformation.

K−1e

Ke

Kϕ

Kℓ

Kr

Figure 3.4: The use of the Voronoi length in defining the discrete osculating circle. The
turning angle Kϕ in this graphic is negative. This construction is adapted from Bobenko [8].

Following Bergou et al.’s formulation of DER [4, 6, 5], we use a concept from discrete
differential geometry [8] to define a discrete centerline curvature. Using the Voronoi length
and the turning angle, we define a discrete osculating circle at every centerline vertex (Figure
3.4). The center of this circle is at the intersection of two lines perpendicular to each edge
at one Voronoi length away from the centerline vertex. Trigonometry is used to show that
the reference and current radii of curvature are

KR = KL

2
cot

(
KΦ

2

)
, Kr =

Kℓ

2
cot
(

Kϕ

2

)
, (K = 0, . . . , N − 1). (3.3.22)

The curvature at any centerline vertex is then defined as:

KK =
2

KL
tan

(
KΦ

2

)
, Kκ =

2

Kℓ
tan
(

Kϕ

2

)
, (K = 0, . . . , N − 1). (3.3.23)
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Observe that both curvatures are signed. Curvatures of this type are also a central kinematic
quantity in Bergou et al.’s [4, 6, 5] theory of a discrete elastic rod.

(a) (b)

Figure 3.5: (a) Pure bending followed by uniform stretch for a continuous rod. (b) Bending
followed by uniform stretch in the discrete model.

The definition of a curvature to measure bending is non-trivial when the rod is extensible.
To elaborate, we refer the reader to Figure 3.5(a) and recall a scenario discussed by Antman
[2, Chapter 4] to illustrate his definition of curvature. In Figure 3.5(a), we see a continuous
rod which is bent into a circle and then inflated uniformly by an applied pressure. In Figure
3.5(b), we repeat an analogous experiment with the discrete rod. Once the rod is inflated,
the curvature Kκ in the current configuration decreases since the Voronoi lengths at each
vertex increase as a result of the stretching of the rod. On the other hand, a reference-based
curvature given by KµKκ is unaffected by the inflation. It can be shown that, so long as the
thickness of the rod is much smaller in comparison to the radius of curvature of bending,
that the bending moment should be unaffected by the inflation. Therefore, we opt to use

KµKκ as the bending strain measure. This choice is in accordance with that used by the
authors in [44] who studied an extensible elastica.1

1That is, the bending moment was given by the constititutive relation EI ∂θ
∂ξ

where ξ is the arc length
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(a) (b)

K−1t
Kt

Kt

Kd̂

Kϕ

Kϑ

Kb

Figure 3.6: (a) The edge tangents, K−1t and Kt, vertex tangent, Kt, and director unit vector,

Kd̂. (b) The shear and turning angles, Kϑ and Kϕ, and a discrete Bishop frame vector Kb.

The shear strain is the change in angle from the reference to the current configuration
between two infinitesimal material line elements of the centerline and the cross-section. Re-
ferring to Figure 3.6, we define the discrete shearing angles as follows:

|KΘ|= arccos
(
KD̂ · KB

)
, |Kϑ|= arccos

(
Kd̂ · Kb

)
, (K = 0, . . . , N − 1), (3.3.24)

where Kϑ is for the current configuration and KΘ, the “intrinsic shear angle,” is mathemat-
ically induced and pertains to the reference configuration. In the definitions of the shear
angles, we have made use of the discrete reference and current Bishop frame vectors, KB

and Kb, which are defined as

KB = KT× E1, and Kb = Kt×E1, (K = 0, . . . , N − 1). (3.3.25)

We note that the Bishop vector is well-defined where the centerline has a point of inflection
and does not suffer a discontinuity when the centerline has a change in the sense of curvature,
in contrast to the Serret-Frenet triad (cf. [7, 28]). The sign of the current shearing angle is
given by

Kϑ

|Kϑ|
= sgn

(
−E1 ·

(
Kb× K d̂

))
, (3.3.26)

so that a negative shearing angle corresponds to an acute angle between K d̂ and Kt. An
analogous interpretation holds for the reference shearing angle.

parameter of the extensible rod in a reference configuration and θ is the angle subtended by the tangent
vector to the rod’s centerline with a fixed direction. The curvature of the rod in the present configuration is
κ = ∂θ

∂s
= µ−1 ∂θ

∂ξ
where µ = ∂s

∂ξ
is the stretch of the rod.
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The shear strain is the difference Kϑ − KΘ, a quantity that increments during shear
deformation regardless of the angle of KD, which we are still free to choose. However, the
classic definition of shear strain involves two material line elements that are perpendicular to
one another in the reference configuration. Because of the apparent lack of utility in having
the freedom to identify an intrinsic shear angle, we insist hereafter that KD be chosen such
that KD̂ = KB. Now the cross-sections are orthogonal to the centerline in the reference
configuration, and we can exploit the attractive nonlinear properties of the function tan(Kϑ)
as a shear strain measure in our constitutive function.

Inertias, momenta, and the kinetic energy

A set of (coordinate-dependent) inertias may be derived by inspecting the kinetic energy per
reference length associated with the Kth cross-section:

2KT =

∫

KA

(
Kẋ +X Kḋ

)
·
(
Kẋ+X Kḋ

)
ρ∗0dA

= Kẋ ·
(

K ẋ

∫

KA

ρ∗0dA+ K ḋ

∫

KA

Xρ∗0dA

)

+ Kḋ ·
(

K ẋ

∫

KA

Xρ∗0dA+ K ḋ

∫

KA

XXρ∗0dA

)
. (3.3.27)

The inertias are identified as

Kρ0 =

∫

KA

ρ∗0dA,

Kρ0 KY
02 =

∫

KA

Xρ∗0dA,

Kρ0 KY
22 =

∫

KA

XXρ∗0dA. (3.3.28)

Here, ρ∗0 is the density of the rod-like body in its reference configuration, while dA is an
infinitesimal area measure for the cross-section KA. The quantities KY

02 and KY
22 are

called the first inertia and the second inertia, respectively. They have no physical dimension
since we assigned the length dimension to the vector Kd. The reader is invited to compare
the discrete inertias introduced in (3.3.28) with their continuous counterparts in (1.2.30),
(1.2.31), and (1.2.32). In many works, it is common to make a choice of coordinates which
defines the centerline as the curve for which KY

02 = 0 identically so that the centerline
motion is decoupled from directorline motion. We refrain from making this restriction here
with the goal of accommodating contact problems, where it is desired to choose the centerline
as a material line of contact. With our newly defined inertias, we may express the kinetic
energy of the Kth cross-section as

2KT = Kẋ · KG+ K ḋ · KL, (3.3.29)
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where

KG = Kρ0 K ẋ+ Kρ0 KY
02

K ḋ, (3.3.30)

and

KL = Kρ0 KY
02

Kẋ+ Kρ0 KY
22

Kḋ, (3.3.31)

are the linear momentum and director momentum of cross-section K, respectively. Note that

KG is the linear momentum of the cross-section and therefore a physical invariant, while

KL is a momentum that depends on the choice of coordinates. The angular momentum of a
cross-section of the rod is given by

KHO = Kx× KG+ Kd× KL, (3.3.32)

an invariant quantity. The total angular momentum HO relative to a fixed point O and the
kinetic energy T of the rod are assumed to be given by the approximations

HO =

N−1∑

K=0

KHO KL, and T =

N−1∑

K=0

KT KL. (3.3.33)

The balance laws

We recall that the rod was divided into parts that contained the edge vectors according to
(3.3.1). The averaged balance laws that will be postulated are for parts that are instead
centered on the discrete cross-sections. If G stands for the linear momentum per unit
reference length of the continuous directed curve, then we approximate the time rate of
change of linear momentum of a cross-section centered part as

d

dt

∫
Kξ+ℓ0/2/(N−1)

Kξ−ℓ0/2/(N−1)

Gdξ ≈ KĠKL, (K = 0, . . . , N − 1). (3.3.34)

In a similar vein, if L indicates the director momentum per unit reference length of the
continuous directed curve, then the time rate of change of director momentum of a cross-
section centered part is approximated as

d

dt

∫
Kξ+ℓ0/2/(N−1)

Kξ−ℓ0/2/(N−1)

Ldξ ≈ KL̇KL, (K = 0, . . . , N − 1). (3.3.35)
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We now postulate partwise balances of mass, inertia, linear momentum, director momentum,
and energy for the discrete directed curve:

K ρ̇0 KL = 0,

˙
Kρ0 KY

02
KL = 0,

˙
Kρ0 KY

22
KL = 0,

KĠKL = KF,

KL̇KL = KP,(
KṪ + KΠ̇e

)
KL = KFext · Kẋ + KPext · Kḋ,

(K = 0, . . . , N − 1). (3.3.36)

Here, KΠe KL is the strain energy content of the Kth part while the meaning of the forces

KF, KP, KFext, and KPext will soon be expounded. These balance laws can be considered as
the discrete counterparts to the balance laws for the directed rod theory that was developed
by Green and Naghdi [25, 26, 42]. Equation (3.3.36)1 is used to solve the mass density per
unit current length at the Kth centerline vertex, Kρ, as

Kρ0 KL = constant = KρKℓ, (K = 0, . . . , N − 1), (3.3.37)

where Kℓ is known once the set of vectors {Kx} is known. It follows from the conservation
of mass that we also have the conservation of first and second inertias:

Kρ0 KY
02

KL = constant (K = 0, . . . , N − 1), (3.3.38)

and

Kρ0 KY
22

KL = constant (K = 0, . . . , N − 1). (3.3.39)

Note that the equations of motion (3.3.36)4 and (3.3.36)5 are coupled if KY
02 6= 0. These

two equations are to be simultaneously integrated to solve for the quantities Kx and Kd.
We call KF and KP the discrete centerline vertex force and the discrete directorline vertex

force, respectively. These quantities represent the net effects of external body forces that act
in each part, externally applied lateral tractions that act on each part, internal forces that
act in each part, and an exchange of internal forces due to contact with neighboring parts,
which itself may be thought of as an external load acting on the boundary vertices of each
part. We admit a decomposition of the forces as follows:

KF = KFext + KFint, KP = KPext + KPint. (3.3.40)

Here, KFext and KPext are prescribed forces due to body forces and laterally applied tractions,
while KFint and KPint are the constitutively determined internal forces (including contact
forces) due to straining. It remains to develop expressions for KFint and KPint in terms of a
strain energy function in the forthcoming section.
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A bending moment KM applied to the Kth cross-section of the rod can be represented
as a couple of equal but opposite forces acting at the lateral ends of the cross-section. The
moment is modeled as an applied director force according to the following relation:

KPext =
KM

KλH
× Kd̂. (3.3.41)

Four coordinates determine the position, rotation, and stretch of the Kth cross-section.
In other words, we use four degrees of freedom to capture the deformation of the discrete
cross-sections in this model. These coordinates are listed in an array as follows:

Kq = [Kx · E3,Kx · E2,Kd · E3,Kd ·E2]
T , (3.3.42)

where [·]T indicates the transpose of the array. A mass matrix associated with the Kth
cross-section can be constructed:

KM = Kρ0 KL




1 0 KY
02 0

0 1 0 KY
02

KY
02 0 KY

22 0
0 KY

02 0 KY
22


. (3.3.43)

Now the kinetic energy of the Kth cross-section may be expressed as the quadratic form

2KT = K q̇
T

KMKq̇. (3.3.44)

Finally, we define a forcing vector for the Kth cross-section by

KF = [KF · E3,KF ·E2,KP · E3,KP · E2]
T . (3.3.45)

Using the conservations of mass and inertia, the equations of motion (3.3.36)4 and (3.3.36)5
are expressed in their Cartesian component form:

KMKq̈ = KF, (K = 0, . . . , N − 1). (3.3.46)

It will be the case, however, that KF is not only a function of K q̇, Kq, and t, but will also
depend on the behavior of K−1x, K−1d, K+1x, K+1d and possibly their time derivatives if
dissipation is present in the form of damping. Working towards the goal of rendering the
equations of motion amenable to a numerical integration, we assemble a global mass matrix:

M = diag
(
0M, · · · ,KM, · · · , N−1M

)
, (3.3.47)

where diag() takes the cross-section mass matrices and centers them along the diagonal of
M. Thus, M, a 4N × 4N array, will be a banded matrix. Similarly, we construct a global
forcing vector:

F =
[
0F

T , . . . ,KF
T , . . . , N−1F

T
]T
. (3.3.48)
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A global array of coordinates is also constructed:

q =
[
0q

T , . . . ,Kq
T , . . . , N−1q

T
]T
. (3.3.49)

The 4N equations of motion governing the behavior of the entire rod can now be presented
as

Mq̈ = F. (3.3.50)

This canonical form is suitable for a numerical integration by a method of one’s choosing. To
close the system of equations, we must now turn our attention towards finding expressions
for the internal forces in the rod due to straining by postulating an appropriate strain energy
function.

3.4 The constitutive equations

Constitutive relations

To establish the relationship between the internal forces and the strain energy function, we
begin by assuming that a function Πe = Π̂e(Kx,Kd) exists such that

Πe =

N−1∑

J=0

JΠe JL, (3.4.1)

which was implicitly accepted in our adoption of the balance of energy (3.3.36)6. Using a
simultaneous application of the balance laws (3.3.36)1−6, one can then show the following
power balance:

Π̇e = −
N−1∑

J=0

(
JFint · J ẋ + JPint · J ḋ

)
, (3.4.2)

where Πe is the strain (elastic potential) energy content of the entire rod and the right
hand-side of (3.4.2) reflects the total stress power of the internal forces. Given the assumed
functional dependence of Πe on all the position vectors, we calculate

Π̇e =
N−1∑

J=0

(
∂Π̂e

∂Jx
· J ẋ+

∂Π̂e

∂Jd
· J ḋ

)
, (3.4.3)

from which it follows that

N−1∑

J=0

[(

JFint +
∂Π̂e

∂Jx

)
· J ẋ+

(

JPint +
∂Π̂e

∂Jd

)
· J ḋ

]
= 0, (3.4.4)
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which must hold for all possible motions. Assuming that KFint and KPint are independent
of Kẋ and Kḋ, we make a deduction from Equation (3.4.4) by constructing motions which
have

Kẋ = c2

(

KFint +
∂Π̂e

∂Kx

)
with J ẋ = 0, J 6= K, and with J ḋ = 0, (3.4.5)

and then constructing another set of motions that have

J ẋ = 0 with Kḋ = d2

(

KPint +
∂Π̂e

∂Kd

)
and with J ḋ = 0, J 6= K, (3.4.6)

where c and d are arbitrary nonzero scalars that have the appropriate physical dimension.
The implications that follow lead to a necessary condition relating the internal forces to the
strain energy:

KFint = − ∂Π̂e

∂Kx
and KPint = − ∂Π̂e

∂Kd
, (K = 0, . . . , N − 1). (3.4.7)

These are the sought-after constitutive relations for the material. It may appear suspicious
at this point to permit a strain energy that has a functional dependence on position vectors.
When we postulate our strain energy we will adopt the principle that the strain energy is
invariant under superposed rigid body motions of the discrete rod. This principle can be
used to show that the strain energy can depend only on the magnitudes of differences of the
position vectors rather than Kx alone.

Lumped geometric and material properties

Before we postulate a strain energy function, we introduce some lumped geometric and
material properties that will be of use in the stiffness coefficients. If A(ξ) is the area of each
cross-section at ξ of the continuous directed curve, then the discrete area KA associated with
the Kth cross-section is

KA =

∫
Kξ+ℓ0/2/(N−1)

Kξ−ℓ0/2/(N−1)
Adξ

KL
, (K = 1, . . . , N − 2). (3.4.8)

We also introduce a discrete edge area KA as an average over the Kth edge:

KA =

∫
K+1ξ

Kξ Adξ
∥∥KE

∥∥ , (K = 0, . . . , N − 2). (3.4.9)

The discrete areas 0A and N−1A at the boundary vertices are assigned as follows:

0A =
0A

2
, N−1A =

N−2A

2
. (3.4.10)
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Other geometric and material quantities from the continuous theory that need to be dis-
cretized are the second moment of area about the centerline in the reference configuration
about the E1 axis, I(ξ), Young’s modulus, E(ξ), the shear modulus, G(ξ), and Poisson’s
ratio, ν(ξ). The procedure for discretization is exactly the same as for the obtaining the
discrete areas, and we simply list the resulting discrete quantities in the table that follows.

Table 3.1: Lumped material and geometric properties used in the discrete theory.

Vertex Quantities Edge Quantities

Geometric Properties KA KI
KA KI

Material Properties KE KG Kν
KE KG Kν

The strain energy

In the one-dimensional theory of a directed curve, significant efforts have been made to derive
a suitable one-dimensional strain energy function from a three-dimensional strain energy
function [23, 24, 25, 47, 58]. Unfortunately, the underlying assumption of homogenous
deformations implicit in approximation (3.2.2) does not realistically capture a majority of
motions for the rod-like body. Take, for example, the flexure of a cuboid that occurs in the
application of terminal end moments. The one-dimensional theory fails to capture through-
the-thickness variations and interesting effects such as anticlastic curvature that is discussed
in the works of [27, 65, 68]. Acknowledging that there will be some error inherent in every
postulated strain energy that is intended to model real phenomena, we will proceed by
guiding our development with the one-dimensional strain energy discussed in [47] which is
based on the three-dimensional strain energy of linear elasticity for a homogenous isotropic
medium [65].

The four strain measures in this theory are Kµ, Kλ, Kϕ, and Kϑ. These quantities are
invariant under superposed rigid body motions. In the materially linear theory, a strain
energy function that is quadratic in the strains is typically assumed. To allow the discrete
directed curve to undergo large displacements, we adopt a material description that has
nonlinear (non-quadratic) terms in order to preclude the possibility of the material passing
through itself. To this end, we postulate the global strain energy for an isotropic, potentially
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non-homogenous material of the form

2Πe = 2Π̃e

(
Kµ,Kµ,Kλ,KµKκ,Kϑ

)

=
N−2∑

K=0

Kk1
(
Kµ2 − Kµ+ Kµ−1

)∥∥KE
∥∥

+
N−1∑

K=0

Kk2
(
Kλ

2 − Kλ+ Kλ
−1
)
KL+

N−2∑

K=1

Kk3(KµKκ)
2
KL

+
N−1∑

K=0

Kk4 tan
2(Kϑ)KL+

N−2∑

K=0

Kk5

(
K+1ϑ− Kϑ∥∥KE

∥∥

)2∥∥KE
∥∥

+

N−2∑

K=0

Kk6

(
K+1λ− Kλ∥∥KE

∥∥

)2∥∥KE
∥∥+ 2

N−2∑

K=1

Kk7(Kλ− 1)(Kµ− 1)KL. (3.4.11)

The strain energy can be expressed as a function of the sets {Kx} and {Kd} through the
use of Formulae (3.3.4)2, (3.3.6)2, (3.3.7)2, (3.3.13), (3.3.15)2, (3.3.19), (3.3.20), (3.3.21),
(3.3.23)2, (3.3.24)2, and (3.3.25)2 which relate the various strains to the position vectors:

Π̂e(Kx,Kd) = Π̃e

(
Kµ,Kµ,Kλ,KµKκ,Kϑ

)
=

Π̃e

(
K µ̂(Kx),Kµ̂(Kx),Kλ̂(Kd),Kµ̂(Kx)K κ̂(Kx),Kϑ̂(Kx,Kd)

)
. (3.4.12)

In order of appearance in Equation (3.4.11), this constitutive function accounts for:

nonlinear centerline stretching :
N−2∑

K=0

Kk1
(
Kµ2 − Kµ+ Kµ−1

)∥∥KE
∥∥,

nonlinear cross-section stretching :
1

2

N−1∑

K=0

Kk2
(
Kλ

2 − Kλ+ Kλ
−1
)
KL,

centerline bending :
1

2

N−2∑

K=1

Kk3(KµKκ)
2
KL,

longitudinal shearing :
1

2

N−1∑

K=0

Kk4 tan
2(Kϑ)KL,

longitudinal shearing gradients :
1

2

N−2∑

K=0

Kk5

(
K+1ϑ− Kϑ∥∥KE

∥∥

)2∥∥KE
∥∥,

cross-section stretch gradients :
1

2

N−2∑

K=0

Kk6

(
K+1λ− Kλ∥∥KE

∥∥

)2∥∥KE
∥∥,

the Poisson effect :
N−2∑

K=1

Kk7(Kλ− 1)(Kµ− 1)KL.
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We note that the Poisson effect is sometimes referred to as “hourglassing.” There is no
possibility for the material to pass through itself except in the instance that shear gradients
are large. However, we do not expect this to occur owing to the fact that shear deformation
tends to be much smaller than bending and stretching deformation for a rod-like body’s
geometry. If one finds this behavior to occur, the term in the strain energy associated with
the longitudinal shearing gradients must be modified so that

Πe → ∞ if
∥∥
K+1d+ Ke− Kd

∥∥→ 0,

or, for instance, if the centerline is chosen close to the upper lateral surface of the rod,

Πe → ∞
if∥∥(KH − ‖KD‖)Kd+ Ke−
(
K+1H −

∥∥
K+1D

∥∥)
K+1d

∥∥→ 0.

The stretching terms are constructed so that Πe → ∞ as Kλ → 0,∞ and Kµ → 0,∞

Kµ

Kπ1

Kϑ

Kπ2

(a) (b)

1 0−π
2

π
20

Figure 3.7: Examples of partwise strain energy characteristics, Kπ1 and Kπ2, to prevent the
discrete directed curve from passing through itself for (a) stretching and (b) shearing.

while the shearing term is constructed so that Πe → ∞ as Kϑ → ±π
2
(see Figure 3.7).

The centerline bending energy term is an extensible version of Euler’s classic prescription.
It is quadratic in the curvature KµKκ, which represents a change in turning angle per unit
reference arc length. If the strain measure were a change in angle per unit current arc length,
then the resulting forces on the centerline vertices would be such as to drive the current arc
length to infinity (in an attempt to minimize the bending energy), an undesired effect. The
bending energy is integrated only over the interior vertices of the discrete directed curve in
order to prevent anomalous forces at the boundary vertices.
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The shear and cross-section stretch gradients are necessary for transmission of shear
strains through the medium, a characteristic of strain-gradient elasticity. These terms are
required if we wish to model longitudinal and transverse shear pulses propagating through
the rod. The final term of the elastic energy is the Poisson effect. By coupling cross-section
stretch to centerline stretch, we ensure lateral contractions in the presence of centerline
stretching and vice-versa, a behavior exhibited by incompressible materials. Like the bending
energy, the Poisson effect energy is only integrated over interior vertices to prevent unrealistic
forces at the boundary vertices.

Stiffnesses

The stiffnesses Kk1, Kk2, Kk3, Kk4,
Kk5,

Kk6, and Kk7 should be such that, when confin-
ing ourselves to the class of motions that exhibit small deformations and small deformation
gradients, we retain solutions from the continuous theory of linearly elastic rods. The strain
measures established for the discrete theory are not entirely comparable to the strain mea-
sures used in the linear theory of elastic rods (cf. [47]). Furthermore, if the centerline is
chosen so that KY

02 6= 0, then we stray even further from the elastic constants for the linear
directed rod theory.2 Therefore, the stiffnesses stated here will come with the calibration
coefficients, Kc1, Kc2, Kc3, Kc4,

Kc5,
Kc6, and Kc7. We obtain an order of magnitude estimate

of the required stiffnesses from the continuous linear theory with the centerline chosen such
that KY

02 = 0:

Kk1 =
Kc1

KE KA
(
1− Kν

)

(1 + Kν)(1− 2Kν)
,

Kk2 = Kc2
KE KA(1− Kν)

(1 + Kν)(1− 2Kν)
,

Kk3 = Kc3 KE KI, Kk4 = Kc4k KGKA,
Kk5 =

Kc5
KE KI,

Kk6 =
Kc6

KE KI

(1 + Kν)
,

Kk7 = Kc7
KE KAKν

(1 + Kν)(1− 2Kν)
, (3.4.13)

where k is the shear correction factor and we have used material and geometric quantities
from Table 3.1. Derivations of k values for various cross-sections may be found in [15].

The calibration coefficients are to be determined numerically by comparing with analyti-
cal solutions from the continuous linear theory. If the centerline is chosen so that KY

02 = 0,
then the first calibration coefficient for centerline stretching may be derived from the con-
tinuous theory. For example, the longitudinal stretching stiffness from the continuous linear

2These constants were established in a series of works by Green and Naghdi and are summarized in [47,
46].
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theory is EA(1−ν)
4(1+ν)(1−2ν)

. The continuous analogue of the longitudinal stretching energy pos-

tulated in Equation (3.4.11) is 1
2
k1(µ

2 − µ+ µ−1). If the nonlinear stretching energy is to
coincide with the stretching energy of the linear theory for small deformations, we then
require that [

d2

dµ2

(
1

2
k1
(
µ2 − µ+ µ−1

))]

µ=1

=
EA(1− ν)

4(1 + ν)(1− 2ν)
. (3.4.14)

This would yield a calibration coefficient Kc1 = 1
2
. Similar comparisons may be made for

the lateral stretching stiffness and the Poisson effect stiffness. However, this procedure only
applies when the centerline is chosen so that the first inertia is zero everywhere.

The internal forces

In taking gradients of Π̂e(Kx,Kd) with respect to Kx and Kd it will be useful to record the
following identities:

∂

∂a

(
c · a− b

‖a− b‖

)
= A

(
a− b

‖a− b‖

)
c

‖a− b‖ ,

∂

∂a

(
a− b

‖a− b‖ · c− a

‖c− a‖

)
= A

(
a− b

‖a− b‖

)
c− a

‖c− a‖‖a− b‖

−A

(
c− a

‖c− a‖

)
a− b

‖a− b‖‖c− a‖ , (3.4.15)

where the projection operator A(â)b annihilates the component of b along the unit vector
â:

A(â)b = (I− â⊗ â)b = b− (b · â)â. (3.4.16)
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To aid in listing the internal forces in a succinct way, we introduce the following functions:

Kf1 =
K̂f1
(
Kµ
)
=

Kk1
2

(
2Kµ− 1− Kµ−2

)
,

Kp2 = K̂p2(Kλ) =
Kk2 KL

2‖KD‖
(
2Kλ− 1− Kλ

−2
)
,

Kf3 = K̂f3(Kϕ) =
4Kk3

KL

1

(1 + cos(Kϕ))
2‖K−1e‖‖Ke‖

,

0f4 = 0̂f4(0ϑ) = 0k4 0L
tan(0ϑ) sec

3(0ϑ)

‖0e‖ ,

Kf4 = K̂f4(Kϑ) = Kk4 KL
tan(Kϑ) sec

3(Kϑ)

‖K−1e+ Ke‖ ,

N−1f4 = ̂
N−1f4

(
N−1ϑ

)
= N−1k4 N−1L

tan
(
N−1ϑ

)
sec3

(
N−1ϑ

)

‖N−2e‖ ,

Kp4 = K̂p4(Kϑ) = Kk4 KL
tan(Kϑ) sec

3(Kϑ)

‖Kd‖
,

0p5 = 0̂p5(0ϑ, 1ϑ) =
0k5∥∥0E
∥∥(0ϑ− 1ϑ) sec(0ϑ),

Kp5 = K̂p5(Kϑ) =
K−1k5∥∥K−1E

∥∥
(
Kϑ− K−1ϑ

)
sec(Kϑ)

+
Kk5∥∥KE
∥∥
(
Kϑ− K+1ϑ

)
sec(Kϑ),

N−1p5 = N̂−1p5
(
N−1ϑ, N−2ϑ

)
=

N−2k5∥∥N−2E
∥∥
(
N−1ϑ− N−2ϑ

)
sec
(
N−1ϑ

)
,

0p6 = 0̂p6(0λ, 1λ) =
0k6

‖0D‖
∥∥0E

∥∥(1λ− 0λ),
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Kp6 = K̂p6(Kλ) =
K−1k6

‖KD‖
∥∥K−1E

∥∥
(
K−1λ− Kλ

)

+
Kk6

‖KD‖
∥∥KE

∥∥
(
K+1λ− Kλ

)
,

N−1p6 = N̂−1p6
(
N−2λ, N−1λ

)
=

N−2k6∥∥
N−1D

∥∥∥∥N−2E
∥∥
(
N−2λ− N−1λ

)
,

Kf7 = K̂f7(Kλ) =
Kk7
2

(Kλ− 1),

Kp7 = K̂p7(Kµ) =
Kk7 KL

‖KD‖ (Kµ− 1). (3.4.17)

The centerline vertex internal forces are derived using Equation (3.4.7)1 as:

0Fint =
(
0f1 + 1f7

)
0t− 1f3A

(
0t
)
1e− 1f4A(1t) 1d̂,

1Fint =
(
− 0f1 − 0f7 − 1f7

)
0t+

(
1f1 + 1f7 + 2f7

)
1t

+ 1f3
(
A
(
0t
)
1e−A

(
1t
)
0e
)
− 2f3A

(
1t
)
2e

+ 0f4A(0t) 0d̂− 2f4A(2t) 2d̂,

JFint =
(
− J−1f1 − J−1f7 − Jf7

)
J−1t+

(
Jf1 + Jf7 + J+1f7

)
Jt

+ J−1f3A
(
J−1t

)
J−2e+ Jf3

(
A
(
J−1t

)
Je−A

(
Jt
)
J−1e

)

− J+1f3A
(
Jt
)
J+1e+ J−1f4A

(
J−1t

)
J−1d̂− J+1f4A

(
J+1t

)
J+1d̂,

N−2Fint =
(
−N−3f1 − N−3f7 − N−2f7

)
N−3t

+
(
N−2f1 + N−1f7 + N−2f7

)
N−2t

+ N−3f3A
(
N−3t

)
N−4e + N−2f3

(
A
(
N−3t

)
N−2e−A

(
N−2t

)
N−3e

)

+ N−3f4A
(
N−3t

)
N−3d̂− N−1f4A

(
N−1t

)
N−1d̂,

N−1Fint =
(
−N−2f1 − N−2f7

)
N−2t+ N−2f3A

(
N−2t

)
N−3e

+ N−2f4A
(
N−2t

)
N−2d̂. (3.4.18)

At every directorline vertex (J = 0, . . . , N − 1), the internal director force is derived using
Equation (3.4.7)2:

JPint =
(
Jp4 +

Jp5
)
A
(
J d̂
)

Jt+
(
Jp6 − Jp2 − Jp7

)
J d̂. (3.4.19)

The discrete directed rod theory presented in this chapter is now complete. It remains to
integrate the equations of motion (3.3.50) given initial conditions. If it is desired to model
boundary conditions, then they may be imposed as positional constraints.
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3.5 Validation of the discrete theory

The model as it is presented in this section is to be simultaneously calibrated, validated, and
demonstrated against four example problems from the continuous linear theory of elastic
rods. Equilibrium deformations are calculated for the following examples illustrated in Figure
3.8:

(i) a clamped-free bar hanging under its own weight (Figure 3.8(a));

(ii) a clamped-free Timoshenko beam hanging under its own weight (Figure 3.8(b));

(iii) a clamped-clamped Timoshenko beam hanging under its own weight (Figure 3.8(c));
and

(iv) a clamped-clamped bar subject to uniform normal traction σ at both ends (Figure
3.8(d)).

The rods are released from rest in their reference configuration and allowed to vibrate about
their equilibrium configurations. The displacement profiles are obtained by integrating nu-
merically with a Runge-Kutta method and tuning the material damping towards critical
damping such that, by the end of the simulation, the rod contains a negligible amount of
kinetic energy and has converged to the equilibrium configuration.

In all four problems, properties of the discrete directed curve are assigned as follows: the
rod is materially and geometrically homogeneous, the centerline (the dashed line in Figure
3.8) is chosen as the line of cross-sectional mass (and area) centers, the cross sections are
rectangular, N = 20, L = 5 m, KE = L

N−1
E3 identically, KH = 0.5 m = KW identically,

KE = 1 GPa identically, KG = KE/2/(1 + Kν), Kρ0 = 250 kg/m identically, g = 9.81 m/s2,

KFext = Kρ0g KLE3 for the hanging bar, and KFext = −Kρ0g KLE2 for the other three
problems, identically. Thus, for the hanging bar we have chosen E3 to align with the direction
of gravity.

We will make reference to continuous quantities in the following subsections, including:
the centerline displacement, u = r − R, the director displacement, δ = d − D, and the
centerline stretch, µ. The directors from the continuous theory are not required to point to
the lateral surface of the rod-like body. It is common in the continuous theory to choose
‖D‖ = 1, indicating the use of Cartesian coordinates that carry a physical dimension of
length. We will be comparing against solutions which have made this choice. Hence, the
director displacement from the continuous theory is scaled according to the relationship

Kδ = Kd− KD = KH(d(Kξ)−D(Kξ)) = KHδ(Kξ) (3.5.1)

to make a fair comparison. The “director displacement” in Figures 3.11 - 3.12 refers to the
displacement of material points on the lateral surface of the rod-like body relative to the
centerline displacement. The directors displayed in Figure 3.8 are those from the continuous
theory, being unit length in the reference configuration.
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Figure 3.8: Equilibrium configurations of four different problems involving a variety of de-
formations from the continuous theory of linear elasticity for rod-like bodies. These problems
are used to determine the calibration coefficients Kc1, Kc2, Kc3, Kc4,

Kc5,
Kc6, and Kc7.

Note that the directors do not necessarily point to the lateral surface of the rod-like body in
the continuous theory.
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A bar loaded under its own weight

We refer the reader to the situation pictured in Figure 3.8(a) where a bar is defined in
its reference configuration. The constraint at the left end responsible for fixing the rod is
expressed as 0u ·E3 = 0 for the discrete rod. We apply a gravitational body force along the
rod with the aim to find and validate the calibration coefficient Kc1. We assume the bar
to have zero Poisson’s ratio everywhere so as not to activate other modes of deformation.
Thus, we expect the director displacement to be zero. The resulting equilibrium centerline
displacement is obtained from the continuous linear theory of elasticity for rods:

u · E3 =
ρ0gℓ

2

EA

(
ξ

ℓ
− 1

2

(
ξ

ℓ

)2
)
. (3.5.2)

In this experiment, we find the calibration coefficient for centerline stretching to be Kc1 =
1
2
,

which is in accordance with the discussion at the end of Section 3.4.
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Figure 3.9: Validation of the calibration coefficient Kc1 =
1
2
for a clamped-free rod deforming

under its own weight (cf. Figure 3.8(a)).

A clamped-free and clamped-clamped Timoshenko beam

We next consider the deformation of a Timoshenko beam under its own weight in two sce-
narios involving differing sets of supports: clamped-free and clamped-clamped, as in Figure
3.8(b)-(c). For the clamped-free beam, we have the following boundary conditions which are
imposed as positional constraints in the discrete theory: 0u = 0 and 0δ = 0. Once more,
we demand a material in which Poisson’s ratio is zero so that we may validate the coeffi-
cients Kc3, Kc4, and

Kc5 which calibrate the bending, shear, and shear gradient stiffnesses,
respectively. The continuous theory predicts the centerline and director displacement as

u · E2 =

(
−σ1
24

(
ξ

ℓ

)3

+
σ1
6

(
ξ

ℓ

)2

+
2σ2 − σ1

4

ξ

ℓ
− σ2

)
ξ, (3.5.3)
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and

δ ·E3 =
σ1
6

(
ξ

ℓ

)3

− σ1
2

(
ξ

ℓ

)2

+
σ1
2

ξ

ℓ
, (3.5.4)

where

σ1 =
ρ0gℓ

3

EI
σ2 =

2(1 + ν)ρ0gℓ

kEA
. (3.5.5)

The resulting discrete centerline and director displacements are compared to the corre-
sponding quantities of the continuous theory in Figure 3.10, where a choice of Kc3 = 0.99,

Kc4 = 2.01, and Kc5 = 1 is found to be suitable.
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Figure 3.10: Validation of the calibration coefficients Kc3 = 0.99, Kc4 = 2.01, and Kc5 = 1
for a clamped-free Timoshenko rod deforming under its own weight (cf. Figure 3.8(b)).

The clamped-clamped beam is constrained by N−1u = 0 and N−1δ = 0 in addition to
the constraints on the left side of the clamped-free beam. The solutions from the continuous
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theory are

u · E2 =

(
−σ1
24

(
ξ

ℓ

)3

+
σ1
12

(
ξ

ℓ

)2

+
12σ2 − σ1

24

ξ

ℓ
− σ2

2

)
ξ, (3.5.6)

and

δ · E3 =
σ1
6

(
ξ

ℓ

)3

− σ1
4

(
ξ

ℓ

)2

+
σ1
12

ξ

ℓ
, (3.5.7)

where σ1 and σ2 are as in Equation (3.5.5). The findings for the clamped-clamped Timo-
shenko beam that are illustrated in Figure 3.11 fortify the calibration coefficients found for
the clamped-free case.
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Figure 3.11: Validation of the calibration coefficients Kc3 = 0.99, Kc4 = 2.01, and Kc5 = 1
for a clamped-clamped Timoshenko rod deforming under its own weight (cf. Figure 3.8(c)).
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A necking problem
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Figure 3.12: Validation of the calibration coefficients Kc2 = 1
2
, Kc6 = 1

2
, and Kc7 = 1.66

using a necking problem (cf. Figure 3.8(d)).

Finally, to calibrate the remaining coefficients we consider a necking (or hourglassing) prob-
lem. Following [43] and [58], we choose a shear correction coefficient of k = 5/6 for a
rectangular cross section. The rod is subject to the constraints: 0δ = 0 and N−1δ = 0. We
aim to validate the lateral stretch, lateral stretch gradient, and Poisson effect stiffnesses with
the choices Kc2 =

1
2
, Kc6 =

1
2
, and Kc7 = 1.66 identically. We do not concern ourselves with

the centerline displacement since we already validated Kc1 in the sagging problem. We choose
a value of Poisson’s ratio as Kν = 0.3, identically, and an applied load of n = σA = 1 kN.
An analytical solution for the director strain is found from the continuous theory to be

λ− 1 =
νn

EA

(
1− cosh(βℓ)

sinh(βℓ)
sinh(βξ) + cosh(βξ)− 1

)
, (3.5.8)

where λ = ‖d‖
‖D‖

is the director stretch and where

β2 =
A(1 + ν)

I(1− ν)
. (3.5.9)

Note that we are comparing against a theory that allows for three-dimensional motions of
the continuum. There is a lateral stretch due to Poisson’s ratio not only in E2 direction but
also the E1 direction. Despite this, the plane of material that intersects the E1 − E3 plane
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remains in this plane and in a state of plane strain. Care should be taken in interpreting the
results. We find the chosen calibration coefficients to be in agreement with the continuous
theory upon inspection of Figure 3.12.

Dynamic validation: a clamped-free Bernoulli-Euler beam

Consider a clamped-free Bernoulli-Euler beam undergoing unforced linear vibration in its
first mode shape. The governing equation of motion may be derived for a uniform beam as

EI
∂4w

∂ξ4
+ ρ0

∂2w

∂t2
= 0, (3.5.10)

where w is the vertical displacement of the beam. Assuming a separation of variables of the
form

w(ξ, t) = W (ξ)T (t), (3.5.11)

we obtain the two linear ODE’s

d4W

dξ4
+ βW = 0, and

ρ0
EI

d2T

dt2
+ βT = 0, (3.5.12)

where β, the wavenumber, is some unknown constant. By imposing the clamped-free bound-
ary conditions, we find a transcendental equation for the wavenumber (see [52] for additional
details) as

cosh(βnL) cos(βnL) + 1 = 0. (3.5.13)

We may find the first root as
β1π

L
= 0.59686. (3.5.14)

Hence, the corresponding angular frequency of the vibration is

ω1 =
3.5161

L2

√
EI

ρ0
, (3.5.15)

and the nth mode shape is

ŵn = A1

[
cosh(βnx)− cos(βnx) +

cos(βnL) + cosh(βnL)

sin(βnx) + sinh(βnx)
(sin(βnx)− sinh(βnx))

]
. (3.5.16)

Approximating the angle of the centerline as θ = dŵn

dξ
, two Timoshenko beams are simulated

with Kc4 = 2.0 and Kc4 = 20.1. The stiffnesses are set with the validated calibration
coefficients and the remaining problem parameters are as follows: g = 9.81 ms−2, N = 20,
L = 1 m, W = 0.1 m, k = 5/6, E = 1 GPa, ρ∗0 = 103 kg, ρ0 = ρ∗0A, and ν = 0. A
time history of the kinetic energies is plotted in Figure 3.13. We find that for a high shear
stiffness, the period of vibration close to the first mode-shape of a Bernoulli-Euler beam is
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approximately 0.03 s. Equation (3.5.15) predicts a period of vibration of 0.031 s. Therefore,
we may consider the discretized theory to be dynamically validated, in addition to being
statically valid.
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Figure 3.13: Dynamic validation of a beam with high shear stiffness: Kc4 = 20. The period
of the vibration is found to be approximately 0.03 seconds, which reconciles well with that of
the first mode of vibration for an Bernoulli-Euler beam which is calculated to have a period
of 0.031 seconds for the given problem parameters.

3.6 Conclusion

In this chapter, we have formulated a novel discretized directed rod theory that may be used
to model nonlinear planar motions of a rod-like body. The theory is well-suited to analyzing
the planar motions of locomoting and gripping soft robots. What has been developed can
be considered a discretized approximation to a planar version of Green and Naghdi’s theory
of a directed rod and an extension to the planar theory of a discrete elastic rod developed
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by Goldberg et al. [21]. The latter researchers’ formulation is a planar version of Bergou
et al.’s work [4, 6, 5] that is applicable to branched-like rod structures. In our formulation,
we discussed the implications of an arbitrarily chosen centerline and the need for calibration
coefficients in the stiffnesses of the postulated strain energy. The model was validated and
calibrated against four classical problems from the continuous theory of linear elasticity for
rods. An extension to three-dimensional motions will require the introduction of three new
deformation measures: one due to torsion and two others due to additional modes of bending
and shearing.
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