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Abstract of the Dissertation

Bayesian Modeling for Analyzing Online

Content and Users

by

Bin Bi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Junghoo Cho, Chair

The immense scale of the web has rendered itself as a huge content repository.

Web users seek information content of interest primarily from search engines and

social media. The sheer amount of online content, ranging from professionally-

produced content to user-generated content, varies greatly in quality, which can

often result in confusion, sub-optimum decisions or dissatisfaction with choices

made by users. It is, therefore, highly significant to develop learning models that

are able to automatically discover high-quality content for web users.

This thesis explores two general schemes toward this ultimate goal: 1. Learning

to discover high-quality content and delivering it to users. 2. Learning to identify

domain authorities who generate high-quality content, so users can obtain quality

content from these authorities. Under the two schemes, we propose a range of

Bayesian statistical models, each specifically designed for a unique application in

social media or web search engines. These models are able to discover high-quality

information by statistically analyzing the online content and users in the systems.

In particular, in the social media domain, we introduce a range of Bayesian

models specifically designed to identify topic-specific influencers or experts in mi-

croblogs and content-sharing websites. On the other hand, in the search engine

ii



domain, two different Bayesian models are proposed to analyze the search users

and database. One of the models is specifically designed to build a recommender

system on a knowledge base, which suggests related entities for search users, while

the other model is developed to infer the demographics of users, which can be uti-

lized to enhance their search experience. Extensive experiments have been con-

ducted on real-world data to confirm the effectiveness of all the proposed models.
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CHAPTER 1

Introduction

1.1 Online Content and User Analysis

We have entered the era of big data, which is characterized by an explosion of infor-

mation content. Data sources are everywhere online, from professionally-produced

content to Web 2.0 and user-generated content, from news sites to social media.

Based on the infographic1 from analytics software provider Domo, nowadays a

massive amount of data is generated every minute on the Internet. For example,

content sharing websites, such as YouTube2 and Vine3, have become tremendously

popular over the recent years. In one minute, there is a staggering 72 hours of

content uploaded to YouTube, while Vine users share 8,333 videos. Searching

Google is still a most-popular activity online with more than four million search

queries per minute. When it comes to social networks, Facebook holds dominion

with users posting nearly 2.5 million pieces of content, while Twitter users create

277 thousand new tweets.

The sheer amount of online content available can be both a blessing and a curse

for web users. On the plus side, it is a valuable asset in our information society.

The massive amount of data enables users to investigate content on topics of their

personal interest, to read up on what is happening in the world, and to get advice

about problems and things they dont much like to talk about publicly, etc. On

1http://web-assets.domo.com/blog/wp-content/uploads/2014/04/DataNeverSleeps_

2.0_v2.jpg
2http://www.youtube.com
3http://www.vine.co

1

http://web-assets.domo.com/blog/wp-content/uploads/2014/04/DataNeverSleeps_2.0_v2.jpg
http://web-assets.domo.com/blog/wp-content/uploads/2014/04/DataNeverSleeps_2.0_v2.jpg
http://www.youtube.com
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the minus side, however, the huge amount of online content can often complicate

the decision making process, since users dont have the time or ability to examine

all data or compare all options. Not only is the volume of content overwhelming,

but also the quality of the content can be far from perfect. As we know, online

content varies greatly in quality, which results in confusion, sub-optimum decisions

or dissatisfaction with the choices made by users.

Given that online content remains confusing, difficult to consolidate, and often

chaotic, it is highly significant to develop learning models that are able to discover

high-quality content for web users. There are two different schemes toward the

ultimate goal. The first scheme is discerning good content from the bad. In

other words, we are sorting the wheat from the chaff. Given a huge diversity

of online content, appropriate modeling of the content plays an important role

in discovering high-quality content relevant to users interest. The other scheme

toward our ultimate goal is identifying experts or key influencers who generate

high-quality content. These experts act as gatekeepers who pose certain tests of

quality and authenticity. The content that passes these tests is supposed to be

high-quality and authentic. These experts consequently serve as mediators that

web users can obtain high-quality content from. Therefore, in this dissertation, we

present a family of statistical models specifically designed for understanding and

analyzing online content and users under the two schemes, in order to discover

high-quality and relevant content for web users.

1.2 Social Media and Search Engine

Traditionally, on the web, people seek information content of their interest primar-

ily from web search engines, such as Google and Bing. However, the recent rise

2



in popularity of social media, such as Facebook4, Twitter5 and Flickr6, has intro-

duced a new option for finding online content of interest. To analyze the content

and users in social media and search engines, we develop different probabilistic

models, each for a specific class of applications in these two domains.

Over the last few years, we have been witnessing the rapid emergence of var-

ious facets of social media on the web, including blogs, content-sharing websites,

social tagging systems, social networking platforms, and microblogs, which has

provided a vast continuous supply of dynamic diverse information content. An-

dreas Kaplan and Michael Haenlein define social media as “a group of Internet-

based applications that build on the ideological and technological foundations of

Web 2.0, and that allow the creation and exchange of user-generated content.”

[65]. When analyzed with appropriate statistical and computational tools, social

media content can be turned into invaluable scientific and business insights. In

this dissertation, we introduce a range of Bayesian models to analyze the content

and users in microblogs and content-sharing websites, which are different types of

social media [20, 15, 14].

In addition to social media, web search engines are a important tool for on-

line information seeking [113]. Proper understanding and modeling of the data

residing in a search engine allow a search user to discover high-quality content

relevant to his or her unique information needs. For example, with the intro-

duction of knowledge bases over the past few years, commercial search engines

are moving towards retrieval based on semantic understanding of search queries.

A knowledge base is a centralized repository of content about entities including

people, places and things. Modeling and utilizing the knowledge base properly

enables the search engine to provide structured and detailed information about

the query topic. It allows the search users to use this information to resolve their

4http://www.facebook.com
5http://www.twitter.com
6http://www.flickr.com

3
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query without having to assemble information from other sites themselves. In this

dissertation, we present two statistical models to analyze the content and users in

search engines, respectively. One of the models is devised to build a recommender

system on a knowledge base, which suggests related entities for search users [17],

while the other model is specifically designed to infer the demographics of users,

which can be leveraged to enhance their search experience [19].

1.3 Dissertation Outline

The reminder of the dissertation is organized in the following manner:

Chapter 2 reviews the theoretical background on statistical modeling and a

couple of specific Bayesian models, which are closely related to our proposed

models presented in the following chapters. In Chapter 3, we introduce the FLDA

model, which is an extension of the typical topic model, specifically designed

for topic-specific social influence analysis on microblogs, a popular form of social

media. By contrast, Chapter 4 presents different models based on the Bayesian

nonparametric framework to analyze microblog data. In Chapter 5, we describe

a different Bayesian model, TAA, specifically designed to discover topic-specific

authorities on content-sharing websites, another form of social media.

In addition to social media, we present our work on analyzing data residing

in web search engines in Chapters 6 and 7. In particular, Chapter 6 introduces

predictive models to infer the demographics of search users, while in Chapter 7

we describe a novel recommender system that suggests related entities on the

knowledge pane of a search engine. Finally, Chapter 8 concludes the dissertation

and discusses directions for future research work.
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CHAPTER 2

Background

2.1 Statistical Modeling

Mathematically, a statistical model is a set of assumptions concerning the genera-

tion of the observed data from a larger population. The model is formally specified

by relationships among one or more random variables and other variables. Statis-

tical modeling has two complementary and important paradigms: discriminative

models and generative models. Discriminative models are designed to capture

decision boundaries among different classes. Discriminative modeling makes a

strong assumption that class labels are available in data, but it has the virtue

that few additional assumptions are generally needed to build a useful model. On

the other hand, generative modeling, which does not require class labels, proba-

bilistically expresses hypotheses about the way in which observed data may have

been generated. In our work, we choose one class of models over the other based

on the distinct nature of problems and applications.

Another important dichotomy in statistical modeling distinguishes between

parametric modeling and nonparametric modeling. A parametric model fixedly

explains observed data in a way that it does not grow structurally as more data

come. Examples include Latent Dirichlet Allocation (LDA) [23] and Gaussian

Mixture Models (GMMs) where the number of latent topics (clusters) has to be

determined a priori and remains fixed throughout the models. A nonparametric

model, on the other hand, allows the representation of data to grow structurally
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as more data are observed. As opposed to a parametric model, it is capable

of letting the data speak for itself to automatically determine the complexity

of the nonparametric model. The Dirichlet Process Mixture (DPM) model [6]

is the key building block in Bayesian nonparametric models for a broad range

of applications. The DPM model has been extended to Hierarchical Dirichlet

Processes (HDP) [101] to cluster grouped data.

For the purpose of clarity, later in this chapter, we briefly review a parametric

topic model, LDA, and two typical nonparametric models, DPM and HDP, which

are the main constituents of our proposed models described in the following chap-

ters.

2.2 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) [23] is a generative topic model which has at-

tracted a lot of interest from both the machine learning and language processing

community. It is essentially the Bayesian version of the PLSA model [56]. In

general, a Bayesian treatment of a statistical model enables a fully probabilistic

(i.e., Bayesian) approach to learning the model, which updates a prior model into

a posterior model once data have been observed.

In the LDA model, documents are represented as random mixtures over topics,

where each topic is characterized by a distribution over words. More precisely, each

individual word token wn in a corpus w = {w1, w2, · · · , wN} is assumed to have

been derived from a single topic zn, drawn from a document-specific distribution

over K topics. The probability of generating a word w from a topic k is defined

by φw|k = p(wn = w|zn = k). These probabilities are recorded in a K × V matrix

Φ, where K is the number of topics and V is the size of vocabulary. Similarly,

the topic generation is characterized by the probability θk|d = p(zn = k|dn = d).

These probabilities are recorded in a M ×K matrix Θ, where M is the number
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of documents in the corpus. Thus the joint probability of corpus w and a set of

corresponding topics z = {z1, · · · , zN} is:

p(w, z|Φ,Θ) =
N∏
n=1

φwn|znθzn|dn , (2.1)

where wn is the n-th word of the corpus w, zn is the topic assignment for the n-th

word and dn denotes the document of the n-th word.

In order to make the model fully Bayesian, symmetric Dirichlet priors with

hyperparameters α and β are placed over Θ and Φ, i.e.,

p(Θ|α) =
∏
d

Dirichlet(θd|α) (2.2)

p(Φ|β) =
∏
k

Dirichlet(φk|β), (2.3)

where θd is the d-th row of the matrix Θ, φk is the k-th row of the matrix Φ.

Incorporating the two priors into Equation (5.1) and integrating over Θ and Φ

gives p(w, z|α, β), the joint probability of corpus and topics given hyperparam-

eters. The conditional dependencies implied by this joint distribution can be

represented by the graphical model shown in Figure 2.1. The repeated generation

of topics and words can be illustrated by the plate notation with the number in the
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right-lower corner indicating the number of repetitions. The shaded and unshaded

circles represent observed and latent (i.e, unobserved) variables, respectively. The

arrows indicate conditional dependencies between the random variables.

As a result, the posterior probability for the topic assignments specified by

latent variables z is given by:

p(z|w, α, β) =
p(w, z|α, β)∑
z p(w, z|α, β)

. (2.4)

Unfortunately, exact inference of the LDA model is intractable, since computing

Equation (2.4) involves evaluating a probability distribution on a large discrete

state space. However a number of methods of approximating the posterior dis-

tribution have been proposed including mean field variational inference [23] and

Gibbs sampling [52, 95]. Gibbs sampling is a Markov chain Monte Carlo method

where a Markov chain is constructed that slowly converges to the target distribu-

tion of interest over a number of iterations. For LDA each Gibbs sample from the

posterior distribution (2.4) is obtained by:

p(zn = k|z−n,w, α, β) ∝
N

(wn)
−n,k + β

N
(·)
−n,k + V β

N
(dn)
−n,k + α

N
(dn)
−n +Kα

(2.5)

where z−n denotes all the zj with j 6= n, N
(wn)
−n,k is the number of times the word wn

is assigned to topic k and N
(·)
−n,k is the number of words assigned to topic k. N

(dn)
−n,k

is the number of times topic k occurs in document dn and N
(dn)
−n is the number

of words in document dn. All the four counts exclude the current assignment of

zn. After the sampling algorithm has been run over each word position in the

corpus an appropriate number of times (i.e., until the chain has converged to a

stationary distribution) we sample from the distribution to obtain estimates for

our parameters Φ and Θ via the following equations:

p(w|k) = φw|k =
N

(w)
k + β

N
(·)
k + V β

(2.6)

p(k|d) = θk|d =
N

(d)
k + α

N (d) +Kα
(2.7)
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Figure 2.2: Graphical model representation

2.3 Dirichlet Process Mixture

LDA requires the number of topics as an input parameter which remains fixed

throughout the model. Setting the number of topics is a perennial question in

topic modeling. One way of sidestepping this issue is applying ideas from Bayesian

nonparametric statistics, in which the Dirichlet Process Mixture (DPM) model [6]

is the key building block for a broad range of applications. There are three different

views on the DPM model: (1) a distribution of a random probability measure, (2)

intuitive Chinese Restaurant Process (CRP), and (3) a limit of a finite mixture

model. All of these perspectives are equivalent, but each one provides a different

view of the same process, and some of them might be easier to follow.

A Dirichlet process (DP) is defined as a distribution of a random probability

measure G [42]. A DP, denoted by DP (λ,G0), is parameterized by a concentration

parameter λ, and a base measure G0. G ∼ DP (λ,G0) denotes a draw of a random
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probability measure G from the Dirichlet process. G is technically a distribution

over a given parameter space θ, so one can draw parameters θ1, . . . , θn from G.

Previously drawn values of θi have strictly positive probability of being redrawn

again, which makes the underlying probability measure G discrete [21]. Using

a DP at the top of a hierarchical model leads to the Dirichlet Process Mixture

model for Bayesian nonparametric modeling [6].

Figure 2.2(a) depicts the graphical model representation of a DPM model.

Formally, sampling from a DPM model is conducted by the following generative

process:

G ∼ DP (λ,G0),

θi ∼ G,

wi ∼ F (.|θi) (2.8)

where F is a given likelihood function parameterized by θ. The clustering property

of a DP prefers to use fewer than n distinct θ. An equivalent Chinese Restau-

rant Process metaphor exhibits the clustering property. In particular, consider a

Chinese restaurant with an unbounded number of tables. Each θi corresponds to

a customer who enters the restaurant. The i-th customer θi sits at table k that

already has nk customers with probability nk
i−1+λ

, and shares the dish (parameter)

ψk served there, or sits at a new table with probability λ
i−1+λ

, and orders a new

dish sampled from G0. This process can be expressed as:

θi|θ1, . . . , θi−1, λ,G0 ∼
i−1∑
k=1

nk
i− 1 + λ

δψk +
λ

i− 1 + λ
G0. (2.9)

where δψ is a probability measure concentrated at ψ.

Finally, a DPM model can be derived as the limit of a sequence of finite mixture

models, where the number of mixture components is taken to infinity. Therefore,

a DPM can be used to build an infinite-dimensional mixture model, and has the

desirable property of extending the number of clusters with the arrival of new

data. This flexibility enables the DPM to conduct model selection automatically.
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2.4 Hierarchical Dirichlet Processes

The DPM is widely used to build a model with a discrete random variable of

unknown cardinality (i.e., a cluster indicator). The HDP, on the other hand,

applies to the problems in which multiple different groups of data would share the

same settings of partitions. In such applications, the model for each of the groups

incorporates a discrete variable of unknown cardinality. The HDP model is able

to share clusters across multiple clustering problems.

The key building block of the HDP model is a recursion where the base measure

G0 for a DP: G ∼ DP (λ,G0) is itself a draw from another DP: G0 ∼ DP (α,H).

By this recursive construction, the random measure G are constrained to place

its atoms at the discrete locations determined by G0. Such a construction is

commonly used for conditionally independent hierarchical models of grouped data.

More formally, in HDP, we model each of the groups as a DP, which is gathered

into an indexed collection of DPs {Gj}. In order to be tied probabilistically, the

random measures share their base measure, which is defined to be random as well,

as follows:

G0 ∼ DP (α,H)

Gj ∼ DP (λ,G0). (2.10)

This means that we first draw G0 from the base measure H. The random measure

G0 is then, in turn, used as a reference measure to obtain the measures Gj. As

a result, each random measure Gj inherits its set of atoms from the same G0.

Therefore, this conditionally independent hierarchical model induces sharing of

atoms among these random measures Gj. The graphical model of HDP is shown

in Figure 2.2(b).

Integrating out all random measures, we obtain the equivalent Chinese Restau-

rant Franchise processes (CRF) [101]. In the CRF, the metaphor of a Chinese
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restaurant is extended to a set of restaurants which share a set of dishes. The

customers in the j-th restaurant sit at tables in the same manner as the CRP, and

this is done independently in the restaurants. The coupling among restaurants

is achieved via a franchise-wise menu. The first customer to sit at a table in a

restaurant chooses a dish from the menu and all subsequent customers who sit at

that table inherit that dish. Dishes are chosen with probability proportional to

the number of tables (franchise-wide) which have previously served that dish.
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CHAPTER 3

Topic-specific Influence Analysis on Microblogs

3.1 Introduction

Microblogging services, such as Twitter (twitter.com), have gained tremendous

popularity in recent years. Using these services, a user can publish a short mes-

sage, called a tweet, and follow other users to keep up with their latest updates.

The “follow” relationship (or followship) is directed, with information only flow-

ing from the followee to the follower. A large amount of microblog data has been

accumulated over time. For example, according to a March 2012 report, Twitter

had over 500 million registered users creating over 340 million tweets daily [104].

The rich text and social information in microblogs has become a popular re-

source for marketing campaigns to monitor the opinions of consumers on particular

products and to launch viral advertising. Identifying key influencers in microblogs

is required for such marketing activities. Although a lot of work has been done on

social influence analysis, most of these studies [29, 62, 67, 72, 33] infer influence

only from the network structure, while ignoring the valuable text content that the

users created. As a result, the learned influence of each user is only global, with

no way to assess the influence in a particular aspect of life (topic). For exam-

ple, no one can deny that President Obama is a key influencer in general. But

his impact is most prominent in politics. In other subjects, like choosing digital

cameras, he is unlikely to be influential. Clearly, topic-specific influence analysis

provides a more detailed influence portfolio for a user, which is critical for effective
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marketing.

A number of PageRank-based methods, such as Topic-Sensitive PageRank [54]

and TwitterRank [114], are able to compute per-topic influence ranks, but they

require the topics to be already created either manually or by a topic modeling

preprocess. As content and links are related to each other in a microblog network,

the separation between the analysis on content and the analysis on the network

structure usually leads to inferior performance, compared to those methods, like

Link-LDA [39], which can detect topics and infer influences at the same time.

However, Link-LDA, as originally designed for citation networks, assumes that

the generation of links is purely based on the content. This assumption clearly

does not apply to microblogs, since it is prevalent for a user to follow celebrities

simply because of their fame and stardom, with nothing to do with what he/she

actually tweets about.

To correctly model topic-specific influence on microblogs, we propose a new

Bernoulli-Multinomial mixture model, called Followship-LDA (FLDA). This model

contains two levels of mixtures: an upper-level Bernoulli mixture with one of the

components being a Multinomial mixture. FLDA jointly models text and follow-

ship in the same generative process. Furthermore, it is able to differentiate the

different reasons why a user follows another. Sometimes, A follows B because

they tweet in similar topics. This type of followship is content-based. In other

times, A follows B purely because B is a pop star. In this case, the followship is

content-independent. Using FLDA, we can not only learn the per-user preference

of following by content or not, but also remove the stardom effect when comput-

ing the topic-specific influence. Our empirical study on two popular microblog

datasets, Twitter and Tencent Weibo, shows that the FLDA model produces sig-

nificantly higher quality results than the prior arts.

Gibbs sampling is a widely used approach to approximate target distribu-

tions for LDA-like Bayesian models. To meet the computational challenge posed
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by rapid growing microblog data, we propose a distributed Gibbs sampling algo-

rithm which significantly speeds up the Gibbs sampling process. For example,

a sequential job that would take 21 days on a high end server can finish in 1.5

days using the distributed algorithm on a cluster of 27 commodity machines! We

chose to implement the distributed Gibbs sampling on top of the Spark cluster

computing framework [118]. Several alternative platforms [26, 10, 24] have been

proposed to address the problem of machine-learning at scale. Spark is such a

parallel programming framework, which supports efficient iterative algorithms on

datasets stored in the aggregate memory of a cluster. We pick Spark as the under-

lying framework, because of its extreme flexibility as far as cluster programming

is concerned. In addition to machine-learning algorithms, which were the main

motivation behind the design of Spark, various data-parallel applications can be

expressed and executed efficiently using Spark; examples include MapReduce,

Pregel[75], HaLoop[26] and many others(see [118]).

Finally, we propose a general search framework for topic-specific key influ-

encers, which can flexibly plug in various topic-specific influence methods, includ-

ing FLDA, Link-LDA, Topic-Sensitive PageRank and TwitterRank. A user just

needs to enter a set of keywords to describe his/her interest, the search frame-

work will infer a topic distribution from the keywords and return a ranked list of

influencers in the corresponding topic combination.

In particular, this work makes the following contributions:

• We propose a new Bayesian Bernoulli-Multinomial mixture model, FLDA, to

jointly model both content and links in the same generative process, while

separating the various reasons why a user follows another in a microblog

network.

• We discuss and implement a distributed Gibbs-sampling technique for train-

ing FLDA over large clusters.
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• We propose a general search framework for finding topic-specific key in-

fluencers with various models (including FLDA, Link-LDA and PageRank

variants).

• Through extensive experimentation with two large real datasets, we demon-

strate (a) the substantial better precision achieved by FLDA than previous

work, (b) the excellent scalability of the distributed Gibbs-sampling tech-

nique over large clusters and (c) various interesting insights gained from the

real datasets.

3.2 Related Work

Much work has been done on influence analysis in social networks. Kempe et.

al. pioneered the Linear Threshold Model and Independent Cascade Model to ex-

plain the spread of influence in a social network and abstracted the key influencer

problem into a maximization problem [67]. Along with subsequent works, such as

[72] and [33], these methods are only after the identification of global influencers

instead of influencers for specific topics. Although Barbieri et. al. extended the

Linear Threshold Model and Independent Cascade Model to be topic-aware [9],

the topics are still obtained based on the network structure, while totally ignoring

the valuable content information.

Given the popularity of PageRank [25], it is only natural to extend it for

topical influence analysis. Topic-Sensitive PageRank (TSPR) [54] was such an ex-

tension for computing per-topic PageRank scores. TSPR biases the computation

of PageRank by replacing the classic PageRank’s uniform teleport vector with

topic-specific ones. However, it requires a separate preprocess to create topics

and provide per-topic teleport vectors. This preprocess can be done by either uti-

lizing existing manually categorized topic hierarchies, such as suggested in [54], or

applying well-known topic modeling methods like LDA [23] on the text content,
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as suggested in [114].

In [114], TwitterRank was proposed to find topic-level influencers on Twitter.

A set of topics is first produced by LDA on the tweets. Then TwitterRank applies a

method similar to TSPR to compute the per-topic influence rank. The transition

probability between two users in TwitterRank is defined based on the number

of tweets published by different followees and the topical similarity between the

follower and the followee.

In the context of documents and citations (or hyperlinks), a mixed member-

ship model was proposed in [39] to jointly model text and citations in the same

generative process, which we will refer to as Link-LDA. In the generative process

of Link-LDA, for a given document, a citation to another document is created in

exactly the same way as a word is created, and they share the same per-document

topic distribution. If we aggregate all the tweets for each user, and treat a user as

a document and his/her followships to other users as citations, then Link-LDA can

be applied to the microblog network, to learn the probability of each microblog

user u being followed by someone given a specific topic t. This probability can be

used to measure u’s influence on the topic t. Link-PLSA-LDA [79] is an extension

to Link-LDA, but also assumes that the cause of links is purely based on the text

content.

In [100], Tang et al. proposed a Topical Affinity Propagation (TAP) model for

topic-level social influence. But, similar to TSPR and TwitterRank, TAP requires

a separate topic modeling approach to be applied first to derive a set of topics on

the content.

In [86], Pal et. al. identifiy topical authorities by clustering users using 15

carefully selected features and then rank users within each cluster. Cognos [45]

heavily relies on the manually curated Twitter “Lists” to infer topics of expertise

and rank experts for different topics. Liu et al. introduced a graphical model to

learn influence in the context of general heterogeneous networks [73].
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Figure 3.1: Followship-LDA

3.3 Followship-LDA

The existing works on topic-specific influence analysis can be categorized into

two camps. The first camp, represented by TSPR and TwitterRank, completely

detach the topic detection process from the influence analysis. As we will show

later in this chapter, these methods perform inferior to those approaches in the

second camp that integrate text topic discovery and social influence analysis in

the same model. Link-LDA represents the best prior work in the second camp.

However, it was originally developed for citation and hyperlink networks. In

Link-LDA, the topic assignments for words and for citations are drawn from the

same topic distribution θ, assuming that the content of a document is topically

related to that of its cited documents. This is a very reasonable assumption for

citation/hyperlink networks, since an author most definitely chooses the topically

related documents to cite. But this assumption no longer applies to microblog

networks. There are many reasons for a microblog user to follow another. Some

are content-related (they tweet in similar topics) and others are not. For example,
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Table 3.1: Notations used in FLDA
Notation Description

θ Per–user topic distribution

ϕ Per-topic word distribution

σ Per-topic followee distribution

π Multinomial distribution over followees

µ Per-user Bernoulli distribution over indicators

α, β, γ, ε, ρ
Parameters of the Dirichlet (Beta) priors on

Multinomial (Bernoulli) distributions

w Word identity

e Followee identity

z Identity of the topic of a word

x Identity of the topic of a followee

y
Binary indicator of whether a followship is

related to the content of tweets

M Number of unique users

V Number of words in the vocabulary

K Number of unique topics

Nm Number of words in the tweets of user m

Lm Number of followees for user m

President Obama has a massive number of followers in Twitter, but some of them

have never tweeted about politics at all. It is very common to see users follow

celebrities, not because they share any topic of interest, but just because they are

famous and popular. Clearly, Link-LDA is not able to capture these non-content

related factors in the influence analysis.

To correctly model the topics and social influence in microblog networks, we

propose Followship-LDA, abbreviated as FLDA. The graphical model for FLDA

is depicted in Figure 3.1, with the notations described in Table 7.1. The generative

process of a user’s content and links/followees is summarized in Figure 3.2.

For the generation of content, each user is viewed as a mixture of latent topics
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Figure 3.2: Generative process for Followship-LDA

from which words are drawn, similar to LDA. To be more specific, for the mth

user, we first pick the per-user topic distribution θm from a Dirichlet prior with

parameter α. Then, to generate the nth word for the tweets of the user, a topic

zm,n is first chosen from θm. Finally, the word wm,n is picked from the per-topic

word distribution ϕzm,n .

On the other hand, the links of the mth user are generated by a much more

complex three-stage stochastic process. First of all, every user has a unique pref-

erence of following others based on content or non-content reasons. The Bernoulli

distribution µm characterizes this per-user preference. As a result, for the lth link/-

followee of the mth user, we first consult µm to decide on the value of the binary

variable ym,l. ym,l = 1 indicates that the link creation is based on the user’s con-

tent, whereas ym,l = 0 means that content has nothing to do with the link. Now

if ym,l = 1, we use the same topic distribution θm to pick a topic xm,n of interest,

just as in the content generation part of FLDA. Afterward, we choose a followee

em,l who well addresses the picked topic from the per-topic followee distribution
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σxm,l . When ym,l = 0, the user is following someone for non-content reasons. We

use π to capture this probability distribution. In particular, a followee em,l is

chosen from the Multinomial distribution π.

Note that FLDA is a much more complex mixture model than LDA and Link-

LDA. We call it a Bernoulli-Multinomial mixture model, because the model con-

sists of two levels of mixtures: an upper-level Bernoulli mixture that includes a

Multinomial mixture underneath. More specifically, each followee e of a user m is

drawn from a Bernoulli mixture of two components. One of the mixture compo-

nents is a Multinomial distribution with parameter π, corresponding to the global

popularity. The other component, however, is itself a mixture of K Multinomial

components, each corresponding to a topic. The distribution of followee e of user

m is: p(e|µ, π, θ, σ) = µm,0πe + µm,1
∑K

k=1 θm,kσk,e, where µ are the outer mixing

proportions, and θ are the inner mixing proportions.

The various probability distributions we can learn from the FLDA model char-

acterize the different factors that affect the textual and social structures of a mi-

croblog network. For a user m, the probability θz|m represents the likelihood of

m tweeting about topic z, and µy|m is the probability of the reason indicator y

(content-related or not) why the user m follows others. For content of tweets,

ϕw|z gives the probability of word w belonging to topic z. In terms of links, σe|x

captures the likelihood of a user e being followed by someone for a given topic

x. This value essentially quantifies the influence of user e on x and is exactly

the topic-specific influence score we want to compute. Finally, πe indicates the

probability of a user e being followed for any non-content reason. In some sense,

πe is measuring the global popularity of e. We formally define:

Topic-Specific Influence: the influence of user e on topic x is measured by σe|x

which is the probability of e being followed for topic x in the FLDA model.

Content-Independent Popularity : the content-independent popularity of user

e is measured by πe which is the probability of e being followed for any content-
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independent reason in the FLDA model.

3.3.1 Gibbs Sampling for FLDA

To learn the various distributions in the FLDA model, we use collapsed Gibbs

sampling. However, the derivation of posterior distributions for Gibbs sampling

in FLDA is complicated by the fact that followee distribution is a joint distribution

of two-level mixtures. As a result, we need to compute the joint distribution of

x and y in the Gibbs sampling process. The posterior distributions for Gibbs

sampling in FLDA are given in the equations below. The detailed derivation of

these equations is provided in the appendix.

p(zm,n|z−(m,n), x, w, e, y, α, β, γ, ε, ρ)

∝ (c
−(m,n)
zm,n,m,∗+dzm,n,m,∗,∗+αzm,n )(c

−(m,n)
zm,n,∗,wm,n+βwm,n )

c
−(m,n)
zm,n,∗,∗+

∑W
i=1 βi

(3.1)

p(xm,l, ym,l = 0|y−(m,l), x−(m,l), w, z, e, α, β, γ, ε, ρ)

∝ (cxm,l,m,∗ + d
−(m,l)
xm,l,m,∗,∗ + αxm,l)(d

−(m,l)
∗,m,∗,0 + ρ0)×

d
−(m,l)
∗,∗,em,l,0

+εem,l

d
−(m,l)
∗,∗,∗,0 +

∑M
i=1 εi

(3.2)

p(xm,l, ym,l = 1|y−(m,l), x−(m,l), w, z, e, α, β, γ, ε, ρ)

∝ (cxm,l,m,∗ + d
−(m,l)
xm,l,m,∗,∗ + αxm,l)(d

−(m,l)
∗,m,∗,1 + ρ1)×

d
−(m,l)
xm,l,∗,em,l,1

+γem,l

d
−(m,l)
xm,l,∗,∗,1

+
∑M
i=1 γi

(3.3)

In the above equations, zm,n denotes the topic of the nth word for the mth user,

and ym,l is the reason indicator (content or non-content) of the lth link for the mth

user. wm,n, xm,l and em,l follow similar definitions. Let z−(m,n) denote the topics

for all words except zm,n, and y−(m,l) and x−(m,l) follow an analogous definition.

We define cz,m,w as the number of times word w is assigned to topic z for the mth

user, and dx,m,e,y as the number of times link e is assigned to topic x for the mth

user with indicator y. If any of the dimensions in above notations is not limited

to a specific value, we use ∗ to denote. Essentially, ∗ represents an aggregation

on the corresponding dimension. For example, cz,∗,w is the total number of times
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word w is assigned to topic z in the entire document collection. Finally, let c
−(m,n)
z,m,w

be the same meaning of cz,m,w only with the nth word for the mth user excluded.

Similarly, d
−(m,l)
x,m,e,y is defined in the same way as dx,m,e,y only without the count for

the lth link for the mth user.

After the sampling algorithm has run for an appropriate number of iterations

(until the chain has converged to a stationary distribution), the estimates for the

parameters of θ, ϕ, µ, σ and π can be obtained via the following equations:

θx|m =
cx,m,∗ + dx,m,∗,∗ + αx

c∗,m,∗ + d∗,m,∗,∗ +
∑K

i=1 αi
(3.4)

ϕw|z =
cz,∗,w + βw

cz,∗,∗ +
∑W

i=1 βi
(3.5)

µy|m =
d∗,m,∗,y + ρy

d∗,m,∗,∗ + ρ0 + ρ1

(3.6)

σe|x =
dx,∗,e,1 + γe

dx,∗,∗,1 +
∑M

i=1 γi
(3.7)

πe =
d∗,∗,e,0 + εe

d∗,∗,∗,0 +
∑M

i=1 εi
(3.8)

3.4 Scalable Gibbs Sampling for FLDA

The rapid growth of microblog data poses a significant challenge for influence

analysis in terms of both computation time and memory requirements. Scal-

able solutions that can take advantage of the computation power and memory

capacity of multiple computers are becoming more crucial. However, the Gibbs

sampling updates of FLDA shown in equations (3.1)-(3.3) are inherently sequen-

tial, which makes it very difficult to parallelize the computation. However, given

the abundance of words and the large number of links in a microblog dataset,

the dependency between different topic assignments or indicator assignments in

equations (3.1)-(3.3) is relatively weak. As a result, we can relax the sequential

requirement of the Gibbs sampling updates and distribute the computation to a

number of processes running in parallel. In fact, similar observations were used
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to develop approximate parallel/distributed Gibbs sampling algorithm for LDA

in [82], [97] and [3]. We implemented our distributed FLDA Gibbs sampling al-

gorithm on a distributed cluster computing framework called Spark [118]. Before

the details of our distributed algorithm, we first provide a brief overview of Spark.

3.4.1 Spark Overview

Spark is a large-scale distributed processing framework specifically targeted at

machine-learning iterative workloads. It uses a functional programming paradigm,

and applies it on large clusters by providing a fault-tolerant implementation of

distributed data sets called Resilient Distributed Data (RDD). RDDs can either

reside in the aggregate main-memory of the cluster, or in efficiently serialized disk

blocks. Especially for iterative processing, the opportunity to store the data in

main-memory can significantly speed up processing. An RDD contains immutable

data; i.e. it cannot be modified, however, a new RDD can be constructed by

transforming an existing RDD.

The Spark runtime consists of a single coordinator node and multiple worker

nodes. The coordinator keeps track of how to re-construct any partition of the

RDD when any of the workers fails.

Computation in Spark is expressed using functional transformations over RDDs.

For instance, assume that we have a log file, and that we want to transform each

string to lower case. Consider the first two lines of actual Spark code in List-

ing 3.1: The first line of code defines an RDD of strings, called baseRDD, over

a file “baseData.log” stored in a Hadoop Distributed FileSystem; each text line

of the log file, corresponds to a string of the RDD. The second line of code,

uses the map function to transform each string in baseRDD through the function

String.toLowerCase. The transformation happens in parallel on all the workers,

and defines a new RDD, called lowerRDD that contains the lower-case string of
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1 val baseRDD = sc.textFile("hdfs://master/baseData.log")

2 val lowerRDD = lines.map(String.toLowerCase )

3 val regexB = sc.broadcast(REGEX)

4 val nMatches = sc.accumulator(0)

5 lowerRDD.foreach (s =>

6 if ( s .matches(regexB.value) )

7 nMatches += 1

8 )

9 println("#Matches is:\%d".format(nMatches.value))

Listing 3.1: Sample Spark code.

each string in baseRDD.

Spark’s programming model provides additionally two useful abstractions:

broadcast variables and accumulators. Broadcast variables are initialized at the

coordinator node, and made available to all worker nodes, through efficient net-

work broadcast algorithms. Spark chooses a topology-aware network-efficient al-

gorithm to disseminate the data. Line 3 in Listing 3.1 initializes a broadcast

variable called regexB to a regular expression (called REGEX). In Line 6, this value

is used inside the foreach loop to check if any of the lines in the RDD called

lowerRDD matches that regular expression. Note that broadcast variables are

immutable, read-only, objects and cannot be modified by the workers.

Similar to a broadcast variable, an accumulator is also a variable that is initial-

ized on the coordinator node, and sent to all the worker nodes. However, unlike

a broadcast variable, an accumulator is mutable and can be used to aggregate

results of computations at worker nodes. Worker nodes may update the state of

the accumulator (usually just by incrementing it, or by using computations such

as count and sum). At the end of the RDD transformation, each worker node

sends its locally-updated accumulator back to the coordinator node, where all

the accumulators are combined (using either a default or user-supplied combine
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function) into a final result. In our example listing, nMatches is an accumulator

that is locally incremented by all workers (line 7) before it is globally aggregated

(through an implicit addition over all the partial results in line 9).

3.4.2 Distributed FLDA using Spark

We now describe how we use the Spark framework to implement the distributed

Gibbs sampling algorithm for FLDA. In particular we discuss technical issues

that distributed approaches encounter, and propose solutions and justify various

implementation choices.

First, we define the notion of a user object. Each user object corresponds to

a single user m, and holds information about the content (i.e. the actual words

used by m) and the link structure (i.e. other users that m is following). For

each word w and link e, the user object holds the last topic assignment, i.e. the

corresponding latent variables z and x. For each link additionally it holds the last

binary state (i.e. content-related or content-independent) for the y latent variable.

Finally, each user object holds the user-local counters dx,m,e,y, cx,m,w, as well as

all aggregates of these (like d∗,m,∗,∗) that show up in equations (1)-(3). Note that

the corresponding local aggregates always have a m index in the subscript. Such

aggregates are entirely local to a user and need not be shared.

Note that in addition to the user-local counters and aggregates, equations (1)-

(3) require global aggregates (like dx,∗,∗,1) over all the users. Such global aggregates

always have a ∗ instead of m in the corresponding subscript index.

Based on previous work ([97]), the global aggregates are not stored in the user

object, but are computed periodically and distributed to all workers through an

accumulator. The idea is that such aggregates should change slowly and thus any

inaccuracies (because of the periodic synchronization) shouldn’t affect the qual-

ity of the final result. Although this assumption has been shown to work well
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in practice for basic LDA, it is not evidently clear whether it works for FLDA.

A big difference is that the global aggregates, that distributed LDA periodically

needs to synchronize, are only per document terms and thus their count is lim-

ited (especially after typical pre-processing, like stop-word removal or stemming).

However, distributing FLDA requires the periodic synchronization of orders of

magnitude more aggregates;not only per document terms but also per user terms

(and typically there are many more users). In the experiments, we show that for

real datasets with millions of users, distributing FLDA still works very well.

Second, we define a mapping function, GibbsSampleMap, which takes as input

one such user object, runs Gibbs sampling once and returns a new user object.

In particular, this function goes over all the words and links in the object and

(a) “undoes” the effects of the last assignment to the latent variables x, y and z

(by properly decreasing the corresponding counts dx,m,e,y, cx,m,w as well as all the

corresponding local and global aggregates), (b) computes the new probabilities

for the latent variables x, y and z according to the equations (1)-(3), and finally

(c) assigns new latent variables according to these probabilities, and increases the

corresponding counts and all user-local and global aggregates.

Putting all these together, first we initialize an RDD of user objects by (a)

properly parsing and co-grouping the content and the link structure for each user,

(b) randomly initializing the latent variable assignments and (c) computing the

corresponding user-local counters and aggregates based on these initial assign-

ments. Then we run a number of iterations over the RDD, where each iteration

maps all user objects (in parallel) to new user objects using the GibbsSampleMap

function we defined above. At the beginning of each iteration we accumulate and

broadcast the global aggregates. We note, that each worker has its each own copy

of the global aggregates, that the mapping function modifies. Thus although each

worker starts with the same global aggregates, as user objects are transformed

through the mapping functions, the workers’ copies of the global aggregates get
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“out-of-sync”, until the start of the next iteration when new global aggregates

are computed and broadcasted. Finally, when all the iterations are done, we use

equations (4)-(8) to estimate the parameters θ, ϕ, µ, σ and π of the FLDA model.

3.4.3 Discussion

The distributed Gibbs sampling algorithm is quite generic and could be used to

train other Bayesian models as well. We emphasize that the final result depends on

the assumptions made in [82] and [97]. In particular, the global-aggregates change

slowly and thus are not updated continuously, but only once every iteration (or

even less often and asynchronously in the case of [97]). This choice does not seem

to affect the final result of topic models like LDA. The literature shows that the

quality of the result (in terms of perplexity or log-likelihood) is equivalent to that

from a purely sequential implementation (where the global aggregates are always

updated). We empirically show that the same holds for FLDA. We emphasize

that it is not immediately clear whether this approach works for FLDA, since

it requires the synchronization of order of magnitude more global aggregates.

In Section 3.6 we compare the resulting user rankings produced by serial and

distributed version of the algorithm and show virtually no difference. Finally

we note that in the experiments with various real datasets, we observed that

computing and synchronizing the global-aggregates just once every ten iterations

doesn’t seem to affect the quality of the results. It is an open problem exactly

how infrequent such global updates can be.

Although Spark provides a lineage based fault-recovery mechanism, we chose

to complement it using manual checkpoints for every ten iterations. The reason,

is that replaying all the iterations from the beginning for every failed worker

(although infrequent) takes quite some time. With the checkpoints, we guarantee

that at most ten iterations will have to be replayed in case of failures. Our choice

was also based on the fact that the cost of a checkpoint was negligible (a small
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fraction of the time required to do an iteration).

Finally, we took extra care for the correctness of the distributed Monte-Carlo

simulation. Since multiple workers are spawned at roughly the same time, typical

random-number generators are seeded with similar (or even exactly the same)

seeds. This introduces correlations between the pseudo random numbers gener-

ated across the workers. In extreme cases, two workers could “see” exactly the

same stream of pseudo-random numbers. Such correlation jeopardizes the quality

of the returned results. To guarantee correctness of the distributed simulation,

we use the technique discussed in [53] for generating multiple streams of uniform

numbers that are provably independent. In particular, we assign a unique stream

for each RDD block and iteration pair (i.e. if we have 100 RDD blocks and 500

iterations, we have 100 × 500 independent streams of random numbers). This

approach guarantees not only the correctness of the simulation, but also repeata-

bility; every time we run the simulation with the same initial seed we get exactly

the same results, regardless of the number of workers or possible worker failures.

3.5 Querying Topical Influencers

Finally, we propose a general search framework for topic-specific key influencers,

called SKIT. Inspired by the popular search engine framework, SKIT allows a

user to freely express his/her interests by typing a set of keywords. Then, SKIT

returns an ordered list of key influencers by their influence scores that satisfy the

user’s intent.

SKIT flexibly allows plugging in different topical influence methods. All that

it needs from the underlying influence analysis are (a) the derivation of interested

topics from the query keywords, and (b) the per-topic influence scores for every

microblog user. More specifically, given a set of key words as a query q, SKIT first

derives a weight W (t, q) for each topic t in the set of all topics T , indicating the
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likelihood of topic t being represented by query q. Then, utilizing the learned per-

topic influence score for each user INFL(t, u), the final influence score INFL(q, u)

for a user u given a query q is computed as

INFL(q, u) =
∑
t∈T

W (t, q) · INFL(t, u). (3.9)

Finally, the users are returned in decreasing order of their influence scores INFL(q, u).

When our FLDA model is used as the underlying topic-specific influence anal-

ysis method, the probability distributions θz|m and σe|x are produced as part of

the results. Here, θz|m represents the probability of topic z given user m, and σe|x

is the probability of user e being followed by someone given topic x. If we treat

a query q as a new user, we can use the folding-in [49] or the variational infer-

ence [97] technique on FLDA to quickly learn θz=t|m=q, the probability of topic t

given the query q, and use this value as W (t, q) in Equation (3.9). On the other

hand, the per-topic influence score INFL(t, u) for each user can be quantified by

σe=u|x=t.

Besides FLDA, our flexible SKIT search framework can also easily plug in

Link-LDA, TSPR and TwitterRank. The folding-in and the variational inference

techniques equally apply to Link-LDA and LDA, if LDA is used in the topic

modeling preprocess for TSPR and TwitterRank to compute W (t, q). The defi-

nition of INFL(t, u) for Link-LDA is the same as in FLDA. For both TSPR and

TwitterRank, INFL(t, u) is simply the PageRank score for user u and topic t.

3.6 Experiments

In this section, we start with evaluating the effectiveness of our FLDA model on

two microblog datasets, Twitter and Tencent Weibo. On the Twitter dataset,

we give examples of topics and influencers found by the FLDA model, then we

use the Tencent Weibo dataset to systematically compare FLDA with a number
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Table 3.2: Statistics of Experimental Datasets.

Dataset # users # dist. words # total words # links

Twitter 1.76 M 159 K 2363 M 183 M

Weibo 2.33 M 714 K 492 M 51 M

Table 3.3: A sample of FLDA topics and their influencers.
Topic Top-10 keywords Top-5 influencers

“Information data, web, cloud, software, open, windows, Tim O’Reilly, Gartner Inc., Scott Hanselman (software blogger),

Technology” microsoft, server, security, code Jeff Atwood (software blogger, co-founder of stackoverflow.com),

Elijah Manor (software blogger)

“Food and food, chocolate, coffee, eat, chicken, lunch Whole Foods (organic grocery chain), Foodimentary.com (food blog),

drink” dinner, cheese, recipe, tea WineTwits.com (wine community), Barack Obama, L.A. Times Food

“Cycling bike, ride, race, training, running, miles, Lance Armstrong, Levi Leipheimer, George Hincapie (all 3, US Postal

and running” team, workout, marathon, fitness pro cycling team members), Johan Bruyneel (US Postal team director),

RSLT (radioshackleopardtrek.com – pro cycling team)

“Advertiser’s class, sleep, hate, bed, tired, movie, Taylor Swift, Pete Wentz, Katy Perry (all 3 singers),

dream” homework, finally, bored, ugh Perez Hilton (celeb blogger), Lady Gaga

“Ppl can’t ppl, dnt, nite, tht, jus, Kim Kardashian, Kourtney Kardashian, Khloe Kardashian,

spell” goin, lov, wat, abt, plz Tila Tequila (all 4 reality TV stars), Ciara (singer)

“Down under” travel, Australia, latest, Sydney, Melbourne Kevin Rudd (Australian PM in 2010), Rove McManus, Dave Hughes,

fishing, Australian, trip, hotel, island Wil Anderson (all three are Aussie comedians and TV hosts),

Ruby Rose (Australian model and TV presenter)

of existing approaches including TSPR, TwitterRank and Link-LDA. Finally, we

demonstrate the scalability of the distributed Gibbs sampling algorithm, and show

that it produces results with indistinguishable quality as the sequential algorithm.

Experiment Setup. The sequential FLDA Gibbs sampling algorithm was

run on an 4-core Intel Xeon (X5672) 64-bit 3.2GHz server with 192GB RAM. For

distributed FLDA Gibbs sampling, we used a cluster of 27 IBM System x iDat-

aPlex dx340 servers. Each server consisted of two quad-core Intel Xeon (E5540)

64-bit 2.5GHz processors, 32GB RAM, and interconnected using 1GB Ethernet.

We reserved one server as the Spark coordinator, and use the remaining ones for

workers. Each machine was configured to run up to 8 concurrent workers. By

default, we used 200 workers for distributed FLDA.
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Table 3.4: A sample of the topics of FLDA and Link-LDA with their influencers
Topic Model Top-10 keywords Top-5 influencers

“Job”

FLDA
business, job, jobs, management, manager, job-hunt.org, jobsguy.com, integritystaffing.com/blog

sales, services, company, service, hiring (Job Search Ninja), JobConcierge.com, careerealism.com

Link-LDA

job, jobs, manager, business, Paul Terry Walhus (web host developer and blogger),

sales, management, service, Wayne Sutton (startup advisor), Adam Glickman (tech professional),

company, services, hiring bloggersblog.com (blogging news), Mary Hodder (tech blogger)

“Music”

FLDA
listening, album, rock, band, song, pitchfork.com (music website), Trent Reznor (singer), Paste Magazine

john, black, top, tour, artists (music magazine), New Musical Express, Sub Pop Records

Link-LDA
listening, rock, album, song, band, Club Ubuntu, Nithin Jawali (tech enthusiast), Paul Shaffer (musician)

black, john, top, beatles, bob Debra Zimmer (consultant), iheartquotes.com (a collection of quotes)

“Justice”

FLDA
police, court, case, law, report, death, Barack Obama, CNN Breaking News, The New York Times,

story, arrested, woman, state CanadaCool.com, BBC Breaking News

Link-LDA
police, ap, law, court, report, Health Brand, 2humor.com (funny stuff), healthsmartme.tumblr.com

press, case, death, reuters, state Daniel Vega (lawyer), Multiplaza Shopping (shopping deals)

“Weather”

FLDA
snow, weather, rain, winter, high, CNN Breaking News, The Denver Post, NPR News,

nc, denver, storm, wind, county The Weather Channel, CBS Denver

Link-LDA
snow, weather, atlanta, rain, high, DiningPerks.com, Georgia Aquarium, Atlanta Journal-Constitution

nc, county, south, fire, north (Atlanta newspaper), HelloNorthGeorgia.com, Q100 Atlanta (radio)

3.6.1 Effectiveness on Twitter Dataset

We first evaluate our FLDA model on a Twitter dataset1, crawled between October

2009 and January 2010. The raw dataset consists of roughly half a terabyte of text

and link information. The basic statistics of this dataset are given in Table 7.2.

We used the tokenizer from the TweetNLP project [46] in order to improve the

accuracy of the recognized terms in the noisy text. We tried to further reduce the

inherent noise of tweets, by removing terms that appear in less than 50 tweets.

We set the number of topics to 100 and run the distributed FLDA Gibbs sampling

for 500 iterations. All the priors were set to 0.1 except ρ which was set to 1. These

settings are fairly typical for LDA-based approaches and their tuning is beyond

the scope of this work.

Table 3.3 shows some of the resulting topics with their top keywords and

influencers. We named these topics to simplify the presentation. Intuitively, it

is clear that the influencers are very relevant to the corresponding topics. For

example, one would expect O’Reily publishers, Gartner research, and popular

1This dataset was crawled in a BSF manner with the top 1000 users in twitterholic.com

as the seeds.
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software bloggers to be influential for an IT-related topic. Just as one would expect

school age kids to be influenced by pop stars. Some of the findings are insightful.

For example, Australians seem to be particularly influenced by comedians. While

the first person in the list is Prime Minister of Australia (at the time of the crawl),

the following three are comics.

FLDA separated the “globally” popular users from the content-specific influ-

encers, and elected that 15% of all links were content-independent. In other words,

15% of the time, these popular users were followed regardless of what people tweet

about. By comparison, the largest topic was associated with less than 2.5% of all

links. The top five globally popular users detected by FLDA were: Pete Wentz

(singer), Ashton Kutcher (actor), Greg Grunberg (actor, author of Yowza mobile

app), Britney Spears (singer), and Ellen DeGeneres (comedian, TV host). In

comparison, the top five most-followed Twitter accounts were: Barack Obama,

Ashton Kutcher, Britney Spears, Ellen DeGeneres, Shaquille ONeal (basketball

player). Although President Obama was most followed, we found his impact was

most prominent in politics, which was topic-related. Similarly the basketball star

Shaquille O’Neal was mostly followed due to his impact in basketball. FLDA can

correctly identify topic-specific influence from the content-independent popularity.

There were a number of similar topics produced by both FLDA and Link-

LDA. Table 3.4 compares the top five influencers from FLDA and Link-LDA for

a few example topics. As shown from the table, FLDA produced dramatically

better results than Link-LDA. For example, the “Jobs” topic produced by FLDA

and Link-LDA had virtually the same top-10 keywords. The top five influencers

identified by FLDA were all popular job-search websites, whereas the influencers

found by Link-LDA were mostly tech bloggers. Upon inspection of their tweets it

seems clear that the Link-LDA list was much less relevant to the job search topic.

As another example, on the “Music” topic, FLDA successfully identified popular

music media as influencers, whereas Link-LDA misidentified Club Ubuntu and a
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consultant as influencers in the music topic.

Naturally, such anecdotal evidence is very hard to generalize and quantify.

Luckily, 2012 KDD Cup provided us with the data needed to objectively measure

the quality of FLDA and other approaches, as we describe next.

3.6.2 Effectiveness on Tencent Weibo Dataset

In this section, we systematically evaluate the effectiveness of our FLDA model

on a sample dataset from the popular Chinese microblog site – Tencent Weibo

(t.qq.com).

This Tencent Weibo dataset is released by KDD Cup 20122. The basic statis-

tics of this dataset 3 are given in Table 7.2. A very nice feature of the Weibo dataset

is the set of provided VIP users (also called items in Weibo), which enables us to

systematically evaluate the precision of various key influencer methods. These VIP

users are manually labeled by Weibo administrators, and organized in hierarchical

categories. An example hierarchical category is science and technology.internet.mobile,

where categories in different levels are separated by a dot “.”. In this dataset, cat-

egories are anonymized as integers, such as 1.4.2.3. There are 377 categories and

on average each category contains 16.2 VIPs. According to Weibo, the VIP users

are typically famous people and organizations. In other words, they are “key in-

fluencers” in their corresponding categories. As a result, the VIP users can be

used as the “ground truth” for our empirical evaluation. While we don’t expect

VIP categories to have 100% precision or recall, they give us enough information

to facilitate relative comparisons across different schemes.

Based on this information, we have set up the following experiment. For a

given category, we use one VIP (i.e. all the words of this user) as the query, and

2www.kddcup2012.org/c/kddcup2012-track1/data
3In the Tencent Weibo dataset, for each user, the appearance of each word is associated with

a weight (usually ≤ 1.0). We multiply this weight by 100 to approximate the underlying word
frequency.

34

t.qq.com
www.kddcup2012.org/c/kddcup2012-track1/data


10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

Top k

A
v

er
ag

e 
n

u
m

b
er

 o
f 

re
al

 t
o

p
ic

−
se

n
si

ti
v

e 
in

fl
u

en
ce

rs

 

 

LDA+TSPR

Link−LDA

TwitterRank

FLDA

Distributed FLDA
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Figure 3.3: Average number of returned VIPs

observe how many of the fellow VIP users in the same category are identified

as top influencers by the different schemes. In the following, we compare our

FLDA model with TSPR, TwitterRank and Link-LDA. We maintain the number

of topics at 100 for all the methods and run 500 iterations for LDA (used in TSPR

and TwitterRank), Link-LDA and FLDA. The priors used are 1.0 for α, 0.01 for

β, γ and ε, and 0.1 for ρ.

Figure 3.3(a) and Figure 3.3(b) compare our FLDA model with TSPR, Twit-

terRank and Link-LDA on two of the largest categories in the Weibo dataset.

For each category, we use every VIP user as a key influencer query and check

how many of the top K returned users are the fellow VIP users. We report the

average number of VIPs among the top K returned results across all the queries.

As shown in both figures, our FLDA model consistently produces better precision

results than the others by a significant margin. TSPR is usually the worst among

all methods, followed by TwitterRank. Link-LDA performs slightly better than

the two PageRank-based approaches.

To analyze the results across all categories we employ a standard Mean Average

Precision (MAP) [76] metric. MAP for a set of queries is defined as the mean of
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Figure 3.4: Mean Average Precision

the average precision scores (AvgP ) for each query. AvgP of a list of top-k query

results is defined as the average of precision values for all k prefixes.

Figure 3.4 shows MAP of all the queries across all categories in the Weibo

dataset. Again, FLDA produces significantly better results than the competing

methods, more than 2 times better than TSPR and TwitterRank, and around

1.6 times better than Link-LDA. Interestingly, FLDA elected only 50% of Weibo

links to be content-related. This explains the significant advantage of FLDA over

Link-LDA, which assumes that all links are topic-specific.

As shown in Figure 3.3(a), 3.3(b) and Figure 3.4, the distributed FLDA con-

sistently produces result with quality almost identical to that of the sequential

FLDA. This confirms the relaxed dependency assumption on which our distributed

FLDA Gibbs sampling is based.

Throughout the experiments we measured the time taken by the on-line com-

ponent of our SKIT search framework. On average, each query takes 1.7 sec to

get the results, and this time does not depend on the off-line modeling scheme we

use.
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Figure 3.5: Speed-Up of Distributed FLDA on the Twitter dataset.

3.6.3 Scalability

Before evaluating the scalability of our distributed FLDA Gibbs sampling algo-

rithm, we first report the execution times for the sequential algorithm. For the

KDD Weibo dataset, the sequential Gibbs sampling on a high-end server (192GB

RAM, 3.2GHz processor) takes around 13 minutes per iteration, and for the Twit-

ter dataset, it takes more than one hour per iteration. On Twitter dataset FLDA

runs longer because there are many more words and links to sample. Running

sequential Gibbs sampling for 500 iterations takes around 4.6 days for the KDD

Weibo dataset, and would take 21 days for the Twitter dataset! This clearly

motivates the need for a scalable solution.

Our distributed algorithm completes 500 iterations on Twitter data in about

36 hours, using 200 workers on 27 machines. Overall, the distributed FLDA in

this instance is about 14 times faster than a sequential implementation running
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on single, large-memory server.

We tested the scalability of the distributed algorithm along three dimensions:

data size, number of topics, and the number of concurrent workers. To obtain the

scaled down dataset we performed uniform random sampling of users, for example

to generate a 4 times smaller dataset we use a sampling rate of 25%. The results

are summarized in Figure 3.5 where the scaled-down dataset is denoted as corpus

size and is measured by the sampling rate used. We explore a wide range of sizes

(from 12.5% all the way up to 100%), number of topics (from 25 to 200) and

number of workers (from 25 to 200). The figure shows that the distributed FLDA

scales well along all dimensions, given the limitations of our cluster. Our (older)

CPU’s were significantly oversubscribed with 8 workers per node, which was the

case with 200 workers.

3.7 Conclusion

This work addresses the problem of identifying topic-specific key influencers in

microblog networks. To model the per-topic influence of each user, we introduce

a novel Bernoulli-Multinomial mixture model called FLDA. FLDA incorporates

the content of tweets and the network structure of microblogs into one unified

model. Different from the previous work, such as Link-LDA, our FLDA model is

specifically designed for microblogs in that it captures the fact that in reality a user

sometimes follows another due to content-independent reasons. Moreover, in order

to apply FLDA to a web-scale microblog network, we design a distributed Gibbs

sampling algorithm for FLDA on the Spark distributed computing framework.

Finally, the FLDA model is incorporated in a proposed general search framework

for topic-specific key influencers, which provides a keyword search interface for

users to freely query key influencers in different topic combinations.

Through experiments on two real-world microblog datasets, we demonstrate
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that FLDA significantly outperforms the state-of-the-art methods in terms of pre-

cision. Furthermore, the distributed Gibbs sampling algorithm for FLDA provides

excellent speed-up to hundreds of workers.

Appendix

The Gibbs sampling equation for latent variable z can be derived in a similar way

to Link-LDA. We omit its derivation due to space limitation. Let us derive the

posterior probability of latent variables x and y:

p(xm,l, ym,l|y−(m,l), x−(m,l), w, z, e, α, β, γ, ε, ρ)

∝p(x, y, w, z, e|α, β, γ, ε, ρ)

=

∫ ∫ ∫ ∫ ∫
p(x, y, w, z, e, θ, ϕ, σ, π, µ|α, β, γ, ε, ρ)dθdϕdσdπdµ

=

∫ ∫ ∫ ∫ ∫
p(x|θ)p(y|µ)p(w|z, ϕ)p(z|θ)p(e|x, y, σ, π)

× p(θ|α)p(ϕ|β)p(σ|γ)p(π|ε)p(µ|ρ)dθdϕdσdπdµ (3.10)

As p(e|x, y, σ, π) = p(e|x, σ)yp(e|π)1−y, we get,

=

∫
p(θ|α)p(z|θ)p(x|θ)dθ

∫
p(σ|γ)p(e|x, σ)ydσ

×
∫
p(ϕ|β)p(w|z, ϕ)dϕ

∫
p(π|ε)p(e|π)1−ydπ

∫
p(µ|ρ)p(y|µ)dµ (3.11)

Let us derive the first two integrals in Equation (3.11).∫
p(θ|α)p(z|θ)p(x|θ)dθ

∫
p(σ|γ)p(e|x, σ)ydσ

=

∫ M∏
j=1

p(θj|α)
M∏
j=1

Nj∏
u=1

p(zj,u|θj)
M∏
j=1

Lj∏
v=1

p(xj,v|θj)dθ

×
∫ K∏

k=1

p(σk|γ)
M∏
j=1

Lj∏
v=1

p(ej,v|σxj,v)yj,vdσ (3.12)

39



Expand each probability formula based on its density,

=

∫ M∏
j=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
j,k

M∏
j=1

Nj∏
u=1

θzj,u

M∏
j=1

Lj∏
v=1

θxj,vdθ

×
K∏
k=1

∫
Γ(
∑M

i=1 γi)∏M
i=1 Γ(γi)

M∏
i=1

σγi−1
k,i

M∏
j=1

Lj∏
v=1

σyj,vxj,v ,ej,v
dσk (3.13)

Replace the innermost products over words in a document Nm by exponentiating

to the sum of the counts, and do the same replacement for the products over users,

=
M∏
j=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
j,k

K∏
k=1

θ
ck,j,∗
j,k

K∏
k=1

θ
dk,j,∗,∗
j,k dθj

×
K∏
k=1

∫
Γ(
∑M

i=1 γi)∏M
i=1 Γ(γi)

M∏
i=1

σγi−1
k,i

M∏
i=1

σ
dk,∗,i,1
k,i dσk

=
M∏
j=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θ
αk+ck,j,∗+dk,j,∗,∗−1

j,k dθj

×
K∏
k=1

∫
Γ(
∑M

i=1 γi)∏M
i=1 Γ(γi)

M∏
i=1

σ
γi+dk,∗,i,1−1

k,i dσk (3.14)

Multiply each term by a constant equal to one (consisting of two inverse fractions),

and distribute the integral over the original constant Γ-function fraction for the

priors,

=
M∏
j=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk + ck,j,∗ + dk,j,∗,∗)

Γ(
∑K

k=1 αk + ck,j,∗ + dk,j,∗,∗)

×
∫

Γ(
∑K

k=1 αk + ck,j,∗ + dk,j,∗,∗)∏K
k=1 Γ(αk + ck,j,∗ + dk,j,∗,∗)

K∏
k=1

θ
αk+ck,j,∗+dk,j,∗,∗−1

j,k dθj

×
K∏
k=1

Γ(
∑M

i=1 γi)∏M
i=1 Γ(γi)

∏M
i=1 Γ(γi + dk,∗,i,1)

Γ(
∑M

i=1 γi + dk,∗,i,1)

×
∫

Γ(
∑M

i=1 γi + dk,∗,i,1)∏M
i=1 Γ(γi + dk,∗,i,1)

M∏
i=1

σ
γi+dk,∗,i,1−1

k,i dσk (3.15)
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Note that both integrals are over the entire support of Dirichlet densities, so they

both evaluate to 1, and hence drop out of the products,

=
M∏
j=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(αk + ck,j,∗ + dk,j,∗,∗)

Γ(
∑K

k=1 αk + ck,j,∗ + dk,j,∗,∗)

×
K∏
k=1

Γ(
∑M

i=1 γi)∏M
i=1 Γ(γi)

∏M
i=1 Γ(γi + dk,∗,i,1)

Γ(
∑M

i=1 γi + dk,∗,i,1)
(3.16)

Eliminate constant terms that do not depend on the position (m, l),

∝
∏K

k=1 Γ(αk + ck,m,∗ + dk,m,∗,∗)

Γ(
∑K

k=1 αk + ck,m,∗ + dk,m,∗,∗)
×

K∏
k=1

Γ(γem,l + dk,∗,em,l,1)

Γ(
∑M

i=1 γi + dk,∗,i,1)
(3.17)

Define c−(m,l) the same way as c, only without the counts for position (m, l). Then,

for counts that do not include position (m, l), c−(m,l) = c. For ones that do include

(m, l), c−(m,l) = c+ 1. d−(m,l) is defined in the same way. Also, using the fact that

Γ(x+ 1) = x× Γ(x), expand out the incremented terms depending on (m, l),

=

∏
k 6=xm,l Γ(αk + ck,m,∗ + d

−(m,l)
k,m,∗,∗)

Γ(1 +
∑K

k=1 αk + ck,m,∗ + d
−(m,l)
k,m,∗,∗)

× Γ(αxm,l + cxm,l,m,∗ + d−(m,l)
xm,l,m,∗,∗)

× (αxm,l + cxm,l,m,∗ + d−(m,l)
xm,l,m,∗,∗)

×
∏

k 6=xm,l

Γ(γem,l + d
−(m,l)
k,∗,em,l,1)

Γ(
∑M

i=1 γi + dk,∗,i,1)
×

Γ(γem,l + d
−(m,l)
xm,l,∗,em,l,1)

Γ(
∑M

i=1 γi + d
−(m,l)
xm,l,∗,i,1)

×
γem,l + d

−(m,l)
xm,l,∗,em,l,1∑M

i=1(γi + d
−(m,l)
xm,l,∗,i,1)

(3.18)

Refold the residual Γ-function terms back into their general products,

=

∏K
k=1 Γ(αk + ck,m,∗ + d

−(m,l)
k,m,∗,∗)

Γ(1 +
∑K

k=1 αk + ck,m,∗ + d
−(m,l)
k,m,∗,∗)

× (αxm,l + cxm,l,a,∗ + d−(m,l)
xm,l,m,∗,∗)

×
K∏
k=1

Γ(γem,l + d
−(m,l)
k,∗,em,l,1)

Γ(
∑M

i=1 γi + dk,∗,i,1)
×

γem,l + d
−(m,l)
xm,l,∗,em,l,1∑M

i=1(γi + d
−(m,l)
xm,l,∗,i,1)

(3.19)
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Remove all the terms that do not depend on xm,l or ym,l.

If ym,l = 0, the last term
γem,l+d

−(m,l)
xm,l,∗,em,l,1∑M

i=1(γi+d
−(m,l)
xm,l,∗,i,1

)
in Equation (3.19) does not exist,

∝ αxm,l + cxm,l,m,∗ + d−(m,l)
xm,l,m,∗,∗ (3.20)

If ym,l = 1,

∝
(αxm,l + cxm,l,m,∗ + d

−(m,l)
xm,l,m,∗,∗)(γem,l + d

−(m,l)
xm,l,∗,em,l,1)∑M

i=1(γi + d
−(m,l)
xm,l,∗,i,1)

(3.21)

The third integral
∫
p(ϕ|β)p(w|z, ϕ)dϕ in Equation (3.11) is independent of

both x and y, so it can be safely canceled out. Let us turn to the forth integral

in Equation (3.11). ∫
p(π|ε)p(e|π)1−ydπ

=

∫
Γ(
∑M

i=1 εi)∏M
i=1 Γ(εi)

M∏
i=1

πεi−1
i

M∏
j=1

Lj∏
v=1

π1−yj,v
ej,v

dπ

=

∫
Γ(
∑M

i=1 εi)∏M
i=1 Γ(εi)

M∏
i=1

π
d∗,∗,i,0+εi−1
i dπ

∝Γ(
∑M

i=1 εi)∏M
i=1 Γ(εi)

×
∏M

i=1 Γ(d∗,∗,i,0 + εi)

Γ(
∑M

i=1 d∗,∗,i,0 + εi)

∝
∏

i 6=em,l Γ(d∗,∗,i,0 + εi)× Γ(d∗,∗,em,l,0 + εem,l)

Γ(
∑M

i=1 d∗,∗,i,0 + εi)
(3.22)

If ym,l = 0, Equation (3.22) can be written as:

=

∏
i 6=em,l Γ(d

−(m,l)
∗,∗,i,0 + εi)× Γ(d

−(m,l)
∗,∗,em,l,0 + εem,l + 1)

Γ(1 +
∑M

i=1 d
−(m,l)
∗,∗,i,0 + εi)

=

∏
i Γ(d

−(m,l)
∗,∗,i,0 + εi)

Γ(
∑M

i=1 d
−(m,l)
∗,∗,i,0 + εi)

×
d
−(m,l)
∗,∗,em,l,0 + εem,l∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi

∝
d
−(m,l)
∗,∗,em,l,0 + εem,l∑M
i=1 d

−(m,l)
∗,∗,i,0 + εi

(3.23)

If ym,l = 1, Equation (3.22) can be written as:

=

∏
i Γ(d

−(m,l)
∗,∗,i,0 + εi)

Γ(
∑M

i=1 d
−(m,l)
∗,∗,i,0 + εi)

∝ 1 (3.24)
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Finally, we derive the last integral in Equation (3.11).∫
p(µ|ρ)p(y|µ)dµ

=
M∏
j=1

∫
Γ(
∑

s ρs)∏
s Γ(ρs)

∏
s

µρs−1
j,s

M∏
j=1

Lj∏
v=1

µj,yj,vdµj

=
M∏
j=1

∫
Γ(
∑

s ρs)∏
s Γ(ρs)

∏
s

µ
d∗,j,∗,s+ρs−1
j,s dµj

∝
M∏
j=1

∏
s Γ(d∗,j,∗,s + ρs)

Γ(
∑

s d∗,j,∗,s + ρs)

=
∏
j 6=m

∏
s Γ(d∗,j,∗,s + ρs)

Γ(
∑

s d∗,j,∗,s + ρs)
×
∏

s Γ(d∗,m,∗,s + ρs)

Γ(
∑

s d∗,m,∗,s + ρs)

∝
∏

s 6=ym,l Γ(d
−(m,l)
∗,m,∗,s + ρs)× Γ(d

−(m,l)
∗,m,∗,ym,l + ρym,l + 1)

Γ(1 +
∑

s d
−(m,l)
∗,m,∗,s + ρs)

=

∏
s Γ(d

−(m,l)
∗,m,∗,s + ρs)

Γ(
∑

s d
−(m,l)
∗,m,∗,s + ρs)

×
d
−(m,l)
∗,m,∗,ym,l + ρym,l

d
−(m,l)
∗,m,∗,∗ +

∑
s ρs

∝d−(m,l)
∗,m,∗,ym,l + ρym,l (3.25)

Finally, substituting Equations (3.20), (3.23) and (3.25) into Equation (3.11)

gives Equation (3.2). Similary, substituting Equations (3.21), (3.24) and (3.25)

into Equation (3.11) gives Equation (3.3).
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CHAPTER 4

Bayesian Nonparametric Modeling for

Microblog Data Analysis

4.1 Introduction

We have discussed above the methodology to analyze microblog data by Bayesian

parametric modeling, where the number of topics has to be specified a priori. In

this section, we present a different modeling paradigm, which is Bayesian non-

parametric modeling. It allows the representation of the microblog data to grow

structurally as more data are observed.

As opposed to the previous parametric model FLDA, the two nonparametric

models described below are capable of letting the data speak for itself to automat-

ically determine the number of topics needed in the models. Both models are able

to integrate the analysis of tweet content and that of retweet behavior of users

in the same probabilistic framework. Moreover, they both jointly model users’

interest in tweet and retweet.

4.2 User-Retweet Model (URM)

Identifying users’ interest in tweet and retweet is key for building user profiles to

predict the user behavior and preference in various applications on Twitter, such

as tweet recommendation and followee recommendation. Therefore, a Bayesian

model, which properly captures the great diversity of user interests on Twitter, is
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clearly needed. We refer to the first model as User-Retweet Model (URM).

Twitter has become a central nexus for discussion of the topics of the day.

On Twitter, users from all over the world tweet a variety of topics of interest.

Naturally, each user has distinct preference and topical interest. To characterize

the heterogeneity among all users, we model each user as a unique mixture of a

set of topics, where the mixing proportion governs his or her personal interest.

In detail, each user possesses a distinct probability distribution over the topics,

indicating the probability that he or she is interested in tweeting each individual

topic. For example, consider a mini set of two topics: politics and food. One user

may tweet the politics topic with a higher probability than the food topic, while

another may be more interested in tweeting food than tweeting politics. Given a

set of topics, a Twitter user generates each word in their tweets from one of the

topics based on the distribution specific to this topic.

In addition to tweets, retweets convey useful clues about the users’ interest

and preference. If multiple users retweet a certain message, they are likely to have

common topical interest reflected by this message. In order to capture the diversity

of topics exhibited by retweets, we further model each retweet as a mixture of a

set of topics. Specifically, each retweet is represented as a distribution over the

topics, quantifying the probability of covering each individual topic.

In a mixture model, the number of mixture components is usually manually

specified and empirically tuned to determine the granularity of the model. How-

ever, given the dynamic nature and large scale of retweet data, it is infeasible to

manually exhaust the optimal number of topics in a retweet model. To address

this limitation, we resort to a fully data-driven approach, i.e., imposing Dirich-

let process priors over the mixture components [42], which allows the number of

topics to be automatically determined based on the data characteristics.
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4.2.1 Generative Process for URM

The problem of retweet modeling is to specify a probabilistic process by which

the observed data, i.e., all the words in tweets, denoted by w, and all the words

in retweets, denoted by x, may have been generated. In URM, we assume that in

tweeting, to choose a word a user would first select a topic of interest according

to his or her unique topic distribution, from which he or she would then pick a

word w based on its generative probability in this selected topic. This stochastic

process repeats for every word in the tweets of every user.

On the other hand, unlike a tweet created by one single user, a retweet may be

forwarded by multiple users, and the retweet should exhibit the topics of interest

to these forwarders. Therefore, to generate a word in a retweet, a topic would be

first picked based on the topic distributions of all the users who forwarded this

retweet. A word x would then be chosen from the word distribution specific to

this picked topic.

Let us formally describe the URM model. Let y index each topic exhibited

by words in tweets w. As a result, there is a word distribution, denoted by φy,

for each tweet topic y. To avoid manually setting the number of tweet topics,

we assume φy itself to be a random variable drawn from a Dirichlet process. As

discussed before, draws from a DP often share common values and thus naturally

form clusters. Instead of being pre-specified, the number of clusters, which is often

smaller than the total number of draws, varies with respect to data.

As a result, the global probability of generating tweets p(w) is distributed as

a DP, which can be expressed with a stick-breaking representation [94]:

p(w) =
∞∑
k=1

βkδφk , (4.1)

where φk follows the prior H over multinomial distributions: φk ∼ H; δφ is a

probability measure concentrated at φ; and β = (βk)
∞
k=1 ∼ GEM(α) is an infinite
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sequence defined as:

β′k ∼ Beta(1, α), βk = β′k

k−1∏
l=1

(1− β′l)

The global distribution defined in Equation (4.1) captures the homogeneity for

the tweet behavior of users for the global population, but it does not reflect each

individual user’s behavior. As stated earlier, to capture the heterogeneity among

all users, we characterize each user by a mixture model. These mixture models of

all users are linked together via the global distribution defined in Equation (4.1).

Linking these mixture models is significant and useful in that it allows the tweet

topics to be shared among all users. For instance, consider a user who is interested

in the food topic and the politics topic, and another user who likes the food topic

and the technology topic. It would be helpful for a model to relate the food topic

discovered in the analysis of the former user to that detected from the latter user.

Specifically, the probability of generating user u’s tweets can be written as:

p(wu) =
∞∑
k=1

πukδφk , (4.2)

where the mixing proportion πu = (πuk)
∞
k=1 ∼ DP (λ, β). In this way, we introduce

another layer of DP for the mixture of tweet topics in each user.

Moreover, as discussed before, each retweet is modeled as a mixture of a set

of topics as well. Let z index each topic exhibited by words in retweets x. σz

denotes the word distribution for retweet topic z. Rj denotes the set of all the

users who forwarded the j-th retweet message. The probability of generating the

j-th retweet is thus given as:

p(xj) =
∞∑
k=1

ηjkδσk . (4.3)

where ηj = (ηjk)
∞
k=1 ∼ DP (µ, 1

|Rj |
∑

u∈Rj πu). As a result, the generation of a

retweet is attributable to the topics of interest to all of its forwarders. The stick-

breaking representation of the URM model is depicted in Figure 4.1(a).

47



φ
∞

λ

π

y

w
Tu

U

α

β η

z

x
N j

J

µ

σ
∞

τ ε

(a) Stick-breaking representation of URM

φ

w
U

!Gj

x
N j

J

Ĝu
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Figure 4.1: Graphical models for URM

4.2.2 URM as a Three-layer DP Hierarchy

In a way, URM generalizes HDP by using a three-layer Dirichlet process hierar-

chy for retweet modeling. The URM model defines a set of random probability

measures in each layer of the DP hierarchy. In particular, first we draw a global

probability measure G0 from a DP with base measure H and concentration pa-

rameter α influencing the sparsity of the global topic distribution:

G0 ∼ DP (α,H). (4.4)

To characterize personal topical interest in tweeting, we then draw a topic distri-

bution Ĝu from the global probability measure over the topic space G0 for each

user:

Ĝu ∼ DP (λ,G0) (4.5)

with concentration parameter λ.

To model the generation of retweets, since a single message can be retweeted
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by multiple users, for each tweet we draw a probability measure G̃j from a set

of multiple topic probability measures, {Ĝu|u ∈ Rj}, corresponding to all the

forwarders of this tweet, Rj.

Here we introduce a novel notion of drawing a probability measure from a set

of probability measures. An equivalent representation of the set of probability

measures {Ĝu|u ∈ Rj} is given by a DP with base measure 1
|Rj |
∑

u∈Rj Ĝu which

averages the probability measures in this set. We show that a DP with an average

of multiple probability measures as its base measure is equivalent to a standard

DP in the following. Suppose σ1, . . . , σi−1 are observed samples from G̃j. The

probability of the i-th draw σi to be sampled from G̃j can then be given by

integrating out G̃j using the properties of the Dirichlet distributed partitions [81]

and replacing the base measure with the average of multiple probability measures:

σi|σ1, . . . , σi−1, µ, G̃j ∼
1

i− 1 + µ

i−1∑
k=1

δσk

+
µ

|Rj|(i− 1 + µ)

∑
u∈Rj

Ĝu, (4.6)

which gives a standard Dirichlet process. The URM model as a DP hierarchy is

illustrated in Figure 4.1(b).

4.2.3 Bayesian Inference for URM

To estimate the latent topic structures in URM, we perform posterior inference

to “invert” the generative process described above. In particular, we develop an

efficient Markov chain Monte Carlo (MCMC) algorithm [93], or more precisely a

Gibbs sampler, to approximate the posterior for URM. In a Gibbs sampler, each

latent variable is iteratively sampled conditioned on the observations and all the

other latent variables, so the key to Gibbs sampling is to derive a full conditional

distribution for each latent variable, which is given in the following.

Sampling y:
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Let wua denote the a-th word in user u’s tweets. Given the current values of the

remainder of the variables, denoted by ·, the probability of word wua assigned to

an existing topic k can be derived as:

p(yua = k|·) ∝ (c
−(ua)
uk + λβk)

e
−(ua)
kwua

+ τwua

e
−(ua)
k∗ + τ∗

, (4.7)

whereas the probability that the topic assignment yua takes on a new value knew

is given by:

p(yua = knew|·) ∝ λβknew

V
, (4.8)

where c
−(ua)
uk denotes the number of words in user u’s tweets assigned to topic k,

excluding the current assignment yua. e
−(ua)
kw denotes the number of times word

w is assigned to topic k across all tweets, excluding the current assignment. V is

the total number of unique words in the vocabulary.

During the sampling process, if a topic assignment takes on a new value knew,

we include this new topic φknew into the set of tweet topics, for which we draw a

new global proportion βknew . On the other hand, if, as a result of updating topic

assignments, none of words is assigned to some topic, we delete this unallocated

topic from the set of tweet topics, and update the global proportions β accordingly.

Sampling z:

Gibbs sampling for retweet topics z is similar to that for tweet topics y. Let xjb

denote the b-th word in the j-th retweet. The probability of word xjb assigned to

a previously used topic k can then be given by:

p(zjb = k|·) ∝ (d
−(jb)
jk +

∑
u∈Rj

µπuk)
g
−(jb)
kxjb

+ εxjb

g
−(jb)
k∗ + ε∗

, (4.9)

while the probability that the topic assignment zjb takes on a new value knew is

as follows:

p(zjb = knew|·) ∝
∑

u∈Rj µπuknew

V
, (4.10)

where d
−(jb)
jk denotes the number of words in the j-th retweet assigned to topic k,

excluding the current assignment zjb. g
−(jb)
kx denotes the number of times word x
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is assigned to topic k across all retweets, excluding the current assignment. Rj

denotes the set of all the users who forwarded the j-th retweet.

Sampling β:

Following the simulation of new tables in the CRF introduced in [89], the prior

global proportions β can be sampled by simulating how new topics are created

for cuk draws from the DP with precision λβk (dishes in the CRF), which is a

sequence of Bernoulli trials for each u and k:

p(mukr = 1) =
λβk

λβk + r − 1
∀r ∈ [1, cuk]. (4.11)

A posterior sample of β is then obtained by:

β ∼ Dirichlet(m1, . . . ,mK , α), (4.12)

where mk =
∑

u

∑
rmukr, and K is the number of active topics with which there

exist words associated. β has dimension K + 1 because the mass for α in the

Dirichlet distribution corresponds to generating a new topic out of an infinite set

of empty topics. If a topic has lost all its words, it is merged with the unknown

topics in the mass associated with α. Iterative sampling based on Equations (4.11)

and (4.12) gives the posterior samples of β, which are needed by sampling tweet

topics y.

Sampling π:

Similarly, Equations (4.9) and (4.10) for sampling retweet topics z require the

posterior samples of π. The posterior proportion πu for user u is given by:

πu ∼ Dirichlet(n1u, . . . , nKu, λ), (4.13)

where nku =
∑

j

∑
r njkur. The auxiliary Bernoulli variable njkur for retweet j,

topic k and user u is defined as:

p(njkur = 1) =
µπuk

µπuk + r − 1
∀r ∈ [1, djk]. (4.14)
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Figure 4.2: Graphical models for UCM

All the above posterior distributions create a Markov chain for Gibbs sampling.

The Gibbs sampler for URM iteratively samples y, z, β, and π as described above

in turn. Since the nearly samples from a Markov chain are usually correlated

with each other, we only kept the samples from every five iterations to collect

independent samples. Moreover, we discarded the samples in the burn-in period

(the first 20% of samples).

4.3 User-centric Model (UCM)

4.3.1 Generative Process for UCM

The User-Retweet Model characterizes each user and each retweet as a unique

mixture model. In other words, it constructs a separate mixture model for each

retweet in addition to user modeling. Given that users’ behavior of both tweet
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and retweet reflects their distinct preference and topical interest, an alternative

to user modeling would be introducing a random measure specific to each user

that captures his or her unique interest. There often exist differences between

the tweet interest and the retweet interest of a user. For instance, a user may be

interested in retweeting jokes, but he or she could never tweet anything joking.

To differentiate a user’s interest in tweet and retweet, we should introduce two

random measures which capture his or her tweet interest and retweet interest,

respectively. This alternative model is referred to as User-centric Model (UCM).

Formally, in the UCM model, we introduce a probability measure Ḡu specific

to any user u, which is distributed as a DP:

Ḡu ∼ DP (ρ,G0), (4.15)

where G0 ∼ DP (α,H). Equation (4.15) can be represented with a stick-breaking

process as:

Ḡu =
∞∑
k=1

γukδφk , (4.16)

where γu = (γuk)
∞
k=1 ∼ DP (ρ, β). The mixing proportion γu quantifies the user

u’s common interest in each different topic, which reflects the homogeneity of u’s

behavior of tweet and retweet. To separate the modeling of tweet interest and

that of retweet interest, we draw from Ḡu a probability measure Ĝt for tweet

generation and a probability measure G̃r for retweet generation:

Ĝt ∼ DP (ν, Ḡu), (4.17)

G̃r ∼ DP (ζ, Ḡu). (4.18)

Using the stick-breaking representation, Equations (4.17) and (4.18) can be ex-

pressed as:

Ĝt =
∞∑
k=1

κukδφk , (4.19)

G̃r =
∞∑
k=1

ξukδσk , (4.20)
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where κuk = (κuk)
∞
k=1 ∼ DP (ν, γ), which measures the user u’s topical interest

in tweet, and ξuk = (ξuk)
∞
k=1 ∼ DP (ζ, γ), which quantifies u’s retweet interest

over the topics. The stick-breaking representation of UCM is illustrated in Figure

4.2(a). Figure 4.2(b) depicts the graphical model for UCM as a DP hierarchy.

4.3.2 Bayesian Inference for UCM

We develop a Gibbs sampler specifically for Bayesian inference for UCM, which

is similar to the sampler for URM. In this section, we describe the posterior

distributions for topic assignments y and z, conditioned on the values of all the

other variables.

Sampling y:

The Gibbs sampling equation for topic assignment yua of the a-th word in user

u’s tweets is:

p(yua = k|·) ∝ (c
−(ua)
uk + νγuk)

e
−(ua)
kwua

+ τwua

e
−(ua)
k∗ + τ∗

, (4.21)

whereas a new value knew is sampled for yua based on the following probability:

p(yua = knew|·) ∝ νγuknew

V
, (4.22)

where c
−(ua)
uk denotes the number of words in user u’s tweets assigned to topic

k, excluding the current assignment yua, and e
−(ua)
kw denotes the number of times

word w is assigned to topic k across all tweets, excluding the current assignment.

Sampling z:

For the b-th word in user u’s retweets, a previously seen topic k is sampled from

the distribution given by:

p(zub = k|·) ∝ (f
−(ub)
uk + ζγuk)

g
−(ub)
kxub

+ εxub

g
−(ub)
k∗ + ε∗

, (4.23)

whereas the probability that the topic assignment zub takes on a new value knew

is:

p(zub = knew|·) ∝ ζγuknew

V
(4.24)
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where f
−(ub)
uk denotes the number of words in user u’s retweets assigned to topic

k, excluding the current assignment zub, and g
−(ub)
kx denotes the number of times

word x is assigned to topic k across all retweets, excluding the current assignment.

4.4 Empirical Evaluation

To evaluate the quality of our proposed models, URM and UCM, we conducted

experiments on a real-world dataset crawled from Twitter. First, we demonstrate

the latent topics discovered by both models, which qualitatively reflect the ef-

fectiveness of the models. Then, we quantitatively measure the quality of the

topics discovered by our proposed models and the baseline. Finally, we assess and

compare the predictive power and generalizability of these models to objectively

evaluate their effectiveness.

4.4.1 Dataset and Experiment Settings

Our experiments were conducted on a Twitter dataset collected between October

2009 and January 2010. This dataset was crawled based on the follow network

in a breadth-first search manner. Users’ tweet content and retweet activities were

collected during the crawling process. We used the tokenizer from the TweetNLP

project [47] in order to improve the accuracy of the recognized terms in the noisy

text. Furthermore, we reduced the inherent noise of tweets, by removing terms

that appear in less than 20 tweets.

URM and UCM require a set of hyper-parameters to be determined a priori.

In our experiments, we set the hyper-parameters: α = 1, λ = 0.5, µ = 0.5, τ =

0.1, ε = 0.1, ρ = 0.5, ν = 0.5, ζ = 0.5. We ran the Gibbs sampling algorithms for

1000 iterations.
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4.4.2 Topics Produced by URM and UCM

Given URM and UCM as Bayesian nonparametric models, both models are able

to automatically determine the number of latent topics based on the data. To es-

timate the posterior over the number of topics, during the Gibbs sampling process

we collected posterior samples after the Markov chain had converged. The plots in

Figure 4.3 depict the histograms of the number of tweet/retweet topics produced

by URM and UCM. From the histograms, it is seen that both models discovered

100 ∼ 120 topics from tweets/retweets. Since the uncovered latent topics reflect

the effectiveness of URM and UCM, and provide insights about users’ interest on

Twitter, we will illustrate a sample of distilled latent topics later in this section.

A latent topic can be represented as a distribution over a fixed set of words

in the vocabulary. For a tweet topic k, the posterior distribution of words can be

calculated as:

φkw = p(w|y = k) =
ekw + τw∑V

w=1(ekw + τw)
, (4.25)

where the counter ekw gives the number of times word w is assigned to topic k

across all tweets. Similarly, the posterior distribution of words for a retweet topic

k can be computed as:

σkx = p(x|z = k) =
gkx + εx∑V

x=1(gkx + εx)
, (4.26)

where the counter gkx gives the number of times word x is assigned to topic k

across all retweets. Since the number of latent topics might vary during the Gibbs

sampling process, we collected samples when the Markov chain had converged to

a stationary distribution.

Table 4.1 shows a sample of latent topics produced by URM and UCM in

some run of Gibbs sampling. Every topic is represented by the set of top five

most probable words under this topic. Intuitively, it is clear that both models

distilled meaningful topics from tweets and retweets. For example, the first row in
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Table 4.1: A sample of latent topics produced by URM and UCM

Model Topic Top-5 words

URM

Tweet

music, album, band, play, show

love, kids, mom, fun, baby

real, estate, property, read, home

Retweet

travel, hotel, flight, new, italy

social, media, twitter, facebook, marketing

book, read, amazon, writing, author

UCM

Tweet

god, jesus, lord, church, his

video, music, live, album, show

green, car, energy, hybrid, carbon

Retweet

google, iphone, apple, ipad, app

film, movie, avatar, tv, trailer

bowl, super, nfl, football, sports

this table, which lists words music, album, band, play, and show, indicates a music-

related topic, and the topic given in the first row for UCM, which is represented

by god, jesus, lord, church, and his, is clearly relevant to Christianity. Naturally,

such anecdotal evidence is very hard to generalize. In the next section, we will

present a quantitative measure to evaluate the quality of the distilled topics.

4.4.3 Topic Quality

We followed the word intrusion approach introduced in [30] to quantify the topic

quality: In the word intrusion task, to evaluate the quality of a topic, the subject

was presented with six randomly order words, which consisted of the five words

with the highest probability under the topic and a word from another topic from

the same model. The task of the user was to find the word which was out of

place or did not belong with the others, i.e., the intruder. In case of semantically

coherent topic words, the intruder should be easily found. To further test the
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interaction between latent topics, the intruder was chosen from a set of words

which had a low probability (out of the top 25 words) in the evaluated topic and

a high probability (top 5 of the remaining words) in another topic.

Let jmk denote the index of the intruder among the words generated from topic

k distilled by model m. Further let imks denote the intruder selected by subject s on

the set of words generated from topic k distilled by model m, and let S denote the

number of subjects. According to [30], the model precision on topic k is defined

by the fraction of subjects that agree with the model on the topic:

MPm
k =

S∑
s=1

1(imks = jmk )/S. (4.27)

The precision of model m computes the average of MPm
k over all K evaluated

topics: MPm =
∑K

k=1 MPm
k /K.

We compared the results of URM and UCM with those of Hierarchical Dirichlet

Processes (HDP), which is a different Bayesian nonparametric model. In HDP,

the words of each user are generated from a unique probability measure, which

is drawn from a DP. The probability measures for all users share the same base

measure, which is a draw from another DP. More details of HDP can be found

in Section 2.4. In our experiments, we built three independent HDPs as baselines

based on different pieces of the data. One of the HDPs, which we refer to as

HDP-t, was run on the top of tweet text, while neglecting the information of

the retweet structure. In other words, HDP-t considers the words in each users’

tweets only to be generated from a user-specific probability measure. In contrast,

another HDP, referred to as HDP-r, did the opposite by running on words in users’

retweets without taking their tweets into account. The last HDP, which we refer

to as HDP-tr, integrated information of tweets and retweets by aggregating the

words from both tweets and retweets of each user, which were considered to be

generated from a user-specific probability measure.

We computed overall model precisions for the three baselines HDP-t, HDP-r
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Table 4.2: Comparison of model precisions

HDP-t HDP-r HDP-tr URM UCM

0.643 0.628 0.654 0.688 0.751

Table 4.3: Model precisions of URM and UCM over tweet/retweet topics

Topic URM UCM

Tweet topic 0.718 0.769

Retweet topic 0.640 0.731

and HDP-tr, as well as our models URM and UCM. As shown in Table 4.2, HDP-

tr performed better than both HDP-t and HDP-r, suggesting that integrating the

content of tweets and retweets in a model produces higher-quality topics than

separate modeling of tweets and retweets. Our models URM and UCM outper-

formed all the three baselines, which clearly demonstrates the capability of the

proposed models to distill high-quality latent topics. Specifically, UCM gave a

higher model precision than URM. To track the cause of the performance dif-

ference, we computed model precisions of URM and UCM over tweet topics and

retweet topics separately. From Table 4.3, it is observed that UCM is superior to

URM in terms of quality of both tweet topics and retweet topics. Moreover, UCM

gave a much higher model precision than URM over retweet topics, which implies

that it should be more appropriate to have one G̃r for each user than having one

G̃j for each retweet, since the user-specific G̃r would have sufficient content from

the user to characterize his or her retweet interest. The difference in modeling

the retweet structure also improves the tweet topic quality of UCM over that of

URM.
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4.4.4 Predictive Power Analysis

As generative models, URM, UCM and HDP are all able to generate and predict

unseen new data. We evaluated the predictive power and generalizability of both

models using the standard perplexity metric [23]. The perplexity is monotonically

decreasing in the likelihood of the unseen test data. Hence, a lower perplexity

score indicates stronger predictive power. Formally, the perplexity is defined as:

perplexity(Dtest) = exp

{
−
∑

u∈Dtest
log p(wu)∑

u∈Dtest
|wu|

}
, (4.28)

where Dtest denotes the test set of all Twitter users’ words in tweets/retweets. To

calculate the word perplexity, we held out 20% of the data Dtest for test purposes

and trained the models on the remaining 80%.

Figure 4.4 compares the word perplexity for HDP, URM and UCM. For our

models URM and UCM, we calculated perplexity on the words in tweets as well

as perplexity on the words in retweets. Since HDP-t and HDP-r applied to tweets

and retweets, respectively, we calculated perplexity for HDP-t on the words in

tweets and perplexity for HDP-r on the words in retweets. From this figure, we

see that UCM gave the lowest perplexity on both tweets and retweets, confirming

its strongest predictive power and the best generalizability. Although URM is

inferior to UCM, the URM model outperformed the two HDP models in generating

and predicting the words in both tweets and retweets. We also calculated overall

perplexity on both tweets and retweets for HDP-tr, URM and UCM. As a result,

UCM gave the lowest overall perplexity of 1540.6. The second-best URM had

overall perplexity of 1723.1, which outperformed HDP-tr with overall perplexity of

1779.3. The experimental results are consistent with the results of the evaluation

of topic quality. It validates the hypothesis that appropriate modeling of the

retweet structure enhances the effectiveness of the model.
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4.4.5 Conclusion

In this work, we proposed two Bayesian nonparametric models, URM and UCM,

to analyze microblog data. Both models do not require the number of topics as

an input parameter. Instead, they automatically determine the number of topics

based on the observed microblog data. URM and UCM not only are able to

integrate the analysis of tweet content and that of retweet behavior of users in

the same statistical framework, but also jointly model users’ interest in tweet and

retweet. We devised two collapsed Gibbs samplers to estimate the latent topic

structures in the two models, respectively. Thorough experiments on real-world

microblog data were conducted to investigate the quality and the predictive power

of both models.
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Figure 4.3: Histogram of the number of latent topics produced during the Gibbs

sampling process
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CHAPTER 5

Topic-specific Authority Analysis on Content

Sharing Services

5.1 Introduction

Over the last decade, we have been witnessing the explosion of Web 2.0 applica-

tions. In the new era of Web 2.0, web users are participating not only as passive

consumers of content provided by websites, but also as contributors creating con-

tent collaboratively with fellow users, commonly referred to as user-generated

content. With the rapid growth of Web 2.0, a variety of content sharing services,

such as Flickr 1, YouTube2, Blogger 3, and TripAdvisor 4 etc, have become tremen-

dously popular over the recent years. These websites enable users to create and

share with each other various kinds of resources, such as photos, videos, and travel

blogs, etc.

The sheer amount of user-generated content made available by the content

sharing services can be both a blessing and a curse. From the point of user

modeling, richer information content helps to build more accurate user profiles,

leading to better services for consumers. On the other hand, the vast quantity

of user-generated content available can often complicate the decision making pro-

cess, as consumers do not have the time or ability to examine all data or compare

1http://www.flickr.com
2http://www.youtube.com
3http://www.blogger.com
4http://www.tripadvisor.com
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all options [11]. On a content sharing website, the overwhelming resources vary

greatly in quality, which result in confusion, sub-optimum decisions or dissatisfac-

tion with choices made by users [96]. Therefore, it is highly significant to develop a

principled method that identifies a set of authorities, who created quality-assured

resources, from a massive number of contributors of content.

A lot of work has been done on authority identification in the context of social

network and web structure analysis. However, most of these studies, such as typ-

ical PageRank, only infer global authoritativeness of each user, without assessing

the authoritativeness in a particular aspect of life (topics) [85, 69, 33, 107]. It does

not make sense for a user to find global authorities on a content sharing website.

After all, each user has unique topical interest. For example, on Flickr, a user who

is interested in photographing sunsets may look for a photographer expert in this

specific topic and learn from her photos about the skill of sunset photography.

On the other hand, no one is an authority on every topic. Clearly, topic-specific

authority analysis provides a more detailed authoritativeness portfolio for a user,

which is critical for authority identification on content sharing services.

A common way of distilling latent topics is to build a probabilistic topic model

on the usage data collected from a sharing log. In a content sharing website, a

sharing log stores users’ posting and tagging history, as illustrated by Figure 5.1

in Section 5.3. However, the sharing log does not contain any information about

the content quality of resources, based on which authorities are identified. It

would be counterintuitive to assume a high sharing frequency for every authority.

Therefore, a data source in addition to the sharing log is clearly needed. Luckily,

a favorite log made available by a content sharing website provides a valuable

signal for the derivation of the content quality of resources. On current content

sharing services, a resource is often presented with a favorite button, which a user

clicks if he or she likes the resource. A favorite click represents an endorsement

of the content quality of the resource by the user. The favorite log records the set
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of favorite clicks as user feedback, as illustrated by Figure 5.2 in Section 5.3.

Despite considerable research on the sharing log for various applications, little

is known about the emerging favorite log. It is nontrivial to leverage a favorite

log for topic-specific authority analysis in that users do not explicitly specify

their topical motivates under the favorite clicks. A statistical model, built upon

both the sharing log and the favorite log, is imperative to uncover each user’s

authoritativeness on different topics.

In this work, we propose a novel Bayesian model to identify a list of author-

ities on given topic(s), which we refer to as Topic-specific Authority Analysis,

abbreviated as TAA. The TAA model characterizes each user’s topical author-

itativeness by introducing a user-specific random vector over latent topics. To

assess the topical authoritativeness, TAA exploits favorite clicks through system-

atically modeling the associations among users’ interest and authoritativeness as

well as the topics of favorited resources. We propose to learn the parameters in

the TAA model from a training dataset of observations constructed from both

usage logs. To this end, a novel logistic likelihood function specialized for the

training set is proposed to relate the parameters to the observations. Bayesian

inference for a model with a logistic likelihood has long been recognized as a hard

problem. We extend typical collapsed Gibbs sampling by introducing auxiliary

variables to overcome this problem. With the inferred parameters, an analysis

framework is introduced to produce an ordered list of topic-specific authorities by

their authoritativeness degrees that satisfy the user’s query intent.

The major contributions of our work are summarized as follows:

1. We propose a novel Bayesian model, TAA, to address the new problem

of topic-specific authority analysis on content sharing services by jointly

leveraging the two data sources: sharing log and favorite log.

2. We propose a principled approach to training dataset construction, in which
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a novel logistic likelihood function is introduced.

3. We extend classic collapsed Gibbs sampling by data augmentation to infer

the parameters in the TAA model with the new logistic likelihood.

4. We conducted thorough experiments on the datasets collected from two

specific real-world content sharing websites. Experimental results confirm

the effectiveness of TAA in topic-specific authority identification as well as

the predictive power of the TAA generative model.

5.2 Related Work

Much work has been done on authority identification based on a network struc-

ture. The two most representative studies are PageRank [85] and HITS [69].

Zhang et al. [119] tested PageRank and HITS on a specific online community for

expert identification. Jurczyk and Agichtein [64] employed the HITS algorithm to

discover authorities in question answer communities. Kempe et al. [67] abstracted

authority analysis into a influence maximization problem and pioneered the Lin-

ear Threshold (LT) Model and Independent Cascade (IC) Model to explain the

spread of influence in a social network. Along with subsequent works, such as [33]

and [72], all these methods are only after the identification of global authorities

instead of authorities for specific topics. Although Barbieri et al. [9] extended the

LT and IC models to be topic-aware, the topics are obtained based on the network

structure, while totally neglecting valuable textual content.

A few studies have been conducted to find topic-level authorities in the context

of structure analysis of the web graph and social networks. Given the popular-

ity of PageRank, it is only natural to extend it for topical authority analysis.

Topic-Sensitive PageRank (TSPR) [54] was such an extension that computes per-

topic PageRank scores for webpages. TSPR biases the computation of PageRank
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by replacing the classic PageRank’s uniform teleport vector with topic-specific

ones. However, it requires an existing manually categorized topic hierarchies to

derive per-topic teleport vectors. In [100], Tang et al. proposed a Topical Affinity

Propagation (TAP) model for topic-level social influence. But, similar to TSPR,

TAP requires a separate preprocess to obtain a set of topics. TwitterRank [114]

extended TSPR to find topic-level influencers on Twitter. Instead of predefined

topic hierarchies, a set of topics is first produced by typical LDA [23] on the tweets.

Then TwitterRank applies a method similar to TSPR to compute the per-topic

influence rank. Nallapati et al. proposed Link-PLSA-LDA [80] on a hyperlink net-

work to estimate the influence of blogs. These studies differ from our TAA model

in that they do not exploit the valuable favorite signal to model topic-specific

authoritativeness. Although TwitterRank and Link-PLSA-LDA applied to the

settings different from ours, we adapted them to the authority identification on

content sharing services by building proper graph structures, and compared them

with our TAA in empirical studies.

There also exist a few pieces of prior work on finding important users in various

applications. Chen et al. [31] proposed a latent factor model for rating prediction,

based on which reputable users are identified. Zhao et al. [120] found topic-level

experts on community question answering services, and recommended appropriate

experts to answer new questions. In [20], Followship-LDA was proposed to identify

topic-specific influencers on microblogs. All these methods find important users

under different contexts, with the data different from ours in nature.

In the context of recommender systems, a few topic modeling studies related

to our work have been conducted. Several latent factor models were proposed for

tag recommendation on social media [16, 18, 14]. Wang and Blei [106] developed

the collaborative topic regression (CTR) model to recommend scientific articles

to users of an online community. Agarwal and Chen [2] proposed fLDA, which

is a new matrix factorization method integrating LDA priors, to predict ratings
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Figure 5.1: Sample records from the sharing log of a photo sharing website

in recommender system applications. Despite the relevance of these studies to

our work, there are clear differences between them. To make recommendations,

CTR utilizes scalar rating responses different from the binary favorite feedback

exploited by TAA. fLDA is able to take binary responses, but it aims to predict

scalar ratings of users on various items, which is different from the ultimate goal

of our work.

5.3 Problem Statement

In a nutshell, the objective of this work is developing a statistical model that iden-

tifies the authorities on a content sharing website specific to given query topic(s).

A topic-specific authority is defined as a user who excels in the specified topic.

For example, given city lights as a query topic on a photo sharing website, the

topic-specific authority model is intended to retrieve a list of users who are expert

in city lights shooting at night.
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A content sharing website generally logs a massive number of posting and

tagging records that reflect every user’s unique interest and taste. These records

constitute a sharing log that a content sharing service keeps track of. Figure 5.1

presents a few sample records from the sharing log of a photo sharing website.

Each row in the table represents a record indicating that user u assigned tag t to

resource r (i.e., a photo) which was posted by herself. For notational convenience,

let L denote the total number of unique users in the log, Mu denote the number of

resources posted by user u, and Nr denote the number of tags assigned to resource

r. The notations used throughout this chapter are given in Table 7.1. Some of

the notations will be explained in later sections.

A feasible solution to topic-specific authority identification is adapting the

classic topic model Latent Dirichlet Allocation (LDA) [23] to historical data in

the sharing log. Specifically, we employ typical LDA on the sharing data by

regarding a user as a document in a corpus, a tag as a word in a document. By

fitting the topic model to observational data collected from the sharing log, we

infer the optimal values of parameters θ and ϕ. The probabilities θ (i.e., p(z|u))

give the topic distribution for each user, and the probabilities ϕ (i.e., p(t|z)) give

the tag distribution for each topic. As a result, topic-specific authorities can be

derived from the distributions p(z|u) and p(t|z) by the standard query likelihood

model, where each user is scored by the likelihood of generating a given query. In

particular, given a set of tags as a query q, we compute the likelihood p(q|u) for

each user u by:

p(q|u) =
∏
t∈q

p(t|u) =
∏
t∈q

K∑
z=1

p(t|z)p(z|u). (5.1)

The users with the highest likelihood p(q|u) are then identified as topic-specific

authorities.

The LDA-based authority analysis exploits the fact that a user is interested in

a particular topic if he or she frequently labels photos with the tags specific to this
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Table 5.1: Notations used throughout this chapter

Notation Description

u User identity

t Tag identity

r Resource identity

z Topic assignment of a tag

f Binary favorite feedback

L Total number of unique users

K Total number of unique topics

R Total number of unique resources

V Total number of unique tags in the vocabulary

Mu Number of resources posted by user u

Nr Number of tags assigned to resource r

Nu Number of tags assigned by user u

θ Per-user topic distribution

ϕ Per-topic tag distribution

α, β Dirichlet priors on Multinomial distributions

η Per-user topical authoritativeness

topic. It further assumes that the more frequently a user uses the tags covering a

specific topic, the more authoritative he or she should be on this topic . However,

this is an arguable assumption which is not always valid. Tagging frequently on a

particular topic does not automatically imply that the user is an authority on this

topic. In fact, an authority does not have to tag more than the other users on the

topic he or she excels in. For example, on a travel blogging service, a blogger who

posts a number of articles tagged with London travel may not be an authority on

blogging about traveling London, given the unknown quality of these articles. It

is likely that he or she is new to blogging, in which case the articles could be at a

beginner level in quality. On the other hand, an actual authority may post only

a couple of blogs about London travel, but he or she can specialize in this specific

topic, leading to the favorable high-quality blogs. By analyzing the usage data
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Figure 5.2: Sample records from the favorite log of a photo sharing website

from a real-world sharing log, we observed that users’ tag frequency is actually

independent of their authoritativeness.

Since the sharing log reports posting and tagging information, but we are

looking for the information about the content quality of posted resources, a sup-

plementary data source is needed. Fortunately, a favorite log available in most of

the content sharing services should help to infer the content quality of resources.

A favorite log consists of the records of each user’s favorites. Figure 5.2 depicts

a few sample records from the favorite log of a photo sharing website. Each row

in the table represents a record indicating that user u added resource r (i.e., a

photo) to his or her favorites. A favorite click can be interpreted as the user’s

vote in favor of the content quality of the favorited resource. It motivates our

modeling the favorite signal to infer the content quality of resources based on

which topic-specific authorities are identified.

As discussed above, users’ topical interest and topical authoritativeness have

different implications. A favorite log enables us to separate the analysis of users’
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topical authoritativeness from that of their topical interest. In order to jointly

model the two factors, we need to construct a Bayesian model which specifies a

generative process much more complex than that of typical LDA. The Bayesian

model is intended to exploit both the sharing signal and the favorite signal by

leveraging the two usage logs.

Problem Statement. Given the usage data collected from a sharing log and a

favorite log, we aim to design a stochastic process that simulates how the data is

generated, based on which a generative model is developed to identify authorities

specific to given query topic(s) on a content sharing service.

5.4 Topic-specific Authority Analysis

Naturally, no one is an authority on every topic, which implies that each user’s

authoritative degrees should be evaluated specific to individual topics. Moreover,

users’ topical authoritativenesses are different from each other. Therefore, in our

proposed TAA model, we introduce a K-dimensional random vector over topics

to characterize topical authoritativeness. The random vector is designed to be

specific to individual user u, denoted by ηηηu, meaning that each user has a unique

topical authoritativeness. An entry of random vector ηηηu is a latent variable ηuz

reflecting user u’s authoritative degrees on topic z. We assume that ηηηu is generated

from a K-dimensional Multivariate Gaussian distribution:

ηηηu ∼ MVN(µµµ,ΣΣΣ), (5.2)

where µµµ and ΣΣΣ are the mean vector and the covariance matrix, respectively. We

choose the Multivariate Gaussian distribution due to its nice invariance property

as a prior distribution. As will be discussed later, Multivariate Gaussian is a

conjugate prior of our likelihood function, meaning that the posterior distribution

of ηηηu will also be a Multivariate Gaussian. This trick benefits inference for our

TAA model by computational convenience. The values of ηηηu for each user will be
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learned from the usage data collected from the sharing log as well as the favorite

log.

A favorite click reflects a positive feedback from the user on the content quality

of the specific resource. Therefore, to represent a favorite feedback, we introduce

a binary random variable specific to individual user u and individual resource r,

denoted by fur. The binary variable fur takes value 1 if the user u favorited the

particular resource r, 0 otherwise. Introducing fur helps to relate the resource r to

the user u who favorited r. More precisely, user u favorites resource r (fur=1), if

the topical authoritativeness of r’s owner exhibited by the resource r matches with

u’s topical interest. For instance, a user, who is interested in photos of Yellowstone

National Park, may favorite the Yellowstone photos from a photographer who is

expert in taking shots for Yellowstone National Park. On the other hand, user u

does not favorite resource r (fur=0), if u’s interest and the authoritativeness of r’s

owner exhibited by the resource r fall into different sets of topics. For example,

a user, who is interested in blogs about Yellowstone travel, is unlikely to favorite

the low-quality articles from a blogger who is new to this particular topic.

Since the topical motivate under each favorite click is hidden and unavailable

directly, we need to identify the topics in which a user is interested as well as the

topics on which a user is authoritative. To this end, we propose a novel generative

model on the usage data for topic distillation. With the distilled topics, we specify

the likelihood of a favorite feedback fur from user u on r with the logistic function

by:

p(fur = 1|ηηηu′ , ẑu, ẑu′r) =
1

1 + e−ηηη
ᵀ
u′ (ẑu◦ẑu′r)

(5.3)

p(fur = 0|ηηηu′ , ẑu, ẑu′r) = 1− 1

1 + e−ηηη
ᵀ
u′ (ẑu◦ẑu′r)

(5.4)

where u′ denotes the user who posted resource r (i.e., r’s owner); ẑu denotes

the topic distribution for user u’s interest; ẑu′r denotes the topic distribution for

the resource r posted by user u′, and ◦ denotes the Hadamard (element-wise)
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Figure 5.3: Graphical model for Topic-specific Authority Analysis

product. The element-wise product of ẑu and ẑu′r captures similarity between the

topic distributions for the resource r and the interest of the user u who favorited

r, which is parameterized by the owner u′’s topical authoritativeness ηηηu′ . If the

topic distribution for user u’s interest is similar to the one for resource r, there

should be a specific set of topics prominent in both u’s interest and resource r. A

favorite click fur = 1 then indicates that this specific set of topics are the ones that

the resource r’s owner u′ is expert in, and thus should be parameterized by high

authoritativeness degrees. In this way, we uncover the hidden topical motivate

under each favorite click.

Figure 5.3 shows the graphical model for our TAA, with the notations de-

scribed in Table 7.1. The generative process of a user’s tags and favorite feedback

is summarized in Figure 5.4. A favorite feedback is naturally associated with a

tuple (u, r), where r denotes a resource, and u denotes the user who favorited r.

To obtain individual user u’s interest distribution over topics, each user is viewed
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Figure 5.4: Generative process for Topic-specific Authority Analysis

as a mixture of topics from which tags are drawn. More specifically, for each user

u ∈ {1, . . . , L}, we first pick a topic distribution θu from a Dirichlet prior with

parameter α. Then, to generate the nth tag in the resources posted by u, a topic

zun is sampled from θu, after which the tag tun is drawn from the tag distribu-

tion ϕzun for topic zun. With all the obtained topics, we compute individual user

u’s topical interest distribution ẑu by aggregating u’s topic assignments. On the

other hand, the topic distribution ẑu′r for individual resource r posted by user u′

is obtained in a similar way, except that ẑu′r is computed by counting u′’s topic

assignments specific to resource r only.

The topic distributions ẑu and ẑu′r enable the generation of favorite feedback.

In particular, for each tuple (u, r), the binary favorite feedback fur is sampled

from a Bernoulli distribution with parameter 1

1+e
−ηηηᵀ

u′
(ẑu◦ẑu′r)

. More specifically, we

compute the likelihoods of fur = 1 and fur = 0 using Equation (5.3) and Equation

(5.4), respectively. As a result, fur ∈ {0, 1} is drawn from a Bernoulli distribution

of the two likelihoods.

The various parameters we can learn from TAA characterize the different fac-

tors that affect the model structure. For a user u, the K-dimensional vector ηηηu
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quantifies u’s unique authoritativeness over topics, and the value θuz gives the

probability that u is interested in topic z. For a topic z, the value ϕzt indicates

the probability of tag t belonging to topic z. The inferred quantities serve as the

inputs to our authority analysis framework, which will be described later.

5.5 Inference for TAA

In this section, we present how the parameters of the TAA model are inferred

from the usage data collected from the sharing log and the favorite log. More

specifically, we first construct a training dataset from the usage data, with which

a new Bernoulli likelihood parametrized by a logistic function is specified. Finally,

an extension of traditional Gibbs sampling specialized for the logistic likelihood

function is proposed to infer the optimal values of the parameters.

5.5.1 Preference Learning

We learn the parameters of the TAA model from a training set of observations

constructed from the usage data. As mentioned above, the favorite log consists

of user preferences for resources in a content sharing service. One important fact

about the favorite log is that only positive observations are available – each favorite

click is viewed as positive feedback for the corresponding tuple (u, r), i.e., fur = 1.

However, there are not such clear conclusions for fur = 0. Considering the non-

clicked tuples (u, r) (i.e., user u did not click on the favorite button for resource

r.) as negative feedback (fur = 0) would misinterpret the signal of these tuples,

since there are actually at least two different interpretations for any non-clicked

tuple. One possibility is a negative feedback, meaning that the user did not like

the resource and did not want to add it to his or her favorites. Another possibility

is a missing value, indicating that the user did not even see the resource, in which

case whether the user favorited the resource is unknown.
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On the other hand, the non-clicked tuples should not be simply ignored, as

typical machine learning models are not able to learn anything from the positive

observations alone. To overcome the problem of missing negative feedback (fur =

0), we use tuple pairs as training data instead of individual tuples. As opposed to

treating non-clicked tuples as negative observations, we assume that users prefer

the resources, for which they clicked on the favorite buttons, over the other non-

clicked resources from the same owner. More specifically, suppose that ri and rj

represent two resources posted by a user. Given two tuples (u, ri) and (u, rj), user

u prefers ri over rj if and only if ri was favorited by u while rj was not, which

is denoted by ri �u rj. Formally, we create training data D by including the

pairwise preference relations as follows:

D = {(u, ri, rj)|ri �u rj}, (5.5)

where each preference relation o = (u, ri, rj) is a training sample representing the

fact that user u prefers ri over rj. For the resources that are both favorited by a

user, we cannot infer any preference. The same is true for two resources either of

which a user did not favorite.

As discussed above, we construct the observational datasetD using the induced

preference relations in place of the raw favorite feedback fur. As a result, the

likelihood functions (5.3) and (5.4) need to be extended to incorporate the pairwise

preference. Therefore, we reformulate the likelihood of a preference relation as:

p(ri �u rj|ηηηu′ , ẑu, ẑu′ri , ẑu′rj) =
1

1 + e
−ηηηᵀ

u′ (ẑu◦ẑu′ri−ẑu◦ẑu′rj )
. (5.6)

The probability p(ri �u rj|ηηηu′ , ẑu, ẑu′ri , ẑu′rj) gives the likelihood that user u

prefers resource ri over resource rj, both owned by user u′. Let Θ denote the

set of parameters of the TAA model. The likelihood of observing all the prefer-

ence relations in training data D is then given by:

p(D|Θ) =
∏

(u,ri,rj)∈D

1

1 + e
−ηηηᵀ

u′ (ẑu◦ẑu′ri−ẑu◦ẑu′rj )
. (5.7)
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5.5.2 Bayesian Inference

Typical LDA-like generative models employ collapsed Gibbs sampling to infer

their parameters [52, 55, 90]. However, Bayesian inference for a model with the

logistic likelihood function (7.4) has long been recognized as a hard problem, due

to the analytically inconvenient form of the Gibbs sampler for a logistic likelihood

[57, 43, 51]. In this section, we present an extension of traditional collapsed

Gibbs sampling to infer the parameters in TAA. Our algorithm takes advantage

of the data-augmentation idea by introducing auxiliary variables to the posterior

distribution. It extends the very recent work on inference for logistic models

[88, 32] to learn a Bayesian model for topic-specific authority analysis. Specifically,

using the ideas of introducing Pólya-Gamma variables presented in [88, 32], we

are able to derive the posterior probabilities for the Gibbs sampler analytically.

Part of the derivation is provided in the appendix.

Let us first familiarize ourselves with a new family of Pólya-Gamma distribu-

tions [88].

Definition. A random variable X has a Pólya-Gamma distribution with param-

eters b > 0 and c ∈ R, denoted by X ∼ PG(b, c), if

X
d
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

, (5.8)

where the gk ∼ Gamma(b, 1) are independent Gamma random variables; the no-

tation
d
= denotes equality in distribution.

The Pólya-Gamma family has been carefully constructed to yield a simple

Gibbs sampler for the Bayesian logistic model. Let δurij denote a Pólya-Gamma

variable specific to (u, ri, rj). With the introduction of the auxiliary random vari-

able δurij , the likelihood function (7.4) can be represented as mixtures of Gaussians
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with respect to a Pólya-Gamma distribution, which is rewritten as:

p(ri �u rj|ηηηu′ , ẑu, ẑu′ri , ẑu′rj)

=
1

2
e
ηηη
ᵀ
u′

ẑurij
2

∫ ∞
0

e−
δurij (ηηη

ᵀ
u′

ẑurij )2

2 p(δurij |1, 0)dδurij , (5.9)

where ẑurij = ẑu ◦ ẑu′ri − ẑu ◦ ẑu′rj .

As a result, the collapsed posterior distribution of TAA augmented with the

variables δ is given by:

p(z, δ, η|t,o, α, β, µ,Σ)

∝
L∏
u=1

∏K
k=1 Γ(cku + αk)

Γ(
∑K

k=1 cku + αk)
×

K∏
k=1

∏V
t=1 Γ(gkt + βt)

Γ(
∑V

t=1 gkt + βt)

× p(η|µ,Σ)
∏

(u,ri,rj)∈D

e
ηηη
ᵀ
u′

ẑurij−δurij (ηηη
ᵀ
u′

ẑurij )2

2 p(δurij |1, 0)

(5.10)

where cku is the number of user u’s tags assigned to topic k, and gkt is the total

number of times tag t is assigned to topic k over the dataset. The detailed

derivation of Equation (5.10) is provided in the appendix.

The univariate conditionals for a Gibbs sampler are then given as follows. The

notation • represents all the variables other than the one to be sampled.

[[[p(ηηηx|•)]]]:

We impose a zero-mean isotropic Gaussian prior on the K-dimensional random

vector ηηηx which characterizes user x’s topical authoritativeness:

p(ηηηx) =
1√
2πσ

e−
∑
k η

2
xk

2σ2 . (5.11)

Thanks to the invariance property of the conjugate prior, the posterior distribution

of ηηηx is also a Multivariate Gaussian:

p(ηηηx|•) ∝ p(ηηηx)
∏

ri∈R(x)∧rj∈R(x)

e
ηηη
ᵀ
xẑurij−δurij (ηηη

ᵀ
xẑurij )2

2

= MVN(µx,Σx) (5.12)
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where ri ∈ R(x) represents that resource ri is posted by user x. The posterior

mean µx and posterior covariance Σx are given by:

µx = Σx

 ∑
ri∈R(x)∧rj∈R(x)

1

2
ẑurij


Σx =

 1

σ2
I +

∑
ri∈R(x)∧rj∈R(x)

δurij ẑurij ẑ
ᵀ
urij

−1

[[[p(zun|•)]]]:

The posterior distribution of z is:

p(z|•) ∝
L∏
u=1

∏K
k=1 Γ(cku + αk)

Γ(
∑K

k=1 cku + αk)
×

K∏
k=1

∏V
t=1 Γ(gkt + βt)

Γ(
∑V

t=1 gkt + βt)

×
∏

(u,ri,rj)∈D

e
ηηη
ᵀ
u′

ẑurij−δurij (ηηη
ᵀ
u′

ẑurij )2

2 (5.13)

The univariate conditional distribution of one variable zun given all the other

variables is then given by:

p(zun = k|•) ∝
(c
−(un)
ku + αk)(g

−(un)
ktun

+ βtun)∑V
t=1 g

−(un)
kt +

∑V
t=1 βt

×
∏

(u,ri,rj)∈D

p(ri �u rj|ηηηu′ , z−(un), zun = k)

(5.14)

where c
−(un)
ku bears the same meaning of cku only with the nth tag of user u

excluded; similarly g
−(un)
kt is defined in the same way as gkt only without the count

for the nth tag of user u, and z−(un) denotes the topics for all tags except zun.

[[[p(δurij |•)]]]:

By definition, the posterior distribution of the auxiliary variable δurij turns

out to be a Pólya-Gamma distribution:

p(δurij |•) ∝ e−
δurij (ηηη

ᵀ
u′

ẑurij )2

2 p(δurij |1, 0)

= PG(1, ηηηᵀu′ ẑurij) (5.15)
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The above posterior univariate distributions create a Markov chain for Gibbs

sampling. It has been shown that the stationary distribution of the Markov chain

is just the sought-after posterior joint distribution [44]. Specifically, the Gibbs

sampler iteratively draws samples from p(ηηηx|•), p(zun|•) and p(δurij |•) using Equa-

tions (5.12), (5.14) and (5.15), respectively. After the Gibbs sampler has run for

an appropriate number of iterations (until the chain has converged to a stationary

distribution), we draw a sample ηηηx for each user x, which quantifies x’s topical

authoritativeness, and obtain the estimates for the distributions θ and ϕ via the

following equations:

θuz =
czu + αz∑K

k=1 cku +
∑K

k=1 αk
(5.16)

ϕzt =
gzt + βt∑V

t=1 gzt +
∑V

t=1 βt
(5.17)

5.5.3 Authority Analysis Framework

With the inferred parameters, we introduce an analysis framework for topic-

specific authority identification. The analysis framework allows a user to issue

a query q reflecting the topic(s) on which authorities are to be identified. The

query q consists of a list of tags, where multi-occurrences of a tag are allowed

to reflect its importance to the query topic(s). The analysis framework subse-

quently produces an ordered list of authorities by their authoritativeness degrees

that satisfy the user’s query intent.

To rank a list of authorities, the analysis framework requires (a) every user’s

topical authoritativeness: η, and (b) the topic(s) of query q: zq. When the

TAA model is used as the underlying topic-specific authority analysis method,

the topical authoritativeness η is produced as part of the results. To derive q’s

topic(s) zq, we use the folding-in technique on TAA by treating the query as a

new user, and perform the sampling for only the tags of the pseudo user. Given

the derived topical authoritativeness ηηηu and the query topic(s) zq, we obtain the
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final authoritativeness Ψ(u, q) =
∑Nq

i=1 ηuzqi for a user u with respect to the query

q, where Nq denotes the number of tags in q. Finally, the users are returned in

decreasing order of their authoritativeness Ψ(u, q).

5.6 Empirical evaluation

In this section, we report the experimental results of the TAA model on real-world

data collected from two specific content sharing services: Flickr 5 and 500px 6. We

quantitatively compare the results of TAA with those of several competitors on

both datasets. We also give real examples of Flickr authorities identified by TAA.

Analysis and discussion of the experimental results are presented in this section.

5.6.1 Data Collections

Although TAA is a generic Bayesian model which is applicable to topic-specific

authority identification on various kinds of content sharing services, we conduct

experiments on the real-world datasets collected from two specific websites Flickr

and 500px to evaluate the quality of identified authorities. Flickr is one of the most

popular photo sharing website, which allows users to store, share, tag and organize

their photos. The huge number of Flickr users calls for an topic-specific authority

model to identify the best photographers for a specified query topic. As opposed to

Flickr’s general user base, 500px is a photo sharing platform catered to professional

photographers. A distinct feature of 500px is the Editors’ Choice page7 which

shows the finest photos hand-picked by the professional editors employed by 500px.

These high-quality photos are used to derive the ground truth for our empirical

evaluation.

We collected the sharing logs and the favorite logs from both Flickr and 500px.

5http://www.flickr.com
6http://www.500px.com
7http://www.500px.com/editors
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Table 5.2: Statistics of Experimental Datasets

Data #users #photos #tag asgmts #fav. clicks

Flickr 21,054 204,335 3,014,813 1,562,805

500px 33,581 318,906 3,520,179 1,837,049

The usage data obtained from the collected logs were processed to create training

data D, on which a TAA model was built. Extra usage information was collected

to derive the ground truth for both datasets, which will be described in the next

subsection. The basic statistics of the Flickr dataset and the 500px dataset are

given in Table 7.2.

5.6.2 Evaluation Strategy

Quantitatively evaluating the quality of topic-specific authority analysis is a dif-

ficult task, since a content sharing service generally does not explicitly specify

real authorities given a topic. Luckily, the abundant information embedded in

the databases of Flickr and 500px helps to derive ground truth of topic-specific

authorities.

Flickr has a large number of user-created groups that allow people who have

similar interests to get together and share their photos reflecting these interests.

Each of the groups is generally dedicated to a certain topic, such as food, animals,

certain photo techniques, or creative commons, etc. Every group has one or more

administrators which can be viewed as the real authorities specific to the group

topic. On the other hand, 500px organizes photos by category, such as wedding,

underwater, concert, or transportation, etc. We rank the users for each category

according to their numbers of photos get selected by the editors by category. The

ranked list of users for each category is instead viewed as ground truth, since unlike

a Flickr group, a 500px category has no administrators specific to the category

topic.
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Given the different kinds of ground truth for Flickr and 500px, we used different

evaluation metrics to measure the quality of the results from compared algorithms.

Let Q denote a set of queries. For each query q ∈ Q, each algorithm returns

an ordered list of users by their authoritativeness. For the Flickr dataset, we

employed the standard Mean Reciprocal Rank (MRR). The Reciprocal Rank of a

ranked list is the multiplicative inverse of the rank of the first hit in the list. The

MRR score of an algorithm is the average reciprocal rank obtained by the ranked

lists given by the algorithm with respect to the query set Q. Formally,

MRR =
1

|Q|
∑
q∈Q

1

rankq
(5.18)

where rankq is the rank of the first real authority in the ranked list for query

q. By definition, a higher MRR score indicates a better algorithm. For the

500px dataset, on the other hand, we employed the Spearman’s rank correlation

coefficient to assess the correlation between ground truth and a ranked list of

users given by each algorithm. The Spearman’s coefficient ρq for query q can take

a range of values from -1 to +1 (ρq < 0 for a negative correlation, ρq > 0 for a

positive correlation). The Spearman’s coefficient ρ of an algorithm is the average

Spearman’s coefficient over the query set Q given by the algorithm. Formally,

ρ =
1

|Q|
∑
q∈Q

ρq (5.19)

5.6.3 Quality of Authority Analysis

In our experiments, we evaluated the quality of the authorities identified by the

six algorithms, Most-tagged, LDA, Most-favorited, TwitterRank, Link-PLSA-LDA,

and TAA. Given a set of tags as a query, the Most-tagged approach first identifies

relevant photos by lexical matches against the query tags. The number of relevant

photos of each user is viewed as his or her authoritativeness degree, by which

Most-tagged produces a ranked list of users as a final result. By contrast, LDA

identifies relevant photos using probabilistic topic modeling [23]. As a result,

85



Most-tagged LDA Most-favorited TwitterRank Link-PLSA-LDA TAA

M
R
R

0
0.
05

0.
1

0.
15

0.
2

0.
25

0.
3

0.
35

0.
4

Figure 5.5: MRR for the Flickr dataset

users are ranked in descending order of the query likelihoods given by Equation

(5.1). Note that both Most-tagged and LDA utilize observational data from the

sharing log while neglecting the valuable signal from the favorite log. On the

contrary, Most-favorited leverages both the sharing log and the favorite log in a

way that produces an ordered list of users by the numbers of times their relevant

photos are favorited. As opposed to the previous three approaches, TwitterRank

and Link-PLSA-LDA both build upon the graph structure constructed from the

favorite log. Specifically, we construct the graph by creating a node for each

user. There exists a link from node u to node v if the user corresponding to u

favorited any photo of the user corresponding to v. A user’s tags are associated

with the corresponding node. The TwitterRank algorithm was originally proposed

to find topic-level key influencers on Twitter [114]. It extends typical Topic-

Sensitive PageRank [54] to compute per-topic influence scores. This requires a

separate preprocess to create topics by running LDA on the text content associated

with the nodes. The transition probability between two nodes in TwitterRank is

defined based on the topical similarity between the corresponding users. Given

the similar nature of the Twitter network and our constructed graph, we employ

the TwitterRank algorithm to find topic-level authorities on a content sharing
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service. On the other hand, Link-PLSA-LDA is a probabilistic topic model on a

hyperlink/citation network, which jointly models text and citations to estimate

the influence of blogs/publications [80]. We adapt it to our constructed graph

for topic-specific authority analysis. In our experiments, for every topic-sensitive

algorithm, we set the number of topics to 100. We set all symmetric priors as

0.1 for every model with Dirichlet priors. For our TAA, we ran Gibbs sampling

for 500 iterations. These settings are fairly typical and their tuning is beyond the

scope of this work.

To compute MRRs on the Flickr dataset, we randomly selected 200 Flickr

groups, whose administrators were treated as the real authorities on the respec-

tive group topics. The Top Tags generated by Flickr for each group were fed as

a query to each algorithm. Figure 5.5 shows the MRR score of each algorithm on

the Flickr dataset. It is observed that Most-tagged and LDA were inferior to the

other algorithms, as neither of them models the valuable favorite signal. On the

contrary, by exploiting the favorite data, the algorithms Most-favorited, Twitter-

Rank, Link-PLSA-LDA and the proposed TAA produced higher MRR scores. In

particular, TwitterRank underperformed Link-PLSA-LDA and TAA, due to its

separation between topic modeling and authority analysis. To further measure

the improvement of TAA over the runner-up Link-PLSA-LDA, we performed a

paired t-test between them, which gave p-value < 0.05. It indicated that the im-

provement of TAA over Link-PLSA-LDA was statistically significant. This is not

surprising because Link-PLSA-LDA as well as TwitterRank fail to uncover the

latent topical motivate under each favorite click. Instead, they establish a link

on the graph as long as a user favorited any photo of another, disregarding the

identity of the photo as well as its underlying topics.

For 500px, we plot the Spearman’s coefficient for each algorithm in Figure 5.6.

From this figure, we observe the pattern similar to that of Figure 5.5. TAA outper-

formed all the other algorithms, thanks to its unified framework of topic modeling
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Figure 5.6: Spearman’s rank correlation coefficient for the 500px dataset

and authority analysis. In addition, TAA benefited from its ability to identify

users’ topical authoritativeness by uncovering each favorite click’s underlying top-

ical motivate and learning from pairwise resource preference.

5.6.4 Predictive Power Analysis

As generative models, our TAA, as shown in Figure 5.3, and the competitor Link-

PLSA-LDA [80] are able to generate and predict unseen new data. We evaluated

the predictive power and generalizability of both models using the standard per-

plexity metric [23]. The perplexity is monotonically decreasing in the likelihood of

the unseen test data. Hence, a lower perplexity score indicates stronger predictive

power. Formally, the perplexity is defined as:

perplexity(Ftest) = exp

{
−
∑

f∈Ftest
log p(f)

|Ftest|

}
, (5.20)

where Ftest denotes the test set of favorites. For both Flickr and 500px, we held

out 10% of the data for test purposes and trained the models on the remaining

90%.

Figure 5.7 and Figure 5.8 present the perplexity as a function of the numbers

of topics for both models on Flickr data and 500px data, respectively. It is clear
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Figure 5.7: Perplexity for the Flickr dataset

that the TAA consistently produced lower perplexity scores than Link-PLSA-LDA

for both Flickr and 500px, indicating that our TAA model has stronger predictive

power and better generalizability. Moreover, TAA predicted unseen favorites even

better as the number of topics increases.

5.6.5 Case Visualization

For the visualization of the TAA model, we performed searches on Flickr data for

a list of photographers who are expert in two specific topics. Figure 5.9 shows

the examples of photographers identified by TAA together with their ranks in the

lists. To illustrate their expertise in photography, photos on the query topics are

presented as well. For the first query topic: winter snow landscape, we see from

the photos that the first user in the ranked list demonstrated the expertise in

shooting snow landscape in winter. By contrast, the user in rank 100 seemed to

have broader interests, not specializing in this specific topic. The last user looked
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Figure 5.8: Perplexity for the 500px dataset

even irrelevant to the query topic. For the second query topic: waterscape, the

user at the top was clearly superior to the others in waterscape shooting, although

some photos from the last two users were somewhat related to the water topic.

5.7 Conclusion

This paper addresses the problem of authority analysis specific to given query

topic(s) for users on a content sharing service. To model topic-specific authorita-

tiveness, we introduce a novel method of Topic-specific Authority Analysis (TAA),

which properly captures the associations among users’ interest and authoritative-

ness as well as the topics of favorited resources to exploit the signal of favorite

clicks. The parameters in the TAA model are learned from a training set of ob-

servations constructed from two data sources: sharing log and favorite log. To

overcome the limitation of missing negative feedback, we propose a preference
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Figure 5.9: Examples of the ranked lists of photographers identified by TAA on

Flickr data

learning technique embedding a new logistic likelihood function. An extension of

typical collapsed Gibbs sampling is further proposed for Bayesian inference with

the logistic likelihood. With the inferred parameters, our analysis framework pro-

duces a ranked list of authorities by their authoritativeness specific to given query

topic(s).

We conducted thorough experiments on the datasets collected from two spe-

cific real-world content sharing websites, Flickr and 500px. Experimental results

demonstrate that the TAA model outperforms the competitors, confirming its ef-

fectiveness in topic-specific authority analysis and its generalizability to unseen

data.

91



Appendix

Let us derive the collapsed posterior distribution of TAA augmented with the

variables δ, as follows:

p(z, δ, η|t,o, α, β, µ,Σ)

∝ p(t, z|α, β)p(o, δ|z, η)p(η|µ,Σ)

=

∫ ∫
p(t, z, θ, ϕ|α, β)dθdϕ× p(η|µ,Σ)p(o, δ|z, η)

=

∫
p(z|θ)p(θ|α)dθ ×

∫
p(t|ϕ, z)p(ϕ|β)dϕ

×p(η|µ,Σ)p(o, δ|z, η)

=
L∏
u=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
uk

Nu∏
n=1

θuzundθu

×
K∏
k=1

∫
Γ(
∑V

t=1 βt)∑V
t=1 Γ(βt)

V∏
t=1

ϕβt−1
kt

L∏
u=1

Nu∏
n=1

ϕzuntundϕk

×p(η|µ,Σ)p(o, δ|z, η)

(Expand out Dirichlet and Multinomial distributions)

=
L∏
u=1

∫
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk+cku−1
uk dθu

×
K∏
k=1

∫
Γ(
∑V

t=1 βt)∑V
t=1 Γ(βt)

V∏
t=1

ϕβt+gkt−1
kt dϕk

×p(η|µ,Σ)p(o, δ|z, η)

∝
L∏
u=1

∏K
k=1 Γ(cku + αk)

Γ(
∑K

k=1 cku + αk)
×

K∏
k=1

∏V
t=1 Γ(gkt + βt)

Γ(
∑V

t=1 gkt + βt)

×p(η|µ,Σ)
∏

(u,ri,rj)∈D

e
ηηη
ᵀ
u′

ẑurij−δurij (ηηη
ᵀ
u′

ẑurij )2

2 p(δurij |1, 0)
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CHAPTER 6

Inferring the Demographics of Search Users

6.1 Introduction

In recent years, we have been witnessing the rapid emergence of social networks

and an increasing amount of user generated data. Meanwhile, it became appar-

ent that the relevance of search results can be improved by personalization, i.e.,

by taking into account additional information about the user, such as interests,

demographic and psychological traits, social background, or the context of the

search. As a consequence, search engines have been evolving into social-aware

platforms, Google’s social layer (Google+), and Bing’s social pane being perhaps

the two most noteworthy examples.

While leveraging the background information about the users in ranking mod-

els has shown significant promise in enhancing users’ search experience both in

academic [28] and industrial1 studies, obtaining such features for all users can be

difficult. For instance, a recent study suggests that only about 22% of Bing users

are logged into Facebook account while searching2, and even them may have not

given the search engine access to their profile information. It would therefore be

useful to be able to infer characteristics of users relevant to their search experience

from information more readily available in the context of a search engine, such as

the search query histories.

This work addresses the question of how demographic traits and users’ views

1Google blog, http://bit.ly/YaJvSml
2Search Engine Land: http://selnd.com/R6dpTN
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can be inferred based on the query histories. The main challenge, however, lies

in the fact that only a very limited amount of data is available to allow training

models for predicting such traits based on the search queries. For example, Mi-

crosoft user accounts provide no access to political views and religion, and only a

small amount of data related to demographic traits.

How, then, can we build a machine learning system that predicts user demo-

graphics from query histories? What comes to the rescue is a substantial publicly

available dataset called myPersonality3, offering psychometric test results and

contents of the Facebook profiles for millions of anonymous Facebook users who

volunteered to donate their data for research purposes. In particular, myPerson-

ality database allows matching users’ demographic profiles with their Facebook

Likes, i.e., those online entities and Facebook Pages4 with which users have asso-

ciated themselves using the Facebook Like button. Here we show how Facebook

Likes can be used to build a model predicting users’ individual traits that can be

later applied to search query data.

There are two issues that need to be addressed to apply the model built on

Facebook Likes to query histories. First, Facebook Likes need to be matched

against queries. We achieve that by developing a common representation for

Facebook Likes and search queries within the Open Directory Project (ODP)5

categories. Second, the distribution of users’ traits differs between Facebook and

search samples. Traditional machine learning algorithms commonly assume that

the training and test samples are randomly drawn from the same distribution.

To address this issue, we design a novel learner which is able to adapt the model

learned from social data to search queries with a different distribution. This

learner does not require unlabelled search queries to be seen at training time,

which relaxes the condition of traditional transfer learning. Experimental results

3See http://mypersonality.org/wiki for more details.
4Facebook Pages, http://www.facebook.com/pages
5Open directory project, http://www.dmoz.org
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show that the new learner can give high prediction accuracy as well as some

interesting demographic results.

Hence, the work makes four important contributions:

• We show how to predict users’ traits based on the search query logs by

applying models developed on the Facebook Likes data.

• We show how to use ODP categories to match Facebook Likes with search

queries.

• We demonstrate how to mitigate the problem of differing distributions of

the traits.

• We provide experimental results that show the validity of the approach by

comparing the predictions with ground truth data and with aggregate data

at the US state level.

6.2 Related Work

Our work is related to a wide spectrum of previous studies ranging from inferring

the demographics of individual users, to the application of user demographics in

predicting global trends or individual behaviour.

The impact of demographics & personality Bachrach et al. [8] investi-

gated the correlation between users’ personality and the properties of their social

network profiles. They showed that some personality traits such as Extroversion

and Neuroticism can be accurately predicted based on the user’s profile. A similar

study was conducted by Quercia et al. [91] on Twitter users.

Kosinski et al. [71] demonstrated that there is a psychologically meaningful

relationship between the users personality profiles obtained using a questionnaire,

and their choice of websites extracted from Facebook Likes.
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Weber and Castillo [108] used the Yahoo! query logs and profile information

to compare the queries submitted by users with different demographics. They

further analysed the queries submitted from each US ZIP code separately and

mapped them against the US-census information for those area codes. Their

results suggested that users with similar demographics are more likely to search

for similar things. Weber and Jaimes [112] examined the queries submitted from

different ZIP codes augmented by US-census data to highlight the differences in

user behaviour and search patterns of various demographic groups. We take this

line of previous work to the next level by showing that the demographics of users

can be automatically predicted based on their past queries.

Lorigo et al. [74] discovered that male and female users have different search

behaviour; for instance, females on average submit longer queries. Jansen and

Solomon [61] found that males and females interact differently with sponsored

search results.

Kharitonov and Serdyukov [68] demonstrated how reranking the search results

based on users’ genders may enhance their experience in particular for ambiguous

queries.

Bennett et al. [12] inferred a compact density representation of locations of

users that access different websites and showed that those features can be used

for personalizing and reranking the search results.

Inferring user demographics Torres and Weber [102] reported that the read-

ing levels of clicked pages are correlated with the demographic characteristics of

the clicking users. Weber et al. [109, 110] relied on user clicks on political blogs

annotated with leaning to assign a leaning score (left versus right) to queries.

Pennacchiotti and Popescu [87] used the linguistic content of user tweets, along

with their other social features to predict the political orientation, ethnicity and

the favourite business brands of Twitter users. They found the user-centric fea-
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tures such as linguistic content to be more effective than social graph features in

their classification task.

Ying et al. [115] showed that the users demographics can be predicted accord-

ing to their mobile usage behaviour, such as the number of text messages sent or

received. Otterbacher [84] inferred the author gender of IMDB reviews based on

stylistic and content features.

Jones et al. [63] investigated the problem of inferring users demographics

based on their queries but mostly focused on the privacy angle. They leveraged

bag-of-word classifiers based on queries to train their models.

Perhaps in the most similar work to ours Hu et al. [58], predicted the users’

ages and genders based on their browsing model. For each website in their corpus

they used the Microsoft Live ID information of users that accessed them to build

a demographic model. They then used these models to predict the ages and

genders of other users that access the same website. In our approach we bring the

social and query data into the same space but mapping them against the ODP

categories. As a result, we have a much denser feature space that allows us to

have high generalisably and cover several other interesting aspects such as religion

and political views in the inference.

From query trends to global statistics Weber and Jaimes [111] monitored

the Yahoo! query logs to determine if the same queries were submitted by different

demographic groups at different times. Their analysis revealed that certain queries

(e.g. movies) are searched by distinct demographics at different times, suggesting

an information flow pattern between different groups of users.

Goel et al. [50] used query volume to predict the opening weekend box-office

revenue of films, first-month sales of video games and the ranks of songs on the

Billboard Hot 100 chart. In each of these cases, the authors found that there was

a significant correlation between the query volume and future outcomes. Ettredge
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et al. [40] performed a similar study but focused on predicting the unemployment

rate.

Ginsberg et al. [48] accurately detected the influenza epidemics by only using

the frequency and volume of certain queries in Google logs. Later on, Kong et

al. [70] utilized click-through for the same purpose, and Culotta [36] repeated a

similar analysis on Twitter data.

Domain adaptation and transfer learning Our work is also related to do-

main adaptation and transfer learning techniques. In domain adaptation [38]

typically the same feature space is shared by the source and target domains. We

also deal with two distinct source (social data) and target (queries) spaces in our

experiments, and bridge them by mapping them to a single common space (based

on ODP categories).

Transfer learning techniques can be used to resolve the problem of the different

distributions between source and target spaces. It is worth noting that in contrast

to typical transfer learning models [117, 41, 37, 7], our approach requires neither

any data sharing between the source and target domains, nor any target data to

be seen at training time.

6.3 Modeling User Demographics

As mentioned in the Introduction, we are addressing the problem of inferring

users’ traits from search queries based on the models trained on an independent

set of Facebook Likes and profiles. We thus face two challenges

• How can we find a common representation for search queries and Facebook

Likes?

• How can we address the problem that the users’ traits are distributed dif-
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ferently in those two datasets?

We address the first problem by mapping both search queries and Facebook Likes

into a common representation given by the Open Directory categories, which form

a mini-ontology of entities on the Web and can be thought of as a coarse grained

representation of both search queries and Facebook Likes. Figure 6.1 illustrates

the common representation based on the DMOZ Open Directory Project (ODP)

categories. For Facebook Likes we turn the title of each liked entity into a query

and submit it to a search engine (for example for the lady gaga Facebook Like, we

submit the query lady gaga). We classify each of the top ten results returned by

the search engine (Bing was used in this study) into one of the top two-levels of the

DMOZ/ODP categories, assigning a maximum of three categories to each result.

In total, there are 219 topical categories such as Arts/Movies, Business/Jobs and

Computers/Internet. For learning the category classifiers we follow the approach

described by [13] and apply logistic regression with L2 regularization on a 2008

crawl of the documents linked with the ODP index. Using the output of these

classifiers we then represent each Facebook Like in the myPersonality dataset by a

219-dimensional vector. Each element of this vector denotes the number of times

that a particular ODP category has been assigned to the search results returned

for that Like. We then repeat the same process on search (Bing) users. To

generate the topical feature vector for each user, we collect the queries from their

search history and classify them in the same way as the we did for the Facebook

Likes. Each user is represented again by a 219-dimensional vector, in which each

element denotes the number of times the corresponding ODP category has been

assigned to top-ranked documents returned for user queries. The feature values

are normalized into probabilities so that they all sum to one for each user.

The second problem arises because of the differing users’ traits distribution

between users in the Facebook and search queries samples. Traditional machine

learning algorithms commonly assume that the training data consist of samples
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Figure 6.1: The workflow of our framework for inferring users’ demographics based

on the search queries. On the left, the Facebook Likes of a small group of users

are mapped to their corresponding ODP categories by issuing them as queries and

classifying the top search results. On the right, the search users are represented

similarly by the set of ODP categories associated with the top-ranked results

returned for their queries.

randomly drawn from the same distribution as the test samples about which the

learned model is expected to make predictions. This assumption is violated in our

scenario where the model trained on Facebook data is applied to a query log to

predict users’ demographic characteristics in the search engine. One of the exam-

ples is that there are relatively more female user in the Facebook (myPersonality)

dataset, compared to search (Bing) users. Naively training on one dataset and

testing on the other can significantly decrease the predictive accuracy of a tradi-

tional learning algorithm. This is because a learning algorithm aims to learn an

optimal model for the query log by minimizing the expected risk:

θ̂ = arg min
θ

∑
(q,y)∈Dq

P (Dq)`(q, y, θ) (6.1)

where Dq is query log data, q is a query, y is an ODP category, and `(q, y, θ) is a

loss function with parameter θ.
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However, since we have to assume that no labelled data is available from the

query log, we have to learn a model from the Facebook data instead by minimizing

the empirical risk:

θ̂ = arg min
θ

∑
(l,y)∈Df

P (Df )`(l, y, θ) (6.2)

Note that here we have likes (l) instead of queries (q). If P (Dq) = P (Df ),

the two optimization problems are approximately equivalent. However, as we can

observe from the comparison of the Facebook and search data (see Table 6.1), the

two distributions P (Dq) and P (Df ) are different.

To predict demographic characteristics of the users in a query log, we essen-

tially seek to obtain the conditional probability distribution P (Y |Q,Dq), where

Y denotes the demographic characteristic of a user who issued queries Q, and Dq

denotes the query log. Note that P (Y |Q,Dq) 6= P (Y |L,Df ) as discussed earlier.

Since we choose to represent each user by a probability distribution over ODP

categories, P (Y |Q,Dq) can be marginalized across ODP categories C:

P (Y |Q,Dq) =
∑
C

P (Y |C,Dq)P (C|Q,Dq) (6.3)

By Bayes’ rule, P (Y |C,Dq) is given by:

P (Y |C,Dq) =
P (Y |Dq)P (C|Y,Dq)

P (C|Dq)
, (6.4)

where P (Y |Dq) is the probability of class Y in the query log, which captures our

prior knowledge about the relative frequencies of users of different demographics in

a search engine. These quantities can be obtained from the search engine internal

statistics, or publicly available statistics about the search users. On the other

hand, P (C|Dq) captures the relative frequencies of queries of category C. This

quantity could be estimated from search logs, but can also be approximated from

the ODP/DMOZ statistics assuming that the ODP corpus is statistically similar

to the set of results returned by the search engine. P (C|Y,Dq) is the probability
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that a user with demographics Y is interested in category C when issuing a query.

The key insight here is that we can assume that whether a user is interested in

some category C or not depends on their demographics Y , independent of whether

he or she is using Facebook or doing search. Therefore, it is reasonable to make

the conditional independence assumption that

P (C|Y,Dq) = P (C|Y ) = P (C|Y,Df ) , (6.5)

which means that P (C|Y,Dq) can be estimated from Facebook data Df . Let

θY denote the probability distribution P (C|Y ). In order to avoid problems of

estimation due to sparsity of the data we estimate the parameter vector θY using

Bayesian Maximum A Posteriori (MAP) estimation. In particular, we estimate

θY by:

θ̂Y = arg max
θY

P (θY |Df ) = arg max
θY

P (Df |θY )P (θY ) . (6.6)

This is a standard Bayesian estimation problem with a multinomial likelihood and

a conjugate Dirichlet prior P (θY ) parameterized by pseudo-counts {αk}, (α =∑
k αk). If there is prior knowledge available, this can be taken into account,

otherwise one can initialize the pseudo counts {αk} uniformly. The resulting

MAP solution is given by:

θYk =
NY
k + αk − 1

NY + α−K
, (6.7)

where NY
k is the number of times the webpages, which are returned for the Likes

of users of class Y , fall into the kth category, K is the total number of ODP

categories, and NY is the total number of categories for webpages returned for

the Likes of users of class Y . Note that we estimate the probability P (C|Q,Dq)

in Equation (6.3) in a similar way.

In summary, the methodology outlined above allows us to train a demographics

classifier on users characterized by their collection of Facebook Likes, yet evaluate

it on users characterized by their search query history. We believe that the two key

ideas of a) creating a common representation in terms of ODP, and b) of mitigating
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Table 6.1: The distribution of age and gender in search queries and Facebook

Likes datasets.

Dataset Teenage Youngster Young Mid-Age Elder Male Female

(10-18) (19-24) (25-34) (35-49) (50+)

Social Dataset 3% 49% 32% 14% 2% 37% 63%

Search Dataset 2% 11% 24% 39% 24% 53% 47%

the data shift problem by breaking up the problem into separate estimation tasks

for demographics given category and category given query history will be more

generally applicable to problems in which labels are available, but are not directly

linked with the representation of interest through suitable training data.

6.4 Data

myPersonality Dataset (Facebook) The myPersonality dataset was collected

through the myPersonality Facebook application, which allowed its users to take

real psychometric tests and receive feedback on their scores. In addition to the

results of the tests, respondents could opt in to record their Facebook profile

data to be used for the research purposes. The dataset contains detailed psycho-

demographic profiles of more than 6 million unique users from diverse age groups,

backgrounds, and cultures. Respondents were motivated to answer honestly, as

the only gratification they received for their participation was feedback on their

results. We used a subset of myPersonality users from US described by their

age, gender, political views, religion, and lists of their Facebook Likes. We filter

out all Facebook Likes associated with less than ten users. The resulting dataset

contains over 457,000 users, 122,000 unique Likes, and over 11 million associa-

tions between the users and Facebook Likes. Users’ religion and political views

were stored as free text. Although the great majority of users simply have the

103



typical religion/party/philosophy names in those fields (e.g. Christian, Liberal),

sometimes we had to use regular expression matching to extract the relevant in-

formation. For instance, “Christian - Baptist” was recoded as “Christian” and “I

dont go to church because i wanna leave room in the pews for the sinners that

need it -mr. magee” was ignored after mismatching all of our regular expressions.

Bing Query Logs (Search) We apply the models trained on the myPersonality

dataset to infer the traits of users characterized by search queries. Search query

logs were obtained from Bing and were collected between October 14, 2012 and

October 28, 2012. We have selected queries submitted by the US users that were

signed in with their Microsoft Live account while issuing their queries. In total,

we have collected 133 million queries from 3.3 million unique users. Each user was

also described by age and gender as reported in their Microsoft Live profiles.6

Differing distributions (Data Shift) Table 6.1 shows that the distributions

of user demographics significantly differ between myPersonality and search query

logs datasets. For instance, on average there are more young and female users in

our Facebook data, which considering the nature of myPersonality test may not

be surprising.7

6.5 Evaluation

For each user trait used here, we first train a model on 66% of Facebook users in

myPersonality dataset and test it on the remaining 34%. We then apply the same

6In both samples only anonymous data was used. The user IDs were all annoymized such
that the actual usernames could not be identified.

7It is important to note that the demographics reported here for our search and social datasets
necessarily cannot be regarded as representative statistics for Bing and Facebook. The distribu-
tions in the datasets, particularly for the myPersonality data, are significantly affected by how
the data is collected. The unique characteristics of the myPersonality test is likely to attract
certain types of audience more than others. Readers are encouraged to refer to other sources
(such as alexa.com) for more representative statistics.
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model on search queries and repeat the classification for search users.

Evaluation on myPersoanality Sample In the binary classification tasks

such as predicting gender or political view (liberal vs. conservative) we use the

area under the ROC curve (AUC) measure for evaluating accuracy. The ROC

curves are created by plotting the ratio of true positive rate versus false positive

rate at various threshold settings. We turn each of the multiclass classification

tasks such as predicting religion (among Christian, Buddhist, Jew, Agnostic) into

multiple binary classification problems (e.g. Buddhist or not Buddhist) and report

the average values at the end.

Evaluation on Bing sample The age and gender information of the Bing users

was obtained from their Microsoft Live profiles. Hence, we can repeat the same

type of AUC evaluation, but this time with the labels coming from Microsoft Live

accounts.

Religion and political views are not available in the Microsoft Live profiles,

hence we do no have the ground-truth information on the individual user level.

Therefore, we evaluate the accuracy of the trained classifiers on how well their

output matches the officially reported state-level statistics. We first classify the

religion and political views of individual users (e.g. religion = Christian) and

aggregate those results on the state level (e.g. 74% Christians in California) by

using users’ location acquired from the IP address. We then look up the corre-

sponding reported values for each state from publicly available official statistics

(e.g., what percentage of Californians are Christian). Next, for each given class

(e.g., Christianity) and each state, we calculate the percentage of search users that

are classified in that category with respect to (1) our predictions and (2) official

statistics. Finally, we compute the Pearson correlation value (ρ) between (1) and

(2) and consider it as a proxy for the accuracy of the prediction.
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Table 6.2: The Area under the ROC Curve (AUC) for different demographic

prediction models. The numbers in the middle column show the AUC of a model

trained on Facebook data for predicting the demographics of Facebook users. In

the right column, the models trained based on Facebook data are tested on search

query sample. The missing values “-” are used where the per-user ground-truth

information is not available for AUC evaluation.

AUC Facebook-Facebook Facebook-Search

Gender 0.836 0.803

Age 0.771 0.735

Religion 0.758 -

Political view 0.739 -

6.6 Experiments

Using the compact ODP representation described earlier, we managed to model

all users in both Facebook and search queries datasets. In comparison, an exact-

match approach that compares the text of queries and Likes finds only 5.3%

overlap by which only 36% of search users can be modelled and even for those

there are often only few non-zero features.

Table 6.2 displays the evaluation results of the classifiers built on Facebook

sample for inferring different demographics. The middle column (Facebook-Facebook)

shows the AUC values when we trained and tested on the Facebook dataset. The

right column (Facebook-Search) shows the Facebook model AUC on classifying

Search users.

For gender classification, we train two separate classifiers; one for male, and

one for female, each computing the probability of given gender based on the user

profile (ODP features). Each user is compared against both of these classifiers,

and the one producing the highest probability is used to set the class of gender.
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The results in Table 6.2 show that the classification reaches 83% and 80% AUC

respectively when tested on Facebook and Search samples. Not surprisingly, the

AUC of a model trained based on the Facebook sample, is higher when it is

tested on other users from the same dataset. However, the relative loss is not

substantial, particularly considering the significant differences in the demographic

distributions of these two sets (37% Male in Facebook dataset, compared to 53%

among Search users).

For age classification, we grouped the users in each dataset into five separate

age groups as listed in Table 6.1. For each age group we compute a model based

on the training subset of users in our Facebook dataset. At testing, each user –

in Facebook and Search datasets – is compared against these models, and the one

producing the highest probability is used for classification. On the testing subset

of Facebook users, the trained classifier achieves 77% AUC, while this number is

slightly lower (73.5%) when applying the model on the Search sample.

To classify users’ religion, we first apply a set of regular expressions as described

in Section 6.5 to assign the social users into four groups: {Christian, Jewish,

Buddhist, and Agnostic/Unaffiliated }. These are also the four major religions

in the United States according to U.S. Religious Landscape Survey,8 accounting

respectivelly for of 78.4%, 1.7%, 0.7%, and 16.1% of the entire US population.

We use these nationwide statistics as the prior when classifying the users in the

Search dataset. The AUC while classifying users religion in the testing subset

of Facebook dataset is 76%. Importantly, as there is no information about the

religion on the Search user level, the accuracy of the classification was evaluated in

terms of how well it predicted the state-level distributions as described in Section

6.5.

Figure 6.2 depicts the state distributions of Christians (top) and Buddhists

(bottom) according to the U.S. Religious Landscape Survey on the left, and ac-

8http://religions.pewforum.org
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cording to our predictions for the search engine users on the right.9 The models

predict that depending on the state, 65.8%-95.3% of search users are Christians.

These values are comparable to 69.1%-92.9% reported in the Landscape Survey.

We also correctly identify the Mississippi state as the one with the highest ratio

of Christians, and the states on the east coast with the lowest density (ρ = 0.39).

Similarly the models predict 0.4%-5.7% of search users in the dataset to be Bud-

dhist depending on the state, which is not far from the 0.5%-2.1% range reported

in the Landscape Survey. The models predict Vermont, Oregon, California, and

New Mexico to have the largest population of Buddhists, and apart from the for-

mer – that accounts for 0.001% of our dataset and hence is somewhat prone to

noise – the remaining three are also listed as the top three Buddhist states in the

Landscape Survey (Overall, ρ = 0.53).

Figure 6.3 demonstrates the spread of Agnostic (top) and Jewish (Bottom)

people in the United States. The models predict 4.1%%-27.6% of the search users

in our dataset to be agnostic or unaffiliated with any particular religion. The

official numbers from the Landscape Survey for this category lie closely between

6.1% and 28.3%. Consistent with the Landscape Survey, our models predict higher

density of agnostics in North East and West, with the state of New Hampshire

appearing on top of both – survey and predicted – lists (ρ = 0.27). According to

our predictions based on search engine users, Jews account for 0.3%-5.0% of the

US population depending on the state. These numbers are fairly consistent with

the 0.5%-6.5% reported on the Landscape Survey (ρ = 0.54). We also correctly

identify the states in the North East, in particular New York to have the highest

density of Jewish people. This is yet again aligned with the Landscape Survey

and historical documents about the Jewish settlements in the United States.10

We matched a set of regular expressions against the Political view field of users

9The states of Alaska and Hawaii do not appear on the Landscape Survey and hence are
dropped from the analysis.

10http://en.wikipedia.org/wiki/American_Jews
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in the Facebook dataset to group them into liberal (34%) and conservative (66%)

categories. We ignored users that did not match any of the regular expressions in

building our models. The distribution of liberal versus conservative in the social

dataset is remarkably close to those reported by independent sources such as

Gallup survey which reported 20.6% liberals versus 40% conservatives nationwide

– the remainder of people in the poll were assigned to moderate and other groups.11

As in previous experiments, we build the classifiers based on the ODP features

of the users in the training subset (64%) of Facebook dataset. Applying the model

on the remaining (34%) of users in that dataset produces the AUC of 0.74. We

then apply the same model on the Search sample; the middle and bottom maps in

Figure 6.5 illustrate the distribution of liberals and conservatives in the US. The

middle map is generated based on the per-state statistics reported by the Gallup

survey. The bottom map is generated by applying the classifier trained on the

Facebook sample to Search users. The predicted class for each individual user

contributes to generate the overall distribution for each of the states.

To enhance the visualization, the plots were produced with respect to the

nationwide average so that the differences between states become more prominent.

For instance, -0.10 would mean 10% more liberal, while 0.05 would suggest 5%

more conservative than the nationwide average. The middle and bottom maps in

Figure 6.5 reveal very similar distributions (ρ= 0.72). As expected, both maps

look more blue on the East-West coasts, and more red in the so-called Bible Belt

states. Oregon with an officially reported 13.8% swing towards liberals is the most

noticeable mispredicted state; this was affected to some extend by the ambiguity

of the queries related to the civil war, a college football rivalry in Oregon, which

was particularly trendy during our sampling period.

It is commonly known that liberals are more likely to vote for the Democratic

11Gallup poll, http://bit.ly/hsceKj
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Table 6.3: The ODP categories with the highest information gain for different

types of demographics.
Gender Age Religion Political view

Sports/Basketball Arts/Movies Religion and Spirituality/Christianity Politics/Liberalism

Games Computers/Data Communications Religion and Spirituality/Religious Studies Politics/Conservatism

Sports/Soccer Games Religion and Spirituality/Scientology Society/History

Shopping/Gifts Shopping/Toys and Games Society/History Arts/Movies

Shopping/Jewellery Computers/Software News/Media Science/Social Sciences

Party and conservatives are more likely to vote for Republicans.12 Thus, perhaps

it is not entirely surprising to find similarities in how the states were split between

Democrats and Republicans in the recent 2012 US presidential election (top map

in Figure 6.5).

6.7 Importance of ODP categories

In this section we show the importance of each category in predicting a given type

according to its information gain computed in a leave-one-out fashion. That is, for

each ODP category C (e.g. Arts/Movies), and a given demographic type Y (e.g.

Gender), we first calculate the prior values according to all other 219 categories

in our data, and then calculate the change in information entropy when C is

considered as,

IG(Y,C) = H(Y )−H(Y |C) (6.8)

Here, H(Y ) represents the prior entropy for the demographic type Y across all

users, and H(Y |C) is the same value conditioned on observing category C in

the user’s profile. Table 6.3 shows the categories with the highest information

gains for classifying each of the demographics. For classifying gender, sport and

shopping related categories are most effective. Art/Movies, Games, Shopping/-

Toys and Games and computer-related categories are best in discriminating be-

tween different age groups. For religion, subcategories of Religion and Spirtuality

12Gallup Politics, http://bit.ly/AoyIg4, and Rasmussen Report, http://bit.ly/L85SmV
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are the most important features, and for politics – not surprisingly – Politics/Lib-

eralism and Politics/Conservatism have the highest information gain values for

distinguishing between liberals and conservatives.

We also calculate the influence (β) of each category c ∈ C (e.g. Arts/Movies)

in classifying a given demographic type to a particular class y ∈ Y (e.g. Gender

= Male) by,

β =
P (C = c|Y = y)− µ

µ
(6.9)

where µ represents the average probability of class c ∈ C, for all values of y ∈ Y .

That is,

µ =

∑
y∈Y P (c|y)

|Y |
(6.10)

When ranking categories by Equation (6.9), for gender, we found Shopping/{Jewelry,

Health, Pets, Craft}, Arts/Design, and Society/Relationship as the most influ-

ential categories for classifying females. For males, Shopping/Gift, Sports sub-

categories, Games and Recreation/Guns had the highest influence. For political

views, Politics/Conservatism, and Society/{Military, Politics, Religion and Spirituality}

had the highest β scores for conservatives, while for liberals Society/Gay, Lesbian, and Bisexual,

Politics/Liberalism, and Computers/Artificial Intelligence were ranked highest.

For age, Kids and Teens/Health had the highest β among teenagers. Adult/-

Society and Sports/Wrestling were the highest-ranked categories for youngs and

youngsters. Shopping/Jewellery, and Business/Hospitality were closely ranked

on top for mid-age users, while Shopping/Ethnic and Regional and News/Media

were the top two for elders.

Finally for religion, Religion and Spirituality/Christianity, and Religion and

Spirituality/Scientology had respectively the highest bias towards Christians and

Buddhists. For Jews, somewhat surprisingly Computers/Computer Science was

ranked highest, while agnostics had the strongest negative biases towards Reli-

gion and Spirituality/Religious Studies, and Religion and Spirituality/Scientology.
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6.8 Conclusion

In this work, we addressed the problem of inferring users traits – namely age,

gender, religion and political view – from their search queries. We trained our

predictive models on a sample of Facebook users that had agreed to provide their

Likes and other profile information for research purposes. To the best of our

knowledge, this is the first study that infers the demographics of search users

based on the models trained on the independent social datasets.

We demonstrated that both Facebook Likes and search queries can be trans-

lated into a common representation via mapping to ODP categories. In addition,

we addressed the data-shift problem by breaking up the problem into separate es-

timation tasks for demographics given category, and category given query history.

Our experimental results on a large scale query log of a commercial search

engine confirms that the demographics of search users can be accurately predicted

based on models trained on an independent social data. The trained classifiers

achieved 80% and 74% AUC respectively for classifying gender and age. For

various religious and political views the models consistently ranked the US states

close to their rankings reported in the official statistics (Pearson ρ > 0.72 in all

our experiments).

For future work, we are interested in expanding the models to capture other

types of user traits, such as personality, intelligence, happiness, or interests and

measuring the applications of those inferred traits in personalization, reranking

and monetization of the search results.
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Figure 6.2: (Top-Left) The distribution of Christians in the Contiguous United

States according to the U.S. Religious Landscape Survey. (Top-Right) The

distribution of Christians in the US as predicted based on user queries. The

Pearson correlation (ρ) is 0.39. (Bottom-Left) The distribution of Buddhism in

the Contiguous United States according to the U.S. Religious Landscape Survey.

(Bottom-Right) The distribution of Buddhism in the US as predicted based on

user queries. The Pearson correlation (ρ) is 0.53. The spectrum bar at the left

corner of each map specifies the scale and the corresponding color codes.
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Figure 6.3: (Top-Left) The distribution of Agnostics in the Contiguous United

States according to the U.S. Religious Landscape Survey. (Top-Right) The

distribution of Agnostics in the US as predicted based on user queries. The

Pearson correlation (ρ) is 0.27. (Bottom-Left) The distribution of Judaism in

the Contiguous United States according to the U.S. Religious Landscape Survey.

(Bottom-Right) The distribution of Judaism in the US as predicted based on

user queries. The Pearson correlation (ρ) is 0.54. The spectrum bar at the left

corner of each map specifies the scale and the corresponding color codes.
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Figure 6.4: (Top) The outcome of 2012 the US presidential elec-

tion according to The Huffington Post. The blue states were won by

Democrats and the red states by Republicans. (Bottom-Left) The

distribution of conservatives versus liberals according to an indepen-

dent poll – Gallup. (Bottom-Right) Liberal vs. conservative predic-

tions on Bing users based on the models learned according to Facebook

data. The Pearson correlation (ρ) between the Gallup data and our

per-state predictions is 0.72. The spectrum bar at the left corner of

each map specifies the scale and the corresponding color codes.
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CHAPTER 7

Learning to Recommend Related Entities to

Search Users

7.1 Introduction

Traditionally, web search engines have led users toward web pages chosen by lexical

matches against the search string. However with the introduction of knowledge

bases over the past few years, commercial search engines are moving towards

retrieval based on a semantic understanding of the user query. The knowledge base

is being used to provide popular facts about people, places, and things alongside

traditional search results. It allows search to evolve from returning pages that

match query terms to finding entities that the words describe.

A knowledge base is a centralized repository of content about entities, their

attributes and mutual relationships. Well-known examples of knowledge bases

include Freebase, YAGO, Microsoft Satori, and Google Knowledge Graph. For

instance, Freebase consists of a large set of metadata about movies, music, books,

well-known people, and things. A subset of the entities and their relations in

Freebase is depicted in Figure 7.1. It includes entities corresponding to four

people, two movies and their genres. The links between the entities represent their

relationships, such as “Adam McKay is the director of Anchorman” and “Kristen

Wiig is an actor appearing in Anchorman 2 ”. In this example, “director”, “actor”

and “genre” are attributes of the entity Anchorman.

With the introduction of a knowledge base, a web search engine enables users
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to search for things – movies, celebrities, landmarks and more – and instantly

get rich information relevant to the queries. Figure 7.2 shows an example search

result for the query “pacific rim” together with its entity pane provided by a

commercial search engine. The search engine recognizes that “pacific rim” is the

title of a movie corresponding to an entity in the knowledge base. We refer to

the entity a user searches for as the main entity. An entity pane that presents

information about the main entity shows up to the right of the regular search

results. On the entity pane, in addition to the description of the movie Pacific

Rim, a list of movies related to Pacific Rim is also visually presented below. We

refer to an entity related to the search as a related entity. The provided related

entities allow users to quickly access other relevant entities and offer the ability

to explore more information within the same search session. In order to keep

users engaged, it is important to develop a recommendation model that generates

related entities closely matched with their interests.

Currently, major search engines recommend related entities based on their sim-

ilarities to the main entity that the user searched for. There are various measures

of the similarity between a main entity and an entity to recommend. A common

measure is the frequency of the two entities being co-clicked in the same session

across all search users. A related entity is recommended if and only if it is fre-

quently co-clicked with the main entity. This co-click based approach essentially

maximizes the likelihood that people agree on the relatedness irrespective of any

individual user. Such a global recommendation method brings the same list of re-

lated entities to every user who searches for the same main entity, as user-specific

information is completely ignored. But the same recommendation cannot satisfy

users with distinct interests. For example, given a movie as the main entity, one

user may be interested in viewing the other movie entities with the same director,

while another user may want to view the movie entities from the same genre.

To the best of our knowledge, no work has been done on developing a rec-
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Anchorman 
Anchorman 2 

Comedy 

Will Ferrell 

Steve Carell 

Adam McKay 

genre genre 

actor actor 

actor actor 

director 
director 

Kristen Wiig 

actor 

Figure 7.1: Example of the entities and their relations taken from Freebase

ommendation model for a search engine to tailor related entities to an individual

user’s unique taste and preference. To personalize recommendations, we need to

build user-specific profiles from their interactions with the search engine. In this

work, the users’ interactions are collected in the search click log and the entity

pane log. The search click log stores history of user clicks on URLs, while the

entity pane log stores clicks on the entity pane. In this work, we aim to build

a probabilistic recommendation model that can customize the suggested entities,

which are related to a given main entity, based on the user’s past history stored

in the usage logs.

Despite considerable research on the search click log over the last decade, lit-

tle is known about the emerging entity pane log. This work also represents the

first study exploiting the entity pane’s implicit user feedback for entity recom-

mendation. Our empirical studies find that the entity pane click-through rates

(CTR) play important roles in enhancing recommendation quality of related en-

tities. Therefore, we include these strong CTR signals in the recommendation

model.

In addition to CTRs, our recommendation model involves three important

dimensions: user, main entity, and related entity. Without the user dimension,

the model would degenerate to a global recommendation method which fails to
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Main Entity 

Related Entities 

Figure 7.2: Example of search results with the entity pane taken from a commer-

cial web search engine

personalize suggested entities, as discussed above. On the other hand, if recom-

mendations were based purely on the user dimension, while totally ignoring main

entities, then the suggested entities would be utterly unrelated to the searches.

The interactive feedback in the usage logs reveals the three-way correlations among

these three dimensions. The recommendation model aims to discover and exploit

their ternary relationships. We refer to our probabilistic recommendation model

as Three-way Entity Model, abbreviated as TEM.

To determine the parameters in TEM, we propose learning their optimal val-

ues from a training set of observations constructed from the entity pane log. As

mentioned above, this log contains user feedback on the relatedness of recom-

mended entities. Positive observations can be readily derived from click feedback

by interpreting a user click as a vote in favor of relatedness. Nevertheless, it is

nontrivial to derive negative observations, since a non-click may not indicate the
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absence of relatedness. We propose a principled solution to this issue, specialized

for the problem of ranking related entities.

The major contributions of our work are summarized as follows:

1. This work provides the first solution – the probabilistic model TEM– for

a search engine to personalize its recommendation of related entities. The

recommended entities are customized to be not only related to the given

main entity, but also tailored to the user’s interest and preference.

2. The TEM model leverages three data sources: knowledge base, search click

log, and entity pane log. This is the first work to utilize the entity pane

log to recommend related entities. Specifically, the CTRs derived from the

entity pane log turn out to be strong signals for entity recommendation.

3. The TEM model uncovers the underlying three-way relationships among

user, main entity, and related entity. Jointly modeling all three dimensions

prevents TEM from making static or irrelevant recommendations. An infer-

ence technique is introduced to learn the parameters of TEM.

4. We propose a principled method for training set construction to work around

the problem of missing negative samples. The proposed method is specifi-

cally designed for ranking related entities.

5. We conducted extensive experiments with two real-world datasets of dif-

ferent domains collected from a commercial web search engine. The ex-

perimental results demonstrate that TEM with our probabilistic framework

significantly outperforms the state of the art used by a commercial search

engine. It confirms the effectiveness of TEM and our probabilistic framework

in entity recommendation and the efficacy of personalization.
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7.2 Related Work

A research topic related to our work is personalized web services, including web

search and entity/news recommendation, although the tasks are quite different.

Micarelli et al. [78] provided a summary of research works on this topic. Person-

alized search exploits user search histories to deliver more relevant results than

those provided by traditional search engines [98]. Unlike the task addressed in

this work, Blanco et al. [22] worked on a fundamentally different entity recom-

mendation task. The goal of their work was to recommend possible future queries

related to the user’s current search query based on a knowledge base. In their

paper, the future queries were referred as to related entities, as opposed to the

related entities in our context. Chu and Park [34] proposed a feature-based bilin-

ear regression framework for personalized recommendation on news content. This

approach greatly alleviated the cold-start issue of recommending for new users

by leveraging interest patterns in user profiles recognized from regression over

historical interactive feedback. Sun et al. [99] introduced CubeSVD to perform

three-way data analysis for personalized search. Similar to personalized search,

our work exploits prior user actions to model their interests for personalized rec-

ommendation on related entities.

Over recent decades, a few studies have been conducted on three-way data

analysis. Acar and Yener [1] gave an overview of multiway models, algorithms as

well as their applications in diverse disciplines. These studies commonly repre-

sented observational data as a third-order tensor, which is a higher-order gener-

alization of a vector and a matrix. A three-way model was then constructed for

extracting hidden structures and capturing underlying correlations between vari-

ables in the third-order tensor. A well-known three-way model, called Tucker3,

was introduced by Tucker [103, 35]. It is an extension of singular value decom-

position to third-order tensors. Tucker3 has been successful in many applications

121



Figure 7.3: Sample records taken from an entity pane log

[99, 105].

Three-way data analysis has been widely performed in the context of multi-

verse recommendation. Karatzoglou et al. [66] introduced a collaborative filtering

method based on third-order tensor decomposition to provide context-aware rec-

ommendations. Rendle and Schmidt-Thieme [92] used the tensor decomposition

technique in recommending to users tags for annotating specific items in social

tagging systems. Despite its success in recommender systems, tensor decompo-

sition does not apply to related entity recommendation. In particular, tensor

decomposition suffers from the cold-start problem, as it represents each object in

the system with a unique ID. Given the knowledge base and the usage logs, ten-

sor decomposition cannot utilize the valuable information derived from the various

nature of data sources. In order to do so, we developed TEM, a new probabilistic

model for three-way data analysis.

7.3 Problem Statement

In a nutshell, the objective of this work is to recommend to the user a ranked list

of entities relevant to the main entity by leveraging three pieces of information:

knowledge base, search click log, and entity pane log.

122



Figure 7.3 presents a few sample records from the entity pane click log of a real

search engine. Each row represents an instance indicating whether user u clicked

related entity r given main entity m. There are two page impressions in the table,

each of which indicates the list of related entities recommended for a given (u,m)

pair. The Rank column gives the rank of each related entity in recommendation

lists, and the Click column indicates whether related entities were clicked or not

(1 for click, 0 for no click).

For notational convenience, let U denote the total number of unique users

in the log, M denote the total number of main entities, and R denote the total

number of related entities. The notations used throughout this chapter are given

in Table 7.1. Some of the notations will be explained in later sections.

As discussed above, a click event is naturally associated with three salient

dimensions: User ×Main entity ×Related entity.

[User dimension]

The user dimension targets user interest patterns, building search profiles by

logging user interactions with the search engine. In this work, a user profile maps

a user to a vector of entities and attributes representing the user’s interests. In

order to model user interest as accurately as possible, we collect click history from

two sources: search click log and entity pane log. The former records user click

history on URLs, while the latter reflects user click history on entities.

Since the search click log reports user clicks on URLs, but we are looking for

user interest in entities, we need a mapping from URLs to entities. Fortunately,

with the help of the open source Freebase1 knowledge base, it is easy to map users

to the entities they are interested in. An illustration is shown in Figure 7.4.

Each entity in Freebase is linked to some URLs that are related to this en-

tity. For example, for the movie Avatar 2, by utilizing the relationships “/com-

1http://www.freebase.com/
2http://www.freebase.com/m/0bth54
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Table 7.1: Notations used throughout this chapter

Notation Description

X Feature matrix for users

Y Feature matrix for main entities

Z Feature matrix for related entities

u User identity

m Main entity

r Related entity

xu Feature vector for user u

ym Feature vector for main entity m

zr Feature vector for related entity r

U Number of unique users

M Number of main entities

R Number of related entities

I Number of features for each user

J Number of features for each main entity

K Number of features for each related entity

Θ Model parameter

η, β Weight coefficients

o Preference relation

mon/topic/official website” and “/common/topic/topic equivalent webpage”, we

can obtain this movie’s official site, IMDb pages as well as Wikipedia pages, etc.

Moreover, other information related to this movie is available to us, including

actors, directors, genres, producers, etc. With the help of this data, user-clicked

URLs in search click log can be mapped to corresponding entities in Freebase, as

demonstrated in Figure 7.4. The attributes of these entities can also be obtained

from the Freebase knowledge base.

For the entity pane log, as shown in Figure 7.3, the clicked entities are already

known, so we can simply extract corresponding attributes from Freebase to repre-

sent user interests. By combining the above signals, entities and their attributes
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Figure 7.4: Illustration on joining search click log with Freebase knowledge base

can be used to model users in a naturally way. For instance, a group of users

may often view entities about action movies, while another group may prefer bas-

ketball players. If users are modeled appropriately through their usage patterns,

these preferences and interests should help the search engine recommend related

entities more accurately. Some sample features we extract for users are shown in

Table 7.3 in Section 7.5.

Formally, each user is represented as a vector of features, denoted by x, where

x ∈ RI and I is the number of user features.

[Main entity]

In nature, the main entity reflects the search user’s current search interest. In

addition to user profiling by modeling his or her interest pattern based on the usage

log, it is important to capture a user’s current search intent expressed by the main

entity, which provides valuable context. Ignoring main entities will compromise

the performance of a recommendation model. In particular, if related entities are
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obtained based purely on the user’s past preferences, while neglecting to model

his or her current interest, then the recommended entities will be completely

independent of what the user is searching for, leading to dissatisfaction.

The feature space for main entities is spanned by their attributes extracted

from the knowledge base. Each main entity is represented as a vector of features,

denoted by y, where y ∈ RJ and J is the dimensionality of the feature space for

main entities.

[Related entity]

A user may click a related entity when it is aligned with both the user’s interest

pattern and current intent. User clicks on related entities are the interactive

feedback used to relate patterns in user features to main entities. For example,

suppose there is a fan of the film director Steven Spielberg. (Such a user can be

identified from his or her past usage pattern.) Given a movie as a main entity,

a good recommender should recommend the other movies related not just to the

given entity, but also directed by Steven Spielberg, instead of recommending movies

related in other ways, such as sharing the same actors.

Each related entity is represented as a column vector of features, denoted by

z, where z ∈ RK and K is the number of features for each related entity.

As we have argued, all three dimensions, User×Main entity×Related entity,

can improve entity recommendation, which motivates our joint modeling of these

factors. The joint model is intended to capture structural dependencies of the

three dimensions, revealing the underlying ternary relations.

Problem Statement. Given the feature representations for users x, main en-

tities y and related entities z, we aim to develop a recommendation model that

uncovers the three-way correlations among them to recommend a ranked list of

entities related to a given main entity for any user.
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7.4 Three-way Entity Model

In this section, we present a three-way probabilistic model, TEM, designed to un-

cover the pattern correlations among x, y and z for recommending related entities.

More specifically, we first define a real-valued function Ψumr(Θ) of the model pa-

rameter Θ which captures the ternary relationship among the three dimensions.

A likelihood function is then employed to relate the values of Ψumr(Θ) to observed

actions on related entities. Finally, the parameter Θ is obtained by performing

inference on TEM. The effect of the three-way interactions will be analyzed in

this section.

7.4.1 Trilinear function

To jointly model users, main entities, and related entities, we define a trilinear

function Φumr of xu, ym, and zr as follows:

Φumr(η) =
I∑
i=0

J∑
j=0

K∑
k=0

ηijk · xui · ymj · zrk, (7.1)

where xu denotes the feature vector for user u, ym denotes the feature vector for

main entity m, and zr denotes the feature vector for related entity r. xui is the

i-th feature of xu, ymj is the j-th feature of ym, and zrk is the k-th feature of

zr. η consists of a set of weight coefficients, which is introduced to capture the

associations among the three objects xu, ym, and zr. The weight ηijk quantifies

the affinity of three features xui, ymj, and zrk. Note that η can be represented

as a third-order tensor, where the value of each entry ηijk will be learned from

historical logs.

In order for the trilinear function to capture the pairwise associations between

the three dimensions, we prepend a 1 at the beginning of each feature vector. As
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a result, the users, main entities, and related entities are represented as:

xu = [1, xu1, xu2, · · · , xuI ]T ,

ym = [1, ym1, ym2, · · · , ymJ ]T ,

zr = [1, zr1, zr2, · · · , zrK ]T .

Notice that when there is a large number of features for each dimension,

η ∈ R(I+1)×(J+1)×(K+1) becomes a huge tensor for which inference is intractable.

To overcome this problem, we need to reduce the dimensionality of each feature

vector. Given massive training data, we resort to random projections [60] for

dimensionality reduction. Random projections essentially project each feature

space onto a random lower-dimensional subspace, which yield results comparable

to conventional dimensionality reduction approaches such as Principal Component

Analysis (PCA). However, random projections are significantly less computation-

ally expensive than PCA. We study the effect of random projections on entity

recommendation in the experiment section.

7.4.2 CTR incorporation

The three-way associations, which are systematically modeled by the trilinear

function Φumr(η), contribute an important indicator to entity recommendation,

especially for the rare/new entities for which we have zero or insufficient click

data. To further enhance the recommendation quality of popular entities, we

derive CTR features from the interactive feedback collected in the entity pane

log. The CTRs have been shown to be strong signals for various recommendation

tasks [77, 59]. CTR is defined as the ratio of the number of clicks on a certain

related entity and the number of page impressions in which the related entity is

presented. We extract three sets of CTRs from the entity pane log:

1. CTR(r): CTRs on related entities

128



2. CTR(m, r): CTRs on main entities and related entities

3. CTR(u,m, r): CTRs on users, main entities, and related entities

Following hybrid approaches proposed for personalized search and recommen-

dation [27, 4, 34], we integrate the trilinear function Φumr(η) with the CTR fea-

tures, and define a real-valued function Ψumr(Θ) as:

Ψumr(Θ) = Φumr(η) + βTcumr

=
I∑
i=0

J∑
j=0

K∑
k=0

ηijk · xui · ymj · zrk + βTcumr, (7.2)

where cumr is a vector of CTR features specific to user u, main entity m and

related entity r. β is a vector of weight coefficients. Θ = (η, β) consists of all the

parameters to be learned from historical logs.

7.4.3 Likelihood function

In this subsection, we introduce a likelihood function to relate the values of

Ψumr(Θ) to the click log collected from the entity pane. The click log provides user

preferences for related entities by keeping track of clicks as implicit feedback. One

important fact about the click log is that only positive observations are available

- each click can be considered as positive feedback for the corresponding triple

(u,m, r) indicating that user u is interested in viewing entity r, which is related

to main entity m. However, the non-clicked triples (u,m, r) (i.e., given main en-

tity m, user u did not click recommended entity r on the entity pane), do not

provide such clear conclusions. There are at least two different interpretations

for any non-clicked triple. One possibility is negative feedback, meaning that the

user was not interested in the recommended entity. Another possibility is that the

user did not even see the entity, in which case the user’s interested in the entity

is unknown.

If we simply ignore all non-clicked triples, typical machine learning algorithms

129



are not able to learn anything from the positive observations alone. One may

opt to consider the non-clicked triples as negative feedback. More specifically,

training data is created by assigning positive class labels to clicked triples, and

negative class labels to non-clicked triples. The problem with this approach is

that all non-clicked triples the algorithm predicts in the future are presented to

the learning algorithm as negative observations. This approach misinterprets non-

clicked triples, which are actually missing values.

To address this problem, we use triple pairs as training data instead of individ-

ual triples. As opposed to replacing non-clicked triples with negative observations,

we assume that users prefer the related entities they clicked over all other non-

clicked ones on the same page impression. More specifically, given two triples

(u,m, ri) and (u,m, rj) in the same page impression, user u prefers entity ri over

entity rj if and only if ri was clicked by u while rj was not, which is denoted

by ru,mi � ru,mj . Note that this assumption reasonably disregards click position

bias, given the fact that only several related entities are presented in each page

impression. This is different from the long lists of web search results, in which

users are prone to click top ranked pages.

We create training data D by including all preference relations induced, as

follows:

D = {(u,m, ri, rj)|ru,mi � ru,mj ∨ ru,mj � ru,mi }, (7.3)

where each preference relation o = (u,m, ri, rj) is considered as a training sample.

For the entities that are both clicked by a user, we cannot infer any preference.

The same is true for two entities either of which a user did not click. The running

example in Figure 7.5 shows the preference relations induced by the click feedback

in the entity pane log. In the first page impression, as the user clicked the related

entity The Lone Ranger, we infer that he or she prefers The Lone Ranger over the

other three recommended movies, indicated by the arrows in the figure. Similarly,

it can be inferred that, for the second page impression, the user is more interested
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Figure 7.5: Preference relations induced by the click feedback in the entity pane

log

in Johnny Depp than the others.

A logistic function F(·) as the likelihood function is then employed to relate

the values of Ψumr(Θ) to the pairwise preference, as follows:

p(ru,mi � ru,mj |Ψumri(Θ),Ψumrj(Θ))

=
1

1 + e−g
u,m
ri,rj

(Ψumri (Θ)−Ψumrj (Θ))

= F(gu,mri,rj(Ψumri(Θ)−Ψumrj(Θ))), (7.4)

where gu,mri,rj ∈ {−1, 1} denotes whether user u clicks ri or rj for main entity m:

gu,mri,rj =


1 if u clicks ri given m,

−1 if u clicks rj given m.

The probability p(ru,mi � ru,mj |Ψumri(Θ),Ψumrj(Θ)) gives the likelihood that user

u prefers entity ri over entity rj, both related to main entity m. Given the inferred

parameter Θ, the likelihood of observing all preference relations in training data
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is then given by:

p(D|Θ) =
∏

(u,m,ri,rj)∈D

p(ru,mi � ru,mj |Ψumri(Θ),Ψumrj(Θ))

=
∏

(u,m,ri,rj)∈D

1

1 + e−g
u,m
ri,rj

(Ψumri (Θ)−Ψumrj (Θ))

=
∏

(u,m,ri,rj)∈D

F(gu,mri,rj(Ψumri(Θ)−Ψumrj(Θ))). (7.5)

7.4.4 TEM & Inference

As discussed above, we need to learn the parameter Θ (i.e., η and β) from observed

preference relations induced by user clicks on the entity pane, so that related

entities can be recommended in the future.

For notational clarity, we define Θ̄ as a vector concatenating all the entries

in η and β. The Θ̄ is considered as a random variable, and assumed to follow a

Gaussian distribution:

Θ̄ ∼ Gaussian(µ,Σ). (7.6)

We impose a zero-mean isotropic Gaussian prior on the variable Θ̄, i.e.,

p(Θ̄) =
1√
2πσ

e−
∑
i θ̄

2
i

2σ2 . (7.7)

The graphical representation of the probabilistic model TEM is given in Figure

7.6. First, η is sampled from a Gaussian distribution. Given the η as well as

features xu, ym, and zr, by Equation (7.1) we obtain the value of function Φumr(η)

for each triple (u,m, r) in the training data D. Incorporating Φumr(η) into the

features of click-through rates weighted by β, which is drawn from a Gaussian

distribution, gives the value of function Ψumr(Θ), using Equation (7.2). With the

value of Ψumr(Θ), each preference relation o in D can be obtained by the likelihood

function defined as in Equation (7.4).

We learn the parameter Θ̄, consisting of η and β by fitting the probabilistic

model TEM to the training data D. Specifically, we obtain the posterior distri-
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Figure 7.6: Graphical representation of Topic-specific Authority Analysis

bution of the parameter Θ given all observations in training data D, according to

the Bayes’ Rule:

p(Θ̄|D) =
p(Θ̄)p(D|Θ̄)

p(D)
∝ p(Θ̄)p(D|Θ̄), (7.8)

where p(Θ̄) is the prior distribution defined as in Equation (7.7), and p(D|Θ̄) is

the likelihood of observing all preference relations defined as in Equation (7.5).

Maximum a posteriori (MAP) estimation is then conducted to infer the parameter

Θ̄. That is, we find a Θ̄ such that the posterior probability p(Θ̄|D) is maximized,

i.e.,

arg max
Θ

p(Θ̄|D)

= arg max
Θ

p(Θ̄)p(D|Θ̄)

= arg max
Θ
{ 1√

2πσ
e−

∑
i θ̄

2
i

2σ2

×
∏

(u,m,ri,rj)∈D

1

1 + e−g
u,m
ri,rj

(Ψumri (Θ)−Ψumrj (Θ))
}. (7.9)
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We can equivalently transform this optimization problem into maximizing the

logarithm of the posterior probability p(Θ̄|D) as follows:

arg max
Θ
L(Θ̄)

= arg max
Θ

log p(Θ̄|D)

= arg max
Θ
{−
∑

i θ̄
2
i

2σ2

+
∑

(u,m,ri,rj)∈D

log
1

1 + e−g
u,m
ri,rj

(Ψumri (Θ)−Ψumrj (Θ))
}. (7.10)

Equation (7.10) is an unconstrained convex optimization problem, which has

a unique maximum. We use the Limited-memory BFGS algorithm [83] to solve

the optimization problem and to estimate the parameters η and β. This involves

computation of the gradients ∇ηL(Θ̄) and ∇βL(Θ̄), i.e.:

∂L(Θ̄)

∂ηijk
=

∑
(u,m,ra,rb)∈D

{
gu,mra,rb

1 + eg
u,m
ra,rb

(Ψumra (Θ)−Ψumrb (Θ))

×xuiymj(zrak − zrbk)−
ηijk
σ2
}, (7.11)

∂L(Θ̄)

∂βi
=

∑
(u,m,ra,rb)∈D

{
gu,mra,rb

1 + eg
u,m
ra,rb

(Ψumra (Θ)−Ψumrb (Θ))

×(cumrai − cumrbi )− βi
σ2
}. (7.12)

With the parameter estimate Θ̂ = (η̂, β̂), we can recommend a ranked list of

entities r related to the main entity m searched by any user u. More specifically,

given any triple (u,m, r), we compute the value of function Ψumr(Θ̂) by:

Ψumr(Θ̂) =
I∑
i=0

J∑
j=0

K∑
k=0

η̂ijk · xui · ymj · zrk + β̂Tcumr. (7.13)

Related entities are then ranked in descending order of the Ψumr(Θ̂) scores. En-

tities with the highest scores will be recommended to the user u.
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7.4.5 Three-way Interaction Effect

The TEM model raises the important question: How significant is the effect of

the three-way correlations to modeling user clicks? To answer this question, one

may test the statistical significance of the interaction effect with a t-test on the

weights η which quantify the correlations among xu, ym, and zr. This practice,

however, misinterprets the weight coefficients η in the nonlinear TEM model [5].

The correct measure of the three-way interaction effect for TEM should be a third

partial derivative of the likelihood function F(·) instead.

Let ∆ denote either the derivative or the difference operator, depending on

whether the corresponding feature values are discrete or continuous. The three-

way interaction effect is then estimated by µ̂xyz = ∆3F
∆x∆y∆z

. When x, y and z are

discrete features, the interaction effect can be derived as:

µ̂xyz =
∆3F

∆x∆y∆z

= F(ηx + ηy + ηz + ηxy + ηxz + ηyz + ηxyz + c̃)

−F(ηx + ηy + ηxy + c̃)−F(ηx + ηz + ηxz + c̃)

−F(ηy + ηz + ηyz + c̃) + F(ηz + c̃)

+F(ηy + c̃) + F(ηx + c̃)−F(c̃) (7.14)

where the η terms denote the weights of the features specified by the respective

subscripts, and c̃ represents the linear combination of all remaining features and

weight coefficients. When some or all of x, y and z are continuous features, we

can derive similar equations for the interaction effect, which are omitted due to

the lack of space.

The standard error of the interaction effect estimate µ̂xyz is obtained by the

Delta method:

µ̂xyz ∼ Gaussian

(
µxyz,

∂

∂η

[
∆3F

∆x∆y∆z

]
Ωη

∂

∂η

[
∆3F

∆x∆y∆z

])
, (7.15)
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Table 7.2: Statistics of experimental datasets

Dataset # users # entities # instances

Movie 36,641 15,409 224,567

Celebrity 26,371 2,016 1,450,609

which gives the estimate of the asymptotic variance of µ̂xyz:

σ̂2
xyz =

∂

∂η

[
∆3F

∆x∆y∆z

]
Ω̂η

∂

∂η

[
∆3F

∆x∆y∆z

]
, (7.16)

where Ω̂η is a consistent covariance estimator of η.

For the t-test, we define the t statistic as t = µ̂xyz
σ̂xyz

. With the statistic, we test

the null hypothesis that the overall effects of the three-way interactions equal zero

for given training data, which gives p-value < 0.05. So we reject the null hypoth-

esis, which indicates the fact that the three-way interaction effect is statistically

significant to modeling user clicks on related entities.

7.5 Empirical evaluation

In this section, we report the experimental results of TEM on real-world data

collected by a commercial search engine. We compare the results of TEM against

those of several competitors. Analysis and discussion of the experimental results

are presented in this section.

7.5.1 Data

Although TEM is a generic probabilistic model which is applicable to recommend-

ing various kinds of entities, we take two specific types of recommendation tasks

as case studies for empirical evaluation: movie recommendation and celebrity rec-

ommendation. The movie recommendation task is to recommend a ranked list of

movies that are related to the movie searched by the user. For celebrity recom-
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mendation, we aim to present to the user other celebrities related to the one he

or she searched for.

We collected the entity pane log data for March 2013 through July 2013 from a

commercial search engine. For the two recommendation tasks, movies and celebri-

ties were extracted by aligning the entities in the log with those in Freebase.

Freebase is a collaborative knowledge base of more than twenty million entities,

including well-known people, places, movies and things. The basic statistics of

the movie dataset and the celebrity dataset are given in Table 7.2.

Table 7.3 lists some features we used for the two recommendation tasks (Due

to the space limitation, we do not list all the features here). Specifically, to de-

velop user profiles, by joining search click log, entity pane log and the Freebase

knowledge base (See Section 7.3 for details), we collected the popular entities the

users had viewed together with their attributes/types as features, such as popular

movies, pop stars and well-known writers. Each of the features was represented

as the frequency of its occurrence in the logs for each user. In addition, for movie

recommendation, with the help of the knowledge base we included the attributes

(i.e., genres, countries, languages, etc.) of the movies viewed into the user di-

mension. This enables the model to learn user characteristics from the various

aspects of their viewed movies, and thus to recommend related movies based on

their preferences. As for celebrity recommendation, we included popular celebri-

ties the users had viewed in the user-specific feature vectors, such as business

leaders, musicians, actors and directors. For main entities and related entities, we

constructed two different feature sets for the movie task and the celebrity task.

For movie recommendation, we extracted the attributes of the movies as features,

such as actors, directors, genres, languages, and subjects, whereas the celebrity

recommendation model selected the celebrity-related features, such as the movies

directed by the directors, the books written by the writers, and their spouses.

With the domain-specific feature sets, TEM is able to discover the correlations
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Table 7.3: Features for movie & celebrity recommendation
Movie recommendation

User dimension Main & related movie

Viewed entities

Actors

Directors

Genres

Country of origin

Language

Producers

Series

Story

Subject

Music

......

Types of viewed entities

Viewed movie’s actors

Viewed movie’s directors

Viewed movie’s genres

Viewed movie’s country

Viewed movie’s language

Viewed movie’s producers

Viewed movie’s series

Viewed movie’s story

Viewed movie’s subject

Viewed movie’s music

......

Celebrity recommendation

User dimension Main & related celebrity

Viewed entities

Types of viewed entities

Attributes of viewed

entities

Viewed pop singers

Viewed business leaders

Viewed writers

Viewed musicians

Viewed actors

Viewed film directors

......

Profession

Movie acted

Movie directed

Book written

Music genre

Organization

Spouse

Nationality

Language

Types

......

among the three dimensions for recommending related entities.

In addition to the features listed in Table 7.3, we obtained the features of

click-through rates (CTR) which are considered very strong signals for recom-

mendation. More specifically, based on the entity pane log, we collected r-specific

CTRs: CTR(r), (m, r)-specific CTRs: CTR(m, r), and (u,m, r)-specific CTRs:

CTR(u,m, r). We also collected from the search log the frequency of entities

viewed in the same session. As a result, for movie recommendation there were

a total of 1653 features for each user, and 419 features for each main entity and

related entity. For celebrity recommendation, there were a total of 1938 features

for each user, and 562 features for each main entity and related entity.

7.5.2 Evaluation strategy

To evaluate the quality of entity recommendation, we split both the movie dataset

and the celebrity dataset into a training set and a test set. The test set consisted

of the latest page impression for each user, and the training set contained the rest.

That is, TEM was used to rank a list of entities related to the last main entity
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searched by each user.

Let Q be a set of tuples (u,m). For each tuple (u,m) ∈ Q, a recommendation

algorithm returns a ranked list of related entities with respect to user u and main

entity m. To analyze the recommendation results, we used two evaluation metrics.

The first metric was the standard Mean Reciprocal Rank (MRR). The Reciprocal

Rank of a ranked list is the multiplicative inverse of the rank of the first hit in

the list. The MRR score of a recommendation algorithm is the average reciprocal

rank obtained by the ranked lists given by the algorithm with respect to the set

Q. Formally,

MRR =
1

|Q|

|Q|∑
n=1

1

rank(n)
, (7.17)

where rank(n) is the rank of the first clicked entity in the ranked list for the n-

th tuple. The other metric used for evaluation was called RankAcc. RankAcc

was introduced to measure what fraction of preference orders ri � rj is captured

by a ranked list of recommended entities. Formally, we define RankAcc of a

recommendation algorithm as:

RankAcc=
1

|Q|

|Q|∑
n=1

|{(r(n)
i , r

(n)
j )|i < j ∧ r(n)

i � r
(n)
j }|

|{(r(n)
i , r

(n)
j )|i < j}|

, (7.18)

where i and j are the ranks of related entities ri and rj in the ranked list, respec-

tively. So i < j suggests that entity ri is ranked higher than entity rj. Therefore,

the fraction in Equation (7.18) gives the number of preference orders ri � rj con-

sistent with the rank orders out of the total number of pairs (ri, rj) induced by

the rank.

7.5.3 Recommendation accuracy

We first evaluated the recommendation quality of the compared algorithms, Ran-

dom, Co-click, Production, CTR-model, and TEM on the two real-world datasets.

The Random approach is a naive algorithm which randomly ranks the related
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entities in each page impression3. Co-click exploits the valuable signal that an

entity should be recommended for another given entity if and only if the two

entities are frequently co-clicked. Specifically, given a main entity m, Co-click

estimates p(r|m), the conditional probability of recommending related entity r,

based on the number of their co-occurrences in the click log. Co-click then ranks

the entities r by the conditional probabilities p(r|m). The co-click signal by itself

has been shown to be very effective and the strongest baseline method for entity

recommendation [116]. Production represents the recommendation approach cur-

rently employed by a commercial search engine. It reflects the state of the art in

the specific application by major search engines. CTR-model is a simplified ver-

sion of TEM. It builds up the recommendation model in a way similar to TEM,

except that CTR-model only utilizes the CTR features without incorporating the

trilinear function Φumr(η). In essence, CTR-model and TEM build upon the same

probabilistic framework, while different in feature sets used for training. We in-

troduced the CTR-model in the interests of investigating the power of the CTR

features derived from the entity pane log as well as the power of our probabilistic

framework. We set σ2 = 5 for the Gaussian prior in the probabilistic framework.

For the TEM model, we set the number of random projection dimensions as 20,

since that produced the best recommendations.

Figure 7.7 shows the MRR score of each algorithm for movie recommendation.

From this figure, we observe that the other four methods are clearly superior to

the Random approach. Co-click and Production give similar MRR results, as

current search engines recommend related entities based on the co-click signal. It

is interesting to see that CTR-model produces a high MRR result, even better

than the state-of-the-art baseline Production. This shows the great potential of

the click feedback in the entity pane log. Also, it suggests the ability of our

3The number of related entities presented in each page impression is greatly limited by a
user’s screen size. It is normally ranging from 3 to 5. As a result, an algorithm which always
provides the worst rankings would produce the MRR score approximately 0.25.
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Figure 7.7: MRR for movie recommendation

probabilistic framework to leverage CTR signals for entity recommendation. To

further compare CTR-model and TEM, we performed a paired t-test which had

p-value < 0.05, denoted by ∗. It indicated that the improvement of TEM over

CTR-model is statistically significant. Figure 7.8 depicts the RankAcc scores of

all compared algorithms for movie recommendation. From this figure, we observe

the pattern similar to that of Figure 7.7.

For celebrity recommendation, the MRR and the RankAcc are shown in Figure

7.9 and Figure 7.10, respectively. Again, it is observed that CTR-model produces

much higher MRR and RankAcc than those of both baselines Co-click and Produc-

tion, and that TEM consistently outperforms all the other methods. To further

measure the improvement of TEM over CTR-model, we performed a paired t-test

between the two approaches. The ∗∗ in both figures indicate p-value < 0.01, which

show that TEM significantly improves over CTR-model.

7.5.4 Efficacy of personalization

Our TEM model personalizes recommendation results by taking the user dimen-

sion into consideration. The user dimension captures a user’s past interactions
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Figure 7.8: RankAcc for movie recommendation

with the search engine, such as the various types of entities he or she has viewed

and their characteristics. TEM analyzes the underlying associations between in-

duced user profiles and their actions on the entity pane to recommend the related

entities tailored to their interests.

We took movie recommendation as a case study to investigate the person-

alization efficacy of TEM. Table 7.4 depicts an example of ranking the movie

entities related to the movie The Great Gatsby by the four approaches Co-click,

Production, CTR-model, and TEM. The particular search user was a fan of actor

Leonardo DiCaprio, who starred in The Great Gatsby. Among the four related

movies, the user jumped to Django Unchained to explore, which is the only movie

starring Leonardo DiCaprio. Since the user had viewed the entity of Leonardo

DiCaprio, by analyzing her historical logs TEM recognized her interest and thus

put Django Unchained at the top of the ranked list. On the other hand, the other

three approaches failed to customize the ranking of the related movies based on

the user’s interest.

To further study the personalization efficacy of TEM, we conducted a quanti-

tative evaluation. In particular, we first split the movie test set into five subsets
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Table 7.4: Related movies recommended for a fan of actor Leonardo DiCaprio by

Co-click, Production, CTR-model, and TEM

User

A fan of actor Leonardo DiCaprio

Main movie entity

The Great Gatsby

Related movie entities

Co-click / Production CTR-model TEM

Iron Man 3 Iron Man 3 Django Unchained

Man of Steel Star Trek (2013) Iron Man 3

Star Trek (2013) Django Unchained Star Trek (2013)

Django Unchained Man of Steel Man of Steel

based on the numbers of movie entities viewed by the users in the past. The

number of users in each test subset is given in Figure 7.11(a). It is seen that

42% of users have viewed at least one movie entity in our log. The methods Co-

click, Production, CTR-model, and TEM were used to recommend related movies

for the users in each test set to evaluate their efficacy of personalization. Figure

7.11(b) shows the MRR scores of each algorithm on each test set. From this fig-

ure, it is observed that the three methods Co-click, Production and CTR-model

produce consistent MRR results across the different test sets in spite of the drop

for the “7∼9” set4. This suggests that the unique preference of an individual

user has little effect on the three methods for customizing the recommendation

results. Our TEM model, however, increases the MRR as users have viewed an

increasing number of movie entities. This confirms TEM ’s ability to personalize

recommended entities. Enriching user profiles will potentially improve the quality

of recommendation of TEM for users.

4The MRR for the test set “7∼9” is not statistically reliable given the small number of users
in the set.
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7.5.5 Effect of random projections

In this section, we investigate the effect of random projections on the quality of

recommendation for TEM. In particular, we applied TEM to the training data

of varying-dimensional feature space produced by random projections, and com-

puted MRR for each random projection dimension. Figure 7.12 plots the MRR

scores of the two recommendation tasks for different random projection dimen-

sions. We observe that as more dimensions were used, TEM produced better

recommendation results for both tasks. This is not surprising because increasing

the number of random projection dimensions increases the capacity of the TEM

model by giving it more tunable parameters, and also preserves more information

about the original data.

7.6 Conclusion

This work addresses the problem of recommending entities related to the main

entity returned to a user by a web search engine. We propose the probabilistic

model TEM, which leverages the three data sources, knowledge base, search click
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log, and entity pane log, for personalized recommendation of related entities. The

TEM model not only utilizes the CTR signals derived from the entity pane log,

but also exploits the three-way relationships among user, main entity, and related

entity. Experimental results on movie recommendation and celebrity recommen-

dation show that TEM with our probabilistic framework significantly improves

over the state of the art technique employed by a major search engine. This con-

firms the effectiveness of TEM and the probabilistic framework on related entity

recommendation.
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CHAPTER 8

Conclusions and Future Work

This dissertation presents a family of Bayesian models specifically designed to

analyze content and users in social media and web search engines. Here, we

summarize the presentation of each model.

In Chapter 3, we introduce the FLDA model to characterize the topic-specific

social influence of microblog users. FLDA incorporates the content of tweets

and the network structure of microblogs into one unified model. Different from

the previous work, such as Link-LDA, the FLDA model is specifically designed

for microblogs in that it captures the fact that in reality a user sometimes follows

another due to content-independent reasons. Moreover, in order to apply FLDA to

a web-scale microblog network, we design a distributed Gibbs sampling algorithm

for FLDA on the Spark distributed computing framework. Finally, the FLDA

model is incorporated in a proposed general search framework for topic-specific

key influencers, which provides a keyword search interface for users to freely query

key influencers in different topic combinations.

In Chapter 4, we present two Bayesian nonparametric models, URM and UCM,

to analyze the microblog data. Both models do not require the number of topics

as an input parameter. Instead, they automatically determine the number of

topics based on the observed microblog data. URM and UCM not only are able

to integrate the analysis of tweet content and that of retweet behavior of users in

the same statistical framework, but also jointly model users’ interest in tweet and

retweet.
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In Chapter 5, we describe TAA which statistically models topic-specific au-

thority. The TAA model properly captures the associations among users’ interest

and authority as well as the topics of favorited resources to exploit the signal of

favorite clicks. The parameters in the TAA model are learned from a training set

of observations constructed from two data sources: sharing log and favorite log.

To overcome the limitation of missing negative feedback, we propose a preference

learning technique embedding a new logistic likelihood function. An extension of

typical collapsed Gibbs sampling is further proposed for Bayesian inference with

the logistic likelihood.

In Chapter 6, we address the problem of inferring users traits – namely age,

gender, religion and political view – from their search queries. We train our predic-

tive models on a sample of Facebook users that have agreed to provide their Likes

and other profile information for research purposes. We demonstrate that both

Facebook Likes and search queries can be translated into a common representation

via mapping to ODP categories. In addition, we address the data-shift problem

by breaking up the problem into separate estimation tasks for demographics given

category, and category given query history. For future work, we are interested in

expanding the models to capture other types of user traits, such as personality, in-

telligence, happiness, or interests and measuring the applications of those inferred

traits in personalization, reranking and monetization of the search results.

In Chapter 7, we propose another Bayesian model TEM, which leverages the

three data sources, knowledge base, search click log, and entity pane log, for per-

sonalized recommendation of related entities. The TEM model not only utilizes

the CTR signals derived from the entity pane log, but also exploits the three-way

relationships among user, main entity, and related entity.

In addition to the tasks addressed above, Bayesian modeling can actually be

used in a wide range of applications. For example, weve seen that both the FLDA

model and the TAA model are able to recommend for users the key influencers or
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experts relevant to their interest. The two models can be easily extended to build

recommender systems in various domains in addition to social media.

Also, Bayesian modeling can be used to extract features for a learning model.

For instance, we can append the posterior distributions of latent topics inferred

from a Bayesian model as additional features. These new features provide infor-

mative signals about users unique topical interest, which can enhance the accuracy

of the learning model.

Moreover, Bayesian modeling can be used to analyze usage data. Appropriate

modeling of the usage data allows us to reveal underlying homogeneity and het-

erogeneity in usage behaviors of users. For example, it is able to identify multiple

usage behaviors with the same latent intent, and meanwhile to properly captures

the great diversity of the behaviors of users.
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[50] Sharad Goel, Jake M. Hofman, Sébastien Lahaie, David M. Pennock, and
Duncan J. Watts. Predicting consumer behavior with Web search. Proceed-
ings of the National Academy of Sciences, 107(41):17486–17490, October
2010.

[51] Robert B. Gramacy and Nicholas G. Polson. Simulation-based regularized
logistic regression. Bayesian Analysis, 7(3):567–590, September 2012.

[52] Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. Proceed-
ings of the National Academy of Sciences of the United States of America,
101:5228–5235, 2004.

[53] Hiroshi Haramoto, Makoto Matsumoto, Takuji Nishimura, Franois Pan-
neton, and Pierre L’Ecuyer. Efficient Jump Ahead for 2-Linear Random
Number Generators. INFORMS Journal on Computing, 20(3):385–390,
2008.

[54] Taher H. Haveliwala. Topic-sensitive pagerank: a context-sensitive rank-
ing algorithm for web search. IEEE Transactions on Knowledge and Data
Engineering, 15(4):784–796, July 2003.

[55] Gregor Heinrich. Parameter estimation for text analysis,. Technical report,
University of Leipzig, 2008.

154



[56] Thomas Hofmann. Probabilistic latent semantic analysis. In In Proceedings
of Uncertainty in Artificial Intelligence, UAI 99, pages 289–296, 1999.

[57] Chris C. Holmes and Leonhard Held. Bayesian auxiliary variable models for
binary and multinomial regression. Bayesian Analysis, 1(1):145–168, March
2006.

[58] Jian Hu, Hua-Jun Zeng, Hua Li, Cheng Niu, and Zheng Chen. Demographic
prediction based on user’s browsing behavior. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07, pages 151–160,
Banff, AB, 2007. ACM.

[59] Yoshiyuki Inagaki, Narayanan Sadagopan, Georges Dupret, Anlei Dong,
Ciya Liao, Yi Chang, and Zhaohui Zheng. Session based click features for
recency ranking. In Proc. of AAAI ’10. AAAI Press, 2010.

[60] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proc. of STOC ’98, pages 604–613,
Dallas, Texas, USA, 1998.

[61] Bernard J. Jansen and Lauren Solomon. Gender demographic targeting
in sponsored search. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, pages 831–840, Atlanta, GA, 2010.

[62] Akshay Java, Pranam Kolari, Tim Finin, and Tim Oates. Modeling the
spread of influence on the blogosphere. In WWW 2006 Workshop on We-
blogging Ecosystem: Aggregation, Analysis and Dynamics, 2006.

[63] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. ”I know what
you did last summer”: query logs and user privacy. In Proceedings of the six-
teenth ACM conference on Conference on information and knowledge man-
agement, CIKM ’07, pages 909–914, Lisbon, Portugal, 2007. ACM.

[64] Pawel Jurczyk and Eugene Agichtein. Discovering authorities in question
answer communities by using link analysis. In Proc. of CIKM ’07, pages
919–922, New York, 2007.

[65] Andreas M. Kaplan and Michael Haenlein. Users of the world, unite! the
challenges and opportunities of social media. Business Horizons, 53:59–68,
2010.

[66] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria
Oliver. Multiverse recommendation: N-dimensional tensor factorization for
context-aware collaborative filtering. In Proc. of RecSys ’10, pages 79–86,
Barcelona, Spain, 2010.

155
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