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Abstract 
 
Background:  ​Uncertainty lingers about optimal monotherapy initiation for hypertension. Recent 
guidelines recommend starting any primary agent among five first-line drug classes, thiazide or 
thiazide-like diuretics (THZ), angiotensin converting-enzyme inhibitors (ACEi), angiotensin 
receptor blockers, dihydropyridine calcium channel blockers, and non-dihydropyridine calcium 
channel blockers (ndCCB), in the absence of comorbid indications.  Randomized trials fail to 
further refine this choice. 
 
Methods:  ​We develop a comprehensive framework for real-world evidence that enables 
comparative effectiveness and safety evaluation across many drugs and outcomes from 
observational data encompassing millions of patients while minimizing inherent bias.  Using this 
framework, we conduct a systematic, large-scale study under a new-user cohort design to 
estimate the relative risks of 3 primary and 6 secondary effectiveness and 46 safety outcomes 
comparing all first-line classes across a global network of 6 administrative claims and 3 
electronic health record databases.  The framework addresses residual confounding, publication 
bias and ​p​-hacking using large-scale propensity adjustment, a large set of control outcomes, 
and full disclosure of hypotheses tested. 
 
Findings:  ​Using 4.9 million patients, we generate 22,000 calibrated, propensity-score adjusted 
hazard ratios (HRs) comparing all classes and outcomes across databases.  Most estimates 
reveal no effectiveness differences between classes.  THZ, however, demonstrate better 
primary effectiveness than ACEi: acute myocardial infarction (HR 0.84; 95% CI 0.75-0.95), 
hospitalization for heart failure (0.83; 0.74-0.95) and stroke (0.83; 0.74-0.95) risk while on initial 
treatment.  Safety profiles also favor THZ over ACEi.  The ndCCB drugs are significantly inferior 
to the other four classes. 
 
Interpretation:  ​This comprehensive framework introduces a new way of conducting 
observational healthcare science at scale.  The approach supports equivalence between drug 
classes for initiating monotherapy for hypertension -- in keeping with current guidelines -- with 
the exception of THZ superiority to ACEi and the inferiority of ndCCB. 
 
Funding:​ US National Science Foundation, US National Institutes of Health, Janssen Research 
& Development, IQVIA, Australian National Health and Medical Research Council 
  



 
 

Research in context 
 

Evidence before this study 
 

2017 ACC/AHA Blood Pressure Treatment Guidelines recommend initiating monotherapy for 
hypertension with any primary agent among five first-line drug classes based on a systematic 
review of randomized trials. Similar nonspecificity emerges from the 2018 ESC/ESH Guidelines. 
The largest such trial, ALLHAT, ​enrolled patients ​more than two decades ago, only evaluated 
three representative agents and a majority of participants had been previously treated for 
hypertension.  ​W​e lack contemporary knowledge of the real-world comparative effectiveness of 
common antihypertensive drugs with respect to outcomes and the safety trade-offs among 
these class options for treatment initiation. 

 
Added value of this study 

 
LEGEND for Hypertension exploits state-of-the-art methods to control for residual confounding, 
publication bias and ​p​-hacking in real-world evidence studies and demonstrates generally 
comparable effectiveness between drug classes across nine international health databases. 
However, effectiveness and safety benefits suggest initiating with a thiazide or thiazide-like 
diuretic over an ACE inhibitor, the most common initiating monotherapy across databases. 
Non-dihydropyridine calcium channel blockers are also inferior to the other four first-line classes. 
 
Implications of all the available evidence 
 
Initiating with a thiazide instead of an ACE inhibitor carries potential to avoid many major 
cardiovascular events and warrants further study.  
 

 
 

 
 

  



 
 

Background 
 
Patients and physicians have a wide range of pharmacological options to treat hypertension, a 
key risk factor for cardiovascular disease, but limited guidance on which specific first-line agent 
to initiate. The 2017 ACC/AHA Blood Pressure Treatment Guidelines endorse any thiazide or 
thiazide-like diuretic, angiotensin converting enzyme inhibitor, angiotensin receptor blocker or 
calcium channel blocker unless contraindicated ​1​. Similar nonspecificity emerges from the 2018 
ESC/ESH Guidelines, with the further inclusion of beta-blockers ​2​. 
 
These recommendations derive largely from older randomized controlled trials (RCTs) that 
provided direct comparisons between a limited number of agents, not drug classes, and often 
did not restrict to therapy initiation. For example, the largest head-to-head RCT of 
antihypertensives, the ​Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack 
Trial (ALLHAT), enrolled patients from ​February 1994 through January 1998, more than two 
decades ago, evaluated three representative agents and a majority of participants had been 
previously treated ​3​. Moreover, most studies considered in the 2017 ACC/AHA Guidelines 
systematic review ​4​ were conducted before 2000.  
 
The 2017 Cochrane Review of first-line therapy for hypertension, an update from 2009, found 
no new RCTs to include ​5​. Their literature review concludes that “​first-line low-dose thiazides 
reduced all morbidity and mortality outcomes in adult patients with moderate to severe primary 
hypertension. First-line ACE inhibitors and calcium channel blockers may be similarly effective, 
but the evidence was of lower quality.” Thus, there remains uncertainty and, unfortunately, ​we 
lack contemporary knowledge of the real-world comparative effectiveness of common 
antihypertensive drugs with respect to outcomes - and the safety trade-offs among these 
options. 
 
Accordingly, we have developed the open-science Large-scale Evidence Generation and 
Evaluation in a Network of Databases for Hypertension (LEGEND-HTN) study to compare 
common antihypertensive drug treatments by employing a systematic, large-scale analysis 
across nine observational databases from the Observational Health Data Science and 
Informatics (OHDSI) distributed data network ​6​.  This novel approach employs massive data 
across several countries and synthesizes tens of thousands of comparisons with analytic 
techniques to minimize residual confounding.  In contrast to a single comparison approach, 
LEGEND provides a comprehensive view of the findings and their consistency across 
populations, drugs and outcomes and by design avoids the harms of publication bias or 
over-emphasizing a single observational analysis subject to ​p​-hacking. We report results 
comparing monotherapy drug classes from participating data sources through November 2018, 
covering patients from July 1996 to March 2018. 
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Methods 
 

Data sources 
 
LEGEND-HTN includes six administrative claims and three electronic health record (EHR) 
databases standardized to OHDSI’s Observational Medical Outcomes Partnership (OMOP) 
common data model version 5 (​https://github.com/OHDSI/CommonDataModel​) that maps 
international coding systems into standard vocabulary concepts. The claims databases are: IBM 
MarketScan Commercial Claims and Encounters (CCAE, US employer-based private payer -- 
patient ages <= 65), Optum ClinFormatics (Optum, US private-payer -- primarily <= 65), IBM 
MarketScan Medicare Supplemental Beneficiaries (MDCR, US retirees -- 65+), IBM MarketScan 
Multi-state Medicaid (MDCD, US Medicaid enrollees -- all ages), Japan Medical Data Center 
(JMDC, Japan private-payer -- 18 - 65) and  Korea National Health Insurance Service / National 
Sample Cohort (NHIS/NSC, South Korea -- all ages); the EHRs are: Optum Pan-Therapeutic 
(PanTher, US health systems -- all ages), IMS/Iqvia Disease Analyzer Germany (IMSG, German 
ambulatory-care -- all ages) and Columbia University Medical Center (CUMC, US academic 
health system -- all ages) (see Supplementary Material for database details). All data partners 
had prior Institutional Review Board approval or exemption for their participation. 
 

Study design 
 

Within each database source, we employ a retrospective, comparative new-user cohort design 
7,8​. We consider patients new-users if their first observed treatment for hypertension was 
monotherapy with any active ingredient within the five drug classes listed as primary agents in 
the 2017 AHA/ACC Guidelines ​1​: thiazide or thiazide-like diuretics (THZ), angiotensin 
converting-enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), dihydropyridine 
calcium channel blockers (dCCB) or non-dihydropyridine calcium channel blockers (ndCCB). 
We require patients to have at least one year of prior database observation before first exposure 
and a recorded hypertension diagnosis at or in the one-year preceding treatment initiation.  
 
We study 55 outcomes of interest, including both effectiveness and safety end-points. We divide 
effectiveness outcomes into three primary end-points: acute myocardial infarction (MI), 
hospitalization for heart failure (HF) and stroke, based on their use in the 2017 AHA/ACC 
Guidelines systematic review ​4​, and six further effectiveness outcomes that leading RCTs 
involving hypertension treatment have considered ​3,9,10​. The 46 safety outcomes are 
antihypertensive drug side effects, including angioedema, cough, electrolyte imbalance, gout, 
diarrhea, and kidney disease. We construct all outcomes based on prior published phenotypes 
(Supplementary Table 2) and each typically involves one or more diagnosis codes in the 
inpatient or outpatient setting.  The Supplementary Material provides full and reproducible 
cohort instantiation details for MI, HF and stroke in any OMOP database and links to 
computer-readable details for the remaining outcomes.  
 
For each outcome, we exclude patients with events prior to initiation and define patient 
time-at-risk in two ways: on-treatment analysis follows patients from one day after treatment 
initiation until they first discontinue their initial therapy choice or their record ends, while 

https://github.com/OHDSI/CommonDataModel
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intent-to-treat (ITT) analysis follows patients until their record ends. We construct these 
continuous drug exposures from the available longitudinal data by grouping sequential 
prescriptions that have fewer than 30 days gap between them. We present further details on 
exposure and outcome cohort construction and standardized execution across the network in 
the Supplement Material. 

 
Statistical analysis 

 
To adjust for potential measured confounding and improve the balance between drug class 
cohorts, we build propensity score (PS) models ​11​ for each class-pair and data source using a 
consistent data-driven process through regularized regression. ​12​  This process allows the data 
to decide which combinations of a large set of predefined baseline patient characteristics, 
including demographics and prior conditions, drug exposures, procedures and health service 
utilization behaviors, are most predictive of treatment assignment (see Supplement Material for 
construction details) The number of potential characteristics differs across class-pair and data 
source, ranging from 7,515 (ARB vs dCCB in JMDC) to 70,784 (ACEi vs dCCB in Optum).  We 
stratify or variable-ratio match patients by PS and use Cox proportional hazards models to 
estimate hazard ratios (HRs) between alternative target and comparator treatments for the risk 
of each outcome in each data source. We aggregate HR estimates across data sources to 
produce meta-analytic estimates using a random-effects meta-analysis ​13​. For the monotherapy 
initiation of the five drug classes (ten pairwise comparisons) to study 55 outcomes in nine 
databases (plus one meta-analysis) using two time-at-risk definitions and two PS-adjustment 
approaches, we generate 10 x 55 x (9 + 1) x 2 x 2 = 22,000 effect estimates.  
 
Residual study bias from unmeasured and systematic sources can still exist in observational 
studies after controlling for measured confounding ​14,15​.  Therefore, for each effect estimate, we 
further conduct negative control outcome experiments where the null hypothesis of no effect is 
believed to be true using 76 controls (Supplementary Table 3) identified through a data-rich 
algorithm ​16​. We use the empirical null distributions and synthetic positive controls ​17​ to calibrate 
each HR estimate, its 95% confidence interval (CI) and the​ p​-value to reject the null hypothesis 
of no differential effect.  We refer to a HR as significantly different from the null value when its 
calibrated 95% CI does not include this value.  This corresponds to a calibrated ​p​ < 0.05 without 
correcting for multiple testing. 
 
Finally, for each of the 22,000 target-comparator-outcome-database-analysis combinations, we 
report full study diagnostics and results. These include power calculations estimating minimum 
detectable relative risk (MDRR), preference score (​a transformation of PS that adjusts for 
prevalence differences between population​) distributions to evaluate empirical equipoise ​18​ and 
population generalizability, patient characteristics to evaluate cohort balance before and after 
PS-adjustment, negative and positive control calibration plots to assess residual bias, and 
Kaplan-Meier plots to examine HR proportionality assumptions. We define target and 
comparator cohorts to stand in empirical equipoise if the majority of patients in both carry 
preference scores between 0.3 and 0.7 and to achieve sufficient balance if all after-adjustment 
baseline characteristics return absolute standardized mean differences < 0.1. 
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Post-hoc​ sensitivity analysis with blood pressure 
 
Because of the potential confounding effect of blood pressure (BP) and to better understand the 
impact of the lack of base-line BP measurements on effectiveness and safety estimation that 
arises in administrative claims and some EHR data, we perform a non-prespecified sensitivity 
analysis within the PanTher database.  This EHR does record systolic and diastolic BP for most 
subjects.  For each class-pair, we first rebuild PS models where we additionally include 
base-line BP measurements as patient characteristics, stratify or match patients under the new 
PS models that directly adjust for potential BP confounding and then estimate effectiveness and 
safety HRs. 
 

Study execution 
 
We conduct this study using the open-source OHDSI CohortMethod R package 
(​https://github.com/OHDSI/CohortMethod​) with large-scale analytics achieved through the 
Cyclops R package ​19​. The pre-specified LEGEND-HTN protocol and end-to-end open and 
executable source code are available at: ​https://github.com/OHDSI/Legend​. We have developed 
an interactive LEGEND website to promote transparency and allow for sharing and exploration 
of the complete result set at: ​http://data.ohdsi.org/LegendBasicViewer​.  For clarity, we present 
here principal comparisons and outcomes under an on-treatment, PS-stratified design; see the 
Supplementary Material and website for all comparisons, outcomes, databases and analysis 
choices of interest. 
 

Role of funding sources 
 

No funding sources (Janssen, IQVIA, US National Science Foundation, US National Institutes of 
Health and Australian National Health and Medical Research Council) had input in the design, 
execution, interpretation of results or decision to publish. 
 

Supplementary material and protocol 
 
Supplementary material is available at:  
https://www.dropbox.com/s/96ofeusn64w5bhn/SupplementaryMaterial_Lancet_final.pdf?dl=0 
 
 
Protocol is available at: 
https://github.com/OHDSI/Legend/blob/master/Documents/OHDSI%20Legend%20Protocol%20
Hypertension%20V03.docx 
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Results 
 
LEGEND-HTN includes longitudinal claims and EHR data from 4,893,591 patients, 48% of 
whom initiated an ACEI, 17% a THZ, 16% a dCCB, 15% an ARB, and 3% an ndCCB (Table 1). 
The CCAE, PanTher, and Optum databases contributed the most patients to the study across 
all five drug classes. Median on-treatment time-at-risk for patients varied by drug class and 
database between one to seven months, but in most databases, 25% of the patients were 
exposed to their first drug class for greater than one year. Median overall follow-up time for 
patients was more than two years for most databases, with 25% of patients having more than 
five years of follow-up in each drug class. Supplementary Table 4 details individual drug 
ingredients within each class. The majority of ACEi new-users started on lisinopril (80%), THZ 
new-users on hydrochlorothiazide (94%), ARB new-users on losartan (45%), dCCB new-users 
on amlodipine (85%), and nCCB new-users on diltiazem (62%). 
 
Table 2 illustrates the patient baseline characteristics for one target - comparator - database 
combination, comparing patients initiating THZ (target) with patients initiating ACEi (comparator) 
in the CCAE database. Before PS stratification, ACEi new-users are more likely to be male, 
have diabetes, hyperlipidemia, arteriosclerosis or heart disease relative to patients initiating a 
THZ. After stratification, the THZ and ACEi populations are well-balanced on all 56,535 baseline 
patient characteristics. Supplementary Tables 5a - 5i present patient baseline characteristics for 
the remaining pairwise class comparisons in CCAE.  To highlight some specific differences 
between the new-user populations prior to adjustment: ndCCB new-users have a higher 
baseline prevalence of atrial fibrillation and other heart diseases than other class users, while 
dCCB new-users are more likely be pregnant women than ACEi/ARB (classes for which use 
during pregnancy is specifically contraindicated) new-users (Supplementary Figure 2).   Finally, 
Supplementary Figure 16 histograms display base-line systolic and diastolic BP for new-users 
across all drug-classes in the PanTher database.  THZ new-users have the highest median BP 
of 142/88 (interquartile range [IQR]: 130/80 - 152/95), followed by dCCB (141/84, IQR: 130/76 - 
155/94), ACEi (140/84, IQR: 128/76 - 152/92), ARB (138/82, IQR: 126/74 - 150/90) and ndCCB 
(133/80, IQR: 122/70 - 146/87). 
 
For five data sources (CCAE, MDCR, IMSG, JMDC, CUMC), all executed class comparisons 
stand in empirical equipoise (see Supplementary Figure 1 for preference score distributions in 
CCAE). MDCD, Optum, PanTher and NHIS show less equipoise for comparisons involving 
ARBs or ndCCBs. However, in general, PS-adjustment achieves sufficient covariate balance to 
reduce concerns that measured baseline confounding biases estimated effects (Supplementary 
Figure 2). Finally, before calibration, nominal 95% confidence intervals cover 86.7% of control 
estimates across all comparisons; after calibration, they cover 96.7%. 
 
Table 3 reports the meta-analytic comparative effect estimates for our primary effectiveness 
outcomes: acute MI, hospitalization for HF and stroke. More than half of the comparisons show 
no significant difference between classes at a nominal 5% Type I error rate. However, THZs 
demonstrate a significantly lower risk of all three outcomes relative to ACEis (acute MI: HR=0.84 
[95% CI: 0.75 - 0.95); HF: HR=0.83 [95% CI: 0.74 - 0.95] and stroke: HR=0.83 [95% CI: 0.74 - 
0.95​]​) with an approximate 15% lower event rate.  Supplementary Table 6 reports patient 



 
 

counts, observation time and events for pairwise class comparisons under the primary 
effectiveness outcomes. 
 
THZs also show a significantly lower risk of acute MI, hospitalization for HF and stroke relative 
to ndCCBs (Table 3). We observe no significant differences in these outcomes between THZs 
and either ARBs or dCCBs. However, we find that the two subtypes of calcium channel blockers 
exhibit significantly differential hazards, with dCCBs having a lower risk of acute MI, 
hospitalization for HF and stroke relative to ndCCBs. Finally, we observe no differences in these 
three primary effectiveness outcomes between ACEis, ARBs and dCCBs.  
 
Figure 1a presents the meta-analytic comparative effect estimates across all nine effectiveness 
outcomes.  Seven of these outcomes demonstrate a significantly decreased HR in favor of 
THZs as compared to ACEis.  We observe no significant differences in outcomes in the 
remaining comparisons, with the marked exception of ndCCBs that underperform all other drug 
classes. Figure 1b further stratifies meta-analytic estimates into their individual data 
source-specific contributions for one exemplar outcome: major cardiovascular (CV) events that 
is a composite based on ALLHAT of acute MI, hospitalization for HF, stroke and sudden cardiac 
death. In all CV event comparisons, data sources return relatively consistent estimates, with ​I ​2 ​< 
40% indicating low heterogeneity. In comparing THZs and ACEIs, we observed that three 
databases independently return significantly decreased effect estimates, and the meta-analysis 
allows greater precision around the estimate (HR=0.84 [95% CI: 0.75-0.95]) than any one 
source alone achieves.  Relative to ndCCBs, we again see that THZs, ACEIs, ARBs and dCCBs 
all demonstrate decreased risks of CV events, with two or more sources contributing significant 
effect estimates to the meta-analysis.  
 
Figure 2 displays meta-analytic effect estimates for all 46 safety outcomes in comparing THZs 
with ACEIs, ARBs, dCCBs and ndCCBs. The remaining comparisons are in Supplementary 
Figures 12a - 12c.  Relative to other drug classes, THZs have a significantly higher risk of 
hypokalemia (vs ACEi HR=2.8 [95% CI: 2.2 - 3.6], vs ARB HR=2.9 [95% CI: 2.2 - 4.3], vs dCCB 
HR =1.9 [95% CI: 1.6 - 2.4] and vs ndCCB HR=1.8 [95% CI: 1.5 - 2.1]) and, correspondingly, a 
significantly lower risk of hyperkalemia.  THZs also demonstrate a significantly higher risk of 
hyponatremia compared to other drug classes. As expected, there is a significantly increased 
risk of angioedema and cough for ACEi new-users. The resulting, PS-adjusted and calibrated 
HR for angioedema in THZ vs ACEi new-users is 0.44 (95% CI, 0.35 - 0.57). Across all disease 
categories,  16 further safety outcomes occur at a significantly higher rate in ACEi as compared 
to THZ new-users including mortality, gastrointestinal side-effects and renal disorders. 
 
Figure 3 examines the effect of adjusting for base-line BP across all nine effectiveness 
outcomes for all class-pairs in the PanTher database.  Out of 90 HR estimates, only three cases 
change their statistically significant interpretation when incorporating BP in the PS model.  The 
risk of acute MI in THZ vs ACEi new-users moves from HR=0.81 (95% CI: 0.68 - 0.98) to 
HR=0.85 (95% CI: 0.70 - 0.1.03) and the 95% CIs measuring the risk of acute MI and stroke in 
dCCB and ndCCB no longer cover HR=1.  Supplementary Figure 17 shows similar consistency 
between estimates for the safety profile of THZ vs ACEi. 
Discussion 



 
 

 
LEGEND-HTN is the largest and most comprehensive study ever conducted to provide 
evidence about the comparative effectiveness and safety of first-line antihypertensives, 
representing more than 4.9 million patients initiating monotherapy across nine databases from 
four countries, examining all pairwise comparisons between the five first-line drug classes 
against a panel of 55 health outcomes.  This equates to 22,000 traditional observational studies, 
many of which researchers could have hand-picked, hand-tweaked and published individually. 
Most comparisons reveal no effectiveness differences between classes.  We find, however, that 
patients initiating treatment with a THZ have a significantly lower risk of seven effectiveness 
outcomes, including acute MI, hospitalization for HF and stroke, as compared to ACEi 
new-users while patients remain on-treatment with their initial drug class choice. Additionally, 
the THZ safety profile is markedly better compared with ACEis. Patients who initiate with an 
ndCCB experience a significantly higher risk of poor effectiveness outcome compared with all 
other class choices, but less adequate cohort balance and equipoise in these comparisons may 
limit their generalizability. Finally, there stand no significant effectiveness differences between 
the remaining classes.  
 
Across the patients we study who initiated monotherapy, nearly 50% are prescribed ACEis and 
fewer than 18% THZs. While our results suggest ACEis have only a modestly less favorable 
effectiveness profile than THZs in magnitude, the effect of favoring THZs across the whole 
population could be substantial; if the 2.4 million ACEi new-users we observed had instead 
chosen a THZ, over 3,100 major CV events could potentially have been avoided. This equates 
to 1.3 CV events avoided for every 1,000 patients who initiate with a THZ instead of an ACEi, 
yielding a substantial public health impact, particularly given the more favourable safety profile 
of THZs. 
 
Real-world observational studies can fill evidence gaps from what can be learned from RCTs. 
Whereas RCTs remain a key tool for high-quality clinical efficacy estimates in patient-limited, 
controlled settings, LEGEND-HTN delivers estimates of real-world effectiveness ​20​.  For 
example, the 2017 ACC/AHA Blood Pressure Treatment Guideline systematic review conducts 
a meta-analysis of three RCTs ​3,21,22​  to estimate the relative risk (RR) of MI between 18,421 
THZ and 12,225 ACEi users in total, yielding a RR of 1.2 (95% CI: 0.78 - 2.0).  This estimate is 
concordant with, but lacks the statistical power of the LEGEND-HTN estimate involving over 2.2 
million patients who further encompass greater real-world heterogeneity.  We note, however, 
that the LEGEND-HTN estimate of MI risk is not concordant with any of the three individual 
RCTs, but their marked differences with each other leaves the question unanswered. For 
important efficacy outcomes, head-to-head RCTs between specific drug classes do not exist; 
examples include: THZ vs ARB for risk of HF,  and THZ vs ARB and ACEi vs ARB for risk of 
major CV events and renal events ​4​. Further, for convenience, extant RCTs usually recruit 
previously treated hypertensive subjects; LEGEND-HTN, on the other hand, focuses on 
treatment initiation and so directly assess initiation guidelines  Finally, while RCTs and the 
systematic review furnish a comprehensive summary of cardiovascular outcomes, there is 
relatively little evidence about the comparative safety of these classes. LEGEND-HTN provides 
this additional context across a large panel of effectiveness and safety outcomes for all class 
comparisons. 
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Through an international network, LEGEND-HTN seeks to take advantage of disparate health 
databases drawn from different sources, including administrative claims and EHRs, and across 
a range of countries and practice settings.  These large-scale and unfiltered populations better 
represent real-world practice than the restricted study populations in prescribed treatment and 
follow-up settings from RCTs.  The strong agreement among the separate database estimates 
despite heterogeneity in patient populations, practice-settings and data capture processes 
further supports the plausibility of true causal effect differences.  Even with this greater 
generalizability, however, we cannot exclude the possibility of subpopulations not sufficiently 
captured in our research network that feature a considerably different effectiveness profile. 
 
An obvious LEGEND-HTN limitation is the absence of BP measurements within some 
databases.  Baseline BP may drive class choice, resulting in unmeasured confounding by 
indication between cohorts. For example, physicians may preferentially prescribe a THZ rather 
than an ACEi for patients with lower baseline BP.  If uncorrected, this can bias risk estimates to 
favor THZs given the strong correlation between higher BP and cardiovascular events.   In 
PanTher, however, we observed that THZ new-users have the highest median BP across drug 
classes.  Unfortunately, there is no guarantee that this relationship holds in other data sources. 
So, to protect against such confounding, LEGEND-HTN employs large-scale PS-models 
involving tens of thousands of  baseline patient characteristics, many of which should also 
associate with BP to facilitate its indirect adjustment in spite of remaining unobserved.    A ​post 
hoc​ sensitivity analysis reveals that including BP in the PS-model does achieve near-perfect 
balance on baseline BP across comparisons in PanTher, but does not lead to clinically 
meaningfully different effect sizes estimates than when not including BP.  
 
LEGEND-HTN’s standardization enables us to consider multiple study design choices. One 
choice is the time-at-risk definition. On-treatment time results in shorter follow-up than ITT.  As 
expected, we see blunted estimates of differential effectiveness and risks between drug class 
new-users under an ITT design (see Supplementary Material). We caution, however, against 
over-interpreting estimate differences between time-at-risk choices, as treatment escalation is 
more likely to confound ITT estimates.  
 
On-treatment follow-up time also helps assess differential adherence to initial treatment.  Except 
in the CUMC database, median on-treatment time is modestly shorter (0 - 38 days) for THZ vs 
ACEi new-users. Such differences, if meaningful, are also less likely to confound on-treatment 
estimates where time-at-risk ends with initiation treatment discontinuation.  Further, claims 
databases report drug fulfillment while EHRs report prescriptions.  As fulfillment more directly 
reflects actual drug-taking, one might expect differential adherence to generate notable effect 
estimate differences across data sources; we do not observe such differences in comparing 
THZ vs ACEi new-users. 
 
Finally, cardiovascular observational research has a poor track record when it comes to 
reliability and reproducibility ​23​. One likely cause is residual confounding due to the 
observational nature of the studies. In contrast to most observational research, LEGEND-HTN 
minimizes the risk of residual bias by using reproducible methods to address observed 

https://paperpile.com/c/cBNe4u/THpO


 
 

confounding, by reporting study diagnostics such as empirical equipoise and covariate balance, 
and by unprecedentedly applying a large set of control outcomes to measure and then account 
for remaining systematic error. Marked covariate balance and empirical equipoise between 
new-user cohorts across data sources demonstrate here successful adjustment for observed 
confounding and comparable, generalizable populations for HR estimation.  Control 
experiments further reduce systematic error and return calibrated CIs and ​p​-values with reliable 
statistical interpretation.  Other causes of concern are publication bias and ​p​-hacking that 
LEGEND-HTN addresses by consistently applying our study design to many comparisons and 
reporting all results through its interactive website. This further enables result-set users to apply 
multiple testing correction for their specific research topic as appropriate. Finally, LEGEND-HTN 
delivers true ​Open Science​, with all study artifacts including study protocol, analytical code, and 
full results made publicly available. As a consequence, LEGEND-HTN evidence should 
demonstrate high reliability​ ​24​. 
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Table 1: Population size and follow-up time for each first-line antihypertensive drug class within 
each database. We report median and interquartile range (IQR) times. When executing 
comparative studies, we exclude database populations with ​< ​2,500 new-users.

 



 
 

Table 2:  Baseline patient characteristics for THZ and ACEi new-users in the IBM MarketScan 
Commercial Claims and Encounters (CCAE) database. We report the proportion of new-users 
satisfying selected baseline characteristics and the standardized difference of population 
proportions (StdDiff) before and after stratification. Less extreme StdDiffs through stratification 
suggest improved balance between patient cohorts through propensity score adjustment.

  



 
 

Table 3: Meta-analytic hazard ratios (HR) estimates and their 95% confidence intervals (CIs) 
comparing the relative risk of primary cardiovascular effectiveness outcomes between 
new-users of first-line antihypertensive drug classes. Primary outcomes are acute myocardial 
infarction (MI), hospitalization for heart failure (HF) and stroke. Estimates are calibrated to 
reduce residual bias and report the HR for patients in the target cohort relative to comparator 
cohort; HRs ​< ​1 favor target. 

 
 
  



 
 

Figure 1: Comparative effectiveness of THZ, ACEi, ARB, dCCB and ndCCB drug classes. 
Points report HR estimates and lines mark their 95% CIs. HRs < 1 favor target (row) over 
comparator (column). (a) Meta-analytic risk estimates across all nine effectiveness outcomes 
with primary outcomes in red and secondary outcomes in blue. (b) Cardiovascular (CV) event 
risk estimates by data source and meta-analysis. Colors identify databases; the top block are 
administrative claims databases, the middle block are EHRs and black highlights a 
meta-analysis across all other sources. Not all databases contain sufficient new-users for study 
inclusion. CV event is a composite outcome of acute MI, hospitalization for HF, stroke and 
sudden cardiac death. 
 

 
 
  



 
 

Figure 2:   Meta-analytic safety profiles comparing THZ to ACEi, ARB, dCCB and ndCCB 
new-users across 46 outcomes listed on product labels.  Points and lines identify HR estimates 
with their 95% CIs, respectively.  Outcomes in grey signify that the CI covers HR =1 (null 
hypothesis of no differential risk).  
 

 
 
  



 
 

Figure 3: Effectiveness estimates comparing THZ to ACEi, ARB, dCCB and ndCCB new-users 
using propensity scores with and without baseline blood pressure (BP) adjustment in the 
PanTher database.  Points and lines identify HR estimates with their 95% CIs, respectively. 
Black circles demarcate estimates based on large-scale propensity scores built without BP 
measurements and grey squares identify estimates additionally including baseline 
measurements from the electronic health record. 
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