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Abstract

Electrostatic tuning of the resonant modes in microelectichanical (MEM) vibratory
gyroscopes is often suggested as a means for compensatimgfattaring aberrations that
produce detuned resonances. In high performance sensamyér, this approach places very
stringent requirements on the stability of the bias volsagsed for tuning. Furthermore, the
bias voltage stability must be maintained over the opegatinvironment, especially with re-
gard to temperature variations. An alternative solutiorthis problem is to use mass per-
turbations of the sensor’s resonant structure for resomaute tuning. This paper presents
a new mass perturbation technique that only relies on theogenintegrated actuators and

pick-offs to guide the mass perturbation process. The glkgoris amenable to automation
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and eliminates the requirement that the modal nodes of s@netor be identified by direct

measurement.

1 Introduction

High-performance vibratory angular rate sensors rely enntlatching of the frequencies of two
modes that are highly coupled by a Coriolis acceleratiom tehen the equations of motion are
written in a case-fixed coordinate system. Frequency magoixploits the mechanical gain af-
forded by the sensor dynamics and leads to the best attaisagslal-to-noise ratio. In principle,
the degenerate dynamics can be attained by designingwseaavith a high degree of symmetry
such as Litton’s Hemispherical Resonator Gyroscope (HRGand the BAE Silicon Vibrating
Structure Gyroscope (SiVSG) [2]. Boeing’s Silicon Resondbyroscope (SiDRG), shown in
Fig. 1, motivates the study in this paper. The results of tqgep however, are relavent for other
axisymmetric, planar resonatars.

Ideally, the location where the resonant structure atmthéhe sensor case is a nodal point for
the Coriolis-coupled modes and the symmetric design gteeardegenerate modal frequencies.
This scheme isolates the Coriolis-coupled modes from tibage motion and reduces energy dissi-
pation in the modes, thereby eliminating large contribaitorangular rate bias and drift. The HRG
is an extreme example of the degree of isolation that can Iesd—quality factors exceeding
1 x 10° have been reported when the resonators are fabricated Gised fjuartz [1].

For those sensors lending themselves to MEM fabricatiach as the SIDRG, local variations
in etch rate produce minute, but unpredictable, asymnsaingg manifest themselves as a splitting
of the modal frequencies (right side of Fig. 1). Althoughfiteguency splits are small, on the order
of 0.3% or less, the absolute separation between the mastpidéncies coupled with their high
guality factors conspire to eliminate the mechanical gaivaatage that was a primary objective

of the modal degeneracy.

LFor more information on the operation of vibratory anguégersensors, refer to [3].
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In past work, the resonant frequencies of the SIDRG weredtbgapplying electrostatic forces
with dedicated electrodes, thereby locally altering threorator stiffness [4—6]. The drawback of
this solution, however, is that the electrodes are requinechaintain a voltage stability that is
difficult to achieve with compact, low-cost electronics.elpossibility of tuning the modes by per-
manently altering the mass distribution of the resonanttiire is attractive because it eliminates
the need for electrostatic tuning electronics.

Though no analytical results exist regarding the effecta$s perturbations to the SIDRG’s
specific structure, results have been documented for asinmg, which has similar modal char-
acteristics. In an axisymmetric ring, planar modes with $hene nodal configuration occur in
degenerate pairs which have the same modal frequenciesaaadrideterminate angular orienta-
tions around the axis of symmetry. We will focus on the n=2i@®-coupled modes, which have
the elliptical shape illustrated on the left-hand side af.F, because they are the modes most
commonly exploited in axisymmetric vibratory gyroscopestudies of rings with small mass and
stiffness asymmetries show that the rings have approxlyntite same elliptical mode shape for
the n=2 Coriolis-coupled modes, but that the modes are @nstl to two fixed orientations, 45
degrees apart, and at two nearly degenerate modal freqsefmiddle of Fig. 2) [8, 9]. Other
researchers have derived expressions concerning theéseffemass perturbations on the modal
frequencies and the positions of the modal axes and haviiedecharacteristics of these expres-
sions on physical systems [7, 8]. The equations were thahtoserive a simple process in which
frequency tuning was achieved by adding a point mass to tragitm of the anti-node of the high
frequency mode or by removing a point mass from the locatioh® anti-node of the low fre-
guency mode (right side of Fig. 2) [9]. This process was \ediftn a MEM device when laser
ablation was employed to remove mass and predictably akdreéquency split [10, 11]. Unfortu-
nately, this process is not easily extended to a “produtgamironment because the determination
of the location of the anti-nodes requires significant éfféhe objective of this paper is to develop

a tuning algorithm that will use data retrieved from the edd®=l electrodes as its solitary guide

2Much of the analysis, however, applies to higher-order @isricoupled modes as well.
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in tuning the modal frequencies.

In order to facilitate the development of the algorithm, egéascale approximate model of
the SIDRG, named the Macro DRG, was fabricated for this s{&aty. 3). Although the Macro
DRG resonator is not an exact scale replica of the SIDRG egeqgrthe two share many salient
features such as the number of concentric rings and thetatien of the “spokes” connecting
them. Our tuning approach is facilitated by a novel modetiifieation method which is applied to
multi-input/multi-output empirical frequency responsgalgenerated with the Macro DRG. Small
magnets are used to effect perturbations to the resonates aral are modeled as perturbations
to the mass matrix identified in the model. The prospect ofexoing a tuned state by placing
magnets at only one angular location on the resonator iyzelwhich motivates the discussion
of a more elegant frequency tuning approach. This approseh only the fixed electromagnetic
actuators and fixed capacitive sensors as its guide, stiglhessrcumventing the need to directly
identify the location of the anti-node of the higher freqaem=2 mode. In the last section, this

approach is successfully demonstrated under severatehffenitial resonator conditions.

2 Macro DRG Experimental Setup

The Macro DRG resonator is machined from cold-rolled steell laas an outer diameter of 11.6
cm (Fig. 3). The resonator thickness is 4.7 mm and each ointteen rings is 0.9 mm wide with
1.1 mm gaps between rings. Each ring is connected to its inateedeighbors at eight “spokes,”
with 45 degrees spacing. The eight spokes connecting aaiitg buter neighbor, however, are
rotated by 22.5 degrees from the eight spokes connectingrtgeo its inner neighbor. Thus,
the positions of the eight spokes alternate radially betwsssitions 22.5 degrees from each other
giving sixteen angular spoke locations, as shown. Smalld®dfagnets, disc shape with a 1.6
mm diameter and 0.8 mm thickness, can be attached to the tizzswf the resonator to create

reversible mass perturbations.
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Figure 1: Left: Photograph of the resonant structure of the Boeing Silicak Resonator Gy-
roscope (SIDRG). The n=2 Coriolis-coupled mode of the ragmnis generally utilized for rate
detection. Right: The SiDRG frequency response using embedded drive and sé&eweodes
within a narrow, 100 Hz band encompassing the “fundame@afiolis modes. Though the fre-
guency splitis small in a relative sense—less than 0.3%-s¢hsor effectively has no mechanical

gain in this state.
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Figure 2: Left: lllustration of an n=2 Coriolis-coupled mode in a perfedclyisymmetric ring.
This mode appears in a degenerate pair, meaning it can oc¢tuamy angular position relative

to the axis of symmetryMiddle: When slight mass asymmetries exist, the modes manifest them
selves in two fixed angular orientations, 45 degrees aphdasd modes have two slightly different
frequencies and cause the detuning seen in FigRight: When the correct amount of mass is
added to the anti-node of the high frequency mode (the ‘tdayguning’ on the asymmetric de-
tuned ring), a “tuned” state can be reached. Even though #ss @histribution is asymmetric, the

important properties of the ideal ring are recovered.
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Actuation and sensing of the resonator are achieved usangremagnetic actuatorand ca-
pacitive sensing pick-offs, each shown in Fig. 3. Each sdecagnet is a modified relay, using
variable current through its solenoid to exert a radialéaro the resonator. Each sensing pick-off
consists of a brass disk (5 mm diameter) placed paralleld@thside edge of the outermost ring
of the resonator. The resonator is biased at 50 Volts antheagsonator vibrates, the capacitance
between the resonator and the brass disk changes. Chaige disk flows to the virtual ground of
the transimpedance amplifier that is configured with aQ Msistor, thereby providing a gain of
10° V/A. The transimpedance electronics are enclosed in a stedllto provide partial shielding
from the electromagnetic actuators.

The experimental apparatus is shown in Fig. 3. Two electgomess are placed 45 degrees apart
so that they present “orthogonal” excitations with respet¢he n=2 Coriolis-coupled modes. The
two pick-offs are placed 135 degrees apart in an equaljhtgonal” arrangement.

The block diagram for open loop system identification is smawFig. 4. A digital signal
processor (DSP) generates band-limited test signals iddbieed frequency range. Since the elec-
tromagnetic actuator exerts an attractive force for bositpe and negative voltages, the desired
AC waveform, with a 500 mV maximum amplitude, is biased by 83/0T'he sense signals are then
further amplified «400), filtered with low-pass eight-pole Butterworth filtgrsssessing 10 kHz
cut-off frequencies, and then sampled by the DSP. The digvats are subjected to the same filter
and resampling to account for the filter phase shifts and-aeter hold effects.

The displacement-to-voltage gain on the capacitive pitkis extremely sensitive to the width
of the air gap between the sensors and the resonator. W&timtimind, the actuators and sensors
are placed on linear translational stages for precise gafpato The gap calibration setup for the
pick-offs, shown as the dotted lines in Fig. 4, involvesisgtthe electromagnet inputs to 0 Volts

and the replacing the 50 Volt bias to the resonator with a Ha &ine wave from a signal generator.

3The Macro DRG uses electromagnetic actuation instead ofreltatic actuation because electrostatic forces are
too weak for effective actuation at the Macro DRG scale. lamnhore, the gaps required for electrostatic actuation
are so small that viscous effects dominate the dynamicseodithin the gaps causing significant nonlinear damping,

an effect called squeeze-film damping [13].
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Figure 3:Left: Photograph of the Macro DRG. The two electromagnetic actaare labele®,
andD», and the two capacitive pick-offs, that detect radial deibecof the resonator, are labeled
S andS,. Small NdFeB magnets are added to create a reversible Ipatinms of the mass dis-
tribution of the resonatorTop Right: Diagram of the electromagnetic actuat&ottom Right:
Diagram of the capacitive sense pick-off. This design waslie minimize electromagnetic cou-

pling to the transimpedance amplifier.

The responses from the pick-offs are compared to each otiteth@ gaps between the pick-offs
and the resonator are adjusted until the responses exietsaime amplitude. This process ensures
that the pick-offs will have the same gain at frequencies tlease of the fundamental Coriolis-
coupled modes. The electromagnets are much harder toatalifiut the same level of precision
is not required due to the nature of the force created by thgneta flux. The gap is set to 1 mm,
which is large enough to have a minimal detrimental effectrenquality factor of the resonator
while still achieving an adequately large excitation force

A single channel of Macro DRG frequency response data is shiowig. 5. The fundamental
Coriolis modes are near 1.6 kHz and appear as one resondnaptas scale. The zoomed fre-
guency responses, shown at the right, display the individagolis-coupled modes with approx-
imately a 1.6 Hz (0.1%) frequency split. This two-input/teotput empirical frequency response

format will be used as the principal guide to the model fitéamgl tuning algorithms.
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Figure 4: Block diagram of test setup. The filtered drive agrisg signals are denotBgands,
i=1,2, respectively. Frequency response data is used to cohatiwo-input/two-output model of
the Macro DRG dynamics. The dotted path represents an aliesrsetup that is used to calibrate

gaps between the pick-offs and the resonator.
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Figure 5: Left: The S;/D1 channel of the empirical wideband frequency response oMhero
DRG showing several resonator modes. At this scale thereaappo be no split between the n=2
modes (near 1.6 kHzRight: The narrowband dynamics of all four channels in a neighbmiho
of the fundamental Coriolis-coupled modes. The data pargsepresented by*while the trace
through the points is a model that was fit using the processithesl later in this paper. Just as in
the SIDRG response, the Coriolis-coupled modes of the MB&G have a small frequency split

despite the fact that the steel resonator is highly symmetri
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3 Sensor Model

3.1 Model Development

The system identification method for guiding the mass pldiion process is based on the one
developed by the authors for electrostatic tuning of th@glynamics [6] . For mass tuning, the
linear mechanics of nearly degenerate vibratory gyros irighiborhood of the Coriolis-coupled
modes can be modeled as

Hout (S) RZ;C}(k) (s), 1)

wheresis the Laplace transform variable and where
Zaat(k) () == (Mo+ L) $*+Cs+K. 2)

In this modelC andK are real Z< 2 positive definite damping and stiffness matridds s the real
2 x 2 positive definite nominal mass matrix, afdgis the perturbation tdlp due to the particular
arrangement of added magnets in kkte perturbation case. The angular rotation rate of the senso
is assumed to be zero in this model. The subscripZgndenotes that the system matrices are
written in the generalized coordinates specified by theatotuforcer) frame. The transfer func-
tion Hou represents any dynamics associated with the signal conititj electronics ang € R?*?
captures the effects of non-colocated pick-offs and far.cer

The model parametefsvVio, Ay, Ay, ..., An,,C, K, HotR} are estimated by fitting frequency re-
sponse data fromp + 1 experiments conducted with different mass perturbatemarios to (1).
In other words, th&th experiment yields two-input/two-output complex valdiedjuency response

data{yi 1, Yk 2,---, Pm } corresponding to they real frequenciegwy 1, w2, . .., Wcm, }-

The minimax optimization problem for estimating the sensmameters is

oo 0%, 7 (R dhaZeaip16ka), ?

K>0,C>0,Mp>l  g=1,...,m
ReC?*21=01,...,nr

where

>
py)

Reg:= S Rakg, (4)

=0

DS-08-1304 M’'Closkey 10



and where evaluating, at theqth frequency point associated with tki experiment yields

Zact(k) (10kg) = — (Mo+ ) @ g+ K + jCaug. (5)

The constrainMg > | in (3) is imposed rather than the typidd} > 0 because in the latter case all
of the free parameters may be scaled by a nonzero constasmtsoeke the cost arbitrarily small
without actually changing the model frequency responsso Abte thaHy R has been replaced by
R. This recognizes the fact that any additional dynamics duéot example, signal conditioning
preamplifiers, should not exhibit significant magnitude ghdse changes in a neighborhood of
the resonant modes. If these dynamics can be reflected teettsmrsoutput then they can be
combined withR into a low order polynomial function of frequency with coeféints inC%<?, i.e.
Ris degreenr. In fact, R can be viewed as the combination of the first few terms of théofa
series expansion of the frequency response functidi,@fincluding the non-collocation effects.
Finally, o denotes the largest singular value. Thus (3) is a multitimpuiti-output extension of
the first iteration of the Sanathanan-Koerner frequencyalommodel fitting algorithm [14]. Note

that (3) can be restated as following eigenvalue problem

min: y

subjectto: J>0,9=1,...,mk=0,...,np | )
Mo> 1, (Mp+4x) >0,C>0,K>0
No=0,R €C?? | =0,...,nr

where

yl (Ry— Uk qZact( i)

FN‘)q - wk,qzact(k)(j(*h) i
This problem can efficiently be solved using a number of consrally available packages.

3.2 \Verification of the Model

Asin Fig. 5, experimental data are generated by driving eatirator with a chirp sequence whose

5 Hz bandwidth encompasses the fundamental Coriolis motl#s®edviacro DRG. The input-

DS-08-1304 M’Closkey 11



output sequences are processed to yield2empirical frequency response data on a grid of
frequencies with 0.1 Hz resolution giving fifty-one frequgmesponse points in each plot. The
model (2) is applied to two mass perturbation cases in additb the nominal case in which
no mass perturbation is present. The first mass perturbesiea places four magnets on outer
ring of the Macro DRG, as shown in the left-hand illustratminFig. 6, and is represented by
the A1 mass matrix perturbation. The four-fold symmetry of the metlape guarantees that this
perturbation will have the same effect as adding the foursegs$o only one of these four po-
sitions. The second mass perturbation case places fouratsgagn the outer ring of the DRG,
as shown in the right-hand illustration of Fig. 6, and is esented by thé, perturbation. The
empirical frequency responses for these perturbed caeeg alith the case in which no mag-
nets are added are shown in Figs. 7 and 8. Since the sensovgsiaput/two-output plant, the
four magnitude plots are shown in Fig. 7 and the four phasts e shown in Fig. 8 (the indi-
vidual channels are denot&il/D;, /D1, etc.). It is clear that the mass perturbations cause a
shift in the modal frequencies and alter the split betweesélrequencies. The model parameter
set{Mp,A1,02,C,K, Ry, Ry} is determined from (6). The model frequency responses aengi
by (Ro+ jwRy) (— (Mo +Ax) w? +K + ij)_l, k =0,1,2, and are plotted as the solid traces in
Figs. 7 and 8. Note, the order B ng, is set to 2 for this and future models. The model fit is
almost indistinguishable from the empirical data—thedatgleviation is only 5%.

Since we are interested in using this model to guide the ndBB@n/removal process with the
objective of driving the two modal frequencies togetharpitedictive power is of great importance
and is tested in two ways. In the first test, two magnets aredtiwleach of the four points on the
resonator corresponding to the positions shown in thehiafid illustration in Fig. 6 (total of eight
magnets). This perturbation doubles the magnitude of thesmparturbation corresponding4g
so we compare the empirical data with the frequency respaoirtbe model

(Ro+ jwRy) (—(Mo+281)w? +K + jaC) .

The comparison is made in Fig. 9. The model predicts the ecapiirequency response data

extremely well.

DS-08-1304 M’'Closkey 12



Figure 6:Left: Orientation ofA; perturbationRight: Orientation ofA, perturbation. Masses are
added at four points in each case to achieve the most eveiblgossgss loading. These are the

perturbations corresponding ta” and '¢>’ in Figs. 7 and 8.

The second test case involves placing a single magnet ataédhl eight points on the res-
onator corresponding to the locations shown in both ilatgins in Fig. 6. This perturbation should
correspond to modifying the nominal mass matrix by the sudya@ndA,. Thus we compare the

frequency response data against the model

(Ro+ JwRy) (—(Mo+ A1 +Ag)e? + K + jwC) .

Again, the set of plots in Fig. 10 shows very good agreemetwdsn the model prediction and
the empirical frequency response data. This verifies thdigtree power of the model fitting
technique and the assumption that the addition of the magret be modeled purely as a mass

matrix perturbation.

4  Tuning the Modal Frequencies

4.1 Frequency Tuning by Perturbing One Unique Circumferenial Location

Now that the experimental setup and modeling techniqueglargified, we begin to develop po-
tential processes for driving the modal frequencies of thecild DRG together and reaching a

‘tuned’ state. It is clear from Fig. 7 that the angular loocatof a mass perturbation affects the

DS-08-1304 M’'Closkey 13
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Figure 7: The two-input/two-output empirical and modebfnency response magnitudes used to
test the model fitting algorithm. The empirical data for testtwith no perturbation is represented
by ‘o’ and the data resulting from th&; andA, perturbations (shown in Fig. 6) are represented
by ‘7" and ‘¢’ respectively. The model fits given dfRy + jwRy ) (— (Mo +Ay) w? + K + jwC) 2

of the three data sets are the solid traces. Thus, the chartbe frequency response due to the

addition of magnets is successfully modeled as a changdydlmmass matrix.
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resulting frequency split. For a simple ring, frequencyingncan be achieved by adding mass to
only one location—the anti-node of the high frequency mdsdg.(2) [9]. In many ways this is the
simplest solution to the general frequency tuning problechia this section we test this method-
ology as applied to the Macro DRG using several differeinégques. The lessons learned from
this exercise motivate the development of a tuning prodeastsi$ better suited for axisymmetric
vibratory gyroscopes. Our first step is the direct measun¢mmiethe mode shape of the detuned

Macro DRG.

4.1.1 Measuring the mode shape

In this experiment, the radial motion of the outer ring is swead by a laser vibrometer. One of
the electromagnets is used to excite the Macro DRG at the Infred@ency corresponding to the
higher of the two n=2 Coriolis-coupled mode frequenciese ptevious testing setup is placed on a
rotational stage while the laser viborometer is in a fixed pasi(Fig. 11). Vibration measurements
were taken every 2 degrees on a 90 degree arc. The resultoigshape is shown as the right-hand
plot of Fig. 11, with the peak displacement occurring at 7grdes. It is important to note that the
mode shape follows a sine wave fairly well, but not perfeatigking it difficult to utilize a sine
wave model to predict the location of the anti-node of théntirgquency mode. This experiment
essentially replicates the procedure for identifying a snasing location suggested for simple
rings and provides some interesting information, but dag¢satisfy the stated goal of using only

the fixed electromagnetic drivers and capacitive sensagaitte the tuning.

4.1.2 Testing frequency tuning near the anti-node

The first tuning attempt places multiple magnets at 76 degreen theD, axes and subsequently

measures the resulting frequency responses. The resagagoehcies from these responses are
calculated by taking the square roots k andAy, g, the larger and smaller generalized eigen-
values, respectively, of the identified mass and stiffnessioes. The split between these frequen-

cies is plotted in the right-hand graph of Fig. 12. As the festeral magnets are added, the split
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Figure 11: Left: lllustration of the testing setup used to determine thealadieflection of the
outermost ring of the Macro DRG resonator. The driving eteuiagnet and the resonator are
fixed on the rotational stage so that the deflection can beursdat 2 degree incrementight:
Plot of the radial deflection as a function of angular positidbhe dots represent the experimental
data, while the dotted line is a sine wave fit. The large denatfrom the sine wave are most
likely caused by the additional stiffness provided by thekgs. One proposed tuning method
involves adding mass directly to the resonator at the lonatbrresponding to the anti-node of
the experimental data. This is the method that has been ndkd past to tune other ring shaped

devices.
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decreases. Before an adequately small split is reachedgeowfurther addition of magnets in-
creases the split. This practice was repeated at 72, 74,0/8Gadegrees from the; axes and the
data are plotted on the left-hand side of Fig. 12. Though tbts @re faceted due to the discrete
amount of mass added with each magnet, it still appears figmlE that the best tuning location
is approximately 77 degrees from tDg axes. It should be noted, however, that misplacing mag-
nets by only 3 degrees increases the minimum achieved spiit &bout 0.15 Hz to 0.4 Hz. This
behavior closely follows the mass perturbation model @éetin [9] for a simple ring and is simple
to explain. To wit, when mass is placed directly at the antienof the high frequency mode, the
frequency split is reduced, and the anti-node remains irséinee location until the split is elimi-
nated. If more mass is added after the split reaches zertpdhke where mass is added becomes
the new low frequency anti-node and the split begins to emxeef the initial magnet is misplaced,
however, the high frequency anti-node shifts away from tieale of the added magnet. Though
at first the split decreases, the split begins to increasewWieadded magnet is closer to the low
frequency anti-node than it is to the high frequency antienoThus, as the error in the location
choice increases, the frequency split increases with fagded magnets, thereby increasing the
minimum achievable split when attempting to tune by addirg$to one unique angular location.
The solid trace on the right-hand side of Fig. 12 is an attampimulate the minimum achiev-
able split if mass could be added continuously when tuningétfiees from th®; axes. TheA
associated with the first four magnets added was found usimggel fit to the empirical frequency
response data of the case with no magnets added and the ¢hsewimagnets added at 76 de-
grees. Next, the split was predicted using the frequen@eseatl fromXMw%A?K andAMOJF%A’K,
wherea is the number magnets added. The plot demonstrates thatithe fiiting process proves
helpful in determining the minimal split associated withaatgular mass perturbation. This real-

ization inspires the proposed tuning method describedaridtiowing subsection.
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Figure 12:Left: The five traces represent five experimental attempts to tumétacro DRG by
placing magnets at only one angular location, using looataf 72, 74, 76, 78 and 80 degrees.
Data was taken when 0, 4, 6, 7, 8, 9 and 10 magnets were addeddbrcase. The frequency
splits are determined from the models that are fit to the iddal experimentally determined
frequency responses. In each case the split is at first rddugeat some point further addition
of mass increases the split. It appears that the smallastspild be achieved near a location
of 77 degrees. It is interesting to note that if the placenmets little as 3 degrees away from
this location, the minimum split increases to nearly 0.4 Rmght: The data taken when tuning
is attempted at 76 degrees is replicated @srt this plot. The solid line fit is done by fitting
the empirical data from the first two points to a $&ty, A,C, K, Ry, R1 } and usingTMﬁ%AK and
AMOJF%A’K to determine the split for any number of magnets (wheres the number of masses
added). This is a good test of the predictive relevance offitbdel, but also shows how much the

minimum achievable split is increased by using a quantinedusnt of mass.
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4.1.3 A as a function of angular position on the outer ring

The functionA(6) is defined as the relationship betwenthe mass matrix perturbation as-
sociated with one magnet placed upon the outermost ring,fartle angular position of that
additional magnet. Once the functidn(6) is known, an angleé, and an “intensity’a, rep-
resenting the number of magnets, can be found suchXtM%taz(é%K = AM0+O{E(§)7K, imply-
ing that the frequency split is eliminated. An experimenpéformed to findA () for values
of 6 in one 90 degree aft.Eight separate perturbations were conducted with magpeises

in 11.25 degree steps (a total of nine MIMO frequency respalata sets) and then the model
parameter sefMo, A, ...,As,C,K, Ry, R1 } was identified. Plots of the upper diagonal, lower di-
agonal and off diagonal terms of eaf, k= 1,2,...,8, are shown in Fig. 13. Linear inter-
polation can be used to approxim#tdor any 0. When6 = 75.4 degrees and = 8.4 magnets,
XMoJraZ(é),K = AMOHJE(Q)K so the modes are tuned according to the model. Accordingitd Ej
though, the minimal split would be abou®z if tuning were attempted at only this location. Un-
fortunately, it is not practical to use the experimentahtiehship of Fig. 13 on a different Macro
DRG. Any small difference in the drive and sense gap dissocen the internal stiffness and
damping changea (6) significantly enough to reduce its predictive value. Thosyge this ap-
proach, this entire experiment would have to be repeategheny new device, requiring excessive,

and likely unnecessary, perturbations.

4.1.4 The eigenvectors oM and K

The next method we analyze uses the generalized eigenessociated WithM,K to identify the
location of the high-frequency anti-node. The physicaiptetation of the generalized eigenvector
relies on the coordinate system of the equations of moti@taBse the equations of motion are

written in the actuators’ reference frame (refer to (1), tétio of the two elements of a generalized

41t can be shown that adding the same mass at 90, or 180, dewgkss aelative to the current position produces
the same mass matrix perturbation for the modes of intefésts, the experimental results for the first 90 degree arc

can be extrapolated to represent perturbations to any anigghtion on the structure.
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Figure 13:Left: Mass matrix perturbatior, as a function of the counter-clockwise angle from
the D1 axes, 8, found by fitting the model to nine empirical frequency rasg® data sets. The
upper diagonal term is denoted b§’; the lower diagonal byd’, and the off diagonal term by
‘0. Right: lllustration of the eight placements of the magnet in théste¥/hen the experiment
is repeated with different gap widths for the actuators agkers, and different initial magnet
distributions, the functional relationship varied onlygbkly. The absolute magnitudes are not
important because the model parameter set is scaled Byighel constraint in (6). The relative
magnitudes, however, are at the very least interesting. sohd black magnet in the right hand
picture illustrates the perturbation that correspond$é&data points that are solid black in the

left-hand figure.

DS-08-1304 M’'Closkey 23



eigenvector is a measurement of the ratio of the amplitutidg®wadial velocity of the Macro DRG
at the two actuator locations when the DRG is excited at thersector’s corresponding eigen-
frequency. In order to use this information to estimate tloelexshape, the amplitude of the radial
motion, u, is approximated by = Acos(2(6 — ®)) whereA is the maximum amplitude of the
displacement an@ is the angular location as measured from Byeaxes (Fig. 14). This is an
approximation of the true shape given in Fig. 11. The amgétaf motion at the first and second
actuators would bAcos(2d) andAsin(2®) respectively. Thu®, the angular location of anti-node
of the high frequency mode, can be approximated by

® = ltan? (ﬂ) , @)

Vo

wherevs andv; are the first and second elements, respectively, of the wgeor associated with
XMK. In the case of the unperturbed Macro DRG we ffhd= 75 degrees. This method is
particularly attractive because it does not require anggrgentation besides the initial frequency
response test to approximate the location of the anti-ndtieppears to be slightly less accurate
than the estimate found by directly usidgand would result in a minimal split of approximately
0.3 Hz if tuning were attempted at only this predicted lomati

This method can be improved if one abandons the notion ofusity one angular location for
tuning. In this improvement, after each magnet is added armehaempirical frequency response
is performed, a new model parameter set is found with a netnaie location. This new location
is the target for the next added magnet. Essentially, trexefif the estimate error is negated by
“chasing” the location of the high frequency anti-node adthe resonator. This method proves
successful, guaranteeing a final frequency split of less@hHz, but lacks elegance and would be
difficult to practice on the SIDRG. A more elegant method ssgnted in the next section in which

the anti-node is essentially “trapped” between two spokewluich tuning masses are added.
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Figure 14: lllustration of the assumed mode shape of theusiggu = Acos(2(6 — ®)), whered
indicates the location of the anti-nodes of the mode shapku & the radial displacement of the
mode shape as a function of the angleNe will use this notation to approximate the mode shape

of the n=2 Coriolis-coupled mode of the Macro DRG.
4.2 Frequency Tuning Using Mass Perturbation at the Spokes

When the tuning problem is generalized to allow two tuningatoons the solution is much more
robust to errors in magnet placement. By choosing massrigddcations on either side of the
anti-node of the high frequency mode, the anti-nodal oaigon is, in a sense, trapped. For a
MEM structure such as the SiDRG, it is easiest to add masg &pbkes of the resonator (visible
in Fig. 3 as the structures that join adjacent rings and foradal pattern) that are closest to the

anti-node. In this scenario the perturbed mass matrix isrgiy
M(a1,a2) = Mo+ a11 + a8y, (8)

whereA; andA; correspond to the mass matrix perturbations associatédiataddition of mass
to the two tuning spokes. The number of magnets added to ihspakes for tuningg; andasy,
can be calculated by solving the generalized eigenvaluggmo

min: Al— Ao

subjectto: Aj >0,i=12
~ (9)
AM(ag,a2) —K >0
AoM(ag,a2) —K <0
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This optimization simultaneously forcdg andA, to become the largest and smallest generalized
eigenvalues oM andK and variesa; and a, to minimize A1 — A2, If the spokes are chosen
correctly, the final cost will be zero and the resultiag and a» will create degenerate modal
frequencies. Again this optimization can be efficientlyveol with a number of commercially
available packages.

The entire tuning process can be outlined in a three stepitilgo First, we start with the
data for the unperturbed Macro DRG (representedobyn’ Fig. 16). In the first step, a model is
fit to this data set and is approximated as 79 degrees using (7). The approximatiphas that
anti-node of the high frequency mode falls between the tvokeplabeled 4 and 1 in the left-hand
illustration in Fig. 15. Thus these spokes are chosen asatigets for tuning. The second step
acts as a calibration step for the mass matrix perturbatigradA,. Two magnets are added to
spoke 4 to represent tidg perturbation and an empirical frequency response is medstihen,
two magnets are added to spoke 1 and a third frequency responseasured. Using the three
frequency response sets, the model paramétdgsAg, Ap,C, K, Ry, Ry} are identified. Figure 16
shows the three empirical frequency response sets measuniad the first two steps. As expected,
with each added magnet the resonant frequencies and thaiveesplit are reduced. In the third
step the number of magnets that need to be added to each spaked a,, are calculated from
(9).

This optimization is solved witlr; = 7.2 anda, = 3.2, rendering the system witi as in (8)
degenerate. We can only add quantized amounts of mass entimg¢js, so 3 masses are added to
spoke 1, and 7 to spoke 4, as shown in the right-hand illistraf Fig. 15. The final empirical
frequency response is acquired and is shown in Fig. 17. Meatehe response in the off diagonal
channels are significantly reduced, which is a positivecation of a nearly degenerate resonator.
After model identification is performed on this last data et split is found to be only 0.08 Hz,
and for all practical purposes the sensor is tuned.

The algorithm was then applied to an array of initial massrithistions. For these tests, a

larger magnet (diameter 3.2mm) is placed on the outsidac@idf the outermost ring at positions
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Figure 15:Left: lllustration of the identified spokes for mass loading fax #xample in the text.
The gray axes represent the approximated anti-nodal axgeeafnperturbed Macro DRG. The
small white circles represent where the two magnets may dxeeglto calibrate the spoke 1, and
the two black circles represent where two more may be addedliforate spoke 4Right: The
final orientation of the magnets that successfully tunedthero DRG so that the anti-nodal axes
are “trapped” between the tuning spokes. The calibratiorise previous steps are used to choose

this orientation.
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Figure 16: Frequency responses from steps 1 and 2 of thathlgowith their corresponding fit.

‘o’ represents the empirical response from the unperturbsel €& represents the response when
magnets are added only to spoke 4, afdrepresents when magnets are added to spoke 4 and
spoke 1. The solid traces represent the frequency respohfias model that was fit to the three
data sets. The model associated with this fit is used to detertine number of magnets that are
needed on each spoke to achieve a tuned state. The frequesponse after the tuning magnets

are added can be seenin Fig. 17.
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Figure 17: The empirical frequency response of the ungeetiresonator is again represented by
‘o’, and exhibits a split of 52 Hz. Using the model of the data in Fig. 16, weightings of 3.2
magnets on spoke 1 and 7.2 magnets on spoke 4 are predicted totgned state[T represents
the empirical frequency response when 3 magnets are on 4pakd 7 magnets are on spoke 4.
The solid line corresponding to this data is the predictspaoase using the model. The final split

is 0.08 Hz.
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{0,15,...,75} degrees from thB; axes for the initial arrangement. The results are shownliteTa
1. The spoke % referred to in the table correspond to those in Fig. 15. Theber of magnets
placed on each spoke after the first three steps, includoggthsed for calibration, are shown in
fifth and sixth columA while the seventh column displays the resulting frequeptiy after these
magnets are added. In each case the split is significanthceedat this point, but in some cases
an additional magnet on one spoke could further reduce thte fgeally the correct amount of
mass could be placed at the new location of the anti-nodedfitih frequency node to completely
eliminate the split. We are, however, constrained to plasenof mass only at the spokes, and
can only add quantized amounts of mass. Thus, as a final finggtatep, we add one additional
magnet to the spoke closest to the new anti-node of the hegjuémcy node if the split is larger
than some threshold. The threshold is a function the amogimgle magnet reduces the split,
which, in the case of the Macro DRG, is at mos2@Hz. Utilizing what was learned from the
experiment described in Fig 12, a magnet that is added wheegglit is smaller than.Q0 Hz is
guaranteed to increase the split. Thus0Hz is chosen as this threshold.

The last two columns of Table 1 display the spoke on which titétnal magnet is placed as
well as the final frequency split. In all but one case the firedfiency split is below the threshdid.
The largest tuning mass perturbation was seventeen maignaits This altered the mass of the

Macro DRG resonator by 0.07% tuning a 0.14% frequency split.

SUnlike the example in the previous paragraph, only one miggnesed to calibrate each spoke for each case. This
reduces the possibility of placing more magnets than nacgss a spoke. In the case displayed on the fifth row,
however, the approximated position of the anti-node of tige frequency mode was close enough to spoke 1 that
the optimization code called for nine magnets on spoke 1 angl @n spoke 2 total. Since one magnet had already
been placed on spoke 2, an additional magnet was placed &a gpwhich canceled out the effect of the calibration
while still treating the perturbations as ‘irreversibl&hus the distribution of magnets after the first three stepgne

magnets on spoke 1, one on spoke 2 and one on spoke 4.
8n this one case the position of the anti-node of the highifeagy mode after the first three steps was far enough

away from the fine tuning spoke that the additional magnenhdideduce the split. A more complex threshold could

easily derived for cases like this, but have been ignored fogrsimplicity.
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Large Magnet Initial First Second | Perturbation for | Perturbation for | Frequency |Final Tuning Final
Placement Frequency | Spoke Spoke first spoke second spoke Split Spoke Frequency
(degrees) split(Hz) |(spoke #)| (spoke#)| (#of magnets) (#of magnets) (Hz) (spoke #) Split (Hz)

none 1.52 4 1 7 3 0.08 na 0.08

0 1.64 2 1 6 5 0.12 2 0.08

15 0.81 1 2 4 2 0.10 4 0.08

30 1.26 1 4 6 1 0.10 1 0.1

45 1.78 1 2 9 0 0.12 4 0.12

60 2.24 1 2 11 5 0.13 4 0.08

75 2.17 1 2 8 8 0.03 na 0.03

Table 1: Tuning results using the spokes algorithm withousiinitial mass distributions.

5 Conclusions

A mass matrix perturbation approach for tuning two modesefgederacy in an axisymmetric res-
onator has been developed and experimentally verified orge &xale replica of a disk resonator
gyro. The approach essentially identifies the perturbattorthe nominal resonator mass matrix
created by the addition (or removal) of a quantized amoumasds at several judiciously chosen
locations on the resonator. The mass matrix perturbatiethan used to estimate the total mass
addition required at each location to render degeneratential frequencies of the two modes
of interest. In practice, however, it is only necessary thupe the frequency split to a prescribed
level. For vibratory gyroscopes, the modal frequency spliirectly related to the signal-to-noise
ratio (SNR) of the angular rate signal, with larger splitdueing the SNR. A rule of thumb for
these sensors is that the modal frequency split must beHasstlhe bandwidth of each mode in
order to maximize the SNR. In the present study the bandwidtleach mode are approximately
0.12 Hz so the stopping criteria of a 0.1 Hz split is justifi&thce the allowable frequency split is
reduced in proportion to the reduction in bandwidth of thedeg) requirements can be developed
for any proposed mass deposition/removal scheme. Theigedmniature of the mass perturba-
tion in the present study limits the change in frequencyt $plabout 0.2 Hz per mass quanta,
which is again compatible with the stopping criteria dediveom the resonator bandwidth. One

can anticipate significant engineering challenges in agied the fabrication machinery for mass
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addition/removal on resonators with high quality factors.

Another promising direction to which the paper’s model rititools can be applied is the
problem of isolating selected resonator modes from lineaelaration of the resonator “stem.”
This problem is motivated by vibratory gyroscope applmasi in which the modes that are ex-
ploited for angular rate detection are, ideally, not codptelinear acceleration of the sensor case.
Coupling is always present in physical devices and prodspasous angular rate measurements
when the sensor is subjected to vibration. It is desirabledoice the coupling to linear acceler-
ation and this can also be accomplished by the judicious vahwr addition of mass at certain

points on the resonator.
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List of Figure Captions

e Figure 1:Left: Photograph of the resonant structure of the Boeing Silicak Besonator
Gyroscope (SIDRG). The n=2 Coriolis-coupled mode of themasor is generally utilized
for rate detectionRight: The SIiDRG frequency response using embedded drive and sense
electrodes within a narrow, 100 Hz band encompassing theéafuental Coriolis modes.
Though the frequency split is small in a relative senseleas 0.3%the sensor effectively

has no mechanical gain in this state.

e Figure 2: Left: lllustration of an n=2 Coriolis-coupled mode in a perfedilyisymmetric
ring. This mode appears in a degenerate pair, meaning it@am with any angular position
relative to the axis of symmetry. Middle: When slight masgnasietries exist, the modes
manifest themselves in two fixed angular orientations, 4fyeks apart. These modes have
two slightly different frequencies and cause the detungendn Fig. 1.Right: When the
correct amount of mass is added to the anti-node of the hegjuéncy mode (the target for
tuning on the asymmetric detuned ring), a tuned state caedwhed. Even though the mass

distribution is asymmetric, the important properties & itheal ring are recovered.

e Figure 3:Left: Photograph of the Macro DRG. The two electromagnetic actaadre la-
beledD; andD», and the two capacitive pick-offs, that detect radial déifbecof the res-
onator, are labele; andS,. Small NdFeB magnets are added to create a reversible pertur
bations of the mass distribution of the resonaiop Right: Diagram of the electromagnetic
actuator.Bottom Right: Diagram of the capacitive sense pick-off. This design waslie

minimize electromagnetic coupling to the transimpedamapldier.

e Figure 4. Block diagram of test setup. The filtered drive agulsg signals are denot&gl
and§, i = 1,2, respectively. Frequency response data is usedistrtet a two-input/two-
outputmodel of the Macro DRG dynamics. The dotted path sspres an alternative setup

that is used to calibrate gaps between the pick-offs andeg@nator.
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e Figure 5: Left: The S;/D4 channel of the empirical wideband frequency response of the
Macro DRG showing several resonator modes. At this scale #ygpears to be no split be-
tween the n=2 modes (near 1.6 kHRjght: The narrowband dynamics of all four channels
in a neighborhood of the fundamental Coriolis-coupled nsodehe data points are repre-
sented by ¢ while the trace through the points is a model that was fit usigprocess
described later in this paper. Just as in the SIDRG resptimsé&;oriolis-coupled modes of
the Macro DRG have a small frequency split despite the fadtitie steel resonator is highly

symmetric.

e Figure 6: Left: Orientation ofA; perturbation. Right: Orientation ofA; perturbation.
Masses are added at four points in each case to achieve theveogossible mass loading.

These are the perturbations correspondingtcand '¢>’ in Figs. 7 and 8.

e Figure 7: The two-input/two-output empirical and modelgiuency response magnitudes
used to test the model fitting algorithm. The empirical datalie test with no perturbation
is represented by' and the data resulting from thlg andA; perturbations (shown in Fig. 6)
are represented by and ‘{)’ respectively. The model fits given fRo + jwRy) (—(Mo +
Oy )w? + K 4 jawC)~1 of the three data sets are the solid traces. Thus, the charthe i
frequency response due to the addition of magnets is sdatlgsaodeled as a change to

only the mass matrix.

e Figure 8: The two-input/two-output empirical and modelgiiency response phase plots

corresponding to the magnitude plots in Fig. 7.

e Figure 9: Empirical frequency response of Macro DRG withldeuhe mass perturbation
at theA; perturbation locations ¢°) compared to the frequency response predicted by the

model(Ry+ jwRy) (— (Mg + 2A1)w? + K + jwC) 2 (solid trace).

e Figure 10: Empirical frequency response of Macro DRG withrtiass perturbations in both

the A1 andA; perturbation locations ¢') compared to the frequency response predicted by
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the model Ry + jwRy) (— (Mg + A1 +Az)w? + K + jwC) 1 (solid trace).

e Figure 11:Left: lllustration of the testing setup used to determine thealatéflection of the
outermost ring of the Macro DRG resonator. The driving eteoagnet and the resonator are
fixed on the rotational stage so that the deflection can beuns@dsit 2 degree increments.
Right: Plot of the radial deflection as a function of angular positibhe dots represent the
experimental data, while the dotted line is a sine wave fie lBinge deviations from the sine
wave are most likely caused by the additional stiffnessigiexvby the spokes. One proposed
tuning method involves adding mass directly to the resarattthe location corresponding
to the anti-node of the experimental data. This is the methatlhas been used in the past

to tune other ring shaped devices.

e Figure 12: Left: The five traces represent five experimental attempts to tu@aeéMiacro
DRG by placing magnets at only one angular location, usirgtlons of 72, 74, 76, 78
and 80 degrees. Data was taken when 0, 4, 6, 7, 8, 9 and 10 rmaggret added for each
case. The frequency splits are determined from the modatsaite fit to the individual
experimentally determined frequency responses. In easghtba split is at first reduced but
at some point further addition of mass increases the splappears that the smallest split
would be achieved near a location of 77 degrees. Itis infeget note that if the placement
is as little as 3 degrees away from this location, the mininsfht increases to nearly 0.4
Hz. Right: The data taken when tuning is attempted at 76 degrees isaggdi asd’ in
this plot. The solid line fit is done by fitting the empiricaltddrom the first two points to
a set{Mo,A,C,K,Ryg,R; } and usingWMﬁ%A,K andAy, 2 k to determine the split for any
number of magnets (whem is the number of masses added). This is a good test of the
predictive relevance of the model, but also shows how muehrtimimum achievable split

is increased by using a quantized amount of mass.

e Figure 13:Left: Mass matrix perturbatior, as a function of the counter-clockwise angle

from theD; axes,0, found by fitting the model to nine empirical frequency rasg® data
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sets. The upper diagonal term is denoted ¥, the lower diagonal by¢’, and the off
diagonal term by[T'. Right: lllustration of the eight placements of the magnet in théstes
When the experiment is repeated with different gap width#fe actuators and sensors, and
different initial magnet distributions, the functionalatonship varied only slightly. The
absolute magnitudes are not important because the modminpter set is scaled by the
Mo > | constraint in (6). The relative magnitudes, however, atbawvery least interesting.
The solid black magnet in the right hand picture illustrakesperturbation that corresponds

to the data points that are solid black in the left-hand figure

e Figure 14: lllustration of the assumed mode shape of theusiggu = Acos(2(6 — ®)),
where @ indicates the location of the anti-nodes of the mode shape,uas the radial
displacement of the mode shape as a function of the ahgh/e will use this notation to

approximate the mode shape of the n=2 Coriolis-coupled nbttee Macro DRG.

e Figure 15:Left: lllustration of the identified spokes for mass loading fax &xample in the
text. The gray axes represent the approximated anti-no®sl af the unperturbed Macro
DRG. The small white circles represent where the two magneisbe placed to calibrate
the spoke 1, and the two black circles represent where twe mary be added to calibrate
spoke 4.Right: The final orientation of the magnets that successfully ttine$lacro DRG
so that the anti-nodal axes are “trapped” between the tuspoges. The calibrations in the

previous steps are used to choose this orientation.

e Figure 16: Frequency responses from steps 1 and 2 of thathlgowith their corresponding
fit. ‘o’ represents the empirical response from the unperturbse, ¢a' represents the re-
sponse when magnets are added only to spoke 4 {gndpresents when magnets are added
to spoke 4 and spoke 1. The solid traces represent the freguesponses of the model that
was fit to the three data sets. The model associated with thg dsed to determine the
number of magnets that are needed on each spoke to achiewechsiate. The frequency

response after the tuning magnets are added can be seen i7Fig
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e Figure 17: The empirical frequency response of the ungegtliresonator is again repre-
sented by ¢’, and exhibits a split of 52 Hz. Using the model of the data in Fig. 16,
weightings of 3.2 magnets on spoke 1 and 7.2 magnets on spafe predicted to give a
tuned state.[T’ represents the empirical frequency response when 3 magneton spoke
1 and 7 magnets are on spoke 4. The solid line corresponditigstalata is the predicted

response using the model. The final splitis 0.08 Hz.

List of Table Captions

e Table 1: Tuning results using the spokes algorithm withausiinitial mass distributions.
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