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Abstract

Electrostatic tuning of the resonant modes in microelectromechanical (MEM) vibratory

gyroscopes is often suggested as a means for compensating manufacturing aberrations that

produce detuned resonances. In high performance sensors, however, this approach places very

stringent requirements on the stability of the bias voltages used for tuning. Furthermore, the

bias voltage stability must be maintained over the operating environment, especially with re-

gard to temperature variations. An alternative solution tothis problem is to use mass per-

turbations of the sensor’s resonant structure for resonantmode tuning. This paper presents

a new mass perturbation technique that only relies on the sensor’s integrated actuators and

pick-offs to guide the mass perturbation process. The algorithm is amenable to automation
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and eliminates the requirement that the modal nodes of the resonator be identified by direct

measurement.

1 Introduction

High-performance vibratory angular rate sensors rely on the matching of the frequencies of two

modes that are highly coupled by a Coriolis acceleration term when the equations of motion are

written in a case-fixed coordinate system. Frequency matching exploits the mechanical gain af-

forded by the sensor dynamics and leads to the best attainable signal-to-noise ratio. In principle,

the degenerate dynamics can be attained by designing structures with a high degree of symmetry

such as Litton’s Hemispherical Resonator Gyroscope (HRG) [1] and the BAE Silicon Vibrating

Structure Gyroscope (SiVSG) [2]. Boeing’s Silicon Resonator Gyroscope (SiDRG), shown in

Fig. 1, motivates the study in this paper. The results of the paper, however, are relavent for other

axisymmetric, planar resonators.1

Ideally, the location where the resonant structure attaches to the sensor case is a nodal point for

the Coriolis-coupled modes and the symmetric design guarantees degenerate modal frequencies.

This scheme isolates the Coriolis-coupled modes from linear base motion and reduces energy dissi-

pation in the modes, thereby eliminating large contributors to angular rate bias and drift. The HRG

is an extreme example of the degree of isolation that can be achieved—quality factors exceeding

1×106 have been reported when the resonators are fabricated from fused quartz [1].

For those sensors lending themselves to MEM fabrication, such as the SiDRG, local variations

in etch rate produce minute, but unpredictable, asymmetries that manifest themselves as a splitting

of the modal frequencies (right side of Fig. 1). Although thefrequency splits are small, on the order

of 0.3% or less, the absolute separation between the modal frequencies coupled with their high

quality factors conspire to eliminate the mechanical gain advantage that was a primary objective

of the modal degeneracy.

1For more information on the operation of vibratory angular rate sensors, refer to [3].
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In past work, the resonant frequencies of the SiDRG were tuned by applying electrostatic forces

with dedicated electrodes, thereby locally altering the resonator stiffness [4–6]. The drawback of

this solution, however, is that the electrodes are requiredto maintain a voltage stability that is

difficult to achieve with compact, low-cost electronics. The possibility of tuning the modes by per-

manently altering the mass distribution of the resonant structure is attractive because it eliminates

the need for electrostatic tuning electronics.

Though no analytical results exist regarding the effects ofmass perturbations to the SiDRG’s

specific structure, results have been documented for a simple ring, which has similar modal char-

acteristics. In an axisymmetric ring, planar modes with thesame nodal configuration occur in

degenerate pairs which have the same modal frequencies and have indeterminate angular orienta-

tions around the axis of symmetry. We will focus on the n=2 Coriolis-coupled modes, which have

the elliptical shape illustrated on the left-hand side of Fig. 2, because they are the modes most

commonly exploited in axisymmetric vibratory gyroscopes.2 Studies of rings with small mass and

stiffness asymmetries show that the rings have approximately the same elliptical mode shape for

the n=2 Coriolis-coupled modes, but that the modes are constrained to two fixed orientations, 45

degrees apart, and at two nearly degenerate modal frequencies (middle of Fig. 2) [8, 9]. Other

researchers have derived expressions concerning the effects of mass perturbations on the modal

frequencies and the positions of the modal axes and have verified characteristics of these expres-

sions on physical systems [7, 8]. The equations were then used to derive a simple process in which

frequency tuning was achieved by adding a point mass to the location of the anti-node of the high

frequency mode or by removing a point mass from the location of the anti-node of the low fre-

quency mode (right side of Fig. 2) [9]. This process was verified on a MEM device when laser

ablation was employed to remove mass and predictably alter the frequency split [10, 11]. Unfortu-

nately, this process is not easily extended to a “production” environment because the determination

of the location of the anti-nodes requires significant effort. The objective of this paper is to develop

a tuning algorithm that will use data retrieved from the embedded electrodes as its solitary guide

2Much of the analysis, however, applies to higher-order Coriolis-coupled modes as well.
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in tuning the modal frequencies.

In order to facilitate the development of the algorithm, a large scale approximate model of

the SiDRG, named the Macro DRG, was fabricated for this study(Fig. 3). Although the Macro

DRG resonator is not an exact scale replica of the SiDRG resonator, the two share many salient

features such as the number of concentric rings and the orientation of the “spokes” connecting

them. Our tuning approach is facilitated by a novel model identification method which is applied to

multi-input/multi-output empirical frequency response data generated with the Macro DRG. Small

magnets are used to effect perturbations to the resonator mass and are modeled as perturbations

to the mass matrix identified in the model. The prospect of achieving a tuned state by placing

magnets at only one angular location on the resonator is analyzed which motivates the discussion

of a more elegant frequency tuning approach. This approach uses only the fixed electromagnetic

actuators and fixed capacitive sensors as its guide, successfully circumventing the need to directly

identify the location of the anti-node of the higher frequency n=2 mode. In the last section, this

approach is successfully demonstrated under several different initial resonator conditions.

2 Macro DRG Experimental Setup

The Macro DRG resonator is machined from cold-rolled steel and has an outer diameter of 11.6

cm (Fig. 3). The resonator thickness is 4.7 mm and each of its nineteen rings is 0.9 mm wide with

1.1 mm gaps between rings. Each ring is connected to its immediate neighbors at eight “spokes,”

with 45 degrees spacing. The eight spokes connecting a ring to its outer neighbor, however, are

rotated by 22.5 degrees from the eight spokes connecting thering to its inner neighbor. Thus,

the positions of the eight spokes alternate radially between positions 22.5 degrees from each other

giving sixteen angular spoke locations, as shown. Small NdFeB magnets, disc shape with a 1.6

mm diameter and 0.8 mm thickness, can be attached to the top surface of the resonator to create

reversible mass perturbations.

DS-08-1304 M’Closkey 4
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Figure 1: Left: Photograph of the resonant structure of the Boeing Silicon Disk Resonator Gy-

roscope (SiDRG). The n=2 Coriolis-coupled mode of the resonator is generally utilized for rate

detection. Right: The SiDRG frequency response using embedded drive and senseelectrodes

within a narrow, 100 Hz band encompassing the “fundamental”Coriolis modes. Though the fre-

quency split is small in a relative sense—less than 0.3%—thesensor effectively has no mechanical

gain in this state.

DS-08-1304 M’Closkey 5



45
o

45
o

arbitrary modal  axes fixed modal axes

mass asymmetry
"nominal" ring shape

low frequency mode high frequency mode arbitrary modal  axes

mass asymmetry

tuning mass

ideal symmetric tuned ring  asymmetric detuned ring  asymmetric tuned ring 

target for tuning

Figure 2: Left: Illustration of an n=2 Coriolis-coupled mode in a perfectlyaxisymmetric ring.

This mode appears in a degenerate pair, meaning it can occur with any angular position relative

to the axis of symmetry.Middle: When slight mass asymmetries exist, the modes manifest them-

selves in two fixed angular orientations, 45 degrees apart. These modes have two slightly different

frequencies and cause the detuning seen in Fig. 1.Right: When the correct amount of mass is

added to the anti-node of the high frequency mode (the ‘target for tuning’ on the asymmetric de-

tuned ring), a “tuned” state can be reached. Even though the mass distribution is asymmetric, the

important properties of the ideal ring are recovered.
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Actuation and sensing of the resonator are achieved using electromagnetic actuators3 and ca-

pacitive sensing pick-offs, each shown in Fig. 3. Each electromagnet is a modified relay, using

variable current through its solenoid to exert a radial force on the resonator. Each sensing pick-off

consists of a brass disk (5 mm diameter) placed parallel to the outside edge of the outermost ring

of the resonator. The resonator is biased at 50 Volts and, as the resonator vibrates, the capacitance

between the resonator and the brass disk changes. Charge on the disk flows to the virtual ground of

the transimpedance amplifier that is configured with a 1 MΩ resistor, thereby providing a gain of

106 V/A. The transimpedance electronics are enclosed in a steelshell to provide partial shielding

from the electromagnetic actuators.

The experimental apparatus is shown in Fig. 3. Two electromagnets are placed 45 degrees apart

so that they present “orthogonal” excitations with respectto the n=2 Coriolis-coupled modes. The

two pick-offs are placed 135 degrees apart in an equally “orthogonal” arrangement.

The block diagram for open loop system identification is shown in Fig. 4. A digital signal

processor (DSP) generates band-limited test signals in thedesired frequency range. Since the elec-

tromagnetic actuator exerts an attractive force for both positive and negative voltages, the desired

AC waveform, with a 500 mV maximum amplitude, is biased by 3 Volts. The sense signals are then

further amplified (×400), filtered with low-pass eight-pole Butterworth filterspossessing 10 kHz

cut-off frequencies, and then sampled by the DSP. The drive signals are subjected to the same filter

and resampling to account for the filter phase shifts and zero-order hold effects.

The displacement-to-voltage gain on the capacitive pick-offs is extremely sensitive to the width

of the air gap between the sensors and the resonator. With this in mind, the actuators and sensors

are placed on linear translational stages for precise gap control. The gap calibration setup for the

pick-offs, shown as the dotted lines in Fig. 4, involves setting the electromagnet inputs to 0 Volts

and the replacing the 50 Volt bias to the resonator with a 1.6 KHz sine wave from a signal generator.

3The Macro DRG uses electromagnetic actuation instead of electrostatic actuation because electrostatic forces are

too weak for effective actuation at the Macro DRG scale. Furthermore, the gaps required for electrostatic actuation

are so small that viscous effects dominate the dynamics of the air in the gaps causing significant nonlinear damping,

an effect called squeeze-film damping [13].
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Figure 3:Left: Photograph of the Macro DRG. The two electromagnetic actuators are labeledD1

andD2, and the two capacitive pick-offs, that detect radial deflection of the resonator, are labeled

S1 andS2. Small NdFeB magnets are added to create a reversible perturbations of the mass dis-

tribution of the resonator.Top Right: Diagram of the electromagnetic actuator.Bottom Right:

Diagram of the capacitive sense pick-off. This design was used to minimize electromagnetic cou-

pling to the transimpedance amplifier.

The responses from the pick-offs are compared to each other and the gaps between the pick-offs

and the resonator are adjusted until the responses exhibit the same amplitude. This process ensures

that the pick-offs will have the same gain at frequencies near those of the fundamental Coriolis-

coupled modes. The electromagnets are much harder to calibrate, but the same level of precision

is not required due to the nature of the force created by the magnetic flux. The gap is set to 1 mm,

which is large enough to have a minimal detrimental effect onthe quality factor of the resonator

while still achieving an adequately large excitation force.

A single channel of Macro DRG frequency response data is shown in Fig. 5. The fundamental

Coriolis modes are near 1.6 kHz and appear as one resonant peak at this scale. The zoomed fre-

quency responses, shown at the right, display the individual Coriolis-coupled modes with approx-

imately a 1.6 Hz (0.1%) frequency split. This two-input/two-output empirical frequency response

format will be used as the principal guide to the model fittingand tuning algorithms.
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Figure 4: Block diagram of test setup. The filtered drive and sense signals are denotedDi andSi,

i = 1,2, respectively. Frequency response data is used to construct a two-input/two-output model of

the Macro DRG dynamics. The dotted path represents an alternative setup that is used to calibrate

gaps between the pick-offs and the resonator.
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Figure 5: Left: TheS1/D1 channel of the empirical wideband frequency response of theMacro

DRG showing several resonator modes. At this scale there appears to be no split between the n=2

modes (near 1.6 kHz).Right: The narrowband dynamics of all four channels in a neighborhood

of the fundamental Coriolis-coupled modes. The data pointsare represented by ‘◦’ while the trace

through the points is a model that was fit using the process described later in this paper. Just as in

the SiDRG response, the Coriolis-coupled modes of the MacroDRG have a small frequency split

despite the fact that the steel resonator is highly symmetric.
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3 Sensor Model

3.1 Model Development

The system identification method for guiding the mass perturbation process is based on the one

developed by the authors for electrostatic tuning of the gyro dynamics [6] . For mass tuning, the

linear mechanics of nearly degenerate vibratory gyros in a neighborhood of the Coriolis-coupled

modes can be modeled as

Hout(s)RZ−1
act(k)(s), (1)

wheres is the Laplace transform variable and where

Zact(k)(s) := (M0+∆k)s2+Cs+K. (2)

In this model,C andK are real 2×2 positive definite damping and stiffness matrices,M0 is the real

2×2 positive definite nominal mass matrix, and∆k is the perturbation toM0 due to the particular

arrangement of added magnets in thekth perturbation case. The angular rotation rate of the sensor

is assumed to be zero in this model. The subscript onZact denotes that the system matrices are

written in the generalized coordinates specified by the actuator (forcer) frame. The transfer func-

tion Hout represents any dynamics associated with the signal conditioning electronics andR∈R2×2

captures the effects of non-colocated pick-offs and forcers.

The model parameters{M0,∆1,∆2, . . . ,∆np ,C,K,HoutR} are estimated by fitting frequency re-

sponse data fromnp +1 experiments conducted with different mass perturbation scenarios to (1).

In other words, thekth experiment yields two-input/two-output complex valuedfrequency response

data{ψk,1,ψk,2, . . . ,ψk,mk} corresponding to themk real frequencies{ωk,1,ωk,2, . . . ,ωk,mk}.

The minimax optimization problem for estimating the sensorparameters is

min
M0+∆p>0

K>0,C>0,M0>I
Rl∈C2×2, l=0,1,...,nR

max
k=0,...,np
q=1,...,mk

σ
(

R̃k,q −ψk,qZact(k)( jωk,q)
)

, (3)

where

R̃k,q :=
nR

∑
l=0

Rlω l
k,q, (4)

DS-08-1304 M’Closkey 10



and where evaluatingZact at theqth frequency point associated with thekth experiment yields

Zact(k)( jωk,q) := −(M0+∆k)ω2
k,q +K + jCωk,q. (5)

The constraintM0 > I in (3) is imposed rather than the typicalM0 > 0 because in the latter case all

of the free parameters may be scaled by a nonzero constant so as to make the cost arbitrarily small

without actually changing the model frequency response. Also note thatHoutR has been replaced by

R̃. This recognizes the fact that any additional dynamics due to, for example, signal conditioning

preamplifiers, should not exhibit significant magnitude andphase changes in a neighborhood of

the resonant modes. If these dynamics can be reflected to the sensor output then they can be

combined withR into a low order polynomial function of frequency with coefficients inC2×2, i.e.

R̃ is degreenR. In fact, R̃ can be viewed as the combination of the first few terms of the Taylor

series expansion of the frequency response function ofHout including the non-collocation effects.

Finally, σ denotes the largest singular value. Thus (3) is a multi-input/multi-output extension of

the first iteration of the Sanathanan-Koerner frequency domain model fitting algorithm [14]. Note

that (3) can be restated as following eigenvalue problem

min: γ

subject to: Jqk > 0, q = 1, . . . ,m,k = 0, . . . ,np

M0 > I, (M0+∆k) > 0, C > 0, K > 0

∆0 = 0,Rl ∈ C2×2, l = 0, . . . ,nR

, (6)

where

Jqk :=







γI
(

R̃q −ψk,qZact(k)( jωq)
)∗

R̃q −ψk,qZact(k)( jωq) γI






.

This problem can efficiently be solved using a number of commercially available packages.

3.2 Verification of the Model

As in Fig. 5, experimental data are generated by driving eachactuator with a chirp sequence whose

5 Hz bandwidth encompasses the fundamental Coriolis modes of the Macro DRG. The input-

DS-08-1304 M’Closkey 11



output sequences are processed to yield 2× 2 empirical frequency response data on a grid of

frequencies with 0.1 Hz resolution giving fifty-one frequency response points in each plot. The

model (2) is applied to two mass perturbation cases in addition to the nominal case in which

no mass perturbation is present. The first mass perturbationcase places four magnets on outer

ring of the Macro DRG, as shown in the left-hand illustrationof Fig. 6, and is represented by

the∆1 mass matrix perturbation. The four-fold symmetry of the mode shape guarantees that this

perturbation will have the same effect as adding the four masses to only one of these four po-

sitions. The second mass perturbation case places four magnets on the outer ring of the DRG,

as shown in the right-hand illustration of Fig. 6, and is represented by the∆2 perturbation. The

empirical frequency responses for these perturbed cases along with the case in which no mag-

nets are added are shown in Figs. 7 and 8. Since the sensor is a two-input/two-output plant, the

four magnitude plots are shown in Fig. 7 and the four phase plots are shown in Fig. 8 (the indi-

vidual channels are denotedS1/D1, S2/D1, etc.). It is clear that the mass perturbations cause a

shift in the modal frequencies and alter the split between these frequencies. The model parameter

set{M0,∆1,∆2,C,K,R0,R1} is determined from (6). The model frequency responses are given

by (R0+ jωR1)
(

−(M0+∆k)ω2 +K + jCω
)−1

, k = 0,1,2, and are plotted as the solid traces in

Figs. 7 and 8. Note, the order ofR̃, nR, is set to 2 for this and future models. The model fit is

almost indistinguishable from the empirical data—the largest deviation is only 5%.

Since we are interested in using this model to guide the mass addition/removal process with the

objective of driving the two modal frequencies together, its predictive power is of great importance

and is tested in two ways. In the first test, two magnets are added to each of the four points on the

resonator corresponding to the positions shown in the left-hand illustration in Fig. 6 (total of eight

magnets). This perturbation doubles the magnitude of the mass perturbation corresponding to∆1

so we compare the empirical data with the frequency responseof the model

(R0+ jωR1)
(

−(M0+2∆1)ω2 +K + jωC
)−1

.

The comparison is made in Fig. 9. The model predicts the empirical frequency response data

extremely well.

DS-08-1304 M’Closkey 12



∆ ∆
1 2

Figure 6:Left: Orientation of∆1 perturbation.Right: Orientation of∆2 perturbation. Masses are

added at four points in each case to achieve the most even possible mass loading. These are the

perturbations corresponding to ‘�’ and ’♦’ in Figs. 7 and 8.

The second test case involves placing a single magnet at eachof the eight points on the res-

onator corresponding to the locations shown in both illustrations in Fig. 6. This perturbation should

correspond to modifying the nominal mass matrix by the sum of∆1 and∆2. Thus we compare the

frequency response data against the model

(R0+ jωR1)
(

−(M0+∆1 +∆2)ω2 +K + jωC
)−1

.

Again, the set of plots in Fig. 10 shows very good agreement between the model prediction and

the empirical frequency response data. This verifies the predictive power of the model fitting

technique and the assumption that the addition of the magnets can be modeled purely as a mass

matrix perturbation.

4 Tuning the Modal Frequencies

4.1 Frequency Tuning by Perturbing One Unique Circumferential Location

Now that the experimental setup and modeling techniques areidentified, we begin to develop po-

tential processes for driving the modal frequencies of the Macro DRG together and reaching a

‘tuned’ state. It is clear from Fig. 7 that the angular location of a mass perturbation affects the

DS-08-1304 M’Closkey 13
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Figure 7: The two-input/two-output empirical and model frequency response magnitudes used to

test the model fitting algorithm. The empirical data for the test with no perturbation is represented

by ‘◦’ and the data resulting from the∆1 and∆2 perturbations (shown in Fig. 6) are represented

by ‘�’ and ‘♦’ respectively. The model fits given by(R0+ jωR1)(−(M0+∆k)ω2 +K + jωC)−1

of the three data sets are the solid traces. Thus, the change in the frequency response due to the

addition of magnets is successfully modeled as a change to only the mass matrix.
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Figure 8: The two-input/two-output empirical and model frequency response phase plots corre-

sponding to the magnitude plots in Fig. 7.
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Figure 9: Empirical frequency response of Macro DRG with double the mass perturbation at

the ∆1 perturbation locations (‘◦’) compared to the frequency response predicted by the model

(R0+ jωR1)(−(M0+2∆1)ω2 +K + jωC)−1 (solid trace).
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Figure 10: Empirical frequency response of Macro DRG with the mass perturbations in both the

∆1 and∆2 perturbation locations (‘◦’) compared to the frequency response predicted by the model

(R0+ jωR1)(−(M0+∆1+∆2)ω2+K + jωC)−1 (solid trace).
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resulting frequency split. For a simple ring, frequency tuning can be achieved by adding mass to

only one location—the anti-node of the high frequency mode (Fig. 2) [9]. In many ways this is the

simplest solution to the general frequency tuning problem and in this section we test this method-

ology as applied to the Macro DRG using several different techniques. The lessons learned from

this exercise motivate the development of a tuning process that is better suited for axisymmetric

vibratory gyroscopes. Our first step is the direct measurement of the mode shape of the detuned

Macro DRG.

4.1.1 Measuring the mode shape

In this experiment, the radial motion of the outer ring is measured by a laser vibrometer. One of

the electromagnets is used to excite the Macro DRG at the modal frequency corresponding to the

higher of the two n=2 Coriolis-coupled mode frequencies. The previous testing setup is placed on a

rotational stage while the laser vibrometer is in a fixed position (Fig. 11). Vibration measurements

were taken every 2 degrees on a 90 degree arc. The resulting mode shape is shown as the right-hand

plot of Fig. 11, with the peak displacement occurring at 77 degrees. It is important to note that the

mode shape follows a sine wave fairly well, but not perfectly, making it difficult to utilize a sine

wave model to predict the location of the anti-node of the high frequency mode. This experiment

essentially replicates the procedure for identifying a mass tuning location suggested for simple

rings and provides some interesting information, but does not satisfy the stated goal of using only

the fixed electromagnetic drivers and capacitive sensors toguide the tuning.

4.1.2 Testing frequency tuning near the anti-node

The first tuning attempt places multiple magnets at 76 degrees from theD1 axes and subsequently

measures the resulting frequency responses. The resonant frequencies from these responses are

calculated by taking the square roots ofλ M,K andλ M,K, the larger and smaller generalized eigen-

values, respectively, of the identified mass and stiffness matrices. The split between these frequen-

cies is plotted in the right-hand graph of Fig. 12. As the firstseveral magnets are added, the split
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Figure 11: Left: Illustration of the testing setup used to determine the radial deflection of the

outermost ring of the Macro DRG resonator. The driving electromagnet and the resonator are

fixed on the rotational stage so that the deflection can be measured at 2 degree increments.Right:

Plot of the radial deflection as a function of angular position. The dots represent the experimental

data, while the dotted line is a sine wave fit. The large deviations from the sine wave are most

likely caused by the additional stiffness provided by the spokes. One proposed tuning method

involves adding mass directly to the resonator at the location corresponding to the anti-node of

the experimental data. This is the method that has been used in the past to tune other ring shaped

devices.

DS-08-1304 M’Closkey 19



decreases. Before an adequately small split is reached, however, further addition of magnets in-

creases the split. This practice was repeated at 72, 74, 78 and 80 degrees from theD1 axes and the

data are plotted on the left-hand side of Fig. 12. Though the plots are faceted due to the discrete

amount of mass added with each magnet, it still appears from Fig. 12 that the best tuning location

is approximately 77 degrees from theD1 axes. It should be noted, however, that misplacing mag-

nets by only 3 degrees increases the minimum achieved split from about 0.15 Hz to 0.4 Hz. This

behavior closely follows the mass perturbation model derived in [9] for a simple ring and is simple

to explain. To wit, when mass is placed directly at the anti-node of the high frequency mode, the

frequency split is reduced, and the anti-node remains in thesame location until the split is elimi-

nated. If more mass is added after the split reaches zero, thelocale where mass is added becomes

the new low frequency anti-node and the split begins to increase. If the initial magnet is misplaced,

however, the high frequency anti-node shifts away from the locale of the added magnet. Though

at first the split decreases, the split begins to increase when the added magnet is closer to the low

frequency anti-node than it is to the high frequency anti-node. Thus, as the error in the location

choice increases, the frequency split increases with feweradded magnets, thereby increasing the

minimum achievable split when attempting to tune by adding mass to one unique angular location.

The solid trace on the right-hand side of Fig. 12 is an attemptto simulate the minimum achiev-

able split if mass could be added continuously when tuning 76degrees from theD1 axes. The∆

associated with the first four magnets added was found using amodel fit to the empirical frequency

response data of the case with no magnets added and the case with four magnets added at 76 de-

grees. Next, the split was predicted using the frequencies derived fromλ M0+
α
4 ∆,K andλ M0+

α
4 ∆,K,

whereα is the number magnets added. The plot demonstrates that the model fitting process proves

helpful in determining the minimal split associated with a particular mass perturbation. This real-

ization inspires the proposed tuning method described in the following subsection.
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Figure 12:Left: The five traces represent five experimental attempts to tune the Macro DRG by

placing magnets at only one angular location, using locations of 72, 74, 76, 78 and 80 degrees.

Data was taken when 0, 4, 6, 7, 8, 9 and 10 magnets were added foreach case. The frequency

splits are determined from the models that are fit to the individual experimentally determined

frequency responses. In each case the split is at first reduced but at some point further addition

of mass increases the split. It appears that the smallest split would be achieved near a location

of 77 degrees. It is interesting to note that if the placementis as little as 3 degrees away from

this location, the minimum split increases to nearly 0.4 Hz.Right: The data taken when tuning

is attempted at 76 degrees is replicated as ‘◦’ in this plot. The solid line fit is done by fitting

the empirical data from the first two points to a set{M0,∆,C,K,R0,R1} and usingλ M0+
α
4 ∆,K and

λ M0+
α
4 ∆,K to determine the split for any number of magnets (whereα is the number of masses

added). This is a good test of the predictive relevance of themodel, but also shows how much the

minimum achievable split is increased by using a quantized amount of mass.
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4.1.3 ∆ as a function of angular position on the outer ring

The function∆(θ) is defined as the relationship between∆, the mass matrix perturbation as-

sociated with one magnet placed upon the outermost ring, andθ , the angular position of that

additional magnet. Once the function∆(θ) is known, an angle,̃θ , and an “intensity”,α, rep-

resenting the number of magnets, can be found such thatλ M0+α∆(θ̃),K = λ M0+α∆(θ̃),K, imply-

ing that the frequency split is eliminated. An experiment isperformed to find∆(θ) for values

of θ in one 90 degree arc.4 Eight separate perturbations were conducted with magnets spaced

in 11.25 degree steps (a total of nine MIMO frequency response data sets) and then the model

parameter set{M0,∆1, . . . ,∆8,C,K,R0,R1} was identified. Plots of the upper diagonal, lower di-

agonal and off diagonal terms of each∆k, k = 1,2, . . . ,8, are shown in Fig. 13. Linear inter-

polation can be used to approximate∆ for anyθ . Whenθ̃ = 75.4 degrees andα = 8.4 magnets,

λ M0+α∆(θ̃),K = λ M0+α∆(θ̃),K so the modes are tuned according to the model. According to Fig. 12,

though, the minimal split would be about 0.2 Hz if tuning were attempted at only this location. Un-

fortunately, it is not practical to use the experimental relationship of Fig. 13 on a different Macro

DRG. Any small difference in the drive and sense gap distances or in the internal stiffness and

damping changes∆(θ) significantly enough to reduce its predictive value. Thus, to use this ap-

proach, this entire experiment would have to be repeated forevery new device, requiring excessive,

and likely unnecessary, perturbations.

4.1.4 The eigenvectors ofM and K

The next method we analyze uses the generalized eigenvectorassociated withλ M,K to identify the

location of the high-frequency anti-node. The physical interpretation of the generalized eigenvector

relies on the coordinate system of the equations of motion. Because the equations of motion are

written in the actuators’ reference frame (refer to (1)), the ratio of the two elements of a generalized

4It can be shown that adding the same mass at 90, or 180, degree angles relative to the current position produces

the same mass matrix perturbation for the modes of interest.Thus, the experimental results for the first 90 degree arc

can be extrapolated to represent perturbations to any angular location on the structure.
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Figure 13:Left: Mass matrix perturbation,∆, as a function of the counter-clockwise angle from

the D1 axes,θ , found by fitting the model to nine empirical frequency response data sets. The

upper diagonal term is denoted by ‘♦’, the lower diagonal by ‘◦’, and the off diagonal term by

‘�’. Right: Illustration of the eight placements of the magnet in the tests. When the experiment

is repeated with different gap widths for the actuators and sensors, and different initial magnet

distributions, the functional relationship varied only slightly. The absolute magnitudes are not

important because the model parameter set is scaled by theM0 > I constraint in (6). The relative

magnitudes, however, are at the very least interesting. Thesolid black magnet in the right hand

picture illustrates the perturbation that corresponds to the data points that are solid black in the

left-hand figure.
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eigenvector is a measurement of the ratio of the amplitudes of the radial velocity of the Macro DRG

at the two actuator locations when the DRG is excited at the eigenvector’s corresponding eigen-

frequency. In order to use this information to estimate the mode shape, the amplitude of the radial

motion, u, is approximated byu = Acos(2(θ −Φ)) whereA is the maximum amplitude of the

displacement andθ is the angular location as measured from theD1 axes (Fig. 14). This is an

approximation of the true shape given in Fig. 11. The amplitude of motion at the first and second

actuators would beAcos(2Φ) andAsin(2Φ) respectively. ThusΦ, the angular location of anti-node

of the high frequency mode, can be approximated by

Φ = 1
2tan−1

(

v1

v2

)

, (7)

wherev1 andv2 are the first and second elements, respectively, of the eigenvector associated with

λ M,K. In the case of the unperturbed Macro DRG we findΦ = 75 degrees. This method is

particularly attractive because it does not require any experimentation besides the initial frequency

response test to approximate the location of the anti-nodes. It appears to be slightly less accurate

than the estimate found by directly using∆ and would result in a minimal split of approximately

0.3 Hz if tuning were attempted at only this predicted location.

This method can be improved if one abandons the notion of using only one angular location for

tuning. In this improvement, after each magnet is added and anew empirical frequency response

is performed, a new model parameter set is found with a new anti-node location. This new location

is the target for the next added magnet. Essentially, the effect of the estimate error is negated by

“chasing” the location of the high frequency anti-node around the resonator. This method proves

successful, guaranteeing a final frequency split of less than 0.1 Hz, but lacks elegance and would be

difficult to practice on the SiDRG. A more elegant method is presented in the next section in which

the anti-node is essentially “trapped” between two spokes on which tuning masses are added.
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Figure 14: Illustration of the assumed mode shape of the ringusingu = Acos(2(θ −Φ)), whereΦ

indicates the location of the anti-nodes of the mode shape, and u is the radial displacement of the

mode shape as a function of the angleθ . We will use this notation to approximate the mode shape

of the n=2 Coriolis-coupled mode of the Macro DRG.

4.2 Frequency Tuning Using Mass Perturbation at the Spokes

When the tuning problem is generalized to allow two tuning locations the solution is much more

robust to errors in magnet placement. By choosing mass loading locations on either side of the

anti-node of the high frequency mode, the anti-nodal orientation is, in a sense, trapped. For a

MEM structure such as the SiDRG, it is easiest to add mass at the spokes of the resonator (visible

in Fig. 3 as the structures that join adjacent rings and form aradial pattern) that are closest to the

anti-node. In this scenario the perturbed mass matrix is given by

M(α1,α2) = M0+α1∆1 +α2∆2, (8)

where∆1 and∆2 correspond to the mass matrix perturbations associated with the addition of mass

to the two tuning spokes. The number of magnets added to the two spokes for tuning,α1 andα2,

can be calculated by solving the generalized eigenvalue problem

min: λ1−λ2

subject to: λi > 0, i = 1,2

λ1M(α1,α2)−K > 0

λ2M(α1,α2)−K < 0

. (9)
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This optimization simultaneously forcesλ1 andλ2 to become the largest and smallest generalized

eigenvalues ofM and K and variesα1 and α2 to minimize λ1 − λ2. If the spokes are chosen

correctly, the final cost will be zero and the resultingα1 and α2 will create degenerate modal

frequencies. Again this optimization can be efficiently solved with a number of commercially

available packages.

The entire tuning process can be outlined in a three step algorithm. First, we start with the

data for the unperturbed Macro DRG (represented by ‘◦’ in Fig. 16). In the first step, a model is

fit to this data set andΦ is approximated as 79 degrees using (7). The approximation implies that

anti-node of the high frequency mode falls between the two spokes labeled 4 and 1 in the left-hand

illustration in Fig. 15. Thus these spokes are chosen as the targets for tuning. The second step

acts as a calibration step for the mass matrix perturbations∆1 and∆2. Two magnets are added to

spoke 4 to represent the∆1 perturbation and an empirical frequency response is measured. Then,

two magnets are added to spoke 1 and a third frequency response is measured. Using the three

frequency response sets, the model parameters{M0,∆1,∆2,C,K,R0,R1} are identified. Figure 16

shows the three empirical frequency response sets measuredduring the first two steps. As expected,

with each added magnet the resonant frequencies and their relative split are reduced. In the third

step the number of magnets that need to be added to each spoke,α1 andα2, are calculated from

(9).

This optimization is solved withα1 = 7.2 andα2 = 3.2, rendering the system withM as in (8)

degenerate. We can only add quantized amounts of mass onto the rings, so 3 masses are added to

spoke 1, and 7 to spoke 4, as shown in the right-hand illustration of Fig. 15. The final empirical

frequency response is acquired and is shown in Fig. 17. Note that the response in the off diagonal

channels are significantly reduced, which is a positive indication of a nearly degenerate resonator.

After model identification is performed on this last data set, the split is found to be only 0.08 Hz,

and for all practical purposes the sensor is tuned.

The algorithm was then applied to an array of initial mass distributions. For these tests, a

larger magnet (diameter 3.2mm) is placed on the outside surface of the outermost ring at positions
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Figure 15:Left: Illustration of the identified spokes for mass loading for the example in the text.

The gray axes represent the approximated anti-nodal axes ofthe unperturbed Macro DRG. The

small white circles represent where the two magnets may be placed to calibrate the spoke 1, and

the two black circles represent where two more may be added tocalibrate spoke 4.Right: The

final orientation of the magnets that successfully tunes theMacro DRG so that the anti-nodal axes

are “trapped” between the tuning spokes. The calibrations in the previous steps are used to choose

this orientation.
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Figure 16: Frequency responses from steps 1 and 2 of the algorithm with their corresponding fit.

‘◦’ represents the empirical response from the unperturbed case, ‘�’ represents the response when

magnets are added only to spoke 4, and ‘♦’ represents when magnets are added to spoke 4 and

spoke 1. The solid traces represent the frequency responsesof the model that was fit to the three

data sets. The model associated with this fit is used to determine the number of magnets that are

needed on each spoke to achieve a tuned state. The frequency response after the tuning magnets

are added can be seen in Fig. 17.
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Figure 17: The empirical frequency response of the unperturbed resonator is again represented by

‘◦’, and exhibits a split of 1.52 Hz. Using the model of the data in Fig. 16, weightings of 3.2

magnets on spoke 1 and 7.2 magnets on spoke 4 are predicted to give a tuned state. ‘�’ represents

the empirical frequency response when 3 magnets are on spoke1 and 7 magnets are on spoke 4.

The solid line corresponding to this data is the predicted response using the model. The final split

is 0.08 Hz.
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{0,15, . . . ,75} degrees from theD1 axes for the initial arrangement. The results are shown in Table

1. The spoke #′s referred to in the table correspond to those in Fig. 15. The number of magnets

placed on each spoke after the first three steps, including those used for calibration, are shown in

fifth and sixth column5 while the seventh column displays the resulting frequency split after these

magnets are added. In each case the split is significantly reduced at this point, but in some cases

an additional magnet on one spoke could further reduce the split. Ideally the correct amount of

mass could be placed at the new location of the anti-node of the high frequency node to completely

eliminate the split. We are, however, constrained to placement of mass only at the spokes, and

can only add quantized amounts of mass. Thus, as a final fine tuning step, we add one additional

magnet to the spoke closest to the new anti-node of the high frequency node if the split is larger

than some threshold. The threshold is a function the amount asingle magnet reduces the split,

which, in the case of the Macro DRG, is at most 0.20 Hz. Utilizing what was learned from the

experiment described in Fig 12, a magnet that is added when the split is smaller than 0.10 Hz is

guaranteed to increase the split. Thus 0.10 Hz is chosen as this threshold.

The last two columns of Table 1 display the spoke on which the additional magnet is placed as

well as the final frequency split. In all but one case the final frequency split is below the threshold.6

The largest tuning mass perturbation was seventeen magnetstotal. This altered the mass of the

Macro DRG resonator by 0.07% tuning a 0.14% frequency split.

5Unlike the example in the previous paragraph, only one magnet is used to calibrate each spoke for each case. This

reduces the possibility of placing more magnets than necessary on a spoke. In the case displayed on the fifth row,

however, the approximated position of the anti-node of the high frequency mode was close enough to spoke 1 that

the optimization code called for nine magnets on spoke 1 and zero on spoke 2 total. Since one magnet had already

been placed on spoke 2, an additional magnet was placed on spoke 4, which canceled out the effect of the calibration

while still treating the perturbations as ‘irreversible’.Thus the distribution of magnets after the first three steps is nine

magnets on spoke 1, one on spoke 2 and one on spoke 4.
6In this one case the position of the anti-node of the high frequency mode after the first three steps was far enough

away from the fine tuning spoke that the additional magnet didnot reduce the split. A more complex threshold could

easily derived for cases like this, but have been ignored here for simplicity.
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Large Magnet   Initial First Second Perturbation  for Perturbation for  Frequency Final Tuning Final

Placement Frequency Spoke Spoke first spoke second spoke Split Spoke Frequency

(degrees) split (Hz) (spoke  #) (spoke  #) (# of magnets) (# of magnets) (Hz) (spoke  #) Split (Hz)

none 1.52 4 1 7 3 0.08 na 0.08

0 1.64 2 1 6 5 0.12 2 0.08

15 0.81 1 2 4 2 0.10 4 0.08

30 1.26 1 4 6 1 0.10 1 0.1

45 1.78 1 2 9 0 0.12 4 0.12

60 2.24 1 2 11 5 0.13 4 0.08

75 2.17 1 2 8 8 0.03 na 0.03

Table 1: Tuning results using the spokes algorithm with various initial mass distributions.

5 Conclusions

A mass matrix perturbation approach for tuning two modes to degeneracy in an axisymmetric res-

onator has been developed and experimentally verified on a large scale replica of a disk resonator

gyro. The approach essentially identifies the perturbations to the nominal resonator mass matrix

created by the addition (or removal) of a quantized amount ofmass at several judiciously chosen

locations on the resonator. The mass matrix perturbations are then used to estimate the total mass

addition required at each location to render degenerate themodal frequencies of the two modes

of interest. In practice, however, it is only necessary to reduce the frequency split to a prescribed

level. For vibratory gyroscopes, the modal frequency splitis directly related to the signal-to-noise

ratio (SNR) of the angular rate signal, with larger splits reducing the SNR. A rule of thumb for

these sensors is that the modal frequency split must be less than the bandwidth of each mode in

order to maximize the SNR. In the present study the bandwidths of each mode are approximately

0.12 Hz so the stopping criteria of a 0.1 Hz split is justified.Since the allowable frequency split is

reduced in proportion to the reduction in bandwidth of the modes, requirements can be developed

for any proposed mass deposition/removal scheme. The quantized nature of the mass perturba-

tion in the present study limits the change in frequency split to about 0.2 Hz per mass quanta,

which is again compatible with the stopping criteria derived from the resonator bandwidth. One

can anticipate significant engineering challenges in developing the fabrication machinery for mass
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addition/removal on resonators with high quality factors.

Another promising direction to which the paper’s model fitting tools can be applied is the

problem of isolating selected resonator modes from linear acceleration of the resonator “stem.”

This problem is motivated by vibratory gyroscope applications in which the modes that are ex-

ploited for angular rate detection are, ideally, not coupled to linear acceleration of the sensor case.

Coupling is always present in physical devices and producesspurious angular rate measurements

when the sensor is subjected to vibration. It is desirable toreduce the coupling to linear acceler-

ation and this can also be accomplished by the judicious removal or addition of mass at certain

points on the resonator.
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List of Figure Captions

• Figure 1:Left: Photograph of the resonant structure of the Boeing Silicon Disk Resonator

Gyroscope (SiDRG). The n=2 Coriolis-coupled mode of the resonator is generally utilized

for rate detection.Right: The SiDRG frequency response using embedded drive and sense

electrodes within a narrow, 100 Hz band encompassing the fundamental Coriolis modes.

Though the frequency split is small in a relative senseless than 0.3%the sensor effectively

has no mechanical gain in this state.

• Figure 2: Left: Illustration of an n=2 Coriolis-coupled mode in a perfectlyaxisymmetric

ring. This mode appears in a degenerate pair, meaning it can occur with any angular position

relative to the axis of symmetry. Middle: When slight mass asymmetries exist, the modes

manifest themselves in two fixed angular orientations, 45 degrees apart. These modes have

two slightly different frequencies and cause the detuning seen in Fig. 1.Right: When the

correct amount of mass is added to the anti-node of the high frequency mode (the target for

tuning on the asymmetric detuned ring), a tuned state can be reached. Even though the mass

distribution is asymmetric, the important properties of the ideal ring are recovered.

• Figure 3: Left: Photograph of the Macro DRG. The two electromagnetic actuators are la-

beledD1 andD2, and the two capacitive pick-offs, that detect radial deflection of the res-

onator, are labeledS1 andS2. Small NdFeB magnets are added to create a reversible pertur-

bations of the mass distribution of the resonator.Top Right: Diagram of the electromagnetic

actuator.Bottom Right: Diagram of the capacitive sense pick-off. This design was used to

minimize electromagnetic coupling to the transimpedance amplifier.

• Figure 4: Block diagram of test setup. The filtered drive and sense signals are denotedDi

andSi, i = 1,2, respectively. Frequency response data is used to construct a two-input/two-

outputmodel of the Macro DRG dynamics. The dotted path represents an alternative setup

that is used to calibrate gaps between the pick-offs and the resonator.
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• Figure 5: Left: The S1/D1 channel of the empirical wideband frequency response of the

Macro DRG showing several resonator modes. At this scale there appears to be no split be-

tween the n=2 modes (near 1.6 kHz).Right: The narrowband dynamics of all four channels

in a neighborhood of the fundamental Coriolis-coupled modes. The data points are repre-

sented by ‘◦ while the trace through the points is a model that was fit usingthe process

described later in this paper. Just as in the SiDRG response,the Coriolis-coupled modes of

the Macro DRG have a small frequency split despite the fact that the steel resonator is highly

symmetric.

• Figure 6: Left: Orientation of∆1 perturbation. Right: Orientation of∆2 perturbation.

Masses are added at four points in each case to achieve the most even possible mass loading.

These are the perturbations corresponding to ‘�’ and ’♦’ in Figs. 7 and 8.

• Figure 7: The two-input/two-output empirical and model frequency response magnitudes

used to test the model fitting algorithm. The empirical data for the test with no perturbation

is represented by ‘◦’ and the data resulting from the∆1 and∆2 perturbations (shown in Fig. 6)

are represented by ‘�’ and ‘♦’ respectively. The model fits given by(R0 + jωR1)(−(M0+

∆k)ω2 + K + jωC)−1 of the three data sets are the solid traces. Thus, the change in the

frequency response due to the addition of magnets is successfully modeled as a change to

only the mass matrix.

• Figure 8: The two-input/two-output empirical and model frequency response phase plots

corresponding to the magnitude plots in Fig. 7.

• Figure 9: Empirical frequency response of Macro DRG with double the mass perturbation

at the∆1 perturbation locations (‘◦’) compared to the frequency response predicted by the

model(R0 + jωR1)(−(M0+2∆1)ω2 +K + jωC)−1 (solid trace).

• Figure 10: Empirical frequency response of Macro DRG with the mass perturbations in both

the∆1 and∆2 perturbation locations (‘◦’) compared to the frequency response predicted by
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the model(R0+ jωR1)(−(M0+∆1 +∆2)ω2 +K + jωC)−1 (solid trace).

• Figure 11:Left: Illustration of the testing setup used to determine the radial deflection of the

outermost ring of the Macro DRG resonator. The driving electromagnet and the resonator are

fixed on the rotational stage so that the deflection can be measured at 2 degree increments.

Right: Plot of the radial deflection as a function of angular position. The dots represent the

experimental data, while the dotted line is a sine wave fit. The large deviations from the sine

wave are most likely caused by the additional stiffness provided by the spokes. One proposed

tuning method involves adding mass directly to the resonator at the location corresponding

to the anti-node of the experimental data. This is the methodthat has been used in the past

to tune other ring shaped devices.

• Figure 12: Left: The five traces represent five experimental attempts to tune the Macro

DRG by placing magnets at only one angular location, using locations of 72, 74, 76, 78

and 80 degrees. Data was taken when 0, 4, 6, 7, 8, 9 and 10 magnets were added for each

case. The frequency splits are determined from the models that are fit to the individual

experimentally determined frequency responses. In each case the split is at first reduced but

at some point further addition of mass increases the split. It appears that the smallest split

would be achieved near a location of 77 degrees. It is interesting to note that if the placement

is as little as 3 degrees away from this location, the minimumsplit increases to nearly 0.4

Hz. Right: The data taken when tuning is attempted at 76 degrees is replicated as ‘◦’ in

this plot. The solid line fit is done by fitting the empirical data from the first two points to

a set{M0,∆,C,K,R0,R1} and usingλ M0+
α
4 ∆,K andλ M0+

α
4 ∆,K to determine the split for any

number of magnets (whereα is the number of masses added). This is a good test of the

predictive relevance of the model, but also shows how much the minimum achievable split

is increased by using a quantized amount of mass.

• Figure 13:Left: Mass matrix perturbation,∆, as a function of the counter-clockwise angle

from theD1 axes,θ , found by fitting the model to nine empirical frequency response data
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sets. The upper diagonal term is denoted by ‘♦’, the lower diagonal by ‘◦’, and the off

diagonal term by ‘�’. Right: Illustration of the eight placements of the magnet in the tests.

When the experiment is repeated with different gap widths for the actuators and sensors, and

different initial magnet distributions, the functional relationship varied only slightly. The

absolute magnitudes are not important because the model parameter set is scaled by the

M0 > I constraint in (6). The relative magnitudes, however, are atthe very least interesting.

The solid black magnet in the right hand picture illustratesthe perturbation that corresponds

to the data points that are solid black in the left-hand figure.

• Figure 14: Illustration of the assumed mode shape of the ringusingu = Acos(2(θ −Φ)),

whereΦ indicates the location of the anti-nodes of the mode shape, and u is the radial

displacement of the mode shape as a function of the angleθ . We will use this notation to

approximate the mode shape of the n=2 Coriolis-coupled modeof the Macro DRG.

• Figure 15:Left: Illustration of the identified spokes for mass loading for the example in the

text. The gray axes represent the approximated anti-nodal axes of the unperturbed Macro

DRG. The small white circles represent where the two magnetsmay be placed to calibrate

the spoke 1, and the two black circles represent where two more may be added to calibrate

spoke 4.Right: The final orientation of the magnets that successfully tunesthe Macro DRG

so that the anti-nodal axes are “trapped” between the tuningspokes. The calibrations in the

previous steps are used to choose this orientation.

• Figure 16: Frequency responses from steps 1 and 2 of the algorithm with their corresponding

fit. ‘◦’ represents the empirical response from the unperturbed case, ‘�’ represents the re-

sponse when magnets are added only to spoke 4, and ‘♦’ represents when magnets are added

to spoke 4 and spoke 1. The solid traces represent the frequency responses of the model that

was fit to the three data sets. The model associated with this fit is used to determine the

number of magnets that are needed on each spoke to achieve a tuned state. The frequency

response after the tuning magnets are added can be seen in Fig. 17.
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• Figure 17: The empirical frequency response of the unperturbed resonator is again repre-

sented by ‘◦’, and exhibits a split of 1.52 Hz. Using the model of the data in Fig. 16,

weightings of 3.2 magnets on spoke 1 and 7.2 magnets on spoke 4are predicted to give a

tuned state. ‘�’ represents the empirical frequency response when 3 magnets are on spoke

1 and 7 magnets are on spoke 4. The solid line corresponding tothis data is the predicted

response using the model. The final split is 0.08 Hz.

List of Table Captions

• Table 1: Tuning results using the spokes algorithm with various initial mass distributions.
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