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Abstract

Efficient time integration schemes are necessary to capture the complex processes involved in atmospheric
flows over long periods of time. In this work, we propose a high-order, implicit-explicit numerical scheme
that combines Multi-Level Spectral Deferred Corrections (MLSDC) and the Spherical Harmonics (SH)
transform to solve the wave-propagation problems arising from the shallow-water equations on the rotating
sphere.

The iterative temporal integration is based on a sequence of corrections distributed on coupled space-
time levels to perform a significant portion of the calculations on a coarse representation of the problem
and hence to reduce the time-to-solution while preserving accuracy. In our scheme, referred to as MLSDC-
SH, the spatial discretization plays a key role in the efficiency of MLSDC, since the SH basis allows for
consistent transfer functions between space-time levels that preserve important physical properties of the
solution.

We study the performance of the MLSDC-SH scheme with shallow-water test cases commonly used in
numerical atmospheric modeling. We use this suite of test cases, which gradually adds more complexity
to the nonlinear system of governing partial differential equations, to perform a detailed analysis of the
accuracy of MLSDC-SH upon refinement in time. We illustrate the stability properties of MLSDC-SH
and show that the proposed scheme achieves up to eighth-order convergence in time. Finally, we study
the conditions in which MLSDC-SH achieves its theoretical speedup, and we show that it can significantly
reduce the computational cost compared to single-level Spectral Deferred Corrections (SDC).

Keywords: high-order time integration, multi-level spectral deferred corrections, implicit-explicit
splitting, atmospheric flows, shallow-water equations on the rotating sphere, spherical harmonics

1. Introduction

The numerical modeling of global atmospheric processes presents a challenging application area requir-
ing accurate time integration methods for the discretized governing partial differential equations. These
complex processes operate on a wide range of time scales but often have to be simulated over long periods
of time – up to a hundred years for long-term paleoclimate studies – which constitutes a challenge for
the design of stable and efficient integration schemes. One strategy for creating more efficient temporal
integration schemes for such systems is to employ a semi-implicit scheme that allows larger time steps to
be taken than with explicit methods at a cost that is less than that of fully implicit methods (Giraldo,
2005). A second strategy is to use a parallel-in-time strategy to solve multiple time steps concurrently
on multiple processors. Examples of parallel-in-time methods include Parareal (Lions et al., 2001), the
Parallel Full Approximation Scheme in Space and Time, (PFASST, Emmett and Minion (2012)), and

∗Corresponding author

1



Hamon et al.

MultiGrid Reduction in Time (MGRIT, Falgout et al. (2014)). In this work, we consider semi-implicit, it-
erative, multi-level temporal integration methods based on Spectral Deferred Corrections (SDC) that are
easily extended to high-order and also serve as a first step toward constructing parallel-in-time integration
methods for the atmospheric dynamics based on PFASST.

SDC methods are first presented in Dutt et al. (2000) and consist in applying a sequence of low-order
corrections – referred to as sweeps – to a provisional solution in order to achieve high-order accuracy.
Single-level SDC schemes have been applied to a wide range of problems, including reacting flow simula-
tion (Bourlioux et al., 2003; Layton and Minion, 2004), atmospheric modeling (Jia et al., 2013), particle
motion in magnetic fields (Winkel et al., 2015), and radiative transport modeling (Crockatt et al., 2017).
In Jia et al. (2013), a fully implicit SDC scheme is combined with the Spectral Element Method (SEM) to
solve the shallow-water equations on the rotating sphere. The authors demonstrate that the SDC method
can take larger stable time steps than competing explicit schemes such as leapfrog, second-order Runge-
Kutta methods, and implicit second-order Backward Differentiation Formula (BDF) method without loss
of accuracy.

The approach considered here for atmospheric simulations builds on the work of Speck et al. (2015),
in which a Multi-Level Spectral Deferred Corrections (MLSDC) scheme is proposed to improve the
efficiency of the SDC time integration process while preserving its high-order accuracy. MLSDC relies
on the construction of coarse space-time representations – referred to as levels – of the problem under
consideration. The calculations are then performed on this hierarchy of levels in a way that shifts a
significant portion of the computational burden to the coarse levels. As in nonlinear multigrid methods,
the space-time levels are coupled by the introduction of a Full Approximation Scheme (FAS) term in
the collocation problems solved on coarse levels. With this multi-level approach, the iterative correction
process requires fewer fine sweeps than the standard SDC scheme but still achieves fast convergence to
the fixed point solution. Synthetic numerical examples demonstrate the efficiency and accuracy of the
MLSDC approach.

The MLSDC approach is combined here with a spatial discretization based on the global Spherical
Harmonics (SH) transform to solve the shallow-water equations on the rotating sphere. This study is
relevant for practical applications since the SH transform is implemented in major forecasting systems such
as the Integrated Forecast System (IFS) at the European Centre for Medium-Range Weather Forecasts
(ECMWF, Wedi et al. (2013)) and the Global Spectral Model (GSM) at the Japan Meteorological Agency
(JMA, Kanamitsu et al. (1983)). Using a highly accurate method in space significantly reduces the spatial
discretization errors and allows us to focus on the temporal integration. Our approach, referred to as
MLSDC-SH, uses a temporal splitting in which only the stiff linear terms in the governing equations are
treated implicitly, whereas less stiff terms are evaluated explicitly. Here, the word stiff is used to denote
the terms that limit the time step size of fully explicit schemes. The temporal integration scheme retains
the main features of the multi-level algorithm presented in Speck et al. (2015), and takes full advantage
of the structure of the spatial discretization to achieve efficiency. Specifically, we construct accurate
interpolation and restriction functions between space-time levels by padding or truncating the spectral
representation of the variables in the SH transform. In addition, the spherical harmonics combined with
the implicit-explicit temporal splitting considered in this work circumvent the need for a global linear
solver and rely on an efficient local solver for the implicit systems.

We illustrate the properties of MLSDC-SH using a widely used suite of shallow-water test cases
(Williamson et al., 1992; Galewsky et al., 2004). We start the numerical study with a steady-state
benchmark that highlights the connection between the magnitude of the spectral coefficients truncated
during coarsening and the convergence rate of MLSDC-SH upon refinement in time. Then we proceed
to more challenging unsteady test cases to show that MLSDC-SH is stable for large time steps and
achieves up to eighth-order temporal convergence. Finally, we investigate the conditions in which the
proposed scheme achieves its theoretical speedup and we demonstrate that MLSDC-SH can reduce the
computational cost compared to single-level SDC schemes.

In the remainder of the paper, we first introduce the system of governing equations in Section 2.
Then, we briefly review the fundamentals of the spatial discretization based on the global SH transform in
Section 3. In Section 4, we describe the implicit-explicit temporal integration scheme, with an emphasis
on the Multi-Level Spectral Deferred Correction (MLSDC) scheme. Finally, in Section 5, we present
numerical examples on the sphere demonstrating the efficiency and accuracy of our approach.
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2. Governing equations

We consider the Shallow-Water Equations (SWE) on the rotating sphere. These equations capture
the main horizontal effects present in the full atmospheric equations. Well-defined test cases are available
– such as those considered in this work – that relate the SWE to some key features of the full atmo-
spheric equations. Hence, they provide a simplified assessment of the properties of temporal and spatial
discretizations for atmospheric simulations on the rotating sphere. We use the vorticity-divergence for-
mulation (Bourke, 1972; Hack and Jakob, 1992) in which the prognostic variables U = [Φ, ζ, δ]T are
respectively the potential, Φ, the vorticity, ζ, and the divergence, δ. Here, the vorticity and divergence
state variables are used to overcome the singularities in the velocity field at the poles.

The system of governing partial differential equations is

∂Φ′

∂t
= −∇ · (Φ′V )− Φ̄δ + ν∇2Φ′, (1)

∂ζ

∂t
= −∇ · (ζ + f)V + ν∇2ζ, (2)

∂δ

∂t
= k · ∇ × (ζ + f)V −∇2

(
Φ +

V · V
2

)
+ ν∇2δ, (3)

where k is the outward radial unit vector. The average geopotential, Φ̄ = gh̄, is written as the product
of the gravitational acceleration by the average height, and Φ′ is defined as Φ′ = Φ− Φ̄. The horizontal
velocity vector is V ≡ iu+jv, where i and j are the unit vectors in the eastward and northward directions,
respectively. The Coriolis force is represented by f = 2Ω sinφ, where Ω is the angular rate of rotation,
and φ is the latitude. The diffusion coefficient is denoted by ν. Including a diffusion term in the governing
equations is used in practice in atmospheric simulations to stabilize the flow dynamics and reduce the
errors caused by nonlinearly interacting modes. Using the inviscid equations is not a viable option due
to the extremely fast generation of small-scale features (Galewsky et al., 2004), in particular for global
spectral methods using a collocated grid. For simplicity and reproducibility, we employ a second-order
diffusion term with a diffusion coefficient set to ν = 1.0 × 105 m2.s−1 for all spatial resolutions as in
Galewsky et al. (2004). To express the velocities as a function of the prognostic variables, ζ and δ, we
first use the Helmholtz theorem which relates V to a scalar stream function, ψ, and a scalar velocity
potential, χ,

V = k ×∇ψ +∇χ. (4)

Using the identities

ζ ≡ k · (∇× V ), (5)

δ ≡ ∇ · V , (6)

the application of the curl and divergence operators to (4) yields ζ = ∇2ψ and δ = ∇2χ. The Laplacian
operators can be efficiently inverted using the SH transform to compute the stream function, ψ, and the
velocity potential, χ, as a function of ζ and δ, as explained in Section 3. Equations (1), (2), and (3), form
the system that we would like to solve.

Next, we use the identities (5) and (6) to split the right-hand side of (1), (2), and (3) into linear and
nonlinear parts as follows

∂U

∂t
= LG(U) + LF (U) + N (U). (7)

The first term in the right-hand side of (7) represents the linear wave motion induced by gravitational
forces and also includes the diffusion term

LG(U) ≡ [−Φ̄δ + ν∇2Φ′, ν∇2ζ, −∇2Φ + ν∇2δ]T . (8)

The second term in the right-hand side of (7) contains a linear harmonic oscillator on the velocity
components that includes the Coriolis term

LF (U) ≡ [0, −fδ − V · ∇f, fζ + k · (∇f)× V ]T . (9)
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The third term in the right-hand side of (7) represents the nonlinear operators

N (U) ≡
[
−∇ · (Φ′V ), −∇ · (ζV ), k · ∇ × (ζV )−∇2V · V

2

]T
. (10)

In Section 4, this decomposition is used to define the temporal implicit-explicit splitting chosen based on
the stiffness of the different terms. Next, the details of the spatial discretization of LF , LG, and N are
presented.

3. Spatial discretization

This section presents an overview of the spatial discretization based on the global SH transform
applied to the system of governing equations. The global SH transform is a key feature of the multi-level
scheme presented here since it allows for simple and accurate data transfer between different spatial
levels. We will show with numerical examples in Section 5 that this is critical for the design of efficient
MLSDC schemes. In the SH scheme, the representation of a function of longitude λ and Gaussian latitude
µ ≡ sin(φ), ξ(λ, µ), consists of a sum of spherical harmonic basis functions P rs (µ)eirλ weighted by the
spectral coefficients ξrs ,

ξ(λ, µ) =

R∑
r=−R

S(r)∑
s=|r|

ξrsP
r
s (µ)eirλ, (11)

where the index r (respectively, s) refers to the latitudinal (respectively, longitudinal) mode. In (11),
P rs is the normalized associated Legendre polynomial. Without loss of generality, we use a triangular
truncation with S(r) = R. In Section 4.3.3, we will explain that a coarse representation of ξ can be
obtained by simply truncating the number of modes – i.e., reducing R and S in (11) – to construct a
hierarchy of spatial levels with different degrees of coarsening in MLSDC-SH. The transformation from
physical to spectral space is achieved in two steps. The first step consists in taking the discrete Fourier
transform of ξ(λ, µ) in longitude – i.e., over λ –, defined as

ξr(µ) =
1

I

I∑
ι=1

ξ(λι, µ)e−irλι , (12)

where I denotes the number of grid points in the longitudinal direction, located at longitudes λι = 2πι
I .

Then, in the second step, the application of the discrete Legendre transformation in latitude yields

ξrs =

J∑
j=1

ξr(µj)P
r
s (µj)wj . (13)

In (13), J is the number of Gaussian latitudes µj , chosen as the roots of the Legendre polynomial of degree
J , PJ , and wj denotes the Gaussian weight at latitude µj . This two-step global transform is applied to (7)
to obtain a system of coupled ordinary differential equations involving the prognostic variables in spectral
space, Θr

s = [Φrs, ζ
r
s , δ

r
s ]. Note that due to the symmetry of the spectral coefficients, it is sufficient to

only include the indices r ≥ 0. Hence, for r ∈ {0, . . . , R} and s ∈ {r, . . . , R}, the equations are

∂Θr
s

∂t
= (LG)rs(Θ) + (LF )rs(Θ) +N r

s(Θ), (14)

where (LG)rs, (LF )rs, and N r
s are the discrete, spectral representations of the operators defined in (8),

(9), and (10). The state variable in spectral space, Θ, is defined as a vector of size K = 3R(R+ 1)/2 as
follows

Θ ≡ [Θ0
0, Θ1

0, . . . , ΘR
R−1, ΘR

R]T . (15)

We refer to the work of Hack and Jakob (1992) for a thorough presentation of the scheme, including the full
expression of the right-hand side of (14) in spectral space. More details about an efficient implementation
of the global SH transform can be found in Temperton (1991); Rivier et al. (2002). The implementation
of the spherical harmonics transformation used in this work is based on the SHTns library developed by
Schaeffer (2013). Next, we proceed to the presentation of the discretization in time based on spectral
deferred corrections.
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4. Temporal discretization

4.1. Temporal splitting

The choice of a temporal splitting for the right-hand side of (14) is one of the key determinants of
the performance of the scheme. Fully explicit schemes are based on inexpensive local updates but are
limited by a severe stability restriction on the time step size. In the context of atmospheric modeling,
this limitation is often caused by the presence of fast waves (e.g., sound or gravity waves) propagating
in the system. Fully implicit schemes overcome the stability constraint on the time step size but rely on
costly nonlinear global implicit solves to update all the degrees of freedom simultaneously (Evans et al.,
2010; Jia et al., 2013; Lott et al., 2015).

Instead, implicit-explicit (IMEX) schemes only treat the stiff terms responsible for the propagation of
the fast-moving waves implicitly, while the non-stiff terms that represent processes operating on a slower
time scale are evaluated explicitly. This strategy reduces the cost of the implicit solves, relative to fully
implicit solves, and allows for relatively large stable time steps. A common IMEX approach employed
in non-hydrostatic atmospheric modeling is based on dimensional splitting and implicitly discretizes only
the terms involved in the (fast) vertical dynamics (Ullrich and Jablonowski, 2012; Durran and Blossey,
2012; Weller et al., 2013; Giraldo et al., 2013; Lock et al., 2014; Gardner et al., 2018). Alternatively,
the approach of Robert et al. (1972); Giraldo (2005) consists in linearizing the governing PDEs in the
neighborhood of a reference state. The linearized piece is then discretized implicitly, and the term treated
explicitly is obtained by subtracting the linearized piece from the nonlinear system. For the shallow-water
equations, we directly discretize the fast linear terms on the right-hand side of (14) implicitly, while the
other terms are evaluated explicitly. Specifically, we investigate an IMEX scheme based on the following
splitting, for r ∈ {0, . . . , R} and s ∈ {r, . . . , R},

∂Θr
s

∂t
= (F I)

r
s(Θ) + (FE)rs(Θ), (16)

in which the implicit right-hand side, (F I)
r
s, contains the terms representing linear wave motion induced

by gravitational forces and the diffusion term. The explicit right-hand side, (FE)rs, contains the linear
harmonic oscillator and the nonlinear terms. This temporal splitting leads to implicit and explicit right-
hand sides defined as

(F I)
r
s ≡ (LG)rs, (17)

(FE)rs ≡ (LF )rs +N r
s. (18)

This implicit-explicit approach greatly simplifies the solution strategy for the implicit systems and cir-
cumvents the need for a global linear solver. The solution algorithm treats the geopotential separately
from the divergence and vorticity variables. Since the Coriolis term and the nonlinear terms are treated
explicitly, one can form a diagonal linear system in spectral space to update the geopotential, and then
update locally the vorticity and divergence variables. This is explained in Section 4.4. We will investigate
the stability and accuracy of the splitting with numerical examples in Section 5. Next, we describe the
multi-level temporal integration scheme starting with the fundamentals of SDC.

4.2. IMEX Spectral Deferred Corrections

We start with a review of the fundamentals of the Spectral Deferred Corrections (SDC) scheme.
SDC methods have been introduced in Dutt et al. (2000) and later extended to methods with different
temporal splittings in Minion (2003); Bourlioux et al. (2003); Layton and Minion (2004). In Minion
(2003), an implicit-explicit SDC method is described and referred to as semi-implicit SDC to contrast
the method with subsequent multi-implicit SDC methods with multiple implicit terms introduced in
Bourlioux et al. (2003). Here we employ the more used term IMEX to refer to SDC methods with an
implicit-explicit splitting. The properties of IMEX SDC schemes for fast-wave slow-wave problems are
analyzed in Ruprecht and Speck (2016). We consider a system of coupled ODEs in the generic form

∂Θ

∂t
(t) = F I

(
Θ(t)

)
+ FE

(
Θ(t)

)
, t ∈ [tn, tn + ∆t], (19)

Θ(tn) = Θn, (20)
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and its solution in integral form given by

Θ(t) = Θn +

∫ t

tn
(F I + FE)

(
Θ(a)

)
da = Θn +

∫ t

tn
F
(
Θ(a)

)
da, (21)

where F I and FE are the implicit and explicit right-hand sides, respectively, with F = F I + FE , and
Θ(t) is the state variable at time t. In (21), the integral is applied componentwise. Denote by Θ̃(t)
an approximation of Θ(t), and then define the correction ∆Θ(t) = Θ(t) − Θ̃(t). The SDC scheme
applied to the implicit-explicit temporal splitting described above iteratively improves the accuracy of
the approximation based on a discretization of the update or correction equation

Θ̃(t) + ∆Θ(t) = Θn +

∫ t

tn

[
FE
(
Θ̃(a) + ∆Θ(a)

)
− FE

(
Θ̃(a)

)]
da

+

∫ t

tn

[
F I
(
Θ̃(a) + ∆Θ(a)

)
− F I

(
Θ̃(a)

)]
da

+

∫ t

tn
F
(
Θ̃(a)

)
da, (22)

where Θn is the (known) state variable at the beginning of the time step. In the update equation (22),
the last integral is computed with a high-order Gaussian quadrature rule. However, the other integrals
are approximated with simpler low-order quadrature rules. We mention here that all the quadrature rules
used in (22) are based on a relatively small number of Gauss points – up to five in this work – compared
to the quadrature rule used in the discrete Legendre transform to obtain (13). Each pass of the discrete
version of the update equation (22), referred to as sweep, increases the formal order of accuracy by one
until the order of accuracy of the quadrature applied to the third integral is reached (Hagstrom and Zhou,
2007; Xia et al., 2007; Christlieb et al., 2009).

To discretize the update equation (22), the correction algorithm uses a decomposition of the time
interval [tn, tn+1] into M subintervals using M + 1 temporal nodes, such that

tn ≡ tn,0 < tn,1 < · · · < tn,M = tn + ∆t ≡ tn+1. (23)

The points tn,m are chosen to correspond to Gaussian quadrature nodes. Throughout this paper, we use
Gauss-Lobatto nodes. We use the shorthand notations tm = tn,m and ∆tm = tm+1 − tm. We denote by
Θm+1,(k+1) the approximate solution at node m+ 1 and at sweep (k+ 1). The terms in the first integral
of (22) are treated explicitly, and therefore this integral is discretized with a forward Euler method.
Conversely, the second integral in (22) is discretized implicitly. The general form of the discrete version
of equation (22) is then

Θm+1,(k+1) = Θn + ∆t

m∑
j=1

q̃Em+1,j

[
FE
(
Θj,(k+1)

)
− FE

(
Θj,(k)

)]
+ ∆t

m+1∑
j=1

q̃Im+1,j

[
F I
(
Θj,(k+1)

)
− F I

(
Θj,(k)

)]
+ ∆t

M∑
j=0

qm+1,jF
(
Θj,(k)

)
. (24)

In (24), the coefficients q̃Em+1,j correspond to forward-Euler time stepping. The coefficients qm+1,j corre-
spond to the Lobatto IIIA optimal order collocation quadrature

qm+1,j ≡
1

∆t

∫ tn,m+1

tn,0
Lj(a)da, (25)

where Lj denotes the jth Lagrange polynomial constructed using the SDC nodes (23). We note that
the formulation of the correction given in (24) differs from that of Jia et al. (2013) in two ways. First,
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our scheme is based on an implicit-explicit splitting, whereas that of Jia et al. (2013) is fully implicit.
Second, for the choice of the quadrature weights used in the discretization of the implicit correction
integral, we adopt the approach of Weiser (2015). Specifically, the weights q̃Im+1,j in (24) are chosen to be

the coefficients of the upper triangular matrix in the LU decomposition of Q = {qij} ∈ R(M+1)×(M+1),
while a diagonal matrix is used in Jia et al. (2013). This formulation leads to a faster convergence of the
iterative process to the fixed-point solution and remains convergent even when the underlying problem is
stiff. We refer to Weiser (2015) for a proof, and to Hamon et al. (ming) for numerical examples illustrating
the improved convergence.

Using these definitions, the integration scheme (24) is effectively an iterative solution method for the
collocation problem defined by

A(~Θ) = 1M+1 ⊗Θn,0. (26)

The operator A is
A(~Θ) ≡ ~Θ−∆t(Q⊗ IK)~F , (27)

where ⊗ denotes the Kronecker product and IK ∈ RK×K is the identity matrix. 1M+1 ∈ RM+1 is a

vector of ones. Following the notation used in Bolten et al. (2017), the space-time vectors ~Θ ∈ C(M+1)K

and ~F ∈ C(M+1)K are such that

~Θ ≡ [Θn,0, . . . ,Θn,M ]T , (28)

~F ≡ ~F (~Θ) = [F (Θn,0), . . . ,F (Θn,M )]T . (29)

Next, we introduce the multi-level algorithm based on SDC that we will apply to the collocation problem
(26).

4.3. Multi-Level Spectral Deferred Corrections (MLSDC)

Multi-Level Spectral Deferred Corrections (MLSDC) schemes are based on the idea of replacing some
of the SDC iterations required to converge to the collocation problem (26) with SDC sweeps performed
on a coarsened (and hence computationally cheaper) version of the problem. The solutions on different
levels are coupled by the introduction of a Full Approximation Scheme (FAS) correction term explained
below as in nonlinear multigrid methods. The combination of performing SDC sweeps on multiple space-
time levels with a FAS correction term first appears as part of the PFASST method in Emmett and
Minion (2012). The idea is generalized and analyzed in Speck et al. (2015) showing how MLSDC can
improve the efficiency for certain problems compared to single-level SDC methods. In this work, only
two-level MLSDC schemes are considered, and the study of MLSDC with three or more space-time levels
to integrate the shallow-water equations is left for future work.

4.3.1. Full Approximation Scheme (FAS)

We define two space-time levels to solve the collocation problem (26), and we denote by ` = f

(respectively, ` = c) the fine level (respectively, the coarse level). We denote by ~Θ` ∈ C(M`+1)K`

and ~F ` ∈ C(M`+1)K` the space-time vector and right-hand side at level `, respectively. The matrix
Rc
f ∈ R(Mc+1)Kc×(Mf+1)Kf is the linear restriction operator from the fine level to the coarse level. Here,

K` represents the total number of spectral coefficients in (15) on level `. As in nonlinear multigrid methods
(Brandt, 1977), the coarse problem is modified by the introduction of a correction term, denoted by ~τ c,
that couples the solutions at the two space-time levels. Specifically, the coarse problem reads

Ac(~Θc)− ~τ c = 1Mc+1 ⊗Θn,0
c , (30)

where the FAS correction term at the coarse level is defined as

~τ c ≡ Ac(R
c
f
~Θf )−Rc

fAf (~Θf ) +Rc
f~τ f , (31)

with, for the two-level case, ~τ f = 0 on the fine level. In (30)-(31), the operator Ac denotes an approxi-
mation of A at the coarse level. We note that

Ac(R
c
f
~Θf )− ~τ c = Ac(R

c
f
~Θf )−Ac(R

c
f
~Θf ) +Rc

fAf (~Θf )−Rc
f~τ f

= Rc
f

(
Af (~Θf )− ~τ f

)
, (32)
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which implies that the restriction of the fine solution, Rc
f
~Θf , is a solution of the coarse problem. On the

coarse problem (30), the modified SDC update for temporal node m+ 1 at sweep (k + 1) is

Θm+1,(k+1)
c = Θn,0

c

+ ∆t

m∑
j=1

(q̃Em+1,j)c
[
FE,c

(
Θj,(k+1)
c

)
− FE,c

(
Θj,(k)
c

)]
+ ∆t

m+1∑
j=1

(q̃Im+1,j)c
[
F I,c

(
Θj,(k+1)
c

)
− F I,c

(
Θj,(k)
c

)]
+ ∆t

M∑
j=0

(qm+1,j)cF c
(
Θj,(k)
c

)
+ τm+1,(k)

c . (33)

4.3.2. IMEX MLSDC algorithm

We are now ready to review the steps of the MLSDC algorithm of Emmett and Minion (2012); Speck

et al. (2015) for the case of two space-time levels. In this section, Θ
m,(k)
` denotes the approximate

solution at temporal node m, space-time level `, and sweep (k). ~Θ
(k)

` is the space-time vector that

contains the approximate solution at all temporal nodes on level `. The vectors F
m,(k)
` and ~F

(k)

` are
defined analogously. The MLSDC iteration starts with an SDC sweep on the fine level. The iteration
continues as in a V-cycle from the fine level to the coarse level, and then back to the fine level. The
specifics of the MLSDC iteration with two space-time levels are detailed in Algorithm 1.

Algorithm 1: IMEX MLSDC iteration on two space-time levels denoted by “coarse” and “fine”.

Data: Initial data Θ
0,(k)
f and function evaluations ~F

(k)

I,f , ~F
(k)

E,f from the previous MLSDC
iteration (k) on the fine level.

Result: Approximate solution ~Θ
(k+1)

` and function evaluations ~F
(k+1)

I,` , ~F
(k+1)

E,` on all levels.

A) Perform a fine sweep

~Θ
(k+1)

f , ~F
(k+1)

I,f , ~F
(k+1)

E,f ←− SweepFine
(
~Θ

(k)

f , ~F
(k)

I,f ,
~F

(k)

E,f

)
B) Restrict, re-evaluate, and save restriction
for m = 1, . . . ,Mc do

Θm,(k)
c ←− Restrict

(
Θ
m,(k+1)
f

)
F
m,(k)
I,c , F

m,(k)
E,c ←− Evaluate F

(
Θm,(k)
c

)
Θ̃
m,(k)

c ←− Θm,(k)
c

F̃
m,(k)

I,c , F̃
m,(k)

E,c ←− Fm,(k)I,c , F
m,(k)
E,c

end
C) Compute FAS correction and sweep

τ c ←− FAS
(
~F

(k)

I,f ,
~F

(k)

E,f ,
~F

(k)

I,c ,
~F

(k)

E,c, τ f
)

~Θ
(k+1)

c , ~F
(k+1)

I,c , ~F
(k+1)

E,c ←− SweepCoarse
(
~Θ

(k)

c , ~F
(k)

I,c ,
~F

(k)

E,c, τ c
)

D) Return to finest level before next iteration
for m = 1, . . . ,Mf do

Θ
m,(k+1)
f ←− Θ

m,(k+1)
f + Interpolate

(
Θm,(k+1)
c − Θ̃

m,(k)

c

)
F
m,(k+1)
I,f ←− Fm,(k+1)

I,f + Interpolate
(
F
m,(k+1)
I,c − F̃

m,(k)

I,c

)
F
m,(k+1)
E,f ←− Fm,(k+1)

E,f + Interpolate
(
F
m,(k+1)
E,c − F̃

m,(k)

E,c

)
end

The single-level SDC iteration only consists of the fine sweep of Step A. Both schemes share the
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same initialization procedure. Specifically, before the first iteration, for k = 0, we initialize the algorithm
described above by simply copying the initial data for the time step, denoted by Θn,0

f , to all the other
SDC nodes, that is, for m ∈ {0, . . . ,Mf}:

Θ
m,(k=0)
f := Θn,0

f . (34)

In Algorithm 1, the procedure SweepFine consists in applying (24) once on the fine level. The procedure
SweepCoarse involves applying the correction described by (33) on the coarse level. We found that
for the numerical examples considered in this work, doing multiple sweeps on the coarse level instead
of one every time SweepCoarse is called does not improve the accuracy of MLSDC, but increases the
computational cost. This is why the procedure SweepCoarse only involves one sweep per call. The
procedure Evaluate F involves computing the implicit and explicit right-hand sides. We highlight that
the last step of Algorithm 1 does not involve any function evaluation. Instead, when we return to the
fine level, we interpolate the coarse solution update as well as the coarse right-hand side corrections to
the fine level. By avoiding Mf function evaluations, this reduces the computational cost of the algorithm
without undermining the order of accuracy of the scheme, as shown with numerical examples in Section 5.
We now discuss two key determinants of the performance of MLSDC-SH, namely, the coarsening strategy
and the solver for the implicit systems.

4.3.3. Coarsening strategy and transfer functions

In this section, we describe the linear restriction and interpolation operators used in the MLSDC-SH
algorithm to transfer the approximate solution from fine to coarse levels, and vice-versa. In this work,
the spatial restriction and interpolation procedures are performed in spectral space and heavily rely on
the decomposition (15) resulting from the SH basis. As explained below, this approach is based on
the truncation of high-frequency modes, and therefore avoids the generation of spurious modes in the
approximate solution that would propagate in the spectrum due to nonlinear wave interweaving over one
coarse sweep.

We reiterate that K` denotes the number of spectral coefficients used in (15) at level ` and M` + 1
denotes the number of SDC nodes at level `. Therefore, the space-time vector storing the state of the
system at level `, denoted by ~Θ`, is in C(M`+1)K` . The two-step restriction process from fine level ` = f
to coarse level ` = c consists in applying a restriction operator in time, denoted by (Rt)cf , followed by a
restriction operator in space, denoted by (Rs)cf , that is,

~Θc = Rc
f
~Θf = (Rs)cf (Rt)cf

~Θf . (35)

In (35), the restriction operator in time is defined using the Kronecker product as

(Rt)cf ≡ Πc
f ⊗ IKf ∈ R(Mc+1)Kf×(Mf+1)Kf , (36)

where IKf ∈ RKf×Kf is the identity matrix, and Πc
f ∈ R(Mc+1)×(Mf+1) is the rectangle matrix employed

to interpolate a scalar function from the fine temporal discretization to the coarse temporal discretization.
Using the Lagrange polynomials Ljf on the fine temporal discretization, this matrix reads

(Πc
f )ij = Lj−1f (ti−1c ), (37)

using the SDC node i− 1 at the coarse level, denoted by ti−1c . We note that, in the special case of two,
three, and five Gauss-Lobatto nodes, applying this restriction operator in time amounts to performing
pointwise injection. The restriction operator in space consists in truncating the spectral representation
of the primary variables (15) based on the SH transform to remove the high-frequency features from the
approximate solution. This is achieved by applying the matrix

(Rs)cf ≡ IMc+1 ⊗Dc
f ∈ R(Mc+1)Kc×(Mc+1)Kf . (38)

In (38), Dc
f ∈ RKc×Kf is a rectangle truncation matrix defined as

(Dc
f )ij =

{
1 i = j

0 otherwise.
(39)
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In the interpolation procedure employed to transfer the approximate solution from the coarse level to
the fine level, we start with the application of the interpolation operator in space, (P s)fc , followed by the
application of the interpolation operator in time, (P t)fc ,

~Θf ≡ P f
c
~Θc = (P t)fc (P s)fc

~Θc. (40)

The interpolation operator in space consists in padding the spectral representation of the primary variables
at the coarse level with Kf −Kc zeros and can be defined as the transpose of the restriction operator in
space (see (38)), that is,

(P s)fc ≡
(
(Rs)cf

)T ∈ R(Mc+1)Kf×(Mc+1)Kc . (41)

Finally, the interpolation operator in time is analogous to (36) and reads

(P t)fc ≡ Πf
c ⊗ IKf ∈ R(Mf+1)Kf×(Mc+1)Kf , (42)

where the rectangle interpolation matrix Πf
c is constructed with the Lagrange polynomials Ljc on the

coarse temporal discretization. For two, three, and five Gauss-Lobatto nodes, this amounts to performing
pointwise injection at the fine nodes that correspond to the coarse nodes, and then polynomial interpo-
lation to compute the solution at the remaining fine nodes. This completes the presentation of the
MLSDC-SH algorithm for the time integration of the shallow-water equations on the rotating sphere.
Next, we discuss the implicit solver used in this work.

4.4. Solver for the implicit systems in SDC and MLSDC

The time integration schemes of Sections 4.2 and 4.3 involve solving implicit linear systems in the
form

Θm+1,(k+1) −∆tq̃Im+1,m+1F I(Θ
m+1,(k+1)) = b, (43)

where b is obtained from (24) or (33), and where we have dropped the subscripts denoting the space-time
levels for simplicity. The structure of the implicit linear systems results from the spatial discretization
based on the SH transform, but also from the temporal splitting between implicit and explicit terms
described in Section 4.1. The solution strategy for (43) is performed in spectral space and follows two
steps briefly outlined below.

First, we algebraically form a reduced linear system containing only the geopotential unknowns – that
is, K/3 degrees of freedom, where K denotes the total number of spectral coefficients needed to represent
the three primary variables in (15). Given that the longitudinal and latitudinal coupling terms present in
the Coriolis term and in the nonlinear operators are discretized explicitly, the K/3 geopotential degrees
of freedom are fully decoupled from one another. The geopotential linear system is therefore diagonal
and trivial to solve. Second, we have to solve for the remaining 2K/3 vorticity and divergence degrees
of freedom. This is again a trivial operation that does not require a linear solver, since we have to solve
two diagonal linear systems to update the vorticity and divergence variables, respectively.

Therefore, solving the implicit system (43) is purely based on local operations during which the degrees
of freedom are updated one at a time in spectral space. We refer to Schreiber and Loft (2018) for the
detailed formulation of the geopotential, vorticity, and divergence diagonal linear systems.

4.5. Computational cost of SDC and MLSDC

In this section, we compare the computational cost of the MLSDC-SH scheme described in Section 4.3
to that of the single-level SDC scheme. We refer to the single-level SDC scheme with Mf + 1 temporal
nodes and NS fine sweeps as SDC(Mf + 1,NS). We denote by MLSDC(Mf + 1, Mc + 1, NML, α) the
MLSDC-SH scheme with Mf +1 nodes on the fine level, Mc+1 nodes of the coarse level, NML iterations,
and a spatial coarsening ratio, α, defined using (11) as α = Rc/Rf . The parameters of the SDC and
MLSDC-SH schemes are summarized in Tables 1 and 2, respectively.

To evaluate the theoretical computational cost of the MLSDC-SH scheme, we count the number of
function evaluations and the number of solves involved in a time step. We denote by Cs` the cost of

a solve at level `, and by Cfi
` (respectively, Cfe

` ) the cost of an implicit (respectively, explicit) function
evaluation at level `. We neglect the cost of computing the FAS correction. The quantities Csc , Cfi

c , Cfe
c

10
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SDC(Mf + 1, NS)
Parameter Description
Mf + 1 SDC nodes on fine level
NS Number of SDC iterations

Table 1: Parameters for the SDC scheme. The SDC iteration only involves one sweep on the fine level.

MLSDC(Mf + 1, Mc + 1, NML, α)
Parameter Description
Mf + 1 SDC nodes on fine level
Mc + 1 SDC nodes on coarse level
NML Number of MLSDC iterations
α Spatial coarsening ratio

Table 2: Parameters for the MLSDC-SH scheme. The MLSDC-SH iteration is described in Alg. 1, and involves
one sweep on the fine level and one sweep on the coarse level.

depend on the spatial coarsening ratio, α = Rc/Rf . Here, R` represents the highest Fourier wavenumber
in the east-west representation of (11) on level `.

The cost of a time step with the two-level MLSDC(Mf + 1,Mc + 1,NML,α) is

CMLSDC(Mf+1,Mc+1,NML,α) = NMLMf (Csf + Cfi
f + Cfe

f )

+NMLMc(C
s
c + Cfi

c + Cfe
c )

+NMLMc(C
fi
c + Cfe

c ), (44)

where the term in the right-hand side of the first line represents the cost of the fine sweeps, the second
term represents the cost of the coarse sweeps, and the third term accounts for the cost of the evaluation
of the right-hand sides at the coarse nodes after the restriction. This can be compared with the cost of
a time step in SDC(Mf + 1,NS), given by

CSDC(Mf+1,NS) = NSMf (Csf + Cfi
f + Cfe

f ). (45)

Furthermore, we assume that the cost of a linear solve is the same as the cost of evaluating the right-hand
side, that is,

Csf = Cfi
f = Cfe

f , (46)

with this assumption being motivated by Section 4.4. In addition, we will also assume that the com-
putational cost of the operators is proportional to the number of spectral coefficients in (15), denoted
by K`. There are three primary variables, and each of them is represented in the triangular truncation
framework with R`(R` + 1)/2 spectral coefficients, where R` denotes the highest Fourier wavenumber
in the east-west representation of (11). This yields K` = 3R`(R` + 1)/2. Using this notation and the
definition α = Rc/Rf , we can obtain an expression of Csc as a function α, Csf , and Rf , by writing

Csc =
Kc

Kf
Csf =

Rc(Rc + 1)

Rf (Rf + 1)
Csf = α2Rf + 1/α

Rf + 1
Csf . (47)

Similarly, using the same assumptions, we obtain

Cfic = α2Rf + 1/α

Rf + 1
Cfif , Cfec = α2Rf + 1/α

Rf + 1
Cfef . (48)

Using these notations and assuming that MLSDC-SH and SDC achieve the same accuracy, the theoretical
speedup obtained with MLSDC-SH, denoted by Stheo, reads

Stheo =
CSDC(Mf+1,NS)

CMLSDC(Mf+1,Mc+1,NML,α)
=

NS
NML

× 1

1 + α2 5(Rf + 1/α)Mc

3(Rf + 1)Mf

. (49)
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That is, MLSDC(3,2,2,1/2), based on two fine sweeps and two coarse sweeps, yields a theoretical speedup
Stheo ≈ 1.66 compared to SDC(3,4), which uses four fine sweeps. This corresponds to a reduction of
40 % in the wall-clock time. MLSDC(5,3,4,1/2), based on four fine sweeps and four coarse sweeps, also
results in a theoretical speedup Stheo ≈ 1.66 compared to SDC(5,8), which relies on eight fine sweeps.
This reasoning assumes that one MLSDC-SH iteration can replace two single-level SDC iterations and
still achieve the same accuracy. This point is investigated in the next section using numerical examples.

We conclude this section by comparing the computational cost of MLSDC-SH to that of the fully im-
plicit single-level SDC scheme based on the Spectral Element Method (SEM) presented in Jia et al. (2013)
and referred to as SDC-SEM in the remainder of this paper. The fully implicit SDC-SEM iteration entails
solving a large nonlinear system on the fine problem to update all the degrees of freedom simultaneously.
This is achieved using the Jacobian-free Newton-Krylov (JFNK) method. As stated by the authors,
the computational cost of this nonlinear solve can be large and heavily depends on the availability of a
scalable preconditioner for the linear systems. Instead, the MLSDC-SH iteration involves trivial diagonal
linear solves that can easily be parallelized. In addition, our multi-level time integration framework relies
on a hierarchy of space-time levels to shift a significant fraction of the computational work to the coarser
representation of the problem. This reduces the number of fine sweeps in the algorithm and therefore
further reduces the cost of a time step.

As a result, we expect IMEX MLSDC-SH to be significantly less expensive than the fully implicit
SDC-SEM on a per-timestep basis for moderate resolutions. Assuming that the linear systems can be
efficiently preconditioned – as in Lott et al. (2015) – the key to the performance of SDC-SEM lies in its
ability to take much larger stable time steps than MLSDC-SH to compensate for its relatively high cost
on a per-timestep basis. Exploration of this trade-off requires a careful analysis that will be presented in
future work.

5. Numerical examples

We assess the performance of MLSDC-SH with state-of-the-art test cases for the development of
dynamical cores. All the test cases are nonlinear. They are selected to focus on particular challenges
that arise with MLSDC-SH. The first test case in Section 5.1 targets geostrophically balanced modes.
It evaluates the effects of multi-level mode truncation and the relation to the diffusion used in the
simulations. The second test case in Section 5.2 studies the observed order of convergence of MLSDC-SH
upon refinement in time for waves propagating on the rotating sphere. While the first two test cases are
mainly dominated by the linear parts, the following benchmarks assess the performance of MLSDC-SH in
the presence of stronger nonlinear interactions. The Rossby-Haurwitz benchmark in Section 5.3 studies
the advection of a wave that propagates around the sphere without changing shape. This is followed by
the unstable barotropic wave benchmark in Section 5.4 with an initially linear balanced flow perturbed
by the introduction of a Gaussian bump in the geopotential field. All these benchmarks provide a key
insight into the numerical properties of MLSDC-SH in the context of atmospheric simulations.

5.1. Steady zonal jet

We first study the behavior of the multi-level SDC scheme on a steady test case derived from Galewsky
et al. (2004). This test case consists in the simulation of a steady, analytically specified mid-latitude jet
with an unperturbed, balanced height field. This test assesses the ability of the numerical schemes to
maintain this balanced state for 144 hours. The vorticity field obtained with the single-level SDC(5,8)
with a modal resolution of Rf = Sf = 256 is in Fig. 1, along with the corresponding vorticity spectrum
in Fig. 2.

This steady numerical test is used to illustrate the order of convergence of MLSDC-SH upon refinement
in time. We will consider the computational cost of the multi-level scheme in subsequent examples. We
highlight that we do not use the steady geostrophic balance test case of Williamson et al. (1992) here
because it is based on an initial vorticity field that can be represented with a few modes only. Instead,
the vorticity field of Fig. 2 has a spectrum that spans a larger number of modes. This is key for our
analysis because it allows us to better study the impact of the coarsening strategy based on spectral
coefficient truncation (see Section 4.3.3) on the convergence rate upon temporal refinement. To our best
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knowledge, this is the first time that a study of the effect of the coarsening strategy on the observed order
of convergence of MLSDC is conducted.
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Figure 1: Steady zonal jet: vorticity field with a resolution of Rf = Sf = 256 after 144 hours. This solution is
obtained with the single-level SDC(5,8). The diffusion coefficient is νB = 1.0× 105 m2.s−1.
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Figure 2: Steady zonal jet: max-spectrum of the vorticity field at the beginning of the simulation and after 144
hours for different values of the diffusion coefficient. The quantity on the y-axis is defined as |ζn0 | = maxr |ζrn0

|.

We perform a refinement study in time to assess the impact of the spatial coarsening ratio, α, on the
observed order of convergence of the MLSDC-SH scheme. The study is done with a fixed fine resolution
of Rf = Sf = 256. We consider two configurations, denoted by A and B, in which the diffusion coefficient
is set to νA = 1× 104 m2.s−1 and νB = 1× 105 m2.s−1, respectively. In each configuration, the reference
solution is obtained with SDC(5,8) using a time step size of ∆tref = 90 s. Fig. 3 shows the norm of the
error in the vorticity field with respect to the reference solution as a function of the time step size. We use
the L∞-norm to illustrate the connection between the convergence rate of MLSDC-SH upon refinement in
time and the magnitude of the spectral coefficients of the vorticity that are truncated during the spatial
restriction from the fine level to the coarse level. For this test case, we focus on MLSDC(3,2,2,α), which
relies on three fine temporal nodes, two coarse temporal nodes, and uses two iterations (with one fine
sweep and one coarse sweep per iteration). In both configurations, the observed order of convergence of
MLSDC(3,2,2,α) varies significantly as a function of the spatial coarsening ratio, α.

In configuration A, MLSDC(3,2,2,1/2) achieves fourth-order convergence upon refinement in time for
stable time steps larger than 120 s, but exhibits only second-order convergence for shorter time steps. The
reduction in the observed order of convergence can be explained by considering the vorticity spectrum of
Fig. 2. Specifically, we note that for the time step size range defined by ∆t ≤ 90 s, the MLSDC(3,2,2,1/2)
scheme reaches an L∞-norm of the error smaller than 10−9. We see in Fig. 2 that this threshold corre-
sponds to the order of magnitude of the truncated terms during the restriction to the coarse level when
Rc = Sc = 128. In MLSDC(3,2,2,1/4) and MLSDC(3,2,2,1/8), the truncated coefficients in the vorticity
spectrum are relatively large which causes the observed convergence rate upon refinement in time to
be reduced to second order in the entire range of stable time step sizes. Conversely, MLSDC(3,2,2,4/5)
achieves the same convergence rate as SDC(3,4) over the full time step range (not shown here for brevity).

In configuration B, the use of a larger diffusion coefficient significantly reduces the magnitude of the
spectral coefficients associated with the high-frequency modes. Therefore, the MLSDC(3,2,2,1/2) scheme
achieves fourth-order convergence in the entire time step range considered here. MLSDC(3,2,2,1/4)
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Figure 3: Steady zonal jet: L∞-norm of the error in the vorticity field with respect to the reference solution
as a function of time step size. When the norm of the error is smaller than the magnitude of the spectral terms
truncated during spatial coarsening (given in Fig. 2), MLSDC(3,2,2,α) exhibits only second-order convergence
upon refinement in time. Above this threshold, we observe fourth-order convergence.

achieves fourth-order convergence in a larger fraction of the range of stable time step sizes, but still
exhibits a reduction of its observed order of convergence when the norm of the error reaches the magnitude
of the terms that are truncated during the restriction procedure. MLSDC(3,2,2,1/8) is still limited to
second-order convergence. For this test case, the order of convergence of the MLSDC-SH scheme for the
geopotential and divergence variables, not shown here, is similar to that observed for the vorticity.

The key insight of this section is that the accuracy of MLSDC-SH as the time step is reduced depends
on the interplay between two key factors, namely the spectrum of the fine solution and the magnitude of
the spatial coarsening ratio. They determine the range of scales of the fine solution that can be captured
by the coarse correction, and as a result have a strong impact on the observed order of convergence of
MLSDC-SH upon refinement in time. In particular, the presence of large high-frequency modes in the fine
solution imposes of lower limit on the spatial coarsening ratio to preserve the high-order convergence of
the multi-level scheme. Next, we study the computational cost of the MLSDC-SH scheme using unsteady
test cases, starting with Gaussian dome propagation.

5.2. Propagation of a Gaussian dome

We now consider an initial condition derived from the third numerical experiment of Swarztrauber
(2004). The velocities are initially equal to zero (u = v = 0). We place a Gaussian dome in the initial
geopotential field, such that

h(λ, φ) = h̄+Ae−α(d/a)
2

, (50)

where a denotes the Earth radius. The distance d is defined as

d =
√
x2 + y2 + z2, (51)

with

x = a
(

cos(λ) cos(φ)− cos(λc) cos(φc)
)
, (52)

y = a
(

sin(λ) cos(φ)− sin(λc) cos(φc)
)
, (53)

z = a
(

sin(φ)− sin(φc)
)
. (54)

This corresponds to a Gaussian dome centered at λc = π and φc = π/4. We use realistic values for the
Earth radius, the gravitational acceleration, and the angular rate of rotation Ω involved in the Coriolis
force. We set h̄ = 29400 m and A = 6000 m, which is about ten times larger than in the original test
case. The simulation of the collapsing dome is run for one day to study the behavior of MLSDC-SH on
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Figure 4: Gaussian dome: geopotential field with a resolution of Rf = Sf = 256 at the start of the simulation
in 4(a), after 9000 s in 4(b), and after one day in 4(c). This solution is obtained with the single-level SDC(5,8).
The diffusion coefficient is ν = 1.0× 105 m2.s−1.
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Figure 5: Gaussian dome: max-spectrum of the geopotential field at the beginning of the simulation and after
one day. We use a diffusion coefficient ν = 1.0 × 105 m2.s−1. The quantity on the y-axis is defined as |Φn0 | =
maxr |Φr

n0
|.

an advection-dominated test case. The geopotential field at different times is in Fig. 4, and the spectrum
is in Fig. 5.

To assess the accuracy of the MLSDC-SH scheme, we perform a refinement study in time for a fixed
spatial resolution (Rf = Sf = 256) over one day. The reference solution is obtained with the single-level
SDC(5,8) and a time step size of ∆tref = 60 s. The diffusion coefficient is set to ν = 1 × 105 m2.s−1.
For this test case, we focus again on the geopotential and vorticity fields, because the results for the
divergence field are qualitatively similar. For completeness, the study includes the results obtained with
a second-order implicit-explicit Runge-Kutta scheme based on the temporal splitting (16) to (18). The
L∞-norm of the error with respect to the reference solution, as a function of time step size, is shown in
Fig. 6.

We see that MLSDC(3,2,2,1/2) achieves fourth-order convergence and an error of the same magnitude
as that obtained with the single-level SDC(3,4) for time step sizes such that ∆t ≥ 60 s. For a smaller
time step size of 30 s, the error induced by the truncation of high-frequency modes during coarsening
reduces the observed convergence of MLSDC(3,2,2,1/2) to second order. As in the previous numerical
example, the reduction in the observed convergence rate occurs when the L∞-norm of the error reaches
the magnitude of the spectral coefficients truncated during spatial coarsening – about 10−1 for the
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Figure 6: Gaussian dome: L∞-norm of the error in the geopotential field in 6(a) and the vorticity field
in 6(b) with respect to the reference solution as a function of time step size. MLSDC(3,2,2,1/2) (respectively,
MLSDC(5,3,4,1/2)) achieves the same order of convergence as the SDC(3,4) (respectively, SDC(5,8)) for larger
time steps. For smaller time steps, more MLSDC-SH iterations are necessary to achieve the same order of
convergence as the corresponding single-level schemes.

geopotential according to Fig. 5. Numerical results not included for brevity indicate that this reduction
in accuracy caused by spatial coarsening persists even in the absence of temporal coarsening (Mf = Mc).
Still, in Fig. 6, the magnitude of the error obtained with MLSDC(3,2,2,1/2) in this range of small
time steps remains significantly smaller than that obtained with the single-level second-order SDC(2,2).
Fig. 6 also shows that MLSDC(5,3,4,1/2) achieves the same convergence rate as the single-level SDC(5,8)
whenever ∆t ≥ 400 s. For smaller time step sizes, the observed convergence of MLSDC(5,3,4,1/2) is
reduced to fourth order. But, Fig. 6 demonstrates that doing more iterations with MLSDC(5,3,7,1/2) is
sufficient to recover eighth-order convergence in the asymptotic range.

To interpret these results, we distinguish two regimes in the temporal refinement study of Fig. 6. For
very large time steps, large errors are caused by the fact that the fine and coarse corrections do not resolve
the large temporal scales accurately and overstep the small scales present in the problem. Reducing the
time step size in this regime reduces the errors associated with the large temporal scales. These scales
can be resolved on both the coarse level and the fine level which explains why MLSDC-SH and SDC
converge at the same rate. The second regime starts for smaller time steps once these large scales have
been resolved accurately. The error is then dominated by small-scale features that can be resolved by
the fine correction but cannot be captured by the coarse correction due to its lower spatial resolution of
the coarse problem. This undermines the observed order of convergence of MLSDC-SH as the time step
size becomes very small.

In Fig. 7, we investigate the computational cost the MLSDC-SH scheme by measuring the wall-clock
time of the simulations. MLSDC(3,2,2,1/2) is more efficient than the SDC(2,2) and SDC(3,4) schemes
for the time step sizes considered here despite the reduced observed order of convergence when ∆t ≤ 60 s.
MLSDC(5,3,4,1/2) is as efficient as MLSDC(3,2,2,1/2) whenever ∆t ≥ 120 s. Below this time step size, its
efficiency deteriorates slightly. Since the MLSDC-SH scheme does not necessarily match the convergence
rate of SDC in the simulations, we compute an observed speedup, Sobs, as the ratio of the computational
cost of SDC over that of MLSDC-SH for a given error norm in Fig. 7. For an error norm of 100 in the
geopotential field, MLSDC(3,2,2,1/2) achieves an observed speedup Sobs ≈ 1.58 – i.e., a reduction of
37 % in wall-clock time – compared to SDC(3,4). Considering that the cost of the FAS correction has
been neglected in (49), this is close to the theoretical speedup Stheo ≈ 1.66 computed in Section 4. For
the same magnitude of the error norm, MLSDC(5,3,4,1/2) achieves an observed speedup Sobs ≈ 1.50
compared to SDC(5,8), which represents a reduction of 33 % in wall-clock time. This is again relatively
close to the theoretical speedup Stheo ≈ 1.66. Although this is not included in the figure for clarity, we
point out that MLSDC(5,3,5,1/2) and MLSDC(5,3,7,1/2) are more accurate, but also more expensive
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Figure 7: Gaussian dome: L2-norm of the error in the geopotential field in 7(a) and the vorticity field in 7(b)
with respect to the reference solution as a function of the computational cost for the Gaussian dome test case.
MLSDC(3,2,2,1/2) is more efficient than SDC(3,4) in the full time step range. MLSDC(5,3,4,1/2) is more
efficient than SDC(5,8) when the norm of the error is above 10−1 for the geopotential, and above 10−11 for the
vorticity. Below these thresholds, MLSDC(5,3,4,1/2) only performs as efficiently as MLSDC(3,2,2,1/2) because
of the reduction in its observed order of convergence upon refinement in time.

than MLSDC(5,3,4,1/2) in the range of time step sizes considered here.

5.3. Rossby-Haurwitz wave

In this section, we apply MLSDC-SH to the Rossby-Haurwitz wave test case included in Williamson
et al. (1992) and also considered in Jia et al. (2013). The initial analytically specified velocity field is
non-divergent, and is computed with wavenumber 4. The initial geopotential field is obtained by solving
the balance equation. The resulting Haurwitz pattern moves from east to west. We consider a fine
resolution defined by Rf = Sf = 256 and we use a diffusion coefficient ν = 1.0 × 105 m2.s−1. In Fig. 8
(respectively, Fig. 9), we show the solution (respectively, the vorticity spectrum) obtained with SDC(5,8)
after one day.
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Figure 8: Rossby-Haurwitz wave: geopotential field in 8(a) and vorticity field in 8(b) with a resolution of
Rf = Sf = 256 after one day. This solution is obtained with the single-level SDC(5,8). The diffusion coefficient
is ν = 1.0× 105 m2.s−1.

As in the previous sections, we carry out a refinement study in time using a reference solution obtained
with SDC(5,8) over one day using a time step size ∆tref = 120 s. The results, shown in Fig. 10, differ be-
tween the geopotential variable and the vorticity variable. Specifically, for the former, MLSDC(3,2,2,1/2)
achieves fourth-order convergence upon refinement in time and the same error magnitude as SDC(3,4)
for the full time step size range considered here. MLSDC(5,3,4,1/2) is also more accurate than in the
previous examples and reaches fifth-order convergence. But, for the vorticity variable, MLSDC(3,2,2,1/2)
exhibits a reduction in its convergence rate when ∆t ≤ 120 s, which is slightly earlier than SDC(3,4).
Here again, this reduction is caused by the truncation of high-frequency modes during coarsening (see
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Figure 9: Rossby-Haurwitz wave: max-spectrum of the vorticity field for the Rossby-Haurwitz wave test case at
the beginning of the simulation and after one day. The quantity on the y-axis is defined as |ζn0 | = maxr |ζrn0

|. To
simplify the figure, we only show |ζn0 | for the even n0. The odd n0 correspond to negligible |ζn0 | and are therefore
omitted.

the vorticity spectrum in Fig. 9). MLSDC(5,3,4,1/2) is not in the asymptotic range and has already
converged for the range of time step sizes considered here, which explains the flat line in Fig. 10(b).

In terms of wall-clock time, the most efficient scheme for both variables is MLSDC(5,3,2,1/2), as
shown in Fig. 11. This multi-level scheme achieves a very low error norm for both variables while
performing a large portion of the computations on the coarse level. MLSDC(3,2,2,1/2) is less efficient than
MLSDC(5,3,2,1/2) but still more efficient than SDC(3,4) on the full range of time steps. In particular,
for an error norm of 10−4 in the geopotential field, MLSDC(3,2,2,1/2) achieves an observed speedup
Sobs ≈ 1.50 compared to SDC(3,4), that is, a reduction in wall-clock time of 35 %. This is in good
agreement with the theoretical speedup Stheo ≈ 1.66 computed in Section 4.5. The MLSDC(3,2,2,1/2)
performance deteriorates for the vorticity variable for smaller time steps and the speedup compared to
SDC(3,4) decreases because of the reduction in its observed order of convergence. For an error norm of
10−12 in the vorticity field, the observed speedup is Sobs ≈ 1.50, but it is reduced to Sobs ≈ 1.13 for an
error norm of 10−14. Next, we conclude the analysis of MLSDC-SH with a challenging unsteady test case
representative of atmospheric flows.
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Figure 10: Rossby-Haurwitz wave: L∞-norm of the error in the geopotential field in 10(a) and the vorticity field
in 10(b) with respect to the reference solution as a function of time step size. For this example, MLSDC(3,2,2,1/2)
(respectively, MLSDC(5,3,4,1/2)) achieves the same observed order of convergence as the single-level SDC(3,4)
(respectively, SDC(5,8)).
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Figure 11: Rossby-Haurwitz wave: L2-norm of the error in the geopotential field in 11(a) and the vorticity field
in 11(b) with respect to the reference solution as a function of the computational cost. The most efficient scheme
is MLSDC(5,3,4,1/2). We also note that MLSDC(3,2,2,1/2) is more efficient than the single-level SDC(3,4) for
the range of time step sizes considered here.

5.4. Nonlinear evolution of an unstable barotropic wave

In this section, we consider the barotropic instability test case proposed in Galewsky et al. (2004).
This is done by introducing a localized bump in the height field to perturb the balanced state described
in Section 5.1. The perturbation first triggers the development of gravity waves and then leads to the
formation of complex vortical dynamics. These processes operate on multiple time scales and are represen-
tative of the horizontal features of atmospheric flows. We run the simulations using two configurations,
B and C, based on a diffusion coefficient νB = 1.0 × 105 m2.s−1 – as in Galewsky et al. (2004) – and
νC = 2.0× 105 m2.s−1, respectively. The reference solutions for the refinement studies detailed below are
obtained with SDC(5,8) with a time step size ∆tref = 60 s. In Jia et al. (2013), the largest time step size
used in the single-level SDC scheme combined with the Spectral Element Method (SEM) based on 24
elements along each cube edge and a polynomial basis of degree seven is 1200 s, which is the same order
of magnitude as the largest time step size used here. The vorticity fields after 122 hours and 144 hours
for configuration B are shown in Fig. 12. Fig. 13 presents the corresponding spectrum of the vorticity
field at the same times.
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Figure 12: Unstable barotropic wave: vorticity field with a resolution of Rf = Sf = 256 after 120 hours in 12(a)
and 144 hours in 12(b). This solution is obtained with the single-level SDC(5,8). The diffusion coefficient is
νB = 1.0× 105 m2.s−1.

As in Section 5.1, we first highlight the connection between the spectrum of the vorticity field and
the observed order of convergence of the MLSDC-SH scheme upon refinement in time. This is done with
MLSDC(3,2,2,1/2) – that is, MLSDC-SH with three nodes on the fine level, two nodes on the coarse
level, two iterations, and Rc = Sc = 128 – in the refinement study in time shown in Fig. 14. When
νB = 1.0× 105 m2.s−1, the magnitude of the truncated terms in the vorticity spectrum is of the order of
10−8 (see Fig. 13). Since this is also the order of the L∞-norm of the error for the largest stable time step
(∆t = 400 s), MLSDC(3,2,2,1/2) achieves only second-order convergence for the range of time step sizes
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Figure 13: Unstable barotropic wave: max-spectrum of the vorticity field after 144 hours for various values of
the diffusion coefficient. The quantity on the y-axis is defined as |ζn0 | = maxr |ζrn0

|. We observe a strong damping
of the high-frequency modes when the diffusion coefficient is large. This has a significant impact on the observed
order of convergence of MLSDC-SH as shown in Fig. 14.

considered here. With νC = 2.0×105 m2.s−1, the magnitude of the truncated terms is of the order of 10−9,
and MLSDC(3,2,2,1/2) reaches fourth-order convergence until this threshold is reached for ∆t = 320 s.
For completeness, we have run the same test with ν = 3.0 × 105 m2.s−1, in which case this threshold
is lower, which allows MLSDC(3,2,2,1/2) to exhibit fourth-order convergence for ∆t ≥ 120 s. In the
following paragraphs, we show that this reduction in the observed order of convergence can be overcome
by doing additional MLSDC-SH iterations. For instance, we demonstrate that MLSDC(3,2,3,1/2) recovers
fourth-order convergence in configurations B and C.
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Figure 14: Unstable barotropic wave: L∞-norm of the error in the vorticity field with respect to the reference
solution as a function of the time step size. These results are obtained with MLSDC(3,2,2,1/2). We note again
that a reduction in the observed order of convergence of MLSDC-SH occurs when the norm of the error is smaller
than the magnitude of the spectral coefficients that are truncated during spatial coarsening (see Fig. 13).

We now use this knowledge of the spectrum of the vorticity field to motivate our choice of the spatial
coarsening ratio in each configuration. The goal is to make the coarse sweeps as inexpensive as possible
without undermining the observed order of convergence of the MLSDC-SH scheme upon refinement in
time. In configuration B, we choose a relatively modest spatial coarsening ratio αB ≈ 0.8 to account
for the presence of large spectral coefficients associated with the high-frequency modes. At the coarse
level, this choice yields RBc = SBc = 204. In configuration C, we can choose a more aggressive coarsening
strategy with αC = 0.5, leading to RCc = SCc = 128 as in the previous test cases. These choices are such
that the magnitude of the truncated spectral vorticity coefficients have the same order of magnitude,
that is |ζB204| ≈ |ζC128| ≈ 3× 10−9 in Fig. 13. The results of the refinement study in L∞-norm are shown
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in Fig. 15 for the geopotential. The asymptotic rates observed for the divergence and the vorticity are
qualitatively similar to those of the geopotential and are therefore omitted for brevity.
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Figure 15: Unstable barotropic wave: L∞-norm of the error in the geopotential field with respect to the reference
solution as a function of the time step size. MLSDC(3,2,2,α) achieves the same order of convergence as SDC(3,4)
in both configurations. MLSDC(5,3,4,α) is also more accurate than SDC(3,4), but achieves the same accuracy as
SDC(5,8) for larger time steps only. Doing additional MLSDC-SH iterations – in this case, seven iterations with
MLSDC(5,3,7,α) – is needed to match the accuracy of SDC(5,8) in the full range of time step sizes.

In Fig. 15, MLSDC(3,2,2,α) exhibits the same observed order of convergence and error magnitude
as SDC(3,4) for both diffusion configurations. MLSDC(5,3,4,α) also converges at a fourth-order rate
in the asymptotic range, but achieves a significantly smaller error magnitude than MLSDC(3,2,2,α).
MLSDC(5,3,4,α) is as accurate as SDC(5,8) for larger time step sizes. But, to achieve the same ob-
served order of convergence as SDC(5,8) in the entire range of time step sizes, seven iterations – with
MLSDC(5,3,7,α) – are needed. Finally, we note that numerical examples not shown here for brevity con-
firm that the observed order of convergence of MLSDC-SH increases significantly for a larger coefficient
α – i.e., less aggressive spatial coarsening –, but this also drastically increases the computational cost.
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Figure 16: Unstable barotropic wave: L2-norm of the error in the geopotential field with respect to the reference
solution as a function of the computational cost. MLSDC(3,2,2,α) is more efficient than SDC(3,4). The cost
reduction is larger when the spatial coarsening is more aggressive (α = 1/2). MLSDC(5,3,4,α) is more efficient
that SDC(5,8) for larger error magnitudes. In the range of relatively larger errors, MLSDC(5,3,4,α) is the most
efficient scheme among those considered here.

In Fig. 16, we show the L2-norm of the error as a function of the wall-clock time of the simulations
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for the geopotential. We see that MLSDC(3,2,2,α) is significantly less expensive than SDC(3,4) in the
full range of time step sizes. This cost reduction is larger with MLSDC(3,2,2,αC) since configuration C
allows for a more aggressive spatial coarsening strategy than configuration B. In both configurations,
the observed speedup of MLSDC(3,2,2,1/2) compared to SDC(3,4) is close to the theoretical speedup.
Specifically, in configuration B, the observed speedup is Sobs

B ≈ 1.28 for an error norm of 3 × 10−3 in
the geopotential field whereas the theoretical speedup – obtained with (49) evaluated with αB = 0.8
– is Stheo

B ≈ 1.30. In configuration C, MLSDC(3,2,2,1/2) achieves Sobs
C ≈ 1.56 for an error norm of

8×10−5 in the geopotential, for a theoretical speedup Stheo
C ≈ 1.66. MLSDC(5,3,4,α) is the most efficient

scheme for relatively large error magnitudes and also achieves observed speedups close to the theoretical
speedup. But, the performance of MLSDC(5,3,4,α) deteriorates for lower error magnitudes. We found
that doing additional iterations, for instance with MLSDC(3,2,3,α) or MLSDC(5,3,5,α), does not improve
the efficiency of MLSDC-SH.

6. Conclusions and future work

We have studied a high-order implicit-explicit iterative multilevel time integration scheme for the
nonlinear shallow-water equations on the rotating sphere. Our algorithm relies on the Multi-Level Spectral
Deferred Corrections (MLSDC) scheme of Emmett and Minion (2012); Speck et al. (2015) combined with
a spatial discretization performed with the global Spherical Harmonics (SH) transform. MLSDC-SH
applies a sequence of updates distributed on a hierarchy of space-time levels obtained by coarsening
the problem in space and in time. This approach makes it possible to shift a significant portion of the
computational work to the coarse representation of the problem to reduce the time-to-solution while
preserving accuracy.

We have discussed the requirements of consistent inter-level transfer operators which play a crucial
role in MLSDC-SH. Our approach consists in exploiting the canonical basis of the multi-level scheme.
This SH-based algorithm leads to restriction and interpolation procedures performed in spectral space to
transfer the solution between different spatio-temporal levels. The proposed restriction and interpolation
methods do not introduce spurious modes that would, driven by nonlinear interactions, propagate across
the spectrum. Our results show that this is one the key features needed to obtain an efficient MLSDC-
SH scheme. The development of restriction and interpolation operators for other non-global spatial
discretization schemes is left for future work.

We have shown that MLSDC-SH is efficient for the nonlinear wave-propagation-dominated problems
arising from the discretized Shallow-Water Equations (SWE) on the rotating sphere. Our numerical
studies are based on challenging test cases that are representative of the horizontal effects present in
the full atmospheric dynamics. With a steady zonal jet test case, we have first examined the impact of
the coarsening strategy on the observed accuracy of MLSDC-SH upon refinement in time. Then, using
unsteady numerical examples, we have shown that MLSDC-SH can achieve up to eighth-order convergence
upon refinement in time, and that MLSDC-SH can take stable time steps that are as large as those of
the single-level SDC schemes. We have also demonstrated that MLSDC-SH is more efficient than the
single-level SDC schemes, and in particular requires fewer function evaluations. Our results show that
MLSDC-SH can reduce the wall-clock time of the simulations by up to 37% compared to single-level SDC
schemes.

As a final note, we mention here that MLSDC is one of the key building blocks of the Parallel Full
Approximation Scheme in Space and in Time (PFASST). The present work therefore lays the foundations
of a parallel-in-time integration of the full shallow-water equations on the sphere with PFASST.

7. Code availability

The code used to generate the simulations presented here is publicly available (Schreiber, 2018).

8. Acknowledgements

The work of François Hamon and Michael Minion was supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under

22



Multi-Level SDC Scheme for the Shallow-Water Equations on the Rotating Sphere

contract number DE-AC02005CH11231. Part of the simulations were performed using resources of the
National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. Martin Schreiber gratefully acknowledges support from the Computational and Information
Systems Laboratory (CISL) Visitor Program at the National Center for Atmospheric Research in Boulder,
CO. We thank Andreas Kreienbuehl for discussions on his work on MLSDC and PFASST using the
Spectral Element Method.

References

Bolten, M., Moser, D., and Speck, R. (2017). A multigrid perspective on the parallel full approximation
scheme in space and time. Numerical Linear Algebra with Applications, 24(6):e2110–n/a.

Bourke, W. (1972). An efficient, one-level, primitive-equation spectral model. Monthly Weather Review,
100(9):683–689.

Bourlioux, A., Layton, A. T., and Minion, M. L. (2003). High-order multi-implicit spectral deferred
correction methods for problems of reactive flow. Journal of Computational Physics, 189(2):651–675.

Brandt, A. (1977). Multi-level adaptive solutions to boundary-value problems. Mathematics of compu-
tation, 31(138):333–390.

Christlieb, A., Ong, B., and Qiu, J.-M. (2009). Comments on high-order integrators embedded within
integral deferred correction methods. Communications in Applied Mathematics and Computational
Science, 4(1):27–56.

Crockatt, M. M., Christlieb, A. J., Garrett, C. K., and Hauck, C. D. (2017). An arbitrary-order, fully
implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction. Journal
of Computational Physics, 346:212–241.

Durran, D. R. and Blossey, P. N. (2012). Implicit–explicit multistep methods for fast-wave–slow-wave
problems. Monthly Weather Review, 140(4):1307–1325.

Dutt, A., Greengard, L., and Rokhlin, V. (2000). Spectral deferred correction methods for ordinary
differential equations. BIT Numerical Mathematics, 40(2):241–266.

Emmett, M. and Minion, M. L. (2012). Toward an efficient parallel in time method for partial differential
equations. Communications in Applied Mathematics and Computational Science, 7(1):105–132.

Evans, K. J., Taylor, M. A., and Drake, J. B. (2010). Accuracy analysis of a spectral element atmospheric
model using a fully implicit solution framework. Monthly Weather Review, 138(8):3333–3341.

Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., and Schroder, J. B. (2014). Parallel time
integration with multigrid. SIAM Journal on Scientific Computing, 36(6):C635–C661.

Galewsky, J., Scott, R. K., and Polvani, L. M. (2004). An initial-value problem for testing numerical
models of the global shallow-water equations. Tellus A, 56(5):429–440.

Gardner, D. J., Guerra, J. E., Hamon, F. P., Reynolds, D. R., Ullrich, P. A., and Woodward, C. S. (2018).
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models. Geoscientific
Model Development, 11(4):1497.

Giraldo, F. X. (2005). Semi-implicit time-integrators for a scalable spectral element atmospheric model.
Quarterly Journal of the Royal Meteorological Society, 131(610):2431–2454.

Giraldo, F. X., Kelly, J. F., and Constantinescu, E. M. (2013). Implicit-explicit formulations of a three-
dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM Journal on Scientific
Computing, 35(5):B1162–B1194.

Hack, J. J. and Jakob, R. (1992). Description of a global shallow water model based on the spectral
transform method. National Center for Atmospheric Research.

Hagstrom, T. and Zhou, R. (2007). On the spectral deferred correction of splitting methods for initial
value problems. Communications in Applied Mathematics and Computational Science, 1(1):169–205.

Hamon, F. P., Day, M. S., and Minion, M. L. (forthcoming). Concurrent implicit spectral deferred
correction scheme for low-Mach number combustion with detailed chemistry. http://dx.doi.org/10.
1080/13647830.2018.1524156.

Jia, J., Hill, J. C., Evans, K. J., Fann, G. I., and Taylor, M. A. (2013). A spectral deferred correction
method applied to the shallow water equations on a sphere. Monthly Weather Review, 141(10):3435–
3449.

23



Hamon et al.

Kanamitsu, M., Tada, K., Kudo, T., Sato, N., and Isa, S. (1983). Description of the JMA operational
spectral model. Journal of the Meteorological Society of Japan. Ser. II, 61(6):812–828.

Layton, A. T. and Minion, M. L. (2004). Conservative multi-implicit spectral deferred correction methods
for reacting gas dynamics. Journal of Computational Physics, 194(2):697–715.

Lions, J.-L., Maday, Y., and Turinici, G. (2001). Résolution d’EDP par un schéma en temps pararéel.
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