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Behavioral/Cognitive

The Representation of Semantic Information Across Human
Cerebral Cortex During Listening Versus Reading Is
Invariant to Stimulus Modality

X Fatma Deniz,1,2,3,4 Anwar O. Nunez-Elizalde,1 Alexander G. Huth,1 and X Jack L. Gallant1,3

1Helen Wills Neuroscience Institute, 2Berkeley Institute for Data Science, 3Department of Psychology, University of California, Berkeley, California 94720,
and 4International Computer Science Institute, Berkeley, California 94704

An integral part of human language is the capacity to extract meaning from spoken and written words, but the precise relationship
between brain representations of information perceived by listening versus reading is unclear. Prior neuroimaging studies have shown
that semantic information in spoken language is represented in multiple regions in the human cerebral cortex, while amodal semantic
information appears to be represented in a few broad brain regions. However, previous studies were too insensitive to determine whether
semantic representations were shared at a fine level of detail rather than merely at a coarse scale. We used fMRI to record brain activity
in two separate experiments while participants listened to or read several hours of the same narrative stories, and then created voxelwise
encoding models to characterize semantic selectivity in each voxel and in each individual participant. We find that semantic tuning
during listening and reading are highly correlated in most semantically selective regions of cortex, and models estimated using one
modality accurately predict voxel responses in the other modality. These results suggest that the representation of language semantics is
independent of the sensory modality through which the semantic information is received.
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Introduction
Humans have the unique capacity to communicate and extract
meaning through both spoken and written language. Although

the early sensory processing pathways for listening and reading
are distinct, listeners and readers appear to extract very similar
information about the meaning of a narrative story (Rubin et al.,
2000; Diakidoy et al., 2005). This suggests that the human brain
represents semantic information in an amodal form that is inde-
pendent of input modality (Vigneau et al., 2006; Binder et al.,
2009; Price, 2010, 2012). There is evidence that several cortical
regions are activated during both listening and reading (for re-
views, see Price, 2010, 2012). However, the demonstration of
some common activation during listening and reading is neces-
sary but not sufficient evidence of a common amodal semantic
representation.

A direct and convincing way to determine if listening and
reading involve a common underlying semantic representation
would be to compare directly the semantic selectivity maps ob-
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Significance Statement

Humans can comprehend the meaning of words from both spoken and written language. It is therefore important to understand
the relationship between the brain representations of spoken or written text. Here, we show that although the representation of
semantic information in the human brain is quite complex, the semantic representations evoked by listening versus reading are
almost identical. These results suggest that the representation of language semantics is independent of the sensory modality
through which the semantic information is received.
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tained during listening and reading of natural text, in single par-
ticipants. However, to date no study has performed this crucial
comparison. Most imaging studies of the semantic system have
examined only one input modality, either spoken or written
words (Démonet et al., 1994, 1992; Vandenberghe et al., 1996;
Scott et al., 2000; Booth et al., 2002; Rissman et al., 2003; Devlin et
al., 2004; Nakamura et al., 2005). Relatively few have studied
cross-modal representations by presenting the same stimuli in
both modalities (Petersen et al., 1989; Chee et al., 1999; Michael et
al., 2001; Spitsyna et al., 2006; Jobard et al., 2007; Buchweitz et al.,
2009; Liuzzi et al., 2017). Most of these cross-modality studies
observed activity in left lateralized regions such as the left anterior
temporal lobe, left superior temporal sulcus (STS), left middle
temporal gyrus (MTG), and left inferior frontal gyrus (IFG).
Most of these studies used tightly controlled stimuli, such as a set
of single isolated words, sentences or curated passages, and an
explicit lexical semantic task (Chee et al., 1999; Michael et al.,
2001; Buchweitz et al., 2009; Liuzzi et al., 2017). A study that used
narrative speech in a listening and reading task demonstrated
amodal brain activity in left pSTG, left IFG, bilateral precuneus,
medial prefrontal cortex (PFC), and angular gyrus (Regev et al.,
2013). However, that study did not model semantic information,
but only showed that voxel activations in these regions tend to be
correlated across these two modalities. Furthermore, previous
studies were too coarse grained to determine whether listening
and reading shared semantic representations at the level of a sin-
gle voxel. For example, the semantic representation of listening
and reading might have been modal at a fine scale (i.e., single
voxel), although amodal at a coarse scale. In sum, the evidence
available currently is insufficient to determine whether semantic
information obtained during listening and reading are repre-
sented in the same way.

To address this issue we used fMRI to record blood-oxygen-
level-dependent (BOLD) activity in human participants while
they listened to and read the same narrative stories. We then used
voxelwise modeling (VM) combined with banded ridge regres-
sion (Nunez-Elizalde et al., 2019) to characterize the semantic
selectivity of each voxel in each presentation modality and for
each individual participant (see Materials and Methods and
Naselaris et al., 2011; Nishimoto et al., 2011; Huth et al., 2012,
2016; Çukur et al., 2013; Stansbury et al., 2013; Lescroart et al.,
2015). Finally, we compared the semantic tuning of each voxel in the
two modalities by creating semantic maps (Huth et al., 2016) for
both modalities and each individual participant. In addition, we
identified modality independent cortical representation of semantic
information by predicting voxel responses cross-modally. Compar-
ison of the fit semantic models and semantic maps obtained by lis-
tening versus reading provides a sensitive and objective means to
determine whether and how semantic selectivity changes depending on
the modality with which semantic information is perceived.

Materials and Methods
Participants
Functional data were collected from six male participants and three fe-
male participants: S1 (male, age 31), S2 (male, age 31), S3 (female, age
28), S4 (female, age 25), S5 (male, age 30), S6 (male, age 25), and S7
(male, age 36), S8 (female, age 24), S9 (male, age 24). Two of the partic-
ipants were authors on the paper (A.G.H. and A.O.N.-E.). All partici-
pants listened to and read all the stories. Listening and reading
presentations were counterbalanced across participants. All participants
were healthy and had normal hearing, and normal or corrected-to-
normal vision. One participant was left handed, all other participants
were right handed or ambidextrous according to the Edinburgh handed-
ness inventory (Oldfield, 1971) (laterality quotient of �100: entirely left-

handed, �100: entirely right-handed). Laterality scores were �90 (decile
R.7), �70 (decile R.3), �10 (ambidextrous), �80 (decile R.5), �80 (de-
cile R.5), �80 (decile R.5), �60 (decile L.3), �90 (decile R.7) and �95
(decile R.9) for S1–9, respectively. To stabilize head motion during scan-
ning sessions participants wore a personalized head case that precisely fit
the shape of each participant’s head (https://caseforge.co/).

Natural speech stimuli
The speech stimuli consisted of 10- to 15 min stories taken from The
Moth Radio Hour and used previously (Huth et al., 2016). In each story,
a speaker tells an autobiographical story in front of a live audience. The
10 selected stories cover a wide range of topics and are highly engaging.
The model validation dataset consisted of one 10 min story. This story
was played twice for each participant (once during each scanning ses-
sion), and then the two responses were averaged (for details, see Huth et
al., 2016).

Speech stimuli were played over Sensimetrics S14 in-ear piezoelectric
headphones (Sensimetrics). A Behringer Ultra-Curve Pro hardware
parametric equalizer was used to flatten the frequency response of the
headphones based on calibration data provided by Sensimetrics. All
stimuli were played at 44.1 kHz using the pygame library in Python. All
stimuli were normalized to have peak loudness of �1 dB relative to max.
However, the stories were performed by different speakers and were not
uniformly mastered, so some differences in total loudness remain.

Story transcription and preprocessing
Each story was manually transcribed by one listener, and this transcrip-
tion was checked by a second listener. Certain sounds (e.g., laughter,
lip-smacking and breathing) were also marked to improve the accuracy
of the automated alignment. The audio of each story was down-sampled
to 11.5 kHz and the Penn Phonetics Lab Forced Aligner (P2FA; Yuan and
Liberman, 2008) was used to automatically align the audio to the tran-
script. The forced aligner uses a phonetic hidden Markov model to find
the temporal onset and offset of each word and phoneme. The Carnegie
Mellon University pronouncing dictionary was used to guess the pro-
nunciation of each word. The Arpabet phonetic notation was used when
necessary to manually add words and word fragments that appeared in
the transcript but not in the dictionary.

After automatic alignment was complete, Praat (Boersma and
Weenink, 2001) was used to check and correct each aligned transcript
manually. The corrected aligned transcript was then spot-checked for
accuracy by a different listener.

Finally the aligned transcripts were converted into separate word and
phoneme representations using Praat’s TextGrid object. The phoneme
representation of each story is a list of pairs ( P, t), where P is a phoneme
and t is the onset time in seconds. Similarly the word representation of
each story is a list of pairs (W, t), where W is a word and t is the onset time
in seconds.

Natural reading stimuli
The same stories from listening sessions were used for reading sessions.
Praat’s word representation for each story (W, t) was used for generating
the reading stimuli. The words of each story were presented one-by-one
at the center of the screen using a rapid serial visual presentation (RSVP)
procedure (Forster, 1970; Buchweitz et al., 2009). During reading, each
word was presented for a duration precisely equal to the duration of that
word in the spoken story. RSVP reading is different than natural reading
because during RSVP the reader has no control over which word to read
at each point in time. Therefore, to make listening and reading more
comparable we matched the timing of the words presented during RSVP
to the rate at which the words occurred during listening.

The pygame library in Python was used to display text on a gray back-
ground at 34 horizontal, and 27 vertical degrees of visual angle. Black
letters were presented at average 6 (min � 1, max � 16) horizontal and 3
vertical degrees of visual angle. A white fixation cross was present at the
center of the display. Participants were asked to fixate while reading the
text. These data were collected during two 3 h scanning sessions that were
performed on different days. Participants’ eye movement were moni-
tored at 60 Hz throughout the scanning sessions using a custom-built
camera system equipped with an infrared source (Avotec) and the View-
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Point EyeTracker software suite (Arrington Research). The eye tracker
was calibrated before the first run of data acquisition. Certain auditory
sounds (laughter and applause) were presented as text to provide cues
about the ambiance of each story.

Semantic model construction
To account for response variance caused by the semantic content of the
story stimuli a 985-parameter semantic feature space based on word
co-occurrence statistics in a large corpus of text (Deerwester et al., 1990;
Lund and Burgess, 1996; Mitchell et al., 2008; Huth et al., 2016) was used.
In short, a word co-occurrence matrix, M, with 985 rows and 10,470
columns was created. The 985 rows describe 985 basic words from Wiki-
pedia’s List of 1000 Basic Words, the 10,470 columns are words selected
from a very large corpora of 13 transcripts of Moth stories (including the
10 used as stimuli in the experiments described in this paper), 604 pop-
ular books available through Project Guttenberg, 2,405,569 Wikipedia
pages, 36,333,459 reddit.com user comments (for a detailed description,
see Huth et al., 2016).

Iterating through the text corpus, we added 1 to Mi,j each time word j
appeared within 15 words of basis word i. Once the word co-occurrence
matrix was complete, we log-transformed the counts, replacing Mi,j with
log(1 � Mi,j). Next, each row of M was z-scored to correct for differences
in basis word frequency, and then each column of M was z-scored to
correct for word frequency. Each column of M is now a 985-dimensional
semantic vector representing one word in the lexicon.

The semantic model stimulus matrix was then constructed from the
stories: for each word-time pair (w, t), within each story the correspond-
ing column of M was selected, creating a new list of semantic vector-time
pairs, (Mw,t). These unevenly sampled lists of vectors were resampled at
times corresponding to the fMRI acquisitions using a three-lobe Lanczos
filter with the cutoff frequency set to the Nyquist frequency of the fMRI
acquisition (0.249 Hz).

Motion-energy model construction
A spatiotemporal Gabor pyramid was used to extract low-level visual
features from the sequence of word frames used in the reading experi-
ment (Adelson and Bergen, 1985; Watson and Ahumada, 1985). The
word frames were first cropped to 400 � 400 pixels (14 horizontal, and 14
vertical degrees of visual angle) to include mainly the words and then
down-sampled to 96 � 96 pixels to minimize computational cost. The
word frames were then converted to the CIE L*A*B* color space
(McLaren, 1976) and the color information was discarded. The spatio-
temporal Gabor pyramid consisted of a total of 39 three-dimensional
Gabor filter pairs of orthogonal quadrature spanning a square grid that
covered the screen. The filters consisted of two spatial and one temporal
dimension and were created using five spatial frequencies (0, 2, 4, 6, and
8 cycles/image), three temporal frequencies (0, 2 and 4 Hz), and four
directions of motion (0, 90, 180, and 270 degrees). Each of the filters was
convolved with the sequence of word frames. The resulting filter activa-
tions were squared and summed for each quadrature pair, resulting in a
39-dimensional feature vector for each word frame. The output was
down-sampled to the functional image acquisition rate (2.0045 s) using
sinc interpolation (Oliphant, 2007). For more details, see Nishimoto et
al. (2011). However, note that only five spatial frequencies and four
directions of motion were used here.

Spectral model construction
A cochleogram model that accounts for the logarithmic filtering of the
mammalian coclea described in (de Heer et al., 2017) was used to create
the low level auditory features (80 parameters). This model was selected
based on an earlier study showing that it outperforms other low level
acoustical models (de Heer et al., 2017). The 80 waveforms of the coclear
filter bank were between 264 and 7360 Hz, spaced at 25% of the band-
width. The spectral features were down-sampled to the rate of acquisition
of the functional images (2.0045 s) using a Lanczos filter.

Syntax model construction
The syntactic properties of each spoken word were labeled. A pretrained
neural network was used to create a parse tree for each sentence of the
stories (Andor et al., 2016). Two feature spaces were extracted from the

parse trees. The first was constructed from the part-of-speech tags (e.g.,
noun, verb) by assigning a value of one to each entry in which the part-
of-speech tag appeared and all other entries were set to zero (12 param-
eters). The second feature space captured the word dependencies in the
sentence (i.e., direct object, indirect object, etc.) and was constructed by
assigning a value of one to each entry in which the word dependency
appeared and all other entries were set to zero (44 parameters). For each
syntactic feature (e.g., noun), a time course was created with a value of 1
whenever a word was labeled with that feature and 0 otherwise. The
syntactic features were then down-sampled to the rate of acquisition of
the functional images (2.0045 s) using a Lanczos filter.

Phoneme model construction
To account for response variance caused by the low-level phonemic con-
tent of the stories, a 39-parameter model that captures how often each of
the 39 phonemes in English was spoken over time was constructed. The
phoneme representations of the stories were used to construct this mod-
el: the lists of phoneme–time pairs ( P, t) were rearranged into 39 lists,
each of which contains only the times of a single phoneme. These lists of
times were then down-sampled to the fMRI acquisition rate (2.0045 s).

Letter model construction
To account for response variance caused by the letters during reading a
26-parameter model that captures how often each of the 26 letters in
English was present on screen over time was constructed. This was con-
structed by counting the number of times a letter was present within a
word and then down-sampled to the fMRI acquisition rate (2.0045 s).

Word rate, word length variation, phoneme rate, letter rate, and
pauses model construction
To account for the highly variable speech rate both within and across
stories, single-feature models that simply count the number of words,
number of phonemes, number of letters, and number of story speaker’s
pauses that occurred during the acquisition of each fMRI volume (2.0045
s) were constructed. To account for the variable word lengths during the
visual presentation a single-feature word length variation model was
constructed by taking the variance of word lengths that occurred during
the acquisition of each fMRI volume.

Stimulus down-sampling
Before down-sampling to the fMRI acquisition rate, the phoneme and
semantic models were represented as unevenly sampled impulse trains. A
three-lobe Lanczos filter with cutoff frequency set to the fMRI Nyquist
rate (0.249 Hz) was used to resample these impulse trains at evenly
spaced time points corresponding to the middle of each fMRI volume.

Experimental design and statistical analysis
fMRI data acquisition. Each spoken and written story was presented dur-
ing a separate fMRI scan. The length of each scan was the same as the
story. Each scan included 10 s (5 TR) of silence both before and after the
story. These data were collected during 2 3 h scanning sessions that were
performed on different days.

MRI data were collected on a 3T Siemens TIM Trio scanner at the UC
Berkeley Brain Imaging Center using a 32-channel Siemens volume coil.
Functional scans were collected using gradient echo EPI water excitation
pulse sequence with repetition time (TR) � 2.0045 s, echo time (TE) �
31 ms, flip angle � 70 degrees, voxel size � 2.24 � 2.24 � 4.1 mm (slice
thickness � 3.5 mm with 18% slice gap), matrix size � 100 � 100, and
field of view � 224 � 224 mm. 30 axial slices were prescribed to cover the
entire cortex and were scanned in interleaved order. A custom-modified
bipolar water excitation radiofrequency (RF) pulse was used to avoid
signal from fat. Anatomical data were collected using a T1-weighted
multi-echo MP-RAGE sequence on the same 3T scanner.

fMRI data pre-processing. Each functional run was motion-corrected
using the FMRIB Linear Image Registration Tool (FLIRT) from FSL 5.0
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). All volumes in the
run were then averaged across time to obtain a high quality template
volume. FLIRT was also used to automatically align the template volume
for each run to the overall template, which was chosen to be the temporal
average of the first functional run for each participant. The temporal
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averages of the cross-modal runs (listening or reading) were also auto-
matically aligned to the same overall template. These automatic align-
ments were manually checked and adjusted as necessary to improve
accuracy. The cross-run transformation matrix was then concatenated to
the motion-correction transformation matrices obtained using MC-
FLIRT, and the concatenated transformation was used to resample the
original data directly into the overall template space.

Low-frequency voxel response drift was identified using a third order
Savitsky–Golay filter with a 120 s window. This drift was subtracted from
the signal. Responses of each story were z-scored separately; that is, the
mean response for each voxel was subtracted and the remaining response
was scaled to have unit variance. Before the VM, 10 TRs from the begin-
ning and 10 TRs at the end of each story were discarded.

Cortical surface reconstruction and visualization
Cortical surface meshes were generated from the T1-weighted anatomi-
cal scans using Freesurfer software (Dale et al., 1999). Before surface
reconstruction, anatomical surface segmentations were carefully hand-
checked and corrected using Blender software and pycortex (Gao et al.,
2015) (http://pycortex.org). Relaxation cuts were made into the surface
of each hemisphere. Blender and pycortex were used to remove the sur-
face crossing the corpus callosum. The calcarine sulcus cut was made at
the horizontal meridian in V1 using retinotopic mapping data as a guide.

Functional images were aligned to the cortical surface using pycortex.
Functional data were projected onto the surface for visualization and
analysis using the line-nearest scheme in pycortex. This projection

scheme samples the functional data at 64
evenly spaced intervals between the inner
(white matter) and outer (pial) surfaces of the
cortex and then averages together the samples.
Samples are taken using nearest-neighbor in-
terpolation, wherein each sample is given the
value of its enclosing voxel.

Localizers for known ROIs
Known ROIs were localized separately in each
participant using standard techniques (Spiri-
don et al., 2006; Hansen et al., 2007). For all
participants, ROIs were defined using three ex-
periments: a visual category localizer, an audi-
tory cortex (AC) localizer, and a motor
localizer. For some participants retinotopic vi-
sual ROIs using a retinotopic localizer and area
MT� using an MT localizer were defined.

Visual category localizer. Visual category
localizer data were collected in six 4.5 min
scans consisting of 16 blocks, each 16 s long.
During each block, 20 images of places, faces,
human body parts, nonhuman animals,
household objects, or spatially scrambled
household objects were displayed. Each im-
age was displayed for 300 ms followed by a
500 ms blank. Occasionally, the same image
was displayed twice in a row, in which case
the participant was asked to respond with a
button press.

The contrast between faces and objects was
used to define the fusiform face area (Kan-
wisher et al., 1997) and occipital face area (Hal-
gren et al., 1999). The contrast between human
body parts and objects was used to define the
extrastriate body area (Downing et al., 2001).
The contrast between places and objects was
used to define the parahippocampal place area
(Epstein and Kanwisher, 1998), occipital place
area (Nakamura et al., 2000), and retrosplenial
cortex.

Auditory cortex localizer. AC localizer data
were collected in one 10 min scan. The par-
ticipant listened to 10 repeats of a 1 min au-

ditory stimulus, which consisted of 20 s segments of music (Arcade
Fire), speech (Ira Glass), and natural sound (a babbling brook). To
determine whether a voxel was responsive to auditory stimuli, the
repeatability of the voxel response across the 10 stimulus repeats was
calculated using an F-statistic. The F-statistic map was used to define
the auditory cortex (AC).

Motor localizer. Motor localizer data were collected during one 10 min
scan. The participant was cued to perform six different motor tasks in a
random order in 20 s blocks. For the hand, mouth, foot, speech, and rest
blocks the stimulus was simply a word at the center of the screen (e.g.,
“Hand”). For the saccade block, the participant was shown a pattern of
saccade targets.

For the “Hand” cue, the participant was instructed to make small finger-
drumming movements with both hands for as long as the cue remained on
the screen. Similarly for the “Foot” cue the participant was instructed to
make small toe movements for the duration of the cue. For the “Mouth” cue,
the participant was instructed to make small mouth movements approxi-
mating the nonsense syllables balabalabala for the duration of the cue—this
requires movement of the lips, tongue, and jaw. For the “Speak” cue, the
participant was instructed to continuously subvocalize self-generated sen-
tences for the duration of the cue. For the saccade condition the written cue
was replaced with a fixed pattern of 12 saccade targets, and the participant
was instructed to make frequent saccades between the targets. A linear
model was used to find the change in BOLD response of each voxel in
each condition relative to the mean BOLD response.

Figure 1. Experimental procedure and VM. Nine participants listened to and read over two hours of natural stories in each
modality while BOLD responses were measured using fMRI. The presentation time of single words was matched between listening
and reading sessions. Semantic features were constructed by projecting each word in the stories into a 985-dimensional word
embedding space independently constructed using word co-occurrence statistics from a large corpus. These features and BOLD
responses were used to estimate a separate FIR banded ridge regression model for each voxel in every individual participant. These
estimated model weights were used to predict BOLD responses for a separate held-out story that was not used for model estima-
tion. Predictions for individual participants were computed separately for listening and reading sessions. Model performance was
quantified as the correlation between the predicted and recorded BOLD responses to this held-out story. Within-modality predic-
tion accuracy was quantified by correlating the predicted responses from one modality (e.g., listening) with the recorded responses
to the same modality (e.g., listening). Cross-modality prediction accuracy was quantified by correlating the predicted responses for
one modality (e.g., listening) with the recorded responses of the other modality (e.g., reading).
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Weight maps for the foot, hand, and mouth responses were used to
define primary motor and somatosensory areas for the feet (M1F,
S1F), hands (M1H, S1H), and mouth (M1M, S1M); supplementary
motor areas for the feet and hands; secondary somatosensory area for
the feet, and, in some participants, the hands; and, in some partici-
pants, the ventral premotor hand area (Penfield and Boldrey, 1937).
The weight map for saccade responses was used to define the frontal
eye field (Paus, 1996), frontal operculum eye movement area (Cor-
betta et al., 1998), intraparietal sulcus visual areas, and, in some par-
ticipants, the supplementary eye field (Grosbras et al., 1999). The
weight map for speech production responses was used to define Bro-
ca’s area (Amunts et al., 2010; Zilles and Amunts, 2018) and the
superior ventral premotor speech area (sPMv).

Retinotopic localizer. Retinotopic mapping data were collected in four
9 min scans. Two scans used clockwise and counterclockwise rotating
polar wedges, and two used expanding and contracting rings. Visual
angle and eccentricity maps were used to define visual areas V1, V2, V3,
V4, LO, V3A, V3B, and V7 (Hansen et al., 2007).

Area MT� localizer. Area MT� localizer data were collected in four
90 s scans consisting of alternating 16 s blocks of continuous and tempo-
rally scrambled natural movies. The contrast between continuous and
temporally scrambled natural movies was used to define visual motion
area MT� (Tootell et al., 1995).

Voxelwise model fitting
A single joint model that included all feature spaces was estimated for
each voxel in each dataset (listening and reading) separately using
banded ridge regression (for details, see below and Nunez-Elizalde et al.,
2019). Banded ridge regression assigns a different regularization param-
eter for every feature space and so reduces bias caused by correlations
between feature spaces.

Feature spaces
The feature spaces were motion-energy features (39 parameters), spectral
features (80 parameters), word rate (1 parameter), phoneme rate (1 pa-
rameter), phonemes (39 parameters), letter rate (1 parameter), letters
(26 parameters), word length variation per repetition time (1 parame-
ter), syntactic features (56 parameters), and co-occurrence semantics
(985 parameters). The motion-energy, spectral, word rate, phoneme
rate, phonemes, letter rate, letters, and word length variation features
were used to explain away low-level parameters that might otherwise
contaminate the semantic model weights.

Before doing regression, each feature channel was z-scored within each
story (training and testing features were z-scored independently) by sub-
tracting the mean and dividing by the standard deviation. This was done
to match the features to the fMRI responses, which were also z-scored
within each story. In addition, 10 TRs from the beginning and 10 TRs at
the end of each story were discarded before VM.

Banded ridge regression
We combine several feature spaces in the VM approach. To assign
different levels of regularization to each feature space, we estimate all
our models simultaneously using banded ridge regression (Nunez-
Elizalde et al., 2019). Under banded ridge regression, brain responses
are modeled as a linear combination of all the feature spaces. How-
ever, each feature space is assigned a different value of the regulariza-
tion parameter. Banded ridge regression is a special case of the
well-established statistical approach called Tikhonov regression (Tik-
honov and Arsenin, 1977). The solution to the Tikhonov regression
problem is given by �̂ � argmin���Y � X��2

2 � ��C��2
2�, where C is

the penalty matrix. In case of banded ridge regression, the matrix C is a
diagonal matrix whose entries correspond to the regularization levels
appropriate for each feature space. To find the optimal regularization
parameter for every feature space a wide range of regularization param-
eters is explored using cross-validation. The regularization parameter is
optimized based on prediction accuracy on a held-out dataset. Note that
in case of � � 0 Tikhonov regression reduces to the ordinary least squares
and in case of C � I Tikhonov regression reduces to ridge regression.

BOLD responses were modeled as a linear combination of all the fea-
ture spaces using linear regression with a non-spherical spatiotemporal

multivariate normal prior on the weights (Nunez-Elizalde et al., 2019).
This approach allows us to impose different levels of regularization on
each feature space within the joint model for each voxel, which is impor-
tant because of differences in feature space size and signal-to-noise levels.
The regularization parameter for each feature space was estimated em-
pirically via cross-validation on a held-out set.

Within the same model, the hemodynamic response function was
modeled using a finite impulse response (FIR) filter per voxel and for
each subject and modality (listening and reading) separately. This was
implemented by modeling the BOLD responses at 10 temporal delays
corresponding to 0, 2, 4, 6, . . . 16, and 18 s. We also imposed a multivar-

Figure 2. Semantic model prediction accuracy across the cortical surface. VM was used
to estimate semantic model weights in two modalities, listening and reading. Prediction
accuracy was computed as the correlation (r) between the participant’s recorded BOLD
activity to the held-out validation story and the responses predicted by the semantic
model. a, Accuracy of voxelwise models estimated using listening data and predicting
withheld listening data. The flattened cortical surface of one participant is shown. Predic-
tion accuracy is given by the color scale shown at bottom. Voxels that are well predicted
appear yellow or white, voxel predictions that are not statistically significant are shown in
gray ( p � 0.05, FDR corrected; LH, left hemisphere; RH, right hemisphere; NS, not signif-
icant; EVC, early visual cortex). b, Accuracy of voxelwise models estimated using reading
data and predicting withheld reading data. The format is the same as in a. Estimated
semantic model weights accurately predict BOLD responses in many brain regions in the
semantic system, including LTC, VTC, LPC, MPC, and PFC in both modalities. In contrast,
voxels in the early sensory regions such as the primary AC and early visual cortex are not
well predicted. c, Log transformed density plot of the listening (x-axis) versus reading
(y-axis) model prediction accuracy. Purple points indicate all voxels. Darker colors indicate
a higher number of voxels in the corresponding bin. Voxels with listening prediction
accuracy 	0.17 and reading prediction accuracy 	0.19 are not significant. Most voxels
are equally well predicted in listening and reading indicating that these voxels represent
semantic information independent of the presentation modality.
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iate normal prior on the temporal covariance of the FIR filter. The tem-
poral prior was constructed from a set of HRF basis functions (Penny et
al., 2007).

Cross-validation
We used cross-validation to find the optimal regularization parameter
for each feature space in the joint model. Because evaluating k regular-
ization parameters for m models leads to km combinations, conducting a
grid-search in our high-dimensional parameter space is impractical
(requiring 10 10 model fits). To overcome this problem, we used a
tree-structured Parzen search (Bergstra et al., 2011). We performed
the search 25 times each time using different initialization values and
stopped each search after 300 iterations. For every set of regulariza-
tion parameters tested in each iteration, we performed fivefold cross-
validation twice. We used the coefficient of determination (R2) between the
predicted and the actual voxel responses as our performance metric for each
validation fold.

Model estimation and evaluation
We computed the mean prediction performance across cross-validation
folds per voxel for each of the 7500 (300 � 25) regularization parameter
sets tested. The regularization parameters that yielded the maximum
cross-validated prediction performance were selected for each voxel.
These regularization parameters were then used to estimate the model
weights for each of the voxels in each modality independently for each of
the nine subjects.

To validate the voxelwise models, estimated model weights were used
to predict responses to a validation story that was not used for model
estimation. Only the estimated semantic model weights were used for
model predictions. Pearson’s correlation coefficient was computed be-
tween the predicted responses and the mean of the two validation data-
sets (291 time points).

Statistical significance was computed by a permutation test with 10,000
iterations and comparing estimated correlations to the empirical null distri-
bution of correlations for each participant and modality separately. At each
permutation iteration, the time course of the held-out validation dataset was
permuted by blockwise shuffling (10 TRs were blocked to account for auto-
correlations in voxel responses), and then Pearson’s correlation coefficient
between the permuted voxel response and the predicted voxel response was
computed for each voxel separately. This produced a distribution of 10,000
estimates of correlation coefficients for each voxel, participant, and modal-
ity. These 10,000 estimates define an empirical distribution that was used to
obtain a p-value. Resulting p-values were corrected for multiple compari-
sons within each participant using the false discovery rate (FDR) procedure
(Benjamini and Hochberg, 1995).

Voxelwise model fitting and analysis was performed using custom
software tikreg (Nunez-Elizalde et al., 2019) written in Python, making
heavy use of NumPy (Oliphant, 2006) and SciPy (Oliphant, 2007). Anal-
ysis and visualizations were developed using iPython (Pérez and Granger,
2007) and the interactive programming and visualization environment
jupyter notebook (Kluyver et al., 2016).

Figure 3. Semantic model prediction accuracy across all participants in standard brain space. VM was used to assess semantic model prediction accuracy in the listening and reading
modalities for all nine participants as described in Figure 2, a and b. Prediction accuracies computed in individual subject’s space were then projected into a standard MNI brain space. a,
Average listening prediction accuracy across nine participants was computed for each MNI voxel in the standard brain space and is mapped onto the cortical surface of the MNI brain.
Average prediction accuracy is given by the color scale. Voxels that are well predicted appear brighter. Across all participants the estimated semantic model weights in the listening
modality accurately predict BOLD responses in many brain regions in the semantic system, including LTC, VTC, LPC, MPC, and PFC. (LH, Left hemisphere, RH: Right hemisphere, EVC, early
visual cortex). b, Average reading prediction accuracy across nine participants was computed for each MNI voxel in the standard brain space and is mapped onto the cortical surface of the
MNI brain. The format is the same as in a. Across all participants, estimated semantic model weights in the reading modality accurately predict BOLD responses in the semantic system.
c, Significant prediction accuracy in each voxel in the listening modality was determined in the subject space and then projected to the standard MNI brain space. The number of subjects
with significant semantic model prediction accuracy for a given MNI voxel is then mapped onto the cortical surface of the MNI brain. Number of participants is given by the color scale
shown at bottom. Dark red voxels are significantly well predicted in all participants. Dark blue voxels are not significantly predicted in any participant. d, Significant prediction accuracy
in each voxel in the reading modality was determined in the subject space and then projected to the standard MNI brain space. The number of subjects with significant semantic model
prediction accuracy for a given MNI voxel is then mapped onto the cortical surface of the MNI brain. The format is the same as in c. Most of the voxels in the semantic system are
significantly predicted by all participants in both modalities.
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Semantic PC projections
Listening model weights and reading model weights were projected onto
the semantic subspace that was created in a previous study from our
laboratory (Huth et al., 2016). That study recovered a low-dimensional
semantic subspace from an aggregated set of estimated semantic model
weights using principal components analysis. Taking the dot product of
the estimated model weights with the low-dimensional semantic sub-
space revealed for each voxel a projection along the 985 semantic princi-
pal components (PCs). To visualize which semantic concepts are
represented in each voxel we used an RGB color space to map the first
three semantic PC projections onto the cortical surface separately for the
two modalities (Huth et al., 2012, 2016).

Correlating the semantic principal components
Pearson’s correlation coefficient was computed between each semantic
projection in listening and the corresponding semantic projection in
reading. To find out whether the semantic projections could be corre-
lated by chance, a permutation test with 10,000 iterations was per-
formed for each individual participant separately. The correlation
was computed for the 10,000 best predicted voxels by the co-
occurrence semantics model in both modalities. The best predicted
voxels were selected by taking an average of listening and reading
model prediction accuracies per voxel and selecting the 10,000 voxels
with highest mean predictions. At each permutation iteration, (1) the

time courses of the feature matrix was permuted (note that the feature
matrix is the same for listening and reading sessions), (2) banded
ridge regression was performed between the fMRI responses and this
permuted matrix, (3) the estimated model weights were projected
onto the semantic principal component space, and (4) Pearson’s cor-
relation coefficient between projections of the listening and reading
weights onto the semantic subspace were computed separately for
each PC. This results in a distribution of 10,000 estimates of correla-
tion coefficients for each semantic PC and participant. Statistical sig-
nificance was defined as any correlation coefficient that exceeded 95%
of all of the permuted correlations.

Cross-modality voxelwise model fitting
Estimated model weights (see “Voxelwise model fitting”) from one
modality (e.g., listening) were used to predict voxel responses in the
other modality (e.g., reading). Model prediction accuracy was then
computed using Pearson’s correlation coefficient between cross-
modal prediction responses (e.g., listening model estimates predict-
ing reading responses) and the mean of the two validation responses
(e.g., reading responses).

Results
We sought to determine whether and how the cortical represen-
tation of semantic information in narrative language might

Figure 4. Semantic tuning maps for listening and reading. The semantic maps for both modalities are displayed on the cortical surface of one participant. a, Voxelwise model weights for the
listening sessions were projected into a semantic space created by performing principal component analysis on estimated semantic model weights acquired during a listening experiment published
earlier (Huth et al., 2016). Each voxel is colored according to its projection onto the first (red), second (blue) or third (green) semantic PC. The color wheel legend at center indicates the associated
semantic concepts. Voxels whose within-modality prediction was not statistically significant are shown in gray ( p � 0.05, FDR corrected; LH, left hemisphere; RH, right hemisphere; EVC, early visual
cortex). b, Voxelwise model weights for the reading sessions projected into the semantic space, and colored using the same procedure as in a. Comparison of panels a and b reveals that semantically
selective voxels are tuned for similar semantic concepts during both listening and reading.
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depend on the modality with which it is perceived. Nine partici-
pants listened to and read narrative stories while whole-brain
BOLD activity were recorded by means of functional MRI (Fig.
1). The experimental stimuli consisted of more than two hours of
narrative stories from The Moth Radio Hour, along with written
transcriptions of the same stories. In the reading condition we
used an RSVP method (Forster, 1970; Buchweitz et al., 2009) to
present the stories at precisely the same rate as they occurred
during listening. That is, in the reading condition each word was
presented serially at exactly the same time, and for exactly the
same duration as when it was spoken. The semantic content of
the stories was estimated continuously by projecting the narrative
into a word embedding space based on word co-occurrence sta-
tistics (Church and Hanks, 1990; Lund and Burgess, 1996; Mitch-
ell et al., 2008; Turney and Pantel, 2010; Wehbe et al., 2014). We
then used VM to estimate a set of weights for each voxel that best
characterize the relationship between the semantic features and
the recorded BOLD signals separately for each modality. These
estimated model weights were then used to predict voxel re-
sponses in a held-out validation dataset both within and across
modalities. Finally, the semantic tuning of each voxel in the two
modalities was compared by projecting the estimated model
weights onto the semantic space described in Huth et al. (2016).

Does the cortical distribution of semantically selective voxels
depend on stimulus modality?
We used a VM procedure to determine whether the broad distri-
bution of semantically selective voxels depends on presentation
modality. Semantic features were extracted from the stories and
these were used to estimate voxelwise model weights for BOLD
signals that were recorded while participants listened to the sto-
ries in the training set. These estimated model weights were then
used to predict fMRI voxel responses to a separate held-out val-
idation set. We repeated the same procedure for the reading ses-
sions. Several low-level features (low-level visual, spectral, word
rate, letter rate, word length variation, phonemes, phoneme rate,
and pauses) and syntactic features were included alongside the
semantic features as nuisance regressors (see Materials and Meth-
ods), but these nuisance regressors were discarded after regres-
sion and the final model predictions were based only on semantic
model weight estimates. The correlation coefficient between the
actual responses in the held-out validation dataset and predicted
responses were computed to give a measure of model prediction
accuracy. These were then mapped onto the cortical surface.

Figure 2 shows voxelwise model prediction accuracy for lis-
tening and reading for all voxels in one participant (p 	 0.05,
FDR corrected). Figure 2a shows that our semantic model pre-
dicts brain activity in a broadly distributed semantic system when
participants listen to natural stories, replicating our previous
study (Huth et al., 2016). This system extends across much of
lateral temporal cortex (LTC), ventral temporal cortex (VTC),
lateral parietal cortex (LPC), medial parietal cortex (MPC), me-
dial PFC, superior PFC, and inferior PFC. Figure 2b shows that
when participants read natural stories this network of brain re-
gions are similarly well predicted by the semantic model. Figure
2c compares prediction accuracy of semantic models fit to listen-
ing (depicted on the x-axis) versus reading (depicted on the
y-axis). The saturation of each point represents the number of
voxels that fall into a given range of prediction accuracy. Most
voxels are approximately equally well predicted in both modali-
ties. Overall, the semantic model accurately predicts activity in
most of the semantic system independent of the presentation
modality.

Figure 3 shows voxelwise model prediction accuracy for lis-
tening and reading for all voxels and across nine participants in
the standard MNI brain space. Figure 3, a and b, show average
prediction accuracy across all participants in listening and read-
ing, respectively. Figure 3, c and d, show for each voxel the num-
ber of participants where semantic model prediction accuracy is
significant in listening and reading, respectively. These results
show that our semantic model predicts brain activity within the
semantic system in all participants. However, due to averaging
across participants voxel prediction accuracies are lower than in
individual participant results (maximum prediction accuracy
across all MNI voxels for listening 0.27 
 0.03, maximum pre-
diction accuracy across all MNI voxels for reading: 0.28 
 0.03).

Does the representation of semantic information vary with
sensory modality?
To determine whether semantic representation is modality inde-
pendent we compared the semantic tuning of each voxel esti-
mated during listening versus reading. The semantic tuning of
each voxel is given by a 985-dimensional vector of weights, one
weight for each of the 985 semantic features. Because there are
�80,000 cortical voxels in each individual participant and 985
semantic features it is impractical to make comprehensive com-
parisons for each feature. Therefore, to simplify interpretation
the estimated semantic model weights were projected into a low-
dimensional semantic subspace that captures most of the infor-
mation about the semantic selectivity of the voxel population.
This semantic subspace was created by applying principal com-
ponent analysis to an aggregated set of estimated semantic model
weights from seven participants included in a previous study
from our laboratory (Huth et al., 2016). (Note that three of those

Figure 5. Similarity between listening and reading semantic PC projections. The correlation
coefficient between listening and reading semantic PC projections are shown for the first 10
semantic PCs and each individual participant separately. Each colored diamond shape indicate
one participant and the mean correlation coefficient across participants is indicated by the black
solid line. Error bars indicate SEM across the correlation coefficients for all participants. The
colored dotted lines at the bottom indicate chance level correlation for each semantic PC and
participant as computed by a permutation test. At least the first five semantic PC projections are
significantly correlated between listening and reading. This shows that the individual dimen-
sions of the semantic maps in Figure 4 where the first three semantic PCs are displayed are
similar across the two modalities.
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who participated in the earlier study are
also included in the current study.) The
resulting semantic principal components
(PCs) are ordered by how much variance
they explain across the voxels. By project-
ing both the listening model weights and
the reading model weights separately into
these semantic PCs, we ensure that corti-
cal voxels that represent similar concepts
will project to nearby points in the seman-
tic space.

To visualize which semantic concepts
are represented in each voxel, we mapped
the projections of the first three semantic
principal components onto each partici-
pant’s cortical surface separately for the
two modalities. Each voxel was then col-
ored according to a simple RGB color
scheme, where the color red represents
the first semantic PC, the color green rep-
resents the second semantic PC, and blue
the third semantic PC. Inspection of the
listening and reading semantic maps
shown in Figure 4 reveals that the seman-
tic representations in both modalities are
very similar. The similarity between the
listening and reading semantic maps indi-
cate that individual voxels within the se-
mantic system are tuned for the same
semantic concepts regardless of presenta-
tion modality.

To quantify the similarity between the
semantic maps shown in Figure 4 for all
participants, we correlated the projections
of the listening and reading model weights
into the semantic PCs across the two mo-
dalities (listening and reading). To reduce
noise, the 10,000 voxels that were best pre-
dicted by the semantic model in the two
modalities were selected for this analysis.
The listening and reading semantic PC
projections were then correlated for each
semantic PC separately.

Figure 5 shows these correlation coeffi-
cients for the first 10 semantic PC projec-
tions and for all nine participants. Each
colored diamond shape shows the correla-
tion between listening and reading semantic
projections for one participant. The dotted
lines indicate the upper bound of the 95%
confidence interval of the correlation value
under the null hypothesis. Hence, the dot-
ted lines can be interpreted as a form of statistical significance as
estimated by a permutation test (for details, see Materials and Meth-
ods). Inspection of Figure 5 reveals that the first five semantic PC
projections are significantly correlated between listening and read-
ing modalities. The first three semantic PC projections are those that
are mapped onto the cortical surface in Figure 4. Correlations of the
sixth PC projection and beyond are relatively weaker, but remain
above chance level until the seventh PC projection. Together, these
results indicate that the cortical representation of semantic informa-
tion is consistent across input modalities.

Is semantic tuning consistent across modalities at the
single-voxel level?
Here, we sought to determine whether all the dimensions of se-
mantic representation depend on input modality at the level of
single voxels. To do this, the 985 semantic model weights esti-
mated for each voxel during listening were correlated with those
semantic model weights estimated during reading.

Figure 6a shows the correlation coefficient between estimated
listening and reading model weights for each voxel, mapped onto
the cortical surface of one individual participant. Listening and
reading model weights are strongly correlated in many regions

Figure 6. Voxelwise similarity of semantic tuning across listening and reading. Semantic model weights estimated during
listening and reading were correlated for each voxel separately. a, Correlation coefficient between listening and reading model
weights are shown on the flattened cortical surface of one participant. Red voxels are those that are semantically selective in both
modalities. Blue voxels are those that are semantically selective in listening, but not reading. Green voxels are those that are
semantically selective in reading, but not listening. Gray voxels are not semantically selective in either modality. Color saturation
describes the strength of voxel weight correlations. The stronger the color the higher is the correlation between listening and
reading model weights. Voxels in the semantic system have similar semantic tuning across all the semantic features. LH, Left
hemisphere; RH, right hemisphere; NS, not significant; EVC, early visual cortex. This suggests that across the 985 semantic features
semantic information is represented similarly in both modalities in the semantic system. b, Relationship between within-modality
model prediction accuracy and semantic tuning. Listening (x-axis) versus reading (y-axis) prediction accuracy is shown in a scat-
terplot where each point corresponds to a single voxel in a. The correlation between the listening and reading model weights is
indicated by color saturation and is the same as in a. Semantic tuning is more similar for voxels that are semantically selective in
both modalities (red) than for those that are selective in one modality only (blue and green). Gray voxels are not semantically
selective in either modality. This suggests that voxels that are well predicted in both modalities represent similar semantic
information.
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within the semantic system including bilateral temporal, parietal,
and prefrontal cortices (red voxels in Fig. 6a). These voxels are
also significantly well predicted by the semantic model in both
modalities. Voxels whose model weights are not correlated are
located in few scattered voxels in the bilateral sensory cortex,
intraparietal sulcus, and in PFC (white voxels). This suggests that
voxels that are semantically selective in listening and reading mo-
dalities (red) represent similar semantic information. Figure 6b
summarizes the relation between within-modality voxelwise
model prediction accuracy and semantic tuning, for each voxel.
Each voxel is a single point in the scatterplot, and the correlation
between the estimated listening and reading model weights is
indicated by the color saturation. Semantic tuning is more similar
for voxels that are semantically selective in both modalities (red)
than for those that are well predicted in one modality only (blue
or green). Negatively correlated voxels are mostly in sensory re-
gions and are not well predicted by the semantic model in either
modality. In general, individual voxels located within the seman-
tic system are selective to similar semantic features during both
listening and reading.

Can a voxelwise model fit to one modality predict responses
to the other modality?
If the semantic representation in most of the semantic system is
modality-invariant then voxel models fit to one modality should
accurately predict responses in the other modality. Figures 7 and
8 show cross-modal predictions for all voxels in all participants.
Figure 7 shows prediction accuracy for a model fit to voxel re-
sponses evoked during listening, but predicting responses evoked
during reading. Figure 8 shows prediction accuracy for a model
fit to responses evoked during reading, but predicting responses
evoked during listening. In both figures voxels whose predictions
were not statistically significant are shown in gray (p � 0.05, FDR
corrected). In both cases, voxels in bilateral temporal, parietal,
and prefrontal cortices are well predicted across modalities. Vox-
els that are not well predicted cross-modally are located in sen-
sory cortices.

Figure 9 shows a summary map of the relationship between
cross-modality predictions and within-modality predictions, for
each voxel and all participants. Summary statistics for the two
cross-modality predictions were computed by taking the average

Figure 7. Semantically amodal voxels as shown by cross-modal predictions (Listening predicting Reading) in all participants. Estimated semantic model weights in the listening modality were
used to predict BOLD activity to the held-out validation story in the reading modality. a, Accuracy of voxelwise models estimated during listening predicting reading responses, shown on the same
participant’s flattened cortical surface as in Figure 2. Prediction accuracy is given by the color scale. Voxels that are well predicted appear yellow or white, voxel predictions that are not statistically
significant are shown in gray ( p � 0.05, FDR corrected). (LH, left hemisphere; RH, right hemisphere; NS, not significant; Si, Subject i; EVC, early visual cortex). b, Accuracy of voxelwise models
estimated during listening predicting reading responses, shown for all other participants. The format is the same as in a. The semantic model estimated in listening accurately predicts voxel
responses in reading within the semantic system including bilateral temporal (LTC, VTC), parietal (LPC, MPC), and prefrontal cortices (PFC).
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cross-modality prediction accuracy (per voxel average of Figs. 7
and 8). Summary statistics for the two within-modality predic-
tions were computed by taking the maximum within-modality
prediction accuracy (per voxel maximum of Fig. 2a,b). The mean
cross-modality prediction accuracy and the maximum within-
modality prediction accuracy per voxel were then mapped onto
the same participant’s flattened cortical surface. Inspection of
Figure 9 allows us to identify voxels that are well predicted both
within and across modality. Most voxels that are well predicted
within and across modality are located in the semantic system
(white voxels in Fig. 9). Outside the semantic system, some voxels
on the border to visual cortex and voxels surrounding the tem-
poral parietal junction are well predicted within modality but not
across modality (orange voxels in Fig. 9). (Note, however, that
within-modality data were collected largely within sessions, and
between-modality data were collected across sessions. Thus,
within-modality prediction accuracy is likely to be somewhat
higher than between-modality accuracy for this reason alone.)
This result demonstrates that the distribution of semantically

selective voxels in most of the semantic system is independent of
the modality.

Discussion
The experiments presented here were designed to determine
whether semantic information obtained during listening and
reading are represented within a common underlying semantic
system. In separate fMRI sessions participants listened to a spo-
ken story and read a stream of words visually (RSVP using time-
locked transcripts of spoken stories). We used VM to estimate
semantic selectivity across the entire cerebral cortex, in individual
participants, in each voxel separately and in two different presen-
tation modalities (listening and reading).

Our experiments provide three lines of evidence in support of
the hypothesis that semantic representations throughout most of
the semantic system are invariant to presentation modality. First,
voxels in most of the semantic system (temporal, parietal, and
prefrontal cortices) are well predicted by the semantic model in
each modality independently (Figs. 2, 3). Second, the estimated

Figure 8. Semantically amodal voxels as shown by cross-modal predictions (Reading predicting Listening) in all participants. Estimated semantic model weights in the reading modality were
used to predict BOLD activity to the held-out validation story in the listening modality. a, Accuracy of voxelwise models estimated during reading predicting listening responses, shown on the same
participant’s flattened cortical surface as in Figure 2. Prediction accuracy is given by the color scale. Voxels that are well predicted appear yellow or white, voxel predictions that are not statistically
significant are shown in gray ( p � 0.05, FDR corrected). (LH, left hemisphere; RH, right hemisphere; NS, not significant; Si, Subject i; EVC, early visual cortex). b, Accuracy of voxelwise models
estimated during reading predicting listening responses, shown for all other participants. The format is the same as in a. The semantic model estimated in reading accurately predicts voxel responses
in listening within the semantic system including bilateral temporal (LTC, VTC), parietal (LPC, MPC), and prefrontal cortices (PFC).
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model weights and the semantic maps are similar between listen-
ing and reading (Figs. 4, 5, 6). Third, voxelwise models estimated
from one modality (e.g., listening) accurately predict responses in
the other modality (e.g., reading) throughout most of the seman-
tic system (Figs. 7, 8, 9).

Our results demonstrate in a single study that semantically
amodal voxels span most of the bilateral semantic system. It has
been previously proposed that subsequent to early sensory pro-
cessing, the pathways for processing information by listening or
reading converge in semantically selective regions (Chee et al., 1999;
Carpentier et al., 2001; Booth et al., 2002; Cohen et al., 2004;
Constable et al., 2004; Spitsyna et al., 2006; Jobard et al., 2007;
Patterson et al., 2007; Buchweitz et al., 2009; Liuzzi et al., 2017).
Different studies have emphasized different brain regions such as
the left anterior temporal lobe, left ventral angular gyrus, left
inferotemporal cortex, a region left lateral to the visual word form
area (VWFA), left MTG, and the left IFG. Bilateral activations
have been reported previously in epileptic patients (Carpentier et
al., 2001) or when complex stimuli such as narrative has been
used (Spitsyna et al., 2006; Jobard et al., 2007; Regev et al., 2013).

Our study shows that semantically amodal voxels are bilaterally
distributed across many regions of the temporal, parietal and
prefrontal cortices (Figs. 3, 4, 5, 6). Specifically, we show amodal
semantic representation in bilateral precuneus, temporal parietal
junction (TPJ), angular gyrus (AG), anterior to posterior STS,
sPMv, Broca’s area and inferior frontal gyrus (IFG).

One previous report noted that listening and reading evoke
different levels of brain activity in anterior and posterior left
DLPFC (Regev et al., 2013). However, Regev et al. (2013) did not
model linguistic features directly. Therefore, it is unclear whether
the differences they identified within left DLPFC are due to dif-
ferences in semantic representation or some other aspect of lin-
guistic information (e.g., syntax). In our study, we focused solely
on semantic representations and our results suggest that seman-
tic representations do not differ between listening and reading in
left DLPFC. However, it is possible that this structure may repre-
sent other types of linguistic information differently during lis-
tening and reading.

One striking difference between our results and those re-
ported in earlier studies is that we find a large network of

Figure 9. Semantically amodal voxels for all participants. Comparison of voxels that are well predicted across modalities versus within modalities. a, The average cross-modality prediction
accuracy and the maximum of the within-modality prediction accuracy per voxel are both plotted on the flattened cortical surface of the same participant’s flattened cortical surface as in Figure 2.
(L2R: Listening predicting Reading, R2L: Reading predicting Listening; L2L: Listening predicting Listening, R2R: Reading predicting Reading; Si: Subject i; LH, left hemisphere; RH, right hemisphere;
NS, not significant).Orange voxels are well predicted only within-modality. White voxels are well predicted both within and across modality (in most of the semantic system). Blue voxels are well
predicted only across modality. Voxels that are not significant in within- or cross-modality predictions are shown in gray. b, Same comparison plotted for all other participants. The format is the same
as in a. Voxels within the semantic system represent semantic information independent of modality.
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semantically selective regions that are independent of the pre-
sentation modality, whereas previous studies reported a few
amodal semantic regions located mostly in the left hemisphere
(Petersen et al., 1989; Chee et al., 1999; Jobard et al., 2007;
Buchweitz et al., 2009; Liuzzi et al., 2017). There are three
possible factors that contribute to this discrepancy. First, we
used rich narrative language as stimuli to study cross-modal
semantic representation (Fig. 1). Previous studies have shown
that complex linguistic stimuli such as narrative stories acti-
vate many more brain regions than single words or short sen-
tences (Mazoyer et al., 1993; Xu et al., 2005; Jobard et al., 2007;
Lerner et al., 2011). Hence, differences in signal-to-noise ratio
can account for fewer number of amodal regions identified in
previous cross-modality studies that use single words or short
sentences.

Second, our VM approach used explicit semantic features,
which allowed us to identify brain regions that consistently
respond to specific semantic information across different mo-
dalities (Figs. 1, 2, 3, 4, 5, 6). To our knowledge, only one
previous study of cross-modal representation has used explicit
semantic features to model brain activity patterns related to
semantics (Liuzzi et al., 2017). That study used as stimuli
twenty-four single words derived from only six animate cate-
gories, and showed cross-modal representations within left
pars triangularis. However, the most likely reason that the
Liuzzi et al. (2017) study only identified one region as seman-
tically amodal is that single word presentations elicit little
brain activity.

Third, the present study is the first that reveals the amodal
representation of semantic information during listening and
reading in single participants (Fig. 1). In contrast, most previ-
ous neuroimaging studies of language perform comparisons at
the group level after transforming individual participant data
into a standardized brain space (e.g., MNI or Talairach space).
However, the anatomical normalization procedures used in
these studies tend to smooth and mask the substantial individ-
ual variability in language processing (Caramazza, 1986;
Steinmetz and Seitz, 1991; Fedorenko and Kanwisher, 2009).
Therefore, studies performing intersubject averaging might
average away meaningful signal and fail to find significant
relationships (Fedorenko and Kanwisher, 2009). Indeed, pro-
jecting our results into a standard brain space and averaging
across individuals reduces prediction performance within
modality across much of the brain (cf. Figs. 3a, 2). This result
demonstrates that it is important to study cross-modal lan-
guage representations in individual participants.

Our naturalistic experiment and VM provides a powerful
and efficient method for identifying amodal representations
in individual human brains. However, the semantic feature
space that we used here is only one possible way of represent-
ing semantics (Mitchell et al., 2008; Huth et al., 2016; Pereira
et al., 2018), and it has some limitations. For example, when
people listen to or read a story they likely employ conceptual
knowledge at long time scales beyond those using for comput-
ing semantic features (Yeshurun et al., 2017). Furthermore,
semantic comprehension involves metaphors, humor, sar-
casm and narrative information that is not reflected in the
current semantic model. It is possible that these unmodeled
properties of natural language might have different, modality-
specific representations in the brain.

In sum, we demonstrate modality-independent semantic se-
lectivity in most of the bilateral semantic system. The semantic
maps recovered in this study show that semantic tuning in indi-

vidual participants is very similar across the two modalities. Our
findings are consistent with the view that sensory regions process
unimodal information related to low-level processing of spoken
or written language, whereas high-level regions process modality
invariant semantic information. Furthermore, our results reveal
that modality invariant semantic representations are not isolated
in a few left-lateralized regions, but are instead present in many
bilaterally distributed regions of the semantic system.
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