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ABSTRACT 

Title: Diffusion to Densities: Using Diffusion-Weighted Imaging to Study Gray Matter 

Microstructure. 

Name: Hamsanandini Radhakrishnan 

Degree: Doctor of Philosophy 

University: University of California, Irvine 

Year: 2022 

Committee Chair: Dr. Craig Stark 

The brain goes through a large set of structural changes at the onset of aging, resulting in 

sometimes devastating cognitive and behavioral consequences. Targeting these changes 

at an early stage is key to protecting against later cognitive decline or even pathology. 

However, studying tissue microstructure in the brain non-invasively is not trivial, 

especially in humans. Most of our non-invasive metrics derived from neuroimaging can 

detect only large-scale changes like gross atrophy or cortical thinning, which are usually 

only observable when it is too late to intervene. Diffusion imaging, popularized for 

studying white matter microstructure, has recently advanced to the stage that it might be 

sensitive to gray matter cytoarchitectural properties as well. However, these diffusion 

metrics, especially the newer ones derived from biophysical modelling techniques like 

Neurite Orientation Dispersion and Density Imaging (NODDI), have not been adequately 

evaluated, especially in the context of cognitive aging.  



 

xxiii 

 

 

In this thesis, with a series of both human and animal studies, we aim to fill some of these 

gaps in knowledge, focusing mainly on cognitive aging in the hippocampus. We first 

identify a novel aging biomarker in the dentate gyrus, that might be partially mediating 

aging-related cognitive decline. We then show that a combination of diffusion metrics is 

far better than traditional MRI metrics in predicting age or cognition associated 

properties. We also demonstrate that these metrics can also be used as non-invasive 

probes to measure the efficiency of intervention studies designed to protect against aging-

related structural changes! Finally, we establish a pipeline to estimate cellular properties 

non-invasively through the diffusion metrics alone. These results together not only shine 

light on the power of diffusion MRI to study gray matter changes in aging, but also present 

a framework to extend this method to other domains. 



 

1 

 

INTRODUCTION 

Structure commands function. If you breed an oyster the size of a horse, it wouldn’t 

take first place in the Kentucky Derby no matter who rode it. 

-Matheson’s Law. 

With over a hundred billion cells, the human brain might be the most complex biological 

structure in the known universe. Its anatomy plays an extremely important role in 

regulating function, behavior, and cognition; and is often severely influenced by 

pathology and age. While advances in microscopy and histology have been essential in 

examining some of these structural properties, these approaches have traditionally been 

static and two-dimensional, and cannot be used in humans in vivo. Neuroimaging 

techniques, especially magnetic resonance imaging (MRI), have been extremely powerful 

in visualizing the brain non-invasively. But traditional MRI methods, like T1 and T2-

weighted imaging, can only detect coarse macrostructural properties like cortical 

thickness and regional volume, and are rarely sensitive to more microstructural 

properties. Diffusion weighted imaging has a unique strength in its ability to probe water 

molecule displacement in the brain, in the range of microns, making it sensitive enough 

to capture detailed microstructural properties of different tissue types! However, until 

fairly recently, diffusion imaging studies have exclusively focused on examining white 

matter microstructure, mainly because earlier modeling algorithms could not 

accommodate the complexity of gray matter cytoarchitecture. Modern advances in 

diffusion imaging, especially High Angular Resolution Diffusion Imaging (HARDI), have 

opened the door for studying gray matter microstructure as well. Beyond microstructural 
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sensitivity, another advantage diffusion MRI may have over its sister modalities in 

studying gray matter is that it can pack a multitude of quantitative parameters at a sub-

voxel level. Correspondingly, the diversity of diffusion MRI metrics remain unparalleled. 

Yet, the value of these metrics in studying gray matter microstructure has not been 

adequately explored, especially in clinically relevant fields. 

One of the most universally dramatic set of changes in the brain is caused by the onset of 

aging, and it can have devastating consequences. General cognition starts to decline, 

memory deteriorates, and in many cases, may even result in pathologies like Alzheimer’s 

disease. A popular hotspot for aging-associated structural changes is the medial temporal 

lobe, and more specifically, the hippocampus. Again, while traditional MRI has been able 

to detect general atrophy and reduction in hippocampal volume with aging, many of these 

gross macrostructural changes are only observable when it is already too late to intervene. 

Identifying aging-related structural biomarkers associated with cognition may be critical 

to understanding the mechanisms of cognitive hippocampal aging.  

Can modern diffusion imaging techniques help bridge some of the gaps in the field of 

cognitive aging? This thesis covers four separate research projects designed to answer 

major questions around this idea. The chapters in this thesis are organized as follows: 

Chapter 1: This chapter provides background describing the physics and history of 

diffusion imaging. It briefly discusses the evolution of various diffusion imaging 

techniques, with a focus on the two techniques emphasized in this thesis: diffusion tensor 

modelling and biophysical modelling with NODDI.  

 



 

3 

 

Are the newer diffusion metrics also sensitive and specific enough to detect 

aging-related structural changes, specifically in hippocampal gray matter, 

associated with cognition and memory performance? 

Chapter 2: In this initial study, we observe that NODDI metrics are different between 

young and older adults and have the power to detect aging-related microstructural 

properties in hippocampal gray matter. We identify a novel aging biomarker in the 

dentate gyrus, the neurite density index or NDI. We not only find that the dentate NDI is 

increased in older adults, but also that this increase might be partially mediating aging-

associated cognitive decline. 

A version of this chapter was first published in Frontiers in Aging Neuroscience (2020, DOI). The paper 

has been edited for clarity and relevance to this thesis. Note that this publication also examines whether 

constrained spherical deconvolution can resolve white matter microstructural properties (fornix) 

associated with age and cognition. These methods are not elaborated here as it is not the focus of this 

dissertation. 

 

How do NODDI metrics, tensor metrics and volume compare in predicting 

age and cognition? 

Chapter 3: In this chapter, we build upon the previous chapter’s study and first replicate 

these results in a larger study population, speaking to the robustness and reliability of 

these NODDI metrics. We then ask if the NODDI metrics possess any inherent advantage 

over tensor metrics or traditional structural metrics like volume in predicting age and 

cognition, to warrant the increased acquisition time multi-shell diffusion protocols 

https://doi.org/10.3389/fnagi.2020.00094
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present. We find that a combination of NODDI and tensor metrics consistently result in 

much higher prediction accuracies for both age and different types of memory 

performance than any of these metrics by themselves. We use these results to encourage 

neuroimaging data collection efforts to include a multi-shell diffusion sequence in their 

protocols, as these metrics may be able to capture microstructural variance that might be 

missed by traditional approaches, even in gray matter studies. 

This chapter is under review at Neuroimage. 

 

Can diffusion metrics be used to assess the efficacy of longitudinal 

interventions designed to protect the brain against the effects of aging? 

Chapter 4: In this chapter, we go beyond the cross-sectional studies detailed in the 

previous chapters and ask if these diffusion metrics can detect more subtle longitudinal 

changes in gray matter microstructure, using a calcineurin-inhibiting drug intervention 

study in a preclinical canine model. We find that diffusion metrics are indeed useful in 

determining the efficacy of longitudinal intervention studies non-invasively and show 

that controlling the expression of calcineurin before gross aging-related cognitive deficits 

are observable is able to protect against aging-related structural deterioration. 

This chapter was first published in the Journal of Neuroscience (2021, DOI).  

 

https://www.jneurosci.org/content/41/23/5124
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And finally, what do these diffusion metrics neurobiologically represent? 

Can they be used to estimate cellular properties not accessible non-invasively 

otherwise? 

Chapter 5: In the final research chapter, we ask whether we can translate these diffusion 

metrics into more comprehensible neurobiological properties. We show that these 

diffusion metrics have unique relationships with the densities of different cells depending 

on the region studied. Using computational modelling and extra trees regression, we 

design a pipeline that can successfully estimate different cell counts non-invasively from 

diffusion metrics alone. 

 

Chapter 6: Conclusions, scope and limitations. 

 

  



 

6 

 

CHAPTER 1: 

DIFFUSION WEIGHTED IMAGING  

Magnetic resonance imaging (MRI) has been extremely valuable for non-

invasively probing the structural properties of the brain. Diffusion weighted 

MRI has been especially useful in studying structural connectivity and other 

white matter properties. Here, we will discuss the physics behind how 

diffusion imaging works, some computational models typically used to 

analyze the diffusion signal and some caveats of these models.  

1.1 THE PHYSICS OF DIFFUSION IMAGING 

Diffusion is the random Brownian motion of molecules, driven by thermal energy (Jacobs, 

1935). Einstein’s equation for diffusion states that the squared displacement of molecules 

in a given volume is directly proportional to the observation time, with the constant of 

proportionality being the diffusion coefficient (Einstein, n.d.). Einstein’s equation 

assumes “free” diffusion, where the distribution of molecular displacements obeys 

Gaussian Law. Under those conditions, the self-diffusion coefficient of water is about 3.0 

x 10-9 m2 s-1 at 37 °C (Johansen-Berg & Behrens, 2014). However, the observed diffusion 

coefficient of water in biological tissue is lower than what Einstein’s equation would 

predict. The movement of water molecules in the brain, for example, is hindered and 

restricted by cell membranes, fibers and macromolecules thereby lowering the diffusion 

coefficient to the apparent diffusion coefficient. Water molecules in these environments 

only displace a few micrometers at a time, making this phenomenon perfectly suited to 
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study microstructure, considering how both axons and cell bodies are on the scale of a few 

micrometers too.  

The most basic MR signal measures the number of hydrogen nuclei in free water, also 

called spins, within a given volume. While performing diffusion imaging, the MRI is 

programmed such that the random displacements of these spins attenuate the MR signal. 

The amount of signal attenuation in the direction θ depends on the apparent diffusion 

coefficient in that direction.  

Suppose the signal generated from a voxel when no diffusion gradient is present is S0. 

After applying these spatial gradients, the signal is attenuated by an amount that depends 

on the direction of the gradient, such that:  

 𝑆(𝜃, 𝑏) = 𝑆0 𝑒−𝑏 𝐴(𝜃) 

 

 (1.1) 

 

The variable b represents a set of physical constants and experimental parameters, 

including the strength (G) and duration (δ) of the magnetic field gradients and can be 

given by: 

𝑏 =  𝛾2 𝛿2𝐺2(∆  −  
𝛿

3
 ) 

 

 
(1.2) 

 

Here, γ is the gyromagnetic ratio of the hydrogen nucleus and Δ is the delay between 

gradient pulses.  

Although traditionally only a single b value (also referred to as a shell) is used to acquire 

a diffusion image, modern diffusion techniques may use multiple b values to measure 
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different tissue properties. A major focus of this proposal will be on models and 

techniques that utilize multiple shells.  

While the b-value described above is a convenient way to express the MR signal decay, it 

still assumes that the diffusion in the system is primarily Gaussian. However, protons in 

the brain can be highly hindered, or even restricted, in tissue compartments, causing 

deviations from Gaussian diffusion. In such a case, the “q-space” formalism may be a 

more appropriate way to describe the diffusion weighting of the experiment (Hecke et al., 

2015). This is in direct analogy with “k-space” sampling employed in typical MR 

measurements when acquiring T1 and T2 weighted images. Here, the voxel-wise sampling 

of 3D proton displacements can be described by the parameter q in “q-space”. 

Empirically, the b-value is directly proportional to the square of the q-value.  

1.1.1 The biophysics of diffusion in the brain 

Diffusion in the brain can be broadly categorized into diffusion in two distinct spaces: 

extracellular and intracellular. Due to the presence of cell soma and other 

macromolecules, diffusion in the extracellular matrix is considered to be “hindered”: with 

a lower diffusion coefficient than that of free water, but still reasonably Gaussian (Syková 

& Nicholson, 2008). Diffusion inside the cells themselves, however, tend to be more 

restricted: the displacement of the water molecules is constrained by the cell’s dimensions 

and structure (Shepherd et al., 2009). This property is especially useful in conjunction 

with the fact that the distance a molecule diffuses in one direction in space may or may 

not be the same as its displacement in other directions. In a sample where there are no 

true barriers, like in the cerebrospinal fluid of the brain, diffusion is the same in all 
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directions and can be called isotropic diffusion. However, the direction of diffusion in 

regions with a specific geometric structure, like that found in white matter fibers, depends 

on the orientation of the axons themselves, and is hence termed anisotropic diffusion. By 

tracking the movement of water molecules in these fibers, we can make inferences about 

their orientation: as diffusion is typically fast along the fibers, but considerably slower in 

directions perpendicular to them, hindered mainly by the myelin sheath and the axonal 

membrane (Beaulieu, 2002). This feature of diffusion direction specificity has been 

imperative to the success of diffusion weighted imaging in mapping brain connectivity. 

 
Figure 1.1: Diffusion in the extracellular matrix is hindered by the presence of cell bodies but is not biased towards 
any particular direction. Diffusion in neurites on the other hand, is anisotropic, and water molecules move faster 
along the neurite than across it. 
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1.2 MODELLING THE DIFFUSION SIGNAL 

Unless we are interested in water itself, the diffusion signal is an indirect indicator of 

biological events in the brain. Many algorithms have been proposed to reconstruct the 

diffusion signal. 

1.2.1 The diffusion tensor 

The diffusion tensor is one of the most popular algorithms to model anisotropic diffusion. 

It characterizes Gaussian diffusion as a 3 x 3 symmetric matrix of numbers that represent 

diffusion displacements in 3D. It can be thought of as the 3D covariance matrix of 

displacements in a given time (Basser, Mattiello, & LeBihan, 1994; Basser, Mattiello, & 

Lebihan, 1994). 

𝐷 =  

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

 

 
(1.3) 

 

 

The diagonals of D correspond to the ADC along the three orthogonal axes, while the off-

diagonal elements are the correlation between displacements along those orthogonal 

axes. Diagonalization of the diffusion tensor yield eigen values (λ1, λ2, and λ3) and their 

vectors (v1, v2, v3), which describe the directions and apparent diffusivities along the axes 

of principal diffusion. The tensor can be graphically represented as an ellipsoid. The 

principal axes of the ellipsoid are given by the eigen vectors of the tensor, and the lengths 

are defined by their corresponding eigen values.  
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From the tensor, different parameters can be derived that describe the nature of the voxel. 

For example, the principal axis of the tensor gives the primary orientation of the axonal 

bundles in that voxel. This concept has become the basis of several tractography 

algorithms. Moreover, the tensor can also shed light on some of the microstructural 

properties of the voxel. The mean of the eigen values of the tensor represents the mean 

diffusivity (MD) of the voxel. MD is sensitive to the overall density of structural 

membranes, making it an excellent biomarker for overall cellularity. As expected, the MD 

is the highest in CSF, considerably lower in gray matter (due to hindrance offered by cells 

and macromolecules) and the lowest in white matter (due to restriction of movement in 

the axons) (Alexander et al., 2007). Another important metric that can be derived from 

the tensor is the fractional anisotropy (FA). 

𝐹𝐴 

= √
3

2
 
√(𝜆1 − 𝜆̅)

2
 +  (𝜆2 − 𝜆̅)

2
 +  (𝜆3 − 𝜆̅)

2

𝜆1
2  +  𝜆2

2  +  𝜆3
2  

 

Where 𝜆̅  =  
𝐷𝑥𝑥 + 𝐷𝑦𝑦 + 𝐷𝑧𝑧

 3
 

 

(1.4) 

 

 

The FA ranges from 0 to 1, representing the directional bias of water in the given region, 

and is usually interpreted as a measure of axonal integrity. Unsurprisingly, FA is at its 

highest in white matter, and the lowest in CSF (Uddin et al., 2019). 

Though the tensor is very useful, allowing the estimation of axonal fiber orientation and 

integrity, it suffers from many limitations. One of its primary problems stems from the 

fact that it can only recover a single fiber orientation at each voxel and fails at fiber 
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crossings. More specifically, when there are two or more fiber bundles contributing to the 

MR signal in a given voxel, the tensor often provides incorrect estimates of fiber 

orientation and integrity metrics, ultimately leading to anatomically inaccurate 

tractography (Jones & Cercignani, 2010)(Figure 1.2). Until recently, the tensor was not 

sophisticated enough to capture the cytoarchitectural complexities of gray matter. 

 
Figure 1.2: The tensor does not have the power to distinguish between complex fiber architecture, often resulting 
in inaccurate tractography. 

 

1.2.2 High Angular Resolution Diffusion Imaging (HARDI) based 

models 

The HARDI acquisition protocol involves measuring the diffusion signal using a large 

number of uniformly distributed diffusion weighted gradient directions, so as to capture 

the higher angular frequency features of the diffusion signal that are not adequately 

modelled by a single diffusion tensor (A. Anderson & Ding, n.d.; A. W. Anderson, 2005). 
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A number of different strategies have been proposed, for not only how to sample the range 

of directions used in acquisition, but also for how to estimate the diffusion orientation 

distribution function. Note that I will be discussing most of these techniques only briefly: 

the mathematical origins of these algorithms are beyond the scope of this thesis. This 

section is only to acknowledge the strides made in the field and the significance of the 

models used in this dissertation.  

1.2.2.1 Diffusion Spectrum Imaging (DSI) 

Here, the directions are sampled as a Cartesian grid in q-space, and a simple Fourier 

transform is performed on the data to calculate the diffusion propagator. The resolution 

of the propagator is determined by the range of the q-space sampled. Higher q values (and 

consequently higher b values) allow for characterizing smaller displacements and larger 

deviations from Gaussian behavior, and consequently offering better angular contrast 

(Wedeen et al., 2005). 

While DSI offers a comprehensive picture of diffusion in a given MR voxel, the large set 

of sampling required results in very long scan times, rendering it impractical for routine 

use. Moreover, high q-values can only be achieved using long echo times, resulting in less 

than favorable SNR and resolution.  

1.2.2.2 QBall Imaging (QBI) 

In contrast to the Cartesian grid acquisition scheme used by DSI, QBI estimates 

orientation distribution functions using a spherical acquisition scheme, making its 

requirements more efficient than DSI (Descoteaux et al., 2007; Tuch, 2004). The 

propagator is reconstructed using the Funk-Radon transform. A Radon transform finds 
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the projection of an object over multiple angles. QBI was one of the first methods 

proposed to resolve the crossing fiber problem. More recently, variations of this technique 

have been proposed like incorporating the Laplace-Beltrami regularization to permit 

better denoising. Another related method is called the Diffusion Orientation Transform 

(DOT) which uses a slightly different function over a sphere and approximates a single 

contour of the diffusion propagator at a fixed displacement radius (Ozarslan et al., 2006). 

1.2.2.3 Spherical Deconvolution 

While the methods described in 3.2.1 and 3.2.2 focus on how the space is sampled during 

acquisition, spherical deconvolution focuses on the analysis of the signal acquired 

instead. This method is one of the first to recover the fiber orientation distribution 

function directly. The signal in a given voxel is considered to be the sum of the signals we 

would get from each fiber population with each orientation, weighted by the percentage 

of fibers in that orientation. The fiber orientation distribution (FOD) is then just the 

fraction of fibers aligned in each direction and can be calculated by the deconvolution of 

the response function of a single fiber population with the signal. The response function 

is usually estimated by considering only those voxels with the highest anisotropy- 

assuming that those voxels would probably only contain bundles in a single direction. The 

signal and the response are usually represented as spherical harmonic coefficients- in 

turn converting the deconvolution into a simple matrix inversion problem that yields the 

FODs, also represented as a spherical harmonic coefficient (Tournier et al., 2004, 2007). 

This technique is often implemented with a non-negativity constraint on the iterative 

deconvolution process, thereby preserving the angular resolution while remaining robust 
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to noise. MRTrix3 uses constrained spherical deconvolution to estimate the FODs in 

white matter, and perform tractography (Tournier et al., 2012). 

1.2.2.4 Biophysical Models 

The HARDI based models described in the previous section have been extremely 

insightful and have helped deal with the crossing fiber problems that traditional tensor 

models faced. However, they are not specific enough to extract explicit features from the 

microstructural environment. Moreover, none of the models described above were 

designed to resolve complex cellular layers, like those found in gray matter. Biophysical 

models solve this problem by modelling the diffusion signal arising from different 

compartments in unique ways (Assaf et al., 2008; Assaf & Basser, 2005; Szafer et al., 

1995). The two compartments most commonly used are the intracellular and extracellular 

spaces. White matter is usually modelled as a stack of cylinders or sticks- with the space 

inside and outside the sticks representing intra and extra-axonal compartments. The 

parameters used to define these sticks can be varied to quantify white matter architecture 

in terms of axon diameters, fiber densities, myelin thickness, etc.  

Neurite Orientation Dispersion and Density Imaging or NODDI is one of the models most 

often mentioned in this thesis. NODDI also uses a HARDI based acquisition scheme, with 

multiple shells. Diffusion in extracellular space defined by the cellular membranes of 

somas or glial cells is hindered, with a Gaussian displacement pattern (Zhang et al., 2012). 

Diffusion in intra-cellular space, bounded by axonal or dendritic membranes, is non-

Gaussian and restricted. NODDI uses sticks, an anisotropic tensor, and an isotropic 

compartment to model intracellular, extracellular and CSF compartments. The 
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orientation distribution of sticks can range from highly parallel to highly dispersed, 

thereby modelling the full spectrum of neurite orientation patterns found in brain tissue 

from the highly aligned corpus callosum to the intensely dendritic subcortical gray matter. 

The anisotropic tensor parameters used to describe the extracellular compartment is 

influenced by the “neurite” density as well as the orientation dispersion of the neurites. A 

major advantage of NODDI is that it doesn’t discriminate a voxel based on its primary 

tissue type like some of its ancestors did, and is agnostic to its makeup (Colgan et al., 

2016; Sato et al., 2017). 
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Figure 1.3: NODDI models diffusion in the brain as being either intracellular, extracellular or in CSF. It is agnostic 
to tissue type, allowing us to characterize the microstructure of even gray matter. 

 

A major limitation of NODDI, and the other HARDI-based models described is the lack 

of histological validation or comprehensive understanding of what the metrics derived 

from these methods may neurobiologically mean.  
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1.4 DIFFUSION IMAGING IN GRAY MATTER 

While diffusion-weighted imaging has been most often used to study white matter 

properties, recent advances especially in biophysical modelling, promise sensitivity to 

gray matter microstructure as well. Despite this, and the fact that there is currently no 

other non-invasive method to image gray matter microstructure, relatively few studies are 

published every year using diffusion imaging to study gray matter (Figure 1.4).  

 
Figure 1.4: A PubMed search comparing titles/abstracts of papers with “diffusion MRI” and “White Matter” vs 
“diffusion MRI” and “Gray Matter” reveals that diffusion studies focused on white matter are published 5x more than 
diffusion studies on gray matter. 

 

Most diffusion imaging methods effective at examining gray matter rely on multi-shelled 

scan sequences, which are often time consuming. Moreover, the value of these diffusion 

measures over conventional MRI measures like volume or cortical thickness is not yet 
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well understood. Interestingly, even the most basic tensor measures can provide 

meaningful information about the microstructural properties of gray matter (Aggarwal et 

al., 2015; Budde et al., 2011; Cloutman & Lambon Ralph, 2012; Jespersen et al., 2012; 

Leuze et al., 2014; McNab et al., 2013; Truong et al., 2014). The difference in these 

diffusion measures and their corresponding neurobiological implications between gray 

and white matter still leaves plenty to be explored. In the rest of this dissertation, we 

discuss in detail the implications of diffusion metrics in gray matter- especially in the 

context of cognitive hippocampal aging.  
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CHAPTER 2:  

MICROSTRUCTURAL ALTERATIONS IN HIPPOCAMPAL SUBFIELDS 

MEDIATE AGE-RELATED MEMORY DECLINE IN HUMANS 

Can modern diffusion analysis methods identify more specific 

microstructural changes associated with age in the human medial temporal 

lobe? 
Before diving into more complex analysis, we first asked whether the 

diffusion metrics studied were even sensitive to aging-related 

microstructural changes in the hippocampal subfields of humans. While the 

relationship between age and tensor metrics has been previously examined 

in these regions, very few reports consider the effect of hippocampal aging 

on the NODDI metrics, especially in a subfield-specific manner. In this 

chapter, we establish that NODDI metrics are indeed sensitive to 

hippocampal cytoarchitectural properties associated with age and 

cognition. Using advanced diffusion imaging in a cross-sectional cohort of 

15 young (20–38 years, 28.4 ± 4.6 years, eight females) and 23 older (59–

84 years, 69.9 ± 5.3 years, 14 females) adults, we identified a novel aging 

biomarker: the neurite density index or NDI. The NDI was increased in the 

hippocampal subfields and parahippocampal cortex of older adults, and this 

increase in the DG/CA3 subfield alone correlated with memory 

performance on the Rey Auditory Verbal Learning Test (RAVLT), even after 

regressing out the effect of age. Structural equation modelling further 
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revealed that this increase in NDI could be partially mediating age-related 

decreases in verbal recall performance. These results provide a far more 

comprehensive view than previously determined on the possible system-

wide processes that may be occurring because of healthy aging and 

demonstrate that advanced diffusion weighted imaging is evolving into a 

powerful tool to study more than just white matter properties. 

NB: A version of this chapter was first published in Radhakrishnan et al., 

Frontiers in Aging Neuroscience, 2020. 

 

2.1 INTRODUCTION 

Decades of research have shown that, even outside of overt pathology or dementia, aging 

is associated with cognitive decline, such as decreases in processing speed, poorer divided 

attention, and episodic memory impairments (Eckert, 2011; Glisky, 2007; Johnson, 1997; 

Schacter et al., 1997). While there are a host of changes in the brain that have been tied to 

age-related cognitive decline, structural and functional alterations in the hippocampus 

and other regions of the medial temporal lobe likely mediate much of these alterations of 

memory (Morrison & Baxter, 2012; S. M. Stark & Stark, 2017a). Human imaging studies 

have shown that the hippocampal volume decreases after the age of 70 at a rate of 

approximately 1.5% a year (Jack et al., 1998; Raz et al., 2005). This reduction could be 

due to synaptic size reduction (Petralia et al., 2014), microglia decrease (Sharaf et al., 

2013), demyelination (Kövari Enikö et al., 2004; Peters, 2002) and/or other changes in 

connectivity (Fjell et al., 2016). More subtle changes are also observed in individual 
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neurons, such as  shrinkage in soma size (Ahmad & Spear, 1993) and a reduction or 

regression in dendritic branching (Scheibel et al., 1975). Aging also results in axonal 

degeneration of the fornix and other white matter pathways, due to loss of myelinated 

fibers and alterations in the myelin sheath (Peters et al., 2010; Salvadores et al., 2017). 

Studies of these underlying neurobiological changes associated with age have largely been 

performed in animal models as direct studies in humans are often infeasible. However, 

new neuroimaging techniques may prove to be valuable tools for investigating these age-

related alterations in vivo in the human brain. 

Diffusion tensor imaging (DTI) has enabled us to probe white matter changes using 

measures like fractional anisotropy (FA) and mean diffusivity (MD), providing some form 

of in vivo measure of microstructure and integrity (Table 2.1). In the fornix, FA is reduced 

and MD is increased as a consequence of aging, reflecting a reduction in white matter 

integrity (Bennett & Madden, 2014; Bennett & Stark, 2015; Gunning-Dixon et al., 2009; 

Kochunov et al., 2012; Madden et al., 2012). These measures are also correlated with 

cognitive performance in both humans and rodents (Charlton et al., 2007; Kantarci, 2014; 

Takahashi et al., 2000). Though DTI has been extremely useful for studying 

microarchitectural properties in white matter and its influence on behavior, it is 

inherently a nonspecific technique. A change in FA could be caused by changes in 

myelination, axon diameter, membrane permeability, or axon packing density (Sampaio-

Baptista & Johansen-Berg, 2017). DTI is also incapable of capturing complex 

microstructural details within a given voxel, which is particularly important in regions of 

crossing, kissing, and fanning fibers (Jeurissen et al., 2013; Zhang et al., 2012).  
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Metric Abbreviation Description Range 

Fractional 

Anisotropy 

FA A measure of axonal organization or integrity 

based on the coherence of orientations of the 

bundles. Mainly used to study white matter, 

and generally decreases with age. Reductions 

in FA can mean neurodegeneration, a myelin 

sheath depletion or just general atrophy of 

fiber bundles. (Budde et al., 2007; Song et al., 

2003) 

0 [most 

isotropic] - 1 

[least 

isotropic] 

Mean 

Diffusivity 

MD Another measure of white matter bundle 

integrity calculated as the average amount of 

water diffusion inside the voxel. MD in most 

regions increases with age, also suggesting 

demyelination or axonal degradation. (Abe et 

al., 2002; Grieve et al., 2007; Hsu et al., 

2008) 

Continuous 

(directly 

proportional 

to the amount 

of diffusion.) 

Fiber 

Density 

FD Calculated as the integral of a given fixel’s 

FOD. Directly proportional to the intra axonal 

volume of the fiber population aligned with 

the given fixel. (D. Raffelt et al., 2012) 

0 [Least 

dense] - 1 

[Most dense] 

Fiber Cross 

Section 

FC Captures individual differences in the 

diameters of distinct fiber bundles. Computed 

as the amount of distortion necessary to warp 

a given FOD to the same FOD in template 

space. (D. A. Raffelt et al., 2017) 

0 [least 

diameter] - 1 

[most 

diameter] 

Fiber 

Density 

FDC A joint metric of FD and FC calculated as their 

product. Captures both microstructural 

0 - 1 
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and Cross 

Section 

properties as well as more large-scale changes 

within bundles.  

Neurite 

Density 

Index 

NDI Calculated as the proportion of the voxel 

expressing unhindered diffusion along a 

given set of sticks, and also restricted 

diffusion perpendicular to the same set of 

sticks. Might be able to pick up on the number 

of neurites or the complexity of their 

dendrites. (Billiet et al., 2015) 

0 [most 

extracellular] 

- 1 [most 

intracellular] 

Orientation 

Dispersion 

Index 

ODI Measure of tortuosity coupling an 

intracellular and extracellular space. Gives 

the variability of neurite orientations, and 

might be able to pick up on the dispersion of 

axons and neurons within a voxel. (Billiet et 

al., 2015) 

0 [Least 

dispersed] - 1 

[Most 

dispersed] 

Fractional 

Isotropy 

FISO Measure of the amount of isotropic free 

volume within a voxel- and is usually 

proportional to the amount of cerebrospinal 

fluid in a voxel. Might also pick up on other 

free water entities like dead cells. (Billiet et 

al., 2015) 

0 [Least CSF] 

- 1 [Most CSF] 

Table 2.1: A description of the diffusion metrics used. 

 

Recent advances in diffusion imaging like multiple tensor models to Q-Ball and Q-space 

imaging (King et al., 1994; Tournier et al., 2004; Tuch, 2004) have attempted to address 

problems of complex fiber architecture, but these methods are still not fiber specific or 

easily assignable to segmented white matter pathways. Moreover, as we will show, voxel-
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based analysis of these metrics may yield false positive differences between groups as 

multiple pathways can pass through a voxel, further confounding how we interpret 

“pathway-specific” metrics. To address this issue, fixel-based analysis (D. A. Raffelt et al., 

2017) is one of the first techniques that enables tract-specific statistical analysis. Here, a 

“fixel” refers to a particular fiber population inside a voxel (D. A. Raffelt et al., 2015). 

Using constrained spherical deconvolution, this method can estimate the total intra-

axonal volume of white matter axons in any direction, enabling the detection of tract-

specific degeneration. This technique can estimate microstructural changes (fiber 

density), macrostructural changes (fiber cross section), and the differences arising from 

a combination of both classes of degeneration (see Table 2.1) (D. A. Raffelt et al., 2017). 

These metrics have proven to be more sensitive to microarchitectural alterations and 

more useful in revealing minute but clinically relevant disease-associated differences, as 

compared to traditional tensor-based analysis (Mito et al., 2018). However, very few 

studies have explored such changes associated with healthy aging and none (to our 

knowledge) have looked at age-related fixel-based decline in the fornix and its impact on 

cognitive performance.     

In addition to problems with specificity, DTI was not designed to study gray matter 

architecture, and while one can derive tensor metrics in gray matter regions, the 

implications of these metrics are often hard to interpret. Neurite Orientation Dispersion 

and Density Imaging (NODDI) (Zhang et al., 2012) addresses this problem using multi-

compartment diffusion modelling, in which restricted diffusion is modelled as a set of 

sticks, hindered diffusion as the dispersion of the sticks, and unrestricted diffusion as an 
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isotropic sphere. These metrics are not only completely agnostic to tissue type (all voxels 

are modeled by the same set of equations), but also provide a more comprehensive 

analysis of the microstructural subtleties and underlying mechanisms associated with 

disease or development induced changes. NODDI has been extensively used to study both 

pathological and normal brain development (Adluru et al., 2014; Eaton-Rosen et al., 

2015; Grussu et al., 2017; Jelescu et al., 2015; Kunz et al., 2014; Wen et al., 2015), and 

many recent studies have explored how healthy aging can influence these metrics, 

shedding some light on their potential biological implications. For example, the 

orientation dispersion index (ODI) has been shown to decrease globally in human gray 

matter with age, suggesting a reduction in dendrite complexity or arborization (Nazeri et 

al., 2015). There have also been reports of increased neurite density index (NDI) and ODI 

in localized white matter regions, primarily in the frontal lobe (Billiet et al., 2015; Chang 

et al., 2015).  

Given these advantages in NODDI, the aim of this study is to focus on aging-induced 

changes in neurite density, dispersion, and fiber population metrics in the medial 

temporal lobe and their relationship with cognitive performance. Venkatesh et al. 

(Venkatesh et al., 2020), have recently shown that neurite density, dispersion and free 

water volume concentration all increase with age in the human hippocampus, and have 

shown that NODDI metrics are better at predicting age than traditional diffusion tensor 

measures. However, there have been no reports exploring age related changes in NODDI 

metrics in hippocampal subfields, or how they relate to changes in memory performance. 

Here, we sought to determine the effect of age on both fiber metrics, as well as NODDI 
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properties, in the medial temporal lobe. We further assessed the relationship between 

changes in these metrics and cognitive performance in young and older adults. Finally, 

we used structural equation modelling to assess the extent to which these structural 

changes drive age-related cognitive decline. 

 

2.2 METHODS 

2.2.1 Participants 

Forty-eight adults were recruited from the Orange County area in California. Three 

subjects were excluded for data segmentation issues, three subjects were excluded for 

registration issues, and four were excluded for neuropsychological scores more than 2 

standard deviations below the mean for their age group. The final study adults consisted 

of 15 young (20 - 38 years, 28.4 ± 4.6 years, 8 females) and 23 older (59 - 84 years, 

69.9±5.3 years, 14 females) adults. All participants provided informed consent prior to 

participation in this study, approved by the University of California, Irvine Institutional 

Review Board, and were compensated for their time.  

2.2.2 Neuropsychological Battery 

All participants completed a battery of neuropsychological tests to evaluate their cognitive 

abilities. Tests included the Mini-mental State Examination (MMSE) to screen for 

cognitive impairment (Folstein et al., 1975), Rey Auditory Verbal Learning Test (RAVLT) 

to evaluate memory recall and recognition (Rey, 1941), Geriatric Depression Scale (GDS) 

and Beck Depression Index (BDI) to characterize their depression profiles (Beck, 1972; 

Yesavage et al., 1982) (no participant was found to have a profile in the moderate-to-
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severe range) (See Table 2.2). The Mini Mental State Exam (MMSE) total score is the sum 

of all test questions (maximum score of 30). The Rey Auditory Verbal Learning Test has 

three components: 5 presentations of the same 15-word lists with immediate recall, a 

second immediate recall test following an interference list of 15 novel words, and a final 

recall after a 15-minute delay. Here, the RAVLT Delay reflects the final recall score 

(maximum score of 15). 

2.2.3 MR Image Acquisition 

The participants were scanned using a Philips Achieva 3.0 Tesla MRI system, using a 32-

channel SENSE receive-only head coil. Fitted padding was used to minimize head 

movements. A T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) 

scan was acquired (TR = 11ms, TE = 4.6ms, flip angle = - 18°, 200 sagittal slices and 0.75 

mm isotropic resolution) for structural analysis and registration. High-resolution 

structural MRI images of the MTL were acquired using a T2-weighted sequence to aid in 

MTL segmentation (TE = 80 ms, flip angle = 90, slices = 54, slice thickness = 3 mm, 

matrix size = 384 x 384, voxel size = 0.469 x 0.469 x 2mm, and an in-plane field of view 

= 108 x 180 mm). Both structural images were aligned as oblique coronals perpendicular 

to the long axis of the hippocampus and positioned to ensure MTL coverage. Three 

diffusion weighted scans (TR = 2174-2734ms, TE = 94 ms, 80 axial slices and 1.69 mm 

isotropic resolution) were acquired for four gradient values: b = 500, 1000, 2000, and 

2500 s/mm2. Gradients were applied in 10 directions for each scan (120 directions in 

total) along with 12 images with no diffusion weighting (b = 0).  
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Table 2.2: Demographics and neuropsychological scores 

 

2.2.4 Diffusion Data Preprocessing 

All preprocessing steps employed MRtrix3 (www.mrtrix.org) commands or used MRtrix3 

scripts that linked external software packages. Physiological noise arising from thermal 

motion of water molecules in the brain was first removed (Veraart et al., 2016), followed 

by removal of Gibbs ringing artifacts (Kellner et al., 2016), eddy current correction 

(Andersson & Sotiropoulos, 2016)  and bias field correction (Tustison et al., 2014). The 

image intensity was then normalized across subjects in the log-domain (D. Raffelt et al., 

2012). 

2.2.5 Structural Data Preprocessing 

The T1w images were corrected for intensity inhomogeneities using Advanced 

Normalization Tools (ANTs) N4 bias correction. Each individual’s structural image was 

then nonlinearly registered to their respective preprocessed b0 image, so that the 

structural and diffusion images were in the same space for the rest of the analyses. 

http://www.mrtrix.org/
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Registration was manually checked to ensure accuracy. To segment the MTL, we used a 

multi-atlas model created by our lab using ASHS (Yushkevich et al., 2010) and 19 

independent hand-segmented brains (both the MP-RAGE and high-resolution T2 

images). These segmentations included both segmentations of the parahippocampal 

gyrus into perirhinal (PRC), parahippocampal (PHC), and entorhinal (ERC) cortices 

described previously (Insausti et al., 1998; C. E. L. Stark & Okado, 2003). Similarly, we 

segmented the hippocampus into 3 subregions: a combined dentate gyrus and CA3 

(combined due to resolution constraints; DG/CA3), CA1, and subiculum, based on our 

previous work (S. M. Stark & Stark, 2017b).  For each of these, we created multi-atlas 

models in ASHS and then used these to segment each individual’s high-resolution T2 

scan. 

2.2.6 Fiber Orientation Distribution Analysis with MRtrix3 

Following preprocessing, we generated response functions for white matter, gray matter, 

and CSF for each participant. The response function for each tissue type was then 

averaged across subjects. The fiber orientation distributions (FODs) were then calculated 

for each tissue type from the group averaged response functions using Multi-Shell Multi-

Tissue Constrained Spherical Deconvolution (MSMT-CSD) (Dhollander et al., 2016). We 

created a study-specific template using an iterative registration and averaging approach 

(D. Raffelt et al., 2011) using the white matter FODs from 20 arbitrary subjects (10 old 

and 10 young). All the subjects’ FODs were registered to this template using a FOD-guided 

non-linear registration (D. Raffelt et al., 2011). The remaining analysis in MRtrix3 was 

performed in this study-specific template space, unless mentioned otherwise.  
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To segment the white matter tracts in a common space, we generated a tractogram from 

the template using whole-brain probabilistic tractography (20 million streamlines, 

termination cutoff = 0.6). To account for reconstruction biases, we filtered the tractogram 

to 2 million streamlines using the Spherical-deconvolution Informed Filtering of 

Tractograms algorithm (Smith et al., 2013).  

The FOD images were then segmented into “fixels” (individual voxels sectioned into 

individual fibers) for further analysis. We calculated the fiber density (FD), fiber bundle 

cross-section (FC), and a combined measure of fiber density and cross section (FDC) for 

each subject across all white matter fixels (D. A. Raffelt et al., 2017). The FD of a given 

fixel is proportional to the intra-axonal volume of axons aligned in a given direction and 

is calculated as the integral of the FOD along that direction, using the Apparent Fiber 

Density framework (D. Raffelt et al., 2012). The FC metric is meant to capture 

macrostructural changes and is sensitive to axonal loss and pathway atrophy (Grazioplene 

et al., 2018; Pannek et al., 2018). It is calculated as the amount of distortion perpendicular 

to a given fixel’s orientation that is required to warp the individual’s FOD to the template 

FOD (D. A. Raffelt et al., 2017). We used the natural logarithm of this metric for statistical 

analysis to ensure that the data were normally distributed and centered around zero. 

Finally, since the functionality of a given fiber bundle is influenced by both the local fiber 

density as well as the fiber cross-section, group differences may manifest as changes to 

both these metrics. Hence the FDC, a combined metric, was also calculated as the product 

of the FD and FC for each fixel. For comparison purposes, we also computed traditional 

fractional anisotropy (FA) and mean diffusivity (MD) metrics.  
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The fixel metrics were compared across age groups at each white matter fixel using a 

General Linear Model, considering age as a nuisance covariate. We performed 

connectivity-based smoothing and statistical inference using connectivity-based fixel 

enhancement (CFE). Family-wise error corrected p-values were then assigned to each 

fixel using non-parametric permutation testing of the CFE enhanced t-statistics (Nichols 

& Holmes, 2002).  

2.2.7 NODDI Analysis with the Microstructure Diffusion Toolbox 

(MDT) 

Microstructure metrics were calculated using the Neurite Orientation Dispersion and 

Density Imaging (NODDI) model (Zhang et al., 2012) with the Microstructure Diffusion 

Toolbox (MDT) (Harms et al., 2017). NODDI characterizes diffusion within each brain 

voxel as a combination of intracellular, extracellular and CSF based components. The 

intracellular compartment seeks to capture neurite membranes and myelin sheaths and 

is modelled as a set of sticks with restricted diffusion perpendicular to the orientation of 

the axonal bundles and unhindered diffusion along them. The extracellular compartment 

is thought to capture primarily the space around the neurites, composed of glial cells and 

somas. The diffusion in this space is modelled as hindered Gaussian anisotropic diffusion. 

Finally, the CSF compartment is modelled as isotropic diffusion. The neurite density 

index (NDI) gives the fraction of tissue volume restricted within neurites. It scales from 

0 to 1, with 0 being most extracellular-like diffusion and 1 being most intracellular-like 

(Billiet et al., 2015). The orientation dispersion index (ODI) is a measure of tortuosity and 

is calculated as the dispersion coefficient of the neurites. An ODI closer to 0 is indicative 
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of well-aligned neurites, while that closer to 1 indicates higher levels of dispersion. The 

fractional isotropy (FISO) is the percentage of the volume in each voxel that is best 

modelled by free-water diffusion. The 4D DWI data was passed in as input and parametric 

maps of NDI, ODI, and FISO were generated for each subject and then transformed into 

MNI space using ANTs. 

2.2.8 Voxel-Based Spatial Statistics 

All white matter metric calculations were performed in the study-specific template space. 

First, a global white matter mask was created from the Harvard-Oxford structural atlas 1–

4 . This mask was nonlinearly transformed to each subject’s structural image in template 

space, to make a subject-specific global white matter mask. All subject-specific masks 

were then averaged and thresholded at 90% (such that a voxel is accepted into the mask 

only if the voxel is part of the subject specific masks for 90% of the subjects). The diffusion 

metrics were then averaged within this mask to generate global white matter metrics for 

each subject. The same process was repeated after generating a fornix mask from the JHU 

White Matter Atlas (Hua et al., 2008; Mori, 2007; Wakana et al., 2007). Note that all 

statistical analyses in white matter were first performed in the CFE framework. The voxel-

based analysis was employed for comparison purposes only. 

A global gray matter mask was generated using the Harvard-Oxford structural atlas and 

metrics were averaged across this mask to calculate global gray matter metrics. The 

medial temporal lobe was segmented into the CA1, DG/CA3, subiculum, entorhinal 

cortex, perirhinal cortex, and parahippocampal cortex using an in-house protocol 

(Huffman & Stark, 2014; Kirwan & Stark, 2004). Diffusion metrics were then averaged 
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across each of these regions of interest in both hemispheres for each subject to make 

subject-specific bilateral masks. The global gray matter mask was created in the same way 

as the global white matter mask.  

All statistical analyses were performed in Python 3 (using StatsModels (Seabold & 

Perktold, 2010) or SciPy (Jones et al., 2001)) or GraphPad Prism 8.3.0. (Home - 

GraphPad, n.d.) Statistical p-values were corrected for multiple comparisons (6 regions 

of interest for each metric) in all gray matter associated analysis by calculating the false 

discovery rate (Benjamini et al., 2006). Group differences were computed using student’s 

two-tailed t tests in GraphPad Prism 8.3.0. Structural equation analysis was performed 

using PyProcessMacro [Model 4] (PROCESS Macro for SPSS and SAS, n.d.).  

 

2.3 RESULTS 

2.3.1 Fornix integrity and microstructure is modulated by age.  

First, we assessed the effect of age on fornix integrity using the traditional single-tensor 

diffusion measures of FA and MD. Consistent with prior reports (Bennett et al., 2010; 

Kantarci et al., 2013) , MD in the fornix was reliably higher in the older adults (t = 3.118; 

p = 0.0036), while FA showed a significant reduction (t = 5.100; p < 0.0001). Moreover, 

both MD and FA were linearly correlated with age in the older adults alone (R2 = 0.5370, 

p < 0.0001; R2 = 0.3597, p = 0.0025 respectively; Figure 2.1a, b). We then asked whether 

similar age-related deterioration in the fornix could be detected with the more 

sophisticated measures of tract architecture. With connectivity-based fixel enhancement 

statistics, we found that the FD of the fornix was significantly lower in the older adults (t 
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= 5.959; p < 0.0001) and that FD decreased linearly with age in the older adults alone (R2 

= 0.3638, p = 0.0023; Figure 2.1c). There was no evidence for a relationship between the 

fiber cross section of the fornix (p = 0.9450) or the raw NDI (p = 0.3520) and age. Results 

also revealed that the amount of free water in the fornix voxels was significantly higher in 

the older subjects (t = 2.773; 𝑝 = 0.0087; Figure 2.1d).  Together, these findings are 

consistent with the hypothesis that hippocampal connectivity is altered in typical aging 

and further, that the differences are best attributed to small-scale changes in tract 

integrity. 

To determine whether the differences observed were selective to the fornix and not merely 

a consequence of age-related global white matter decline, the fornix diffusion metrics 

were linearly modelled against their respective global white matter diffusion metrics. The 

residuals of this model were quantified as the “globally regressed” metric. Post global-

regression, the FD decline with age remained robust (t-test: t = 3.4720; 𝑝 = 0.0014; aged-

only linear regression: R2 = 0.6120, 𝑝 < 0.0001; Figure 2.1e). Interestingly, the globally 

regressed NDI showed a decrease in the older adults (t = 2.277; 𝑝 = 0.0288; Figure 2.1f), 

while this had not been observed with the raw NDI, suggesting an age-associated change 

in the fornix that was not a result of a global decrease. Notably, after removing global 

effects of age on FISO, there was no remaining effect of age, suggesting that the change 

observed in the raw fornix FISO was merely a consequence of a global increase in white 

matter free water concentration. No reliable sex differences were found in any of the 

fornix metrics after correcting for multiple comparisons. All significant effects were 
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observed in both hemispheres (results reported above were acquired from bilateral masks 

of a given region of interest). 

 

Figure 2.1: The diffusion metrics of the fornix are influenced by age. Dots indicate individuals with their age both 

grouped in bars and plotted along the x-axis. a-b) Traditional diffusion tensor metrics of the fornix are linearly 

correlated with age in the older adults and show group differences. c) The raw fornix FD decreased with age. d) The raw 

fornix FISO increased in the aged adults. e) The fornix FD maintains its relationship with age even after regressing out 

global white matter changes. f) The globally regressed fornix NDI increased with age. Error bars show the standard 

error of the mean. Asterisks indicate p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001 respectively. 

 

2.3.2 Fornix integrity and microstructure correlate with RAVLT 

performance. 

We then evaluated whether these individual differences in fornix architecture were 

correlated with hippocampal-based memory performance. RAVLT, a word-list learning 
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paradigm, is a standard neuropsychological measure that has proven to be sensitive to 

age-related changes in memory performance and neural measures (Bennett et al., 2015; 

Yassa et al., 2010). The raw fornix FISO was negatively linearly correlated with delayed 

recall RAVLT performance (R2 = 0.319, p = 0.0002; Figure 2.2a), while the raw FD 

showed a positive linear relationship with RAVLT performance (R2 = 0.2261, p = 0.0026; 

Figure 2.2b). There was no reliable relationship between the raw NDI and the RAVLT 

score after correcting for multiple comparisons. 

After global regression, the FD remained positively correlated with RAVLT delay (R2 = 

0.1576, 𝑝 = 0.0136; Figure 2.2c). Interestingly, and in conjunction with observations from 

the previous section, the globally regressed NDI showed a negative linear relationship 

with RAVLT performance (R2 = 0.2830, 𝑝 = 0.0006; Figure 2.2d), suggesting that the 

age-related decrease in FD and increase in NDI might be contributing to age-associated 

cognitive decline. The relationship between FISO and RAVLT delay disappeared after 

global regression, in line with the hypothesis that the observed FISO changes were not 

unique to the fornix. (R2 = 0.07, 𝑝 = 0.131) 
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Figure 2.2: Fornix diffusion metrics were correlated with performance in the RAVLT. a-b) The raw fornix FISO and 

FD are positively associated with RAVLT performance. c-d) After global regression, the fornix FD and NDI were 

negatively correlated with RAVLT performance. 

 

2.3.3 Gray matter microstructure of the medial temporal lobe 

deteriorates with age. 

An advantage of the NODDI analytic framework is that each voxel is treated as a 

combination of several different components that lead to the observed diffusion and no 

distinction is drawn a priori as to whether a voxel is gray matter, white matter, or CSF (all 

voxels are treated as potential mixtures thereof). This approach allows us to perform 
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meaningful analyses of the microstructure of gray matter. In examining whether age 

induces any structural changes within segments of the medial temporal lobe, we observed 

that the raw NDI of the DG/CA3 was higher in the aged adults (t = 2.863, 𝑝 = 0.0069; 

Figure 2.3a). We also observed higher FISO in the perirhinal cortex (t = 3.452, 𝑝 = 

0.0014), parahippocampal cortex (t = 2.913, 𝑝 = 0.0061), DG/CA3 (t = 4.667, 𝑝 < 0.0001), 

CA1 (t = 2.897, 𝑝 = 0.0064) and the subiculum (t = 5.817, 𝑝 < 0.0001) in older adults. 

However, we did not observe reliable age-related changes in the diffusion metrics of the 

entorhinal cortex. 

Post global-regression, there was no age-associated increase in the FISO of the MTL 

segments, suggesting that the increases observed in the raw metric were simply a 

consequence of global atrophy due to aging. The globally regressed NDI of the 

parahippocampal cortex and all hippocampal subfields displayed an age-related increase 

(PHC: t = 5.931, 𝑝 < 0.0001; DG/CA3: t = 3.6770, 𝑝 = 0.0008; CA1: t = 2.4890, 𝑝 = 0.0176; 

Subiculum: t = 3.8080, 𝑝 = 0.0005; Figure 2.3b-e). Thus, the NDI change in each of these 

regions was greater than the global gray matter average NDI in older adults, while it was 

reduced in the younger adults, suggesting that the NDI increases in the MTL are beyond 

those associated with age in the whole brain. 

No reliable sex differences were found for any of the MTL metrics, after correcting for 

multiple comparisons. In addition, all significant effects were observed in both 

hemispheres. 
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Figure 2.3: The NDI of the medial temporal lobe is greater in the aged adults. a) The raw NDI of the DG/CA3 is 

increased in the aged adults. b-e) After regressing out global gray matter changes, the NDI of the PHC and hippocampal 

subfields are increased in the aged adults. Error bars show the standard error of the mean. Asterisks indicate p ≤ 0.05, 

p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001 respectively. 

  

2.3.4 NDI of the DG/CA3 and the CA1 are correlated with RAVLT 

performance. 

We next assessed whether the diffusion metrics within the gray matter of the medial 

temporal lobe were associated with memory ability, particularly performance in the 

RAVLT. The raw FISO for each medial temporal lobe region, except for the entorhinal 

cortex, was negatively linearly correlated with RAVLT delay. However, this association 

disappeared after we regressed out global gray matter metrics, suggesting that the 

relationship between FISO and RAVLT performance is informed by general global gray 
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matter atrophy driving cognitive decline. Consistent with these results, greater FISO 

values are thought to be indicative of more necrotic cells and CSF presence in gray matter 

voxels. (Metzler-Baddeley et al., 2012; Ofori et al., 2015) 

The raw NDI of both the DG/CA3 (R2 = 0.2192, 𝑝 = 0.003; Figure 2.4a) and the CA1 (R2 

= 0.1246, 𝑝 < 0.0297; Figure 2.4b) showed a negative correlation with RAVLT 

performance (however, the effect with CA1 NDI was not reliable after correcting for 

multiple comparisons.) After global regression, the NDI of the DG/CA3 and the CA1 

remained negatively correlated with RAVLT performance, even after correcting for 

multiple comparisons (Figure 2.4 c, d).  
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Figure 2.4: The NDI of the hippocampus has a negative relationship with RAVLT performance. a-b) The raw NDI of 

the DG/CA3 and CA1 decreased with increase in RAVLT delay. c-d) This relationship remained after regressing out 

global gray matter NDI. 

 

2.3.5 NDI of the DG/CA3, CA1 and the fornix remain correlated with 

RAVLT delay, even after regressing age out 

To assess whether these structural correlations with cognitive performance might reflect 

more than simple age-related decline, we regressed age out of the RAVLT scores in 

addition to regressing it out of our diffusion metrics. The age-regressed RAVLT scores can 

be thought of a “de-aged” RAVLT score (capturing something akin to age-invariant 

individual differences), as the effects of standard aging are computationally removed from 

the score. This regressed RAVLT score remained negatively correlated with the globally 

regressed NDI of the fornix (R2 = 0.1624, p = 0.0121), DG/CA3 (R2 = 0.1172, p = 0.0354), 

and the CA1 (R2 = 0.1481, p = 0.017). We then regressed age out of the NDI as well and 

observed that the negative linear correlation survived (Figure 2.5). The persistence of this 

relationship between NDI and the RAVLT delay, even after removing the effects of age, 

suggests that this metric is sensitive to microstructural properties in these regions that 

directly influence performance in the RAVLT.  
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Figure 2.5: The relationship between RAVLT and NDI is retained even after regressing out the effect of age on both 

sides, in the fornix, DG/CA3 and CA1. a-c) The globally regressed NDI had a negative relationship with the RAVLT 

score, after regressing out the effect of age on the RAVLT performance. d-f) This relationship is sustained even after 

regressing out the effect of age on the globally regressed NDI. 

The above correlations suggest a clear relationship amongst age, integrity of the 

hippocampus (and its connectivity via the fornix), and memory performance. To model 

the most parsimonious account of these interrelationships, we performed a mediation 

analysis. An increase in the hippocampus NDI, more specifically, the DG/CA3 NDI, 

mediated the negative relationship between age and RAVLT delay. Removing the effect of 

the DG/CA3 NDI change resulted in age having no residual effect on the RAVLT delay. 

Similarly, a decrease in the FD of the fornix significantly mediated the relationship 

between age and RAVLT delay. In both cases, we observed that the effect of age on 

cognitive decline disappeared upon removing the effect of the mediators. No other 

diffusion metric studied showed this effect (Figure 2.6). It must be noted that this result 
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must be interpreted cautiously as this is not a longitudinal study and we lack middle-aged 

participants that would allow for a continuous distribution of ages. However, despite 

these limitations, this observation bolsters the theory that NDI and FD in DG/CA3, and 

the fornix respectively may be heavily influencing verbal recall. 

 

Figure 2.6: Age-related RAVLT decline can be mediated by NDI increase in the DG/CA3. 

 

2.3.6 Fiber cross sectional differences in the fornix are found with 

voxel-based statistics but disappear with fixel-wise analyses. 

It is important to note the differences observed between fixel-based analysis and voxel-

based analysis techniques when looking at white matter fiber tracts. A single voxel might 

have multiple fiber tracts passing through it, causing interference and noise in the 

measure.  Moreover, crossing, fanning and kissing fibers further alleviate this issue as the 

“density” of a tract may be corrupted by another tract in the voxel that seems to overlap 

it. This makes most voxel-based analysis techniques undesirably non-specific. A fixel-

wise analysis solves this problem by performing statistics on specific fiber populations 

within the voxel, ensuring that the effect observed is in the pathway that is being studied. 
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This issue is further demonstrated in our observation that connectivity-based fixel-

enhancement statistics showed no significant age effects on the fiber cross-section of the 

fornix, while a voxel-based statistical analysis of the same metric showed a significant 

difference between age groups (𝑝 = 0.001). Care must be taken when reporting voxel-

based white matter results for this reason. Interestingly, the observed robustness of fornix 

fiber cross section with age suggests that large scale structural changes may not be the 

focus of age-related architectural changes in the fornix. 

2.4 DISCUSSION 

In this study, we examined the age-related effects of diffusion metrics of the medial 

temporal lobe and their relationship with memory performance. We first replicated 

previous studies showing that the fractional anisotropy of the fornix declines with age, 

while mean diffusivity increases. We then demonstrated age-related changes in fornix 

architecture with more comprehensive diffusion metrics, observing a decrease in FD, and 

an increase in the NDI. Notably, these changes were correlated with poorer RAVLT 

performance, suggesting that age-related microstructural deterioration of the fornix may 

play a role in age-related cognitive decline. We also observed similar trends in the gray 

matter of the medial temporal lobe: showing that the NDI of hippocampal subfields and 

the parahippocampal cortex increased with age and had a negative correlation with 

RAVLT performance for DG/CA3 and CA1. Interestingly, we observed that the NDI of the 

fornix, DG/CA3 and CA1 maintained its relationship with RAVLT performance, even after 

regressing age out from both the structural metric and the cognitive score, suggesting that 

this metric is inherently sensitive to a neurobiological property within the hippocampus 
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that corresponds to cognitive performance independent of age. We also demonstrated 

that traditional methods of analyzing diffusion metrics are not only insufficient for 

identifying such microarchitectural differences but may also provide unreliable results. 

Finally, through structural equation modelling, we showed that the DG/CA3 NDI increase 

and fornix FD decrease mediated age-related decline in RAVLT performance.  

Though previous studies have shown that the integrity of the fornix declines with age, 

none to our knowledge, have explored this change with more nuanced diffusion metrics 

to arrive at a more neurobiologically detailed explanation. A decrease in FA could mean a 

myriad of structural alterations: from demyelination and decrease in axon diameter to a 

decrease in axon packing density(Sampaio-Baptista & Johansen-Berg, 2017). The fornix 

has been shown to undergo age related axonal degeneration in both rats (Naranjo & 

Greene, 1977) and monkeys (Peters et al., 2010); and our findings on fiber density 

reductions bolster the idea that an analogous change may be occurring in humans. This, 

along with our observation that FC remains unchanged, suggests that age-related fornix 

deterioration may more likely to be caused by microstructural alterations, like changes in 

axon packing density or loss of myelinated fibers(Peters et al., 2010), more so than 

macrostructural alterations like an overall reduction in the diameter of the fiber bundle. 

While this explanation is in no way conclusive, it helps shed more light on the underlying 

mechanisms behind age-related structural decline. Moreover, the linear relationship we 

observe between fornix fiber density and age in the older adults alone suggests the 

existence of a “tipping point” in age- after which fornix deterioration begins to occur 

consistently and linearly. Unfortunately, the lack of middle-aged adults or longitudinal 



 

51 

 

data prevents us from accurately establishing the age of this tipping point based on these 

data.  

Moreover, NODDI analysis of the diffusion signal enables us to directly compare changes 

in different tissue types, which is valuable when studying more systemic changes in the 

medial temporal lobe. As NODDI does not directly discriminate between gray and white 

matter, we are able to agnostically measure structural changes and their relationship with 

cognition. A major caveat of this technique, however, is that there exists very little 

information on what these metrics may cytoarchitecturally mean. NODDI is a recent 

technique and its metrics have not been adequately histologically validated, especially in 

human tissue. The nomenclature of these metrics can also be quite misleading. An 

increase in the neurite density index does not necessarily correspond to an actual increase 

in the number of neurites in a voxel. It must be kept in mind that diffusion weighted 

imaging currently does not have the resolution to measure differences at such a 

microscopic level. That said, NODDI has proven to be extremely valuable in parsing out 

information from highly complex voxels, and studies that have correlated its metrics with 

neurobiological properties have been promising. (Sato et al., 2017; Schilling et al., 2018; 

Sepehrband et al., 2015) 

With NODDI, we found an increase in FISO with age in the fornix, parahippocampal 

cortex, perirhinal cortex, and all hippocampal subfields, suggesting that these regions are 

either getting corrupted by an influx of cerebrospinal fluid or other factors that result in 

an increase in free water concentration (such as an increase in the number of necrotic 

cells). Increases in FISO could also be caused by neuropathological factors like 
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edema(Pasternak et al., 2009), inflammation(Wang et al., 2011), and atrophy(Metzler-

Baddeley et al., 2011, p.). These factors may also clarify the negative relationship we 

observed between FISO and RAVLT performance. Interestingly, the effect of age on FISO 

and the influence of FISO on RAVLT performance disappeared when we regressed out 

the global change in FISO, suggesting that the increase we had previously observed was 

merely a consequence of overall brain atrophy with age. More importantly, this global 

regression introduced an effect of age on the NDI in the fornix, parahippocampal cortex 

and all hippocampal subfields, indicating that the NDI in these regions may have a more 

focused increase than the generalized global metric during aging. This selective increase 

in NDI may indicate a decrease in dendritic complexity, perhaps caused by atrophy of the 

surrounding cortical layers. (Colgan et al., 2016) This speculation is further invigorated 

by the retention of the relationship between NDI and RAVLT performance in the fornix, 

DG/CA3 and CA1, even after regressing out the effect of age in both the structural metric 

and the cognitive score. A similar dynamic is observed between the fiber density of the 

fornix and RAVLT performance as well- suggesting that both NODDI and MRtrix may be 

capable of capturing specialized distortions like reductions in myelination or dendritic 

complexity. This possibility is especially exciting as its clinical applications are endless: 

the diagnosis of many neurodegenerative disorders could be aided by the context of the 

NODDI metrics(Sampaio-Baptista & Johansen-Berg, 2017), with the added advantage 

that NODDI is relatively easy to implement and process. Another speculation that could 

rise from the relationship between NDI and RAVLT in the DG/CA3, CA1 and fornix, 

despite the regression of age, is that this metric is capturing a neurobiological property 

(like dendritic arborization) that is inherently correlated with verbal recall- suggesting 
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that exploring these metrics might enable us to get at the neurobiological basis of specific 

cognitive functions. 

These findings also raise the speculation that changes in the neurite density index due to 

age might be partially driving age-related cognitive decline, at least in the context of 

delayed verbal recall. This theory is further bolstered with results from our mediation 

analysis, where we showed that the effect of age on RAVLT performance is no longer 

reliable once we regress out NDI and FD changes of the DG/CA3 and fornix. Though 

further evidence is required, these results may indicate that neurite density related 

structural changes in the fornix and the hippocampus may be responsible for instigating 

age-related memory decline.  

Our results also challenge the validity of current voxel-based analysis methods used in 

diffusion weighted imaging, especially in white matter regions. We show that fiber cross 

section of the fornix does not significantly change with age when we performed 

connectivity-based fixel enhancement statistics, but the same measure was sensitive 

when we computed simple voxel averages about the region of interest. This discrepancy 

might be explained by the fact that MRI voxels are relatively large and contain multiple 

fiber pathways running through them, a nuance that simple voxel-based analysis methods 

do not fully appreciate. For example, the fornix also has other white matter pathways 

running across it (ex: the cingulum), which may also be changing with age. Fixel-based 

analysis works around this issue by separating the multiple fiber populations in a single 

voxel using constrained spherical deconvolution, enabling us to examine individual 

pathways with more accuracy. More interesting patterns may be found if we map the 



 

54 

 

distributions of metrics across all voxels in the region instead of simply averaging metrics 

across a region of interest. More specific, non-linear analyses of the voxel-wise 

distribution of a metric within a given ROI can provide a more comprehensive assessment 

of how these metrics change. Thus, our results have shown that diffusion weighted 

imaging may have more power if we move beyond simple voxel-based averaging analysis 

methods.   

MRtrix and NODDI put together may be able to give us the most detailed view of the 

microstructure of the live human brain possible with the current technological state of 

diffusion weighted imaging. No other study to our knowledge has examined healthy aging 

related microstructural changes in the medial temporal lobe and its relationship with 

cognitive performance at this level of detail before. It is worth noting that our sample size 

is relatively small and longitudinal data is required to fully determine the progression of 

these changes. Lack of reverse phase encoded acquisitions also makes our signal more 

susceptible to EPI distortions. Moreover, NODDI assumes that intrinsic diffusivity is 

uniform throughout the brain, but this measure might be susceptible to age-related 

changes. While these NODDI metrics may be more sensitive to gray and white matter 

integrity, more research is necessary to understand the underlying neurobiological of 

each of them. Therefore, future studies tying together diffusion weighted imaging with 

the underlying histology will hence be immensely valuable.  
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CHAPTER 3: 

Higher-order diffusion measures complement tensor 

metrics and volume in gray matter when predicting age 

and cognition. 

In Chapter 2, we established that NODDI metrics were indeed sensitive to 

aging-related changes in hippocampal microstructure and could inform 

cognitive consequences. However, the multi-shell sequences required to 

derive these diffusion metrics can double or triple the scan time depending 

on the number of shells added, and the value of these metrics over 

traditional tensor metrics in gray matter has not yet been adequately 

examined. Moreover, the study described in the previous chapter involved 

a modest sample size, and we were not sure whether these results would 

translate to larger populations. In this chapter, we first replicated the 

previous study with a larger sample size (about 3x) and demonstrate that 

NODDI metrics are robust and reliable across studies. We then investigated 

how these subfield-specific NODDI metrics compared to more traditional 

metrics like tensor metrics and volume, in predicting age and memory 

ability- and discovered that combining the NODDI and tensor measures 

significantly improved the predictive power of our logistic models! We use 

these results to encourage neuroimaging data collection efforts to include a 

multi-shell diffusion MRI sequence in their protocols, as these metrics may 

be able to capture microstructural variance that might be missed by 
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traditional approaches, even in gray matter studies. These results provide a 

comprehensive insight into the advantage of NODDI metrics in studying 

gray matter microstructure and may even be extended to fields beyond 

cognitive aging.  

NB: A version of this chapter is currently under review at Neuroimage. 

 

3.1 INTRODUCTION 

Magnetic Resonance Imaging (MRI) studies have been very valuable in non-invasively 

detecting structural changes associated with behavior, cognition, function, and pathology. 

While there are a range of MRI techniques that can capture different types of information, 

acquisition time is always at a premium in any study. It is challenging to determine which 

acquisition protocols to include in a study while finding the best balance between scan 

time and information received. Structural Magnetic Resonance Imaging (sMRI) 

techniques like T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery 

(FLAIR) imaging have been crucial in understanding the anatomical alterations that the 

brain experiences, both in research and clinical contexts (Brans et al., 2010; Dekaban & 

Sadowsky, 1978; Hedman et al., 2011; Ho et al., 1980; Jernigan et al., 2001; Morrison & 

Hof, 1997; Peter R., 1979; Raz et al., 2004; Taki et al., 2011; van Haren et al., 2008). For 

example, being able to trace the outline and subsequently calculate the volume of the 

hippocampus using T1-weighted images has been extremely valuable when studying 

diseases like Alzheimer’s (Fox & Freeborough, 1997). However, while these techniques 

can detect useful macrostructural properties like regional volume and cortical thickness, 
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dramatic changes like gross atrophy or cortical thinning likely follow a myriad of more 

subtle microstructural changes that cannot be detected by standard T1- and T2-weighted 

imaging and their analogs (Jack et al., 2018). Cytoarchitectural properties like dendritic 

complexity, glial density, and cellular characteristics may be more reflective of individual 

differences in cognitive and pathological identities. Observing these microstructural 

characteristics in the brain non-invasively had been a major challenge to the field until 

recent advances in MRI technology.  

Diffusion-weighted imaging (DWI) (Stejskal & Tanner, 1965) is increasingly becoming a 

key solution to this problem, given its ability to provide a range of quantitative measures 

describing neural microstructure within only minutes of acquisition (Johansen-Berg & 

Behrens, 2014). Until recently, DWI was almost exclusively associated with the 

characterization of white matter. Diffusion tensor metrics and tractography revealed how 

important features like axonal integrity, myelination, and specific structural connections 

change through healthy and pathological conditions and how they influence cognitive 

performance and other behavior (Assaf & Pasternak, 2008; Sasson et al., 2010; Thomason 

& Thompson, 2011). Given this, diffusion imaging has been considered a general 

microstructural probe as the geometry, organization, and morphology of any tissue type 

influences the diffusion signal. More recently, studies have been conducted using 

diffusion metrics to investigate gray matter microstructure (Aggarwal et al., 2015; Assaf, 

2019; Budde & Annese, 2013; Colgan et al., 2016; Radhakrishnan et al., 2020; Venkatesh 

et al., 2020). However, the ratio of current publications that use diffusion MRI to study 

white mater vs gray matter is a striking 5:1, perhaps because early modeling algorithms 
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could not accommodate the cytoarchitectural complexity of gray matter, and DWI used 

to provide poor image resolution in gray matter sub-structures (Assaf, 2019; Nazeri et al., 

2020). Recent advances in both diffusion image acquisition and analysis techniques may 

be able to resolve some of these issues (Frank, 2001; D. K. Jones, 2004; Papadakis et al., 

1999).  

A promising acquisition technique has been multi-shell DWI, which acquires scans at 

multiple gradient strengths (b-values). These images can then be analyzed using 

biophysically plausible models like Neurite Orientation Dispersion and Density Imaging 

(NODDI) (Zhang et al., 2012), which yield microstructural metrics that correspond to 

“intracellular”, “extracellular” and free water sources of the diffusion signal across tissue 

types. While NODDI may be well-suited to characterize the cytoarchitectural properties 

of gray matter, it has been seldom utilized to do so, especially in large-scale studies which 

usually only collect single-shelled diffusion data, and any multi-shelled data is collected 

in a much smaller sample size (Beekly et al., 2004; Petersen et al., 2010). This is mainly 

because increasing the number of shells can double or triple scan time (depending on the 

number of shells added), which can be a valuable commodity, especially when studying 

sensitive populations. The counterargument for including additional DWI shells may be 

strengthened if their advantage in deciphering gray matter microstructure can be 

documented, as proposed here.  

In this study, we asked whether metrics derived from multi-shell diffusion protocols 

provide enough additional information over traditional tensor and volume metrics to 

justify the added acquisition time. To simplify this question and directly determine the 
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value of NODDI metrics over other metrics in a test case, we observed the effect of aging 

in the hippocampal subfields, and the relationship of this phenomenon with two popular 

hippocampal-dependent memory tasks. We first reproduced prior results from our lab 

and others (Radhakrishnan et al., 2020; Venkatesh et al., 2020) in a larger study 

population showing that NODDI metrics are sensitive to aging-related microstructural 

differences in hippocampal subfields and that differences in these NODDI metrics may 

be associated with cognitive decline. Our central question beyond this replication was how 

the hippocampal NODDI metrics compare to traditional tensor metrics and volume when 

predicting age or cognitive performance. We found that NODDI metrics do indeed 

complement both tensor metrics and volume, even while exclusively examining gray 

matter, and including the NODDI metrics greatly improves the predictive power of our 

models in estimating both age as well as cognition. We use these results to urge 

neuroimaging data collection consortiums to include multi-shell diffusion sequences in 

their protocol as these metrics may be able to capture microstructural variance not 

captured by conventional methods.  

3.2 METHODS 

3.2.1 Participants 

Participants were recruited from the University of California, Riverside and surrounding 

communities. Before enrollment, participants were screened for neurological conditions 

(e.g., depression, stroke, etc.) and scanner-related contraindications (e.g., 

claustrophobia, pregnancy, etc.). After scanning, sixteen of the 170 participants were 

excluded based on data segmentation issues and/or registration artefacts. The final 
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sample consisted of 79 younger adults (20.41 ± 1.89 years, 46 females) and 75 older adults 

(73.56 ± 6.26 years, 45 females) (Table 3.1). All participants provided informed consent 

before participation in this study and were compensated for their time. All experimental 

procedures were approved by the University of California, Riverside Review Board. 

3.2.2 Cognitive testing 

All participants completed a battery of neuropsychological tests to evaluate their cognitive 

abilities. We assessed participants’ memory using the Rey Auditory Verbal Learning Test 

(RAVLT) (Rey, 1941) and the two-choice Mnemonic Similarity Test (MST) (Kirwan & 

Stark, 2007; Stark et al., 2013, 2019). The RAVLT has three components: 5 presentations 

of the same 15-word list with immediate recall, a second immediate recall test following 

an interference list of 15 new words, and a final delayed recall of the initial list after 15 

minutes. The RAVLT Delay score reflects the final recall score, on a scale of 0 to 15.  

The MST is a modified recognition memory task that was designed to tax “pattern 

separation” processes in an explicit attempt to rely on hippocampal processing and its 

link to the hippocampus has been validated in a wide range of domains  (see Stark et al., 

2019 for review). In the MST, participants viewed 128 images of everyday objects during 

an incidental encoding phase. During the test phase, participants were shown repeated 

images, novel foils, and items that were similar to, but not the same as studied images. 

On each trial, participants had to judge them as either “old” (repeated targets) or “new” 

(novel foils and similar lures) using a two-choice button press. A lure discrimination index 

(LDI) was calculated using signal detection theory as the discrimination d’ between 

repeated targets and similar lures (Kirwan & Stark, 2007; Stark et al., 2015). A traditional 
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recognition measure was calculated as the d’ between repeated targets and novel foils. 

Participants who had >20% omitted trials or an extremely poor recognition score (greater 

than 2.5 standard deviations from the mean [REC < 0.5]) were excluded. The final sample 

size for the MST analyses was 78 younger adults (20.41 ± 1.89 years, 46 females) and 69 

older adults (74.04 ± 6.35 years, 35 females). 

 Young Old 

N 79 75 

Age* 20.41 ± 1.89 73.56 ± 6.26 

Female (%) 58.2% 60% 

Education 13.98 ± 2.26 14.56 ± 2.30 

RAVLT Immediate* 11.29 ± 2.50 8.30 ± 3.02 

RAVLT Delay* 10.68 ± 3.00 7.67 ± 3.40 

MST LDI* 0.83 ± 0.50 1.12 ± 0.57 

MST REC 2.67 ± 0.94 2.97 ± 0.72 

Table 3.1: Demographics and cognitive test scores. *Rows in blue indicate p<0.05 in a t-test between young and old 
groups.  

 

3.2.3 MR Image Acquisition 

The participants were scanned using a Siemens Prisma 3T MRI scanner (Siemens 

Healthineers, Malvern, PA), fitted with a 32-channel receive-only head coil. Fitted 

padding was used to minimize head movements.  

T1W: A T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) scan was 

acquired with the following parameters: echo time (TE)/repetition time (TR) = 2.72/2400 

ms, 208 axial slices, GRAPPA acceleration factor = 2, and in 0.8mm isotropic resolution.  
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DWI: Axial diffusion-weighted echo-planar images were acquired in both anterior-

posterior and posterior-anterior phase encodings with b = 1500 s/mm2 and b = 3000 

s/mm2 applied in 64 orthogonal directions each with the following parameters: TE/TR = 

102/3500 ms, FOV = 212 x 182 mm, 64 axial slices, multi-band acceleration factor = 4 

and in 1.7 mm isotropic resolution. Twelve images with no diffusion weighting (b = 0; half 

in each encoding direction) were also collected.  

3.2.4 Diffusion data preprocessing 

All preprocessing steps employed MRtrix3 (Tournier et al., 2012) (www.mrtrix.org) 

commands or used Mrtrix3 scripts that linked external software packages. Physiological 

noise arising from thermal motion of water molecules in the brain was first removed 

(Veraart et al., 2016), followed by removal of Gibbs ringing artifacts (Kellner et al., 2016), 

eddy current correction (Andersson & Sotiropoulos, 2016), motion correction (Andersson 

et al., 2003), susceptibility-induced distortion correction (Skare & Bammer, 2009) and 

bias field correction (Tustison et al., 2014). The image intensity was then normalized 

across subjects in the log-domain (Raffelt et al., 2012). Images with no diffusion weighting 

(b=0) were extracted and averaged to aid with structural registration. 

3.2.5 Structural data processing 

Each participant’s structural image was nonlinearly co-registered to the average of their 

respective preprocessed b0 images using the ANTS Registration SyN algorithm with a b-

spline transform (Avants et al., 2008; Tustison and Avants, 2013). Registration was 

manually checked to ensure accuracy, and DWI-registered T1w images were used for the 

rest of the analyses. The T1-weighted images were then processed using FMRIPREP 

http://www.mrtrix.org/
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version 20.2.1 (Esteban et al., 2018; Gorgolewski et al., 2011). Each volume was corrected 

for intensity non-uniformity using N4 Bias Field Correction from Advanced 

Normalization Tools (ANTS v2.3.4) (Tustison et al., 2010). The images were then skull 

stripped using the OASIS template. Brain surfaces were reconstructed using recon-all 

from FreeSurfer v7 (Dale et al., 1999) and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle (Klein et al., 2017). The 

hippocampus was previously hand-segmented on a template image into 3 subregions: a 

combined dentate gyrus and CA3 (combined due to resolution constraints; DG/CA3), 

CA1, and subiculum, based on our previous work (Stark and Stark, 2017). As the 

hippocampal atlas was in template space, spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009) was performed 

through nonlinear registration with ANTs, using brain-extracted versions of both T1w 

volume and template and using ANTs MultiLabel resampling technique. Regional volume 

was calculated by transforming the masks back to subject space and calculating the 

number of voxels encompassing each subfield multiplied with the image resolution. Brain 

tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM), and gray-matter 

(GM) was performed on the brain-extracted T1w using FAST from FSL v6.0. 

3.2.6 Deriving diffusion metrics 

We calculated traditional tensor metrics using MRtrix3 with data from all shells. Although 

there are concerns about estimating tensor metrics from multi-shell data due to diffusion 

being non-Gaussian at high b values, the increased number of averages and diffusion 
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directions used here attenuates these fit issues. A weighted least squares (WLS) approach 

was first used to fit the diffusion tensor to the log signal, using weights based on empirical 

signal intensities (Basser et al., 1994). We repeated the weighted least squares with 

weights determined by the signal predictions from the previous step (Veraart et al., 2013). 

We then generated maps of the following tensor-derived parameters: the mean apparent 

diffusion coefficient (ADC, sometimes also referred to as Mean Diffusivity or MD), 

fractional anisotropy (FA), axial diffusivity (AD, same as principal eigen value) and radial 

diffusivity (RD, equal to mean of the two non-principal eigen values) (Westin, 1997).  

While these traditional tensor metrics are widely used, they were not originally designed 

to capture the complex cytoarchitectural properties of gray matter. Hence, we derived 

higher-order multi-compartment metrics using the Neurite Orientation Dispersion and 

Density Imaging (NODDI) (Zhang et al., 2012) model in the Microstructure Diffusion 

Toolbox (Harms et al., 2017). NODDI’s metrics are tissue type agnostic and can readily 

be used in gray matter as it characterizes diffusion within each voxel as a combination of 

intracellular, extracellular, and CSF-based components. Here, we focus on three NODDI-

derived parameters: the neurite density index (NDI), the orientation dispersion index 

(ODI), and the fractional isotropy (FISO). The NDI measures intracellular volume 

fraction and is calculated as the proportion of the voxel expressing unhindered diffusion 

along a given set of sticks, and restricted diffusion perpendicular to the same set of sticks. 

The ODI is a measure of tortuosity coupling an intracellular and extracellular space and 

models the extracellular space as hindered, gaussian anisotropic diffusion (very similar 

to, and hence highly correlated with, the tensor-derived FA). The amount of isotropic free 
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volume within a voxel is measured by FISO and is usually proportional to the amount of 

CSF in a voxel. The intrinsic diffusivity was set to 1.7 μm2 ms−1. Note that if this intrinsic 

diffusivity values is suboptimal for gray matter as suggested by some prior work (Guerrero 

et al., 2019), it would be expected to overestimate absolute NDI values but have minimal 

effect of the age group differences of interest. Because there was no significant age group 

difference in the number of voxels that may have insufficient signal to accurately estimate 

the NODDI metrics (i.e., voxels with NDI > 0.99; (Emmenegger et al., 2021), no 

thresholding was applied. The diffusion metrics in each of the hippocampal subfields were 

calculated by averaging the parameter maps using AFNI (Cox, 1996).  

3.2.7 Statistical Analyses 

All statistical analyses were performed in Python’s Scipy (E. Jones et al., 2001) or 

GraphPad Prism 9.1.0. Group differences were computed using Student’s two-tailed t-

tests (Student, 1908). All regression analyses were simple linear regressions. Statistical 

p-values were corrected for multiple comparisons by calculating the false discovery rate 

(Benjamini et al., 2006), unless running tests with a priori hypotheses. Receiver 

operating characteristic (ROC) curves and their corresponding areas under the curve 

(AUC) were calculated using statsmodels (Seabold & Perktold, 2010).  

3.3 RESULTS 

We had previously shown in Chapter 2 that NDI of the DG/CA3 was increased in older 

adults, and was negatively associated with RAVLT Delay (n = 38) (Radhakrishnan et al., 

2020). We first reproduced these results in a larger population before diving into more 

complex analyses. 
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3.3.1 NDI of all hippocampal subfields is increased in older adults 

With this larger sample size, we found that the NDI of all the hippocampal subfields is 

greater in the older group as compared to the younger group (Two sample t-test. 

DG/CA3 : t = 5.30, p < 0.0001 ; CA1 : t = 4.32, p < 0.0001 ; Subiculum : t = 4.10, 

p<0.0001). Moreover, the NDI of the DG/CA3 and CA1 subfields increased with age 

within the older subpopulation alone (Linear regression. DG/CA3: R2 = 0.09, p = 0.04; 

CA1: R2 = 0.179, p = 0.002; Subiculum: R2 = 0.025, p = 0.277). Because of the lack of 

variance in age in the younger population and the absence of middle-aged data, we could 

not perform correlations with age in just the young group or across the lifespan, in any 

meaningful way. 

To determine whether these relationships had any sort of selectivity towards the 

hippocampal subfields and were not just a consequence of age-related global gray matter 

decline, we modelled the subfield-specific NDI linearly against the average whole brain 

gray matter NDI as described in our previous study. The residuals of this highly correlated 

model were quantified as the “globally regressed” NDI for each subfield. Post global-

regression, we found that the older adults not only still had higher hippocampal NDI, the 

globally regressed NDI for older adults was largely positive, while that for the younger 

adults was largely negative: indicating that young adults tend to have a hippocampal NDI 

that is below the whole brain average, but as one grows older the hippocampal NDI 

relatively increases so much that it becomes well above the whole brain average, 

suggesting a focused NDI increase in the hippocampal subfields (Figure 3.1; Two sample 

t-test. DG/CA3 : t = 3.89, p = 0.0002 ; CA1 : t = 4.63, p < 0.0001 ; Subiculum : t = 4.28, 
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p<0.0001). The globally regressed NDI was also positively correlated with age within the 

older subpopulation in the DG/CA3 and CA1, but not in the subiculum. (Figure 3.1; Linear 

regression. DG/CA3: R2 = 0.081, p = 0.019; CA1: R2 = 0.132, p = 0.002; Subiculum: R2 = 

0.005, p = 0.847). To ensure that nothing about our sample was driving the observed 

effect and that any deviation from normality might be altering our results, we performed 

1000 random samplings of 70% of our data. The resulting slopes were entirely consistent 

with our regression-based confidence intervals. 

We found no differences between hemispheric metrics for all subfields. The NDI was 

greater in biologically male participants compared to biologically female participants for 

all subfields (Two sample t-test. DG/CA3: t = 2.04, p = 0.043; CA1: t = 2.036, p = 0.044; 

Subiculum: t = 3.74, p = 0.0003), but the previously described age effects remained 

significant after controlling for sex. 
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Figure 3.1: (a-c) Hippocampal NDI is significantly greater in older adults as compared to young adults- for all three 
hippocampal subfields. Moreover, the NDI of the DG/CA3 (d) and CA1  (e) linearly increases with age within the 
older subpopulation, while that of the subiculum (f) does not. 

 

3.3.2 Hippocampal NDI is negatively associated with RAVLT Delay, and 

more weakly with the LDI 

We were also able to replicate our previous finding that the hippocampal subfield NDI 

was negatively correlated with RAVLT performance, even after factoring in age as a 

regressor. While previously (Radhakrishnan et al., 2020), we observed reliable 

correlations in only the DG/CA3, here the NDI of all hippocampal subfields was 

negatively correlated with RAVLT delay, both before and after global regression, 

suggesting that this relationship in the hippocampus may not be a general brain-wide 

phenomenon (Figure 3.2). Within the older subpopulation, age was not significantly 

correlated with RAVLT Delay. However, the NDI of all hippocampal subfields still trended 

towards a negative relationship with the RAVLT delay in both the younger age group 

(Linear regression. DG/CA3: R2 = 0.059, p = 0.007; CA1: R2 = 0.075, p = 0.001; 

Subiculum: R2 = 0.143, p < 0.0001) as well as the older age group (Linear regression. 

DG/CA3: R2 = 0.054, p = 0.05; CA1: R2 = 0.080, p = 0.021; Subiculum: R2 = 0.195, p = 

0.0002), with the subiculum NDI having the strongest relationship in both groups, 

suggesting that this relationship was beyond just an effect of age, and that hippocampal 

subfield NDI might be capable of capturing individual differences associated with 

cognition.  

A more selective and weaker relationship was found between performance in the MST, as 

measured by the LDI, and the NDI of the hippocampal subfields. While the raw NDI of 
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both the DG/CA3 and subiculum were negatively associated with LDI (Linear regression. 

DG/CA3: R2 = 0.030, p = 0.043; CA1: R2 = 0.021, p = 0.087; Subiculum: R2 = 0.1, p = 

0.0002), this relationship was only weakly significant in the subiculum after global 

regression (Linear regression. DG/CA3: R2 = 0.002, p = 0.557; CA1: R2 = 0.007, p = 0.346; 

Subiculum: R2 = 0.03, p = 0.0434). As in the previous analysis, we performed 1000 

samplings of 70% of our data for both RAVLT delay and LDI, and all resulting slopes were 

consistent with our confidence intervals. 

 

 

Figure 3.2: Globally regressed NDI is negatively associated with RAVLT Delay in all three hippocampal subfields, 
in both the younger and older groups, with the subiculum NDI having the strongest relationship with RAVLT 
performance. Green dots indicate the younger adults (18 – 29 years), while blue dots represent the older adults (65 
– 92 years). 

 

3.3.3 Tensor, NODDI and volumetric measures of hippocampal 

subfields can all successfully predict age group. 

The results in sections 3.1 and 3.2 reproduce previously reported findings in a larger 

dataset and establish that the relationships between age, NDI and cognition are reliable 

and consistent. We next wanted to assess how NDI and other NODDI metrics compare to 
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tensor metrics and coarse volume in their relationships with age and cognition. Note that 

some hippocampal diffusion metrics like AD and ADC were not correlated with their 

global averages, so we used only raw diffusion metrics (not globally regressed) for the 

rest of the study to be consistent across metrics.  

As an initial test, we sought to determine how well the various diffusion and volumetric 

measures from the hippocampus could classify participants into their age group. To do 

this, we used ROC curves to evaluate the performance of each metric in accurately 

distinguishing between young and old groups. We calculated the AUC for each measure, 

by passing in the metric for each subfield split by hemisphere (for a total of 6 input 

features) and fitting a logistic regression model to derive the ROC and consequently 

predict the age group. We used hemisphere-specific metrics instead of bilateral ones 

simply because they generated the greatest AUC for most metrics (Supplementary Table 

S3.5). Since the input features were highly collinear (Supplementary Figure S3.1), we used 

the newton conjugate gradient method (Buckley, 1978; Knoll & Keyes, 2004) for 

optimization to prevent a non-Hessian matrix error. To calculate the null distribution and 

estimate the p-value, we conducted a permutation analysis by randomly shuffling the 

old/young labels and estimating the AUC over 5000 iterations using the volumetric input 

features (since the null distributions would essentially remain equivalent across all 

metrics). We found that all metrics studied could successfully distinguish between young 

and old age groups well above chance with just the six inputs from that metric in each 

hippocampal subfield alone (Figure 3.4), with the ODI, volume and FA yielding the 

highest AUCs. Given the difference in age between the groups and considering that aging 
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causes very dramatic changes in the brain, it is unsurprising that all metrics, even volume, 

are sensitive to these changes. 

 

Figure 3.3: Using diffusion and structural metrics of the hippocampal subfields to predict age group. All metrics 
can successfully predict age group, with ODI, volume and FA being the best predictors and AD being the worst 
predictor (a-b). The histogram represents the null distribution (random permutation of old/young labels), and the 
colored lines represent the AUC of each of the metrics from all 6 subfields (c). 

 

We then asked whether we could achieve higher prediction accuracy inputting a specific 

combination of these metrics, instead of a single metric from all subfields, and whether 

having the NODDI metrics posed any advantage over just the tensor metrics and volume 

in predicting age group. To answer this, we calculated the AUC for each combination of 6 

input features from either a) a composite of tensor metrics and volume [ 𝐶6
30 = 593,775 

combinations] b) NODDI metrics [ 𝐶 =6
18  18,564 combinations] or c) a composite of all 

metrics studied i.e., volume, tensor and NODDI metrics [ 𝐶 =6
48  12,271,512 combinations] 

(Figure 3.5 a-c). We found that the 99th percentile of the AUC distribution from permuting 

over just the NODDI metrics (0.90) was higher than that sampled from the tensor metrics 

and volume (0.77) or even from a combination of all metrics (0.86), suggesting that the 

NODDI metrics were providing highly valuable information for capturing aging-related 

microstructural differences by themselves. More specifically, the 99th percentile of the 
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tensor + volume distribution was equal to the 57.94th percentile of the all metrics 

distribution, while the 99th percentile of the just NODDI distribution was equal to 99.88th 

percentile of the all metrics distribution. To isolate this and understand it more 

completely, we then asked which individual features were most often contributing to the 

highest AUC values (top 1000) over all the combinations (Figure 3.5d). Within these best-

performing combinations, we found that all NODDI (blues) and volume (grey) metrics 

occurred far more frequently in the input features than any of the tensor metrics 

(reds/yellow).  

Note that the distributions were non-Gaussian when volume was included in the selection 

features, due to the lack of collinearity of volume with the other metrics while using the 

newton conjugate gradient optimization algorithm (see supplementary Figure S3.1). 

 

Figure 3.4: A combination of NODDI metrics results in the highest AUC peaks, compared to just the tensor metrics 
and volume or all the metrics combined. Histograms represent the AUCs generated following and exhaustive n-
choose-6 analysis to determine how well various combinations of 6 Region x Metric regressors could model age 
group. (a) Analysis of only the traditional tensor and volume metrics; (b) Analysis of only the NODDI metrics; and 
(c) Analysis of all metrics combined. The colored lines represent the AUCs of each metric from all 6 subfields.  (d) 
Plot of the frequency of selection of a given Region x Metric combination in the top 1000 AUCs in the All metrics 
analysis. Here, NODDI metrics and volume also showed up the most frequently across subfields as input features 
contributing to the highest AUCs. 
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3.3.4 A combination of NODDI, tensor metrics and volume predict 

RAVLT performance better than any of them alone. 

We then repeated the same analysis as the previous section, this time for predicting 

RAVLT delay. We binarized the RAVLT score at a threshold of 9, such that all those who 

scored higher than 9 were considered “high performing”, and those who scored 9 or below 

were considered “low performing”, consistent with previous findings for these age groups 

(Stark et al., 2010, 2013). Binarizing the RAVLT in this way also helped reduce noise that 

might arise from screener differences or individual participants having “off” days (it is 

more likely that a binarized RAVLT score would remain consistent over multiple testing 

days, compared to the continuous score, speaking to its robustness). Note, even though 

classified as “low performing”, none of these individuals were clinically diagnosed as 

cognitively impaired. While calculating the AUC for predicting high/low RAVLT delay 

this way in the entire subpopulation, using each metric from all 6 subfield features, we 

found that all metrics except FISO and AD performed well above chance, with ODI having 

the largest AUC, followed by RD, FA, and NDI [Figure 3.6].  

 

Figure 3.5: Using diffusion and structural metrics of the hippocampal subfields to predict RAVLT performance 
(<9). Except FISO and AD, all metrics can successfully predict RAVLT status as well- with ODI being the best 
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predictor. The histogram (c) represents the null distribution (randomly permuting the high/low RAVLT labels), and 
the colored lines represent the AUC of each of the metrics from all 6 subfields. 

 

 

We next performed the same 𝐶6
48  analysis of all possible combinations of metrics. 

Notably, when examining AUCs resulting from combinations of only NODDI metrics and 

AUCs resulting from only tensor+volume metrics, we observed similar distributions with 

AUCs at the 99th percentile of 0.78 and 0.77 respectively. However, when combinations 

of NODDI and tensor+volume metrics were included, we observed a bimodal distribution 

with the AUC at the 99th percentile = 0.93 (Figure 3.7), and the AUCs of the separate 

distributions were both equal to about the ~55th percentile of the all metrics distribution. 

This indicates that NODDI and tensor+volume metrics, while correlated, contain 

independent aspects of variance that is useful in modeling RAVLT performance. As 

expected from these results, the input features that most frequently contributed to the top 

1000 AUCs spanned all metrics and all subfields. 

Given the correlation between age and RAVLT performance, it is certainly possible that 

our prediction of RAVLT status is driven by our ability to predict age group (note, 75% of 

the high-performing RAVLT participants belong to the younger age group). To assess 

whether these metrics were capturing cognitive difference beyond just a function of age, 

we repeated this analysis separately in the younger and older subpopulations. In the older 

group, we found that these results were just as reliable (99th percentile of AUC 

distribution with Tensor metrics + Volume: 0.89; NODDI metrics: 0.84; All metrics:  

0.98). The peak AUCs of all conditions were greater when predicting the RAVLT delay in 

just the older group and compared to the entire study sample. Notably, the features that 
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contributed to the highest AUCs here were not in the same order as with the entire sample 

size, but still appeared to span across all metrics and subfields evenly. In the younger 

group, we found that combining the metrics did not result in a significantly higher AUC 

distribution over just the traditional metrics or NODDI metrics (99th percentile of AUC 

distribution with Tensor metrics + Volume: 0.75; NODDI metrics: 0.71; All metrics:  

0.75), possibly due to the low number of poor performers, or because these metrics 

weren’t sensitive to microstructural properties that contributed to low RAVLT delay at a 

young age. 

 

Figure 3.6: Combining NODDI and tensor metrics results in a significantly higher AUC after selecting for best 
performing features in predicting high/low RAVLT performance, as compared to just traditional measures or just 
NODDI measures both when examining the full study population (a-d) and when examining only the older 
subpopulation (e-h). (a, e) Analysis of only the traditional tensor and volume metrics; (b, f) Analysis of only the 
NODDI metrics; and (c, g) Analysis of all metrics combined. Histograms represent the distribution of AUCs 
generated following and exhaustive n-choose-6 analysis to determine how well various combinations of 6 Region x 
Metric regressors could model high/low RAVLT group. The colored lines represent the AUCs of each metric from all 
6 subfields. (d, h) Plot of the frequency of selection of a given Region x Metric combination in the top 1000 AUCs in 
the All metrics analysis.   
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3.3.5 A combination of NODDI and tensor metrics predicts MST 

performance better than either of them alone. 

We also found similar results when predicting MST performance, as relayed by the LDI. 

Here, we binarized the LDI at a threshold of 1.25, to match the proportion used in our 

RAVLT analysis. We found that the AUCs for predicting high/low LDI were lower overall 

than the corresponding high/low RAVLT or age group (Figure 3.8) when restricting 

ourselves to individual metrics from all 6 subfields. Here, the only individual predictors 

were ODI, FA, volume, and FISO. 

 

Figure 3.7: Using diffusion and structural metrics of the hippocampal subfields to predict LDI (<1.25). Only ODI, 
FA and volume could predict MST performance slightly better than chance. The histogram represents the null 
distribution (randomly permuting the high/low labels), and the colored lines represent the AUC of each of the 
metrics from all 6 subfields. 

 

 

Turning to the n-choose-6 permutations, we observed a familiar pattern. The 99th 

percentile of the AUC distribution obtained from using just the NODDI metrics or just the 

tensor metrics + volume were 0.67 and 0.75 respectively but using a combination of all 

metrics resulted in a bimodal distribution with a 99th percentile AUC of 0.87 (Figure 3.9), 

again with the separate distributions having their 99th percentile equal to below the 60th 
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percentile in the complete distribution. As with the RAVLT delay, the most informative 

input features spanned all metrics across all subfields. We were also able to reproduce 

these results in just the older subgroup (99th percentile of AUC distribution with Tensor 

metrics + Volume: 0.85; NODDI metrics: 0.75; All metrics:  0.96). As with the RAVLT 

performance, combining the metrics did not help the AUC in the younger subgroup (99th 

percentile of AUC distribution with Tensor metrics + Volume: 0.74; NODDI metrics: 0.77; 

All metrics:  0.76). These results again indicate that while NODDI and traditional 

diffusion metrics can be correlated with each other, they provide unique information and 

contributions to the variance that can be used to model cognition.  

 

Figure 3.8: Combining NODDI and tensor metrics results in a significantly higher AUC after selecting for best 
performing features in predicting high/low MST performance, as compared to just traditional measures or just 
NODDI measures, in both the full study population (a-d), as well as in the older subpopulation (e-h). a, e) Analysis 
of only the traditional tensor and volume metrics; (b, f) Analysis of only the NODDI metrics; and (c, g) Analysis of 
all metrics combined. Histograms represent the distribution of AUCs generated following and exhaustive n-choose-
6 analysis to determine how well various combinations of 6 Region x Metric regressors could model high/low RAVLT 
group. The colored lines represent the AUCs of each metric from all 6 subfields. (d, h) Plot of the frequency of 
selection of a given Region x Metric combination in the top 1000 AUCs in the All metrics analysis. 
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3.4 DISCUSSION 

In this study, we show that multi-shelled diffusion-weighted imaging can provide 

significant advantages in determining aging-associated microstructural differences in the 

hippocampal subfields and their cognitive consequences. We first reproduced our 

previous studies in a larger sample size (about three-fold of that reported in our prior 

publications) showing that the NODDI metric NDI is increased in older adults, and this 

increase may be partially driving aging associated memory decline. The ability to 

reproduce these effects across independent populations and study centers speaks to the 

robustness and reliability of these relationships.  

We also found that NDI increases with age within the older population alone (ages 65 – 

92) in the DG-CA3 and CA1, but not in the subiculum. However, the negative relationship 

between NDI and RAVLT performance was strongest in the subiculum in both the entire 

study population as well as the older subgroup alone, suggesting a subfield-specific 

pattern of NDI differentially associating with cognition at the outset of aging. The other 

hippocampal diffusion metrics derived from both the NODDI and the tensor models had 

selective relationships with age and RAVLT delay and LDI across the subfields (see 

supplementary material) that are consistent with prior reports in the literature (Fukutomi 

et al., 2019; Mortimer et al., 2004; Müller et al., 2005; Nazeri et al., 2015; Nobis et al., 

2019; Yassa et al., 2011). Also consistent with several previous studies (Aggarwal et al., 

2015; Assaf, 2019; Leuze et al., 2014; Truong et al., 2014), we found that even the most 

basic diffusion metrics like FA and RD were sensitive to age and cognitive measures. They 
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could detect specific microstructural properties of gray matter and were mainly better 

than volume in detecting individual cognitive differences. Interestingly, relationships 

between these diffusion metrics and aging/cognition were largely independent of 

hippocampal volume. Moreover, despite being highly correlated with each other, none of 

the diffusion metrics were associated with volume in any of the subfields. These 

observations suggest that hippocampal microstructure as relayed by the diffusion 

metrics, and macrostructure measured by subfield volume, could represent independent 

processes in normal aging. 

Not only could diffusion metrics be reliably used in gray matter to make inferences about 

aging and cognition, but we also found that including multi-shell diffusion sequences 

greatly improved the ability of our statistical models to predict age and cognition. While 

all metrics studied (Tensors: AD, ADC, FA, RD; NODDI: NDI, ODI, FISO; T1w: 

Volume) could predict age group well above chance, a combination of the NODDI metrics 

alone consistently resulted in higher AUCs, compared to any of the other combinations. 

Moreover, when examining the distribution of the highest AUCs possible from all 

combinations of input features, we noticed that all the NODDI metrics and volume in all 

the subfields appeared far more frequently than any of the tensor metrics in any of the 

subfields. These observations suggest that the NODDI metrics may be able to capture 

almost all the microstructural variance that can distinguish between the young and old 

populations and speak to the collective power that acquiring multi-shell data can have in 

at least aging studies.  
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Interestingly, when using the same model to predict memory performance, we observed 

that while combinations of just tensor metrics and volume, or just NODDI metrics yielded 

laudable AUCs, combining the tensor metrics, volume and NODDI metrics could result 

in a near-perfect prediction model. Additionally, when predicting both RAVLT and MST 

performance, this effect only got stronger when looking at just the older subpopulation 

(resulting in AUCs of over 0.98). This enhancement could be because the neurobiological 

properties that help define cognitive performance are more likely to be consistent under 

the common effect of aging, as compared to a much wider age range. The increase in the 

predictive power of the model in the older group also demonstrates that these metrics 

could be capturing neurobiological properties that go beyond just the dramatic effect of 

age and might be sensitive to individual differences as well.  

The results in this paper collectively present a strong case in support of including multi-

shelled diffusion sequences in study protocols, despite the increase in acquisition time. 

The full diffusion sequence here required ~16 minutes to acquire both phase encoding 

directions. However, excellent results are still possible with diffusion data from one phase 

encoding and only b0 images from the reverse (or a separate phase map), reducing the 

acquisition time to ~9 minutes. Adding just a single shell and a modest number of 

directions over typical DTI protocols allowed for NODDI analyses that generated metrics 

that immensely improved the predictive power of our model, showing that these multi-

shelled acquisition and analysis techniques could uncover large effects not discernible by 

more conventional methods. We posit that these results observed in hippocampal aging 

likely extend to other domains of interest, like in development or neuropsychiatric 
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conditions, directing large data collection studies to prioritize acquiring at least one extra 

shell.  

 Of course, this study is not without limitations. Increasing scan times, even by small 

amounts, result in many issues in studies involving children or participants with 

neurological conditions. To accommodate for research where long scan times are not 

feasible, more work that examines the benefits of additional shells over additional 

directions are required. Moreover, since the data presented here are cross-sectional, we 

cannot conclude that NODDI metrics would display the same advantage when studying 

the temporal dynamics of phenomena like aging. Longitudinal studies and studies 

monitoring interventions (Eaton-Rosen et al., 2015; Kamiya et al., 2020; Radhakrishnan 

et al., 2021) could greatly enhance our understanding on the benefits of these metrics. 

Another limitation is that our models binarize age and continuous cognitive measures, so 

we cannot evaluate whether NODDI metrics would complement tensors and volume so 

clearly when predicting absolute age and cognition. However, these binarized cognitive 

scores are far more robust than the continuous scores, and much less prone to noise or 

sample bias. Though this study is fairly well-balanced by sex, it is also important to note 

the role of other demographic differences (like race and socioeconomic status) often rising 

from volunteer and selection biases in most human neuroimaging studies.  

In conclusion, we have shown that two shells are better than one. The extra diffusion-

weighted shell provides predictive and neurobiologically relevant information that would 

have not been available without it. NODDI metrics offer obvious value beyond and/or in 

conjunction with traditional tensor and volumetric measures when studying gray matter 
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microstructure and might even be able to explain individual differences in cognition or 

behavior.  
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Supplementary 

Diffusion and tensor metrics have differential relationships with age 

and cognition and are highly correlated with each other.  

We evaluated the linear relationships between these metrics and age/cognition in each 

subfield. We found that all diffusion metrics were significantly different between the 

young and old populations in at least two of the subfields, while volume only differed 

between the groups in the DG-CA3 (Table S3.1). We also found that the diffusion metrics 

and volumes of the hippocampal subfields were correlated with age and cognition 

(RAVLT delay and LDI) differentially (Tables S3.2-4). Some of these other metrics had 

subfield-specific selectivity as well in these relationships, similar to what was observed 

with the NDI. These results suggest that different metrics could be differentially capturing 

different age and behavior-associated structural properties separately in these subfields.  

We then assessed the relationships of these metrics with each other, in all three subfields. 

We found that many diffusion metrics were highly correlated with each other, while none 

of them were correlated with volume. We also found that, despite the subfields having 

slight variations in microstructure, the relationships between the diffusion metrics 

remained mostly the same across subfields (Figure S3.1). 

 



 

94 

 

 

Table S3.1: T-test results between young and old age groups. Items in bold indicate p 
< 0.05 (to account for multiple comparisons: Bonferroni corrected p value for each 
subfield = 0.003). Red rows indicate an increase with age (Old > Young) and blue rows 
indicate a decrease with age (Young > Old). 

 

 

Table S3.2: Relationship between age and hippocampal subfield metrics, in just the 
older subpopulation. NDI, AD, ADC and RD are positively associated with age, while 
FA is negatively associated with age. Items in bold indicate p < 0.05. Red rows denote 
a positive relationship while blue rows denote a negative relationship. 
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Table S3.3: Relationship between RAVLT Delay and hippocampal subfield metrics, in 
the whole study population. NDI and FISO of the DG/CA3 and CA1, and the tensor 
metrics of all subfields were significantly associated with RAVLT performance. Items in 
bold indicate p < 0.05. Red rows denote a positive relationship while blue rows denote 
a negative relationship. 

 

 

 

Table S3.4: Relationship between LDI and hippocampal subfield metrics, in the whole 
study population. NDI, AD, and RD are negatively associated with age, while FA is 
negatively associated with age. Items in bold indicate p < 0.05. Red rows denote a 
positive relationship while blue rows denote a negative relationship. 

 

 

 

Figure S3.1: The NODDI and tensor metrics are highly correlated to each other. None 
of the diffusion metrics are significantly correlated with volume for all subfields. 
Despite the slight difference in subfield microstructure, the relationship between 
metrics remains consistent across all three hippocampal subfields.  The correlation 
matrix represents Pearson coefficients (r). 
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Table S3.5: Input features split by hemisphere as well as subfields consistently 
generated the highest AUCs as compared to other splitting methods, when predicting all 
targets. Cells in bold indicate the highest AUC for that row. 
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CHAPTER 4: 

TACROLIMUS PROTECTS AGAINST AGE-ASSOCIATED 

MICROSTRUCTURAL CHANGES IN THE BEAGLE BRAIN. 

In Chapters 2 and 3, we demonstrated that NODDI and tensor metrics have 

the potential to resolve gray matter cytoarchitectural properties in cross-

sectional studies. However, very few studies have explored the possible 

advantages of diffusion metrics, especially that of NODDI metrics, in 

examining more subtle cellular changes- like those observed longitudinally 

in intervention studies. In this study, we asked whether these diffusion 

metrics are sensitive enough to measure the efficacy of intervention studies 

designed to protect against aging-related structural changes. Since such 

studies are challenging to conduct in humans, we investigated whether 

diffusion metrics could detect any microstructural changes over time in the 

beagle brain following a year-long treatment with the calcineurin inhibiting 

drug, tacrolimus. We hypothesized that controlling the expression of 

calcineurin before gross aging-related cognitive deficits are observable, 

might be able to protect against aging-related structural deterioration, and 

we challenged whether diffusion metrics would be able to detect 

microstructural consequences of the intervention over just a year. Not only 

were we able to replicate the effect that hippocampal NDI was increased in 

the older dogs at baseline, administering tacrolimus over a year decreased 

the NDI in both the hippocampus and parahippocampal gyrus! Other 
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diffusion metrics like parahippocampal ODI and prefrontal FA could also 

detect the drug potentially protecting against aging-related structural 

changes in gray matter, speaking not only to the benefits of tacrolimus, but 

also to the power of diffusion metrics in longitudinal studies! 

 

NB: A version of this chapter was first published in Radhakrishnan et al., 

Journal of Neuroscience, 2021. 

4.1 INTRODUCTION 

Alzheimer’s Disease (AD) is the most prevalent neurodegenerative disorder in the world, 

affecting more than 45 million people (Dos Santos Picanco et al., 2018). It is primarily 

characterized by dementia, a decline in memory, and other cognitive skills beyond what 

is typically observed in healthy aging (Reitz & Mayeux, 2014). The greatest risk factor for 

AD remains age, and most people who develop the disease are older than 65 years (Inouye 

et al., 2010). 

The two major neuropathological features of AD are abnormally folded beta-amyloid (Aβ) 

peptides and the accumulation of hyperphosphorylated tau proteins in amyloid plaques 

and neurofibrillary tangles (Forestier et al., 2015; Hendrie et al., 2015; Holtzman et al., 

2011; J. Liu et al., 2015; Perl, 2010; Stancu et al., 2014). Because of the overwhelming 

evidence that Aβ plaques play a role in AD and the amyloid cascade hypothesis (Hardy & 

Higgins, 1992), most therapeutic strategies have focused on reducing or at least 

controlling the formation of these plaques. However, clinical trials that use Aβ reducing 

approaches have shown limited clinical efficacy, prompting the exploration of treatments 
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that target other factors or pathways driving this disease, perhaps upstream of Aβ 

accumulation (Pahnke et al., 2009).  

Mounting evidence suggests that the Ca2+/calmodulin dependent protein phosphatase, 

calcineurin, and downstream signaling pathways are an attractive target for ameliorating 

cognitive decline in AD and related disorders (Reese & Taglialatela, 2011; Sompol & 

Norris, 2018). Calcineurin is found at high levels in neurons and reactive glial cells where 

it modulates synaptic plasticity, neuroinflammation, glutamate regulation, and memory 

formation (Mansuy, 2003). Elevated levels of calcineurin expression and signaling are 

found in the hippocampus and other cortical areas at the outset of cognitive decline in 

humans (Abdul et al., 2009; Mohmmad Abdul et al., 2011) and are highly correlated with 

pathological features in later disease stages (Abdul et al., 2009; F. Liu et al., 2005). 

Overexpression or hyperactivation of calcineurin in experimental models recapitulates 

key features of AD including glial reactivity (Norris et al., 2005), synaptic degeneration 

(Wu et al., 2010), and cognitive dysfunction (Malleret et al., 2001). Conversely, inhibition 

of calcineurin signaling via genetic or pharmacologic means reverses many of these AD-

related biomarkers in animal models (Furman et al., 2012; Hudry et al., 2012; A. Kumar 

& Singh, 2017; Reese et al., 2008; Rojanathammanee et al., 2015; Rozkalne et al., 2011; 

Sompol et al., 2017; Taglialatela et al., 2009). In the clinic, calcineurin inhibitors, like 

tacrolimus, are used primarily as immunosuppressants to combat organ transplant 

rejection and other autoimmune disorders. However, an epidemiological study in 2015 

showed that kidney transplant patients treated with tacrolimus had a significantly lower 

incidence of dementia relative to age-matched individuals in the general population 
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(Taglialatela et al., 2015).  Collectively, this work suggests that tacrolimus and other FDA-

approved calcineurin inhibitors could be repurposed for the prevention of AD and 

dementia.  

The FDA-approved status, and well-known safety profiles and contraindications of 

calcineurin inhibitors, would certainly make the path to AD clinical trials easier. But, to 

ensure that calcineurin inhibitors have the best chance of succeeding as anti-AD 

therapeutics requires further optimization in a preclinical model that better approximates 

human metabolism, neural function, treatment course, and biomarker milestones. 

Dogs have a very similar metabolism compared to humans and are excellent preclinical 

models for testing pharmacological agents (Dalgaard, 2015).  More importantly for 

investigating anti-AD treatments, dogs naturally show age-related amyloid plaque 

pathology, neuroinflammation, and neurodegeneration (Sarasa and Pesini 2009; Prpar 

Mihevc and Majdič 2019).  Human-like deficits in cognition also arise with aging and 

correlate well with pathological features.   Because of their longer lifespan, larger brain 

size and complexity, and ease of training, dogs are amenable to the longitudinal 

assessment of neurological function using complex cognitive/behavioral batteries and 

brain imaging, common to most modern human clinical trials. (Hoffman et al., 2018; 

Patronek et al., 1997). Given these clear benefits, we explored the microstructural 

consequences of tacrolimus on the brain of a preclinical aging beagle model (aged 4-8 

years) using diffusion-weighted imaging (DWI). Though traditional MRI procedures (like 

T1 and T2-weighted imaging) are non-invasive, they only provide a mesoscopic view as 

even their highest resolutions are well too coarse to resolve changes at the expected 
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microscopic level, at least directly. In contrast, DWI provides measures that are sensitive 

to the underlying microstructure and its changes in disorders such as AD (Chua et al., 

2008).  Here, we use two types of diffusion analysis techniques: 1) traditional diffusion 

tensor fitting (Basser et al., 1994), and 2) Neurite Orientation Dispersion and Density 

Imaging (NODDI) analysis (Zhang et al., 2012),  to survey the potential cytoarchitectural 

changes (or lack thereof) that tacrolimus could induce in the beagle brain.  

4.2 METHODS 

4.2.1 Animals and drug delivery 

Forty-five (7 males and 38 females) purpose-bred beagles ranging from 5-8 years old were 

assessed for general health status and cognition as described previously (Christie et al., 

2005; Head et al., 1998a; Milgram et al., 1999, 2002; Studzinski et al., 2006; Tapp et al., 

2003). Dogs ranged in weight from 8.6 kg to 14.5 kg. Since tacrolimus has previously been 

associated with nephrotoxicity in renal transplant patients (Randhawa et al., 1997), blood 

samples were taken every six months to monitor the dogs’ overall health and assess blood 

urea nitrogen (BUN), creatine and phosphorous levels. 

4.2.2. Cognitive testing 

Cognitive testing used a modified Wisconsin General Test Apparatus described previously 

(Head et al., 2008). Dogs were given 10 to 12 trials/day, 5 days a week depending on the 

cognitive task. All tasks were reward-motivated and based upon visual cues.  Dogs were 

given baseline tests of visual discrimination learning and reversal learning to assess 

learning and executive function. Subsequently, a spatial delayed non-match to sample 

task was used to assess spatial learning and memory. At the end of baseline testing, dogs 
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were ranked according to cognitive test scores and balanced into 3 groups of 15 

animals/group. Groups were also balanced for age.  

4.2.3 Drug administration 

Oral tacrolimus at 0.075 mg/kg twice a day (n = 15; Males = 2) or an oral placebo control 

(n = 15; Males = 2) was administered for one year. The remaining 15 animals were 

assigned to another intervention study not relevant to this study- only their baseline data 

is included here to improve the statistical power of age associations. The concentration of 

the drugs was designed to provide minimal immunosuppression to reduce adverse effects 

(Margarit et al., 1998).    

4.2.4 MRI Image Acquisition 

Dogs were placed under general anesthesia using Propofol (4-8 mg/kg by slow IV 

injection to effect). After orotracheal intubation and maintenance on Isoflurane 1-4%, 

delivered in 100% O2, dogs were scanned using a Siemens Prisma 3T MRI scanner both 

at baseline before treatment and after one year of treatment.  

T1W: A high-resolution T1 weighted MPRAGE image was collected (repetition time (TR) 

= 2530 milliseconds, echo time (TE) = 2.49 milliseconds, flip angle = 7°, Matrix size = 0.4 

x 0.4 x 0.7 mm, Averages = 1, Average acquisition time = 10 minutes, 30 seconds) for 

structural analysis and image registration.  

DWI: Diffusion imaging (TR = 5700 milliseconds, TE = 62 milliseconds, 48 coronal slices 

in the animal reference frame, Phase encoding: Superior-Inferior, Average acquisition 

time = 12 minutes, 30 seconds) was performed using a double refocused echo-planar 
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sequence with an isotropic 1.6 mm voxel for three gradient values: b = 500, 1000, and 

2000 s/mm2. Gradients were applied in a total of 114 directions, along with 13 images 

with no diffusion weighting (b = 0).  

4.2.5 Diffusion data preprocessing 

All preprocessing steps used MRtrix3 (Tournier et al., 2012) (www.mrtrix.org) commands 

or MRtrix3 scripts that linked external software packages. Physiological noise arising 

from thermal motion of water molecules in the brain was first removed (Veraart et al., 

2016), followed by the removal of Gibbs ringing artifacts (Kellner et al., 2016). The image 

intensity was then normalized across subjects in the log-domain (Andersson & 

Sotiropoulos, 2016; Raffelt et al., 2012). 

4.2.6 Structural data processing 

The T1w images were corrected for intensity inhomogeneities using Advanced 

Normalizations Tools’ (ANTs) N4 bias field correction (Tustison et al., 2010). Each dog’s 

structural image was then non-linearly co-registered to their respective preprocessed b0 

image, so that the structural and diffusion images were in the same space for the rest of 

the analyses. To help standardize our results, we used the Aguirre high-resolution ex vivo 

template (Datta et al., 2012). In this space, we generated a high-resolution central 

tendency template from the structural scans using ANTs with an initial cohort of 10 

animals and a bootstrapping approach. We then used this template to generate initial 

priors for both brain extraction and tissue type segmentation (gray matter, white matter, 

cerebrospinal fluid, deep gray matter, and cerebellum) again using ANTs and a 

bootstrapping approach with more refined priors. The result was a set of priors that can 

http://www.mrtrix.org/
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be used in a modified ANTs’ cortical thickness pipeline to generate final tissue segments 

for each subject. Though the Aguirre template provides an excellent standard template 

space complete with high-resolution ex vivo scans, it does not provide adequate labels for 

ROI specific analyses. To solve this problem, we co-registered two different atlases, 

hereby referred to as the Nitzsche (Nitzsche et al., 2019) and Czeibert (Czeibert et al., 

2019) atlases to the same template space using the affine+SyN nonlinear registration in 

ANTs. The Nitzsche atlas was used for large area ROIs like entire lobes, while the Czeibert 

atlas was used for more specific sub-regions like the hippocampus. All resulting images 

were visually inspected for quality and rerun with new command line parameters when 

necessary (Figure 4.1). Region-wise volumes were determined by warping the annotated 

atlas back to each individual’s subject space and quantifying the number of voxels that 

made up each region of interest. 
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Figure 4.1: Summary of the analysis pipeline 

 

 

4.2.7 Deriving diffusion metrics. 

We calculated traditional tensor metrics (FA and MD) using FSL (v.6.0.1) (Jenkinson et 

al., 2012) and higher-order, multi-compartment metrics (NDI, ODI, and FISO) using the 

Neurite Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 2012) model 

with the Microstructure Diffusion Toolbox (Harms et al., 2017). The traditional tensor 

metrics are widely used, but typically only applied to white matter. NODDI’s metrics are 

tissue type agnostic and can readily be used in gray matter as it characterizes diffusion 
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within each voxel as a combination of intracellular, extracellular, and CSF-based 

components. The intracellular compartment ostensibly captures neurite membranes and 

myelin sheaths and is modeled as a set of sticks with restricted diffusion perpendicular to 

the orientation of the axonal bundles and unhindered diffusion along them. The 

extracellular compartment is designed to model the space around the neurites, composed 

of glia and somas, as hindered gaussian anisotropic diffusion. The CSF is modeled as 

isotropic diffusion. A summary of all the diffusion metrics used is provided in Table 4.1. 

The hippocampus, parahippocampal gyrus, and prefrontal cortex were selected as a 

priori regions because aging and AD presents early changes in these regions in dogs 

(Ezekiel et al., 2004; Head, 2011; Hwang et al., 2008; Shimada et al., 1992; Su et al., 2005; 

Tapp et al., 2004, 2006; Thal et al., 2002). Region-specific averages were obtained by 

aligning the Czeibert atlas (Czeibert et al., 2019) to each subject’s parametric maps. 

Diffusion metrics were then averaged across each region of interest using AFNI (Cox, 

1996). All statistical analyses were performed in Python - Scipy (Jones et al., 2001) or 

GraphPad Prism 8.3.0. All regression analyses were simple linear regressions. Effects of 

interventions were assessed with ANOVA, and multiple comparisons were corrected 

using Holm-Sidak statistical hypothesis testing (Holm, 1979). 

Whole brain exploratory analysis was conducted to measure global longitudinal changes 

in each group separately using a paired t-test in a voxel-wise manner using AFNI’s 

3dttest++. AFNI’s cluster-wise simulations  (Forman et al., 1995) were used to correct for 

multiple comparisons. Parametric maps of each subject were passed in after they were 

registered to a common space, and a brain mask was passed in to improve power. To 
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assess the interaction between intervention and time, a difference image was created (T0-

T1) for each metric and each subject, and the difference images of each group were 

compared through an unpaired t-test. The -clustsim option was used to determine the 

minimum cluster threshold for each individual test to maintain a final alpha of 0.05. 

Code for data processing and analysis is available at https://github.uci.edu/Stark-

Lab/Woofusion. 

4.3 Results 

4.3.1 The NDI of the beagle hippocampus and parahippocampal gyrus 

increases with age. 

Our first question was whether diffusion within hippocampal and parahippocampal grey 

matter was affected by age. Previous work in our lab has shown that the NDI of the 

hippocampus as a whole (Venkatesh et al., 2020), and specifically the DG/CA3 subfields 

(Radhakrishnan et al., 2020), is higher in older humans (59-84 years) than young adults 

(20-38 years) and that this increase is negatively correlated with memory performance 

(Radhakrishnan et al., 2020). Here, we found a similar relationship between age and 

hippocampal NDI at baseline, before treatment, in the canine model across all groups 

(Simple linear regression: R2 = 0.111, p = 0.031; Figure 4.2). Moreover, we observed a 

similar relationship between age and parahippocampal NDI (R2 = 0.131, p = 0.018; Figure 

4.2). This relationship between age and NDI was insignificant overall when averaging 

over the entire temporal lobe (R2 = 0.008, p = 0.567), suggesting a focused change in 

these regions with age.  

https://github.uci.edu/Stark-Lab/Woofusion
https://github.uci.edu/Stark-Lab/Woofusion
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To determine whether these results were driven by gray matter or white matter voxels, we 

classified individual voxels in these regions into gray or white matter by FA-thresholding. 

Those voxels with FA > 0.4 were classified as likely-white matter voxels while those with 

FA < 0.4 were classified as likely-gray matter voxels (M. Kumar et al., 2016). We found 

that the ratio of gray matter to white matter voxels was, on average, 7.48 : 1 in the 

hippocampus and 9.07 : 1 in the parahippocampal gyrus, suggesting that a clear majority 

of the signal we were detecting in these ROIs was driven by gray matter. Moreover, 

removal of the white matter voxels from the regions of interest when averaging across the 

parametric maps did not significantly change the results. 

None of the other studied metrics showed a reliable relationship with age in the 

hippocampus or the parahippocampal gyrus- further bolstering our claim that the NDI 

might be capturing unique aging-associated microstructural properties in hippocampal 

and parahippocampal gray matter not typically detected by simple tensor metrics. We 

found no significant differences in NDI between hemispheres in both regions. Our 

male/female distribution did not permit us to test for sex differences.  
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Figure 4.2: At baseline, before treatment, the NDI of the hippocampus and the parahippocampal gyrus are 
positively correlated with age. Individual dots represent individual subjects. The line of best fit is in black, and the 
teal lines represent 95% confident intervals. 

 

4.3.2 One-year treatment with tacrolimus results in a decrease in 

hippocampal and parahippocampal NDI and an increase in 

parahippocampal ODI. 

Dogs treated with tacrolimus for a year had significantly lowered hippocampal (Repeated 

measures ANOVA, Šídák's multiple comparisons test: t = 3.976, p = 0.001, DF = 25) and 

parahippocampal (t = 3.711, p = 0.002, DF = 25) NDI as compared to baseline, suggesting 

that the drug might be rescuing some level of age-associated change (Figure 4.3). Such a 

change was not observed between the time points for the control dogs in either of the 

regions. Though the dogs are not old enough to be exhibiting significant cognitive deficits 

(Milgram, 2003), previous studies in humans using structural equation modeling show 

that increased hippocampal NDI mediates age-related cognitive decline (Radhakrishnan 
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et al., 2020), indicating that the drug may have the potential to protect against cognitive 

deficits if administered for a longer period of time.  

The parahippocampal ODI significantly increased after a year in the control dogs (t = 

3.197, p = 0.007), but not in the dogs treated with tacrolimus (t = 0.082, p = 0.995). We 

also observed a critical interaction between drug and time on ODI (F = 4.660, p = 0.040, 

ANOVA). We did not notice any correlations between parahippocampal ODI and age at 

baseline (R2 = 0.039, p = 0.805; Figure 4.4), possibly because the dogs are middle-aged, 

and we have a relatively restricted range. However, age-related increases in ODI  have 

been reported in human studies with negative consequences (Mole et al., 2020; Nazeri et 

al., 2015; Venkatesh et al., 2020).  

As with the previous analysis, removal of the white matter voxels from the regions of 

interest when averaging across the parametric maps did not significantly change the 

results. No other studied metric showed an effect of time or intervention in these regions. 

We found no significant difference in the diffusion metrics between hemispheres for all 

regions studied. 
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Figure 4.3: One-year treatment of tacrolimus significantly reduces the NDI in both the hippocampus (t = 3.976, p 
= 0.001) and the parahippocampal gyrus (t = 3.711, p = 0.002). There was a significant interaction between 
intervention and time in the hippocampus (F = 4.482, p = 0.044, ANOVA), but not in the parahippocampal gyrus (F 
= 2.579, p = 0.120). Error bars show standard error of the mean. 

 

 

 

Figure 4.4: Though there was no correlation between age and parahippocampal ODI at baseline, the ODI of the 
parahippocampal gyrus increased in the control dogs after one year (t = 3.197, p = 0.007), but not in the dogs treated 
with tacrolimus (t = 0.082, p = 0.995), with a significant interaction between intervention and time (F = 4.660, p = 
0.040, ANOVA). Error bars show standard error of the mean. 

 

 

4.3.3 Tacrolimus protects against structural changes in the prefrontal 

cortex. 

We next turned to changes outside of the hippocampal region. One of the first regions to 

be affected in the aging canine brain is the prefrontal cortex (PFC). MRI studies have 
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shown that the PFC starts reducing in volume at an earlier age (8-11 years) as compared 

to the hippocampus (Tapp et al., 2004). Cognitively, aging also leads to poorer 

performance on tasks associated with the PFC, like reversal learning and visuospatial 

memory (Head et al., 1998b; Studzinski et al., 2006; Tapp et al., 2003). While it is unclear 

if the prefrontal cortex is an early region affected by age-related neuroinflammation, it is 

one of the first areas in the canine brain to develop plaques (Bosch et al., 2012; 

Wieshmann et al., 1999). Formation of these plaques has consistently been reflected in 

diffusion MRI studies as a reduction of fractional anisotropy (Kealey et al., 2004; Tievsky 

et al., 1999; Wieshmann et al., 1999). It is not very surprising that we found no significant 

relationship between age and prefrontal NDI or ODI at baseline (NDI: R2 = 0.001, p = 

0.806; ODI: R2 = 0.006, p = 0.608); and these metrics did not significantly change in 

either group over the year. However, despite the lack of a significant relationship between 

age and prefrontal FA at baseline (R2 = 0.015, p = 0.440), it decreased in the control dogs 

after a year (t = 5.042, p < 0.001). This observation is directly analogous to the negative 

correlation between age and FA consistently observed in humans (Bennett et al., 2010; 

Kantarci et al., 2013).  Interestingly, prefrontal FA did not decrease in the dogs treated 

with tacrolimus for a year (t = 1.890, p = 0.135), suggesting that the drug may be 

preventing age-associated structural deterioration in the prefrontal cortex (Figure 4.5). 

The lack of a cross-sectional relationship with age at baseline might be attributed to 

individual differences and the dogs not being old enough to exhibit clear differences. 

We also segmented the PFC into white matter and gray matter regions as described in 

section 3.1.  We found that the ratio of gray matter to white matter voxels was, on average, 
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60.55 : 1; showing that an overwhelming majority of the signal was driven by gray matter. 

Removal of the white matter voxels from the regions of interest when averaging across 

the parametric maps did not significantly change the results. No other studied metric 

showed an effect of time or intervention in these regions. All effects reported were 

bilateral. Our male/female distribution did not permit us to test for sex differences.  

 

Figure 4.5: After one year, FA significantly reduced in the prefrontal cortex of the control dogs (t = 5.042, p < 
0.0001), but not in the dogs treated with tacrolimus (t = 1.890, p = 0.135). The interaction between intervention and 
time was also significant (F = 4.568, p = 0.042, ANOVA). Error bars show standard error of the mean. 
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4.3.4 Whole brain exploratory analysis revealed disorganized 

decreases in white matter of the control dogs, but not of the dogs 

treated with tacrolimus. 

Following these a priori regional analyses, we conducted a whole brain exploratory 

analysis to determine whether these changes were unique to these areas or whether they 

were found elsewhere as well. Voxel-wise comparisons were performed in a pairwise 

manner for each dog in both groups using AFNI’s 3dttest++. We used the -clustsim option 

to determine the minimum cluster threshold to ensure an FDR corrected p-value of at 

least 0.05, with an alpha of 0.05. We observed a disorganized, but large-scale, decrease 

in FA in many white matter regions (Figure 4.6; 59207 voxels survived thresholding) in 

only the control dogs. This was not unexpected as the loss of white matter integrity is a 

classic hallmark of aging (Bennett et al., 2010; Madden et al., 2012; Vernooij et al., 2008). 

The dogs treated with tacrolimus did not show this same decrease (no voxels survived 

thresholding) further suggesting that the drug may be protecting against even sporadic 

neurodegeneration. However, these results should be interpreted cautiously as we found 

no significant interaction between intervention and time at our chosen thresholds i.e., no 

voxels survived thresholding when comparing the difference image in time (T0 – T1) 

between the two groups. 

Interestingly, no other diffusion metric studied exhibited reliable differences over time in 

either group, suggesting a very specific age-related decrease in the control dogs in only 

the a priori regions, and a distinct protection against this effect by the drug. This finding 

bolsters our theory that NDI and ODI are sensitive to specific microstructural changes 
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associated with age and may be early predictors of MTL pathology in these specific 

regions. 

 

Figure 4.6: Difference in T0-T1 in FA of the control dogs. We found significant decreases in white matter FA after 
one year in control dogs, but not in the tacrolimus dogs. Colored regions show regions where the FA at T0 was 
significantly different from the FA at T1 for control dogs (Red - Yellow: T0>T1; Teal - Blue: T0<T1). Dogs treated 
with tacrolimus are not pictured here as there were no significant voxels of difference when comparing the two time 
points. 

 

4.3.5 Limited cognitive changes were observed over time. 

We also assessed the effect of age on baseline cognition as well as the interaction between 

intervention and cognition after a year. We observed no significant relationship between 

age and discrimination learning (R2 = 0.014, p = 0.442) or reversal learning (R2 = 0.017, 

p = 0.393). However, age had a negative effect on Spatial Accuracy [20s] (R2 = 0.172, p = 
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0.007) and Spatial Accuracy [70s] (R2 = 0.109, p = 0.036); but not with Spatial Accuracy 

[110s] (R2 = 0.045, p = 0.186). After 1 year of intervention, there was no significant 

difference in either group with respect to discrimination learning (Control: p = 0.821; 

Tacrolimus: p = 0.628) or spatial accuracy (Control: p = 0.151, 0.796, 0.504; Tacrolimus: 

p = 0.999, 0.471, 0.625 for 20, 70 and 110s accuracy versions respectively). Performance 

on reversal learning trended towards a decrease in error scores (i.e., better function) over 

time in the control dogs (p = 0.057) but not in the dogs treated with tacrolimus (p = 0.112). 

After the removal of an outlier in the tacrolimus group, this effect of time was significant 

in both groups (Control: p = 0.041; Tacrolimus: p = 0.029). These data, in conjunction, 

suggest that while these dogs are not exhibiting major cognitive decline, continued 

treatment will allow for more opportunities to see improvements. To that end, continued 

treatment may also be able to reveal whether the structural protection that tacrolimus 

grants to the study group translates to cognitive benefits as well. None of the cognitive 

scores studied were significantly correlated with the diffusion metrics; possibly because 

the middle-aged dogs do not yet show significant decline but are already displaying signs 

of microstructural deterioration. 

4.4. DISCUSSION 

In this study, we used the drug tacrolimus to test the hypothesis that calcineurin 

inhibitors can prevent aging-related pathology, as measured by neuroimaging, in the 

middle-aged canine. We observed a positive correlation between hippocampal and 

parahippocampal NDI with age at baseline; a relationship that agreed with our 

observations in humans from previous studies (Radhakrishnan et al., 2020; Venkatesh et 
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al., 2020). Interestingly, one-year treatment with tacrolimus resulted in a decrease in 

both hippocampal and parahippocampal NDI, while the control dogs did not exhibit this 

effect. The drug also protected against an increase in parahippocampal ODI and a 

decrease in prefrontal FA, both consistently recognized as negative consequences of 

aging. We also showed that these changes precede most widespread volumetric changes 

and all cognitive changes and are specific to the a priori regions studied. These data, put 

together, suggest that i) calcineurin inhibitors may rescue negative microstructural 

outcomes associated with age and ii) advanced diffusion imaging measures may be 

valuable biomarkers for predicting aging-associated pathology well before other 

symptoms are present. 

The overexpression of calcineurin helps drive neuroinflammation and astrogliosis, 

commonly observed in aging (Norris et al., 2005; Reese & Taglialatela, 2011; Rusnak & 

Mertz, 2000). Even though neuroinflammation is ultimately a systemic consequence of 

age, the dogs we studied are not old enough to exhibit these changes globally (Section 

3.4). However, the hippocampus and nearby regions are thought to be some of the initial 

hotspots of such inflammation (Akiyama et al., 2000; Gavilán et al., 2007; Head, 2011; 

Verbitsky et al., 2004), which could potentially be captured in our middle-aged model. 

Older dogs display an increase in GFAP immunoreactivity and protein levels in the 

hippocampus and neighboring regions, as well as increased astrogliosis and astrocyte 

hypertrophy (Borràs et al., 1999; Hwang et al., 2008; Pugliese et al., 2006). While there 

are currently no effective methods to measure such inflammatory changes non-invasively, 

several mouse studies have demonstrated reliable positive correlations between both the 
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NDI and the ODI with immunoreactivity, astrocyte reactivity, and microglia count 

(Colgan et al., 2016; Grussu et al., 2017; Wang et al., 2019). Here, we showed that 

tacrolimus reduces hippocampal and parahippocampal NDI after just a year of treatment. 

Though neuropathological outcomes have not yet been obtained, increases in NDI in gray 

matter regions could be a consequence of inflammation, as microglial and astrocyte 

swelling cause the cells to expand, resulting in an increase in intracellular volume 

fraction, which is estimated by NDI  (Colgan et al., 2016; Garcia-Hernandez et al., 2020). 

The hypothesis that tacrolimus may prevent neuroinflammation is further supported by 

our finding that it protects against an increase in parahippocampal ODI, which could be 

a marker for microglial density (Colgan et al., 2016; Garcia-Hernandez et al., 2020; Yi et 

al., 2019). Region-specific increases in microglial densities in the hippocampus and 

parahippocampal regions also precede plaque formation and are suppressed in mouse 

models of AD by inhibition of calcineurin signaling pathways (Furman et al., 2012; 

Sompol & Norris, 2018), again suggesting that tacrolimus administration in dogs may be 

protecting against aging-related pathological changes through calcineurin inhibition 

(Fakhoury, 2018; Marlatt et al., 2014). However, these theories must be handled 

cautiously, as we are yet to find adequate histological evidence for the neurobiological 

specificity of NODDI metrics.  

We also found that tacrolimus protects against an age-associated decrease in prefrontal 

FA, suggesting that the drug may be capable of preventing, or at least delaying, the 

formation of amyloid plaques (Andrews-Hanna et al., 2007; Kantarci et al., 2017; 

Nasrabady et al., 2018), again, consistent with the effects of calcineurin inhibition in 
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rodent models (Hong et al., 2010). Moreover, the dogs showed no adverse effects on 

kidney function as a consequence of the drug, as measured by blood urea nitrogen (BUN), 

creatine, and phosphorous levels in the blood reducing concerns that tacrolimus might 

cause nephrotoxicity in this model. 

Perhaps most striking is the fact that these effects are specific to the prefrontal and 

hippocampal regions in both groups of dogs. Other than the drug protecting against global 

neurodegeneration in white matter (reflected as a decrease in FA in the control dogs, but 

not those treated with tacrolimus), the diffusion metrics in no other brain regions, except 

those considered a priori aging hotspots, changed after a year. This specificity and the 

fact that these protections are displayed before cognitive decline is promising. These 

results strongly support the potential of tacrolimus to prevent age-related pathological 

decline and suggest that similar drugs could be used as middle-aged preventative care in 

humans. More research on the neurobiological mechanisms of calcineurin inhibitors 

would help indicate a more specific time frame in the human lifespan in which these drugs 

could be most effective in preventing neuropathology. 

The results from this study also suggest a compelling case for using higher-order diffusion 

imaging measures. NDI, ODI, and even tensor metrics like FA computed on multi-shell 

data, all show potential to be early biomarkers for aging-related pathology. They may be 

sensitive to microstructural alterations preceding other measurable pathologies and 

capture these changes well before gross atrophy or cognitive decline is present. 

Acquisition of higher-order, multi-shell data allows for both forms of analyses, and the 

complexity and tissue-agnostic approach of  NODDI (Zhang et al., 2012) makes it far more 
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applicable to the study of gray matter microstructure and longitudinal change that may 

result from AD-associated neuropathological changes (e.g., inflammation and 

astrogliosis). 

This study provides novel outcomes that include 1) evidence for treatment benefits of 

tacrolimus on brain structure before cognitive decline; 2) support for a canine model that 

shows changes in NODDI metrics that can be detected both in both cross-sectional and 

longitudinal studies. However, this study is not without limitations. The advanced 

diffusion metrics, specifically NDI and ODI, have not been adequately histologically 

validated; and though some studies suggest that they might be sensitive to inflammation, 

these results must be interpreted cautiously. The male/female ratio prevents us from 

assessing sex differences, and these results may not be as significant in male beagles. 

However, all male dogs studied had diffusion metrics well within the range of their female 

counterparts, with no significant outliers. Moreover, dogs were middle-aged without 

signs of significant cognitive decline, posing a challenge to detect structure-behavior 

relationships. Unfortunately, both groups showed a significant decrease in hippocampal 

volume after one year- suggesting that the drug may not be able to protect against more 

macrostructural atrophy. The study will continue for another year and our hypothesis that 

structural brain changes occur before cognitive decline may be testable at the next time 

point. Also, future neuropathology outcome measures will help us determine if our 

speculations regarding FA and Aβ, and NDI and glial activation/inflammation are valid.  

In summary, treatment with low doses of tacrolimus in the canine model of aging protects 

against age-associated structural changes, as shown by neuroimaging, and presents no 
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observable adverse effects. It is intriguing to consider that the structural neuroimaging 

outcomes noted here may precede cognitive decline in control dogs and may predict 

benefits in treated animals, which will be evaluated as the study continues.  
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CHAPTER 5: 

A pipeline to predict cell densities from diffusion metrics 

The last few chapters have shown that diffusion metrics can capture 

important microstructural changes associated with pathology and 

cognition. These discoveries suggest the massive potential of DWI to non-

invasively detect explicit neurobiological properties, beyond what is 

possible with the resolution of conventional neuroimaging. However, there 

is very little known about what neurobiological properties these metrics, 

especially those derived from NODDI, correspond to. While these diffusion 

metrics do not promise any inherent cell type specificity, different brain 

cells and even cell states have varying morphologies, which could influence 

the diffusion signal in many ways. This relationship is currently not well-

characterized. Understanding the possible cytoarchitectural signatures of 

these measures would enable them to estimate different cell counts, 

potentially resulting in a very powerful clinical diagnostic tool. Here, using 

advanced diffusion imaging in the mouse brain, we demonstrate that 

different regions have unique relationships between cell counts and 

diffusion metrics. We then take advantage of this exclusivity, and introduce 

a framework to create region-specific models, which can be used to predict 

densities of different cell populations- including neurons and glia. 
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5.1 INTRODUCTION 

While advances in immunohistochemistry and microscopy have been extremely valuable 

in capturing microstructural properties of the brain at cellular resolution, these 

techniques are not very feasible in human studies, and cannot be used in vivo and non-

invasively. In the previous few chapters, we have established that modern diffusion 

analysis techniques may be well-equipped to non-invasively detect various aging and 

cognition-related microstructural properties in gray matter. However, perhaps because 

of the recency of these technological developments and the challenges of conducting such 

experiments, diffusion metrics suffer from inadequate validation and a severe lack of 

understanding of the specific neurobiological properties these metrics might be 

correlated to. Moreover, the sensitivity of these diffusion metrics is yet to be taken 

advantage of in a predictive capacity. Examining specific structural properties across 

scales of measurement would not only assist in delineating changes particular to certain 

disease and senescence states but could also enable the identification of valid noninvasive 

biomarkers specific to these states.  

As diffusion imaging has evolved, the need for validating and re-examining these 

diffusion models has only become more pressing. Newer models hold the potential for 

higher accuracy and specificity. However, just as older diffusion techniques could only 

reliably predict white matter microstructure, most attempts to find histological 

correlations with diffusion metrics have primarily focused on white matter. Moreover, 

despite a growing number of potentially more advanced and powerful models, the 

diffusion tensor has remained the focus for most of these correlation studies [Table 5.1]. 
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Model Region of interest Observations 

Ex vivo wild type mice 

(Chang et al., 2016) 

Corpus callosum, fimbria, 

fornix 

FA: Positively correlated 

with myelin density 

Ex vivo Rats with retinal 

ischemia (Rojas-Vite et al., 

2019) 

Optic nerve and chiasm FA: positively correlated 

with axon density, volume 

fraction, and myelin 

volume fraction. Negatively 

correlated with axon 

diameter and myelin 

thickness.  

Ex vivo Human with 

multiple sclerosis 

(Mottershead et al., 2003; 

Schmierer et al., 2007) 

Whole-brain white matter, 

spinal cord white matter 

FA: positively correlated 

with myelin density and 

axon count. MD: negatively 

correlated with myelin 

density and axon count.  

Ex vivo Human with 

Alzheimer’s Disease (Gouw 

et al., 2008) 

Whole-brain white matter FA: Positive correlated with 

axonal density 

Ex vivo Elderly human 

(Back et al., 2011) 

Prefrontal cortex white 

matter 

FA: Negatively correlated 

with free radical injury and 

oligodendrocyte lineage 

marker. MD: Positively 

correlated with free radical 

injury, oligodendrocyte 

lineage marker, and myelin 

damage 
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In vivo human with 

temporal lobe epilepsy 

(Concha et al., 2010) 

Fornix FA: Positively correlated 

with total axon membrane 

circumference 

Table 5.1: Analysis of studies correlating tensor metrics with cellular properties. 

 

While studies in Table 5.1 have been very useful in understanding standard tensor metrics 

like fractional anisotropy and mean diffusivity, very few such studies have been conducted 

to correlate axonal structure measures obtained from histology with more advanced 

diffusion metrics. Even fewer have attempted to study this in gray matter, even though 

these more recent diffusion metrics may be effective at examining gray matter 

microstructure.  

Moreover, the nomenclature of these diffusion metrics, like NDI which stands for “neurite 

density index”, are often both misleading and vague. NDI simply attempts to measure 

intracellular volume fraction, and the brain has more cells than just neurons. Glial cells 

contribute significantly to diffusion metrics, but this is often overlooked to simplify the 

model. Recently, it was shown that another NODDI metric, the ODI, is positively 

correlated with microglial density (Yi et al., 2019), demonstrating the potential of these 

modern diffusion models to probabilistically estimate cell type-specific counts. Perhaps, 

even more interestingly, the different inflammatory states of astrocytes and microglia 

were found to be reflected in certain biophysical model-based diffusion metrics (Garcia-

Hernandez et al., 2020, p.).  

3D-BOND (3D Bridging of Optically-clear histology with Neuroimaging Data) is one of 

the only pipelines developed for registering medical images with 3D histology, with a 
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focus on bridging the gap between low-resolution MRI and cellular-resolution 

microscopy (Stolp et al., 2018). This study not only showed that axonal content was 

correlated with apparent fiber density (AFD), mean diffusivity (MD), and radial 

diffusivity (RD) in a 3D space, but it also demonstrated that metrics like MD and RD were 

associated with cell density. Even more specifically, FA was observed to be positively 

correlated with astrocyte density, suggesting that diffusion metrics had the potential to 

garner information beyond just white matter integrity. However, this study still relied on 

traditional tensor metrics and not higher-order NODDI metrics. Moreover, such studies 

often depend on simple linear regression models when comparing diffusion metrics with 

cellular properties, while it is likely that more mathematically complex models may better 

represent these relationships. Furthermore, these studies tend to overlook the highly 

complex spatial dynamics of the brain: different regions may present very different 

relationships between these metrics, and this is often ignored to generate potentially less 

accurate but general brain models.  

In this chapter, we outline a pipeline to not only further understand the cytoarchitectural 

basis for the diffusion metrics discussed in this thesis, but also provide a framework to 

non-invasively predict cell counts using them. We first demonstrate that a single model 

is not capable of capturing the morphological complexity of the whole brain, and different 

regions have different diffusion metric/cell count relationships. Next, using the CA1 

region of the hippocampus as a test case, we successfully develop an algorithm that can 

separately predict the counts of different cell types. 
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5.2 METHODS 

5.2.1 Animals 

All animal procedures were conducted in accordance with the guidelines set forth by the 

National Institutes of Health (NIH) and the University of California, Irvine Institutional 

Animal Care and Use Committee. All mice were age and sex-matched and group-housed 

on a 12h/12h light/dark cycle with food and water ad libitum. Six B6CBAF1/J mice 

(Jackson Laboratory, stock number 100011) were perfused at P120 with ice-cold 1x PBS. 

Brains were in 4% PFA for 48 hours and then stored in 1X PBS until MRI scanning.  

5.2.2 MR Image Acquisition 

The brains were scanned in skull ex vivo using an Avance III HD spectrometer 

manufactured by Bruker Bio-Spin operating at a field strength of 17.6 T (750 MHz) with 

an 89mm bore. 

T1w: A Fast Low Angle Shot (FLASH) scan was acquired with the following parameters: 

echo time (TE)/repetition time (TR) = 20/160 ms, flip angle = 30°, and in 0.07mm 

isotropic resolution.  

DWI: Coronal diffusion-weighted echo-planar images were acquired with b = 1000 

s/mm2 (20 directions) and b = 3000 s/mm2 (52 directions) with the following 

parameters: TE/TR = 5/28 s, FOV = 212 x 182 mm, pulse duration – 4ms, pulse spacing 

= 12 ms and in 0.125 mm isotropic resolution. Two images with no diffusion weighting (b 

= 0) were also collected.  
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5.2.3 Diffusion preprocessing 

All preprocessing steps employed MRtrix3 (Tournier et al., 2012) (www.mrtrix.org) 

commands or used MRtrix3 scripts that linked external software packages. Physiological 

noise arising from thermal motion of water molecules in the brain was first removed 

(Veraart et al., 2016), followed by removal of Gibbs ringing artifacts (Kellner et al., 2016), 

eddy current correction (Andersson & Sotiropoulos, 2016), and bias field correction 

(Tustison et al., 2014). The image intensity was then normalized across subjects in the 

log-domain (Raffelt et al., 2012). Images with no diffusion weighting (b=0) were extracted 

and averaged to aid with structural registration. 

5.2.4 Structural preprocessing 

Each participant’s structural image was nonlinearly co-registered to the average of their 

respective preprocessed b0 images (ANTS v2.3.4) (Tustison et al., 2010), so that the 

structural and diffusion images were in the same space for the rest of the analyses. 

Registration was manually checked to ensure accuracy. These images were then 

nonlinearly co-registered to the Allen Reference Atlas (Lein et al., 2007). 

5.2.5 Deriving diffusion metrics 

We calculated traditional tensor metrics using MRtrix3 with data from all shells. A 

weighted least squares (WLS) approach was first used to fit the diffusion tensor to the log 

signal, using weights based on empirical signal intensities (Basser et al., 1994). We 

repeated the weighted least squares with weights determined by the signal predictions 

from the previous step (Veraart et al., 2013). We then generated maps of the following 

tensor-derived parameters: the mean apparent diffusion coefficient (ADC, sometimes 

also referred to as Mean Diffusivity or MD), fractional anisotropy (FA), axial diffusivity 

http://www.mrtrix.org/
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(AD, same as principal eigen value) and radial diffusivity (RD, equal to mean of the two 

non-principal eigen values) (Westin, 1997).  

Higher-order multi-compartment metrics were derived using the ex vivo Neurite 

Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 2012) model in the 

Microstructure Diffusion Toolbox (Harms et al., 2017). The intrinsic diffusivity was set to 

1.7 μm2 ms−1. Note that even though the NODDI model typically generates three primary 

metrics: NDI, ODI and FISO, our analysis for this chapter is limited to the NDI and the 

ODI. The FISO is a free water measure, typically proportional to the amount of CSF in a 

voxel, and such a measure is meaningless in perfused tissue. 

5.2.6 Deriving cell counts 

Typical cell counts from each voxel were obtained from the Markram atlas (Erö et al., 

2018).  The atlas uses a variety of whole-brain image datasets, including Nissl-staining 

for cells and genetic marker stains to distinguish glia from neurons, as well as subtype 

staining for both glia (astrocytes, microglia, and oligodendrocytes) and neurons 

(excitatory and inhibitory). For validation, these estimates were compared against values 

in the literature not used in the reconstruction of the cell densities. A unique property of 

this atlas is that it is not limited to generating a single expected value at each location. 

Rather, it integrates data from the literature to be able to reflect local variation based on 

age, sex and other individual variability. Using this atlas to generate cell counts was 

preferred over empirically determining them not only because it eliminated most of the 

experimental noise and error, but also because this atlas promised more robust estimates 
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as they were combined from multiple sources. A limitation of the atlas is that it does not 

take into account the individual differences in cell counts of the mice scanned. 

5.2.7 Voxel-wise correlations 

To perform voxel-wise correlations, region-specific masks were generated using the Allen 

Brain Atlas, and the masks were eroded by a factor of 3 to account for any partial volume 

effects. To deal with any registration artifacts and individual differences in cellularity, 

these masks were then re-gridded from 0.125 mm resolution to 3.75mm resolution 

isotropic (each new voxel was a composite of 30x30x30 voxels), and each voxel was 

assigned a unique value (Figure 5.1). This regridding factor of 30 voxels was determined 

empirically: ensuring a large enough set of data points for each region, while also 

maintaining the variance. AFNI’s 3dROIstats was then used to generate voxel-wise 

averages of the diffusion metrics and the cell counts. Correlation matrices for each mouse 

were generated by determining the Pearson correlation for each pair. The concatenated 

correlation was determined by calculating the Fisher Z score of all subjects’ Pearson R 

values and performing a one-sample t-test for each diffusion metric/cell count pair. All 

statistics and modeling were performed using Python and GraphPad Prism. 

5.2.8 Extra Trees Prediction Pipeline 

We developed a prediction pipeline to individually estimate various cell densities 

(Dependent variables [6]: all cells, all neurons, all glia, oligodendrocytes, astrocytes, 

microglia) from our diffusion metrics alone (independent variables [5]: AD, ADC, FA, RD 

NDI, ODI). The data from the six mice were divided into training and testing data using 

a 6-fold Leave One Out cross-validation approach, which selected 5 mice for training and 
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1 mouse for testing and this was repeated 6 times for 6 non-overlap validation data sets. 

The model performance metrics were determined by averaging the predicted variables 

over the 6 trials.  

We have already established that these diffusion metrics are highly correlated to each 

other (Chapter 3). Since high collinearity between the independent parameters is 

undesirable for most prediction algorithms, the input data was first recreated by 

compressing the diffusion metrics into a reduced dimensional space using a Keras 

autoencoder (Keras: The Python Deep Learning API, n.d.), with the Adam optimization 

algorithm, optimized for mean squared error. Autoencoder performed better than 

principal component analysis, perhaps due to the relatively small size of the data set.  

We then built our extra trees regression model. Model parameters were determined for 

each region using a grid search with a five-fold cross validation. The parameters were 

optimized for Pearson R rather than the slope of the fit as we were aiming for stronger 

relative predictability over absolute predictive power. Random decision trees were then 

trained on bootstrapped subsamples of the dataset over 1000 iterations. To verify that 

nothing about the subsampling was driving any of the observed effects, we performed 

1000 random samplings of 70% of our data, and the resulting slopes were entirely 

consistent with our regression-based confidence intervals. To generate the probability 

distribution of our performance metrics (Pearson correlation and p value), the training 

and testing data were randomly subsampled at 80% over 1000 iterations for each trial 

prior to fitting the model (Figure 5.1).  
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Figure 5.1: Overview of pipeline 

 

5.3 RESULTS 

5.3.1 Whole brain diffusion metrics have limited relationships with 

cell densities. 

Our first question was whether the diffusion metrics and various cell counts in the whole 

brain had significant observable relationships. We downsampled the image to larger 

voxel-sizes to account for individual differences and any registration artifacts (Figure 

5.2a). Voxel-wise metrics were generated for each mouse by averaging the measures for 

each downsampled voxel. We then calculated the Pearson correlation coefficient for each 

diffusion metric/cell count pair, with each mouse as a separate replicate. These 

correlation metrics were then converted into Z-scores, and a one sample t-test was 

performed with the Z-scores of each diffusion metric/cell count pair. To account for 
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multiple comparisons, we applied the Holm-Sidak correction to all p values, and only 

corrected p values < 0.05 were considered significant. We found that the oligodendrocyte 

counts were negatively correlated with the AD, ADC, and RD and positively correlated 

with the FA and NDI. The FA was also positively correlated with total glia and astrocyte 

count, and the RD was negatively correlated with counts of all cells except microglia 

(Figure 5.2b).  

 

 

Figure 5.2: a) The whole brain was regridded into 30x30x30 voxels, and data points were generated by averaging 
the diffusion metrics and cell counts in each of these voxels for each mouse. b) Oligodendrocyte counts were highly 
correlated with all diffusion metrics except the ODI. FA was positively correlated with glia and astrocytes as well; 
and RD was negatively correlated with all cell types except microglia. Values in the correlation matrix represent the 
t-value from a one-sample t-test of the Z-score of the Pearson correlation coefficient of each subject’s pair. 

 

5.3.2 Whole brain predictor models fail for all cell types except 

oligodendrocytes. 

We then asked if these diffusion metric/cell count relationships were consistent enough 

to generate a successful prediction model for the different cell types. Since we were aiming 
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for strong relative predictability, we determined model fit performance by linearly 

plotting the atlas counts against the predicted counts for each cell type. The stronger the 

Pearson correlation, the better the model was considered to be. Despite extensive 

optimization, we found that the model only performed well when predicting 

oligodendrocyte counts (Figure 5.3), perhaps because this cell type had the strongest 

relationships with the most diffusion metrics. For cells, neurons, and glia, despite the 

scores appearing high, it was evident that the model from whole-brain data could only 

perform well on a small subset of the voxels, and that there was very high variance in the 

cell counts themselves. We speculate that this distribution was influenced by the fact that 

the brain is made of diverse morphologies, and while our algorithm is capable of learning 

a set of rules for a subset of the data, a single model might not have the capacity to learn 

the disparate relationships between cell counts and diffusion metrics that this diversity 

entails. 
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Figure 5.3: Despite extensive optimization, whole brain voxel-wise relationships cannot be exploited to develop 
meaningful prediction models for most cell types. We could only successfully estimate oligodendrocyte counts for 
the whole brain. 

 

5.3.3 Diffusion metrics have unique relationships with different cell 

counts in a region-specific fashion. 

Although the complexity of the relationships between DWI and cell types may preclude a 

single model from predicting cell type density across the whole brain, it is still quite 

possible that this can be effective when the scope is limited to smaller regions. To further 

examine whether the varied cytoarchitecture of the brain influenced the nature of 

diffusion-metric cell count relationships, we reevaluated the correlation matrices for 

three representative regions of different tissue compositions: primary motor cortex 

(cortical gray matter), CA1 of the hippocampus (subcortical gray matter), and the corpus 

callosum (white matter). Indeed, each of these regions had unique relationships between 

cell counts and the diffusion metrics (Figure 5.4), perhaps explaining why a common 

model would not be successful at predicting cell counts in these separate regions. We also 

observed that these relationships were distinct even to the level of subregions: the 

hippocampal correlation matrix was slightly different compared to that of just the CA1 

with fewer statistically significant relationships, suggesting that the subfields had enough 

variance in their morphologies to warrant separate models. Moreover, even within a given 

“tissue composition”, the correlation matrices did not remain consistent: the primary 

motor area had very different significant relationships compared to the supplementary 

somatosensory area, despite them both being cortical regions. 
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Figure 5.4: When examining different regions, we find unique region-specific relationships between diffusion 
metrics and cell types. Values in the correlation matrix represent the t-value from a one-sample t-test of the Z-score 
of the Pearson correlation coefficient of each subject’s pair. 

 

5.3.4 Localized, regional models show DWI can predict cell type 

density: CA1 as a test case. 

We then asked if these stronger, region-specific relationships could be exploited to build 

unique models that could predict cell counts from the diffusion metrics alone. The results 

in section 3.3 warrant the construction of a separate predictor model for every structurally 

associated set of regions. Defining the exact regions that should be modelled together is 

beyond the scope of this chapter but will be worked on prior to publication.  

As a proof of concept that it is possible to derive a regressor that can predict cell counts 

from diffusion metrics alone, however, we limit the remaining model generation to just 

the CA1 (as the rest of this thesis has primarily focused on the hippocampus, and the CA1 

takes up the most area in the hippocampus). We recreated our extra trees regressor using 
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a subset of just the CA1 data, optimized for the Pearson correlation between the atlas and 

predicted counts. We find that constructing our model this way results in successful 

prediction of cells, neurons, glia and oligodendrocytes, but not that of astrocytes or 

microglia (Figure 5.5).  

 

Figure 5.5: The region-specific relationships can be exploited to create models that can successfully predict certain 
major cell types, but not glial subtypes like astrocytes and microglia. To prevent bias, the y-values on the linear 
regressions are from an average of the predicted values of each mouse for a given voxel, on a random trial. The 
histograms represent the distributions of R and p of the model when testing and training 1000 samplings of 80% of 
the data, cross-validated on all mice. 

 

5.4 DISCUSSION  

In this chapter, we laid out a framework for using the diffusion metrics discussed in this 

thesis to predict neurobiological properties of the brain, specifically cell counts. We first 
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asked whether there were any clear voxel-wise relationships between the diffusion 

metrics and these various cell counts when looking at the brain as a single entity. We 

found that the most significant relationships were between the diffusion metrics and glial 

cell counts, especially those of oligodendrocytes! We also found that the tensor metrics 

FA and RD were highly correlated with many cell counts. However, except for 

oligodendrocytes, the diffusion metrics were not differentially correlated with any of the 

cell types. In turn, our extra trees regression algorithm was only successfully able to 

predict counts of the oligodendrocytes from the diffusion metrics, but not of any of the 

other cell types. When looking at the distribution of voxel-wise counts in the major cell 

categories i.e., overall cell, neuron, and glia count, we found that part of the failure of the 

model could be caused by the cell counts themselves falling into discrete groups. We 

hypothesized that this was because the brain is cytoarchitecturally very complex, and it is 

unlikely that diffusion metrics in different parts of the brain were capturing identical 

microstructural properties. To further test this hypothesis, we re-evaluated the voxel-wise 

relationships between diffusion metrics and cell counts in separate regions representing 

different tissue compositions: Primary Motor Cortex (cortical gray matter), Field CA1 

(subcortical gray matter) and the Corpus Callosum (white matter). We discovered that 

the voxel-wise diffusion metrics in these sample regions had unique relationships with 

their cell densities, suggesting that these metrics were indeed capturing different 

properties in different regions.  

We next asked if modeling these regions individually would benefit our algorithm’s 

predictive capacity, using the CA1 of the hippocampus as a test case. Interestingly, we 
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found that region-specific models could successfully predict all cell types studied, except 

for microglia and astrocytes! This is perhaps because astrocytes and microglia are slightly 

closer in soma size and shape to each other as compared to the other cells studied and our 

diffusion measures do not have the resolution to tell these cells apart. Moreover, these are 

some of the most dynamic cell types of the brain, and it has been shown that state-based 

morphologies could significantly influence the diffusion signal (Garcia-Hernandez et al., 

2020). More studies examining the differences in the diffusion signal following acute 

inflammation or increase in reactivity in these cell types could refine the predictive power 

of our model.  

The region-specific success of our model is not particularly surprising:  adjacent voxels 

are more likely to have similar associations between diffusion metrics and cell counts. 

However, we have yet to establish what properties exactly constitute a “region”. We found 

that simply splitting the brain into gray/white or cortical/subcortical regions was not 

enough to build a successful model. We theorize that these regions must be large enough 

to possess adequate variance across all metrics (we did not find significant relationships 

between diffusion metrics and cell counts within individual layers of the primary motor 

cortex), but conservative enough such that a model is not expected to learn disparate 

patterns of relationships (aggregating across hippocampal subfields resulted in an 

unreliable correlation matrix, Figure 5.4). The next step would be to determine the exact 

morphological properties that should define the boundaries of a “region” that warrants a 

discrete model.  
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One could argue that the success of our model lies solely in the computational power of 

the extra trees prediction algorithm we utilize, or that our model might be behaving as a 

mere look-up table and not relying on distinct relationships between the diffusion metrics 

and the cell counts. However, if such were the case, a single model would have been able 

to predict whole brain cell counts and, as we show in Figure 5.3, this is not true. Moreover, 

the failure of the model to fit certain glial subtypes, while disappointing, demonstrates 

that our model is truly attempting to learn relationships between the diffusion metrics 

and the cell counts, and is not just fitting noise. Moreover, only the cell types that are 

strongly correlated with the diffusion metrics (Figures 5.2 and 5.4) are successfully 

estimated by our model, further demonstrating that it is relying on real associations 

between the metrics and the counts. 

It should also be noted that the model works on the same cell types when training on one 

hemisphere and testing on the other hemisphere of individual mice. Moreover, the 

successful results were consistent across all mice, and were consistent even in random 

samplings of the training and testing data, demonstrating that the prediction was not just 

dependent on specific mice or sets of voxels. As a sanity check, we also confirmed that a 

model trained in a region and tested in a different region was not successful, and 

performed at chance, further demonstrating our model was not capable of fitting any 

sporadic pattern and that there were discernible region-specific relationships between the 

cell counts and diffusion metrics. 

It is important to note that the cell counts reported in this study are derived from an atlas. 

Though these counts are robust and reliable estimates and less prone to experimental 
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error, using atlas counts overlooks potential individual differences of the mice studied. 

While we do not expect differences in counts so large that they could be detected by 

diffusion measures, it is possible that a small part of the error from our prediction model 

might be arising from not being able to measure the exact cell counts of these individual 

mice.  

Throughout the results in this chapter, the relationship between oligodendrocytes and the 

diffusion metrics is curious: these cell types are the only ones that can be predicted with 

the whole brain data. The results in the other cells suggest that the model is not capable 

of generalizing patterns within the entire brain, given its cytoarchitectural complexity, but 

why is this not the case with the oligodendrocytes? Even if the relationships between 

oligodendrocytes and diffusion metrics was consistent across the whole brain, why is the 

cluster-like prediction structure of the other cells (Figure 5.3) not influencing 

oligodendrocyte prediction? One hypothesis is that this pertains to the relationships 

between the cell counts themselves. Not only are the cell types highly correlated with 

each other in the whole brain, the relationship between oligodendrocytes and neurons 

(and even total cells) forms a similar cluster-like pattern (Figure 5.6a). 
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Figure 5.6: a) Oligodendrocyte counts are highly correlated to other cell counts in the whole brain. b) CA1 
oligodendrocyte counts are only strongly correlated to counts of Cells, Neurons and total glia. Values in the matrix 
represent Pearson R coefficients. 
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Further examination shows that this interconnectedness is only true for certain cell types 

when examining individual regions like the CA1. One central observation is that the cell 

counts that are most correlated with oligodendrocyte counts in the CA1 are also the cell 

counts that the model predicts best (Figure 5.5 and Figure 5.6b). These might suggest that 

the model is primarily relying on changes in diffusion driven by oligodendrocytes to not 

only predict their counts, but also to predict the other cell types (given the correlation, the 

count of oligodendrocytes is a reasonable proxy for the count of neurons, glia, and 

astrocytes). While a compelling and simple hypothesis, there are aspects that do not fit 

into this story. Notably, our model performs best in the total cells and neuron counts 

instead of the oligodendrocytes. If oligodendrocytes’ diffusion properties served as a 

proxy for neurons, this would not be the case. This phenomenon also does not extend to 

other regions like the corpus callosum, where the prediction of our model does not 

correlate with the relationship between the cell type of interest and oligodendrocytes. 

Moreover, it is highly unlikely that all of the other diffusion results presented in this thesis 

were completely driven by oligodendrocyte counts. To resolve this issue, in our future 

work, we will consider the relationship between the cell counts themselves when selecting 

areas of interest and when defining the “boundaries” of a region. Central to this will be to 

determine whether our model can still predict cell counts in regions whose 

oligodendrocytes do not correlate with the other cell counts at all. Future imaging studies, 

causally manipulating counts of these cells and breaking patterns between these cell 

counts, could help further pinpoint the exact drivers of these diffusion metrics. 



 

164 

 

Nevertheless, these results demonstrate that diffusion metrics in gray matter are 

selectively sensitive to different cell counts. Collectively, we have laid the foundation for 

a pipeline that could non-invasively detect cell counts in a region-specific manner. This 

chapter further establishes that diffusion metrics can be used to examine gray matter 

cytoarchitecture. Currently, clinical MRI resolution is nowhere close to reaching the 

resolution of histology, but pipelines like the one proposed in this chapter may help bridge 

this gap.   
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CHAPTER 6: 

DISCUSSION 

 

I can’t give you brains, but I can give you a diploma. 

-The Wizard of Oz, to the Scarecrow. 

 

The work presented in this thesis collectively demonstrate that recent advances have 

transformed diffusion-weighted MRI into a powerful tool to study gray matter 

microstructure, specifically in the context of cognitive aging. While we have discussed the 

implications of individual studies in their respective chapters, we shall summarize our 

results in this chapter. We have identified diffusion metrics in the hippocampus that can 

serve as novel biomarkers associated with age-related cognitive decline and have 

constructed a pipeline that can predict properties at a cellular resolution from these 

diffusion metrics alone. The major findings of this thesis can be summarized as follows: 

1. Diffusion MRI is sensitive to aging-related changes in hippocampal subfield 

microstructure. (Chapters 2 and 3) 

2. Diffusion MRI can detect neurobiological properties in hippocampal gray matter 

explicitly tied not only to aging-related cognitive decline, but also to individual 

differences in cognition. (Chapters 2 and 3) 

3. Diffusion imaging can be used as a powerful non-invasive tool to monitor the 

success of interventions and clinical trials designed to protect against aging-

associated microstructural deterioration, even in gray matter. (Chapter 4) 
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4. Despite its low resolution, diffusion metrics can be linked to certain cellular 

properties that can be estimated using creative computational methods. (Chapter 

5) 

Novelty of this research 

These findings have resulted in many novel contributions. Chapter 2, which was 

published in Frontiers in Aging Neuroscience in 2020, was the first paper to demonstrate 

that the NODDI metric NDI was increased in the hippocampus of older adults in a 

subfield-specific manner, and that this increase specifically in DG/CA3 could be 

mediating aging-related cognitive decline in verbal memory. These results were further 

corroborated in Chapter 3, attesting to the robustness and reliability of NODDI metrics. 

Moreover, this chapter- which is now under review at Neuroimage, had the first set of 

results to indicate that combining NODDI and tensor measures across all hippocampal 

subfields could strongly predict both age and cognition on multiple scales better than 

either set of measures alone, and much better than more traditional gray matter structural 

metrics like volume. Moreover, this was true for predicting cognition even within just the 

older subpopulation, suggesting that these diffusion metrics were also sensitive to 

individual differences in cognition. These results together provide a strong framework for 

using multi-shelled diffusion metrics to examine the structural mechanisms of aging, 

specifically in gray matter. However, the results in these two chapters were from cross-

sectional studies comparing older adults to younger adults, whose brains could be 

dramatically different from one another. In Chapter 4, we not only replicated 

relationships between diffusion metrics and age in an entirely different species, the 
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beagle; we also demonstrated that these metrics were sensitive to even subtle longitudinal 

changes in gray matter microstructure over the span of just a year! Further, we 

demonstrated for the first time that our methods could evaluate the ability of the 

calcineurin-inhibiting drug tacrolimus to protect against these changes! Finally, in 

Chapter 5, we established a pipeline to essentially perform virtual histology with just 

multi-shelled diffusion imaging, by creating a model that could non-invasively estimate 

cell counts in a region-specific manner.  

 

Revisiting major results 

Even in healthy aging, the brain undergoes major cytoarchitectural changes that precede 

gross atrophy and cognitive decline. This thesis uses this universal phenomenon to test 

the sensitivity and reliability of advanced diffusion imaging in non-invasively examining 

gray matter cytoarchitectural properties. By doing so, this work also presents a framework 

to extend this method to other domains. Researchers studying the microstructural 

mechanisms of both healthy developmental stages, as well as various neuropsychiatric 

illnesses, could massively benefit from implementing multi-shelled diffusion imaging in 

their protocols. In such studies, however, it is important to identify the “domain of 

validity” where both the assumptions and interpretations of these diffusion metrics are 

accurate (Lampinen et al., 2019), as diffusion indices tend to be very context-specific. 

Seemingly similar changes in diffusion metrics may have different anatomical 

implications across pathologies, age groups, and even across brain regions. For example, 

we report consistent and reproducible increases in hippocampal NDI with age. However, 
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the NDI of other regions, especially white matter, have been shown to decrease with age 

with similar associated cognitive decline (Merluzzi et al., 2016). Moreover, conditions like 

schizophrenia and bipolar disorder present decreased levels of hippocampal NDI, with 

potentially very different neurobiological implications (Nazeri et al., 2017). More research 

examining gray matter microstructure using these methods across the whole brain, in 

both the healthy lifespan and disease, can help in developing powerful signatures for both 

developmental milestones as well as neurological illnesses. This is another reason to 

advocate for the inclusion of multi-shell diffusion sequences in large-scale data collection 

efforts. 

As shown in Chapter 5, each region’s diffusion metrics is uniquely related to various cell 

counts, and these relationships cannot be generalized to the whole brain. While we were 

able to successfully build a model that could predict most cell counts in the CA1, we are 

yet to build such a model across the whole brain. We have demonstrated that region-

specific models are the solution, but the boundaries of what constitute a “region” in this 

context remains ill-defined. As a next step, we aim to define this boundary by first 

examining the success of fitting label-based regions with models optimized by their 

neighbors, and empirically determine the extent to which a single model can be 

generalized. Next, we will include the defined region and its subsequent optimized 

parameters as independent variables in our dataset to build a spatially intuitive model 

that could simultaneously predict cell counts for the whole brain. These empirically 

determined set of boundaries could also then be extended to other interpretations of these 

diffusion metrics, like when examining relationships with age and behavior. 
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 This non-specificity also leads to another major limitation of diffusion imaging: different 

patterns of cytoarchitecture could result in the exact same value for certain diffusion 

metrics but might not result in the exact same value for all diffusion metrics. Most prior 

work attempting to tie implicit neurobiological properties with diffusion imaging have 

tended to look at these relationships separately within each metric. However, as alluded 

to in Chapters 3 and 5, treating these varied diffusion metrics as a unique “signature” for 

each voxel can generate more specific models that can predict both behavior and 

microarchitecture more successfully. However, even with such a method, extreme caution 

must be taken when speculating on the neurobiological implications of these diffusion 

metrics.  

The issue of domain-specificity is further emphasized in a recent pilot study we conducted 

comparing the diffusion signals from wild type mice (B6CBAF1/J) and mice with a CSF1R 

enhancer region deleted (fmr-intronic regulatory element or FIRE). The deletion of this 

region results in these mice having no microglia at all (Rojo et al., 2019). We hypothesized 

that this radical difference from the wild type mice would be likely reflected in their 

diffusion metrics as well. Surprisingly, we found that these mice had almost identical 

diffusion profiles throughout the brain compared to the wild type mice. Histology on these 

brains revealed that the absence of microglia might be compensated for by another cell 

type, perhaps similar in morphology, and that our methods are currently incapable of 

telling the difference between these cell types (Figure 6.1). 
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Figure 6.1: We observe no significant difference between the fire mice and wild type mice in all diffusion metrics. 
However, despite having no microglia, the fire mice have a significantly larger total cell count, compared to the wild 
type. The graphs here are from the dentate gyrus, but this was true for other brain regions studied as well (thalamus, 
cortex). 

 

This is also evident in the performance of our model generated in Chapter 5: despite 

optimization, the slopes of the lines between atlas cell counts and predicted cell counts 

never get close to 1, and the intercepts never get close to 0. Our model still incorrectly 

predicts a significant number of cells in voxels where there are none, perhaps because the 

diffusion metrics cannot completely separate the contribution of different cell types to the 

signal. Despite the absolute cell counts suffering, however, our model still proves to be 

valuable as it can be represented by a linear regression and performs well when relative 

predictability is the determining factor of success.  

This ability of these diffusion metrics to tell the relative difference between cell counts can 

serve it well in both identifying biomarkers and in intervention studies. For example, in 

Chapter 4, diffusion metrics were able to differentiate between dogs treated with a 
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calcineurin inhibiting drug and control dogs. However, this study also suffers from the 

non-specificity of diffusion metrics: while we observe a clear reversal of aging-related 

changes in diffusion metrics after treatment, we cannot say with certainty that this 

demonstrates a genuine reversal of aging-related changes cytoarchitecturally, or if this 

drug might be resulting in a completely different set of neurobiological events that 

contribute to a similar diffusion profile but might not be beneficial. More studies 

correlating histological data as well other data like blood and CSF biomarkers, along with 

understanding what these changes do to cognition, can help make diffusion imaging a 

reliable tool to evaluate the success of such intervention studies.  

In conclusion, we have demonstrated that diffusion imaging is a powerful to study gray 

matter microstructure non-invasively. However, these results also raise questions on the 

specificity of these measures, and the extent to which these observations can be 

generalized. Better tools for validation, and a deliberate effort to generate large-scale 

publicly available datasets with multi-shelled data could not only help answer some of 

these questions, but also convince clinicians about the validity of this technique and be 

integrated in hospitals for diagnostic and other clinical applications. 

  



 

175 

 

References 

Lampinen, B., Szczepankiewicz, F., Novén, M., van Westen, D., Hansson, O., Englund, E., 

Mårtensson, J., Westin, C.-F., & Nilsson, M. (2019). Searching for the neurite density with 

diffusion MRI: Challenges for biophysical modeling. Human Brain Mapping, 40(8), 2529–

2545. https://doi.org/10.1002/hbm.24542 

Merluzzi, A. P., Dean, D. C., Adluru, N., Suryawanshi, G. S., Okonkwo, O. C., Oh, J. M., Hermann, 

B. P., Sager, M. A., Asthana, S., Zhang, H., Johnson, S. C., Alexander, A. L., & Bendlin, B. B. 

(2016). Age-dependent differences in brain tissue microstructure assessed with neurite 

orientation dispersion and density imaging. Neurobiology of Aging, 43, 79–88. 

https://doi.org/10.1016/j.neurobiolaging.2016.03.026 

Nazeri, A., Mulsant, B. H., Rajji, T. K., Levesque, M. L., Pipitone, J., Stefanik, L., Shahab, S., 

Roostaei, T., Wheeler, A. L., Chavez, S., & Voineskos, A. N. (2017). Gray Matter Neuritic 

Microstructure Deficits in Schizophrenia and Bipolar Disorder. Biological Psychiatry, 82(10), 

726–736. https://doi.org/10.1016/j.biopsych.2016.12.005 

Rojo, R., Raper, A., Ozdemir, D. D., Lefevre, L., Grabert, K., Wollscheid-Lengeling, E., Bradford, 

B., Caruso, M., Gazova, I., Sánchez, A., Lisowski, Z. M., Alves, J., Molina-Gonzalez, I., 

Davtyan, H., Lodge, R. J., Glover, J. D., Wallace, R., Munro, D. A. D., David, E., … Pridans, C. 

(2019). Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development 

of tissue macrophage populations. Nature Communications, 10(1), 3215. 

https://doi.org/10.1038/s41467-019-11053-8 

 


	Proquest_edited
	Proquest_edited
	Vita
	Proquest_edited



