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Aim: Circulating cell free (ccf) DNA contains information about mutations affecting chronic 
lymphocytic leukemia (CLL). The complexity of isolating DNA from plasma inhibits the 
development of point-of-care diagnostics. Here, we introduce an electrokinetic method that 
enables rapid recovery of DNA from plasma. Materials & methods: ccf-DNA was isolated 
from 25 μl of CLL plasma using dielectrophoresis. The DNA was used for PCR amplification, 
sequencing and analysis. Results: The ccf-DNA collected from plasma of 5 CLL  patients 
revealed identical mutations to those previously identified by extracting DNA from CLL cells 
from the same patients. Conclusion: Rapid dielectrophoresis isolation of ccf-DNA directly 
from plasma provides sufficient amounts of DNA to use for identification of point mutations 
in genes associated with CLL progression.
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Published online: 5 May 2016
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B-cell chronic lymphocytic leukemia (CLL) is one of the most common forms of leukemia in 
human adults [1,2]. In the USA alone, more than 14,000 new cases are diagnosed annually, with 
over 4500 deaths every year [1,2]. CLL is rarely curable and its clinical course is heterogeneous [1,3]. 

Practice points

●● 	We used a novel dielectrophoresis microarray chip capable of extracting circulating cell free DNA from the plasma of 
chronic lymphocytic leukemia (CLL) patients to verify the existence of specific cancer mutations in the SF3B1, NOTCH1 
and TP53 genes.

●● 	This new microarray chip enables dielectrophoresis to be performed in highly-conductive media and enables the 
rapid isolation of circulating cell free-DNA from plasma samples within 20 min. This is faster than traditional gold 
standard methods, such as Qiagen kits.

●● 	The system allows for DNA to be extracted from small volumes of just 25 μl of plasma, which is a much smaller 
volume than what is recommended for the gold standard methods.

●● 	The circulating cell free-DNA collected from the plasma of five CLL patients revealed identical mutations to those 
previously identified by extracting DNA from CLL cells from the same patients.

●● 	To the best of our knowledge, this work is the first study using dielectrophoresis to collect DNA from plasma to 
detect specific cancer related mutations.

●● 	The rapid isolation time of the dielectrophoresis process and its ability to operate with a small plasma volume makes 
it an excellent candidate for further development as a point-of-care diagnostic.

For reprint orders, please contact: reprints@futuremedicine.com
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Some patients are free of symptoms for many 
years, during which time treatment is typically 
not necessary. For others, the disease is relatively 
aggressive and requires therapy soon after diag-
nosis. Because standard therapies are associated 
with significant side effects and are not consid-
ered curative, current recommendations are to 
withhold treatment until the patient manifests 
disease-related complications or clear evidence 
of disease progression [2,4,5].

One of the main factors that influences the 
clinical course of CLL is the acquisition of 
mutations in genes that may expedite disease 
progression. Therefore, the early identification 
of these mutations is essential for CLL diagnos-
tics in the clinical setting [3,4,6,7]. Mutations in 
TP53, NOTCH1 and SF3B1 genes can occur in 
approximately 5–20% of CLL patients at the 
time of diagnosis [4,8,9]. These genes have been 
shown individually to have significant correla-
tions with poor prognosis and treatment resist-
ance in several studies  [8–10]. Although these 
mutations may be absent at initial diagnosis, 
there is a high probability of development of 
new high-risk genetic lesions over the course of 
the disease (>25% at 10 years)  [11], and occur-
rence of these lesions can directly affect survival 
time [11,12]. These genetic lesions give us clues as 
to which divergent clinical prognosis is likely for 
a given CLL patient and can be used to guide the 
management of CLL [9,11,12]. Detection of these 
genetic lesions can be performed by extracting 
DNA from B-CLL cells, followed by targeted 
PCR, gel electrophoresis and DNA sequencing. 
However, mutations can also be detected in cir-
culating cell-free (ccf) DNA isolated from CLL 
plasma or CLL blood [13–15].

ccf-DNA is becoming an important biomarker 
for early detection of cancers and residual disease 
and can also be used for therapy monitoring and 
cancer management  [1,13,16–20]. The use of ccf-
DNA isolated from plasma (liquid biopsy) for 
the detection of cancer mutations may become 
a better alternative to more invasive tissue biop-
sies [1,16,17]. Some plasma proteins inhibit PCR 
amplification and require that the genetic mate-
rial be purified or isolated from plasma in order 
to perform PCR analysis to determine DNA 
sequence. Unfortunately, recovering the DNA 
from human plasma samples is a challenge that 
prohibits the use of ccf-DNA for point-of-care 
diagnostics. The conventional techniques for 
separation of ccf-DNA from plasma are highly 
complex and time consuming and usually require 

at least 1 ml of plasma. Traditional methods 
used to recover DNA from plasma involve sev-
eral extraction steps including the introduction 
of special solvents  [21,22]. This involves a large 
number of manipulations including multiple 
steps of pipetting and filtration that can shear 
DNA into smaller pieces. These manipulations 
increase the chance of human error and can also 
cause degradation in the quantity and quality of 
the DNA [18,21,22].

To reduce DNA degradation and simplify the 
recovery process, we present a new electrokinetic 
method that uses dielectrophoresis (DEP) to 
recover ccf-DNA from undiluted human plasma. 
Recently, an enabling technological advance in 
the design of the DEP microelectrode chips 
allows DEP to be performed in high conduct-
ance media, such as whole blood, plasma and 
serum [21–24]. This allows for the rapid isolation 
of nanoscale entities including high molecular 
weight DNA within 20 min.

Dielectrophoresis is the result of electric field 
gradients acting on differences in the dielectric 
properties between suspended particles and 
medium (such as ccf-DNA and plasma) to cre-
ate a force  [25]. When dielectric particles such 
as DNA are placed in an electrical field, they 
become polarized and create a dipole moment. 
This dipole moment is frequency dependent and 
its magnitude depends on the polarizability of 
the DNA relative to the plasma as described by 
the Clausius–Mossotti factor. A polarized par-
ticle in a nonuniform electric field will experi-
ence a net force along the electric field gradient. 
A particle with a higher polarizability than its 
suspending medium will experience a positive 
DEP force, which pushes the particle towards 
the region with higher electric field strength 
(high field), and the particle with lower polariz-
ability compared with its medium will be driven 
to the area with lower electric field strength (low 
field) by the force of negative DEP [26]. Using an 
appropriately designed microelectrode device, 
dielectric particles can be concentrated in the 
areas of high or low electric field, offering a 
method to separate particles based on their 
respective dielectric properties. In this study, 
we used microelectrode arrays produced by 
Biological Dynamics (CA, USA) to trap and 
isolate ccf-DNA from CLL plasma samples 
using DEP. Sufficient amounts of ccf-DNA can 
be recovered and used to identify the character-
istic point mutations in genes associated with 
CLL with this method.
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Materials & methods
●● Sample acquisition

Peripheral blood mononuclear cells (PBMCs) and 
plasma samples were collected from 12 patients 
who satisfied diagnostic and immunophenotypic 
criteria for common B-cell CLL [5]. These indi-
viduals have signed the written informed consent 
in compliance with the Declaration of Helsinki. 
PBMCs were isolated by density centrifugation 
using Ficoll-Hypaque 1077 (Sigma-Aldrich, 
MO, USA) and suspended in fetal calf serum 
containing 10% dimethylsulfoxide (Sigma-
Aldrich) for storage in liquid nitrogen [27]. Each 
sample contained >90% CLL cells.

DNA was extracted from the viable frozen 
CLL PBMCs (QIAquick PCR purification 
kit, 70 Qiagen). Exons 14 and 15 of the SF3B1 
gene, exons 5–8 of the TP53 gene, and exon 
34 of the NOTCH1 gene were amplified and 
sequenced. Parameters for the PCR amplifica-
tions were as previously described [28]. The prod-
ucts were purified with a QIAamp DNA minikit 
(Qiagen) and were confirmed by 2% agarose gel. 
Sanger sequences were compared with the cor-
responding germline RefSeq using the software 
Mutation Surveyor® v.4.0.6 (SoftGenetics, PA, 
USA).

Frozen plasma samples collected from the 
same 12 patients were stored in -80°C and used 
to extract ccf-DNAs.

●● DNA extraction using dielectrophoresis
AC electrokinetic microarray chips, from 
Biological Dynamics, were used for isolation 
of ccf-DNA from the plasma samples using 
the Biological Dynamics Generation 4 Elution 
System. These microarray devices contain 
1000 platinum microelectrodes, which are 
fabricated on a silicon base and coated with a 
hydrogel (PolyHEMA) layer. Each microarray 
chip is contained within an acrylic microfluidic 
cartridge that allows the chip to hold approxi-
mately 25 μl of fluid. Each plasma sample was 
stained with 5000× diluted YOYO®-1 Iodide 
(Molecular Probes® – ThermoFisher Scientific, 
MA, USA). The 5000× diluted YOYO stain was 
prepared by first diluting a sample of the origi-
nal purchased YOYO-1 stock solution 100× into 
MilliQ purified water. One microliter of this 
solution was then diluted into 49 μl of plasma 
and incubated for 2 min. A total of 25 μl from 
each stained sample was then placed into the 
microarray device. The AC electric field was 
applied to the microarray chip with a magnitude 

of 12 V peak-to-peak (V
pp

) and a sinusoidal 
waveform of 15-KHz for about 10 min.

At these DEP parameters, the ccf-DNA is 
more polarized than the plasma and experiences 
a positive DEP force that causes it to concentrate 
around the edge of the circular microelectrodes 
in the DEP high field region. A top view of the 
microarray chip for each sample showing an 
image of fluorescent DNA collected on the elec-
trode edges is shown in Figure 1. Maintaining the 
same voltage and frequency, each chip was then 
washed at 20 μl/min with 1× TE buffer (Sigma-
Aldrich) for an additional 10 min. The buffer 
wash and the electric field were then turned 
off. The DNA collected at the array electrodes 
was allowed to diffuse into the TE buffer by 
Brownian motion for approximately 1 min. The 
wash buffer containing the collected ccf-DNA 
(∼20 μl) was then eluted into a micro-centrifuge 
tube and stored at 4°C for further analysis.

●● Quantification of collected DNA 
fluorescence intensity
A custom MATLAB script was used to quan-
tify the fluorescence intensity of the isolated 
DNA on the edge of the electrodes. 3D graphs 
with the x and y axes representing the physical 
dimensions of the image and the z axis showing 
the fluorescence intensity were created for each 
sample (Figure 1).

●● DNA quantification of DEP recovered DNA
The ccf-DNA recovered by DEP from the 
plasma samples were separated into three groups 
according to the presence of specific mutations 
previously identified on DNA samples extracted 
from CLL cells: SF3B1 mutated (samples 1–5), 
NOTCH1 mutated (samples 6–9) and TP53 
mutated (samples 10–12). For DNA quanti-
fication, 2 μl of each eluted sample was com-
bined with the Qubit® dsDNA HS Assay Kit 
(Invitrogen™) and was quantified by Qubit 
Fluorometric Quantitation (ThermoFisher 
Scientific).

●● PCR, gel electrophoresis & Sanger 
sequencing
In order to verify the presence of the specific 
mutations in each sample, 5 μl of the eluted 
DNA, equivalent to approximately 5 μl of 
plasma sample, was amplified by PCR using 
Phusion High–Fidelity DNA polymerase (New 
England Biolabs) and 5 sets of forward and 
reverse primers to specifically amplify the above 
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Figure 1. Fluorescence detection of circulating cell free-DNA collected by dielectrophoresis in 12 chronic lymphocytic leukemia 
plasma samples. Each sample is stained with YOYO-1 florescent dye to enable us to obtain these mono-color fluorescence images. 
These images were taken after 15 min of dielectrophoresis application and washing to remove the bulk plasma. The circulating cell 
free-DNA stained by fluorescent dye concentrated in the microarray dielectrophoresis high field region as seen in samples 1, 2, 6, 11 and 
12. For each fluorescence image, a 3D fluorescence intensity plot has been created in order to quantify the fluorescence intensity of the 
isolated circulating cell free-DNA.
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mentioned exons in each gene (Table 1). The 
same PCR cycling conditions were used for all 
samples and are as follows. Initial denaturation 

was performed at 98°C for 5 min followed by 
40 cycles of denaturation (98°C, 15 s), annealing 
(67°C, 15 s), and extension (72°C, 15 s). The 
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PCR products then were analyzed using gel 
electrophoresis on a 2% agarose gel (E-Gel® EX, 
Invitrogen). The gels were analyzed under a UV 
transilluminator to determine if the amplicons 
were the correct size. The samples which showed 
a distinct band were identified and sequenced 
using Sanger sequencing (Eton Bioscience Inc.). 
The use of Sanger sequencing enabled us to do 
a side-by-side comparison between point muta-
tions found in the DEP recovered DNA and 
the previously known Sanger sequencing data 
provided by the UCSD Moores Cancer Center. 
Purification of the PCR product was performed 
at the sequencing location.

Results & discussion
In this study, 12 plasma samples from CLL 
patients were analyzed. We categorized these 
samples into three different groups based on 
the presence of specific gene mutations. ccf-
DNA from the plasma samples was success-
fully collected on the DEP microarray as shown 
in Figure 1. As seen in both the fluorescence 
image and its associated fluorescence intensity 
graph, samples 1, 2, 6, 8, 11 and 12 show larger 
amounts of ccf-DNA centered on the edge of 
the electrodes in the high DEP field region. For 
the other samples, it was concluded that there 
was insufficient DNA in the original plasma to 
be detected.

The concentration of DNA eluted from the 
DEP microarray chips was quantified using 
the Qubit Fluorometric Quantitation system 
and is shown in Figure 2. The concentration of 
DNA varies from sample to sample, which is 
expected as there is natural variability amongst 
individual patients and samples were collected 
from patients at different stages of the disease.

At this early stage of DEP chip development, 
there can be variability in chip electrode per-
formance, which may also contribute to the 
observed variation in the amount of captured 
DNA collected on the electrodes. As seen in 
Figure 2, no usable DNA was recovered from 
sample 3 due to a technical malfunction. 

However, DNA at a concentration ranging from 
37.3–472 ng/ml was recovered for each of the 
other samples.

Five microliter of each eluted sample was used 
for PCR amplification using the specific primer 
sets shown in Table 1.

Gel electrophoresis showed the correct sized 
band of PCR amplification products for seven of 
the CLL plasma samples (CLL-1, -2, -6, -8, -10, 
-11, -12). The intensities of these bands were seen 
to have variability between different samples; 
samples with higher levels of ccf-DNA collected 
from the DEP chip had a higher chance of suc-
cessfully amplifying. CLL samples 1, 2, 6 and 
11 had ≥100 ng/ml of ccf-DNA collected from 
the DEP chips and all successfully amplified. 
Only CLL samples 8, 10 and 12, which had 
≥100 ng/ml of ccf-DNA, amplified. This trend 
can also be seen in the fluorescence images of 
each chip where chips showing higher levels of 
fluorescence also had a better chance of success-
fully amplifying, with the exception of CLL-8 
and CLL-10. Several possible reasons for samples 
not amplifying include less ccf-DNA present in 
the original plasma samples, less DNA eluted 
from the microarray chips, and the need for 
further optimization of the PCR protocol for 
low concentrations of ccf-DNA. Future optimi-
zation of the design and manufacturing of the 
microarray devices may also lead to more DNA 
recovered from the chips.

After gel electrophoresis, the remainder of 
the successfully PCR amplified DNA were 
sequenced using Sanger sequencing. The 
results were compared with the sequencing 
results obtained from PCR amplification of 
DNA extracted from CLL cells. Five samples 
(CLL-1, -2, -8, -10 and -11) exhibited match-
ing sequences. These results reveal that at least 
some of the ccf-DNA isolated by DEP was from 
the leukemia cell population. Figure 3 shows the 
sequencing results for representative mutations 
in each gene. The sequencing results from the 
DNA and the ccf-DNA revealed a heterozygous 
missense mutation (E622D) in SF3B1 gene in 

Table 1. List of the PCR primer sets used for each sample.

Sample number Gene Forward primer 5′->3′ Reverse primer 5′->3′

11 TP53 exon 5–6 GACTTTCAACTCTGTCTCCTT CCAGAGACCCCAGTTGCAA
10, 12 TP53 exon 7–8 AAGGCGCACTGGCCTCAT AAGTGAATCTGAGGCATAAC
6, 7, 8, 9 Notch1 exon 34 GTGACCGCAGCCCAGTT AATGCGGGCGATCTGGGACT
2, 5 SF3B1 exon 14 TCTGTTTATGGAATTGATTATGGAA GGGCAACATAGTAAGACCCTGT
1, 4 SF3B1 exon 15 TTGGGGCATAGTTAAAACCTG AAATCAAAAGGTAATTGGTGGA
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Figure 2. Quantification of DNA recovered from the dielectrophoresis microarray chips. 2 μl of each sample eluted from the chips 
was used to quantify the DNA. The amount of DNA recovered varied from sample to sample ranging from 37.3 to 472 ng/ml. No DNA 
was recovered from the chip containing sample CLL-3 due to a malfunction. 
CLL: Chronic lymphocytic leukemia; conc.: Concentration.
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the CLL-2 sample, a heterozygous deletion in 
NOTCH1 gene in the CLL-8 sample, and a 
homozygous missense mutation (520A>T) in 
TP53 gene in the CLL-11 sample.

Conclusion
Frozen CLL plasma samples from 12 patients 
were obtained from the UCSD Moores Cancer 
Center biorepository for this study. Specific 
mutations in these samples were identified after 
collecting CLL cells from patients, extracting 
DNA, and then amplifying and sequencing 
specific exons in the SF3B1, NOTCH1 and 
TP53 genes. In this study, we verified the 
existence of specific mutations in such genes 
using a novel microarray chip capable of per-
forming dielectrophoresis in highly-conductive 
media. This electrokinetic technique enables 
rapid isolation of ccf-DNA from plasma sam-
ples within 20 min. This is faster than tradi-
tional gold standard methods, such as Qiagen 
kits [21]. These DEP chips can also recover this 
DNA from 25 μl of plasma, which is a much 
smaller volume than what is recommended for 
the Qiagen kits.

DEP was successfully applied to all CLL 
samples using only 25 μl of plasma. After a 
microfluidic washing step using 1× TE buffer 
to remove the bulk plasma, the concentrated 

ccf-DNA was recovered from each microarray 
chip. DNA was recovered in a sufficient amount 
to allow for PCR amplification and sequenc-
ing for five of the 12 CLL patient samples. The 
sequencing results matched those obtained from 
DNA extracted from CLL cells. The CLL-1 
and CLL-2 samples showed mutations in exons 
15 and 14 of the SF3B1 gene, respectively, the 
CLL-8 sample showed a two-bp deletion in exon 
34 of the NOTCH1 gene, and the CLL-10 and 
CLL-11 samples showed missense mutations in 
exons 7 and 5 of the TP53 gene, respectively. 
The PCR amplification was not successful for 
most samples where less than 100 ng/ml of ccf-
DNA was recovered from the DEP chip. These 
samples may have come from patients who had 
an insufficient amount of ccf-DNA in circula-
tion to reach this threshold for consistent detec-
tion. In general, the amount of DNA that can be 
recovered from plasma is much less than what 
can be recovered directly from isolated CLL 
cells. There is also variability in the performance 
of the chips at this early stage of development 
that could contribute to the observed overall 
variability.

To the best of our knowledge, this work is 
the first study using dielectrophoresis to col-
lect DNA from plasma to detect specific cancer 
related mutations. The rapid isolation time of the 
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Figure 3. Sequencing results. For 3 samples (CLL-2, CLL-8 and CLL-11), the sequencing results 
obtained by sequencing DNA isolated from CLL cells are shown in the top panel and the sequencing 
results obtained from circulating cell free-DNA isolated by the dielectrophoresis technique are 
shown in the bottom panel. The sequencing results from the DNA and the circulating cell free-
DNA in the CLL-2 sample show a heterozygous missense mutation (E622D) in the SF3B1 gene, in the 
CLL-8 sample a heterozygous deletion in the NOTCH1 gene, and in the CLL-11 sample a homozygous 
missense mutation (520A>T) in the TP53 gene. 
CLL: Chronic lymphocytic leukemia.
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DEP process and its ability to operate with small 
plasma volumes makes it an excellent candidate 
for further development as a point-of-care diag-
nostic. Future work will continue to optimize 

this DEP technique and to make it available 
as a simple and rapid means to perform liquid 
biopsies for point-of-care cancer diagnostics and 
treatment monitoring.
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