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a b s t r a c t

The principal aim of this paper is to extend Abel’s theorem to the setting of complex
supermanifolds of dimension 1|q over a finite-dimensional local supercommutative
C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the
supercurvewith Poincaré duality on the reduced curve.We include an elementary algebraic
proof of the requisite form of Serre duality, closely based on the account of the reduced
case given by Serre in Algebraic groups and class fields, combined with an invariance result
for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier
divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo
periods, is defined via Penkov’s characterization of the Berezinian sheaf as the cohomology
of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi
inversion problem for the Abel map and give an example demonstrating that if n is an
integer sufficiently large that the generic divisor of degree n is linearly equivalent to an
effective divisor, this need not be the case for all divisors of degree n.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the classical theory of Riemann surfaces, a fundamental role is played by the Abelmap,which links the algebraic theory
of projective curves with the transcendental theory of Riemann surfaces [1]. Abel’s theorem states that two divisors of de-
gree zero are linearly equivalent if and only if they have the same image under the Abel map. In this paper we prove that this
statement remains valid for supercurves of dimension 1|q over a thickened point, by which we mean Spec(B), where B is a
finite-dimensional local supercommutativeC-algebra. Part of the task is to define the Abelmap in this setting. Thiswas done
forWeil divisorswith q = 1 in [2]. Herewegive a definition for arbitrary qusing Cartier divisors. To construct the target of the
Abel map, we use the characterization of the Berezinian sheaf, Ber, as the cohomology of the de Rham complex of the sheaf
D of differential operators on the structure sheaf, O [3]. The periodmap, Eq. (3.3), maps H1(X, Z)→ H0(X, Ber)◦.1 Defining
Pic0(X) as the group of divisors of degree zero modulo linear equivalence, and Jac(X) as the quotient H0(X, Ber)◦/H1(X, Z),
Abel’s theorem then says that the Abel map imbeds Pic0(X) in Jac(X). The infinitesimal version of this statement, that

∗ Corresponding author. Tel.: +1 8585342904.
E-mail addresses: rothstei@math.uga.edu (M.J. Rothstein), jrabin@math.ucsd.edu (J.M. Rabin).

1 If R is a Z2-graded ring, all R-modules shall be tacitly assumed to be Z2-graded. We define Hom in the category of Z2-graded R-modules in such a way
that HomR(M,N) consists of parity-preserving R-module homomorphisms. Thus ‘‘maps’’ are parity-preserving by default. By definition, automorphisms
preserve parity. If R is supercommutative, we also have the internal hom functor, adjoint to the tensor product, denoted HomR(M,N). Then HomR(M,N) is
the even part of HomR(M,N). We define the dual ofM to be the internal hom, HomR(M, R), and denote it byM∗ . Its even part HomR(M, R) will be denoted
M◦ .
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H1(X, O) imbeds in H0(X, Ber)∗, is a corollary of Serre duality, Theorem 5, which in the present setting says that
H0(X, Ber) = H1(X, O)∗.2 The classical Jacobi inversion theorem, asserting that every divisor of degree equal to the genus of
X is linearly equivalent to an effective divisor, has no immediate analogue for arbitrary supercurves, which depend topologi-
cally on both the genus g(X) of the reduced space and the Chern class c(X) of the vector bundle associated toOX . One possible
extension of the assertion is that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent
to an effective divisor, then the same holds for all divisors of degree n. The compactness argument that yields this statement
in the classical case is not available here, and we give an example to show that it is false in the (1|1)-dimensional case.

2. Serre duality

Serre duality was established for complex supermanifolds in [6], for projective supervarieties over a field in [7,3], and
for projective supervarieties over a Grassmann algebra in [2]. It seems to be ‘‘known’’ in the more general setting of derived
categories and morphisms of superschemes, though we are not aware of a reference. We therefore include an elementary
proof of the version we need here, following the proof of the classical case found in [8].

To begin, let B be a finite-dimensional local supercommutative C-algebra. Fix a positive integer q. By the term ‘‘smooth
1|q dimensional supercurve over B’’ (or simply ‘‘supercurve’’ if B and q are understood) we shall mean a pair X = (X0, O),
where X0 is a smooth projective curve over C, and O is a sheaf of supercommutative B-algebras in the Zariski topology, such
that there is a cover of X0 by open sets {Uα} satisfying for every index α,

O|Uα ≃ B[θ1, . . . , θq]⊗C O0|Uα (2.1)

in the category of sheaves of local supercommutative B-algebras. Here O0 denotes the algebraic structure sheaf of X0 and
B[θ1, . . . , θq] is the Grassmann algebra over B on q generators.

Let X = (X0, O) be a supercurve. The sheaf of meromorphic functions on X is by definition the sheaf of fractions f /g ,
where f ∈ O, g ∈ O, and g is even and not nilpotent. The function ring of X , B(X), is the ring of globalmeromorphic functions.
As in the non-super case, for every point P ∈ X0, B(X) is isomorphic to the ring of fractions of the local ring OP .

Keeping X0 fixed throughout the discussion, let X[B, q] denote the trivial family (X0, O[B, q]), where globally

O[B, q] = B[θ1, . . . , θq]⊗C O0.

Let

Λ[B, q] = B[θ1, . . . , θq]⊗C C(X0).

From the local triviality (2.1) it follows that (non-canonically) B(X) is isomorphic to Λ[B, q].
Denote by n(R) the nilpotent ideal of an arbitrary supercommutative ring R, and by Aut+(R) the kernel of the natural map

Aut(R)→ Aut(R/n(R)). Then we have, for every point P ∈ X0,

Aut(O[B, q]P) ⊂ Aut+(Λ[B, q]).

Denoting by Aut(O[B, q]) the automorphism sheaf of O[B, q], we therefore have an inclusion of sheaves

Aut(O[B, q])→ Aut+(Λ[B, q]).

Let D[B, q] denote the sheaf of linear differential operators on O[B, q].

Lemma 1. Aut(O[B, q]) ⊂ D[B, q].

Proof. Let τ ∈ Aut+(Λ[B, q]). Then

τ(θi) = αi +


j

Aijθj + · · ·

where αi and Aij belong to B⊗ C(X) and the ellipsis denotes terms of higher degree in θj. The B⊗ C(X)-linear map sending
θi to αi +


Aijθj determines an automorphism of Λ[B, q], and is a differential operator. After composing with the inverse

of this automorphism, we may assume that id− τ maps Λ[B, q] to the ideal generated by the nilpotents in B and the square
of the nilpotents in Λ[B, q]. Letting Z denote id − τ , Z satisfies Z(fg) = fZ(g) + Z(f )g − Z(f )Z(g). It follows by induction
that Z is a nilpotent differential operator. �

For any sheaf of groups S, let Π0S ⊂ ΠP∈X0SP denote the set of elements η such that ηP is the identity element for all
but finitely many P . Let γ ∈ Π0Aut+(Λ[B, q]). One obtains a supercurve Xγ

= (X0, Oγ ) by taking Oγ to be the subsheaf of
Λ[B, q] such that for all P , Oγ

P = γP(O[B, q]P).

2 This raises the question of whether H1(X, O) is reflexive, i.e., isomorphic to its double dual. This is guaranteed if B is Gorenstein, and in particular if B
is a Grassmann algebra [4,5]. We do not have an example of a supercurve for which H1(X, O) is not reflexive.
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By local triviality, (2.1), one has

Proposition 2. All supercurves are of the form Xγ for some element γ .

Let Λ[B, q]× denote the group of even units. For all ξ ∈ Π0Λ[B, q]× we get a rank-one locally free sheaf of Oγ -modules
as follows: Let Oγ (ξ) denote the subsheaf of Λ[B, q] such that for all P , Oγ (ξ)P = γP(ξPO[B, q]P). (As usual, Oγ (ξ) depends
only on the divisor class of ξ , but this divisor class will depend on γ .) Once again, every rank-one locally free sheaf on X is
of this form.

A répartition on O[B, q] is a map r : X0 → Λ[B, q] such that rP ∈ O[B, q]P for all but finitely many P (cf. Serre [8]).
Let R[B, q] denote the set of all répartitions. Regard Λ[B, q] as a subring of R[B, q], identifying Λ[B, q] with constant
functions. Define the subset R(γ , ξ) ⊂ R[B, q] as the set of functions r such that for all points P , rP ∈ Oγ (ξ)P . Then as in
[8, Proposition II.3],

H1(X0, Oγ (ξ)) ≃ R[B, q]/(R(γ , ξ)+Λ[B, q]). (2.2)

For fixed γ , let R[B, q] be given the topology such that the spaces R(γ , ξ) for all ξ form a neighborhood base at {0}. Then
H1(X0, Oγ (ξ))∗ is the annihilator of R(γ , ξ) in the topological dual of R[B, q] /Λ[B, q].

Proposition 3. The topology on R[B, q] is independent of γ .

Proof. Let σ : X0 → Aut+(Λ[B, q]) be another finitely supported function. By Lemma 1, γP and σP are meromorphic
differential operators. It follows that if tP ∈ O0(P) is a local parameter at P , there exists an integermP such that σP t

mP
P γ−1P is

regular at P as a differential operator. Then R(γ , ξ) ⊂ R(σ , τ ), where τP = t−mP
P for P in the support of γ or σ , and τP = 1

elsewhere. �

Theorem 4. Let ω0 be a nonzero meromorphic one-form on X0. Then each continuous element of (R[B, q] /Λ[B, q])∗ is of the
form

g →

P

resP(ω0 ∂θ1 · · · ∂θq(fg)) (2.3)

for a unique f ∈ Λ[B, q]. In particular, every element of H1(X0, Oγ (ξ))∗ is of this form.

Proof. Note first that

R[B, q]/Λ[B, q] ≃ B[θ1, . . . , θq]⊗C(R(X0)/C(X0))

where R(X0) is the space of répartitions on the reduced space.
The topological C-linear dual of R(X0)/C(X0) is the space of meromorphic one-forms on X0, via the residue pairing [8].

The B-linear dual of B[θ1, . . . , θq] is itself, via the pairing

f · g = ∂θ1 · · · ∂θq(fg).

The theorem follows from the definition of the tensor product. �

Given a supercurve X , let BerX denote the Berezinian of its cotangent sheaf.3

Theorem 5 (Serre Duality for Supercurves). Let X be a supercurve and let L be a rank-one locally free sheaf on X. Then the
formula

g →

P

resP(dz ∂θ1 · · · ∂θq(fg)) (2.4)

defines a pairing of g ∈ H1(X0, L) with f ∈ H0(X0, BerX ⊗L−1), with respect to which

H1(X0, L)∗ = H0(X0, BerX ⊗L−1).

Proof. The sense inwhich (2.4) defines a pairing ofH1(X0, L)withH0(X0, BerX⊗L−1)will bemade clear in the course of the
proof. We may assume that OX = Oγ and L = Oγ (ξ). Then H1(X0, Oγ (ξ))∗ is the annihilator of R(γ , ξ). Let f ∈ Λ[B, q].
Then formula (2.3) defines an element of H1(X0, Oγ (ξ))∗ if and only if f satisfies a set of local conditions. If ξ = 1, the
conditions are that for all P , and all h ∈ Λ[B, q], if γP(h) ∈ OP , then

resP(ω0 ∂θ1 · · · ∂θq(fh)) = 0.

Having chosen ω0 arbitrarily, we may redefine f so that ω0 = dz for some local parameter z ∈ (O0)P .

3 The Berezinian representation is a homomorphism Gl(p|q) → Gl(1|0), sending a block matrix

A B
C D


to det(A − BD−1C)/ det(D). Given a locally

free sheaf F on X one obtains a locally free sheaf Ber(F ) of rank (1|0) or (0|1) by applying this representation to the gluing data of F . See [9,10].
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The change of variables formula for Berezin integration is as follows: Let z1, . . . , zp, θ1, . . . , θq andw1, . . . , wp, η1, . . . , ηq
be two coordinate systems near a point P on a p|q-dimensional supermanifold. Let dz ∂θ denote the Ωp-valued differential
operator dz1 ∧ · · · ∧ dzp ⊗ ∂θ1 · · · ∂θq . Then

dz ∂θ Ber


∂w ∂η

∂z ∂θ


= dw ∂η + ϵ (2.5)

where

ϵ = d ◦ L

for some Ωp−1-valued differential operator L. (This is the statement that Berezin integration is well-defined modulo
boundary terms, [11].)

Let w = γ−1P (z), ηi = γ−1P (θi). Then

resP ◦ dz ∂θ (f ) = resP ◦ dw ∂ηBer


∂z ∂θ

∂w ∂η


(f ). (2.6)

This shows that formula (2.3) defines an element of H1(X0, L)∗ if and only if the meromorphic section ω0 ∂θ1 · · · ∂θq of
BerX[B,q] is a holomorphic section of BerXγ . The rest of the theorem follows from Theorem 4. �

Theorem 5 does not guarantee that H1(X, L) is the dual of H0(X, BerX ⊗ L−1) without further conditions on B. (See
footnote 2.) It is known that the cohomology groups are finitely generated, so we do have

Corollary 6. The pairing (2.3) gives an injection

0→ H1(X, L)→ H0(X, BerX ⊗L−1)∗.

Remark 7. Classically, Serre duality has the following corollary for a Riemann surface X0 (see, for example, Corollary 4.4
in [12]). A differential principal part p extends to a meromorphic differential on X0 if and only if


P∈X0

resP(p) = 0. Taking
L = Ber in Corollary 6, we get the natural generalization of this result.

Proposition 8. There is a meromorphic section of Ber on X having a given principal part p if and only if
P∈X0

resP(∂θ1 · · · ∂θq(pg)) = 0

for every global holomorphic function g ∈ H0(X, O).

Note that, in general, global sections g of O need not be constant, and H0(X, O) need not be freely generated.

3. Abel’s theorem

In this section we work in the complex topology: O now stands for Ohol. Besides making the Poincaré lemma available
[13,14], this will give us an interpretation of the residue on X as the pairing of a section of Ber defined on an annulus with
the fundamental class of the annulus. This pairing also gives rise to the period map.

3.1. Definition of the Abel map

We begin by reviewing Penkov’s characterization of Ber, [3]. Let Dk denote the sheaf of B-linear differential operators
from O to the sheaf of k-forms Ωk. Write D for D0. One has the de Rham complex

· · · → Dk → Dk+1 → · · ·

given by L → d ◦ L, where d is the exterior derivative. Note that this is a complex of O-modules under right multiplication.
Penkov observes [3, Corollary, p. 506] that the first (ormore generally pth for a supermanifold of dimension p|q) cohomology
sheaf of this complex is rank-one locally free, with basis dz ∂θ1 · · · ∂θq , where (z, θj) are local coordinates, the other
cohomology sheaves being 0. (This is a strengthened form of the change of variables formula.) This nontrivial cohomology
sheaf is BerX .

Thus, letting D1,cl ⊂ D1 denote the subsheaf consisting of differential operators L : O → Ω1 such that for all f ∈ O,
d ◦ L(f ) = 0, one has an exact sequence

0→ D
d◦
→D1,cl

π
→ Ber→ 0.
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Let U ⊂ X0 be an annulus, and let [U] ∈ H1(U, Z) be its fundamental class. Let ω be a section of Ber on U . We wish
to recover the residue as a pairing of ω with [U], which we will then denote by


[U] ω. There are (at least) two methods to

define it.
Method 1: First define the residue of a closed one-form. By the Poincaré lemma, we have exactness of

0→ B→ O→ Ω1
cl → 0.

Define

[U] on H0(U, Ω1

cl) to be the connecting homomorphism H0(U, Ω1
cl)→ H1(U, B) = B. Then, because U is Stein, we

may lift ω to a section L ∈ H0(U, D1,cl) and define
[U]

ω =


[U]

L(1). (3.1)

Method 2: let D♯
⊂ D1,cl denote the kernel of the map

L → L(1).

Lemma 9. The map D♯ π
→ Ber is surjective.

Proof. Let L be a section of D1,cl on an open set U and let ω = π(L). L(1) is closed, and therefore by shrinking U if necessary
we can assume there exists a section f of O such that L(1) = df . Regarding f as a section of D , we then have

ω = π(L− d ◦ f ).

This proves the claim. �

Let D♭
⊂ D denote the subsheaf of D that annihilates the constant sheaf B. (That is, D♭ is the left ideal generated by vector

fields.) By Lemma 9 we have a short exact sequence

0→ B⊕D♭ d ◦
→D♯ π

→ Ber→ 0. (3.2)

We may then define

[U] ω to be image of ω under the connecting homomorphism of (3.2) on U ,

H0(U, Ber)→ H1(U, B)⊕ H1(U, D♭),

followed by projection onto H1(U, B).

Lemma 10. Methods 1 and 2 give the same result. Moreover, if ω is meromorphic, then the residue as defined in terms of Laurent
series satisfies

resP(ω) =


[U]

ω

where U is a sufficiently small deleted neighborhood of P.

In view of this, we will sometimes write the residue as

P ω.

Similarly, the period map

H0(X, Ber)
per
→H1(X, B) (3.3)

is defined to be the connecting homomorphism of (3.2) on X ,

H0(X, Ber)→ H1(X, B)⊕ H1(X, D♭)

followed by projection onto H1(X, B). It can be shown that in the case q = 1, this is the period map in [2].
Note: By Serre duality, H0(X, Ber) is a dual module, and is therefore [4] naturally isomorphic to its double dual. So there

will be no information lost if we dualize the period map and continue to call it per .
We now have a diagram

H1(X, B)
i

−−−−→ H1(X, O) res

H1(X, B)
per

−−−−→ H0(X, Ber)∗

(3.4)

where the left arrow is Poincaré duality, res denotes Serre duality, and the top arrow comes from the inclusion B→ O.

Lemma 11. Diagram (3.4) commutes.
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Proof. Let {A1, . . . , Ag , B1, . . . , Bg} ⊂ H1(X, Z) be a standard homology basis, with dual basis {A1, . . . , Ag , B1, . . . , Bg
} ⊂

H1(X, Z). It is enough to check commutativity on a basis for H1(X, B); as a representative case we choose A1
∈ H1(X, B)

and verify that per(B1) = res(i(A1)). Let ω ∈ H0(X, Ber). Represent A1 and B1 in the standard way as embedded circles
intersecting at one point. Let P be a point disjoint from A1 and B1. Let V0 be a small disk containing P and let V1 = X0 − P .
With respect to the open cover {V0, V1}, the image of A1 in H1(X, O) is represented by a section g ∈ H0(V0 − P, O). Let
U1 ⊂ X0 be an annulus containing B1 and let U0 = X0 − B1. Let L0 ∈ H0(V0, D1,cl) and L1 ∈ H0(U1, D1,cl) be representatives
of ω on V0 and U1 respectively. We must show that

[U1]

L1(1) =

[V0−P]

L0(g).

The intersection U1 ∩ U0 is a pair of disjoint annuli, W±. The C̆ech cocycle representing A1 with respect to the open cover
{U0,U1} is the function on U1 ∩ U0 that equals 1 on W+ and 0 on W−. Then the statement that the image of A1 in H1(X, O)
is represented by g is expressed in terms of C̆ech cohomology by the following two statements:

1. g extends to X0 − ({P} ∪ B1).
2. There is a section f ∈ H0(U1, O) such that g − f is 1 onW+ and 0 onW−.

Because V1 is Stein, the section L1 representingω on the annulus U1 can be chosen such that it is defined on all of V1. Then
[V0−P]

L0(g) =

[V0−P]

L1(g). (3.5)

The boundary of U0 − V0 consists of three circles, namely [V0 − P] employed in Eq. (3.5) and ∂U1 consisting of two circles
homologous to [W±]. Thus

[V0−P]
L1(g) =


[W+]

L1(g − f + f )−

[W−]

L1(g − f + f ). (3.6)

But f is defined on all of U1, so
[W+]

L1(f )−

[W−]

L1(f ) = 0.

Therefore
[V0−P]

L1(g) =

[W+]

L1(g − f )−

[W−]

L1(g − f ) =

[W+]

L1(1)

which is what we needed to show, since [W+] is homologous to [U1]. �

Remark 12. In [2] the map res ◦ iwas called rep. The formula for rep in terms of a canonical homology basis stated without
proof in Lemma 2.9.1 of [2] follows from the above computation.

Define the sheaf of Cartier divisors DivX by the exact sequence

0→ O×X → K×X → DivX → 0, (3.7)

where K× is the sheaf of invertible even meromorphic sections of O and O× = K× ∩ O.
If P is a point in X0 and f ∈ (K×X )P , one has the quantity


P

df
f , which depends only on the class of f in (DivX)P . Just as in

the non-super case, one has

Lemma 13.

P

df
f is an integer. �

To define theAbelmap, let ξ ∈ H0(X,DivX) such that the degree


P


P ξ = 0. Letω ∈ H0(X, Ber). Fix a connected simply

connected open set U containing the support of ξ . Choose L ∈ H0(U, D♯) representing ω, and choose f ∈ H0(U, K×)
representing ξ . For each point Q ∈ U not belonging to the support of ξ there is a germ g ∈ OQ such that eg = f in a
neighborhood of Q . Since L annihilates constants, L(g) is independent of which logarithm of f is chosen. Thus we obtain a
closed one-form defined on U-{singular points of f }, and we may unambiguously write this one-form as L(log f ).

Let us examine the quantity

ρ =

P∈U


P
L(log f ) ∈ B

with regard to the choices made. At each point P , f may be altered by multiplying by eh for some h in the even part of OP .
This changes L(log f ) to L(log f )+ L(h), which does not alter ρ. The section Lmay be altered by adding d ◦ (c +M) for some
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constant c ∈ B and sectionM ∈ H0(U, D♭). In a neighborhood of P wemay choose vector fields Yi and differential operators
Mi such thatM =


MiYi. Writing f = eg as before, we have

d ◦M(g) = d


Mi


Yi(f )
f


which is annihilated by


P . Therefore

P∈U


P
(L+ d ◦ (c +M))(log f ) =


P∈U


P
L(log f )+ c


P∈U


P
df /f

and the second term on the right-hand side vanishes by hypothesis. We therefore have a well-defined element of B,
independent of the representatives of ξ and ω, but depending however on the open set U . Let U1 = U , and let U2 be another
connected simply connected open set containing the support of ξ . We then must consider

P∈U1


P
L1(log f1)−


P∈U2


P
L2(log f2).

The independence of this quantity on the representatives of ξ remains valid. However, if we let W1, . . . ,Wn denote the
connected components of U1 ∩ U2, then L1 − L2 = d ◦ (c + M), where c takes a constant value ci on each Wi. We have
integers ni =


P∈Wi


P ξ , summing to 0. Then

P∈U1


P
L1(log f1)−


P∈U2


P
L2(log f2) =


i

cini

which is the pairing of the class of ω in H1(X0, B) with a homology class in H1(X0, Z).
We therefore have a map, the Abel map,

H0(X,DivX)0
Abel
→ Hom(H0(X, Ber), B)/H1(X, Z) = H0(X, Ber)◦/H1(X, Z)

mapping the group of divisors of total degree zero to the Jacobian of X .

3.2. Abel’s theorem

Let U ⊂ X0 be a disk, let H0(U,DivX)0 denote the sections of DivX over U having total degree zero, and let

abU : H0(U,DivX)0 → H0(X, Ber)◦

denote the map described in the previous section. We have the following diagram:

H1(X, O)ev
exp
−−−−→ H1(X, O×)

res

 ℓ


H0(X, Ber)◦

abU
←−−−− H0(U,DivX)0⊂ H0(X,DivX)0

(3.8)

where ℓ is the connecting homomorphism for the sequence (3.7).

Lemma 14. Let γ ∈ H1(X, O)ev and ξ ∈ H0(U,DivX)0. If res(γ ) = abU(ξ), then exp(γ ) = ℓ(ξ).

Proof. Let γ ∈ H1(X, O)ev and ξ ∈ H0(U,DivX)0 such that res(γ ) = abU(ξ). Represent ξ by a meromorphic section
f ∈ H0(U, K×). Represent γ by a meromorphic function g defined on U , with a pole at one point Q not belonging to the
support of ξ . Let Di, i = 1, 2 be disjoint disks contained in U , such that Q ∈ D1 and supp(ξ) ⊂ D2. From the fact that ξ has
degree zero it follows that there is a branch of log f defined on U − D2.

Let ω ∈ H0(X, Ber). Represent ω by L ∈ H0(U, D♯). We are given that for all ω,
P∈U


P
L(log f ) = resQ (L(g)).

Let U ′ ⊂ U be a slightly smaller disk, such that U − U ′ is an annulus and D1 ∪ D2 ⊂ U ′. Then the previous equation can be
rewritten as

[U−U ′]
L(g − log f ) = 0.
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This holds for all ω, so by Corollary 6 the cohomology class in H1(X, O) defined by the section g − log f ∈ H0(U − U ′, O)
with respect to the open cover {X−U ′,U} is equal to zero. Thus there exist sections h− ∈ H0(X−U ′, O) and h+ ∈ H0(U, O)
such that on U − U ′,

log(f )− g = h− − h+.

Then we obtain an invertible section of O,

φ ∈ H0(X − ({Q } ∪ (support of ξ)), O×)

by patching together eh
−

on X − U ′ and eh
+

e−g f on U . Letting Og denote the line bundle with transition function eg ∈
H0(D1 − Q , O×), and letting O(ξ) denote the line bundle associated to the divisor ξ , we see that φ is a trivialization of
O−1g ⊗ O(ξ), which is what we needed to show. �

Corollary 15 (Abel’s Theorem). Let ξ ∈ H0(X,DivX)0, and let O(ξ) be the associated line bundle. Then O(ξ) is trivial, i.e., ξ is
the divisor of a globally defined section f ∈ H0(X, K×) = B(X), if and only if Abel(ξ) = 0.

Proof. Assume Abel(ξ) = 0, and let U be a disk containing the support of ξ . Then there exists c ∈ H1(X, Z) such that
abU(ξ) = per(c). Let γ ∈ H1(X, Z) ⊂ H1(X, O) be the image of c under Poincaré duality. By Lemma 11, res(γ ) = abU(ξ).
ThusO(ξ) is trivial, by Lemma14. The converse is proved by the classical argument, [1]: If f is a globalmeromorphic function,
then the Abel image of the divisor class of a+ bf depends homogeneously on [a, b] ∈ P1 and is therefore constant. �

4. Jacobi inversion

A divisor ξ is effective if at each point P , it can be represented locally by a function f ∈ K× ∩ OP . Given an arbitrary
divisor ξ , the existence of an effective divisor ξ ′ linearly equivalent to ξ is equivalent to the existence of a non-nilpotent
section ofO(ξ). A perturbative argument with respect to the nilpotent ideal shows that for n sufficiently large, every divisor
of degree n is linearly equivalent to an effective divisor. Let n(X) denote the least such n. One may also consider the least
n such that a generic divisor of degree n is linearly equivalent to an effective divisor. Denote this number by ngen(X). In the
classical case, q = 0, the Jacobi inversion theorem asserts that n(X) = g , the genus of X0, [1]. The proof first establishes
that ngen(X) = g and then uses compactness to prove that ngen(X) = n(X). The following example shows that n(X) may be
strictly larger than ngen(X) when q > 0.

LetL be a generic line bundle of degree 0 on X0. Let Y denote the 1|1 dimensional supercurve over SpecCwith odd partL
and let X = Y ×SpecC SpecC[β], where β is an odd parameter. Given a class c ∈ H1(X0, L), let Fc denote the line bundle on
X with transition data 1+βc ∈ H1(X, O∗). LetJ be a line bundle on X0, of degree g , such that h0(J) = 1 and h0(J⊗L) > 1.
Note that by Riemann–Roch, h1(J ⊗ L) > 0. Our supermanifold is split, so we can pull back J to X . That is to say, on X
we have the line bundle π∗(J) = J⊗OX0

OX , where π : X → X0 is the splitting. Multiplication by β gives the short exact
sequence

0→ L⊗OX0
J

β
→(π∗(J)⊗OX Fc)even → J→ 0. (4.1)

Let φ be a nonzero section of J. Then the image of φ under the connecting homomorphism of (4.1) is φc ∈ H1(X0, L⊗ J).
The map

H1(X0, L)→ H1(X0, L⊗ J) (4.2)

sending c to φc is surjective, and in particular it is not the zero map given our choice of L and J. If we choose c such that
φc ≠ 0, then the connecting homomorphism of (4.1) is injective, and therefore all sections of π∗(J)⊗OX Fc are nilpotent.
On the other hand, let M be a generic line bundle on X of degree g , and let M0 denote its restriction to X0. Again one has a
short exact sequence

0→ L⊗OX0
M0

β
→Meven →M0 → 0.

For generic M, H1(X0, L⊗OX0
M0) = 0. Thus we have n(X) > g and ngen(X) = g .
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