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ABSTRACT OF THE DISSERTATION

Public-Key Encryption Secure in the Presence of Randomness Failures

by

Scott Christopher Yilek

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Daniele Micciancio, Chair
Professor Mihir Bellare, Co-Chair

Public-key encryption (PKE) is a central tool for protecting the privacy of

digital information. To achieve desirable strong notions of security like indistin-

guishability under chosen-plaintext attack (IND-CPA), it is essential for an encryp-

tion algorithm to have access to a source of fresh, uniform random bits. Further,

these bits should never be revealed and never reused. In practice, our machines

typically generate these random bits with software random number generators

(RNGs). Unfortunately, RNGs are prone to problems. The resulting randomness

failures can have disastrous consequences for the security of existing PKE schemes

that rely on good randomness.

In this dissertation we focus PKE security in the presence of three types of
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randomness failures: predictable randomness, repeated randomness, and revealed

randomness. For predictable randomness, where the encryption algorithm is given

random inputs that are predictable to an adversary, we argue that we want PKE

schemes that are hedged against bad randomness: if the encryption scheme is given

good randomness it provably meets traditional notions like IND-CPA, while if it

is given poor randomness, it still provably provides some security. We formalize

this security notion and give provably-secure constructions of hedged public-key

encryption.

Next, we show how repeated randomness failures, where the encryption

algorithm is given random inputs that it was given previously, can occur in practice

due to virtual machine snapshots. In particular, we show how many popular web

browsers are vulnerable to these failures. We then turn to building PKE schemes

that still provide provable security when given repeated randomness. We develop

new models of security to capture this situation and prove that a simple and

efficient modification to any existing secure scheme gives security under our new

models.

Finally, we study the strange effects revealed randomness failures, where

the random inputs used for encryption are later revealed to an adversary, can

have on public-key encryption security. Specifically, we focus on selective opening

attacks. We show that a large class of PKE schemes, called lossy encryption

schemes, provably resists selective opening attacks.
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Chapter 1

Introduction

If you have ever bought a book or checked your bank account balance online,

then you have relied on public-key cryptography to keep your sensitive data, such

as credit card numbers and passwords, out of the hands of criminals. Public-key

cryptography allows parties to communicate securely over an insecure channel (e.g.,

the Internet) without first sharing any secrets. While public-key techniques can be

used to achieve many important security goals such as integrity and authenticity,

this thesis will focus on public-key techniques to achieve message privacy, namely

public-key encryption.

1.0.1 Defining Privacy, Provable Security, and the Need

for Randomness

For the time being, think of a public-key encryption (PKE) scheme as three

programs: key generation, denoted K, outputs a public key pk and a secret key sk;

encryption, denoted E , takes input a public key pk and a message m and outputs

a ciphertext c; and decryption, denoted D, takes a secret key sk and a ciphertext c

and outputs a message m. Decryption should undo encryption, meaning that if

we give the decryption program a ciphertext c = E(pk,m), it should output the

original message m.

As we said above, public-key encryption is a tool for keeping messages

private. This, of course, leaves the question what precisely does it mean for a PKE

1
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scheme to be secure? This was the question Goldwasser and Micali examined in

their seminal paper [41] and, in doing so, invented provable security.

Provable security is inspired by NP-completeness reductions and gives a

way to relate the security of cryptographic protocols to well-studied problems in

algorithms and complexity theory. To prove that a given protocol is secure, one

first develops precise definitions for the security goal he or she is trying to achieve.

Then, one proves that the security of the cryptographic protocol in question reduces

to the hardness of some other well-studied problem, for example factoring large

numbers. The result is that breaking the security of the protocol leads to solving

the hard problem.

Thus, to provide provable security for public-key encryption, Goldwasser

and Micali had to first precisely define what it means for a PKE scheme to be

secure. One thing that came out of GM is the idea that to meet strong security

goals and be useful in a variety of applications, encryption should be randomized.

By randomized we mean that the encryption algorithm E , when taking input pk

and a message m, flips coins and uses the resulting random bits (either 1 for heads

or 0 for tails) to aid in the creation of a ciphertext.

To see why we might want randomized encryption, consider the follow-

ing scenario. A user wants to buy and sell stocks online at a website called

tradenow.com. Say there are only two possible messages, “buy” and “sell”, and

the adversary knows that these are the only two possible messages. When the user

wants to purchase a stock, he encrypts his choice, “buy”, under tradenow.com’s

public key pk. If encryption is deterministic, the result will be c = E(pk, “buy′′).

The adversary, upon seeing the ciphertext c, wants to determine whether the user

is buying or selling. Notice that the adversary knows the public-key pk (since it is

public), and also knows the two possible messages the user is sending. The adver-

sary can simply compute c1 = E(pk, “buy′′) and c2 = E(pk, “sell′′) and compare c1

and c2 to the observed ciphertext c. Since encryption is deterministic, c will equal

either c1 or c2, and the adversary will learn the message.

Now let us look at how randomizing the encryption algorithm can help stop

this attack. To encrypt “buy” with a randomized encryption scheme, the user will
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compute c = E(pk, “buy′′; r), where r is a random string of, for example, 100 bits.

(We will always separate the coin input from the rest of the inputs with a semi-

colon.) As above, the adversary knows pk and also knows the two possible messages

“buy” and “sell”. However, now the adversary does not know the random input

to the encryption routine. If for a fixed pk and message m each different value of

r leads to a unique ciphertext (which will usually be the case in the schemes we

see later), then to perform an attack similar to above, the adversary would have

to enumerate all possible values of r. But, there are 2100 possibilities, well more

than any reasonable adversary can be expected to try.

From this example, we can see that randomized encryption is necessary to

get security in some scenarios, but we still have not said what the right notion of

PKE security to target is. Informally, Goldwasser and Micali said that public-key

encryption should hide all partial information about the message. They called their

security notion semantic security. Nowadays, if we want to show a PKE scheme

is semantically secure, we show it meets an equivalent notion of security called

indistinguishability under chosen-plaintext attack (IND-CPA). IND-CPA security

is formalized by considering an adversary playing a game with a challenger. At

the start of the game, the challenger gives the adversary a public key pk generated

by the key generation algorithm K. The adversary then chooses two equal-length

messages m0 and m1 and gives them to the challenger. The challenge randomly

chooses a bit b to be either 0 or 1 and returns to the adversary the encryption of

mb under pk. The adversary then tries to guess the bit b, outputting a guess b′.

We say the adversary wins the IND-CPA game if it correctly guesses the bit b, i.e.,

b = b′.

A PKE scheme is considered to be IND-CPA secure if all adversaries running

in a reasonable amount of time fail to win the IND-CPA game with probability

much better than 1/2. (An adversary that randomly guesses the bit will win the

game with probability exactly 1/2.) Notice the similarity between this security

game and the stock example described above.

Later work strengthened IND-CPA by allowing the adversary the ability

to decrypt messages other than the challenge message. This latter notion, called
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IND-CCA [60] for indistinguishability under chosen-ciphertext attack, is the typical

target for PKE security today. We emphasize that good randomness is similarly

crucial for IND-CCA security.

IND-CPA and IND-CCA are strong notions of security for PKE, and prov-

able security allows us to formally argue about whether our schemes meet them.

However, all of this relies on the implicit assumption that users who encrypt have

access to a supply of uniform random bits.

1.0.2 Randomness Generation in Practice

Since cryptographic protocols like public-key encryption rely on the avail-

ability of uniform random bits for each operation, and since we want our computers

to perform these operations, we need a way for computers to simulate coin flipping.

The most common way this is done in practice is to use what is called a software

random number generator (RNG).

Implementations of software RNGs are present in many popular programs,

including web browsers, SSH clients and servers, and web (HTTPS) servers. Soft-

ware RNGs work under the assumption that from the point of view of an adversary

outside of the system, there are some measurable system events that are highly

unpredictable. For example, the exact coordinates of the mouse pointer on the

screen at any given time should be unpredictable to an adversary who is not in

control of the system or observing the user. Other examples of events that are

believed to be somewhat unpredictable are keyboard presses and timings between

system interrupts. A software RNG attempts to take this unpredictability and

extract randomness from it.

To convert unpredictable system events in to random bits, a software RNG

periodically takes digital representations of these events (sometimes referred to as

entropy) and stores them in a pool in memory. If some cryptographic operation

(e.g., encryption) requests random bits from the RNG, the RNG uses repeated

applications of a hash function like SHA-1 to mix together the unpredictable bits

in the pool. The result of this mixing is given to the cryptographic operation and

is hopefully random. This process of extracting random bits from unpredictable
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data using hash functions is closely related to the well-studied notion of randomness

extractors (c.f., [8]).

One important fact about software RNGs found in current cryptographic

libraries is that they are stateful. At any given time the RNG has state consisting

of a large pool of unpredictable data and some other variables such as counters.

The output of the RNG is then a deterministic function of this state. The state

changes every time the RNG outputs a value or new unpredictable data is mixed

in to the pool. However, unpredictable data is typically only mixed in periodically,

so there are often long periods of time when the state of the RNG is static. Later,

we will see later the problems this can cause.

Though software RNGs are extremely useful and mostly work well enough

in practice to allow secure use of cryptography, they are not perfect. As with any

complex piece of software, RNGs periodically fail in unanticipated ways. In fact,

RNGs have a long history of problems [6, 40, 44, 43, 35, 65] leading to spectacular

failures.

1.1 This Thesis: PKE in the Presence of Ran-

domness Failures

As we said earlier, long-accepted models of security for public-key encryp-

tion implicitly rely on systems having access to a source of unbiased, private ran-

dom bits. On real systems, these random bits typically come from software random

number generators. Unfortunately, real systems (and thus software RNGs) have

bugs, fail in unexpected ways, and are used in unanticipated environments and

unforeseen ways. The resulting randomness failures can lead to damaging attacks

on our existing PKE schemes.

In short, this thesis is about making public-key encryption more secure on

real systems. Specifically, we focus on developing a rigorous theory of PKE under

three different types of randomness failures: predictable randomness, repeated

randomness, and revealed randomness.

To illustrate the problems each randomness failure presents for PKE, we
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will focus on hybrid encryption [32]. Hybrid encryption is the most common way

PKE is used in practice, as it is the basis for the key transport used in the SSL/TLS

protocol and is also used in numerous email encryption programs. As the name

suggests, a hybrid encryption scheme is a hybrid of public-key encryption and sym-

metric encryption. In short, the public-key encryption scheme is used to encrypt

a random symmetric key, while the symmetric encryption algorithm uses this ran-

dom key to encrypt the actual message. To be more precise, given any public

key encryption algorithm E and any symmetric encryption algorithm SE, we can

construct a hybrid encryption algorithm Ē that combines E and SE. Algorithm Ē
chooses a random symmetric key K for SE, encrypts K using public-key encryp-

tion E , and then encrypts the actual message M using the symmetric key K and

the symmetric encryption algorithm SE. The ciphertext generated by Ē is the pair

E(pk, K), SE(K,M). To decrypt, one first uses the PKE decryption algorithm D
to retrieve K and then uses that key with the symmetric decryption algorithm SD

to retrieve the message.

We note that this closely mirrors what happens essentially every time one

connects to a secure (HTTPS) website1: the web browser picks a random value R

(called the premaster secret) and sends E(pk, R), where pk is the public key of the

secure website and E is usually RSA encryption with PKCS#1 v1.5 padding. The

actual messages one wants to send to the secure website (e.g., passwords) are then

sent using a symmetric encryption algorithm with keys derived from R and other

public values. One useful way to think of this is that the HTTPS session is like an

online2 version of hybrid encryption.

It is easy to see that for secure hybrid encryption we need good randomness,

since the symmetric key K should be chosen freshly and uniformly at random for

each encryption. Additionally, the algorithms E and SE may also require fresh

randomness to operate securely, but we will focus on the randomness used to pick

the key K for the remainder of this discussion.

1We say essentially every time because in some cases Diffie-Hellman key agreement is used
instead of RSA key transport.

2We mean “online” as in “online algorithm”, i.e., an algorithm that operates on input that is
not all available immediately upon execution.



7

We now examine each of the three randomness failures, motivating their

study, explaining their effect on PKE, and discussing our central contributions.

1.1.1 Predictable Randomness

The first randomness failure we explore in this dissertation is predictable

randomness. This randomness failure occurs when the encryption algorithm is

given coins that an adversary can predict. Since outputting predictable values is

the exact opposite of what a software random number generator is supposed to do,

one might think that such failures are uncommon. Unfortunately, they are quite

common.

The most recent notable example of a predictable randomness failure was

the Debian OpenSSL vulnerability. In 2006, a programmer mistakenly commented

out an important line of code in the Debian Linux version of the OpenSSL crypto-

graphic library. Without this important line of code, the only unpredictable data

the OpenSSL software random number generator had access to was the process

ID. Since the process ID only takes on about 32,000 values, the RNG did not

have sufficient entropy and thus the resulting values outputted by the RNG were

predictable to an adversary.

The bug was eventually discovered in May 2008 by Luciano Bello [6], but

by then the damage had been done. HTTPS web servers with keys generated on

affected Debian machines had predictable private keys, and were forced to generate

new keys, get new digital certificates, and have CAs revoke the bad certificates.

(See [67] for more details on the effects of the bug on SSL/TLS certificates.) Per-

haps more frightening, even servers running the buggy Debian that had generated

their keys on an unaffected machine were in danger, since routine cryptographic op-

erations like encryption and signing often require good per-operation randomness

and fail spectacularly when given predictable randomness.

This is the most recent notable example of how a software RNG in pop-

ular software ended up failing and providing predictable values. Unfortunately,

this is not an isolated incident. There are also numerous past examples of RNG

failures [40, 44, 43, 35, 65], and it is reasonable to expect that more will occur in
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the future.

Even though unpredictable randomness is necessary to achieve strong no-

tions of security such as IND-CPA, we might hope that existing PKE schemes, even

when given predictable coins, still provide some level of security. Unfortunately,

this is not the case.

To see the effect predictable randomness has on public-key encryption secu-

rity, let us look at its effect on the hybrid encryption scheme we described earlier.

Recall that in hybrid encryption a ciphertext is a pair E(pk, K), SE(K,M), where

K is chosen by the encryptor uniformly at random. If this encryptor has a ran-

dom number generator that outputs predictable values, then the key K will be

predictable to an adversary. Once the adversary predicts K, it can simply use it to

decrypt the second part of the ciphertext pair and recover the message M . Notice

that this is true irrespective of the message encrypted. Even if the message is itself

completely random (perhaps it is a key generated on another machine), then using

hybrid encryption with bad coins still leads to its immediate revelation.

Since hybrid encryption closely mirrors how PKE is used in practice, this

problem can be particularly damaging. We might hope that switching to other

known PKE schemes would help, but unfortunately, similar attacks can be ex-

hibited on common schemes such as El Gamal [38], Rabin SAEP [56], and RSA-

OAEP [25].

We would like to build encryption schemes that still provide some level of

security when given bad coins. To motivate how we do this, let us review some of

what we know about PKE. On one hand, we know numerous deterministic PKE

schemes (often called families of injective trapdoor functions). These deterministic

schemes are believed to meet some reasonable security notions, the strongest being

PRIV security [12], when messages are random or even just unpredictable to an

adversary. Alternatively, we know numerous randomized encryption schemes that

meet very strong notions of security regardless of the messages being encrypted, yet

rely on fresh, unbiased random bits for every encryption. As we saw previously with

hybrid encryption, if this per-operation randomness is predictable, the encrypted

message is revealed immediately to an adversary.
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Notice that if we take a randomized encryption algorithm and fix the coins

to some predictable value such as a string of all 0s, then the scheme becomes

deterministic. One might reasonably expect that in this case a well-designed ran-

domized PKE scheme should act like good deterministic scheme, i.e., still provide

security if the message being encrypted is random or unpredictable. This is the

intuition for our improved encryption schemes.

We combine techniques from the state-of-the-art in deterministic PKE (i.e.,

PRIV security [12] and its variants [16, 23]) with techniques from our existing

strong randomized PKE schemes and end up with PKE schemes that are hedged

against bad randomness. Such hedged PKE schemes meet standard strong notions

of security for randomized encryption, namely IND-CPA, when the per-operation

randomness is good. In the case that the randomness is not perfect, a hedged PKE

scheme still provably provides security as long as the message and coins together

are very unpredictable. We formalize this latter notion of security by extending the

PRIV security definition for deterministic encryption, calling the resulting notion

IND-CDA for indistinguishability under chosen-distribution attack. We are able

to construct hedged PKE schemes in the standard model. More details can be

found in Chapter 3

1.1.2 Repeated Randomness

The second randomness failure we explore in this dissertation is repeated

randomness. This failure occurs when the encryption algorithm is given the same

coins that it was given at some earlier time. As we said above, common software

RNGs are stateful : their state changes over time as either entropy is added or

values are outputted, and the output of the RNG is a deterministic function of

its state. Thus, one way a repeated randomness failure can potentially occur is if

for some reason the RNG returns to a previous state. We will see how this can

happen because of virtual machines.

A virtual machine (VM) is a software implementation of a real, physical

machine. On a single physical machine one can run many virtual machines that

share the resources of the physical machine. To applications running on a virtual
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machine, it appears as if they are running on a real machine. The use of virtual

machines on web servers is in part fueling the cloud computing boom. In this thesis

we will mainly be concerned with the use of virtual machines on desktop computers.

Desktop virtualization has been popularized by products like VMWare [5] and

VirtualBox [4], which allow users to easily set up VMs on their desktop machines.

One useful feature of these VMs is the ability to save the state of a virtual

machine. If at any time something goes wrong with the virtual machine (e.g., a

virus infection), then the user can simply revert back to a previously saved copy

of the machine. This acts much like the save document feature in popular word

processing programs: if one makes unwanted changes to an important document

he can always revert back to a saved copy.

While saved virtual machine states, called snapshots, are extremely useful,

they cause some security concerns. Garfinkel and Rosenblum [39] theorized that

the use of VM snapshots could potentially lead to cryptographic insecurities. We

will show that the types of problems they described are not just hypothetical by

showing real attacks on public-key encryption as used by TLS/SSL clients such

as web browsers. Our attacks exploit repeated randomness failures caused by

executing multiple times from the same virtual machine snapshot. In short, the

state of the stateful software random number generators will be captured in a

snapshot, leading to the same values being outputted by the RNG every time

execution begins from the snapshot.

Before getting to the details of our attacks, let us see how repeated ran-

domness can have a disastrous effect on PKE security. Consider again a hybrid

encryption scheme. Now, say that Alice sends a sensitive message m∗ (e.g., her

password) to her bank over the Internet using hybrid encryption. The ciphertext

will be E(pkB, K), SE(K,m∗), where pkB is the public key of the bank. Then,

at some later time, Alice sends a message m to a malicious website. If Alice

has a bad random number generator that repeats values, and the same coins are

used in the two encryptions, then the ciphertext sent to the malicious site will

be E(pkE, K), SE(K,m), where pkE is the public key of the malicious site (“E”

stands for “evil”). The owner of the malicious site can then use its secret key skE
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to decrypt E(pkE, K), learning the symmetric key K. This, however, was the same

symmetric key Alice used to send her password to her bank! Thus, the owner of

the malicious site can use K to decrypt SE(K,m∗), learn the password m∗, and

compromise Alice’s bank account.3

Based on the above problems with PKE and repeated randomness, we show

VM reset attacks on many popular web browsers. We show that if a user starts

up a web browser and saves the state of her virtual machine, then every time she

reloads this saved state and visits a website her browser will send the same secret

random value. This is particularly damaging if a user visits a sensitive site like a

bank and then later reloads the saved state and visits a malicious website, since

it means the malicious website owner knows the secret random value that helps

secure the user’s banking session.

Since existing PKE schemes are vulnerable to attack when repeated coins

are used, and since we show these problems cause serious vulnerabilities in prac-

tice, we would like new schemes that perform better and provably still provide

as much security as possible. Though researchers have examined the effect state

resets have on zero-knowledge protocols [27, 53, 7], identification schemes [15], and

multiparty computation protocols [42], no one appears to have looked at deployed

cryptographic primitives like PKE in such a setting.

We cannot hope for a perfect solution; as with the predictable randomness

case, there are limitations to how much security we can get when randomness

is imperfect. In the case of repeated randomness, the inherent limitation is that

encrypting the same message to the same public key and with the same randomness

results in the same ciphertext.

Given this limitation, our high-level goal will be as follows: if randomness

is repeated but anything else changes (i.e.g, the message or the public key), then

we still get security. We formalize the details of this security notion in Chapter 4.

Achieving security against resets turns out to be relatively straightforward.

We can take any IND-CPA secure PKE scheme and slightly modify it using a

pseudorandom function. The resulting scheme will be secure against resets. The

3This attack requires that the owner of the malicious site also observe Alice’s session with her
bank. This might be possible if, for example, Alice is using an unsecured wireless network.
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high-level intuition is that while coins are meant to be used only once, many

cryptographic objects are intended to be repeatedly used. One such object is the

key of a pseudorandom function. Thus, we use the repeated coins as a PRF key

to derive new coins. We point out that applying these ideas to key transport in

SSL/TLS prevents our attacks.

1.1.3 Revealed Randomness

The last randomness failure we explore is revealed randomness. This failure

occurs when the coins use for encryption are later revealed to an adversary. In

this thesis we will focus on a particular type of attack that is related to revealed

randomness failures called a selective opening attack.

In the strongest selective opening attacks we consider, a large number of

users send possibly-related messages to a single server, encrypting the messages

with the server’s public key. One example of possibly related messages are pass-

words; many users pick similar passwords, so many users’ passwords might be

related. Upon seeing the resulting ciphertexts, an adversary can select some sub-

set of the users to corrupt. Upon corrupting a user’s computer, the adversary

learns the message sent by the user and also the coins used to create the cipher-

text. Clearly the messages sent by corrupted users can no longer be private, since

the adversary learns them upon corruption. The question we will investigate is

whether the messages sent by the uncorrupted users are still secure in this sce-

nario.

To those unfamiliar with selective opening attacks, the answer may seem

obvious. However, it turns out to be difficult to prove the selective opening secu-

rity of common encryption schemes that meet traditional notions like IND-CPA.

Similar problems have been studied for years under the name adaptively-secure

encryption. There are known solutions [26, 28], but they all have significant draw-

backs.

We categorize selective opening attacks as a problem related to a random-

ness failure because the fact that the coins are revealed to an adversary upon

corruption appears to cause the main technical difficulties. If users are able to
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erase the randomness used during encryption and the corrupting adversary only

learns the messages sent, then IND-CPA does ensure the security of the uncor-

rupted ciphertexts.

We point out that no specific attacks are known on IND-CPA secure schemes.

In other words, though we cannot prove that IND-CPA secure PKE schemes are

also secure against selective opening attacks, we also cannot show that they are

insecure. Designing any IND-CPA secure scheme that is vulnerable to a selective

opening attack is a major open problem in the area. Despite the lack of known

attacks, since Goldwasser and Micali’s seminal paper our goal has been to prove

our PKE schemes secure under all reasonable attacks. Thus, the current state of

affairs for selective opening attacks is disquieting.

In Chapter 5 we take a major step to resolving this problem by showing

how to prove many known PKE schemes secure under selective opening attacks.

In short, we show that any PKE scheme that is lossy is also secure under selective

opening attacks. A lossy randomized PKE scheme is one in which the public keys

are (computationally) indistinguishable for other, fake public keys, and encryption

under these fake keys statistically loses nearly all information about the message

being encrypted. Surprisingly, the original PKE scheme from Goldwasser and

Micali turns out to have this property!

1.2 Future Directions

We briefly mention some extensions and open problems. We will also discuss

open problems in more detail in each individual chapter.

For much of the dissertation we focus on chosen plaintext attacks. Ex-

tending the results in each section to a setting with chosen-ciphertext attacks is

important and interesting. Some work on this has already been done. As we show

in Chapter 4, our results on resettable PKE apply to the CCA setting. In the se-

lective opening attack setting, Fehr, Hofheinz, Kiltz, and Wee [37] recently found

a way to achieve full chosen-ciphertext security, while earlier work by Hemenway,

Libert, Ostrovsky, and Vergnaud achieved a weaker form of selective opening CCA
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security [46].

Another interesting future direction is creating PKE schemes that simulta-

neously meet all of the security notions we examine separately in this dissertation.

Specifically, we can ask whether there exist PKE schemes that are simultaneously

hedged against bad randomness, resettably secure, and secure against selective

opening attacks. This is likely easy in the random oracle model [20], but more

difficult in the standard model.



Chapter 2

Background

Before examining randomness failures and their effects on PKE, we give

some background information that will be useful for understanding our results in

subsequent chapters.

2.1 Notation.

For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. Let k ∈ N
denote a security parameter and 1k its unary encoding. Unless stated otherwise,

all algorithms in this paper are randomized. We use “PT” for polynomial-time.

We call an algorithm efficient if it is PT. We let m denote a sequence of messages

(m1, . . . ,m`), let |m| denote the number of messages in the vector, and let m[i]

be the ith message in the vector. For bitstring m we let |m| denote the length of

m, and mi denote the ith bit of m. We let [A(x1, . . . , xt)] be the set of possible

outputs of an algorithm A on inputs x1, . . . , xt. If A outputs a sequence, then

[A(x1, . . . , xt)]i denotes the set of ith components of the outputs of algorithm A

on inputs x1, . . . , xt.

2.2 Code-Based Games.

Our security definitions use code-based games [21]. With code-based games,

security definitions are formulated by considering a game played with an adver-

15
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sary. Such a game consists of procedures Initialize and Finalize, as well as

procedures for handling oracle calls the adversary can make. At the start of the

game, Initialize is run and its output is given to the adversary. The adversary

then runs and may make oracle calls that are answered by the corresponding game

procedures. When the adversary halts with output w, that becomes the input to

the Finalize procedure and the resulting output of Finalize is called the output

of the game. We denote by GA ⇒ y the event that game G, when run with ad-

versary A, outputs y. Sometimes we let GA denote the event GA ⇒ true. We say

the running time of an adversary playing a game is the time it takes to run the

adversary with the game, so in particular, the time it takes to run game procedures

is accounted for in the adversary’s running time.

We will often consider adversaries that query the description of a Turing

machine. For example, we may have a game with procedure LR that, on input the

description of an algorithm M, executes M within the procedure. Since the time

it takes to run the game with an adversary counts towards the adversary’s running

time, a polynomial time adversary must query only descriptions of algorithms that

also run in polynomial time. Equivalently, we could consider adversaries that query

descriptions of circuits; a polynomial time adversary would only be able to write

out the description of a polynomial size circuit, guaranteeing that running the

circuit is also polynomial time.

2.3 Hashing

A family of hash functions is a tuple of PT algorithms H = (Ph,Kh,H) with

message length n(·) and with the following properties. The randomized parameter

generation algorithm Ph takes as input a security parameter 1k and outputs a

parameter string πh. The randomized key generation algorithm Kh takes as input

a parameter string πh and outputs a hash key κ. The deterministic hash evaluation

algorithm H takes as input hash key κ and input x ∈ {0, 1}n(k) and outputs y. For

every k and all πh ∈ [Ph(1k)], let R(πh) = {H(κ, x) : κ ∈ [Kh(πh)] ∧ x ∈ {0, 1}n}.
We say a hash family has 2t(k) bounded range if for all k and all πh ∈ [Ph(1k] it
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is the case that |R(πh)| ≤ 2t(k). We say H has output length ` if for all k and all

πh ∈ [Ph(1k)], the range R(pars) = {0, 1}`(k).

We say that H is universal if for all k, all πh ∈ [Ph(1k)], and all distinct

inputs x, x′ ∈ {0, 1}n(k), it is the case that

Pr [ H(κ, x) = H(κ, x′) ] ≤ 1

|R(πh)|
,

where the probability is taken over κ←$ Kh(πh).

We say that H is pairwise-independent if for all k, all πh ∈ [Ph(1k)], all

distinct inputs x, x′ ∈ {0, 1}n(k), and all y, y′ ∈ R(πh), it is the case that

Pr [ H(κ, x) = y ∧ H(κ, x′) = y′ ] ≤ 1

|R(πh)|2
,

where the probability is taken over κ←$ Kh(πh).

2.4 Public-Key Encryption and Hiding Schemes

A public-key encryption (PKE) scheme AE = (P ,K, E ,D) is a tuple of PT

algorithms. All algorithms either explicitly or implicitly take as input the security

parameter 1k in unary and are PT in k. The randomized parameter generation

algorithm P , on input unary security parameter 1k, outputs scheme parameters

pars. The randomized key generation algorithm K, on input parameters pars,

outputs a pair of keys (pk, sk). The randomized encryption algorithm E , on input

public key pk and message m ∈ MsgSpacepars, outputs a ciphertext c. Let the set of

coins E uses on input pars and pk be denoted CoinsE(pars, pk) and let E(pk,m; r)

denote encryption of m under public key pk and coins r. Finally, the deterministic

decryption algorithm D, on input a secret key sk and ciphertext c, outputs either

⊥ in the case of failure, or m ∈ MsgSpacepars. We require that for all k ∈ N, all

pars ∈ [P(1k)], all (pk, sk) ∈ [K(pars)] and for all m ∈ MsgSpacepars, it is true that

D(sk, E(pk,m)) = m. We note that many PKE schemes do not have a parameter

generation algorithm; for those schemes P simply outputs the security parameter,

i.e., pars = 1k.
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If for all k and all pars ∈ [P(1k)] it is the case that Coinspars = ∅, then E
is always deterministic and we say that AE is a deterministic encryption scheme.

This is syntactically the same as a family of injective trapdoor functions, so we

will use those terms interchangeably.

We will also consider what we call hiding schemes. A hiding scheme removes

the efficient decryption and correctness requirements from the definition of PKE;

the scheme is simply used to hide messages, not necessarily transport them. More

formally, a hiding scheme is a tuple of PT algorithms Hid = (P ,K, E) with the

same properties as the corresponding PKE algorithms described above.

If m = (m1, . . . ,m`) and r = (r1, . . . , r`), then when we say E(pk,m ; r) we

mean component-wise encryption. In other words,

E(pk,m ; r) = (E(pk,m[1] ; r[1]), . . . , E(pk,m[`] ; r[`])) .

Similarly, if c = E(pk,m ; r), then we denote by D(sk, c) component-wise decryp-

tion, i.e.,

D(sk, c) = (D(sk, c[1]), . . . ,D(sk, c[`])) .

2.4.1 Security Notions

We will consider numerous security notions for PKE and hiding schemes.

In later chapters we will also develop new security notions.

Key Indistinguishability. Consider a PKE (or hiding) scheme Π with key gen-

eration algorithm K. For many of the proofs in this thesis we will want to instead

use an alternate key generation algorithm K′. However, we do not want an ad-

versary who is given the public key to know whether the public key came from

the real key generation algorithm K or the alternate key generation algorithm K′.
To capture this property, consider game KEYIND (not shown) parameterized by

scheme Π with key generation algorithm K, alternate key generation algorithm

K′, and security parameter k. The Initialize procedure runs the parameter gen-

eration P from Π to get pars and then flips a bit b. Let K0 = K and K1 = K′.



19

Then, Initialize runs Kb(pars) and returns the public key pk to the adversary.

The adversary halts with output a bit b′ and the output of Finalize is true if b = b′

and false otherwise. The key-ind advantage of an adversary A is then

Advkey-ind
A,Π,K′ (k) = 2 · Pr

[
KEYINDA

Π,K′,k ⇒ true
]
− 1 .

IND-CPA. Let Π be either a PKE scheme or a hiding scheme. An INDCPA

adversary is one that plays game INDCPA, found in Figure 2.1, and always queries

LR with two equal-length messages. We say the ind-cpa advantage of an INDCPA

adversary A against Π is

Advind-cpa
Π,A (k) = 2 · Pr

[
INDCPAA

Π,k ⇒ true
]
− 1 ,

where the security game is found in Figure 2.1. We say scheme Π is IND-CPA

secure if for all PPT INDCPA adversaries A making one LR query, the ind-cpa

advantage of A against Π is negligible in k. We only need to consider adversaries

making one LR query because of the following proposition:

Proposition 2.4.1 Let k be a security parameter and Π a hiding scheme. Let A

be an INDCPA adversary making at most q queries to the LR oracle. Then there

exists an INDCPA adversary B making one LR query such that

Advind-cpa
Π,A (k) ≤ q ·Advind-cpa

Π,B (k) .

The proposition can be proved with a standard hybrid argument. See [11]

for a proof in the more general case of multiple receivers. (Restricting the proof

in [11] to one receiver results in the above proposition.)

IND-CCA. Let AE be a PKE scheme. An INDCCA adversary is one that plays

game INDCCA, found in Figure 2.2, and always queries LR with two equal-length

messages. We say the ind-cca advantage of an INDCCA adversary A against AE
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procedure Initialize:

b←$ {0, 1}
pars←$ P(1k)
(pk, sk)←$K(pars)
Ret pk

procedure LR(m0,m1):

c←$ E(pk,mb)
Return c

procedure Finalize(b′):

Ret (b = b′)

Figure 2.1: Security game INDCPAΠ,k.

procedure Initialize:

b←$ {0, 1}
pars←$ P(1k)
(pk, sk)←$K(pars)
S ← ∅
Ret pk

procedure Dec(c):

If c ∈ S then return ⊥
m← D(sk, c)
Return m

procedure LR(m0,m1):

c←$ E(pk,mb)
S ← S ∪ {c}
Return c

procedure Finalize(b′):

Ret (b = b′)

Figure 2.2: Security game INDCCAAE,k.

is

Advind-cca
AE,A (k) = 2 · Pr

[
INDCCAA

AE,k ⇒ true
]
− 1 ,

where the security game is found in Figure 2.2. We say scheme AE is IND-CCA

secure if for all PPT INDCCA adversaries A making one LR query, the ind-cca

advantage of A against AE is negligible in k. As above, we only need to consider

adversaries making one LR query, since the proof of the above proposition applies

equally well here.

2.5 Trapdoor Functions

We will use families of injective trapdoor functions (TDFs). As noted above,

these are syntactically identical to deterministic PKE schemes, but we will some-
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times use different notation to avoid confusion. Other times we will use the PKE

notation. Formally, a family of injective trapdoor functions with message length

n(·) is a tuple of PT algorithms F = (P,K,F,F−1) with the following properties.

The randomized parameter generation algorithm P takes as input security param-

eter 1k and outputs parameter string π. The randomized key generation algorithm

K takes as input parameters π and outputs a function index σ and trapdoor τ .

The deterministic function evaluation algorithm F takes as input a function index

σ and x ∈ {0, 1}n(k) and outputs a point y. The function inverse algorithm F−1

takes as input a trapdoor τ and a point y and outputs a point x. We require the

correctness condition that for all 1k, all π ∈ [P(1k)], all (σ, τ) ∈ [K(π)], and all

x ∈ {0, 1}n(k), it is the case that F−1(τ, F(σ, x)) = x.

Lossiness. Lossy trapdoor functions were introduced by Peikert and Waters [58]

and have been useful for solving numerous open problems in cryptography. We

will rely on them heavily in this dissertation.

We say K` is an (n, L)-lossy key generation algorithm for F with message

length n(·) if for all k, all π ∈ [P(1k)], and all (σ`, τ`) ∈ [K`(π)] the map F(σ`, ·)
has image size at most 2n(k)−L(k). We say K` is universal-inducing if H = (P,K`,F)

is a family of universal hash functions.

Then, we say a family F of injective trapdoor functions with message length

n(·) is (n, L)-lossy if there exists a PT (n, L)-lossy key generation algorithm K`

(called the lossy key generation algorithm) such that For all PT adversaries A, the

key-ind advantage Advkey-ind
A,F ,K`

(k) is negligible in k. If K` is universal-inducing we

say that F is a family of universal LTDFs (u-LTDFs).

2.6 Pseudorandom Functions.

We will need families of pseudorandom functions (PRFs) for some of our

results. Let Fun : Keysk × Domk → Rngk be a family of functions indexed by a
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procedure Initialize:

K←$ Keysk
Ret 1k

procedure Fun(x):

Return Fun(K, x)

Game REALF ,k

procedure Finalize(a):

Ret a

procedure Initialize:

FunTab← ∅
Ret 1k

procedure Fun(x):

If FunTab[x] = ⊥ then
FunTab[x]←$ Rngk

Return FunTab[x]

Game RANDF ,k

procedure Finalize(a):

Ret a

Figure 2.3: Security games for pseudorandom function security.

security parameter k. We say the PRF-advantage of a PRF adversary D is

Advprf
Fun,D(k) = Pr

[
REALDFun,k ⇒ 1

]
−Pr

[
RANDD

Fun,k ⇒ 1
]
,

where the security games can be found in Figure 2.3.



Chapter 3

Predictable Randomness

In this chapter we study public-key encryption security when the coins

used for encryption may be predictable to an adversary. We first give a high-level

overview of the problem before delving into details.

3.1 Overview

As we described in the introduction, many well-known PKE schemes that

meet strong notions of security such as IND-CPA completely fail to provide security

when the coins used during encryption are predictable. This means that notions

of security for PKE that we have long believed to be the “right” ones rely on the

implicit assumption that encryptors have access to an unbiased source of random

bits. As we described, in practice this assumption often turns out to be unrealistic.

Thus, IND-CPA alone is not sufficient for arguing about PKE security when

randomness is predictable, which is unfortunately sometimes the case on real sys-

tems.1 In this chapter we propose a new notion of security for public-key encryption

that we call indistinguishability under chosen distribution attack (IND-CDA), and

argue that we should aspire to build schemes that are both IND-CPA secure and

IND-CDA secure. We call such schemes “hedged” against bad randomness.

1We note that IND-CCA, IND-CPA’s stronger cousin, is also not sufficient for similar reasons.
To see this, simply consider an IND-CCA version of the hybrid encryption scheme discussed at
length in the introduction.

23
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Building encryption schemes that are hedged against potentially bad as-

sumptions was proposed by Shoup [64]. He was concerned with encryption schemes

whose security was explicitly based on hardness assumptions that might be proven

false, so he showed how to build an encryption scheme that was proven secure un-

der one assumption (DDH) in the standard model, and was proven secure under a

weaker assumption (CDH) in something called the random oracle model. In short,

if for some reason DDH turned out to be false2, all would not necessarily be lost.

We note that widely-used hardness assumptions are almost never broken, which is

in contrast to RNGs failing relatively frequently.

Other previous work considered something similar to hedging against bad

randomness, but in the symmetric encryption setting. Specifically, Rogaway [62]

and Rogaway and Shrimpton [63] both reduce the reliance on a random IV in

symmetric encryption. The former advocates relying on unique values for each

encryption (nonces) instead of uniformly random values. The latter proposes that

symmetric encryption schemes should fall back to good PRFs when randomness

is bad. In other related work, Kamara and Katz [49] study symmetric encryption

security when an adversary can see messages encrypted under adversarially-chosen

randomness. However, they still allow perfect randomness for challenge cipher-

texts, the idea being that encryptions using bad randomness should not leak infor-

mation about messages that are encrypted with good randomness. Differing from

these works, we focus on the public-key setting, which presents unique challenges

since the encryptor does not have access to a random secret symmetric key.

Thus, we need a new notion of security for PKE with bad randomness. Our

new notion, IND-CDA, is inspired by the PRIV security notion for deterministic

encryption [12], specifically its indistinguishability versions [23, 16]. At a high

level, a scheme is IND-CDA secure if encryption hides all information about a

message m when encrypted with coins r, as long as the pair (m, r) is sufficiently

unpredictable. In other words, even if r is not completely uniform, as long as

there is enough unpredictability somewhere in the message and coins, encryption

2DDH is now considered a “standard” assumption, so it might seem strange to be concerned
about it being false. But, there was a time when it was not so standard and sometimes referred
to as the “Day Dreamers Hypothesis”.
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is secure. In short, schemes that meet IND-CDA borrow some unpredictability

from the message to make up for any deficiencies in the unpredictability of the

coins.

Why might we expect messages to be unpredictable? Common things one

might want to encrypt, such as a long email, are certainly very unpredictable to

an adversary. One might also be encrypting random messages such as keys that

were generated on a different machine with a good RNG. More philosophically, if

messages are not at least somewhat unpredictable, then why encrypt in the first

place?

We emphasize that we are considering a scenario where the senders of mes-

sages potentially have bad RNGs, but receivers still used good randomness to

generate the public and secret keys. We claim this is a reasonable scenario. First,

key generation is an infrequent operation, while encryption operations may hap-

pen frequently. Second, some programs (e.g., GnuPG [2]) take extra precautions to

ensure key generation has access to good randomness. Assuming some amount of

good randomness is also necessary, since many past works have shown that much

of cryptography is impossible with only a weak random source [52, 34, 24].

To achieve IND-CDA security, we extend the ideas of Boldyreva, Fehr, and

O’Neill [23] for achieving PRIV-secure deterministic PKE. We briefly review their

ideas. To achieve PRIV security (which turns out to be the same as IND-CDA

security for PKE schemes with randomness length 0) we want encryption E(pk,m)

to hide information about m when it has high min-entropy that is independent of

pk. This is similar to the setting of strong extractors, where we want H(κ,m)

to be (statistically) close to uniform (even given κ) when m has high min-entropy

independent of κ. Thus, one idea might be to use a strong extractor for encryption;

in other words, define encryption as E(pk,m) = H(pk,m). We can construct

schemes like this, but unfortunately correct decryption becomes problematic since

strong extractors necessarily compress.

To overcome this obstacle, [23] use encryption that is computationally in-

distinguishable from an extractor. In other words, E(pk,m) is still injective in

m, allowing decryption, but honest public keys are indistinguishable from other
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keys under which encryption actually does compress and act like a true extractor.

This allows one to computationally argue about security while still preserving de-

cryption functionality. BFO call PKE schemes with this property deterministic

encryption with hidden universal hash mode. They then show how to build such

schemes using universal LTDFs (u-LTDFs) [23, 58].

Given this idea (which is currently the only known way to achieve PRIV-

secure PKE in the standard model), we can build randomized encryption schemes

that are IND-CDA secure. However, IND-CDA is not our only goal; we also

need to ensure the resulting schemes are IND-CPA secure. We have two main

constructions.

Our first construction composes an IND-CPA secure randomized public-key

encryption scheme with a PRIV-secure deterministic PKE scheme. Interestingly,

the order of composition turns out to be important. We show that if we first

apply a suitable randomized encryption scheme and then apply a PRIV-secure

deterministic encryption scheme, then we can achieve both IND-CPA and IND-

CDA security.

Our second construction is simpler, yet technically more difficult to prove

secure. We show that if we simply pad the message with randomness and then

apply a u-LTDF, we can get hedge security. The IND-CDA security follows im-

mediately from the PRIV-security of the u-LTDF. Showing IND-CPA turns out

to be more difficult. The difficulty stems from the fact that u-LTDFs are secure

when the message and randomness pair (m, r) has high min-entropy independent

of the public key. However, in the INDCPA security game the adversary is allowed

to choose messages that depend on the public key. It turns out that we can over-

come this issue by carefully setting the parameters and choosing the length of the

padded randomness appropriately.

Organization. The rest of the chapter is organized as follows. In the next section

we give details of our new security definition IND-CDA and precisely define what

it means for a scheme to hedge against bad randomness. In Section 3.3 we describe

a variant of the Leftover Hash Lemma (LHL) [48] that we will need for our results.

In Section 3.4 we prove two encryption schemes secure in the standard model.
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Finally, in Section 3.5 we show how to achieve adaptive security.

3.2 New Security Definition: IND-CDA

Before giving our new definition of PKE security, we give a few brief pre-

liminaries.

Public-Key Encryption. For simplicity, we state our security definitions for

PKE schemes AE = (P ,K, E ,D) with message space {0, 1}n(k) and coin space

{0, 1}ρ(k), where k is the security parameter.

Sources and Entropy Measures. We generalize the notion of a source to

consider a joint distribution on the messages and the randomness with which they

will be encrypted. A t-source (t ≥ 1) with message length n(·) and randomness

length ρ(·) is a probabilistic algorithm ~M that on input 1k returns a (t+ 1)-tuple

(m0, . . . ,mt−1, r) of equal-length vectors, where m0, . . . ,mt−1 are over {0, 1}n(k)

and r is over {0, 1}ρ(k). We say that ~M has min-entropy µ(·) if

Pr [ (mb[i], r[i]) = (m, r) ] ≤ 2−µ(k)

for all k ∈ N, all b ∈ {0, . . . , t − 1}, all i ∈ {1, . . . , |r|}, all (m, r) ∈ {0, 1}n(k) ×
{0, 1}ρ(k), and where the probability is over (m0,m1, r)←$ ~M(1k). We say it has

conditional min-entropy µ(·) if

Pr [ (mb[i], r[i]) = (m, r) | ∀j < i (mb[j], r[j]) = (m′[j], r′[j]) ] ≤ 2−µ(k)

for all k ∈ N, all b ∈ {0, . . . , t− 1}, all i, all (m, r), all vectors m′, r′, and over the

coins used by ~M.

A t-source with message length n(·), randomness length ρ(·), and min-

entropy µ(·) is referred to as a (µ, n, ρ)-mr-source when t = 1 and ρ(·) > 0; a

(µ, n)-m-source when t = 1 and ρ(·) = 0; a (µ, n, ρ)-mmr-source when t = 2 and

ρ(·) > 0; and (µ, n)-mm-source when t = 2 and ρ(·) = 0. Each “m” indicates the

source outputting one message vector and an “r” indicates a randomness vector.

When the source has conditional min-entropy µ(·) we write block-source instead

of source for each of the above. A v(·)-vector source outputs vectors of size v(k)

for all k.
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procedure Initialize:

pars←$ P(1k)
(pk, sk)←$K(pars)
b←$ {0, 1}
Ret pars

procedure RevealPK():
pkout← true
Ret pk

procedure LR( ~M):
If pkout = true then

Ret ⊥
(m0,m1, r)←$ ~M(1k)
Ret E(pk,mb; r)

procedure Finalize(b′):
Ret (b = b′)

Figure 3.1: Game CDAAE,k

3.2.1 The Security Definition

We now give our new security definition for public-key encryption, which we

call indistinguishability under chosen-distribution attack (IND-CDA). Let AE =

(P ,K, E ,D) be an encryption scheme. A CDA adversary is one whose LR queries

are all mmr-sources. Game CDAAE of Figure 3.1 provides the adversary with two

oracles. The advantage of CDA adversary A is

Advcda
AE,A(k) = 2 · Pr

[
CDAA

AE,k ⇒ true
]
− 1 .

Discussion. Adversary A can query LR with an mmr-source of its choice, an

output (m0,m1, r) of which represents choices of message vectors to encrypt and

randomness with which to encrypt them. (An alternative formulation might have

CDA adversaries query two mr-sources, and distinguish between the encryption of

samples taken from one of these. But this would mandate that schemes ensure

privacy of messages and randomness.) This allows A to dictate a joint distribu-

tion on the messages and randomness. In this way it conservatively models even

adversarially-subverted random number generators. Multiple LR queries are al-

lowed. In the most general case these queries may be adaptive, meaning depend

on answers to previous queries.

Given that multiple LR queries are allowed, one may ask why an mmr-

source needs to produce message and randomness vectors rather than simply a

single pair of messages and a single choice of randomness. The reason is that the
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coordinates in a vector all depend on the same coins underlying an execution of

~M, but the coins underlying the execution of the sources in different queries are

independent.

Note that Initialize does not return the public key pk to A. A can get it at

any time by calling RevealPK, but once it does this, LR will return⊥. The reason

is that we inherit from deterministic encryption the unavoidable limitation that

encryption cannot hide public-key related information about the plaintexts [12].

(When the randomness has low entropy, the ciphertext itself is such information.)

No encryption scheme is secure when both messages and randomness are

predictable. Formally, this means chosen-distribution attacks are trivial when

adversaries can query mmr-sources of low min-entropy. Our notions (below) will

therefore require security only for sources that have high min-entropy or high

conditional min-entropy.

Equality patterns. Suppose A makes a query ~M which returns (m0,m1, r) =

((a, a), (a, a′), (r, r)) for some a 6= a′ and random r. Then it can win trivially

because the (two) components of the returned vector c are equal if b = 0 and

unequal otherwise. This example points to a fundamental limitation with encryp-

tion: equality of plaintext and randomness is leaked by ciphertexts. To have an

achievable notion of security, then, we must ensure that CDA adversaries cannot

use plaintext-randomness equalities in order to trivially learn the challenge bit b.

We first define an equality pattern, following [12]. For any pair of vec-

tors (m, r) of length t, the equality pattern is the bit-valued matrix E(m,r) where

E
(m,r)
i,j = 1 if (m[i], r[i]) = (m[j], r[j]) and E

(m,r)
i,j = 0 otherwise. This always-

symmetric matrix describes the equality relations between all elements of the two

vectors. For example, the equality patterns for the pairs of vectors ((a, a), (r, r))

and ((a, a′), (r, r)) used in the attack of the last paragraph are

E(m0,r) =

1 1

1 1

 and E(m1,r) =

1 0

0 1

 .

In that example, the adversary takes advantage of the fact that E(m0,r) 6= E(m1,r).

We must exclude such “trivial” adversaries by restricting attention to adversaries
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that only query sources ~M that do not leak information via equality-patterns.

Formally, an mmr-source ~M has equality-pattern disrespect ζ(·) if there exists a

family of reference equality-patterns {E∗K}k∈N such that

Pr
[
E(m0,r) 6= E∗k ∨ E(m1,r) 6= E∗k : (m0,m1, r)←$ ~M(1k)

]
≤ ζ(k) (3.1)

for all k ∈ N. Informally an adversary is equality-pattern respecting if it only

queries sources ~M with negligible equality-pattern disrespect. The above definition

can be easily generalized to t-sources.

One might think this notion of equality-pattern disrespect is too restrictive.

It mandates that each query uses some fixed equality pattern with high probability.

Instead, one might suggest a more liberal notion that demands only that nothing

about b is directly leaked, e.g. that E(m0,r) = E(m1,r) holds with high probability

for any mmr source queried. However, this security notion is not achievable: an

attacker can choose ~M so that the equality pattern encodes (say) all the bits that

are common between the first messages of m0 and m1.

Note that, with probability closely related to their conditional min-entropy,

block sources already output vectors whose equality pattern is the identity matrix.

Thus for block sources we will omit equality-pattern restrictions entirely.

Notions. We can assume (without loss of generality) that a CDA adversary

makes a single RevealPK query and then no further LR queries. We say A is a

(µ, n, ρ)-adversary if all of its LR queries are (µ, n, ρ)-mmr-sources with negligible

equality-pattern disrespect. We say that a PKE scheme AE with message length

n(·) and randomness length ρ(·) is IND-CDA secure for (µ, n, ρ)-mmr-sources if for

all PT (µ, n, ρ) adversaries A the function Advcda
AE,A(·) is negligible. Scheme AE

is H-IND secure for (µ, n, ρ)-mmr-sources if it is IND-CPA secure and IND-CDA

secure for (µ, n, ρ)-mmr-sources. We can extend these notions to mmr-block-sources

by restricting to adversaries that query mmr-block-sources.

On adaptivity. We can consider non-adaptive IND-CDA security by restricting

attention in the notions above to adversaries that only make a single LR query.

Why not focus solely on this (simpler) security goal? The standard IND-CPA

setting (implicitly) provides security against multiple, adaptive LR queries. In
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that setting a straightforward hybrid argument shows that security against multiple

adaptive LR queries is implied by security against a single LR query [11, 9]. We

wish to maintain the same standard of adaptive security in the IND-CDA setting.

Unfortunately, in the IND-CDA setting, unlike the IND-CPA setting, adaptive

security is not implied by non-adaptive security. In short this is because a CDA

adversary necessarily cannot learn the public key before (or while) making LR

queries. To see the separation, consider a PKE scheme that appends to every

ciphertext the public key used. This will not affect the security of the scheme when

an adversary can only make a single query. However, an adaptive CDA adversary

can query an mmr-source, learn the public key, and craft a second source that uses

the public key to help leak the challenge bit.

Given this, our primary goal is the stronger notion of adaptive security.

That said, non-adaptive hedge security is also relevant because in practice adaptive

adversaries might be rare.

Adaptive PRIV. A special case of our framework occurs when the PKE scheme

AE being considered has randomness length ρ(k) = 0 for all k (meaning also

that adversaries query mm-sources, instead of mmr-sources). In this case we are

considering deterministic encryption, and the IND-CDA definition and notions give

a strengthening (by way of adaptivity) of the PRIV security notion from [12, 16,

23]. (For non-adaptive adversaries the definitions are equivalent.) For clarity we

will use PRIV to refer to this special case, and let Advpriv
AE,A(k) = Advcda

AE,A(k).

Resource usage. Recall that by our convention, the running time of a CDA

adversary is the time for the execution of the adversary with game CDAAE,k. Thus,

A being PT implies that the mmr-sources that comprise A’s LR queries are also

PT. This is a distinction from [23] which will be important in our results. Note

that in practice we do not expect to see sources that are not PT, so our definition

is not restrictive. Non-PT sources were needed in [23] for showing that single-

message security implied (non-adaptive) multi-message security for deterministic

encryption of block sources.
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procedure Initialize:

πh←$ Ph(1k)
κ←$ Kh(pars)
b←$ {0, 1}
Ret πh

procedure RevealPK:

pkout← true
Ret κ

procedure RoR( ~M):

If pkout = true then Ret ⊥
m←$ ~M
If b = 1 then y← H(κ,m)
Else y←$ R(πh)
Ret y

procedure Finalize(b′):

Ret (b = b′)

Figure 3.2: Game ALH (Adaptive Leftover Hash) associated to a family of hash
functions H and a security parameter k.

3.3 Adaptive Variants of the LHL

Our schemes that hedge against bad randomness will make use of an adap-

tive version of the Leftover Hash Lemma. Informally, the Leftover Hash Lemma

(LHL) [48] states that a collection H of universal hash functions is a strong extrac-

tor. A standard hybrid argument (c.f., [68, Lemma 6]) extends the leftover hash

lemma to block sources. That is, for any joint distribution X = (X1, . . . , X`) such

that each Xi has sufficient min-entropy given X1, . . . , Xi−1, and for a randomly cho-

sen key κ for H, the distribution (κ,H(κ,X1), . . . ,H(κ,X`)) is statistically-close to

the uniform distribution over the range of the hash function.

We give an adaptive variant of this lemma.3 Specifically, in game ALHH

(see Figure 3.2) we consider the following scenario: hash function parameters πh

and key κ are chosen at random, and an adversary can adaptively interact with

an oracle that on input an m-source ~M samples (m1, . . . ,mv) and, depending on

a challenge bit b, outputs either (H(κ,m1), . . . ,H(κ,mv)), or (y1, . . . , yv) that are

each sampled uniformly at random from the range R(πh). Then, the adversary

receives the key κ, and is no longer allowed to interact with the oracle and it must

try to guess the bit b.

More formally, let H = (Ph,Kh,H) be a family of universal hash functions

with input length n(·). For every k and all πh ∈ [Ph[1k)] we let R(πh) = {H(κ, x) :

3We note that hashing of block sources in an adaptive setting was also considered by Lu [51]
in the context of the bounded storage model.
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κ ∈ [Kh(πh)] and x ∈ {0, 1}n }. We associate to H game ALHH of Figure 3.2. An

ALH adversary may make multiple RoR queries, each being a vector m-source

over {0, 1}n(k). The setting is adaptive because each query can depend on replies

to previous ones. The adversary makes a single RevealPK query and after that

makes no further RoR queries. In Lemma 3.3.1 we bound the advantage of any

adversary in this game, formally defined as

Advalh
H,A(k) = 2 · Pr

[
ALHA

H,k ⇒ true
]
− 1 .

Lemma 3.3.1 Let H = (Ph,Kh,H) be a family of universal hash functions with

input length n(·) and 2t-bounded range. We associate to it an ALH adversary

making q RoR queries, each being an `-vector m-source with conditional min-

entropy of at least s. Then for all k

Advalh
H,A(k) ≤ q(k) ·`(k) ·

√
2t(k)−s(k) . �

For q = 1 and ` = 1, the lemma is a standard variation of the original

LHL. The lemma is also well-known for the case q = 1 and ` > 1, as this is

just a version of the LHL for block sources [68] that can be shown with a hybrid

argument. Another hybrid argument extends the lemma to q > 1. We briefly

describe the argument. Given an adversary A that makes q RoR queries, we build

an adversary B that makes only one RoR query. Adversary B guesses a query

j ∈ {1, . . . , q} and for the first j − 1 queries from A answers with all uniformly

random range points. For the jth query, B forwards A’s query to its own RoR

oracle and returns the result to A. At this point, B learns the hash key through

its RevealPK oracle, and answers the rest of A’s queries using the hash key and

applying the hash function to the sampled values. When A asks a RevealPK

query, B gives it the key it learned earlier. Finally, B guesses the same bit that A

guesses. It is easy to see this hybrid argument results in a factor q loss, proving

the lemma.
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3.4 Hedged PKE Schemes

In this section we present two constructions of hedged public-key encryption

schemes and prove their security.

3.4.1 The Schemes

We now present two constructions of hedge-secure PKE schemes. The

first scheme composes deterministic and randomized encryption, while the second

scheme is built directly from a deterministic encryption scheme.

For the following, let AE r = (Pr,Kr, Er,Dr) be a (randomized) PKE scheme

with message length nr(·) and randomness length ρ(·). Let AEd = (Pd,Kd, Ed,Dd)

be a (deterministic) PKE scheme with message length nd(·) and randomness length

always 0. Associate to AEc for c ∈ {d, r} the function maxclenc(k) mapping any k

to the maximum length (over all possible public keys, messages, and if applicable,

randomness) of a ciphertext output by Ec.

Randomized-then-deterministic. For our first scheme we compose a ran-

domized encryption scheme with a deterministic one. The order of the composi-

tion turns out to be important. We apply randomized encryption first, and then

deterministic encryption. Define RtD[AE r,AEd] = (P ,K, E ,D) with randomness

length ρ and message length nr to work as follows. The parameter generation algo-

rithm P runs parr←$ Pr(1
k) and pard←$ Pd(1k) and outputs pars = (parr, pard).

Key generation K just runs (pkr, skr)←$Kr(parr) and (pkd, skd)←$Kd(pard) and

outputs pk = (pkr, pkd) and sk = (skr, skd). Encryption is defined by

E((pkr, pkd),m ; r) = Ed(pkd, c ‖ 10`) .

where c = Er(pkr,m; r) and ` = nd−|c|−1. Here we need that nd(k) > maxclenr(k)

for all k. The decryption algorithm D works in the natural way. As we will

see in subsequent sections, this construction will be secure when the randomized

encryption scheme is such that for all k, all parr ∈ [Pr(1
k)], and all (pkr, skr) ∈

[Kr(parr)], encryption Er(pkr, ·) is injective in (m, r). Many encryption schemes
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have this property; El Gamal [38] is one example.

We note that if we instead tried the other order of composition, we would

have no guarantee that the scheme is secure. Certainly applying a deterministic

scheme first and then a randomized scheme would still result in a secure randomized

encryption scheme. However, the resulting scheme would not necessarily be IND-

CDA secure. The problem is that the min-entropy could be, say, evenly divided

between the message and randomness. In that case, we would end up applying a

secure deterministic encryption scheme to a message with some entropy and then

a randomized encryption scheme to the deterministic ciphertext using coins that

again have some entropy. Contrast this with the other way of composing: in that

case the deterministic scheme can rely on all of the entropy in the message-coins

pair, since it’s the outer scheme and the inner randomized scheme is injective in

the message and coins.

Pad-then-Deterministic. Our next construction dispenses entirely with the

need for a dedicated randomized encryption scheme, instead using simple padding

to directly construct a (randomized) encryption scheme from a deterministic one.

Scheme PtD[AEd] = (Pd,Kd, E ,D) with randomness length ρ and message

length n works as follows. Parameter and key generation are inherited from the

underlying (deterministic) encryption scheme. Encryption is defined by

E(pkd,m ; r) = Ed(pkd, r ‖m)

where we require that nd(k) > ρ(k) + n(k). Decryption proceeds by applying Dd,

to retrieve r ‖m, and then returning m.

Intuitively, the scheme will get both its IND-CDA security and its IND-

CPA security from the security of the deterministic scheme. As we will see in the

next section, IND-CPA turns out to be the challenging part to prove.

3.4.2 Security

In this section we prove the IND-CPA and IND-CDA security of the schemes

presented above. In the IND-CDA case, the following theorems will show that
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the adaptive or non-adaptive IND-CDA security depends on the corresponding

adaptive or non-adaptive PRIV security of the deterministic PKE scheme. While

previous work [23] only achieves non-adaptive PRIV security, we show in the next

section how to achieve adaptive PRIV security.

Randomized-then-deterministic. Intuitively, the hedged security of the RtD

construction is inherited from the IND-CPA security of the underlying random-

ized scheme AE r and the PRIV security of the underlying deterministic scheme

AEd. As alluded to before, we have one technical requirement on AE r for the

IND-CDA proof to work. We say AE r = (Pr,Kr, Er,Dr) with message length nr(·)
and randomness length ρ(·) is injective if for all k, all parr ∈ [Pr(1

k)], and all

(pkr, skr) ∈ [Kr(parr)], the map Er(pkr, · ; ·) is injective. We have the following

theorem.

Theorem 3.4.1 [RtD is hedge secure] Let AE r = (Pr,Kr, Er,Dr) be an injective

PKE scheme with message length nr(·) and randomness length ρ(·). Let AEd =

(Pd,Kd, Ed,Dd) be a (deterministic) encryption scheme with message length nd(·)
so that nd(·) ≥ maxclenr(·). Let AE = RtD[AE r,AEd] = (P ,K, E ,D) be the PKE

scheme defined in Section 3.4.1.

• (IND-CPA) Let A be an IND-CPA adversary. Then there exists an IND-CPA

adversary B such that for any k

Advind-cpa
AE,A (k) ≤ Advind-cpa

AEr,B (k)

where B runs in time that of A plus the time to run Ed once.

• (IND-CDA) Let A be a CDA adversary that makes at most q LR queries, each

a v(·)-vector (µ, nr, ρ)-mmr-source (resp. block-source). Then there exists a

PRIV adversary B such that for any k

Advcda
AE,A(k) ≤ Advpriv

AEd,B(k)

where B runs in time that of A plus the time to run q(k) ·v(k) executions of Er

and makes at most q LR queries, each consisting of a v(·)-vector (µ, nd)-mm-
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source (resp. block-source). �

Note that the second part of the theorem states the result for either sources or just

block-sources. Before proving in more detail, we give a sketch. The first part of

the theorem is immediate from the IND-CPA security of AE r. For the second part,

any mmr-source ~M queried by A is converted into an mm-source ~M′ to be queried

by B. This is done by having ~M′ run ~M to get (m0,m1, r) and then outputting

the pair of vectors (Er(pk,m0 ; r), Er(pk,m1 ; r)) with appropriate padding. (The

ciphertexts are the “messages” for Ed.) Because AE r is injective, it preserves the

min-entropy of the message/coins pair, and thus ~M′ is a source of the appropriate

type.

Proof of Thm. 3.4.1: We first show IND-CPA security. LetA be an INDCPA ad-

versary against AE = RtD[AE r,AEd] = (P ,K, E ,D), where AE r = (Pr,Kr, Er,Dr)

is a randomized PKE scheme and AEd = (Pd,Kd, Ed,Dd) is a deterministic PKE

scheme with plaintext length nd. We build an INDCPA adversary B against AE r

using A; the adversary is shown in Figure 3.3. Adversary B, on input pkr, runs

Pd and Kd to generate a keypair (pkd, skd) for the deterministic PKE scheme. It

then runs adversary A with public key (pkr, pkd). When A queries LR with a

pair of messages (m0,m1), B forwards the query to its own LR oracle. When

B receives ciphertext c, it returns to adversary A the encryption Ed(pkd, c ‖ 10`),

where ` = nd − |c| − 1 is the amount of padding necessary to make c fit in the

plaintext space of AEd. When A outputs a guess bit b′, B also outputs this same

guess. It is easy to see that the simulation is perfect and the advantages are equal.

We next show IND-CDA security. Let A be a CDA adversary making LR queries

that are v-vector (µ, nr, ρ)-sources (resp. block-sources) and attacking AE con-

structed as in the theorem statement from AE r and AEd. We will build PRIV

adversary B (right side of Figure 3.3) against AEd as follows. Adversary B, at the

start of the game, runs Pr and Kr to generate keys (pkr, skr) for the randomized

encryption scheme. It then runs adversary A and answers queries as follows. On

query RevealPK, B queries its own RevealPK adversary to learn pkd and then

returns (pkr, pkd) to A. On query LR( ~M) for mmr-source (resp. block-source)

~M, B constructs mm-source (resp. block-source) ~M∗ that runs ~M to get vector
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Adversary B(1k, pkr)

pars←$ Pd(1k)
(pkd, skd)←$Kd(pars)
pk ← (pkr, pkd)
Run A(1k, pk).

On query LR(m0,m1):

c← LRB(m0,m1)
`← nd − |c| − 1
c′ ← Ed(pkd, c ‖ 10`)
Ret. c′

When A halts with output b′, halt and
output b′.

Adversary B(1k)

pars←$ Pr(1
k)

(pkr, skr)←$Kr(pars)
Run A(1k).

On query RevealPK():

pkd ← RevealPKB()
pk ← (pkr, pkd)
Ret. pk

On query LR( ~M):

c← LRB( ~M∗( ~M))
Ret. c

~M∗( ~M):

(m0,m1, r)←$ ~M
For i in 1 to |m0| do:
`0 ← nd − |Er(pkr,m0[i] ; r[i])| − 1
x0[i]← Er(pkr,m0[i] ; r[i]) ‖ 10`0

`1 ← nd − |Er(pkr,m1[i] ; r[i])| − 1
x1[i]← Er(pkr,m1[i] ; r[i]) ‖ 10`1

Ret. (x0,x1)

When A halts with output b′, halt and
output b′.

Figure 3.3: Adversaries for the proof of Theorem 3.4.1.

(m0,m1, r) and then outputs the pair

(Er(pkr,m0 ; r), Er(pkr,m1 ; r)) ,

where each component in each vector in the pair is padded out with a single 1

followed by the appropriate number of 0s to make it length nd. The details of

~M∗ are shown in Figure 3.3. Since AE r is injective in the message and coins, it

preserves the min-entropy of the message/coins pair, and it follows that ~M∗ is a

source (resp. block-source) with the same min-entropy as ~M.

Finally, when A halts with guess bit b′, B outputs the same guess. Again, it is

easy to see the simulation is perfect.
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Pad-then-deterministic. The security of the PtD scheme is more difficult to

establish. The IND-CDA security is inherited immediately from the PRIV security

of the AEd scheme. Here the challenge is, in fact, proving IND-CPA security. For

this we will need a stronger assumption on the underlying deterministic encryption

scheme — that it is a universal LTDF.

Theorem 3.4.2 [PtD is hedge secure] Let AEd = (Pd,Kd, Ed,Dd) be a deter-

ministic encryption scheme with message length nd(·). Let AE = PtD[AEd] = (P ,
K, E ,D) be the PKE scheme defined in Section 3.4.1 with message length n(·) and

randomness length ρ(·) such that n(k) = nd(k)− ρ(k) for all k.

• (IND-CPA) Let K` be a universal-inducing (nd, `)-lossy key generation algo-

rithm for AEd. Let A be an INDCPA adversary. Then there exists a KEYIND

adversary B such that for all k

Advind-cpa
AE,A (k) ≤ 2 ·Advkey-ind

AEd,K`,B
(k) +

√
23n(k)−`(k)+2 .

B runs in time that of A.

• (IND-CDA) Let A be a CDA adversary that makes at most q LR queries,

each a v(·)-vector (µ, n, ρ)-mmr-source (resp. block-source). Then there exists

a PRIV adversary B such that for all k

Advcda
AE,A(k) ≤ Advpriv

AEd,B(k)

where B runs in time that of A and makes at most q LR queries, each a

v(·)-vector (µ, nd)-mm-source (resp. block-source). �

The CDA portion of the theorem follows immediately from the PRIV security of the

deterministic scheme. Once this is established, one might think that concluding

IND-CPA can be based just on PtD being IND-CDA secure, since the padded

randomness provides high min-entropy. A proof along these lines might proceed as

follows: a CDA adversary C runs an INDCPA adversary A. When A makes an LR

query (m0,m1), C creates a source that chooses coins randomly and prepends them
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to either m0 or m1 depending on the bit. This source will have high min-entropy

because of the coins being chosen randomly.

However, this approach does not work! The reason is that an INDCPA

adversary expects knowledge of the public-key before making any LR queries,

while a CDA adversary only learns the public-key after making its LR queries.

This issue is discussed in more detail in [16]. Thus, we use a different approach to

prove this part of Theorem 3.4.2.

We use universal LTDFs for our deterministic PKE scheme. Then in the

proof, once we switch our encryption scheme to the lossy mode, we construct an

ALH adversary (recall game ALH in Section 3.3) that makes 2n queries to its RoR

oracle. Each of these queries corresponds to one of the 2n messages in the message

space of our encryption scheme. As long as we use enough random padding, the

randomness will still give enough min-entropy in each query so that we can apply

our adaptive LHL4 and argue security. We now give details.

Proof of Thm. 3.4.2: We first briefly prove IND-CDA. Let A be a CDA adver-

sary against AE . We can easily construct a PRIV adversary B against AEd. B

runs A and on LR query ~M, a v-vector (µ, nr, ρ)-mmr source (resp. block-source)

queries ~M′ that samples from ~M to get (m0,m1, r) and outputs ((r‖m0), (r‖m1)),

where r ‖mb denotes the sequence ((r[1] ‖mb[1]), . . . (r[v] ‖mb[v])). This clearly

results in a v-vector (µ, nd) mm-source (resp. block-source), where nd = nr + ρ.

The simulation is perfect and security follows.

Next we show IND-CPA. Let A be an INDCPA adversary against PtD. We will

go through a series of game transitions to prove the theorem. Game G0 is simply

the INDCPA game, so by definition

Advind-cpa
PtD,A (k) = 2 · Pr

[
GA

0

]
− 1 .

4Actually, the LHL for block-sources already suffices.
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Adversary B(1k, pk)

b←$ {0, 1}
Run A(1k, pk).

On query LR(m0,m1):

c←$ E(pk,mb)
Ret. c

When A halts with output b′, halt and
output (b = b′).

Adversary C(1k, pars)

b←$ {0, 1}
For m in 0n to 1n:

c[m]← RoR( ~Mm)
pk ′←$ RevealPK()
Run A(1k, pk ′).

On query LR(m0,m1):

c← c[mb]
Ret. c

~Mm:

r←$ {0, 1}nd−n

Ret. r ‖m

When A halts with output b′, halt and
output (b = b′).

Figure 3.4: Adversaries for the proof of Theorem 3.4.2

Game G1 is identical to G0 except that Initialize uses the lossy key generation

algorithm K`. We will define a KEYIND adversary B such that

Pr
[
GA

0 ⇒ true
]
− Pr

[
GA

1 ⇒ true
]
≤ Advkey-ind

AE,K`,B
(k) .

Adversary B, shown in Figure 3.4, when given a public key pk that is either from

Kd or K`, simply runs adversary A as in games G0 and G1 with pk; if there is a

gap between A’s success probability in games G0 and G1, then B will be able to

distinguish whether the key is lossy or not.

Game G2 is the same as G1 except that LR returns a uniform element from the

range of the hash function (instead of returning the encryption of mb). We claim

that there is an unbounded ALH adversary C such that

Pr
[
GA

1 ⇒ true
]
− Pr

[
GA

2 ⇒ true
]
≤ Advalh

H,C(k) ,

where H = (P ,K`, Ed) is the universal family of hash functions induced by AE
and K`. The ALH adversary C, shown in Figure 3.4, proceeds as follows. First, C
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makes q = 2n queries to its RoR oracle, where {0, 1}n is the message space of PtD.

The ith RoR query is an m-source ~Mmi of vector length 1 that samples a uniform

string of nd− n bits and concatenates it with mi, the ith message in the plaintext

space {0, 1}n according to some known ordering on {0, 1}n (i.e., lexicographical

order). It is easy to see that due to the padded uniform bits, each m-source has

min-entropy of nd − n bits, even conditioned on all the previous queries. Let the

answers C receives to its q RoR queries be called y1, . . . , yq. Next, C calls oracle

RevealPK and learns pk ′. At this point, C runs adversary A as in games G1 and

G2, flipping a bit b and giving A the public key pk ′. On oracle query LR(m0,m1)

from A, C finds the j such that mb equals mj, the jth message in the plaintext

space according to the known ordering. Adversary C answers the LR query with

yj. When A finishes with output b′, C outputs 1 if b = b′ and 0 otherwise.

Finally, we claim that Pr
[
GA

2 ⇒ true
]

= 1/2. This is true since the answer to the

LR query no longer depends on the bit b but is instead simply a uniform range

point. Combining the above equations we get

Advind-cpa
PtD,A (k) ≤ 2 ·Advkey-ind

AEd,K`,B
(k) + 2 ·Advalh

H,C(k)

≤ 2 ·Advkey-ind
AEd,K`,B

(k) + 2 · 2n(k) ·
√

2nd(k)−`(k)−(nd(k)−n(k))

≤ 2 ·Advkey-ind
AEd,K`,B

(k) +
√

23n(k)−`(k)+2 ,

proving the theorem.

It is instructive to see what happens when we instantiate PtD with known

constructions for deterministic encryption. Let the deterministic PKE scheme be

the DDH-based deterministic scheme from [23] (based on the LTDF in [58]). This

deterministic PKE scheme has a corresponding universal-inducing (nd, nd− log p)-

lossy key generation algorithm K` for a large prime p. Thus, the induced universal

function familyH = (Pd,K`, Ed) has range size at most p. If we target non-adaptive

security, then applying the bounds from [23, Th. 5.1], we know that for all k

Advpriv
AEd,B(k) ≤ 2 ·Advkey-ind

AEd,K`,C
(k) + 2 · v(k) ·

√
2log p−µ(k) .
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So, if we want to use a 160-bit prime, believe v(k) (the number of ciphertexts

seen by an adversary) will be at most 230, and want the square-root term above

to be, conservatively, at most 2−80, then we need approximately 382 bits of min-

entropy in our message-randomness pairs. Less min-entropy will simply increase

that term, decreasing our confidence in security. Now let us compute how much

random padding we need to get a desirable amount of IND-CPA security. Again

basing the scheme on a 160-bit prime-order group, if we want to encrypt a 500-bit

message and we want 80 bits of security, we would need approximately 1322 bits

of random padding.

Finally, we point out that our hedge schemes inherit their IND-CDA secu-

rity directly from the PRIV security of the deterministic scheme used. This means

that if the deterministic scheme is adaptively PRIV secure for sources, then the

resulting hedge scheme is adaptively IND-CDA secure for sources. However, we

should point out that currently there are no known constructions of such strong

deterministic encryption schemes. In particular, the best currently-known schemes

are due to [23] and are non-adaptively PRIV secure for block-sources.

Though we do not yet know how to achieve security for sources in the

standard model, we show in the next section how to extend the results of [23] to

at least achieve adaptive security. Achieving security for sources (as opposed to

block-sources) is a major open problem in deterministic PKE.

3.5 Achieving Adaptive PRIV Security

As we explained in Section 3.2, not all PRIV secure deterministic PKE

schemes are adaptively secure. One way to see this is to consider a PKE scheme

where the ciphertext has the public key appended to it. Then one query to the

LR oracle will give a CDA adversary the public key. It can then query sources to

LR that are specifically tailored to leak information based on that public key.

Luckily, we can show that universal LTDFs are adaptively secure. Intu-

itively, the reason is that ciphertexts returned by the LR oracle are computation-

ally uniform, so the adversary does not learn any information that will help it
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craft bad sources for future LR queries. We prove the following theorem using our

adaptive LHL from Section 3.3.

Theorem 3.5.1 [u-LTDFs are adaptive PRIV secure for block-sources]

Let AEd = (Pd,Kd, Ed,Dd) be a deterministic encryption scheme with message

length nd(·). Let K` be a universal-inducing (nd, `)-lossy key generation algorithm

for AEd. Let A be a PRIV adversary that makes at most q LR queries, each a

v(·)-vector (µ, nd)-mm-block-source. Then there exists a KEYIND adversary B

such that for all k

Advpriv
AEd,A(k) ≤ 2 ·Advkey-ind

AEd,K`,B
(k) + 2 · q(k) · v(k) ·

√
2(nd−`)−µ(k) .

B runs in time that of A.

Proof: Let game G0 be the PRIV security game. We first move to a game G1

where a lossy key is used instead of a real key, i.e., K` is used instead of Kd to

generate the public and secret keys. If A can tell the difference between these

games, then there is a KEYIND adversary B with high advantage that simply

runs A and uses its challenge public key in the PRIV game. Next, we move to

a game G2 where LR always returns uniform points in the appropriate 2nd−`-

bounded range of the universal hash function H = (Pd,K`, Ed) induced by AEd

and K`. If A can distinguish these games, then we can build an ALH adversary

C with high advantage. Adversary C will flip a bit b and then on LR query a

v-vector mm-block source ~M from A, it constructs a v-vector m-block source to

query to its RoR oracle. The m-block source runs ~M to get (m0,m1) and simply

outputs mb. Since the hash family H has 2nd−`-bounded range, the adaptive LHL

(Lemma 3.3.1) applies to give the bound in the theorem statement. Finally, game

G2 gives adversary A no advantage at guessing the bit since random range points

that do not depend on the challenge bit are returned.

Is Adaptivity Important? An obvious question is whether or not adaptivity

matters. While we are unable to describe practical motivation for adaptive IND-

CDA security, we believe it is important to target the strongest achievable notions
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of security. Further, IND-CDA only providing security for public-key independent

message distributions is a significant drawback, so achieving adaptivity at least

gives security for ciphertext-dependent message distributions.

3.6 Conclusion and Additional Information

In this chapter we formalized public-key encryption security in a setting

where the coins used for encryption are no longer necessarily uniformly chosen.

We described a new security notion for PKE, called IND-CDA, and argued that

we want our PKE schemes to be both IND-CPA secure and IND-CDA secure. We

then presented two schemes and proved they had these properties in the standard

model.

Credits. An earlier version [13] of some of the material in this chapter appeared

as part of work appearing in the Proceedings of ASIACRYPT 2009, copyright

IACR, and co-authored with Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas

Ristenpart, Gil Segev, and Hovav Shacham. I was a primary researcher for this

work.



Chapter 4

Repeated Randomness

In this chapter we turn our attention to a second type of randomness failure:

repeated randomness. Specifically, we will study public-key encryption when the

encryption algorithm is given coins that it may have received in the past. Since

security models for public-key encyption implicitly assume all parties have access

to fresh coins for each encryption operation, schemes proven secure under these

models might be completely insecure when randomness is repeated.

4.1 Overview

To motivate the study of repeated randomness failures we will focus on

virtual machines. In short, a virtual machine (VM) is software that emulates a

real machine. A VM consists of a virtual machine monitor (or hypervisor) which

emulates multiple virtual computers that can have varying instruction sets and

run different operating systems. The VM monitor will then share the physical

machine’s resources among the virtual machines, translating machine instructions

and acting as a simulator for the underlying operating systems.

Servers running on virtual machines are helping fuel the cloud computing

boom; popular services like Amazon’s Elastic Compute Cloud (EC2) [1] rely heavily

on virtualization. In this service, a user buys some compute time and receives

access to a virtual machine on one of Amazon’s servers. Within that VM, the

user can run a fully functional OS and, in particular, run a web server for his or

46
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her business. Virtual machines have also become popular on desktop machines.

Products like VMWare [5] and VirtualBox [4] allow average users to experiment

with virtualization on their home PCs.

Virtual machines can lead to a more efficient use of physical hardware, but

also have security benefits. Because VMs provide a type of sandbox, they have

been used to test potentially malicious code [30] and isolate web browsers from

the rest of the system to mitigate the effects of browser vulnerabilities [31]. VMs

have also been used to more easily create large honeypots [59]. Despite this, the

focus of this chapter is on how VMs can be detrimental to security. The reason

we focus on, which also happens to be one of the most useful features of VMs, is

their ability to take state snapshots.

State Snapshots. Virtual machines allow a user to take a snapshot of the current

system state. This snapshot contains the contents of all the virtual machine’s disks

and the contents in memory at the time of the snapshot. At a later point in time,

the VM can be reverted back to this previous state and restarted. To see why this

may be useful, consider the following scenario. Alice, a system administrator, is

running an important web server on a virtual machine, and at some point in time

there is a crash or some other major problem. Instead of spending time diagnosing

the problem and getting the system working again, Alice can instead revert the

VM back to a ‘good state’ for which she has a snapshot. In other words, Alice takes

a snapshot of the system when things are running smoothly, and then reverts back

to this state whenever things go wrong. In this scenario, the server has effectively

traveled back in time; program variables and other state that may have been in

memory are now active again. Thus, if an adversary is attacking Alice’s server and

can make it crash (using, for example, a DoS attack), he essentially has the ability

to rewind the server.

Virtual machine state snapshots can also help protect against malware when

web browsing. A user who is concerned about their machine being compromised

from visiting a malicious website can run a web browser inside of a virtual machine

and take a snapshot of the fresh machine state with a browser window open and

ready for a URL. Then, if the user visits a malicious site, he can simply erase
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the current state of the machine and revert back to the fresh, uncompromised

state captured in the snapshot to visit another website. Thus, every time the user

wants to visit an important or potentially malicious website, he can do so starting

from a fresh state. Previously, many of our computing applications such as word

processors and video games had “save” features, while now, with virtual machines,

our entire machine essentially has a “save” feature.

Though useful, state snapshots on VMs raise some important issues. What

happens to our supposedly secure cryptographic tools in a setting with state resets?

Are they still secure? Researchers have examined these questions before for zero-

knowledge [27, 53, 7] and identification protocols [15], where the motivation was

smart cards that cannot keep internal state. However, the growing popularity

of virtual machines means we need to ask these questions for a wider range of

cryptographic primitives.

To see why reset attacks can have negative effects on cryptographic pro-

tocols, consider a common assumption in cryptography: it is possible to con-

tinually generate fresh and unbiased random numbers. This is an assumption

made in nearly every cryptographic protocol. It is, however, considered reasonable

since random number generators (RNGs) are well-studied both in theory and prac-

tice (c.f., [45, 33]). In deployed systems, RNGs are often implemented in software

and consist of numerous state variables and arrays that are occasionally seeded with

entropy and used to generate random numbers. For example, in OpenSSL [3], the

software RNG has a 1023-byte array (entropy pool) that is supposed to contain

high entropy data from a variety of sources, as well as some variables with counters

and other important state. At a high level, when random bytes are requested, data

from the entropy pool and information in the state variables is continually mixed

together using a cryptographic hash function and the result is the output of the

RNG. However, these arrays and variables will be captured by a state snapshot

since they reside in memory. If the machine is later reset, the RNG could output

a string of “random” bytes that it already outputted sometime in the past before

the machine was reset. These un-fresh coins might then be used in a cryptographic

operation with potentially disastrous consequences.
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Garfinkel and Rosenblum were the first to point out that this threat exists

in theory [39]. In the next section we show that damaging attacks exist in practice.

Specifically, we show that if a client runs a web browser inside of a virtual machine

to, e.g., protect against malware, and in particular resets the virtual machine

between browsing sessions, then the browser will send the same secret random

keying material to two different websites. So, if from a saved state a user Alice

visits a malicious site inside of the virtual machine, then resets the machine back

to the saved state and visits her bank, the same secret key material will be sent

by the browser to both the malicious site and the bank! An adversary in control

of the malicious site can then compromise Alice’s banking session.

Due to the danger posed by virtual machines, we propose building cryp-

tographic primitives that are more resilient in the face of repeated randomness.

As with the rest of this dissertation, we focus on public-key encryption, and make

the following contributions. First, we provide formal security definitions to model

public-key encryption security in the face of resetting attacks. Second, we show

that existing PKE schemes and their common security notions IND-CPA [41] and

IND-CCA [60] are insufficient when such resetting attacks are possible. Third,

we show that, perhaps somewhat surprisingly, a small and efficient modification

can be made to any existing PKE scheme secure under the typical notions (e.g.,

IND-CCA) in order to ensure security against resetting attacks. Our modification

does not rely on random oracles [20], and is very efficient.

Previous Work. Resettability has been considered in cryptography in the set-

ting of zero-knowledge proof systems [27, 53, 7], the related area of identifica-

tion protocols [15], and multiparty computation [42]. Zero-knowledge proofs allow

a prover to prove an assertion to a verifier without revealing any information

other than whether or not the assertion is true. Proving the soundness1 and zero-

knowledge properties in a setting where provers and verifiers can rewind each other

is a difficult and interesting theoretical question. To see why, consider the notion

of resettable-soundness in the standard model, considered by [7]. Nearly all known

1Informally, an interactive protocol is sound if it is difficult for a malicious prover to convince
the verifier that a false statement is true.
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zero-knowledge proofs are designed specifically so that the ability to rewind the

verifier allows one to easily convince it of any statement; this is useful for proving

the zero-knowledge property. Yet, if we then give the prover that same ability

to rewind the verifier, it becomes problematic to prove soundness. This problem

has also been studied extensively in other models (c.f., [53]). However, to the

best of our knowledge, no one has previously looked at practical and deployed

cryptographic primitives like public-key encryption in such a setting.

In the symmetric setting, Rogaway and Shrimpton [63] investigate secure

key-wrap and discuss how their techniques can apply to handle IV misuse, where

IVs, which should always be fresh, are repeated (possibly because of a faulty im-

plementation). Since IVs are typically counter variables or fresh random numbers,

investigating their reuse is similar to investigating the effect of a state reset.

Our work is also loosely related to public-key encryption with randomness

re-use [10] and stateful public-key encryption [18]. However, both are concerned

with making PKE schemes more efficient by purposely reusing some, but not all

random coins. Their schemes still require encrypting parties to have access to fresh

and unbiased randomness.

Organization. The rest of this chapter is organized as follows. In the next

section we describe the details of our attacks on TLS clients running on virtual

machines and also discuss the difficulty or patching or even redesigning systems

to deal with the attacks. Next, in Section 4.3 we give a new security definition,

discuss variants, show how existing PKE schemes do not meet our definition, and

finally show how to achieve it.

4.2 VM Reset Vulnerabilities Affecting TLS

To motivate the need for stronger PKE secure against reused randomness,

in this section we explore virtual machine (VM) reset vulnerabilities. These arise

when applications’ security-critical state is captured by a VM snapshot and starting

the VM repeatedly from the snapshot leads to security problems. The VM reset

vulnerabilities we consider are due to cryptographic randomness being cached by
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applications and caught in a snapshot. Running multiple times from the snapshot

results in cryptographic operations consuming repeated randomness, and in turn,

failing to provide security.

4.2.1 TLS Client Vulnerabilities

TLS is used to secure HTTP connections over the Internet. Thus, TLS

protects the security of online banking, shopping, and other sensitive traffic. Every

popular web browser therefore includes a TLS client, which is used to negotiate a

shared secret, called a session key, between it and the remote HTTP server. The

most prevalent (for statistics see [67]) mode for establishing a session key is RSA

key transport. Here the client chooses a secret value, called the premaster secret

(PMS), encrypts it under the server’s public RSA key, and then sends the resulting

ciphertext to the server. The symmetric session keys used to secure the rest of the

session are then derived from the PMS and two other values that are sent in the

clear. While this is technically a type of key exchange, it can also be thought of

as a type of interactive public-key encryption.

In abstract, a VM reset vulnerability could arise if the PMS, or the ran-

domness used to create it, is generated before a snapshot and consumed upon

resumption after the snapshot. This vulnerability would lead to an immediate

compromise of sessions if the same PMS is sent to multiple different servers.

Before assessing whether this can occur in practice, we first ask: Why might

a user run their browser in a virtual machine? Security experts recommend users

do their web browsing within a VM to increase security. The idea is that if the

browser has a vulnerability and a malicious site exploits it, the damage is contained

to the VM. A user can revert to a previous snapshot taken before the browser and

VM were compromised to undo the effects of any malware.

We performed experiments on a variety of browsers on both Linux and Win-

dows to determine if there is a real problem. There is. Our results are summarized

in Table 4.1. We explain the results in detail below.
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Experimental setup. We used two Apache web servers (call them server1 and

server2) running on two separate physical machines. The servers used an instru-

mented version of OpenSSL that, upon receipt of the client’s key exchange message

in a TLS session using RSA key transport, would decrypt the premaster secret and

write it to a file. Each server was given an RSA certificate signed by our own cer-

tificate authority (CA). We ran the various browsers (listed in Table 4.1) within

the indicated operating systems as guests inside a VM running in either VMWare

1.0.10 or VirtualBox 3.0.12. The physical host ran Ubuntu 8.04 Desktop. The

client browsers, excepting Safari in Windows, were configured to accept our CA.

This ensured that, upon visiting one of our servers, a browser in the guest OS

would not complain about a certificate signed by an untrusted CA. (For Safari,

we ended up just clicking “continue” when presented with a warning about an

untrusted certificate.)

Experiments. We start with the following test sequence.

1. Reboot the OS.

2. Load the browser.

3. Take a snapshot of guest in this state.

4. Reset the VM.

5. Navigate browser to server1.

6. Reset the VM.

7. Navigate browser to server2.

For each VM manager OS combination, steps (1-3) were performed once followed

by 3 iterations of steps (4-7) for each browser. For Chrome on Linux, we also ran

a separate test sequence where step (2) was changed to

(2a) Load the browser, navigate to an HTTPS url, and then navigate to a blank

page.
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The results were consistent between the two VM managers, meaning the

VMM used had no impact on client behavior. For Firefox on Windows or Linux,

the same PMS was sent to both servers in all 3 trials. If the user caused 100 mouse

events (e.g., moved the mouse 100 pixels) between steps (4) and (5) or (6) and (7)

then distinct PMS values were sent to the servers. This is because Firefox folds

new entropy into the RNG every 100 mouse events. For Chrome on Linux, when

step (2a) was used then the same PMS was sent to both servers in all 3 trials.

When step (2) was used, distinct PMS values were sent to the two servers.

On Windows, all browsers except Firefox always sent distinct PMS values to

both servers. We note however that on Windows, the same PMS value was sent to

the same server in many of the trials. While this does not admit an obvious attack,

it violates the TLS specification. For example, on IE 6.0 and VMWare, 2 out of

the 3 PMS values sent to server1 were the same and 2 out of the 3 PMS values

sent to server2 were the same. We note that all the browser/VMM combinations

showed this problem; for Chrome in Windows, it did not even matter whether or

not step (2a) or (2) was used.

Attacks on Servers. Virtual machine snapshots can also lead to randomness

reuse in server applications, as we show in [61]. However, as those attacks focus on

digital signatures and not encryption, they are out of scope for this dissertation.

4.2.2 On Fixing the Vulnerabilities

In the TLS clients we described above, we saw that good randomness was

sampled at some point (such as starting the program or launching a child pro-

cess) and buffered until it was needed at some much later time. This allowed a

large window in which snapshots would capture to-be-used randomness. In the

browser client vulnerabilities, the randomness was used directly in a cryptographic

operation after the snapshot.

In abstract, fixing these vulnerabilities requires ensuring that RNGs get

access to sufficient entropy after a snapshot and ensuring that applications take

randomness from an RNG at the time of the cryptographic operation. For example,
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one approach would be to mandate using a guest OS source such as /dev/random

or /dev/urandom to generate randomness right before a cryptographic operation

is performed.

Unfortunately, the state of these sources is also reset by snapshots, and so it

is unclear whether sufficient entropy is generated between a snapshot resumption

and randomness consumption by the cryptographic operation. In general, a better

option would likely be linking guest RNG services with hardware-based RNGs or

other external sources.

This is a large topic, and we leave finding the best solutions to future work.

Instead, we turn our attention to strategies for mitigating the threat of these reset

vulnerabilities by building stronger public-key encryption.

4.3 Resettable Public-Key Encryption

As we saw in the previous section, virtual machines and their snapshot

feature can cause repeated randomness in cryptographic primitives, leading to

damaging attacks. We also discussed how it is not clear how to completely fix the

problem by simply patching systems or even designing better systems. Instead

of hoping systems researchers are able to fix the problem, or that people will

stop using snapshots on virtual machines, we instead propose building stronger

cryptographic tools that do not completely fail when randomness is repeated. In

this section we propose new, stronger models of security for public-key encryption

that take into account the possibility that randomness may be repeated. Many

existing schemes are not secure under these stronger models (we give a few notable

examples later in this section), so we then show how to make a simple change to

any scheme secure under typical security notions (e.g., IND-CPA or IND-CCA) to

make it provably resist attacks that arise due to repeated randomness.

Our security notion is similar to IND-CPA and IND-CCA, except that we

allow the adversary to continually see encryptions under the same coins, as if

the adversary is repeatedly resetting a VM and observing new encryptions. An

important aspect of our security definition is that we allow the adversary to see
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encryptions under public keys of its choice and using coins that are not fresh. In

particular, the adversary could see a message encrypted under a public key for

which it knows the secret key, allowing it to decrypt the ciphertext; because of

this, it is important that in the process of decryption not too much information is

leaked about the coins used to create the ciphertext, meaning that randomness-

recovering encryption cannot meet our security definition. Allowing this power in

the definition is important because it models the possibility that a machine sends

an encrypted message to some user Bob, is reset by the adversary, and is then

forced to encrypt a message to the adversary using the same coins. We want to

ensure that even if this happens, the adversary does not learn any information

about Bob’s message. This is a strong security requirement, but nonetheless, we

are able to meet it.

We note that though our security notion provides seemingly the best pos-

sible security guarantees for PKE under reset attacks, it may still be insufficient

for some applications. This is due to an inherent limitation in a model that allows

repeated randomness: if the same message is encrypted twice to the same public

key using the same randomness, the resulting ciphertexts will be identical. Thus,

plaintext equality may be leaked to an adversary, which could be problematic in

some applications. Therefore, we are not proposing resettably secure encryption

as a complete solution to virtual machine reset attacks. Instead, we believe that

resettably secure encryption should be used in conjunction with systems solutions,

some of which are discussed in [61]. In other words, similar to [13], our construc-

tions are a way to hedge against system failures; in our case, if the randomness

happens to be repeated, then our schemes do not fail immediately, but instead still

provide some meaningful, provable security guarantees.

4.3.1 Security Definition

We now give the details of our new security definition. LetAE = (P ,K, E ,D)

be a PKE scheme with randomness length ρ. Consider game RA in Figure 4.1.

We say an RA-adversary is one who plays game RA and makes exactly one query

to its LR oracle consisting of two equal-length messages, zero or more queries to
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procedure Initialize:

b←$ {0, 1}
pars←$ P(1k)
(pk∗, sk∗)←$K(pars)
r∗←$ {0, 1}ρ(k) ; S ← ∅
Ret pk∗

procedure Enc(pk,m):

c← E(pk,m; r∗)
Return c

procedure LR(m0,m1):

c← E(pk∗,mb; r
∗)

S ← S ∪ {c}
Return c

procedure Dec(c):

If c ∈ S then return ⊥
Else return D(sk∗, c)

procedure Finalize(b′):

Ret (b = b′)

Figure 4.1: Game RAAE,k.

the Enc oracle, and zero or more queries to the Dec oracle. We then say the

ra-advantage of an RA-adversary A is

Advra
AE,A(k) = 2 · Pr

[
RAA

AE,k ⇒ true
]
− 1 .

In game RA, the adversary is given a target public key pk∗ and can make queries to

three oracles. It can query the LR oracle with messages m0 and m1. In response,

the adversary receives the encryption of mb under the target public key pk∗ using

the coins r∗ chosen by Initialize. The adversary is also given an Enc oracle which

takes as input a public key pk and message m. The oracle returns the encryption

of m under public key pk, again using the coins r∗ chosen in Initialize. It is

important that the adversary can choose the public key pk. In particular, the

adversary can query Enc with a public key for which it knows the corresponding

secret key. Notice the game is similar to INDCCA, but with the addition of the

Enc oracle so that the adversary can continually see messages encrypted under the

same coins used by LR. This is how we model resetting attacks. The adversary

can also query a Dec oracle with a ciphertext (not returned by LR) and receive

its decryption. Finally, the adversary outputs a guess bit.

Equality Patterns. If there are no restrictions on the LR queries that an RA-

adversary A can make, then A can trivially win the game. To see this, consider an
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RA-adversary that first queries Enc(pk∗,m) and then queries LR(m,m′), where

m 6= m′ are equal-length messages. The Enc query will give the adversary the

encryption of m under coins r∗, and the LR query will give the adversary either

the encryption of the same message m under the same coins r∗, or it will give the

adversary the encryption of m′ under coins r∗. Clearly the adversary only needs

to compare the two oracle answers and guess 0 if they are the same and guess 1

otherwise.

This attack is an inherent limitation of the resettable PKE setting, since for

fixed coins encryption becomes a deterministic function. (It is also therefore similar

to limitations in the setting of deterministic PKE [12].) Nevertheless, as we said

earlier, we are interested in achieving the best security possible in this situation.

Therefore, we consider security against all adversaries that do not trivially win.

This informal notion is captured formally by the following definition:

Let A be an RA-adversary making LR query (m,m′) and q queries (pk1,m1)

to (pkq,mq) to Enc. Then we say that A is equality-pattern respecting if for all

i ∈ [q], pki = pk∗ only if mi 6∈ {m,m′}. In other words, an equality-pattern

respecting adversary never queries Enc on the target public key pk∗ and a message

that appears in its LR query.

We can now define RA security. We say a PKE scheme AE is IND-R-CPA-

secure if for all efficient equality-pattern respecting RA-adversaries A making 0

Dec queries the ra-advantage of A with respect to AE is negligible. Similarly, we

say AE is IND-R-CCA-secure if for all efficient equality-pattern respecting RA-

adversaries A the ra-advantage of A with respect to AE is negligible.

Alternative Definitions. We could instead consider a more complex definition

in which there is more than one randomness r∗ under which the adversary gets to

see encryptions. Additionally, we could also allow the adversary more than one

LR query. We present this more complex definition later in this section and show

that security under it is implied by security under the simpler definition given in

this section.

Relation to IND-CPA and IND-CCA. Now that we have formally defined

resettable security for public-key encryption, it is useful to compare it to indis-
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tinguishability under chosen plaintext and chosen-ciphertext attacks, the typical

notions of security for PKE. First, it is easy to see that for XXX as either CPA or

CCA, any scheme that is IND-R-XXX is also IND-XXX, since RA is identical to

INDCCA except for the additional Enc oracle. Thus, any INDXXX-adversary can

easily be turned into an RA-adversary making zero Enc oracle queries. Second,

we prove the following:

Proposition 4.3.1 For XXX ∈ {CPA,CCA}, if there exists a scheme AE that is

IND-XXX secure, then there exists scheme AE that is IND-XXX secure but is not

IND-R-XXX secure. �

Proof: We will prove for XXX=CCA, but the proof easily extends to the CPA

setting. Let AE = (P ,K, E ,D) be an arbitrary IND-CCA scheme. We construct

a new PKE scheme AE = (P ,K, E ,D) such that AE is still IND-CCA secure,

but AE is not IND-R-CCA secure. The scheme AE has encryption algorithm

E(pk,m; r‖K‖K ′) that outputs c1‖c2‖c3, where c1 = E(pk, K‖K ′; r), c2 = K⊕m
and c3 = MACK′(c2). The IND-CCA security of AE follows from the well-known

KEM/DEM composition theorem of [32]. We can construct an RA-adversary A

with advantage 1 against AE . Adversary A, upon receiving target public key

pk∗, queries the Enc oracle with (pk∗, 0n(k)) and immediately learns K from the

response, since K is xor’d with all 0s. Then, A queries LR(m0,m1) for unique

messages m0 and m1 (which do not equal the string of all zeroes). A can then use

K to decrypt the response and win the game. �

Discussion. There are a few important aspects of our security definition that

require more discussion. First, as shown in Proposition 4.3.1, our definition is

stronger than previous notions of security. Since we are concerned about random

coins being repeated, one might ask why we even need a new definition and do not

just use deterministic public-key encryption [12], eliminating the coins altogether.

The reason is that we still want our schemes to meet the previous definitions (i.e.,

IND-CCA) to ensure they have as much security as possible, and it is well-known

that no deterministic scheme can ever be IND-CCA (or IND-CPA) secure.
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procedure Initialize:

b←$ {0, 1}
pars←$ P(1k)
(pk∗, sk∗)←$K(pars)
CoinTab← ∅ ; S ← ∅
Ret pk∗

procedure Enc(pk, j,m):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
c← E(pk,m; rj)
Return c

procedure LR(j,m0,m1):

If CoinTab[j] = ⊥ then
CoinTab[j]←$ {0, 1}ρ(k)

rj ← CoinTab[j]
c← E(pk∗,mb; rj)
S ← S ∪ {c}
Return c

procedure Dec(c):

If c ∈ S then return ⊥
Else return D(sk∗, c)

procedure Finalize(b′):

Ret (b = b′)

Figure 4.2: Game RA2AE,k.

Second, we allow the adversary to give arbitrary public keys to the Enc

oracle and see the resulting ciphertexts under those keys and the repeated coins.

As mentioned in the introduction, this is important to model the situation in

which a machine is reset and then an encryption is sent to the adversary; we want

to make sure other encryptions using the same coins still maintain their privacy.

This aspect of our definition resembles a similar ability allowed in the definition of

stateful PKE [18]. This aspect of the definition is also especially important since

it closely mirrors the attack we showed on TLS in the previous section.

Third, one might wonder what our equality pattern restriction means in

practice. It simply reflects the fact that if a message is encrypted twice using the

same public key and the same coins, then the resulting ciphertexts will be the

same. An adversary observing the two ciphertexts will know that the underlying

plaintexts are the same. This attack is unavoidable in the resettability setting,

and whether or not it is a problem will depend on the application.
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4.3.2 An Equivalent Security Definition

As we mentioned in Section 4.3.1, we can consider a more complicated

security game to capture reset security. Let AE = (P ,K, E ,D) be a PKE scheme.

We say the ra2-advantage of an adversary A is

Advra2
AE,A(k) = 2 · Pr

[
RA2AAE,k ⇒ true

]
− 1 .

The security game RA2 can be found in Figure 4.2. In the game, the adversary

is given a target public key pk∗ and can make queries to three oracles. It can

query the LR oracle with index j and messages m0 and m1. In response, the

adversary receives the encryption of mb under the target public key pk∗ using the

coins indexed by j. The adversary is also given an Enc oracle which takes as

input a public key pk, index j, and message m. The oracle returns the encryption

of m under public key pk using the coins indexed by j. It is important that the

adversary can choose the public key pk. In particular, the adversary can query

Enc with a public key for which it knows the corresponding secret key. With both

the LR and Enc oracles, an adversary can continually see messages encrypted

under the same coins by repeatedly querying the same index. This is how we

model resetting attacks. Of course, the adversary can also see messages encrypted

under other coins by querying other indices. Finally, the adversary can also query

a Dec oracle with a ciphertext and receive its decryption.

Equality Patterns. For our alternate definition, we need a much more compli-

cated notion of equality patterns. Let A be any adversary that queries I different

indices to its LR and Enc oracles and makes qi queries to the LR oracle with index

i. Let Ei be the set of all messages m such that A makes query Enc(pk∗, i,m).

Let (mi,1
0 ,m

i,1
1 ) to (mi,qi

0 ,mi,qi
1 ) be A’s LR queries for index i ∈ [I]. Then, if for all

i ∈ [I] and for all j 6= k ∈ [qi],

mi,j
0 = mi,k

0 iff mi,j
1 = mi,k

1 ,
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and for all i ∈ [I] and all j ∈ [qi]

mi,j
0 6∈ Ei ∧m

i,j
1 6∈ Ei,

then we say that A is equality-pattern respecting.

It is easy to see that if we only consider adversaries that query LR once

and query LR and Enc on only a single randomness index, then the definition

becomes equivalent to the definition in Section 4.3.1. (CoinTab has only one entry,

which we call r∗ in the simpler definition.) To justify our use of the simpler security

game, we use a hybrid argument to prove the following lemma:

Lemma 4.3.2 Let AE be a PKE scheme and A be an equality-pattern respecting

adversary querying LR and Enc on combined at most d different indices and

querying LR for any given index at most q times. Then there exists an equality-

pattern respecting RA-adversary C making one LR query such that

Advra2
AE,A(k) ≤ d · q ·Advra

AE,C(k) .

�

Proof of Lemma 4.3.2 (Sketch). The proof is similar to the proof in [11] showing

PKE IND-XXX security for multiple receivers is implied by one receiver (tradi-

tional) IND-XXX security. Let A be any equality pattern respecting adversary

querying LR and Enc on at most d different randomness indices and querying LR

for any given index at most q times. Assume without loss that A does not repeat

any LR or Enc queries. Clearly the number of total LR queries over all indices

is at most d · q. We will build an adversary B querying LR and Enc on at most

1 randomness index and querying LR only once. This adversary can immediately

be translated into an adversary C playing game RA and making one LR query

since with only one index the games are the same modulo some different syntax.

The adversary B runs A and guesses a value j ∈ {1, . . . , dq}. Let i = dj/qe and

` = j − q(i − 1). This means that j corresponds to the `th LR query made with

index i. Once j is guessed, B chooses coins rt for t ∈ [d]\ i and proceeds to answer
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A’s LR queries as follows. For any LR query with index i′ < i, B encrypts m0

with coins ri′ . For any LR query with index i′ > i, B encryptions m1 with coins

ri′ . Now, if i′ = i and this is the wth LR query with that index, then B answers

with its own LR oracle when w = `, while it uses its own Enc oracle with m0 for

w < ` and its own Enc oracle with m1 for w > `. It answers Enc queries from A

with index i using its own Enc oracle and all other Enc queries with the coins it

chose itself. Decryption queries are all forwarded. Finally, B outputs the same bit

as A. Standard calculations show a security loss of d · q. �

4.3.3 Insecurity of Existing Schemes

Now that we have fully specified our target security notion we can examine

whether existing schemes meet it. Unfortunately, many natural schemes do not.

We give two examples.

El-Gamal Encryption. El-Gamal encryption, one of the simplest and most

well-known encryption schemes, is IND-CPA under the Decisional Diffie-Hellman

assumption, yet is not IND-R-CPA secure. To attack the scheme, an adversary,

after receiving public key pk = gx, should query LR with two distinct group

elements h0 and h1. The adversary receives back (C0, C1) = (gr, gxr · hb). Next,

the adversary queries Enc with pk and 2 · h0. If the adversary receives back

(C0, 2 · C1), it knows the challenge bit is 0; if not, the challenge bit is 1. This is

because the second component of the encryption of 2 · h0 with randomness r is

grx · (2 · h0) = 2 · C1.

Hybrid Encryption. Recall that in a hybrid encryption scheme, a PKE scheme

is used to encrypt not a message, but a symmetric encryption key. This symmetric

key is then used in a symmetric encryption scheme to actually encrypt the message.

In other words, a ciphertext is a pair (E(pk, K), SE(K,M)). In such schemes, the

first step is typically to choose a random symmetric key. When randomness is

repeated, the same symmetric key will be chosen twice. This was exactly what

led to our attack on TLS clients running on virtual machines. More formally,
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to achieve high advantage in game RA against a hybrid encryption scheme, an

adversary would query the LR oracle with any two distinct messages. Next, the

adversary would generate its own keypair (pk, sk) and request an encryption from

the Enc oracle with pk. The Enc oracle will choose the same symmetric key as

the LR oracle, and the adversary will be able to learn this key by using its secret

key sk. It can then decrypt the LR query and win the game.

4.3.4 Achieving IND-R-XXX Security

In this section we show that we can make a simple and efficient modification

to any IND-XXX PKE scheme and immediately get an IND-R-XXX secure scheme.

Our transformation relies only on the existence of pseudorandom functions. This

means that if we take a PKE scheme that is IND-XXX secure in the standard

model, our modified scheme will be IND-R-XXX secure in the standard model.

Let AE = (P ,K, E ,D) be a PKE scheme and let Fun : Keysk × Domk →
Rngk be a family of functions with Keysk = {0, 1}ρ(k), Domk = {0, 1}s(k), and

Rngk = {0, 1}ρ(k). The domain size {0, 1}s(k) should be large enough to encode

any public key generated from K and a message in {0, 1}n(k). We build a PKE

scheme AE = (P ,K, E ,D) from AE and F as follows. Parameter generation,

key generation and decryption are the same as in AE , and E(pk,m; r) computes

r̄ ← Fun(r, (pk ‖m)) and returns E(pk,m; r̄).

Theorem 4.3.3 If AE is IND-XXX secure and Fun is a secure PRF, then AE is

IND-R-XXX secure. �

Proof: We prove the CCA case but the proof can be easily adapted to the CPA

case. Let AE be constructed from Fun and AE as above. Let A be an efficient

equality-pattern respecting RA-adversary attacking AE . We assume that A never

makes duplicate queries to the Enc oracle; this is without loss because all such

queries will return the same response. It is easy to see that this fact combined with

the fact that A is equality-pattern respecting means that every query A makes to

Enc and LR results in a unique combination of pk and m; the game will never
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encrypt the same message twice under the same public key. Now, denote by G0

the game RAAE,k defined in Section 4.3.1. Thus by definition,

Advra
AE,A(k) = 2 · Pr

[
GA

0

]
− 1 .

Now consider game G1. The relevant procedures from games G0 and G1 are shown

in Figure 4.3. In G0, oracles LR and Enc use Fun to derive the randomness used

to encrypt since this is what AE does. However, in G1, those oracles choose fresh

random coins and use those to encrypt the messages. We claim that these games

appear close to adversary A by showing there exists an efficient PRF-adversary B

such that

Pr
[
GA

0

]
− Pr

[
GA

1

]
≤ Advprf

Fun,B(k) .

The adversary B, attempting to decide if it is in the real or random world, flips a

bit b and chooses a target public key pk∗ by running the key generation algorithm.

B then runs A just as in G0 and G1. On Enc and LR queries, B uses its Fun

oracle to derive the randomness for encryption; in the case of the LR query, B

encrypts the message corresponding to the bit b that it chose. In the CCA case, B

answers Dec queries simply by using the secret key sk∗ (which it knows because

it chooses pk∗ and sk∗). When A eventually outputs a guess bit b′, B outputs 1 if

b = b′ and 0 otherwise. We can see that when B is in the ‘real’ world (i.e., its Fun

queries are answered using Fun), it perfectly simulates G0 for A, while if B is in

the ‘random’ world (i.e., its Fun queries are answered with random range points)

then it perfectly simulates G1 for A. The claim follows.

We then claim that there exists an efficient INDCCA-adversary C such that

Advind-cca
AE,C (k) = 2 · Pr

[
GA

1

]
− 1 .

The adversary C is given a target public key pk∗ and access to an LR oracle to

which it can make a single query. It also has access to a Dec oracle. Adversary C

runs A as in G1, answering its oracle queries as follows. On A’s single LR query, C

simply answers with its own LR oracle. C answers A’s Dec queries using its own
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procedure Enc(pk,m):

r̄ ← Fun(r∗, (pk ‖m))
c← E(pk,m; r̄)
Return c

procedure LR(m0,m1): Game G0

r̄ ← Fun(r∗, (pk∗ ‖mb))
c← E(pk∗,mb; r̄)
S ← S ∪ {c}
Return c

procedure Enc(pk,m):

r̄←$ {0, 1}ρ(k)

c← E(pk,m; r̄)
Return c

procedure LR(m0,m1): Game G1

r̄←$ {0, 1}ρ(k)

c← E(pk∗,mb; r̄)
S ← S ∪ {c}
Return c

Figure 4.3: Games for the proof of Theorem 4.3.3. The procedures Initialize,
Finalize, and Dec are omitted for brevity.

Dec oracle. On Enc queries from A, C encrypts the messages itself using fresh

randomness and returns the resulting ciphertexts to A. At the end of execution,

C outputs the same bit that A guesses. It is easy to see that C perfectly simulates

the G1 game for A and the claim follows.

Combining the above equations we can see that

Advra
AE,A(k) = 2 · Pr

[
GA

0

]
− 1

≤ 2 · (Advprf
Fun,B(k) + Pr

[
GA

1

]
)− 1

≤ 2 ·Advprf
Fun,B(k) + Advind-cca

AE,C (k) .

�

The existence of secure PRFs is implied by the existence of one-way func-

tions (which are necessary for PKE to exist), so we do not need any additional

assumptions. In practice, one would want to instantiate the PRF using HMAC [14]

or a block-cipher such as AES.

Extensions. A natural question to ask is what happens to security if the same

randomness is used across multiple different primitives. For example, what if some



67

randomness r is used for public-key encryption, but then after a virtual machine

reset r is used for DSA signing? Formally modeling this situation is an interesting

open problem. However, we conjecture that our PRF approach in this section

will generalize and provide security in such a setting. Specifically, to protect a

primitive P against repeated randomness, one would want to apply the PRF not

only to P’s inputs, but also to some unique value identifying P, e.g., an algorithm

ID. This should guarantee that different primitives use distinct randomness, even

after a reset.

4.4 Conclusion and Additional Information

In this chapter we first showed practical attacks against existing, deployed

cryptography that arise due to randomness repetition on virtual machines. We

then showed how to build more robust cryptography that still provides provable

guarantees even when randomness can be repeated. This involved coming up with

new, stronger security models, and also showing ways to modify existing schemes

to achieve this stronger level of security.

Credits. Section 4.2 is a partial reprint of material [61] that appeared in the Pro-

ceedings of the Network and Distributed System Security Symposium, copyright

the Internet Society, and co-authored with Thomas Ristenpart. I was a primary

researcher for this work. The rest of the sections of this chapter are expanded

versions of material [66] that appeared in Topics in Cryptology – CT-RSA 2010,

copyright Springer. I was a primary researcher for this work and the sole author.



Chapter 5

Revealed Randomness

This chapter focuses on PKE security under various types of selective open-

ing attacks. The strongest type of selective opening attack we consider involves a

randomness failure where the coins used for encryption are revealed at some point

to an adversary. In fact, as we shall see, the coins being revealed leads to the core

technical difficulties.

5.1 Overview

A selective opening attack against a PKE scheme is one in which an adver-

sary sees encryptions of many possibly-related messages and is then able to select

some subset of these ciphertexts to “open”. What do we mean by open? Think of

a ciphertext as a locked box with a message inside. One can then think of opening

a ciphertext as convincing someone that a particular message is contained in the

box. Some types of opening may be more convincing than others.

The main type of opening we consider in this chapter has the adversary

learn the message encrypted as well as the coins used for encryption. Specifically,

after seeing encryptions E(pk,mj ; rj) for j ∈ {1, . . . , n}, and where the messages

are potentially related, the adversary selects some subset I ⊆ {1, . . . , n}. The

ciphertexts corresponding to I are opened by giving the adversary mi, ri for i ∈
I. Notice that the adversary, given mi and ri (and the known public key pk)

can recompute E(pk,mi ; ri) and verify that the opening is consistent with the

68
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ciphertexts it observed. Certainly the opened encryptions can no longer provide

any privacy; the main question surrounding selective opening attacks is whether

the unopened encryptions still provide privacy.

One might think that our existing strong notions of security, such as IND-

CPA or IND-CCA, should imply security under the selective opening attack above.

While this is plausible, no one knows how to prove it. We point out that if only

the message is revealed upon a corruption (not the coins), then it is easy to see

that IND-CPA does imply selective opening security. We give details later in the

chapter. Thus, it appears that a revealed randomness failure causes the main

technical hurdles.

Encryption security under selective opening attacks is an important special

case of adaptively secure encryption. Adaptively secure encryption, where an ad-

versary is able to corrupt some parties after seeing ciphertexts, has roots in secure

multiparty computation [22, 29]. However, past work on the problem has typically

focused on receiver corruptions, where the recipient of a ciphertext is corrupted, ex-

posing their secret key (and thus the message) to the adversary. Unfortunately, the

known methods for achieving security under receiver corruptions have significant

drawbacks, and do not look like typical encryption schemes. Specifically, Canetti,

Feige, Goldreich, and Naor [26] show that non-committing encryption solves the

problem, but their schemes have keys that are as long as the number of message

bits sent. Compare this to typical PKE schemes, where keys are relatively short

(say, 1000 bits), but are routinely used to encrypt millions of bits. Unfortunately,

Nielsen shows this drawback is necessary [55]. Later work by Canetti, Halevi, and

Katz [28] was able to shorten the keys, but at the cost of requiring that secret keys

are updated periodically (e.g., every day) with previous keys erased completely.

Alternatively, the selective opening attacks we consider in this chapter only

involve corruption of the sender. Thus, at most the adversary learns all of the

sender’s inputs to the encryption algorithm, meaning both the message sent and

the coins used. An adversary corrupting senders never learns the secret key. This

allows us to get around the negative results of [55].

To see why the sender corruption case is by itself interesting and important,
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consider the TLS/SSL protocol for HTTPS, the most common way PKE is used

in practice. At any one time there are many users buying books on a site like

amazon.com and using TLS to secure their transactions. Thus, there are many

senders – the users – and one receiver – Amazon. Further, most of the senders

are probably using web browsers and operating systems with unpatched security

vulnerabilities, while Amazon likely goes to great lengths to secure their secret

keys. In this scenario it is easy to see that the senders are more easily corrupted

by an adversary, motivating our study of selective opening attacks for senders.

Dwork, Naor, Reingold, and Stockmeyer [36] were the first to focus specif-

ically on the case of sender corruptions and recognize the problem’s importance

and difficulty. Specifically, they explored whether typical PKE schemes (i.e., non-

interactive and with short keys) are secure when an adversary can adaptively

corrupt half of the ciphertexts and learn the corresponding messages and coins.

They observed that encryption usually constitutes a commitment to the message.

Informally, this means that any given ciphertext can only be opened to one pos-

sible message. This seems to follow from the correct decryption property, since

if a ciphertext could represent two different messages how would the decryption

algorithm know which one it should output?

Dwork et al. then pointed out that this commitment property seems to

lead to the core technical difficulties. They showed that the existence of commit-

ment schemes secure under selective opening attack implies the existence of three-

round zero-knowledge and magic functions for Fiat-Shamir. Thus, finding such

commitment schemes would solve two difficult and long-standing open problems

in cryptography. This gave strong evidence that resolving the selective opening

problem would be difficult. More recently, Hofheinz gave further evidence of this

difficulty [47]. Specifically, he showed that it is impossible to prove in a black-

box way that any non-interactive or perfectly-binding commitment scheme meets

a simulation-based definition of SOA security.

At this point, let us review the status of the problem. For receiver corrup-

tions, we have numerous encryption schemes that are secure, but all have undesir-

able properties, like unreasonably long keys, or requiring periodic key updates and
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erasures. Impossibility results [55] show this is in some sense necessary. For sender

corruptions, our main focus in this chapter, encryption schemes with short keys

and without erasures typically act as commitments. Unfortunately, both Dwork et

al. [36] and Hofheinz [47] give strong evidence that the problem will be difficult to

resolve for commitment schemes. It seems there is little hope of finding encryption

schemes secure under selective opening attacks.

Luckily, though many PKE schemes with short keys constitute commit-

ments, this is not always the case. Since a ciphertext should decrypt to a unique

ciphertext, how can an encryption not constitute a commitment? The answer is

that there are many encryption schemes where encryption is committing, but only

under keys generated by the honest key generation algorithm. For these schemes

there will be an alternate key generation algorithm that outputs fake public keys.

These fake keys look just like real keys, but encryption under a fake key is no longer

committing, and will in fact statistically lose essentially all information about the

message being encrypted.

We call schemes with this property lossy encryption schemes due to their

similarity to the recently-introduced notion of lossy trapdoor functions [58]. Lossy

encryption is a formalization of what Peikert, Vaikuntanathan, and Waters [57]

informally call messy encryption while defining a related notion called Dual-mode

encryption. It is also very similar to the notion of meaningful/meaningless encryp-

tion defined by Kol and Naor [50]. Numerous lossy encryption schemes exist; we

show a few notable examples later in the chapter.

Organization. The rest of the chapter is organized as follows. The next section

describes notions of PKE security under selective opening attack. Section 5.3 shows

IND-CPA is equivalent to selective message opening security and discusses why a

revealed randomness failure leads to technical difficulties. Section 5.4 introduces

lossy encryption, the main tool for achieving selective randomness opening security.

Section 5.5 proves lossy encryption gives selective randomness opening security.



72

5.2 Encryption Security under Selective Open-

ing Attack

In this section we consider the security of public-key encryption under two

types of selective opening attacks. One we call selective message opening, and in-

formally means the adversary is able to adaptively corrupt a subset of senders after

seeing ciphertexts and learn the messages encrypted. The other we call selective

randomness opening, which informally means the adversary is able to adaptively

corrupt a subset of senders after seeing ciphertexts and learn the messages and

the coins used to encrypt them. For each type of selective opening attack we

will present both simulation and indistinguishability-based definitions of security.

Foreshadowing, we will show in future sections that IND-CPA implies security

under selective message opening, while lossy encryption schemes (defined later in

Section 5.4) are secure under selective randomness opening.

5.2.1 Message Sampling and Resampling

Let n(·) be a positive polynomial taking integer values. An n-message

samplerM is a (possibly randomized) algorithm that on input security parameter

1k and a string α ∈ {0, 1}∗, outputs a vector m of n(k) messages. We say an n-

message sampler is efficient if it runs in polynomial time in the security parameter.

For some of our definitions, we will consider message samplers that have two

modes. An n-message sampler M is in the “sample” mode if it is given inputs 1k

and bitstring α, while it is in the “resample” mode if it is given the same two

inputs as above and additionally a set I, a vector of |I| messages mI , and a vector

z. We say a message sampler is efficiently resamplable if it runs in polynomial time

in the security parameter regardless of whether it is in the “sample” or “resample”

modes.

To capture how well a message sampler can resample, we consider two games

RSMPREAL and RSMPIDEAL, shown in Figure 5.1. Game RSMPREAL has a

Challenge procedure that resamples using the resample mode of M, while game

RSMPIDEAL instead does perfect resampling. We let A be the set of all (even
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procedure Initialize: Game RSMPREALM,k

Return 1k

procedure Challenge(α, I,m):

For i = 1 . . . |m| do z[i]← 1|m[i]|

m∗←$M(1k, α, I,m[I], z)
Return m∗

procedure Finalize(b):

Return b

procedure Initialize: Game RSMPIDEALM,k

S ← ∅
Return 1k

procedure Challenge(α, I,m):

For i = 1 . . . |m| do z[i]← 1|m[i]|

For ρ ∈ CoinsM(1k, α) do:
m′ ←M(1k, α ; ρ)
If (m′[I] = m[I] ∧ ∀i |m[i]| = |z[i]| then S ← S ∪ {ρ}

ρ←$ S
m∗ ←M(1k, α ; ρ)
Return m∗

procedure Finalize(b):

Return b

Figure 5.1: Games for resampling error.

unbounded) adversaries A that play these two games making a single Challenge

query before outputting a bit. We then define the re-sampling error with respect

to M as

δM(k) = max
A∈A

{
Pr
[

RSMPREALAM,k ⇒ 1
]
− Pr

[
RSMPIDEALAM,k ⇒ 1

]}
.

5.2.2 Simulation-based Security Definitions

We will first consider a simulation-based definition of security for both se-

lective message opening and selective randomness opening. We define security by

considering a simulator playing game Id (see Figure 5.2) and an adversary playing
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procedure Initialize:

Return 1k

procedure Sample(α):

m←$M(1k, α)
For i = 1 . . . |m| do z← 1|m[i]|

Return z

procedure Corrupt(I):

Return m[I]

procedure Finalize(w):

Return R(1k,m, I, w, α)

Figure 5.2: The identity game IdM,R,k, used to define simulation-based security
for both selective message opening and selective randomness opening.

procedure Initialize:

pars←$ P(1k)
(pk, sk)←$K(pars)
Return pars, pk

procedure Sample(α):

m←$M(1k, α)
For ` = 1 . . . |m| do:

r[`]←$ CoinsE(pars, pk)
c[`]← E(pars, pk,m[`] ; r[`])

Return c

procedure Corrupt(I):

Return m[I] , r[I]

procedure Finalize(w):

Return R(1k,m, I, w, α)

Figure 5.3: Games SMOSEM (without boxed statements) and SROSEM (with
boxed statements) for the simulation-based definitions of selective message and
selective randomness opening.

game SMOSEM in the case of selective message opening (Figure 5.3 without boxed

code) or game SROSEM for selective randomness opening (Figure 5.3 with boxed

code).

Game Id, played with a simulator, is parameterized by a message sampler

M, relation R, and security parameter k. It proceeds as follows. The Initialize

procedure does nothing and returns the security parameter to the simulator. The

simulator may then make one query to Sample with a string α. The Sample

procedure runs the message sampler M on input the security parameter and the

string α supplied by the simulator to get a message vector m. The Sample
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procedure then returns the lengths of the sampled messages (but not the actual

messages) to the simulator.

At this point, the simulator may corrupt some subset of the messages by

making one query to Corrupt with a set I of indices to corrupt. The Corrupt

procedure returns to the simulator the messages m[I] corresponding to set I.

Finally, the simulator halts with output string w and Finalize (and thus

the game) outputs the result of applying the relation R to the security parameter,

entire vector of sampled messages m, set of corrupted indices I, output string w,

and the string α queried to Sample.

Games SROSEM and SMOSEM, played with an adversary, are both pa-

rameterized by a PKE scheme AE , message sampler M, relation R, and security

parameter k. They give an adversary the same oracles as Id, however each proce-

dure is slightly different. The games proceed as follows. The Initialize procedure

runs parameter and key generation for AE , returning the results pars, pk to the

adversary.

The adversary may then make one query to Sample with a string α. Upon

such a query, the Sample procedure runs the message sampler M on α to get a

vector of messages m. The Sample procedure goes on to encrypt each message in

the vector with independent and uniform coins and under the public key pk. The

resulting ciphertexts are returned to the adversary.

At this point the adversary may make one query to Corrupt with a set

of indices it wants corrupted. In the game SMOSEM the procedure Corrupt

returns the corresponding messages m[I], while in the game SROSEM procedure

Corrupt returns the messages m[I] as well as the coins r[I] used by Sample.

Lastly, Finalize is the same as in Id.

We say that the semsro-advantage of an adversary A against AE , with

respect to a message sampler M, a relation R, and a simulator S is

Advsem-sro
A,S,AE,M,R(k) = Pr

[
SROSEMA

AE,M,R,k ⇒ 1
]
− Pr

[
IdSM,R,k ⇒ 1

]
.

Similarly, the semsmo-advantage of an adversary A against AE , with respect to a
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procedure Initialize:

b←$ {0, 1}
pars←$ P(1k)
(pk, sk)←$K(pars)
Return pars, pk

procedure Sample(α):

m←$M(1k, α)
For ` = 1 . . . |m| do:

r[`]←$ CoinsE(pars, pk)
c[`]← E(pars, pk,m[`] ; r[`])

Return c

procedure Corrupt(I):

Return m[I] , r[I]

procedure Challenge():
m0 ←m
m1←$M(1k, α, I,m[I])
Return mb

procedure Finalize(b′):

Return (b = b′)

Figure 5.4: Games SMOIND (without boxed statements) and SROIND (includ-
ing boxed statements) for the indistinguishability-based definitions of selective
opening.

message sampler M, a relation R, and a simulator S is

Advsem-smo
A,S,AE,M,R(k) = Pr

[
SMOSEMA

AE,M,R,k ⇒ 1
]
− Pr

[
IdSM,R,k ⇒ 1

]
.

Then, we say that a PKE schemeAE is SEM-SRO-secure (resp. SEM-SMO-secure)

if for every positive integer polynomial n, every efficient n-message sampler M,

every efficiently computable relationR, and every efficient adversaryA, there exists

an efficient simulator S such that the semsro-advantage (resp. semsmo-advantage)

of A with respect to M, R, and S is negligible in the security parameter. It is

easy to see that if a scheme is SEM-SRO secure then it is also SEM-SMO secure.

5.2.3 Indistinguishability-based Security Definitions

We also consider an indistinguishability-based security definition for both

selective randomness and selective message opening. To do so we will use games

SROIND and SMOIND, both shown in Figure 5.4. Games SROIND and SMOIND,

played with an adversary, and parameterized by a PKE scheme AE , resamplable

message sampler M, and security parameter k, proceed as follows.

The Initialize procedure runs parameter generation and key generation for
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AE as well as flips a bit b. It returns the parameters and public key pars, pk to

the adversary.

The adversary may then make one query to Sample with a string α. Upon

such a query, the Sample procedure runs the message sampler M on α to get a

vector of messages m. The Sample procedure goes on to encrypt each message in

the vector with independent and uniform coins and under the public key pk. The

resulting ciphertexts are returned to the adversary.

At this point the adversary may make one query to Corrupt with a set of

indices it wants corrupted. In the game SMOIND the procedure Corrupt returns

the corresponding messages m[I], while in the game SROIND procedure Corrupt

returns the messages m[I] as well as the coins r[I] used by Sample.

The adversary may then make one query to Challenge with no inputs.

Depending on the challenge bit b, Challenge either returns the entire actual vector

m used by Sample, or a resampled vector, where the resample mode ofM is used

for the resampling.

The procedure Finalize then takes a guess bit b′ from the adversary and

outputs true if the guess bit is correct and false otherwise.

We say the indsro-advantage of an adversary A with respect to AE and a

resamplable message sampler M is

Advind-sro
A,AE,M(k) = 2 · Pr

[
SROINDA

AE,M,k ⇒ true
]
− 1 .

Similarly, we say the indsmo-advantage of an adversary A with respect to AE and

a resamplable message sampler M is

Advind-smo
A,AE,M(k) = 2 · Pr

[
SMOINDA

AE,M,k ⇒ true
]
− 1 .

Finally, we say that a PKE scheme AE is IND-SRO (resp. IND-SMO) secure if

for every efficient adversary A, for every positive integer polynomial n, and every

efficiently resamplable n-message samplerM with negligible resampling error, the

indsro-advantage (resp. indsmo-advantage) of A with respect to AE and M is

negligible in the security parameter k.
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It is easy to see that if a scheme is IND-SRO secure then it is also IND-SMO

secure.

5.3 Equivalence of IND-CPA and Selective Mes-

sage Opening

In this section we show that IND-CPA is equivalent to security under selec-

tive message opening. To do so, we first show that IND-CPA implies SEM-SMO

security. The proof of this theorem will be useful for understanding our results

on SEM-SRO security later. We then show that IND-SMO security implies IND-

CPA. The proof ideas used to show the above results can be easily translated to

show IND-CPA implies IND-SMO security and SEM-SMO implies IND-CPA, giv-

ing us equivalence. Alternatively, we can get equivalence by relying on a result

of [19] showing SEM-SRO implies IND-SRO when considering efficiently resam-

plable message distributions. (This result easily applies to the SMO setting.)

5.3.1 From IND-CPA to SMO

First, we show that any encryption scheme that is IND-CPA secure is also

secure under selective message opening. The proof of this result serves as a good

warm-up for our main results on selective randomness opening.

Theorem 5.3.1 [IND-CPA implies SEM-SMO] Let k be a security parameter,

AE = (P ,K, E ,D) be a public-key encryption scheme, n a positive polynomial

taking integer values, M an efficient n-message sampler, R an efficiently com-

putable relation, and A be an efficient adversary. Then, there exists an efficient

simulator S and an efficient INDCPA adversary C such that

Advsem-smo
A,S,AE,M,R(k) ≤ n(k) ·Advind-cpa

C,AE (k) .

Adversary C makes one LR query. 2
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procedure Sample(α): G1

m←$M(1k, α)
For ` = 1 . . . |m| do:

r[`]←$ CoinsE(pars, pk)
z[`]← 0|m[`]|

c[`]← E(pars, pk, z[`] ; r[`])
Return c

Figure 5.5: Game for proof of Theorem 5.3.1.

Before proving the theorem we briefly sketch the main idea. We need to de-

sign a simulator S that can mimic the output of an adversary A. The obvious thing

to do is for S to run A itself and simulate its environment properly. It is unclear

how S can simulate the environment perfectly, since the adversary expects Sample

to return encryptions of an entire vector of sampled messages, while S can only

learn message lengths from querying its own Sample oracle. The solution is for S

to simply give A encryptions of dummy messages (e.g., all 0s) of the appropriate

length. When A makes a Corrupt query, S can make the same Corrupt query

and finally learn the actual messages it needs to open the ciphertexts to. At this

point S simply returns the actual messages. The point is that neither A nor any

other efficient adversary can tell that it was given encryptions of dummy messages

instead of actual messages due to the IND-CPA security of the encryption scheme.

We now give the details.

Proof: We will prove the theorem using a sequence of game transitions, starting

with a game G0, which is the same as game SMOSEM. Game G1 differs from G0

only in the Sample procedure; the modified procedure is shown in Figre 5.5.

First, recall that

Advsem-smo
A,S,AE,M,R(k) = Pr

[
SMOSEMA

AE,M,R,k ⇒ 1
]
− Pr

[
IdSM,R,k ⇒ 1

]
. (5.1)

We let game G0 be identical to game SMOSEMAE,M,R,k. Our first game transition

to G1 makes only one change: in Sample, instead of encrypting the actual message
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Adversary B(pars, pk):

Run A(pars, pk).

On query Sample(α):

m←$M(1k, α)
For ` = 1 . . . |m| do:

z[`]← 0|m[`]|

c[`]← LRB(m[`], z[`])
Return c

On query Corrupt(I):

Return m[I]

When A halts with output w,
halt and output R(1k,m, I, w, α)

Simulator S(1k):

pars←$ P(1k)
(pk, sk)←$K(pars)
Run A(pars, pk).

On query Sample(α):

z← SampleS(i, α)
For ` = 1 . . . |z| do:

r[`]←$ CoinsE(pars, pk)
c[`]← E(pars, pk, z[`] ; r[`])

Return c

On query Corrupt(I):

mI ← CorruptS(j)
Return mI

When A halts with output w,
halt and output w

Figure 5.6: Adversary and simulator used in the proof of Theorem 5.3.1

sampled by M, encrypt a dummy message of the appropriate length (we’ve used

all 0s, but any distinguished message in the message space would work just as

well). We claim that there is an efficient adversary B such that

Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]
≤ Advind-cpa

B,AE (k) , (5.2)

where adversary B, shown in Figure 5.6, makes n queries to LR. Applying Propo-

sition 2.4.1, there is an efficient adversary C such that

Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]
≤ n(k) ·Advind-cpa

C,AE (k) , (5.3)

where C makes one LR query.

Finally, we note that running game G1 with adversary A is the same as running

game Id with simulator S, shown in Figure 5.6. Thus,

Pr
[
GA

1 ⇒ 1
]

= Pr
[

IdSM,R,k ⇒ 1
]
. (5.4)
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This is because S only needs the message lengths in Sample (which it can get

from its own Sample oracle) and actual sampled messages are not needed until

Corrupt, where they can be learned by S by querying its own Corrupt oracle.

Combining the above equations, we can see that

Advsem-smo
A,S,AE,M,R(k) = Pr

[
SMOSEMA

AE,M,R,k ⇒ 1
]
− Pr

[
IdSM,R,k ⇒ 1

]
= Pr

[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]

≤ n(k) ·Advind-cpa
C,AE (k) ,

which proves the theorem.

One might wonder why this same strategy does not work for proving selec-

tive randomness opening security. The reason is that in the SRO setting the sim-

ulator needs to provide messages and coins when the adversary makes a Corrupt

query. Given a message m and coins r, the adversary can recompute encryption

(it knows the public key) and in some sense verify the encryption it was given

by Sample actually is an encryption of m. Thus, the simulator cannot give the

adversary the encryption of a dummy message and then later lie to the adversary

and claim it was actually an encryption of a different message.

5.3.2 From SMO to IND-CPA

We just showed that IND-CPA implies SEM-SMO. Next, we will show that

IND-SMO implies IND-CPA.

Theorem 5.3.2 [IND-SMO implies IND-CPA] Let k be a security parameter,

AE = (P ,K, E ,D) be a public-key encryption scheme, and A an efficient INDCPA

adversary against AE . Then there exists an efficient adversary B, a positive integer

polynomial n and an efficiently resamplable n-message sampler M such that

Advind-cpa
A,AE (k) ≤ 2 ·Advind-smo

B,AE,M(k) .

2
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Adversary B(pars, pk):

Run A(pars, pk).

On query LR(m0,m1):

α← (m0,m1)
c← SampleB(α)
Return c[1]

When A halts with output b′:
m← ChallengeB()
If m = mb′ return 0, else return 1

Figure 5.7: Adversary used in proof of Theorem 5.3.2.

Proof: We first define a 1-message sampler M(1k, α) to parse α as a pair of

message (m0,m1), flip a bit d, and return message vector (md). It is easy to seeM
runs in polynomial time and is also efficiently resamplable. We define adversary B

in Figure 5.7. The adversary B runs A and uses Sample to simulate the LR oracle

for A.

Recall that by definition

Advind-cpa
A,AE (k) = 2 · Pr

[
INDCPAA

AE,k ⇒ true
]
− 1 , (5.5)

and

Advind-smo
B,AE,M(k) = 2 · Pr

[
SMOINDB

AE,M,k ⇒ true
]
− 1 . (5.6)

Now, let’s look at the probability Pr
[

SMOINDB
AE,M,k ⇒ true

]
in more detail. Let

SMOINDb,AE,M,k be the same game, but parameterized by the challenge bit b. (In

other words, the game sets b to that value in Initialize instead of choosing it

uniformly at random.) Then

Pr
[

SMOINDB
AE,M,k ⇒ true

]
=

1

2
· Pr

[
SMOINDB

0,AE,M,k ⇒ true
]

+
1

2
· Pr

[
SMOINDB

1,AE,M,k ⇒ true
]
.
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We first claim that

Pr
[

SMOINDB
0,AE,M,k ⇒ true

]
= Pr

[
INDCPAA

AE,k ⇒ true
]
. (5.7)

This is true since if the challenge bit in SMOIND is 0 then the actual encrypted

message is returned by Challenge. Adversary B will correctly guess 0 only if

adversary A guessed the bit of the encrypted message correctly, meaning it won

the IND-CPA game.

We next claim

Pr
[

SMOINDB
1,AE,M,k ⇒ true

]
=

1

2
. (5.8)

This is true since if the challenge bit in SMOIND is 1 the resampled message is

returned, and this value will just be uniformly chosen between the two options.

Yet, this uniform choice will be independent of anything given to A, so A has a

1/2 probability of guessing correctly.

Combining the above equations, we see that

Advind-smo
B,AE,M(k)

= 2 ·
(

1

2
· Pr

[
SMOINDB

0 ⇒ true
]

+
1

2
· Pr

[
SMOINDB

1 ⇒ true
])
− 1

= Pr
[

INDCPAA
AE,k ⇒ true

]
+

1

2
− 1

=
1

2
Advind-cpa

A,AE (k) ,

which proves the theorem.

5.4 Lossy Encryption

Our main results on selective randomness opening rely on what we call a

Lossy Encryption Scheme. Informally, a public-key encryption scheme is lossy if

there is an efficient alternate key generation algorithm (called the “lossy key gen-

eration algorithm”) that produces “lossy” public keys that are computationally

indistinguishable from “real” public keys; however, encryptions under lossy public
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keys statistically contain little or no information about the encrypted message.

Peikert, Vaikuntanathan, and Waters [57] called such lossy keys “messy keys”,

for message lossy, while defining a related notion called Dual-Mode Encryption.

The notion of Lossy Encryption is also similar to Meaningful/Meaningless Encryp-

tion [50], formalized by Kol and Naor.

Now we can formally define lossy encryption. We say a public-key encryp-

tion scheme AE = (P ,K, E ,D) is lossy if there exists an efficient alternate key

generation algorithm K` such that

1. Indistinguishability of Real and Lossy Keys. For all efficient adversaries A,

the key-ind advantage Advkey-ind
A,AE,K`

(k) is negligible.

2. Lossiness of encryption with lossy keys. For hiding scheme Hid = (P ,K`, E)

induced by AE and K`, and for all (even unbounded) adversaries B, the

ind-cpa-advantage Advind-cpa
B,Hid (k) is negligible.

The first property informally says that honestly generated public keys are

computationally indistinguishable from lossy public keys, generated by an alter-

nate key generation algorithm. The second property then informally says that

encryption under these indistinguishable lossy keys statistically loses essentially

all information about the message. This means that, under a lossy public key, a

message is no longer uniquely determined by its encryption. Thus, a ciphertext

can be opened to more than one message.

We say that an algorithm Open∞ is an opening algorithm for hiding scheme

Hid = (P ,K`, E) if for all k, all pars ∈ [P(1k)], all pk` ∈ [K`(pars)]1, all m′, and all

ciphertexts c, the output of Open∞(pk`,m
′, c) is distributed uniformly in the set

{r′ | r′ ∈ CoinsE(pars, pk`) ∧ E(pk`,m
′; r′) = c}. This set may be empty, in which

case Open∞ should output ⊥. Note that an opening algorithm always exists, but

may not be polynomial time. From here on out, we let Open∞ be the unbounded

algorithm that finds all r′ such that E(pk`,m
′; r′) = c and then outputs a uniformly

chosen one of the r′.

We also consider efficient opening algorithms that take additional inputs.

Specifically, we say Open is an efficient opening algorithm for hiding scheme Hid =
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procedure Initialize: Game OPENREALHid,Open,k

Return 1k

procedure Challenge(pars, pk, sk,m′,m, r, c):
If (E(pars, pk,m ; r) 6= c) then return ⊥
r∗←$ Open(pars, pk, sk,m′,m, r, c)
Return r∗

procedure Finalize(b):

Return b

procedure Initialize: Game OPENIDEALHid,Open,k

Return 1k

procedure Challenge(pars, pk, sk,m′,m, r, c):
If (E(pars, pk,m ; r) 6= c) then return ⊥
S ← ∅
For r′ ∈ CoinsE(pars, pk) do

If E(pars, pk,m′ ; r′) = c then
S ← S ∪ {r′}

r∗←$ S
Return r∗

procedure Finalize(b):

Return b

Figure 5.8: Games for Opening Error.

(P ,K`, E) if for all k, all pars ∈ [P(1k], all (pk`, sk`) ∈ [K`(pars)], all messages m

and m′, all r and all c = E(pk`,m ; r), the output of Open(pk`, sk`,m
′,m, r, c) is

distributed uniformly in the set {r′ | r′ ∈ CoinsE(pars, pk`)∧E(pk`,m
′; r′) = c}. We

formalize this more formally by considering games OPENREAL and OPENIDEAL

shown in Figure 5.8. Notice procedure Challenge in game OPENIDEAL simply

performs the same steps as the canonical unbounded opening algorithm Open∞.

We then say Open is an efficient opening algorithm for hiding scheme Hid if for all

even unbounded adversaries A and all k it is the case that

Pr
[

OPENREALAHid,Open,k ⇒ 1
]

= Pr
[

OPENIDEALAHid,Open,k ⇒ 1
]
.
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procedure Initialize:

(G, g, p)←$ GpGen(1k)
r, x←$ Zp ; y←$ Zp \ {x}
h← gr ; g′ ← gx ; d←$ {0, 1}
If d = 0 then h′ ← grx else h′ ← gry

Return (p, g, h, g′, h′)

Game DDHGpGen,k

procedure Finalize(d′):

Return (d = d′)

Figure 5.9: Decisional Diffie-Hellman (DDH) security game.

Finally, before looking at specific constructions, we note that it immediately

follows that any lossy encryption scheme is IND-CPA secure. We next provide

numerous examples of lossy encryption schemes.

5.4.1 Lossy Encryption from DDH

We first describe a lossy public-key encryption scheme based on the DDH

assumption. A group generator is an algorithm GpGen that, on input a security

parameter 1k in unary, selects a cyclic group G of order a prime p and a generator

g, and outputs a description of the group G as well as g and p. Now consider

a game DDH (shown in Figure 5.9) played with an adversary. We define the

ddh-advantage of an adversary A against a group generator GpGen as

Advddh
A,GpGen(k) = 2 · Pr

[
DDHA

GpGen,k ⇒ true
]
− 1 .

The DDH assumption for a group generator GpGen states that for all efficient

adversaries A the ddh-advantage of A against GpGen is a negligible function of the

security parameter.

We can now describe our scheme. The scheme is originally from [54], yet

some of our notation is taken from [57]. The scheme has structure similar to El

Gamal encryption [38].

The scheme AEddh1 = (P ,K, E ,D) and the associated lossy key generation

algorithm K` constructed from a group generation algorithm GpGen are as follows.

Parameter generation algorithm P , on input 1k, runs GpGen on input 1k and
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outputs the description of the group G, prime p, and generator g. The message

space of the scheme is the group, i.e., MsgSpace(G, p, g) = G. The rest of the

algorithms:

Algorithm K(pars)
(G, g, p)← pars
x, r←$ Zp

pk ← (g, gr, gx, grx)
sk ← x
Return (pk, sk)

Algorithm E(pk,m)
(g, h, g′, h′)← pk
(u, v)←$ Rand(g, h, g′, h′)
Return (u, v ·m)

Algorithm D(sk, c)
(c0, c1)← c
Return c1/c

sk
0

Algorithm K`(pars)
(g, p)← pars
r, x←$ Zp ; y←$ Zp \ {x}
pk ← (g, gr, gx, gry)
sk ← (r, x, y)
Return (pk, sk)

Subroutine Rand(g, h, g′, h′)
s, t←$ Zp

u← gsht; v ← (g′)s(h′)t

Return (u, v)

To see the correctness property is satisfied, consider a (real) public key pk =

(g, gr, gx, grx) and corresponding secret key sk = x. Then, for any message m ∈ G

D(sk, E(pk,m)) = D(sk, (gs+rt, gxs+rxt ·m))

= (gxs+rxt ·m)/(gs+rt)x

= m

Now, we claim that AEddh1 is a lossy encryption scheme.

1. Indistinguishability of Real Keys and Lossy Keys. This follows from the

assumption that DDH is hard for GpGen, since the first output of K is

(g, gr, gx, grx) and the first output of K` is (g, gr, gx, gry) for y 6= x, which

exactly matches the case in game DDH.

2. Lossiness of encryption with lossy keys. Since a lossy key (g, gr, gx, gy) is such

that rx 6= y, then s+rt and sx+yt are linearly independent combinations of

s and t, so an encryption under a lossy key results in two uniformly random

group elements.
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We mention that we do not know an efficient opening algorithm for this scheme.

However, we will see later in this section that if we instead encrypt bit-by-bit then

we can in fact find an efficient opening algorithm.

5.4.2 Lossy Encryption from Lossy TDFs

We now describe an instantiation of lossy (randomized) encryption based on

lossy trapdoor functions. The following scheme was given by Peikert and Waters

in [58] Let k be a security parameter and let F = (P,K,F,F−1) define a collec-

tion of injective trapdoor functions that are (n, L)-lossy with associated lossy key

generation algorithm K`. Also let H = (Ph,Kh,H) be a collection of pair-wise in-

dependent hash functions with message length n(k) and output length `(k); the

message space of the cryptosystem will be {0, 1}`. The parameter ` should be such

that ` ≤ L− 2 log(1/δ), where δ is a negligible function in the security parameter

k. The scheme AE ltdf = (P ,K, E ,D) is then defined as follows. The parameter

generation algorithm P , on input security parameter 1k, simply runs π←$ P(1k)

and πh←$ Ph(1k) and outputs pars = (π, πh). The rest of the algorithms are as

follows:

Algorithm K(pars)
(π, πh)← pars
(σ, τ)←$ K(π)
κ←$ Kh(πh)
pk ← (σ, κ); sk ← (τ, κ)
Return (pk, sk)

Algorithm E(pk,m)
(σ, κ)← pk
x←$ {0, 1}n
c1 ← F(σ, x)
c2 ← m⊕ H(κ, x)
Return (c1, c2)

Algorithm D(sk, c)
(τ, κ)← sk
(c1, c2)← c
x← F−1(τ, c1)
Return H(κ, x)⊕ c2

The associated lossy key generation algorithmK` is simply the same asK, but using

K` instead of K. The correctness of the scheme follows since when pk = (σ, κ) was

generated by K,

D(sk, E(pk,m)) = H(κ,F−1(τ, F(σ, x))⊕ (m⊕ H(κ, x))

= H(κ, x)⊕m⊕ H(κ, x)

= m

We can then show the encryption scheme is lossy:
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procedure Initialize:

(N, p, q)←$ Par(1k)
d←$ {0, 1}
x0←$ QRN ; x1←$ QNR+1

N

Return (N, xd)

Game DQRPar,k

procedure Finalize(d′):

Return (d = d′)

Figure 5.10: Quadratic Residuosity Game.

1. Indistinguishability of real keys and lossy keys. We need to show that any

efficient adversary A, the key-ind advantage Advkey-ind
A,AE ltdf,K`

(k) is negligible.

This follows since K uses K while K` uses K`, and since F is lossy, we know

that for all efficient adversaries B, the key-ind advantage Advkey-ind
B,F ,K`

(k) is

negligible.

2. Lossiness of encryption with lossy keys. This was shown by Peikert and

Waters in [58]. Reviewing their argument, it is true because the average con-

ditional min-entropy H̃∞(x|(c1, pk`)) of the random variable x, given F(σ`, x)

and pk` = (σ`, κ) is at least L, and since ` ≤ L−2 log(1/δ) for negligible δ, it

follows that H(κ, x) will be statistically close to uniform and mb⊕H(κ, x) will

also be statistically close to uniform for either bit b. Thus, even unbounded

adversaries have negligible advantage in the INDCPA game.

5.4.3 The GM Probabilistic Encryption Scheme is Lossy

with Efficient Opening

The Goldwasser-Micali probabilistic encryption scheme [41] is one example

of a lossy encryption scheme with efficient opening. We briefly recall the GM

scheme. Let Par be an algorithm that on input 1k efficiently chooses two large

distinct random primes p and q congruent to 3 (mod 4) and outputs them along

with their product N (a Blum integer). Let Jp(x) denote the Jacobi symbol of x

modulo p. We denote by QRN the group of quadratic residues modulo N and we

denote by QNR+1
N the group of quadratic non-residues x such that JN(x) = +1.

Recall that the security of the GM scheme is based on the Quadratic Residuosity
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Assumption, which states that it is difficult to distinguish a random element of

QRN from a random element of QNR+1
N . This is captured by game DQR, shown in

Figure 5.10 and a dqr-advantage of an adversary A with respect to Par

Advdqr
A,Par(k) = 2 · Pr

[
DQRA

Par,k ⇒ true
]
− 1 .

The quadratic residuosity assumption for Par is that for all efficient adversaries,

the dqr-advantage of A with respect to Par is negligible in k.

The scheme AEGM = (P ,K, E ,D) is then defined as follows. The parameter

generation algorithm P , on input 1k, simply outputs 1k. The other algorithms:

Algorithm K(1k)

(N, p, q)←$ Par(1k)
x←$ QNR+1

N

pk ← (N, x)
sk ← (p, q)
Return (pk, sk)

Algorithm E(pk,m)
(N, x)← pk
For i = 1 to |m|
ri←$ Z∗N
c[i]← r2

i · xmi mod N
Return c

Algorithm D(sk, c)
(p, q)← sk
For i = 1 to |c|

If Jp(c[i]) = Jq(c[i]) = +1
mi ← 0

Else mi ← 1
Return m

The associated lossy key generation algorithm K` is the same as K except

that x is chosen at random from QRN instead of QNR+1
N ; the lossy secret key is

still the factorization of N .

The correctness of the above scheme was shown in [41], while the indistin-

guishability of real keys from lossy keys follows directly from the quadratic residu-

osity assumption. It is also clear that encryptions under lossy keys are (perfectly)

indstinguishable since lossy ciphertexts are just sequences of random quadratic

residues.

Now, we claim that AEGM is also efficiently openable. To see this consider

the (efficient) algorithm Open that takes as input lossy secret key sk = (p, q),

lossy public key pk = (N, x), plaintext m′, ciphertext c, and m and r such that

E(pk,m; r) = c. Say m′ has length n bits. For each i ∈ [n], Open uses p and q to

efficiently compute the four square roots of c[i]/xm
′
i and lets r′[i] be a randomly

chosen one of the four. The output of Open is the sequence r′. Notice this is

exactly what the inefficient Open∞ would do (find the four square roots and output
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a random one of the four); the efficiency is gained by knowing the factorization

of N .

5.4.4 A Scheme with Efficient Opening from DDH

We point out that if we modify the scheme in Section 5.4.1 to only encrypt

one bit at a time, we can get an encryption scheme AEddh2 that is lossy with

efficient opening. More formally, modify the encryption algorithm to be as follows:

Algorithm E(pk,m)
(g, h, g′, h′)← pk
For i = 1 to |m|

(u, v)←$ Rand(g, h, g′, h′)
(c1[i], c2[i])← (u, v · gmi)

Return (c1, c2)

In the above, |m| is the bit length of m and mi is the ith bit. The decryption algo-

rithm is modified in the obvious way, while parameter generation, key generation,

Rand, and the corresponding lossy key generation algorithms are unmodified from

Section 5.4.1.

We will describe the efficient opening algorithm for a 1-bit message; the

algorithm can be repeated on each individual component of the ciphertext in the

multi bit case. The efficient opening algorithm, on input

pk` = (g, gr, gx, gry)

sk` = (r, x, y)

(c1, c2) =
(
gs · (gr)t , (gx)s · (gry)t · gm

)
m ∈ {0, 1}

s, t ∈ Zp

m′ ∈ {0, 1} ,
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needs to find s′, t′ ∈ Zp such that encrypting m′ with s′ and t′ as randomness will

result in ciphertext (c1, c2). To do so, the opening algorithm solves the equations

s+ rt = s′ + rt′

xs+ ryt+m = xs′ + ryt′ +m′ ,

which is possible in our scheme since x 6= y. Note that there is only one such pair

(s′, t′), so the output of the efficient opener will be the same as the output would

have been from the inefficient opener Open∞.

5.5 Lossy Encryption implies Selective Random-

ness Opening Security

We now state our main results for encryption security under selective open-

ing attacks: any lossy public-key encryption scheme is IND-SRO-secure, and any

lossy public-key encryption scheme with efficient opening is SEM-SRO-secure.

Specifically, we prove the following two theorems.

Theorem 5.5.1 [Lossy Encryption implies IND-SRO security] Let k be a security

parameter, AE = (P ,K, E ,D) be any lossy public-key encryption scheme with

associated lossy key generation algorithm K`; let Hid = (P ,K`, E) be the resulting

hiding scheme. Let n be a positive integer polynomial and M be an efficiently

resample n-message sampler with resampling error δM and let A be an efficient

adversary. Then, there exists an efficient KEYIND-adversaryB, and an unbounded

INDCPA-adversary D such that

Advind-sro
A,AE,M(k) ≤ 2 ·Advkey-ind

B,AE,K`
(k) + 2 · n(k) ·Advind-cpa

D,Hid (k) + 2 · δM(k) .

Adversary D makes 1 LR query. 2

Theorem 5.5.2 [Lossy Encryption with efficient opening implies SEM-SRO] Let

k be a security parameter, AE = (P ,K, E ,D) be a lossy public-key encryption
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scheme with associated lossy key generation algorithm K` and efficient opening

algorithm Open; let Hid = (P ,K`, E) be the resulting hiding scheme. Let n be a

positive integer polynomial and M be an efficient n-message sampler, R be an

efficiently computable relation, and A be an efficient adversary. Then, there exists

an efficient simulator S, an efficient KEYIND-adversary B, and an unbounded

INDCPA-adversary D such that

Advsem-sro
A,S,AE,M,R(k) ≤ Advkey-ind

B,AE,K`
(k) + n(k) ·Advind-cpa

D,Hid (k) .

Adversary D makes 1 LR query. 2

Before proving the theorems we discuss how their proofs are similar to our

proof that IND-CPA implies security under selective message opening. Recall in

that proof the simulator could give the adversary an encryption of all 0s but then

later claim that it was an encryption of some other message. In other words, the

simulator would give the adversary c = E(pk, 00 . . . 0 ; r) but then later claim the

encrypted message was m. We explained that in the case of selective randomness

opening, this strategy would not work since the simulator also had to provide coins

r′, and the adversary could then compute whether c = E(pk,m; r′). Unfortunately,

this is actually impossible with most standard encryption schemes. The reason is

that for schemes with perfect completeness (decryption always outputs the correct

encrypted message), the ciphertext space can be partitioned depending on the

message. Thus, it is impossible for a simulator to find r′ such that E(pk,m ; r′) =

E(pk, 00 . . . 0 ; r) when m 6= 00 . . . 0. Informally, this means that encryption is a

commitment to the message.

It appears we are stuck. However, note that the above property only has

to hold for public keys pk that come from the key generation algorithm K; we will

call such keys “real” public keys. The main observation that leads to our results

in this section is that there may be an alternate key generation algorithm K` that

outputs public keys pk` that “look like” real public keys. However, these lossy keys

have the property that using them in the encryption algorithm no longer results

in a commitment to the message. Schemes that have this property are the lossy
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procedure Initialize: G1, G2, G3, G4

pars←$ P(1k) ; (pk, sk)←$K`(pars)
Return pk

procedure Corrupt(I): G2, G3, G4

For i ∈ I do:
r′[i]←$ Open∞(pars, pk,m[i], c[i])

Return m[I], r′[I]

procedure Sample(α): G3, G4

m←$M(1k, α)
For ` = 1 . . . |m| do:

r[`]←$ CoinsE(pars, pk) ; z[`]← 0|m[`]|

c[`]← E(pars, pk, z[`] ; r[`])
Return c

procedure Challenge(): G4

m0 ←m
m1←$M∞(1k, α, I,m[I], z)
Return mb

Figure 5.11: Games for the proof of Theorem 5.5.1.

encryption schemes we defined in the last section.

Thus, with lossy encryption, our simulator can give the adversary a lossy

public key, the adversary cannot tell the difference, and now the simulator can find

coins r′ to open encryptions of all 0s to any message of its choosing. One caveat is

that finding these coins r′ may or may not be efficient. For schemes where this is

efficient, we can prove SEM-SRO security, while for schemes where it is not known

to be efficient we can still prove IND-SRO security. Now that we have given the

high-level ideas behind our results, we give detailed proofs.

Proof of Theorem 5.5.1: We will prove the theorem using a sequence of game

transitions, starting with a game G0, which is the same as game SROINDAE,M,k.

All of the game transitions can be found in Figure 5.11.



95

Adversary C(pars, pk):

b←$ {0, 1}
Run A(pars, pk).

On query Sample(α):

m←$M(1k, α)
For ` = 1 . . . |m| do:

z[`]← 0|m[`]|

c[`]← LRC(m[`], z[`])
Return c

On query Corrupt(I):

For i ∈ I do:
r′[i]←$ Open∞(pars, pk,m[i], c[i])

Return m[I], r′[I]

On query Challenge():

m0 ←m
m1←$M(1k, α, I,m[I], z)
Return mb

When A halts with output b′,
halt and output 1 if (b = b′) and 0 other-
wise.

Figure 5.12: Adversary used in the proof of Theorem 5.5.1.

Thus, by definition

Advind-sro
A,AE,M(k) = 2 · Pr

[
GA

0 ⇒ true
]
− 1 . (5.9)

We will bound this probability by gradually changing game G0 until we end up at

a game in which A has no advantage. The first game transition replaces the public

key returned by Initialize with a lossy public key, resulting in game G1.

We claim there exists an efficient KEYIND adversary B such that

Pr [G0 ⇒ true ]− Pr [G1 ⇒ true ] ≤ Advkey-ind
B,AE,K`

(k) . (5.10)
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Adversary B, given a challenge public-key pk that is either real or lossy, runs ad-

versary A as in game G0 with input the challenge key. Notice that since adversary

B needs to be efficient, we need the resampling algorithm to be efficient; this is

the only place in our proof where we need this requirement.

In our next game, G2, we modify the Corrupt procedure so that instead of opening

to the actual coins used to encrypt in Sample, it uses the unbounded Open∞

algorithm to find just-as-likely randomness and returns that to the adversary. From

the adversary’s point of view, this randomness is equally-likely, so

Pr [G1 ⇒ true ] = Pr [G2 ⇒ true ] . (5.11)

Next, for game G3 we modify the Sample procedure so that after sampling a

message vector m it only uses the lengths of the messages and encrypts dummy

messages of the appropriate lengths. We emphasize that in the Corrupt procedure

we still open to the actual messages that were sampled.

We can bound the gap between games G2 and G3 using the ind-cpa advantage of

an unbounded adversary against the hiding scheme Hid = (P ,K`, E). To see this,

first consider adversary C, playing game INDCPA, and shown in Figure 5.12. If

the challenge bit is 0, C perfectly simulates game G2 for A, while if the challenge

bit is 1 C perfectly simulates game G3. Thus, it follows that

Pr [G2 ⇒ true ]− Pr [G3 ⇒ true ] ≤ Advind-cpa
C,Hid (k) , (5.12)

where adversary C makes n queries to LR. Applying Proposition 2.4.1, there is

an unbounded adversary D such that

Pr
[
GA

2 ⇒ true
]
− Pr

[
GA

3 ⇒ true
]
≤ n(k) ·Advind-cpa

D,Hid (k) , (5.13)

where D makes only one LR query in game INDCPA.

Next, we change game G3 so that instead of using the resample mode of the

message samplerM it instead uses the (unbounded) perfect resampling procedure
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M∞. We claim that

Pr
[
GA

3 ⇒ true
]
− Pr

[
GA

4 ⇒ true
]
≤ δM(k) . (5.14)

Finally, we claim that

Pr
[
GA

4 ⇒ true
]

=
1

2
. (5.15)

This is true since A is given no information about m0 other than the lengths of the

messages and the messages at indices I (since dummy messages of the appropriate

lengths are encrypted). Thus, the resampled message m1, which has the same

lengths and same messages at I, is by definition exactly equally as likely as m0.

Thus, the adversary has no advantage at guessing the bit.

Combining the above equations, we can see that

1

2
·Advind-sro

A,AE,M(k) +
1

2
= Pr

[
GA

0 ⇒ true
]

≤ Advkey-ind
B,AE,K`

(k) + Pr
[
GA

1 ⇒ true
]

≤ Advkey-ind
B,AE,K`

(k) + Pr
[
GA

2 ⇒ true
]

≤ Advkey-ind
B,AE,K`

(k) + n(k) ·Advind-cpa
D,Hid (k) + Pr

[
GA

3 ⇒ true
]

≤ Advkey-ind
B,AE,K`

(k) + n(k) ·Advind-cpa
D,Hid (k) + δM(k) + Pr

[
GA

4 ⇒ true
]

≤ Advkey-ind
B,AE,K`

(k) + n(k) ·Advind-cpa
D,Hid (k) + δM(k) +

1

2

which proves the theorem.

Proof of Theorem 5.5.2: We will prove the theorem using a sequence of game

transitions, starting with a game G0, which is the same as game SROSEM. All of

the game transitions are shown in Figure 5.13.
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procedure Initialize: G1, G2, G3, G4

pars←$ P(1k) ; (pk, sk)←$K`(pars)
Return pk

procedure Corrupt(I): G2, G3

For i ∈ I do:
r′[i]←$ Open∞(pars, pk,m[i], c[i])

Return m[I], r′[I]

procedure Sample(α): G3, G4

m←$M(1k, α)
For ` = 1 . . . |m| do:

r[`]←$ CoinsE(pars, pk) ; z[`]← 0|m[`]|

c[`]← E(pars, pk, z[`] ; r[`])
Return c

procedure Corrupt(I): G4

For i ∈ I do:
r′[i]←$ Open(pars, pk, sk,m[i], z[i], r[i], c[i])

Return m[I], r′[I]

Figure 5.13: Games for proof of Theorem 5.5.2.

First, recall that

Advsem-sro
A,S,AE,M,R(k) = Pr

[
SROSEMA

AE,M,R,k ⇒ 1
]
− Pr

[
IdSM,R,k ⇒ 1

]
. (5.16)

We let game G0 be identical to game SROSEMAE,M,R,k. Game G1 differs from G0

only in that Initialize uses the lossy key generation algorithm K` instead of K. It

is easy to see that there exists an efficient KEYIND adversary B such that

Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ] ≤ Advkey-ind
B,AE,K`

(k) . (5.17)

Adversary B, given a challenge public-key pk∗ that is either real or lossy, runs

adversary A as in game G0, but with the challenge key pk∗ as input.
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Adversary C(pars, pk):

Run A(pars, pk).

On query Sample(α):

m←$M(1k, α)
For ` = 1 . . . |m| do:

z[`]← 0|m[`]|

c[`]← LRC(m[`], z[`])
Return c

On query Corrupt(I):

For i ∈ I do:
r′[i]←$ Open∞(pars, pk,m[i], c[i])

Return m[I], r′[I]

When A halts with output w,
halt and output R(1k,m, I, w, α)

Figure 5.14: Adversary used in the proof of Theorem 5.5.2.

Next, we change G1 into G2 by changing the Corrupt procedure so that on a query

I, instead of returning the actual coins r[I] used in Sample, it finds equally-likely

coins r′[I] that still open the ciphertexts to the actual messages. It does this by

running the (possibly unbounded) opening algorithm Open∞. Since these coins

are just as likely given the view of the adversary, it follows that the games are

identical from the adversary’s point of view and

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] . (5.18)

The next game, G3, modifies the Sample procedure to encrypt dummy messages

of the appropriate length instead of the messages sampled by M. However, im-

portantly, Corrupt still opens the ciphertexts to the actual messages sampled by

M (by again using Open∞). We can bound the gap between games G2 and G3

using the ind-cpa advantage of an unbounded adversary against the hiding scheme

Hid = (P ,K`, E). To see this, first consider adversary C, playing game INDCPA,

and shown in Figure 5.15. If the challenge bit is 0, C perfectly simulates game

G2 for A, while if the challenge bit is 1 C perfectly simulates game G3. Thus, it
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Simulator S(1k):

pars←$ P(1k)
(pk, sk)←$K`(pars)
Run A(pars, pk).

On query Sample(α):

z← SampleS(α)
For ` = 1 . . . |z| do:

r[`]←$ CoinsE(pars, pk)
c[`]← E(pars, pk, z[`] ; r[`])

Return c

On query Corrupt(I):

m[I]← CorruptS(I)
For i ∈ I do:

r′[i]←$ Open(pars, pk, sk,m[i], z[i], r[i], c[i])
Return m[I], r′[I]

When A halts with output w,
halt and output w

Figure 5.15: Simulator used in the proof of Theorem 5.5.2.

follows that

Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ] ≤ Advind-cpa
C,Hid (k) , (5.19)

where adversary C makes n queries to LR. Applying Proposition 2.4.1, there is

an unbounded adversary D such that

Pr
[
GA

2 ⇒ 1
]
− Pr

[
GA

3 ⇒ 1
]
≤ n(k) ·Advind-cpa

D,Hid (k) , (5.20)

where D makes only one LR query in game IND.

The final game transition is to game G4, where the Corrupt procedure (shown

in Figure 5.13) uses the efficient opening algorithm Open instead of the poten-

tially unbounded opening algorithm. Algorithm Open takes a few extra inputs,

which the game chooses. Since algorithms Open∞ and Open have the same output



101

distribution, the view of an adversary playing the game is identical and we see that

Pr
[
GA

3 ⇒ 1
]

= Pr
[
GA

4 ⇒ 1
]
. (5.21)

Finally, we note that running game G4 with adversary A is the same as running

game Id with simulator S, shown in Figure 5.15, meaning that

Pr
[
GA

4 ⇒ 1
]

= Pr
[

IdSM,R,k ⇒ 1
]
. (5.22)

This is because S only needs the message length in Sample (which it can get

from its own Sample oracle) and actual sampled messages are not needed until

Corrupt, where they can be learned by S by querying its own Corrupt oracle.

Also in Corrupt, S can run the efficient opening algorithm Open since S chooses

all of the inputs to Open.

Combining the above equations, we can see that

Advsem-sro
A,S,AE,M,R(k)

= Pr
[

SROSEMA
AE,M,R,k ⇒ 1

]
− Pr

[
IdSM,R,k ⇒ 1

]
= Pr

[
GA

0 ⇒ 1
]
− Pr

[
GA

4 ⇒ 1
]

= (Pr
[
GA

0 ⇒ 1
]
− Pr

[
GA

1 ⇒ 1
]
) + (Pr

[
GA

1 ⇒ 1
]
− Pr

[
GA

2 ⇒ 1
]
) +

(Pr
[
GA

2 ⇒ 1
]
− Pr

[
GA

3 ⇒ 1
]
) + (Pr

[
GA

3 ⇒ 1
]
− Pr

[
GA

4 ⇒ 1
]
)

≤ Advkey-ind
A,AE,K`

(k) + 0 + n(k) ·Advind-cpa
D,Hid (k) + 0

which proves the theorem.

5.6 Conclusion and Additional Information

In this chapter we investigated PKE security under selective opening at-

tacks. We saw that revealed randomness failures lead to the main technical dif-

ficulties in this setting. Our main technical contribution was showing that lossy

encryption schemes can be proven secure against selective opening attacks.
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Credits. An earlier version [17] of the material in this chapter appeared as part

of work appearing in the Proceedings of EUROCRYPT 2009, copyright IACR, and

co-authored with Mihir Bellare and Dennis Hofheinz. I was a primary researcher

for this work.
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