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COMMENTARY

Variant Interpretation: Functional Assays to the Rescue

Lea M. Starita,1,* Nadav Ahituv,2,3 Maitreya J. Dunham,1 Jacob O. Kitzman,4,5 Frederick P. Roth,6,7,8,9

Georg Seelig,10,11 Jay Shendure,1,12 and Douglas M. Fowler1,13,*

Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals

with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits.

Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many

computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic

variants with the high confidence that is required in the clinic. Experimentally measuring a variant’s functional consequences can pro-

vide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here,

we discuss howmultiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in

disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with

machine learning and clinical knowledge for the development of ‘‘lookup tables’’ of accurate pathogenicity predictions. A coordinated

effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the

variant-interpretation crisis.
Introduction

Technological advances are making the

routine sequencing of human genomes

increasingly practical, including in

clinical settings. However, our inability

to interpret the clinical consequences

of genetic variants discovered by

sequencing remains a critical roadblock

to the progress of precision medicine.

The scale of the interpretation problem

is massive: about nine billion single-

nucleotide variants (SNVs) are possible,

not including indels and copy-number

variants. Each variant can be found

in the heterozygous or homozygous

state, and there are an effectively infin-

ite number of variant combinations.

4.6 million missense variants have

already been found in the �140,000

exomes and genomes in the Genome

Aggregation Database (gnomAD),1

and 99% of these missense variants

are rare (minor allele frequency

< 0.005). Although many of these

variants occur within genes that are

already implicated in human disease,

only 2% have a clinical interpretation

in ClinVar2 (Figure 1A, left). Unfortu-
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nately, over half of the interpreted var-

iants are considered variants of uncer-

tain significance (VUSs) (Figure 1A,

right), which are ‘‘trapped in the inter-

pretive void’’ between benign and

pathogenic.3 Each of the variants that

have been previously detected, as well

as the billions of variants that might

be identified in the future as genome

sequencing becomes ubiquitous, could

be benign, pathogenic, or of intermedi-

ate effect by virtue of affecting the

function or expression patterns of dis-

ease-associated genes.

Genome-wide association studies

(GWASs) and expression quantitative

trait locus (eQTL) analysis can link

variants with disease. However, their

scope has largely been limited to com-

mon variants because they require ac-

curate estimation of the differences in

allele frequency between groups of

affected and control subjects.4,5 Rare

variants in a gene can be aggregated

for tests of gene-disease association.

Although such burden tests can point

to genes that harbor disease-causing

variants, they do not provide clear in-
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terpretations for the individual rare

variants.

Historically, when a rare or de novo

genetic variant was observed in a gene

that was already implicated in an indi-

vidual’s phenotype, the variant was

deemed causal. As increasing numbers

of individuals are sequenced, avoiding

inaccurate interpretations will require

sounder strategies, even for Mende-

lian disorders.6 A major opportunity

for clinical genetics lies in ‘‘action-

able’’ genes (e.g., BRCA1 [MIM:

113705] and breast cancer [MIM:

604370]), where knowledge of a path-

ogenic variant provides the evidence

for changes in medical manage-

ment.7 Except for obviously patho-

genic nonsense and canonical splice-

site variants, newly observed variants

in actionable genes do not usually

have enough evidence to be classified

as either pathogenic or benign and are

therefore interpreted as VUSs. A VUS

can be confusing for patients and phy-

sicians because it creates uncertainty

and cannot be used for guiding diag-

nosis or management.8
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Figure 1. Many Rare Missense Variants Have Been Discovered, and Most Are Presently
Variants of Uncertain Significance (VUSs)
(A) There are 4.6 million missense variants in the Genome Aggregation Database
(gnomAD) (left). The vast majority of these variants are not in ClinVar and have no clin-
ical interpretation. The plurality of variants in ClinVar are variants of uncertain signifi-
cance (right). Variants with both likely benign and benign reports are categorized as likely
benign in this plot. Variants with both likely pathogenic and pathogenic reports are cate-
gorized as likely pathogenic in this plot. The data in this plot were taken from the
February 28, 2017, release of gnomAD1 and the April 5, 2017, release of ClinVar.2

(B) The number of registered tests correlates with the number of missense variants (Spear-
man’s r ¼ 0.61), VUSs (bubble size), and conflicting significance reports (bubble color).
The data in this plot were taken from the April 5, 2017, ClinVar variant summary and
summary of conflicting interpretations.
Various strategies exist for over-

coming the challenges posed by

VUSs and include family segregation,

computational variant-effect predic-

tion, data sharing, and functional

assays. Currently, only computational

prediction can provide evidence

for variant interpretation at the

necessary scale. However, different

computational prediction algorithms

often give conflicting information.9,10
316 The American Journal of Human Genetics
Furthermore, a recent evaluation of

predictor performance on 21 human

disease-associated genes revealed that

at sensitive thresholds detecting 90%

of pathogenic variation, false predic-

tions are made 30% of the time.11 At

more stringent thresholds yielding er-

rors 10% of the time, only 20% of

pathogenic variants are captured.

Because of this lack of consistency

and poor performance, computational
101, 315–325, September 7, 2017
predictions are not considered strong

evidence for or against pathoge-

nicity.8 Another strategy is to broadly

share observations regarding specific

rare variants with the clinical genetics

community. Although such data-

sharing efforts are laudable, they will

not produce information for most

newly observed variants, many of

which will only ever be found in a

small number of individuals. A final

strategy is functional assessment in a

well-validated assay. Functional data

constitute one of the strongest types

of evidence for classifying a variant as

pathogenic or benign,8 so functional

assays represent a viable strategy for

overcoming the VUS challenge.

However, functional assays have

traditionally been applied to each

VUS as it is encountered in an individ-

ual. The rapid rate of VUS discovery

makes this post hoc, one-at-a-time

approach impractically expensive

and too slow to benefit the individual

in whom the variant was found. Thus,

functional assays should instead be

implemented in a comprehensive

and systematic fashion. Specifically,

we envision measuring the effect of

every possible nucleotide substitution

at all clinically relevant loci in the

human genome a priori. The result

would be a comprehensive atlas of

functional data to facilitate variant

interpretation.

The advent ofmultiplexed assays for

variant effect (MAVEs), in which func-

tional data are collected for massive

numbers of variants in a single experi-

ment, makes this goal feasible.12

MAVEs work by directly linking the ge-

notype of each variant to its effect in

a functional assay. This linkage en-

ables the use of DNA sequencing for

scoring each variant simultaneously.

For example, massively parallel re-

porter assays (MPRAs) query the effects

of regulatory DNA variants on

the expression of reporter genes,13

whereas splicing assays reveal variant

effects on mRNA processing.14,15 The

effect of variants on mRNA stability

and translation can also be measured

by multiplex assays.16–18 Finally, deep

mutational scans query the effect of

amino acid substitutions on protein



function.19 Because these multiplexed

functional assays have the capacity to

test 104–106 variants per experiment,

they are already at the scale required

for tackling the VUS problem.

A small number of MAVEs have

already been conducted on clinically

relevant functional elements. For

example, measurement of the effect

of nearly all possiblemissense variants

of the RING domain of BRCA1 and

the full open reading frame of PPARG

(MIM: 601487) generated functional

data that were used for accurately

predicting pathogenicity.20,21 Assess-

ment of tens of thousands of eQTL-

adjacent, and therefore possibly func-

tional, transcriptional regulatory

variants revealed a few hundred that

influenced expression.22 These exam-

ples illustrate how the rich and

comprehensive datasets that MAVEs

produce can generate predictions

that are much more accurate than

those of currently available variant-ef-

fect-prediction algorithms.

Here, we describe how functional

elements in the genome might be

prioritized for MAVEs, how MAVEs

could be applied genome-wide, how

MAVE data might be used for predict-

ing pathogenicity, and the challenges

that we anticipate will arise from

bringing MAVE results into the clinic.

We also propose the initiation of a

community-wide effort to develop an

atlas of functional data to empower

variant interpretation.

Prioritization of Functional

Elements

The genome contains functional ele-

ments, which are discrete segments

of the genome such as enhancers,

promoters, and coding sequences.23

Of all the functional elements

in the genome, which should be

subjected to MAVEs for ensuring

maximum clinical utility? Our pro-

posed heuristic for clinical impor-

tance combines an assessment of

whether knowledge of pathogenic

variants in the functional element is

actionable, the likelihood that the

effect of a large number of VUSs

will be clarified, and the feasibility

of applying MAVEs.
Significant effort has already gone

into identifying actionable genes,24

and these genes should have the high-

est priority. For example, the Amer-

ican College of Medical Genetics

(ACMG) identified 59 genes in which

pathogenic variants are action-

able25,26 and recommends that inci-

dentally discovered pathogenic vari-

ants in these genes be returned to

the individual. In another example,

the Clinical Pharmacogenomics Im-

plementation Consortium (CPIC)

identified 17 genes in which variants

can be used to inform dosing because

they alter the efficacy or side effects

of drugs.27 In addition to highly

actionable genes, genes with large

numbers of conflicting reports of clin-

ical significance in ClinVar should also

be prioritized, given that functional

data for variants in these genes could

immediately be used to help resolve

the conflicting reports. Finally, the

number of NIH-registered genetic tests

for a given gene is a useful proxy for its

current clinical testing volume and for

the likelihood of identifying addi-

tional VUSs (Figure 1B).28 Genes with

large numbers of registered tests

and existing VUSs are clearly in need

of additional variant-interpretation

support.

A recent publication weighed medi-

cal value, conflicting reports of clinical

significance, and testing volume as

criteria for identifying genes for func-

tional study.29 We suggest that MAVEs

for these genes be prioritized. For

example, these metrics highlight

BRCA2 (MIM: 600185) as a high-prior-

ity gene. Pathogenic BRCA2 variants

are clinically actionable. 208 BRCA2

registered tests have revealed 2,537

missense variants, of which 1,897

(75%) remain VUSs. BRCA2 also has

326 variants with conflicting reports of

clinical significance. The promoter and

distal elements that regulate BRCA2

expression can be interrogated via

MPRA, and existing low-throughput

functional assays for BRCA2 transcript

splicing and protein function could be

multiplexed.30

For other genes, practical consider-

ations such as coding-sequence length

or the anticipated difficulty of devel-
The American Journal of Human Gene
oping a MAVE can diminish priority.

For example, variants in TTN (MIM:

188840) can cause dilated cardiomy-

opathy (MIM: 604145). TTN is an

otherwisehigh-priority gene, but it en-

codes a massive �36,000 aa protein

with multiple isoforms, presenting a

major challenge for assay devel-

opment.

Beyond the ACMG and CPIC exam-

ples, thousands of functional ele-

ments have already been linked to

disease through decades of research,

and more links will be discovered—

so, too, will the number of elements

for which variants are actionable. In

addition to the possibilities high-

lighted here, MAVEs could be applied

to functional elements that show

depletion of variation in the popula-

tion or elements associated with

tumorigenesis.

Annotating Every Possible Variant

in Disease-Related Functional

Elements

MAVEs can be used to produce an

atlas of the effects of variation in func-

tional elements in the human

genome (Figure 2). Different MAVE

strategies have been developed, but

they share a common framework. Var-

iants are synthesized, introduced into

a model system, and selected for a

phenotype of interest. The effects of

each variant in the assay are deter-

mined by library sequencing, which

reveals the frequency of each variant

before and after selection. Some as-

pects of MAVEs, namely library syn-

thesis and sequencing, are relatively

well established and have been

described extensively.12,13,31–33 Here,

we focus on the aspects that are crit-

ical for the goal of prospectively inter-

preting human genetic variation.

MAVEs can be divided into cate-

gories according to the type of variant

they are designed to interrogate: pro-

tein-coding variants, splice variants,

or transcriptional regulatory variants.

In ideal assays, known pathogenic

and benign variants would have large

differences in their measured func-

tional effects. Other important issues

include assay reproducibility, scalabil-

ity, cost, and complexity.
tics 101, 315–325, September 7, 2017 317
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Figure 2. Multiplex Assays of Variant Effect (MAVEs) Could Provide Functional Data for Most Variants in the Genome
A set of MAVEs are shown for a hypothetical locus in the genome. In a MAVE, variants are synthesized, introduced into a model system,
selected for a phenotype of interest, and sequenced for a readout of the effects of each variant in the assay. Variants in regulatory ele-
ments, such as enhancers, can be investigated by massively parallel reporter assays (MPRA) or self-transcribing active regulatory region
sequencing (STARR-seq). Variants in coding regions can be investigated by deepmutational scanning (DMS) or splicing assays. The result
of a MAVE is a sequence-function map describing the functional effects of every possible SNV in the functional element. Example
sequence-functionmaps are shownwith genome positions as columns and possible nucleotide substitutions as rows.Wild-type-like var-
iants are shown in red, and loss-of-function variants are shown in blue; gray indicatesmissing data, and wild-type nucleotides are shown
as gray dots.
So far, assays for protein-coding var-

iants have been designed to interro-

gate each variant’s effect on a specific

function of a particular protein. For

example, a PPARg-specific MAVE was

used to discriminate between patho-

genic lipodystrophy variants and

high-frequency, most likely benign

variants (FPLD3 [MIM: 604367]).21

Stimulation with PPARg agonists

leads to enhanced uptake of oxidized

low-density lipoprotein via transcrip-

tional induction of CD36 expres-

sion.34 The effect of all possible PPARg

SNVs on the expression of CD36 in

response to multiple agonists was

measured in macrophages. Protein-

specific assays, such as the one for

PPARg function, can be highly accu-

rate, but developing them is costly

and time consuming. Measuring a

specific protein function might also

reveal only part of the picture by

missing variants that negatively affect

other aspects of a protein’s function.

An ideal approach is to develop

many different MAVEs for specific

functions of each protein of interest.

Indeed, this approach is warranted

for high-priority genes such as
318 The American Journal of Human Genetics
BRCA1 and BRCA2, both of which

encode complex proteins with multi-

ple domains and binding partners.

Expert panels exist for many genes

associated with disease risk, and they

could and should be consulted to pro-

vide guidance for assay design.

However, developing specificMAVEs

for every disease-relevant protein is, for

now, prohibitively time and resource

intensive. Therefore, generalizable

large-scale assays for an informative

phenotype are needed. Steady-state

protein abundance is an example of

such a phenotype: most coding vari-

ants that destabilize the protein also

cause a decrease in steady-state abun-

dance.35 Examples of genes with vari-

ants that principally affect protein

abundance include tumor suppressors

(e.g., TP53 [MIM: 191170]) and genes

that underlie Mendelian diseases (e.g.,

CFTR [MIM: 602421]).35–37 A yeast

metabolic reporter fusion assay for

variant stability has already been

developed.38 A similar assay could be

developed in human cells. However,

measuring steady-state abundance

will be difficult for proteins that oligo-

merize or are found in complexes.
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Furthermore,many variants are patho-

genic by a mechanism other than loss

of abundance. Therefore, assays of

steady-state abundance could be com-

binedwith assays for other informative

molecular phenotypes such as protein

localization, temperature sensitivity,

aggregation, or turnover rate.

Another example of a generalizable

assay is genetic complementation, in

which variants are introduced into a

model system where growth is depen-

dent on variant activity. In one

example, the effect of 179 variants of

22 human disease-related genes were

quantified in a yeast complementa-

tion assay.11 The functional data

from the complementation assays

distinguished known pathogenic and

benign variants with higher precision

and specificity than computational

variant-effect predictions. In another

example, saturation genome editing

in a haploid human cell line was

used for measuring the effects of

most SNVs in a portion of the essen-

tial gene DBR1 (MIM: 607024).15

In addition to complementation as-

says, cell-based protein-protein inter-

action assays could be applied in a



general fashion to probe the effects of

variants on disease-related interac-

tions. This approach is bolstered by

the fact that surveys of protein-pro-

tein interactions have revealed many

interactions that, when disrupted,

are deleterious.39–44 Moreover, pro-

tein interactions can reveal defects in

protein folding and stability, which

helps to explain why approximately

one-third of disease-related variants

in proteins with multiple interaction

partners disrupt all of the interactions

of that protein.45

Variants of protein-coding genes

can also result in pathogenicity by

altering splicing. 35% of all variants

in disease-related genes have been

suggested to directly affect splicing

by modifying cis-regulatory ele-

ments.46 Splicing and other RNA-

processing steps such as alternative

polyadenylation are particularly well

suited for investigation through

MAVEs because distinct isoforms

can be counted directly with RNA

sequencing. MAVEs for splicing have

already been implemented for both

direct genome editing15 andminigene

assays.14,47,48 MAVEs have also been

developed to probe the effects of

variants in untranslated regions of

mRNAs on message stability and pro-

tein expression.16–18

Variation in transcriptional regula-

tory elements is also important, and

pathogenic regulatory variants have

been identified for a number of Men-

delian disorders.49–52 One specific

example is the alteration of SORT1

(MIM: 602458) expression by a tran-

scriptional regulatory variant that

can increase the risk of myocardial

infarction by 40%.53 However, the

relationship between variation and

disease in transcriptional regulatory

elements is poorly understood. The

variant for which association is re-

ported is often benign. The actual

pathogenic variant is only one of

many variants in linkage disequi-

librium with the disease-associated

variant, and the pathogenic and

associated variants are often quite

distant.54 Therefore, MPRA, a type of

MAVE that enables the multiplex

testing of variants for gene regulatory
effects, is a crucial assay both for deci-

phering the regulatory grammar of

the genome and for elucidating the

role that each variant plays in disease.

In an MPRA, candidate regulatory

sequences are cloned into a standard

promoter or enhancer assay vector

and are linked to a short, transcribed

DNA barcode. All candidates can

then be tested simultaneously via

measurement of barcode expression

by RNA sequencing after DNA copy

number is normalized. Several ver-

sions of this technology have been

developed to improve throughput, as-

sayed sequence length, nucleotide

variant testing, genomic integration,

andmore.13,55–57 For example, MPRAs

have been used to quantify the effects

of more than 100,000 variants of

three liver enhancers.58 MPRAs have

also been used to simultaneously test

thousands of variants associated with

eQTLs22 or variants in linkage disequi-

librium with lead SNPs from GWASs

for red blood cell traits.59 Another

noteworthy adaptation of MPRAs

is population-scale self-transcribing

active regulatory region sequencing

(POPSTARR), in which candidate reg-

ulatory elements from numerous indi-

viduals are cloned via DNA sequence

capture and tested in parallel.60 How-

ever, regulatory grammar is not fully

understood, and MPRAs take tran-

scriptional regulatory elements out

of their genomic and native chro-

matin context. These factors compli-

cate the interpretation of MPRA

results.

Limitations of MAVEs and How to

Overcome Them

MAVEs can measure the effect of vari-

ants in both protein-coding and non-

coding regions of the genome and

could immediately be deployed

broadly. However, despite the power

of MAVEs to map the relationship be-

tween sequence and function, there

are limitations. First, MAVEs must

either be cell based or be conducted

in vitro with yeast, phage, or ribosome

display. Thus, genes whose products

act extracellularly or functional ele-

ments involved in multicellular pro-

cesses such as development present a
The American Journal of Human Gene
challenge. However, in many cases,

a MAVE can still be devised. For

example, in vitro assays of stability

or protein interaction could be used

to assess secreted proteins. New

methods of creating and phenotyping

large libraries of multicellular organ-

isms such as worms, flies, fish, or

mice could also help to overcome

this challenge.

Second, MAVEs in their current im-

plementations take functional ele-

ments out of their endogenous

genomic and cellular contexts. This

loss of context could require more

extensive validation of MAVE results

for determining which aspects of

function are captured faithfully. How-

ever, there are also many avenues for

improvement of context fidelity. For

example, genome-editing technolo-

gies are evolving, enabling the vari-

ants to be made and tested in their

endogenous genomic context.15,61,62

To capture cellular context, MAVEs

can be performed in a cell type that

is as close as possible to the disease-

relevant one. A more general solution

to the context problem might be to

collect MAVE data for each functional

element in a panel of different cell

types and assays. Combining these

data could result in more accurate

and context-specific inferences about

variant effects. For example, in the

ENCODE project, data from different

cell lines revealed cell-type-specific

chromatin states. Measurements in a

sufficient number of different cell

types can reveal the dependency of

chromatin state on cell type.63 We

note that, presently, MAVEs must be

performed in cells that can be effi-

ciently transfected or transduced.

Thus, many, but not all, cells are

compatible with MAVEs.

Third, even with MAVEs, we face

a problem of scale. Generalizable

MAVEs help to address this problem,

but presently, only a few generalizable

assays exist. Fortunately, assay design

is only limited by imagination. For

example, single-cell RNA sequencing

has been used for multiplex quantifi-

cation of the impact of Cas9-mediated

gene deletions.64,65 As our ability to

capture genome sequences and RNA
tics 101, 315–325, September 7, 2017 319



transcripts from single cells improves,

the effect of variants on the transcrip-

tome or chromatin-accessibility land-

scape could be discerned in a compre-

hensive manner. Single-cell genomic

assays could be generalizable to most

functional elements and allow new

classes of proteins and noncoding se-

quences to be assessed.

Another way to address the scale

problem is to use the increasingly

rich set of MAVE datasets to build

the next generation of variant-effect

predictors. For example, DeepBind is

an algorithm that uses deep learning

to predict the sequence specificity of

RNA- and DNA-binding proteins.66

DeepBind is trained on MAVE data,

including DNA-binding assays such

as SELEX, protein-binding microar-

rays, and RNA-binding assays such as

RNAcompete.67–69 MAVE data can

also be useful in evaluating new pre-

dictive tools, as was done for EVmuta-

tion, which predicts variant effects in

proteins from co-variation in multi-

ple-sequence alignments.70

Predictive models can also be

trained on MAVE results from fully

random libraries, as opposed to li-

braries of SNVs. Functional data from

random libraries can be extremely

informative, revealing general pat-

terns. For example, the splicing pat-

terns of nearly two million synthetic,

alternatively spliced minigenes were

recently measured.14 These patterns

were used to train a model of alterna-

tive splicing, which strongly outper-

formed other models. The quality of

the model can be traced to the larger

size of the training dataset than of

the number of splice events that natu-

rally occur in the genome.

A fourth limitation of MAVEs is that

the data they produce can be noisy.

The most effective way to prevent

erroneous variant interpretations

owing to noisy data is through proper

experimental design and quantifica-

tion of the uncertainty associated

with each measurement. Inclusion of

appropriate positive and negative

controls in these assays can also assist

in reducing background noise. MAVE

technologies are new and rapidly

expanding, so consensus on proper
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experimental design and data analysis

is evolving. However, models for

computing error estimates that

consider sampling noise and the dis-

tribution of scores for variants be-

tween replicate experiments are

available.71,72 As the field moves for-

ward, unification of data analysis

and error-estimation methods will

enable comparisons of data quality

across MAVEs just as it has for earlier

technologies.73

Fifth, interpretation of MAVE re-

sults can be complicated by interac-

tions between variants in different

functional elements or between vari-

ants and environmental effects. Inter-

genic epistatic effects can be impor-

tant but are often ignored. For

example, the lifetime risk for breast

cancer in BRCA1 carriers can range

from 28% to 50% for those in the

lowest risk group depending on

genetic background, whereas the

range for the highest risk group is

81%–100%.74 For investigating epis-

tasis, MAVEs could be adapted to

explicitly measure combinations of

variants in different functional ele-

ments. However, the combinatorial

nature of this approach means that it

becomes unmanageable as more loci

are added. One solution is to combine

MAVEs with approaches such as a

genome-wide knockout screens to

reveal variant-gene epistatic relation-

ships. Interactions between variants

and the environment could be

explored in some cases with the use

of experimental perturbations. For

example, repeating a MAVE in the

presence or absence of growth factors

or under different stress conditions

could be informative. Environmental

effects might be learned via the anal-

ysis of variant data in the context of

electronic health records, which are

becoming more available.

Sixth and finally, MAVEs have

mostly been applied for determining

the impact of SNVs. However, copy-

number variation, including large

duplications or deletions, can also pro-

foundly influence health. The develop-

ment of Cas9-mediated genome-wide

gene knockout75,76 and overexpres-

sion77 screening highlights howmulti-
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plex assays could be used for under-

standing the effects of copy-number

variation. These assays quantify the ef-

fect of single-gene deletion or overex-

pression. Cas9 can also be used to

delete larger regions, leading to a

better understanding of the effects of

copy-number variation.78,79 However,

breakpoints will have to be carefully

chosen given that an effectively infin-

ite number of copy-number variants

are possible.

How Should MAVE Data Be Used to

Provide Evidence for Variant

Pathogenicity?

As MAVEs are increasingly used to

comprehensively measure the effects

of variants in disease-related func-

tional elements, the next question is

how MAVE data should be used to

provide evidence for variant pathoge-

nicity. Answering this question is a

central challenge because it is clear

that clinical laboratories are currently

having trouble with using functional

data to agree on variant interpreta-

tions.80 The large scale of MAVE data

provides several key advantages that

could help alleviate the problematic

nature of using functional data

for interpretation. First, all variants

within a MAVE are tested simulta-

neously so that measurements for

different variants are readily compara-

ble to each other, whereas one-at-a-

time assays are performed by different

personnel in different research labs at

different times. Second, the compre-

hensive nature of MAVE data means

that they can be validated through

assessment of their sensitivity to and

specificity for the correct identifica-

tion of variants of known clinical ef-

fect or by comparison to the results

of other low-throughput, gold-stan-

dard assays. A third, more practical

advantage is that all MAVEs could be

made available through a central data-

base, which would ameliorate the

need to manually hunt for data in

publications.

If a reasonable number of variants

with known clinical effects are avail-

able for a given functional element,

machine learning with MAVE data as

features can be used for quantifying



the likelihood of variant pathoge-

nicity. For example, PPARg MAVE

data were used for training a classi-

fier that maximized discrimination

between a set of pathogenic lipo-

dystrophy variants and a set of high-

frequency, most likely benign vari-

ants.21 The classifier was then used

for predicting the probability of

variant pathogenicity for 42 rare, pre-

viously unseen PPARg variants. The

probability of pathogenicity, deter-

mined from the MAVE data, was com-

bined with lipodystrophy prevalence

for estimation of a pathogenicity

odds ratio for each variant. Post hoc

validation revealed that individuals

carrying variants with high pathoge-

nicity odds ratios were likely to

display clinical features of lipodystro-

phy. Furthermore, individuals car-

rying variants with low pathogenicity

odds ratios did not have clinical fea-

tures of lipodystrophy, and these vari-

ants were indistinguishable from the

wild-type in standard PPARg reporter

assays.

The PPARg work highlights how

MAVE data could be used in the

context of work led by ClinGen and

disease-specific working groups such

as ENIGMA and InSiGHT toward

building probabilistic models for

variant interpretation.24,27,81,82 These

models incorporate various types of

evidence, including phenotype and

family history, pathology and clinical

testing data (e.g., imaging and echo-

cardiography), allelic observations

(i.e., the co-occurrence of variants

in cis or trans), familial segregation

and de novo occurrence, data on

population frequency, functional as-

says, and predictive algorithms. Ulti-

mately, MAVE-derived probabilities

of pathogenicity could be incorpo-

rated into these models as well.83 In

contrast to the current variant-by-

variant approach, MAVE-driven ‘‘pre-

computation’’ of the likelihood of

pathogenicity will benefit from the

fact that multiple variants that exhibit

the sameMAVE phenotype (or a given

range for a quantitative phenotype)

can be binned for the purpose of esti-

mating their likelihood of pathoge-

nicity.
Assay validation will be different de-

pending on the gene and the clinical

outcomes. For example, it is of critical

importance that MAVEs for genes

such as BRCA1 and BRCA2 have both

high sensitivity and specificity because

a misclassified variant could lead to

life-altering prophylactic surgeries or a

missed opportunity for cancer preven-

tion for an entire family. For other

genes, less stringent validation might

be acceptable. For some pharmaco-

genes, itmight be advisable to compro-

mise some specificity for the increased

sensitivity required for identifying all

possible individuals who might be at

risk of a drug overdose because alterna-

tive drugs are available.84

The validation strategies we have dis-

cussed thus far require variants of

known effect for assessment of the

sensitivity and specificity of a given

MAVE. However, most functional ele-

ments have few or no variants of

known clinical effect. For these func-

tional elements, the strategy would be

more complex, and MAVE data would

need to be used more cautiously.

Although imperfect, MAVE data could

be validated through testing of tens of

variants in low-throughput, gold stan-

dard assays. Another option when

each functional element has only a

few variants of known clinical effect

would be to conduct pooled MAVE

validation. Just as the performance of

minor-allele-frequency based inference

of non-pathogenicity can be validated

with variants from many genes,1

MAVE performance could be assessed

with a pooled set of variants of known

clinical effect from all functional ele-

ments of the same type.

Finally, MAVE data could be used

for nominating variants for deeper

clinical phenotyping. Here, the goal

would be to generate enough valida-

tion data to determine the degree to

which the MAVE results are associated

with pathogenicity. Even without

such validation, clinical geneticists

might still find MAVE data useful

when they interpret new variants.

For example, an MPRA measurement

could show that a suspicious variant

causes a large decrease in transcrip-

tion, or a deep mutational scan might
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indicate that the variant protein is

completely unstable and therefore

likely to be nonfunctional. Ulti-

mately, generation of MAVE data and

clinical phenotyping of variants

constitute a virtuous cycle. We expect

that precision medicine and other

clinical genetics initiatives around

the world will rapidly increase the

number of variants with well-estab-

lished clinical effects.

A related challenge is that the use of

functional data as evidence presup-

poses a clear relationship between a

functional element and a disease.

Thanks to efforts in many fields, our

knowledge of the relationships be-

tween functional elements and dis-

ease is growing rapidly. For example,

sequencing of trios with Mendelian

disease, comparison of tumor and

normal tissue, GWASs, eQTL analyses,

and various functional genomics ef-

forts have all helped to reveal an

astonishing number of these relation-

ships. In some cases, the nature of the

relationship is relatively simple. For

example, in many pharmacologically

relevant genes, loss of gene expression

or protein activity directly alters drug

metabolism.84 In these cases, the

strategy outlined above can be applied

in a straightforward fashion.

In other cases, the relationships be-

tween a functional element and dis-

ease are more complex. For example,

germline variants in the tumor sup-

pressor PTEN (MIM: 601728) can

cause Cowden syndrome (MIM:

158350) and can also confer an

increased risk of autism.85,86 In addi-

tion, somatic PTEN variants appear

to drive tumorigenesis, especially

for endometrial and brain cancer.87

These complex relationships could

be disentangled with the use of multi-

ple MAVE datasets generated from a

variety of distinct assays in different

cell types. Each of these datasets could

reveal a part of the puzzle, and the

main analytical challenge would

be to integrate them into uniformly

applicable, easily understood evi-

dence for use in the clinic. However,

deciphering the relationship between

variant effects in a functional assay

and pathogenicity is one of the most
tics 101, 315–325, September 7, 2017 321



difficult challenges facing the use of

functional data in the clinic. In some

cases, this relationship will remain

clouded and MAVE data will be of

limited use.

As MAVEs become less expensive,

they could also prove useful in the dis-

coveryofgenesandregulatoryelements

that cause disease when mutated. An

increasingly prevalent strategy in ge-

netics involves comparing the burden

of rare variants in each gene between

case and control subjects. These studies

of variant burden improve their power

by using PolyPhen-2 or other compu-

tational methods to weight variant

counts by the likelihood that the

variant is damaging.4 By generating

more accurate likelihoods of path-

ogenicity for each variant, MAVEs

could further increase the power of

such tests.

Data Dissemination

Our objective is to provide functional

data for every possible variant in all

clinically relevant elements of the

genome as a reference. To have

maximal impact on the interpreta-

tion of individual genomes, all

MAVE data should be available via a

centralized resource. We envision of-

fering multiple views of MAVE data,

each with a different purpose. One

view, aimed at aiding clinical deci-

sions, would integrate all functional

data to provide an easy-to-understand

score that conveys the likelihood

of pathogenicity for each variant.

Another view would provide all the

functional data underlying each

variant score to allow users to better

integrate their own knowledge into

the variant interpretation. This view

would also enable computational bi-

ologists to build the next generation

of variant-effect predictors. The most

detailed view would provide raw

data to enable re-analysis or answer

unanticipated biological questions.

The goal is a universal database where

users can find the right type of infor-

mation on the basis of their intended

application and where each variant is

annotated with functional data, pop-

ulation frequency, and evolutionary

conservation.
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Thus far, the nascent MAVE field

has openly shared variant data. In

many cases, all variants for the func-

tional element in question can be

found in large supplemental tables

available for download from journals.

In a move toward the model described

above, PPARgMAVE data are available

via a user-friendly, interactive website

(see Web Resources). A centralized

database, providing a consistent web

interface, would allow third-party re-

sources (e.g., ClinVar) to reliably link

to aMAVE-based score and underlying

data for each variant.

Privacy protections will require care-

ful consideration, given that queries

for the functional data for individual

variants could inadvertently reveal

personal information. Further consid-

eration of these issues is warranted,

but the obstacles do not seem insur-

mountable. Examples of measures

that could be taken to ensure privacy

include client-side applications that

download MAVE-derived data in

bulk so that individual genotypes

are queried only on the user’s

system. Alternatively, queries could

be sent via encrypted communication

with trusted servers that have secured

logs.

Incentives for data providers to sub-

mit their results to a centralized data-

base could include aggregated usage-

tracking information that provides

evidence of the impact of their work

while still protecting user privacy.

Centralized dissemination would

ideally have licensing procedures

that ensure attribution and (if appro-

priate) intellectual-property rights for

data providers. Appropriate journal

and funding policies requiring data

deposition and open licensing would

provide both publication and funding

incentives for centralized MAVE avail-

ability.

The Goal: A MAVE-Data-Driven

Prediction for Every Variant

Genome-guided precision medicine re-

quires accurate, genome-wide variant

interpretation,which cannot be accom-

plished by traditional approaches. We

envision a community-driven effort

that uses MAVEs to tackle the problem
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of variant interpretation. Presently,

MAVE results are available for a minor

but growing number of human func-

tional elements. Ultimately, we predict

that most disease-related functional

elements will have many different

associated MAVE datasets, much in the

same way that the ENCODE project

has quantified many different chro-

matin features at most positions in the

genome in many different cell types.

Like the ENCODE project, compre-

hensive MAVE data will be useful for

understanding the importance of

each variant and predicting its role in

disease.

Wesuggest a three-prongedapproach

for leveraging MAVEs. First, disease-

specific MAVE datasets should be

collected for the most clinically rele-

vant functional elements. For example,

the set of 59 genes for which the

ACMGsuggests the returnof incidental

results should be studied in detail.

Second, all disease-related functional

elements should be interrogated by

general molecular and cellular MAVEs.

Third, MAVE data should be used

for improving computational predic-

tors of variant effect. Computational

predictors could ultimately be replaced

as MAVE data become available for

all loci, but it seems more likely that

both approaches will co-exist synergis-

tically.

Organizing a community-driven

effort to use MAVEs to tackle the

variant-interpretation problem will

require coordination for unification

of data formats, essential metadata,

quality-control approaches, and pro-

tocols for data distribution. The com-

munity must also ensure that the un-

certainty associated with each score

is assessed fairly and reported consis-

tently. Engagement with clinicians

and clinical laboratories early in the

process is critical for the data to be

maximally useful. A top-down model

where the NIH and other organiza-

tions create a consortiumwhose goals,

methods, and structure are deter-

mined at the beginning is one possi-

bility. Another possibility is a bot-

tom-up model where interested

scientists and clinicians organize

themselves. In either case, the need



for variant functional data is acute,

and MAVEs offer a strong potential

solution. Now is the right time to

begin.
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rion, P., Valcárcel, J., and Lehner, B.

(2016). Nat. Commun. 7, 11558.

49. Zhang, F., and Lupski, J.R. (2015).

Hum.Mol. Genet. 24 (R1), R102–R110.

50. Sakabe, N.J., Savic, D., and Nobrega,

M.A. (2012). Genome Biol. 13, 238.

51. VanderMeer, J.E., and Ahituv, N.

(2011). Dev. Dyn. 240, 920–930.

52. Weedon, M.N., Cebola, I., Patch,

A.-M., Flanagan, S.E., De Franco, E.,

Caswell, R., Rodrı́guez-Seguı́, S.A.,

Shaw-Smith, C., Cho, C.H.-H., Allen,

H.L., et al.; International Pancreatic

Agenesis Consortium (2014). Nat.

Genet. 46, 61–64.

53. Musunuru, K., Strong, A., Frank-Kame-

netsky, M., Lee, N.E., Ahfeldt, T., Sachs,

K.V., Li, X., Li, H., Kuperwasser, N.,

Ruda, V.M., et al. (2010). Nature 466,

714–719.

54. Spain, S.L., and Barrett, J.C. (2015).

Hum.Mol. Genet. 24 (R1), R111–R119.

55. Dailey, L. (2015). Genomics 106,

151–158.

56. Muerdter, F., Bory�n, q.M., and Arnold,

C.D. (2015). Genomics 106, 145–150.

57. Inoue, F., Kircher, M., Martin, B.,

Cooper, G.M., Witten, D.M., McMa-

nus, M.T., Ahituv, N., and Shendure,

J. (2017). Genome Res. 27, 38–52.

58. Patwardhan, R.P., Hiatt, J.B., Witten,

D.M., Kim, M.J., Smith, R.P., May, D.,

Lee, C., Andrie, J.M., Lee, S.-I., Cooper,

G.M., et al. (2012). Nat. Biotechnol.

30, 265–270.

59. Ulirsch, J.C., Nandakumar, S.K., Wang,

L., Giani, F.C., Zhang, X., Rogov, P.,

Melnikov, A., McDonel, P., Do, R., Mik-

kelsen, T.S., and Sankaran, V.G. (2016).

Cell 165, 1530–1545.

60. Vockley, C.M., Guo, C., Majoros,W.H.,

Nodzenski, M., Scholtens, D.M.,

Hayes, M.G., Lowe, W.L. Jr., and

Reddy, T.E. (2015). Genome Res. 25,

1206–1214.

61. Kim, Y.B., Komor, A.C., Levy, J.M.,

Packer, M.S., Zhao, K.T., and Liu, D.R.

(2017). Nat. Biotechnol. 35, 371–376.

62. Gibson, T.J., Seiler, M., and Veitia, R.A.

(2013). Nat. Methods 10, 715–721.

63. Ernst, J., and Kellis, M. (2015). Nat.

Biotechnol. 33, 364–376.

64. Dixit, A., Parnas, O., Li, B., Chen, J.,

Fulco, C.P., Jerby-Arnon, L., Marja-
101, 315–325, September 7, 2017
novic, N.D., Dionne, D., Burks, T., Ray-

chowdhury, R., et al. (2016). Cell 167,

1853–1866.e17.

65. Datlinger, P., Rendeiro, A.F., Schmidl,

C., Krausgruber, T., Traxler, P., Klug-

hammer, J., Schuster, L.C., Kuchler,

A., Alpar, D., and Bock, C. (2017).

Nat. Methods 14, 297–301.

66. Alipanahi, B., Delong, A., Weirauch,

M.T., and Frey, B.J. (2015). Nat. Bio-

technol. 33, 831–838.

67. Ray, D., Kazan,H., Cook, K.B.,Weirauch,

M.T.,Najafabadi,H.S.,Li,X.,Gueroussov,

S., Albu, M., Zheng, H., Yang, A., et al.

(2013). Nature 499, 172–177.

68. Jolma, A., Kivioja, T., Toivonen, J.,

Cheng, L., Wei, G., Enge, M., Taipale,

M., Vaquerizas, J.M., Yan, J., Sillanpää,
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