
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
A linear time, constant space differencing algorithm

Permalink
https://escholarship.org/uc/item/206518xs

Authors
Burns, RC
Long, DDE

Publication Date
1997

DOI
10.1109/pccc.1997.581547

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/206518xs
https://escholarship.org
http://www.cdlib.org/

A LINEAR TIME, CONSTANT SPACE DIFFERENCING ALGORITHM

Randal C. Bums and Darrell D. E. Long

Department of Computer Science
University of California Santa Cruz

Santa Cruz, Califomia 95064

ABSTRACT

An efficient differencing algorithm can be used to com-
press version of files for both transmission over low band-
width channels and compact storage. This can greatly re-
duce network traffic and execution time for distributed ap-
plications which include software distribution, source code
control, file system replication, and data backup and re-
store.

An algorithm for such applications needs to be both
general and efficient; able to compress binary inputs in
linear time. We present such an algorithm for differenc-
ing files at the granularity of a byte. The algorithm uses
constant memory and handles arbitrarily large input files.
While the algorithm makes minor sacrifices in compres-
sion to attain linear runtime performance, it outperforms
the byte-wise differencing algorithms that we have encoun-
tered in the literature on all inputs.

I. INTRODUCTION

Differencing algorithms compress data by taking ad-
vantage of statistical correlations between different ver-
sions of the same data sets. Strictly speaking, they achieve
compression by finding common sequences between two
versions of the same data that can be encoded using a copy
reference.

We define a digerencing algorithm to be an algorithm
that finds and outputs the changes made between two ver-
sions of the same file by locating common sequences to
be copied and unique sequences to be added explicitly. A
delta$le (A) is the encoding of the output of a differenc-
ing algorithm. An algorithm that creates a delta file takes
as input two versions of a file, a base file and a version
file to be encoded, and outputs a delta file representing the
incremental changes made between versions.

Fbase -k Fversion -+ A(base,version) (1)

Reconstruction, the inverse operation, requires the base file
and a delta file to rebuild a version.

One encoding of a delta file consists of a linear array
of editing directives (Figure 1). These directives are copy
commands, references to a location in a base file where

the same data exists, ancl adld commands, instructions to
add data into the version fibe followed by the data to be
added. While there are othex representations [12, 1, 31, in
any encoding scheme, a differencing algorithm must have
found the copies and adds, to Ibe encoded. So, any encoding
technique is compatible with the methods that we present.

Several potential applications of version differencing
motivate the need for a compact and efficient differencing
algorithm. An efficient algorithm could be used to dis-
tribute software over a low bandwidth network such as a
modem or the Internet. Upon releasing a new version of
software, the version could be differenced with respect to
previous version. With compact versions, a low bandwidth
channel can effectively distribute a new release of dynam-
ically self updating software in the form of a binary patch.
This technology has the potential to greatly reduce time to
market on a new version ancl ease the distribution of soft-
ware customizations.

For replication in dislributed file systems, differencing
can reduce by a large factor the amount of information that
needs to be updated by transmitting deltas for all of the
modified files in the replicated file set.

In distributed file system backup and restore, differen-
tial compression would reduce the time to perform file sys-
tem backup, decrease network traffic during backup and
restore, and lessen the storage to maintain a backup image
[7]. Backup and restore can be limited by both bandwidth
on the network, often 10 IMBls, and poor throughput to sec-
ondary and tertiary storage devices, often 500 K B I s to tape
storage. Since resource limitations frequently make back-
ing up the just the changes to a file system infeasible over
a single night or even wleekiend, differential file compres-
sion has great potential to alleviate bandwidth problems
by using available processor cycles to reduce the amount
of data transferred. This teichnology can be used to pro-
vide backup and restore services on a subscription basis
over any network including the Internet.

Differencing has it {origins in both longest common
subsequence (LCS) algol-ithins and the string-to-string cor-
rection problem [131. Some of the first applications of dif-
ferencing updated the screens of slow terminals by sending
a set of edits to be applied locally rather than retransmit-
ting a screen full of data. Another early application was
the UNIX diff utility which used the LCS method to find
and output the changes to a text file. diff was useful for
source code development anid primitive document control.

0-7803-3873-1/97 $1 0.00 0 1997 IEEE 429

Figure 1: The copies found between the base and version file
are encoded as copy commands in the delta file. Unmatched se-
quences are encoded as an add command followed by the data to
be added.

LCS algorithms find the longest common sequence be-
tween two strings by optimally removing symbols in both
files leaving identical and sequential symbols.’ While the
LCS indicates the sequential commonality between strings,
it does not necessarily detect the minimum set of changes.
More generally, it has been asserted that string metrics that
examine symbols sequentially fail to emphasize the global
similarity of two strings [4]. Miller and Myers [6] estab-
lished the limitations of LCS when they produced a new
file compare program that executed at four times the speed
of the diff program while producing significantly smaller
deltas.

The edit distance [101 proved to be a better metric for
the difference of files and techniques based on this method
enhanced the utility and speed of file differencing. The edit
distance assigns a cost to edit operations such as delete a
symbol, insert a symbol, and copy a symbol. For example,
the LCS between strings xyz and xzy is xy, which neglects
the common symbol z . Using the edit distance metric, z
may be copied between the two files producing a smaller
change cost than LCS. In the string-to-string correction
problem [131, an algorithm minimizes the edit distance to
minimize the cost of a given string transformation.

Tichy [101 adapted the string-to-string correction prob-
lem to file differencing using the concept of block move.
Block move allows an algorithm to copy a string of sym-
bols rather than an individual symbol. He then applied the
algorithm to source code revision control package and cre-
ated RCS [111. RCS detects the modified lines in a file
and encodes a delta file by adding these lines and indicat-
ing lines to be copied from the base version of a file. We
term this differencing at line granularity. The delta file is
a line by line edit script applied to a base file to convert
it to the new version. Although the SCCS version control
system [9] precedes RCS, RCS generates “minimal” line
granularity delta files and is the definitive previous work

‘A stringhbstring contains all consecutive symbols between and in-
cluding its first and last symbol whereas a sequencehbsequence may
omit symbols with respect to the corresponding string.

in version control.
While line granularity may seem appropriate for source

code, the concept of revision control needs to be gener-
alized to include binary files. This allows data, such as
edited multimedia, to be revised with the same version
control and recoverability guarantees as text. Whereas re-
vision control is currently a programmers tool, binary revi-
sion control systems will enable the publisher, film maker,
and graphic artist to realize the benefits of strict versioning.
It also enables developers to place bitmap data, resource
files, databases and binaries under their revision control
system. Some previous packages have been modified to
handle binary files, but in doing so they imposed an arbi-
trary line structure. This results in delta files that achieve
little or no compression as compared to storing the ver-
sions uncompressed.

Recently, an algorithm appeared that addresses differ-
ential compression of arbitrary byte streams [8]. The al-
gorithm modifies the work of Tichy [101 to work on byte-
wise data streams rather than line oriented data. This algo-
rithm adequately manages binary sources and is an effec-
tive developer’s tool for source code control. However, the
algorithm exhibits execution time quadratic in the size of
the input, O (M x N) for files of size M and N . The algo-
rithm also uses memory linearly proportional to the size of
the input files, O (M + N) . To find matches the algorithm
implements the greedy method, which we will show to be
optimal under certain constraints. The algorithm will then
be used as a basis for comparison.

As we are interested in applications that operate on
all data in a network file system, quadratic execution time
renders differencing prohibitively expensive. While it is a
well known result that the majority of the files are small,
less than 1 kilobyte [2], a file system has a minority of files
that may be largc, ten to hundreds of megabytes. In order
to address the differential compression of large files, we
devised an differencing algorithm that runs in both linear
time, O (M + N) , and constant space, O(1).

Section I1 outlines the greedy differencing algorithm,
proves it optimal, and establishes that the algorithm takes
quadratic execution time. Section I11 presents the linear
time differencing algorithm. Section IV analyzes the lin-
ear time algorithm for run-time and compression perfor-
mance. Section V presents an experimental comparison of
the linear time algorithm and the greedy algorithm. We
conclude in Section VI that the linear time algorithm pro-
vides near optimal compression and the efficient perfor-
mance required for distributed applications.

11. GREEDY METHODS FOR FILE
DIFFERENCING

Greedy algorithms often provide simple solutions to
optimization problems by making what appears to be the
best decision, the greedy decision, at each step. For difkr-
encing files, a greedy algorithm takes the longest match it
can find at a given offset on the assumption that this match

430

provides the best compression. Greedy makes a locally op-
timal decision with the hope that this decision is part of the
optimal solution over the input.

For file differencing, we prove the greedy algorithm
provides an optimal encoding of a delta file and show that
the greedy technique requires time proportional to the prod-
uct of the sizes of the input files. Then we present an algo-
rithm which approximates the greedy algorithm in linear
time and constant space by finding the match that appears
to be the longest without performing exhaustive search for
all matching strings.

A. Examining Greedy Delta Compression

For our analysis, we consider delta files constructed by
a series of editing directives; “add commands”, followed
by the data to be added, and “copy commands” that copy
data from the base file into the version file using an offset
and length (Figure 1).

Given a base file and another version of that base file,
the greedy algorithm for constructing differential files finds
the longest copy in the base file from the first offset in the
version. It then looks for the longest copy starting at the
next offset. If at a given offset, it cannot find a copy, the
symbol at this offset is marked to be added and the algo-
rithm advances to the following offset. For an example of
a greedy differencing algorithm refer to the work of Re-
ichenberger [81.

We now prove that the greedy algorithm is optimal for
a simplified file encoding scheme. In this case an optimal
algorithm produces the smallest output delta. For binary
differencing, symbols in the file may be considered bytes
and a file a stream of symbols. However, this proof applies
to differencing at any granularity. We introduce and use
the concept cost to mean the length (in bits) for the given
encoding of a string of symbols.

Claim Given a base file B, a version of that base file V,
and an alphabet of the symbols C, by making the following
assumptions:

0 A copy of any length may be encoded with a unit
cost = c.

0 All symbols in the alphabet C appear in the base file
B.

0 Copying a string of length 1 with maximum cost c x 1
provides an encoding as compact as adding the same
string.

we can state:

Theorem 1 The greedy algorithmfinds an optimal encod-
ing of the versionjle V with respect to the basejle B.

Proof Since all symbols in the alphabet C appear in the
base file B, a symbol or string of symbols in the version

file V may be represented in a differential file D exclu-
sively by a copy or series of copies from B. Since we have
assumed a unit cost function for encoding all copies and
this cost is less than or eqiual to the cost of adding a sym-
bol in the version file, there exists an optimal representa-
tion P, of V with respect to B, which only copies strings
of symbols from B. In order to prove the optimality of a
greedy encoding G, we require the intermediate result of
Lemma 1.

Lemma 1 For an arbitraiy number of copies encoded, the
length of versionfile data encoded by the greedy encoding
is greater than or equal to the length of data encoded by
optimal encoding.

Proof (by induction) We introduce pi to be the length
of the ith copy in the optimd encoding P and gi to be
the length of the ith copy in the greedy encoding G. The
length of data encoded in P and G after n copies are re-
spectively given by:

n n

i= 1 i=l

At file offset 0 in V , P has a copy command of
length pl . G encodles a matching string of length g1
which is the longest sbring starting at offset 0 in V.
Since G encodes the longest possible copy, 91 2 pl.

Given that G and P have encoded n - 1 copies and
the current offset in G is greater than the current off-
set in P, we can conclude that after G and P en-
code an nth copy that the offset in G for n copies is
greater than the offset in P.

n-1 n-1 n n

i=l i= 1 i=l i=l

G encodes a copy of length gn and P encodes a copy
of length pn. If eqiuation 3 did not hold, P would
have found a copy of length pn at offset pi
that is greater than gn + E;.: gi - pi. A
substring of this copy would be a string starting at

gi of length greater than gn. As G always
encodes the longest matching string, in this case gn,
this is a contradiction and equation 3 must hold. H

Having established L,emma 1, we conclude that the
number of copy commands that G uses to encode V is less
than or equal to the number of copies used by P. How-
ever, since P is an optimal encoding, the number of copies
P uses to encode V is less than or equal to the number the
G uses. We can therefore state that, size(G) = size(P) =
c x N where N is the number of copy commands in greedy
encoding.

We have shown that the greedy algorithm provides an
optimal encoding of a version file. Practical elements of

43 1

the algorithm weaken our assumptions. Yet, the greedy
algorithm consistently reduces files to near optimal and
should be considered a minimal differencing algorithm.

B. Analysis of Greedy Methods

Common strings may be quickly identified as they also
have common footprints. In this case a footprint is the
value of a hash function over a fixed length prefix of a
string. The greedy algorithm must examine all match-
ing footprints and extend the matches in order to find the
longest matching string. The number of matching foot-
prints between the base and version file can grow with
respect to the product of the sizes of the input files, i.e.
O(M x N) for files of size M and N, and the algorithm
uses time proportional to this value.

In practice, many files elicit this worst case behavior.
In both database files and executable files, binary zeros are
stuffed into the file for alignment. This “zero stuffing” cre-
ates frequently occuring footprints which must all be ex-
amined by the algorithm.

Having found a footprint in the version file, the greedy
algorithm must compare this footprint to all matching foot-
prints in the base file, This requires it to maintain a canon-
ical listing of all footprints in one file, generally kept by
computing and storing a hash value over all string pre-
fixes [8]. Consequently, the algorithm uses memory pro-
portional to the size of the input, O (N) , for a size N base
file.

111. VERSIONING IN LINEAR TIME

Having motivated the need to difference all files in a
file system and understanding that not all file are small [2] ,
we improve upon both the runtime performance bound and
runtime memory utilization of the greedy algorithm. Our
algorithm intends to find matches in a greedy fashion but
does not guarantee to execute greedy exactly.

A. A Linear Time Differencing Algorithm

The linear algorithm modifies the greedy algorithm in
that it attempts to take the longest match at a given offset
by taking the longest matching string at the first matching
string prefix beyond the offset at which a previous match
was encoded; we term this the next match policy. In many
instances matching strings are sequential between file ver-
sions, i.e. they occur in the same order in both files. When
strings that match are sequential, the next matching pre-
fix approximates the best match extremely well. In fact
this property holds for all changes that are insertions and
deletions (Figure 2). We expect many files to exhibit this
property, most notably mail, database, image and log files.

The linear time differencing algorithm takes as input
two files, usually versions of each other, and using one
hash table performs the following actions:

Encoding an Insertion

Base

\ \

Version

Add Copy

Encoding a Deletion

Base

Version
c__

COPY

Encoding an Insertion and a Deletion

Base

Version
*

Add Copy

Figure 2: Simple file edits consist of insertions, deletions and
combinations of both. The linear time algorithm finds and en-
codes all modifications that meet the simple edit criteria.

Algorithm
Start file pointers boffset in the base file and voffset in the
version file at file offset zero. Create a footprint for each
offset by hashing a prefix of bytes. Store the start position
in the version file as vstm.
We call this state “hashing mode”. For each footprint:

(a) If there is no entry in the table at that footprint value,
make an entry in the hash table. An entry will indi-
cate the file and offset from which the footprint was
hashed.

(b) If there is an entry at a footprint value, if the entry
is from the other version of the file, verify that the
prefixes are identical. If the prefixes prove to be the
same, matching strings have been found. Continue
with step 3.

(c) If there is an entry at a footprint value and the entry
is from the same file, retain the existing hash entry.

Advance both voffset and boffset one byte, hash prefixes,
and repeat step 2.
Having found a match at step 2b, leave hashing mode and
enter “identity mode”. Given matching prefixes between
some offset “copy in the version file, and some offset
bcopy in the base file, match bytes forward in the files to
find the longest match of length 1. Set voffset and boffset
to the ends of the match.
Encode the region of the version file from wstart to “COPY

using an add codeword followed by the data to be added.
Encode the regon from “copy to woffset in the version file
using a copy codeword encoding I , the length of the copy
found, and bcopy, the offset in the base file.

43 2

5. Flush the hash table to remove the information about the
files previous to this point. Set “start to the and
repeat step 2.

By flushing the hash table, the algorithm enforces the next
match policy. Note that a match can be between the current
offset in one version of the file and a previous offset in the
other version. After flushing the hash table, the algorithm
effectively remembers the first instance of every footprint
that it has seen since encoding the last copy.

IV. ANALYSIS OF THE LINEAR TIME
ALGORITHM

We often expect the changes between two versions of a
file to be simple edits, insertions of information and dele-
tions of information. This property implies that the com-
mon strings that occur in these files are sequential. An
algorithm can then find all matching strings in a single
pass over the inputs files. After finding a match, we can
limit our search space for subsequent matches to only the
file offsets greater than the end of the previous matching
string.

Many files exhibit insert and delete only modifications.
In particular mail files and database files. Mail files have
messages deleted out from the middle of the file and data
appended to the end. Relational database files operate on
tables of records, appending records to the end of a table,
modifying records in place, and deleting them from the
middle of the table. System logs have an even more rigid
format as they are append only files.

When a match is found and the algorithm enters iden-
tity mode, if the match is not spurious (section B), the
pointers are “synchronized”, indicating that the current off-
set in the version file represents the same data at the offset
in the base file. The algorithm’s two phases, hashing and
identity, represent the synchronization of file offsets and
copying from synchronized offsets. When the identity test
fails, the files differ and the file offsets are again “out of
synch”. Then, the algorithm enters hashing mode to re-
gain the common location of data in the two files.

We selected the Karp-Rabin hashing function [5] for
generating footprints as it can be calculated incrementally,
i.e. a footprint may be evaluated from the footprint at the
previous offset and the last byte of the current string prefix.
This technique requires fewer operations when calculating
the value of overlapping footprints sequentially. Our al-
gorithm always hashes successive offsets in hashing mode
and realizes significant performance gains when using this
function.

A. Performance Analysis

The presented algorithm operates both in linear time
and constant space. At all times, the algorithm maintains
a hash table of constant size. After finding a match, hash
entries are flushed and the same hash table is reused to

find the next matching prefix. Since this hash table nei-
ther grows nor is deallocated, the algorithm operates in
constant space, roughly the size of the hash table, on all
inputs.

Since the maximum number of hash entries does not
necessarily depend on the file input size, the size of the
hash table need not grow wilth the size of the file. The
maximum number of hash entries is bounded by twice the
number of bytes between the: end of the previous copied
string and the following matching prefix. On highly cor-
related files, we would expect a small maximum number
of hash entries since we expect to find matching strings
frequently.

The algorithm operates in time linear in the size of the
input files as we are guaranteed to advance either the base
file offset or the version file (offset by one byte each time
through the inside loop of‘ the program. In identity mode,
both the base file offset and the version file offset are in-
cremented by one byte at each step. Whereas in hashing
mode, each time a new offset is hashed, at least one of
the offsets is incremented, as matching prefixes are always
found between the current offset in one file and a previ-
ous offset in another. Therefore, identity mode proceeds
through the input at as much as twice the rate of hashing
mode. Furthermore, the byte identity function is far easier
to compute than the Kap-Rabin [5] hashing function. On
highly correlated files, we expect the algorithm to spend
more time in identity mo’de than it would on less corre-
lated versions. We can then state that the algorithm exe-
cutes faster on more highly correlated inputs and the linear
algorithm operates best on its most common input, similar
version files.

B. Sub-optimal Compression

The algorithm achieves less than optimal compression
when either the algorithm falisely believes that the offsets
are synchronized, the assumption that all changes between
versions consist of insertions and deletions fails to hold, or
when the implemented hashing function exhibits less than
ideal behavior.

Due to the assumption of changes being only inserts
and deletes, the algorithm fails to find rearranged strings.
Upon encountering a rearranged string, the algorithm takes
the next match it can find. ?’his leaves some string in ei-
ther the base file or in the vexsion file that could be com-
pressed and encoded as a copy, but will be encoded as an
add, achieving no additional compression. In Figure 3, the
algorithm fails to find the copy of tokens ABCD since the
string has been rearranged. In this simplified example we
have selected a prefix of length one. The algorithm en-
codes EFG as a copy and flu,shes the hash table, removing
symbols ABCD that previously appeared in the base file.
When hashing mode reslarts the match has been missed
and will be encoded as ani add.

The algorithm is also susceptible to spurious hash col-
lisions as a result of taking the next match rather than the

433

Base

Version

BaSe

Version

Rearranged Sequences

t + t
Start Collide Restart

4 t t
Start Restart Collide

Spurious or Ali ied Match
Start ColliddRfstsrt Collide

I t I

t
Collide

t t t
Start Collide Restart

Figure 3: Sub-optimal compression may be achieved due to the
occurrence of spurious matches or rearranged strings. The en-
coded matches are shaded.

best match. These collisions indicate that the algorithm
believes that it has found synchronized offsets between the
files when in actuality the collision just happens to be be-
tween strings that match by chance. In Figure 3, the al-
gorithm misses the true start of the string ABCDEF in the
base file (best match) in favor of the previous string at A 0
(next match). Upon detecting and encoding a “spurious”
match, the algorithm achieves some degree of compres-
sion, just not the best compression. Furthermore, the al-
gorithm never bypasses “synchronized offsets” in favor of
a spurious match. This also follow directly from choosing
the next match and not the best match. This result may be
generalized. Given an ideal hash function, the algorithm
never advances the file offsets past a point of synchroniza-
tion.

Hashing functions are, unfortunately, not ideal. Con-
sequently, the algorithm may also experience the bZocking
of footprints. For a new footprint, if there is another foot-
print from the same file already occupying that entry in the
hash table, the second footprint is ignored and the first one
retained. In this instance, we term the second footprint to
be blocked. This is the correct procedure to implement the
next match policy assuming that all footprints represent a
unique string. However, hash functions generally hash a
large number of inputs to a smaller number of keys and are
therefore not unique. Strings that hash to the same value
may differ and the algorithm loses the ability to find strings
matching the discarded string prefix.

Footprint blocking could be addressed by any rehash
function or hash chaining. However, this solution would
destroy the constant space utilization bound on the algo-
rithm. Instead of a rehash function, we propose to ad-

dress footprint blocking by scanning both forwards and
backwards in identity mode. This simple modification al-
lows the algorithm to go back and find matches starting
at a prefix that was hash blocked. The longer the match-
ing string, the less likely that match will be blocked as
this requires consecutive blocked prefixes. Under this so-
lution, the algorithm still operates in constant space, and
although matches may still be blocked, the probability of
blocking a match decreases geometrically with the length
of the match.

V. EXPERIMENTAL RESULTS

We compared the Reichenberger [8] greedy algorithm
against our linear time algorithm to experimentally verify
the performance improvements and quantify the amount
of compression realized. The algorithms were run against
multiple types of data that are of interest to potential appli-
cations. Data include mail files, modified and recompiled
binaries, and database files.

Both algorithms, where appropriate, were implemented
with the same facilities. This includes the use of the Re-
ichenberger codewords for encoding copy and add com-
mands in the delta file, memory mapped YO, the use of
the same prefix length for footprint generation, and the
use of the Karp-Rabin hashing algorithm in both cases.
Karp-Rabin hashing is used by the Reichenberger algo-
rithm since it also realizes benefits from incremental hash-
ing, by sequentially hashing one whole file before search-
ing for common strings.

The linear algorithm outperforms the Reichenberger
algorithm on all inputs, operating equally as fast on very
small inputs and showing significant performance gains on
all inputs larger than a few kilobytes. The performance
curve of the Reichenberger algorithm grows quadratically
with the file input size. The algorithm consistently took
more than 10 seconds to difference a 1MB file, extrap-
olating this curve to a lOMB file, the algorithm would
complete in slightly more than 15 minutes. Depending
upon the machine, the linear algorithm can compress as
much as several megabytes per second. Currently, the data
throughput is U0 bound when performing the byte identity
function and processor bound when performing the hash-
ing function. The relative data rates are approximately 10
MBls and 280 K B I s for identity and hashing mode respec-
tively. These results were attained upon an IBM 43P Pow-
erPC with a 133MHz processor and a local F/W SCSI hard
drive on a 10 MBls data bus.

In Figure 4a, the runtime performance of the Reichen-
berger algorithm grows in a quadratic fashion, whereas the
linear time algorithm exhibits growth proportional to the
file input size. We also show that our algorithm’s execu-
tion time continues to grow linearly on large input files
in Figure 4b. There is a high amount of variability in the
time performance of the linear algorithm on a file of any
given size depending upon how long the algorithm spends
in hashing mode as compared to identity mode.

434

i + I

-10-
i
I
& 8 -

f

I ++ I

+

+ + /:I -

+
+

+ +

+ +
I2t + + i

2.: + +* + X

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
File Size (bytes) x loe

(a) A comparison of the algorithms' execution time performance on in-
puts of less than 2MB.

7

+
6 -

5 -
+ -

;
1 4 -

4 3 -

+ +

++ + +

2 -
+ +++

- :.& +h
' 0 1 2 3 4 5 6 7 8

File Size (byies) x I O S

(b) The linear algorithm's execution time performance on inputs as large
as 8MB.

+
+ + I .,' + .' +

1

++

0 1 2 3 4 5 6
Reichenberger Algorithm - Deila

A 7 8 9 1 0

L File size x io'

(c) Relative compression of linear algorithm with respect to the Re-
ichenberger algorithm for delta files less than 1OOKB.

Figure 4: Experimental Results

Mail 2

Table 1: The relative size of the delta files measured in the per-
cent size as compared to the version file. Total is the compression
over the sum of all files. The "*" indicates a data set of files too
large for the Reichenberger algorithm.

Most of the data that we experimented on shows a high
degree of compressibility, with some instances of databases
showing the best compressibility. Our data sets (table 1)
include: Mail 1 , electronic mail files less than 1MB from a
UNIX network file system; Mail 2, files greater than 1MB
from the same system; D13 1, the weekly backup of a uni-
versity student informatialn database; DB 2, the same data
from a different pair of weeks; and the Binary entry rep-
resents the compressibility of for all executable versions
of both algorithms over their development cycle. The to-
tal compressibility represents the ratio between the sum of
the sizes of the delta files compared to the sum of the sizes
of the version files. Generally, the mean file size is larger
than the total indicating that larger files in any data set tend
to be more compressible. The standard deviation indicates
the volatility of the data set with a high deviation showing
data with more files that hLave. been significantly altered.

Compressibility figures depend totally on the input data
and are not meant to indicate that delta file compression
achieves these kinds of rissulits on all inputs. Rather, the
data is, in our experience, representative of the compres-
sion that can be achieved on versions in a typical UNIX file
system. We consistently noteld that the data sets with larger
files also tended to be mare compressible. This is verified
by the data in table 1. Mail 2 consists of files larger than
1MB and are 10% more compressible than the files in Mail
1, files less than 1MB.

The linear algorithm conisistently compressed data to
within a small factor of the compression the greedy algo-
rithm realizes. On all the mail files less than IMB, the lin-
ear algorithm achieved compression to less than 12% the
original size whereas the: Reichenberger algorithm com-
pressed the files less than 3% more to slightly under 9%.
The relative compression of the algorithms are displayed in
Figure 4c. Points on the unit slope line represent files that
were compressed equally by both methods. The Reichen-
berger encoding is consistently equal to or more compact
than the linear algorithm, but only by a small factor.

ods to many applications as compression by a factor of 30
or more is feasible on many data sets. The results also indi-
cate that the linear algorithm consistently performs well in
compressing versions when compared with the greedy al-
gorithm. The linear algorithm provides near optimal com-
pression and does so in linear time.

Experimental results indicate the suitability of our meth-

435

VI. SUMMARY AND CONCLUSIONS

We have described a differencing algorithm that exe-
cutes in both linear time and constant space. This algo-
rithm executes significantly faster than the greedy algo-
rithm and provides comparative compression to the greedy
method, which has been shown to provide optimal com-
pression. The linear algorithm approximates the greedy
algorithm by taking the next matching string following the
previous match, rather than exhaustively searching for the
best match over the whole file. This next match policy cor-
responds highly with best match when files are versions
with insert and delete modifications. The algorithm en-
forces the next match policy by synchronizing pointers be-
tween two versions of a file to locate similar data.

Experiments have shown the linear time algorithm to
consistently compress data to within a small percentage of
the greedy algorithm and to execute significantly faster on
inputs of all sizes. Results have also shown many types of
data to exhibit high correlation among versions and differ-
encing can efficiently compress the representation of these
files.

We envision a scalable differencing algorithm as an en-
abling technology that permits files of any size and format
to be placed under version control, and allows the trans-
mission of new version of files over low bandwidth chan-
nels. File differencing can mitigate the transmission time
and network traffic for any application that manages dis-
tributed views of changing data. This includes replicated
file systems and distributed backup and restore. A technol-
ogy that was previous relegated to source code control may
be generalized with this algorithm and applied to address
network resource limitations for distributed applications.

VII. ACKNOWLEDGMENTS

We wish to thank and credit Dr. Robert Moms of the
IBM Almaden Research Center for his innovation in the
application of delta compression. We also wish to thank
Professor David Helmbold and the research group of Dr.
Ronald Fagin for their assistance in verifying and revis-
ing our methods, Mr. Norm Pass for his support of this
effort, and the University of California Santa Cruz which
provided us with file system data.

VIII. REFERENCES

ALDERSON, A.
recording versions of data.
Journal 3 , 6 (June 1988), 240-246.

A space-efficient technique for
SofhYare Engineering

BAKER, M. G., HARTMAN, J. H., KUPFER, M. D.,
SHIRRIFF, K. W., AND OUSTERHOUT, J. K. Mea-
surements of a distributed file system. In Proceedings
of the 13th Annual Symposium on Operating Systems
(Oct. 1991).

[3] BLACK, A. P., AND CHARLES H. BURRIS, JR.
A compact representation for file versions: A pre-
liminary report. In Proceedings of the 5th Inter-
national Conference on Data Engineering (1989),
IEEE, pp. 321-329.

[4] EHRENFEUCHT, A., AND HAUSSLER, D. A new
distance metric on string computable in linear time.
Discrete Applied Mathematics 20 (1988), 191-203.

[5] KARP, R. M., AND RABIN, M. 0. Efficient ran-
domized pattern-matching algorithms. ZBM Journal
of Research and Development 31,2 (1987), 249-260.

[6] MILLER, w., AND MYERS, E. w. A file comparison
program. Software - Practice and Experience 15, 11
(NOV. 1985), 1025-1040.

[7] MORRIS, R. Conversations regarding differential
compression for file system backup and restore, Feb.
1996.

[8] REICHENBERGER, C. Delta storage for arbitrary
non-text files. In Proceedings of the 3rd International
Workshop on Software Conjiguration Management,
Trondheim, Norway, 12-14 June 1991 (June 1991),
ACM, pp. 144-152.

[9] ROCHKIND, M. J. The source code control system.
IEEE Transactions on Sofnyare Engineering SE-l,4
(Dec. 1975), 364-370.

[IO] TICHY, W. F. The string-to-string correction prob-
lem with block move. ACM Transactions on Com-
puter Systems 2 ,4 (Nov. 1984).

[l l] TICHY, W. F. RCS - A system for version con-
trol. SofhYare - Practice and Experience 15, 7 (July
1985), 637-654.

[12] TSOTRAS, v., AND GOPINATH, B. Optimal version-
ing of objects. In Proceeedings of the Eight Interna-
tional Conference on Data Engineering, Tempe, AZ,
USA, 2-3 Feb. 1992 (Feb. 1992), IEEE, pp. 358-365.

The string-to-
string correction problem. Joumal of the ACM 21,
1 (Jan. 1973), 168-173.

[13] WAGNER, R., AND FISCHER, M.

436

