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Professor Melvin Keith Chen, Co-Chair

The essays in this dissertation lie at the intersection of revenue management, urban mo-

bility, and technology. Some of the most well-studied problems in operations management

and operations research have been inspired by the transportation sector. For instance, the

traveling salesman problem, the vehicle routing problem, freight logistics, airline fleet plan-

ning, port operations, and rail scheduling are set in the transportation industry. In this

dissertation, we restrict our analysis to urban mobility, which focuses on transportation in

metropolitan cities. Urban mobility has evolved dramatically over the past decade due to

advances in technology, in particular, the mobile phone. Bike-sharing, ride-sharing, and

vehicle sharing are possible today because of the growth and popularity of mobile phones.

Because of this growth, users are able to access train and bus schedules in real-time, pay

fares, and instantaneously reserve and check-out shared cars, bikes, electric scooters, and

other types of shared vehicles. While this accessibility provides users with more flexibility,

the systems are also increasingly difficult to operate and manage. One way to address this

operational complexity involves using tools and methods from revenue management. More
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generally, using price and discounts as levers to shape customer behavior in a way that im-

proves the system’s service level, revenue, customer satisfaction, and other key performance

metrics.

This dissertation is made up of four essays across three chapters that address questions

in operating systems in urban mobility, and we use techniques from revenue management to

study how these systems can operate more effectively.

In Chapter 1, we study free-ride policies as a mechanism to incentivize users of a “dock-

less” or “free-floating” electric vehicle sharing system (EVSS) to park vehicles at charging

stations in order to maintain a charged fleet. A balanced system has a fleet that is adequately

charged and evenly dispersed throughout the city. If left to unfold naturally, the system

would fall out of balance, and revenue and customer experience might suffer. Most sharing

systems use manual repositioning to achieve this balance, but we consider pricing incentives

as an alternative method. We develop an infinite horizon dynamic program to analyze free-

ride policies. We focus on an EVSS that offers free rides to customers if they return vehicles

to charging stations. We build on this initial formulation to construct a mixed-integer pro-

gram that outputs intuitive, battery-threshold rules for when to offer free rides. We also

extend the model to accommodate more general discount-based policies. In a discrete-event

simulation model using real data from an EVSS, we compare the performance of this simple

policy against other sophisticated policies, including the commonly used fine-based policy,

which fines users for street-parking vehicles with low battery. We first find that the simple

threshold-based policy performs close to a more sophisticated, black-box policy in terms of

revenue. We also discover that the free-ride policies generate customer utilities that are ten

times higher than fine-based policies, but also generate less revenue. However, free-ride poli-

cies can be less costly to implement since they rely on manual repositioning up to 65-75%

less than the benchmarking policies. Our simulation reveals this three-dimensional trade-off

between customer satisfaction, revenue, and operational complexity. Our results are robust

under many demand patterns and under a variety of network settings.
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In the remaining chapters, we are motivated by the claim that 30% of metropolitan traffic

is a result of individuals searching or “cruising” for parking (Shoup, 2017). It is theorized

that this cruising behavior causes superfluous traffic congestion that can be assuaged and

mitigated with more effective pricing polices. In particular, pricing policies that ensure there

is at least one open spot available on each block at all times under regular demand. With

this in mind, Chapters 2 and 3 examine how to develop dynamic pricing policies that both

maximize revenue and address traffic congestion, with Chapter 2 focusing on estimating key

parameters that feed into the pricing models and Chapter 3 focusing on developing the price

optimization models.

In order to develop such pricing policies, one needs to know the price and spatial elas-

ticity of parking, where price elasticity is a measure of the change in demand in response

to a price change and the spatial elasticity is a measure of how much money a customer

would require to park a mile or a block away from their destination. Using data from our

industry partner, a venture-backed technology company that develops a software-as-a-service

(SaaS) platform to manage parking, permitting, and micro-mobility for municipalities and

organizations throughout the world, we are able to empirically estimate both of these values

in Chapter 2. In this chapter, the context is parking-specific and the estimates are unique

to the data from our partner city. However, we believe that our approach and the estimates

can be used across urban mobility applications, and beyond, as these elasticities are often

assumed to be known or given in many classic revenue management problems.

In Chapter 2.1, the first essay of Chapter 2, we estimate the price elasticity after a 20%

price increase in a mid-sized U.S. city and find the average price elasticity of parking demand

is between -3.42 and -1.57, which is higher than existing estimates (Lehner and Peer, 2019).

One reason our study could be producing higher estimates is because, as far as we know,

our work is the first to use transactions data from a mobile phone application for parking

payments, which is more accurate and detailed than the data used in the existing literature.

With our model, we can also measure how long it takes for customers to learn about and
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respond to the price change. Despite the price change being publicly advertised, we find that

customers do not respond to the price change until they experience it firsthand.

In Chapter 2.2, the second essay of Chapter 2, we estimate the spatial elasticity. We

perform our estimation using a panel dataset of parking transactions spanning 21 months in

a large U.S. city. During this time frame, there was an unannounced pricing error where two

neighboring blocks were discounted by 67% for 16 months. We find that customers require

approximately $81 to walk an additional mile to their intended destination. This estimate

increases 13% in the presence of rain and 36% during the morning rush hour.

In Chapter 3, the final chapter of this dissertation, we study optimal, dynamic pricing

policies for a system, or network, of reusable resources, where a parking spot on a city block

can be interpreted as a resource that can be reused after it is vacated.

We focus our analysis on a single reusable product (i.e., a single zone or block with

a fixed number of parking spaces) and aim to set the price as a function of the number of

occupied spaces. Our objective is to maximize the long-run average revenue under Markovian

assumptions (i.e., Poisson arrival and exponential usage times). In queuing theory, such a

model is known as an Erlang loss system. We reformulate this objective function using a

metric that we term the conditional entry-state distribution. There does not exist a method

for computing this metric, so in Chapter 3, we develop an algorithm that converges to the

metric’s true value for any Erlang loss system. We also provide analysis on the performance

and speed of the algorithm.
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CHAPTER 1

Free Rides in Dockless Electric Vehicle Sharing

Systems

1.1 Introduction

In “dockless” or “free-floating,” electric vehicle sharing systems (EVSSs), a fleet of electric

rechargeable vehicles (i.e. cars, vespas, bicycles, or scooters) are scattered throughout a city.

Users of the system can rent or check-out these vehicles for a small fee that is generally

proportional to trip time or distance. When the user is finished with the vehicle, she can

park it in any legal parking spot throughout the city. Included among these parking zones

are charging stations, where the vehicle can be plugged in to regain charge. Users who

end their trips at charging stations help the system, since as a vehicle charges, it gains the

potential to serve a broader class of trips. One potential mechanism to incentivize users to

end their rides at charging stations is to offer them a discount on their ride if they do so. In

such a scenario, the system operator forgoes immediate revenue to ensure that the vehicle

at hand is sufficiently charged for future rides. There is no guarantee, however, that the

user will agree to take this discounted ride, since the proposed charging station could be

far away from the user’s desired end location. In this way, when the user decides whether

or not to accept the offered discount, she trades off the price reduction with the potential

inconvenience of concluding her ride far away from her desired end location.

In this paper, we study the trade-offs described above by considering how a system

operator of a dockless EVSS can optimally offer discounted rides to incentivize users to end
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their trips at a charging station. The models that we develop are able to incorporate a

variety of discount structures, but we focus our analysis mainly on free-ride policies in which

users are strategically given the option to take a free trip to a charging station in lieu of a

full-priced ride to their desired destination. This simplified discount structure allows us to

develop implementable policies, which we show via extensive simulations perform quite well

on a wide variety of performance metrics related to revenue, operational costs and customer

satisfaction.

This work builds on an extensive body of research on vehicle sharing systems (VSSs). The

increase in VSS-related literature can be attributed to the rapid expansion of such systems

and the intriguing operational challenges that accompany this growth. In what follows,

we briefly describe the rise of VSSs before detailing the classical operational problems that

accompany such systems and that motivate our work on discount rides in EVSSs.

The make-up and growth of VSSs. The first VSSs were comprised entirely of gasoline-

powered vehicles, which are still present in many VSSs, i.e. car2go and Zipcar. Soon

after, bike sharing systems (BSSs), i.e. CitiBike, were introduced to handle shorter trips,

and most recently, cities have witnessed the adoption of EVSSs, i.e. Bird Scooters, which

have documented environmental and financial benefits over gasoline-powered vehicles (U.S.

Department of Energy, 2016). The gain in popularity of all three VSSs is without question,

as membership is slated to exceed 12 million by 2020 and revenue is projected to reach $6.5

billion in 2024 (Navigant Research, 2016b,a). As these systems continue to grow, so too does

the necessity to develop efficient solutions to the many daily operational challenges.

Operational problems in VSSs. The primary operational problem in VSSs revolves

around balancing supply with demand. In a perfect system, there would always be an avail-

able vehicle in close proximity to every inquiring user. In practice, achieving this service

level is nearly impossible due to the stochasticity in demand and the limited number of
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vehicles. In fact, if left to run entirely on its own, most VSSs would inevitably experience an

extremely lopsided dispersion of vehicles because supply and demand rarely match up per-

fectly. To combat this issue, VSSs have resorted to two main operational levers: rebalancing

and pricing. The former refers to manually moving vehicles between stations in anticipation

of future demand, which is effective but costly (Fishman, Washington, and Haworth, 2014).

Later generation VSSs became more sophisticated and started to offer dockless parking,

which allows riders to park on any street in a pre-defined service region. While dockless

systems provide users with more convenience and flexibility in terms of where users are

permitted to finish rides, they also bring new flavors of operational problems. For one,

merely keeping track of each vehicle’s location is a more complex task in free-float systems

since the pre-defined parking regions generally span the entire city. This is in stark contrast

to traditional docked systems, in which the system’s state can simply be described by the

number of vehicle at each of the docking stations. This inherent difference significantly

complicates the aforementioned rebalancing problem; manual rebalancing in dockless systems

is a more tedious task since vehicles are not confined to docking stations. With this in mind,

many of the dockless VSSs have flipped the rebalancing problem on its head; instead of

manually rebalancing the system themselves, they attempt to incentivize users to accomplish

this task for them. For example, LimeBike offers ride credits to users who check-out bikes

that have sat idle for an extended period of time.

For the dockless EVSS that we consider, the system’s state is characterized by the current

location and charge level of each vehicle. In this setting, a balanced system not only has

vehicles in close proximity to inquiring users, but it also ensures that these vehicles are

adequately charged. In what follows, we describe how EVSS’s have attempted to achieve

this latter, more elementary notion of a balanced network.

Maintaining a charged fleet in EVSSs. For dockless EVSSs, there is perhaps an even

more fundamental issue than that of balancing supply and demand. Paramount to oper-
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ational efficiency and the profitability of such systems is the ability to keep the electric

vehicle fleet adequately charged so that users do not forgo a ride because they cannot find

a vehicle with enough charge. In some existing dockless EVSSs, the current practice is to

aggressively fine riders who street-park vehicles with low battery. This approach, however,

does not appear to be ideal since it often results in users choosing between the lesser of two

evils when they unexpectedly finish a ride with a low-battery vehicle. In such scenarios,

users are forced to either navigate out of their way to drop a low-battery vehicle at an open

charging station or to park near their desired destination and pay a hefty fine, both of which

negatively impact the user experience. Moreover, it is not obvious how exactly to choose this

aforementioned “low-battery” threshold, which will have a dramatic effect on the day-to-day

dynamics of the system. Choosing this threshold to be too low may result in many vehicles

stranded on the street because they do not have enough battery to fulfill any rides. On the

other hand, a threshold that is too high may lead to an overwhelming number of fines and

hence an unhappy and frustrated customer base. In contrast, the pricing discount incentives

that we consider have the potential both to keep the fleet charged while only improving the

user experience, since any offered discounted ride can be turned down.

We consider a dockless EVSS consisting of n vehicles and m charging stations. The

vehicles in our setting should be thought of as cars or Vespas, and so manually moving

these vehicles is quite tedious and costly in relation to moving bikes. At any given time, the

state of each vehicle can be described by its location and its current charge level. As time

progresses, users rent vehicles and ride them to their desired location. Our goal is to develop

and characterize simple conditions under which a dockless EVSS operator should offer free

rides to users who end their trip at a charging station. The hope is that these free rides will

ensure that the system has sufficiently charged vehicles to serve future demand.

As hinted at above, we seek free-ride policies that are straightforward for the system

operator to explain to the user, easy for the user to interpret, and simple to put into action.

All three of these characteristics are satisfied by what we call single-offer range (SOR)
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policies. Under such policies, for each region in the network, there is a single, continuous,

battery charge level interval that dictates when a free-ride will be offered. Upon rental,

users who select a vehicle whose charge level falls within this interval will be offered a free

ride, and those who select a vehicle with a charge level outside of this interval will not be

offered a free ride. As we go on to show, these region-specific battery charge level intervals

can be computed offline in an efficient manner, and hence implementing these so-called SOR

policies is relatively straightforward compared to a nuanced dynamic pricing scheme.

1.1.1 Contributions

We first consider an infinite horizon dynamic program that maximizes the total discounted

expected revenue when there are no restrictions on the structure of an optimal policy. The

state space of the resulting dynamic program gives the current location and battery level of

each vehicle, and the Bellman recursion encodes the trade-off between offering a free ride to

a charging station and letting the user take a full-priced ride to her desired end location.

This initial formulation has two central issues that hinder its practical use. First, the state

space grows exponentially in n and hence the dynamic program is rendered intractable for

realistic instances in which the EVSS system contains hundreds of vehicles. Second, even if

we could derive an optimal policy from this dynamic program, there is no guarantee that it

will be an easily implementable policy, let alone an SOR policy. In fact, it is not clear if it

is possible to formulate this dynamic program so that only SOR policies are feasible.

To side-step the first issue, we focus on single-vehicle networks. In this setting, we can

easily find the optimal policy, but again, there is no guarantee that this policy will be of

the SOR variety. One somewhat counter-intuitive insight that we derive from this simplified

one vehicle setting is that the value of a vehicle in a given location does not necessarily

increase with its battery level. In Section 1.3, we describe how this observation is directly

related to the second issue of deriving SOR policies. We eventually overcome this second

difficulty by reformulating the initial infinite horizon dynamic program as a linear program
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(LP). By adding binary variables and a set of auxiliary constraints to this LP, we arrive at

a mixed-integer program whose optimal solution gives the optimal SOR policy.

We then consider the problem at full-scale, where there are n vehicles and m charging

stations in the network. In this setting, we develop free-ride policies based on the approx-

imate dynamic programming technique developed in Desai, Farias, and Moallemi (2012) in

which the value functions in the original dynamic programming formulation of the problem

are approximated via a linear combination of basis functions. The optimal weights on each

basis function within the approximation are generated from the optimal solution to specially

crafted LP.

After deriving the optimal SOR policies from the single vehicle formulation of the prob-

lem and the approximate multi-vehicle policies that result from our approximate dynamic

programming solution, we test their efficacy within a large scale simulation that uses real

data from a U.S.-based EVSS. We benchmark the performance of these free-ride policies

against our EVSS partner’s current practice, in which users who street-park low battery ve-

hicles are fined. Our simulation results reveal that the free-ride policies generate slightly less

revenue than the fine-based policy, but provide a significantly better customer experience,

which is critical for the long term success of the system.

1.2 Related Literature

We begin by reviewing the previous work on BSSs and VSSs, which both pre-date EVSSs.

Then, we summarize the past work on EVSSs, which is limited since these systems have only

recently come into existence.

1.2.1 Bike Sharing Systems (BSSs).

Past BSS research has predominantly focused on network design. For instance, Lin and

Yang (2011) determine where to build stations to maximize coverage, Sayarshad, Tavassoli,

6



and Zhao (2012) examine how fleet size affects demand, utilization, and rebalancing costs,

and Kabra, Belavina, and Girotra (2020) study the effect of increasing station density on

ridership. Freund, Henderson, and Shmoys (2017) develop a procedure to optimally redis-

tribute bicycle docks across stations. All of these papers consider one-way BSSs, where riders

can take bikes on one-way trips, which must end at a docking station. Our setting is less

restrictive since users can take one-way trips, but they are not forced to end at a docking

station.

Rebalancing in one-way BSSs has also been well-researched. This work involves effi-

ciently designing truck routes that minimize the time and cost of moving bikes between

docking stations (Raviv, Tzur, and Forma, 2013; O’Mahony and Shmoys, 2015; Schuijbroek,

Hampshire, and Van Hoeve, 2017). Pricing has also been studied as a mechanism to rebal-

ance a BSS. Chemla et al. (2013) propose a pricing strategy in which the fare is based on

the availability at each station. Others have focused on minimizing underused stations by

incentivizing riders to return bikes to these stations (Pfrommer et al., 2014; Singla et al.,

2015; Fricker and Gast, 2014).

While the existing BSS research can serve as a starting point for tackling operational

problmes in EVSSs, there are two features of our problem that have not yet been considered

in the BSS literature. First, to the best of our knowledge, the dockless component has not

been studied. Second, the charging element of EVSSs presents a new challenge that does not

exist in BSSs, since bikes are human-powered. However, as BSSs grow to include electric-

assisted bicycles, maintaining a charged fleet will require attention and we hope that work

in this area will draw inspiration from our research.

1.2.2 Car or Vehicle Sharing Systems (VSSs).

While the VSS literature is not as vast, problems related to both system design (Chang

et al., 2017; Lu, Chen, and Shen, 2017) and rebalancing (Nair and Miller-Hooks, 2011; Weikl

and Bogenberger, 2013) have been studied. Rebalancing in a BSS is inherently simpler than
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a VSS, since several bicycles can be placed on a truck and manually redistributed across

a city on a single route. The same can obviously not be said for cars, so VSS rebalancing

requires additional planning. We note that the existing rebalancing approaches tend to be

costly, resource-intense, and time-consuming.

Several researchers have also explored how to rebalance a VSS through pricing discounts.

Marecek, Shorten, and Yu (2016) propose a destination-based pricing scheme in dockless

VSSs, in which the fare depends on the distance between the drop-off location and the

nearest parked vehicle, and Waserhole and Jost (2016) develop a queuing model for setting

prices in a one-way VSS to maximize the number of trips. While both papers capture the

spirit of the pricing policies that we analyze, neither of these models accounts for a vehicle’s

remaining battery, which is critical in an EVSS. Banerjee, Freund, and Lykouris (2016)

provide a general framework for pricing in any mobility sharing system, but it is not obvious

if their approach is able to capture the additional complexity of keeping the fleet sufficiently

charged. For an overview of system design and rebalancing in VSSs, see Jorge and Correia

(2013).

1.2.3 Electric Vehicle Sharing Systems (EVSSs).

To date, the EVSS literature has primarily focused on system design. Boyacı, Zografos, and

Geroliminis (2015) and Brandstätter, Kahr, and Leitner (2017) respectively study where to

place charging stations in one-way systems and parking locations in dockless systems.. In

the presence of uncertain adoption, He et al. (2017) use robust optimization to define the

service area for car2go’s dockless EVSS operation in San Diego, CA. Unfortunately, car2go

replaced the electric vehicles with gas-powered vehicles and later ceased their San Diego

service, confirming that operating a dockless EVSS is challenging (The San Diego Union-

Tribune, 2016). For rebalancing an EVSS, Bruglieri, Colorni, and Luè (2014) consider how to

dispatch cyclists on folding bikes to low-battery electric vehicles. Upon reaching the vehicle,

the cyclist places the collapsed bike in the trunk and drives to a relocation point. In contrast,
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we focus on ensuring that the EVSS fleet has enough battery to complete rides by offering

a direct pricing discount to customers if they end rides at charging stations.

1.2.4 Related Research.

Lim, Mak, and Rong (2014) examine the behavioral factors behind electric vehicle adoption.

Battery swapping, where users can go to stations to exchange depleted batteries for recharged

ones, has also been studied (Avci, Girotra, and Netessine, 2014; Mak, Rong, and Shen,

2013). Separately, Bellos, Ferguson, and Toktay (2017) study how VSSs operated by auto

manufacturers affects the firm’s profit and decision to design more fuel efficient vehicles.

This recent research related to car sharing and electric vehicle usage suggests that both

will continue to grow, motivating our goal of effectively managing a system at the intersection

of VSSs and EVs.

1.3 Dockless EVSS Models and Free-Ride Policies

We begin by describing our model of the EVSS and then move to detailing our approaches for

deriving the free-ride policies discussed above. More specifically, in Section 1.3.1 we describe

our model of the EVSS that we consider as well as its underlying dynamics that govern how

the system evolves over time. The model that we develop is highly realistic and accounts

for battery recharging of idle vehicles at charging stations, uncertainty rooted in demand,

manual repositioning movements by the system operator, and the utility trade-off faced by

customers who must choose to accept or decline a free ride.

In Sections 1.3.2 and 1.3.3, we analyze a single-vehicle setting and develop a mixed-

integer program to find the optimal SOR policies in this setting. Finally, in Section 1.3.4, we

summarize our approximate dynamic programming approach for tackling the multi-vehicle

problem.
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1.3.1 Model Primitives

We partition the service area into r regions indexed by the set R = {1, . . . , r}. Each region

i ∈ R could represent a street, block or neighborhood depending on the desired granularity

of the system. There is a subset Z ⊂ R of regions that house a charging station. The system

consists of n vehicles. We assume that a vehicle’s state can be fully described by the tuple

(i, w) where i ∈ R and w ∈ W = {0, δ, 2δ, . . . , 1} respectively represent the vehicle’s current

location and battery charge level. We use the convention that w = 1 corresponds to a full

charge, and δ ∈ [0, 1] gives the granularity at which we keep track of battery charge.

We discretize time into disjoint time periods, whose length can be interpreted as the

mean time between customer arrivals to the system. In each period, we assume that there

is exactly one ride request. We let λi be the probability of seeing a vehicle request in region

i ∈ R during each time period. Given a request for a vehicle in region i, we let pij be the

probability that the user’s desired end location is region j ∈ R. We use bij ∈ W to denote

the battery consumption of a trip from region i to region j. Further, we let dij, fij and tij

respectively be the distance, fare collected, and duration for rides between regions i and j.

A ride can only take place if the requested vehicle has sufficient battery to deliver the user to

her desired destination. Thus, we let the set R(i, w) = {j ∈ R : w ≥ bij} give all reachable

regions of a vehicle whose state is (i, w). Finally, we assume that vehicles located at charging

stations gain γ ∈ W charge in each time period.

Next, we discuss how we incorporate manual vehicle repositioning events by the system

operator into our model. Each vehicle is deemed eligible for a manual move to a nearby

charging station if its remaining battery is below a predefined battery move threshold bm.

In each time period during which there exists at least one move-eligible vehicle, we assume

that a repositioning event is initiated with probability pm. We model a repositioning event

as a “dummy” ride, in which a move-eligible vehicle is uniformly selected to be moved to

the closest charging station over a random duration of tm time periods. The dummy ride
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reflects the efforts of a crew member and hence comes at a cost of cm to the system.

For each user that rents a vehicle, the system operator has the option to offer a free

ride to a charging station if the vehicle has enough battery to reach at least one charging

station. If a free ride is offered, the user decides whether to accept or reject this free ride

based on her realized utility for each of these two options. To formalize this notion, we let

u(d, f) be the random utility that a user associates with a ride that leaves her a distance of

d from her desired location and whose cost is f . The randomness in the utility arises due

to the assumption that there is heterogeneity in each user’s sensitivity to price and walking

distance. We refer the reader to Section 1.4.1 for the explicit form of the utility function

that we use in our simulations. If a free ride is offered and accepted, we assume that the

user parks the vehicle at the charging station closest to her desired destination. Finally,

we define P(Acceptijz) = P
[
u(dzj, 0) ≥ u(0, fij)

]
to be the probability that the user accepts

a free ride to charging station z. If the user accepts the free ride, she pays nothing and

must walk a distance of dzj after dropping off the vehicle at z. On the other hand, if she

rejects the offer, she commutes directly to j and pays fij, which occurs with probability

P(Declineijz) = 1 − P(Acceptijz). All of the notation introduced above is summarized in

Table A.1.

1.3.2 Single Vehicle and Single Charging Station (1V1C)

We begin by studying a setting with a single vehicle and a single charging station, so n = 1

and Z = {z}. We model the system’s dynamics as a discrete time, infinite horizon dynamic

program. The state space is given by the tuples (i, w) ∈ R×W , which represent the possible

locations and battery levels of the vehicle. The value function V (i, w) gives the maximum

total discounted expected revenue that can be derived from a vehicle in state (i, w). The

per-period discount factor is β ∈ (0, 1) and we define βij = βtij to be the discount rate for a

ride between regions i and j, which takes place over tij periods.

Recall that in each time period, there is a customer arrival at region i with probability
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λi, and this request is for a ride to region j with probability pij. If the vehicle has enough
battery to reach the destination, that is w ≥ bij, then the inquiring user will rent the vehicle.
Otherwise, the user leaves the system and the vehicle remains at state (i, w). Further, if the
vehicle has enough battery to reach the charging station z, i.e., w ≥ biz, then the system
operator must choose whether or not to offer a free ride to z. Finally, we note that if the
vehicle’s remaining battery satisfies w ≤ bm, then the vehicle is manually repositioned to the
charging station with probability pm. In what follows, we present the value functions of our
dynamic program for the cases in which the vehicle is not at the charging station (i.e., i 6= z)
and has enough battery to reach the charging station (i.e. w ≥ biz). Thus, the recursion in
(1.1) illustrates the cases in which w ≥ max{biz, bm}, and the recursion in (1.2) corresponds
to the case in which bm ≥ w ≥ biz. The remaining cases are presented in Appendix A.2.

V (i, w) = max
{
λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
︸ ︷︷ ︸

DoNotOffer

,

λi

∑
j∈R(i,w)

pij ·
(
P(Declineijz) ·

(
fij + βijV (j, w − bij)

)
+ P(Acceptijz) · βizV (z, w − biz)

)
︸ ︷︷ ︸

Offer

}

+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w). (1.1)

V (i, w) = pm ·
(
− cm + βmV (z, w)

)︸ ︷︷ ︸
MoveOccurs

+(1− pm) ·

(
max

{
λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
︸ ︷︷ ︸

DoNotOffer

,

λi

∑
j∈R(i,w)

pij ·
(
P(Declineijz) ·

(
fij + βijV (j, w − bij)

)
+ P(Acceptijz) · βizV (z, w − biz)

)
︸ ︷︷ ︸

Offer

}

+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w)

)
. (1.2)

The maximization in (1.1) weighs the trade-off between offering and not offering a free ride,
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which is only relevant when the user’s desired end location is reachable, i.e., j ∈ R(i, w).

If the vehicle does not have enough battery to reach region j, then the system stays in the

same state, but the value of the vehicle is discounted one period. The DoNotOffer term

corresponds to the scenario in which the system operator does not offer a free ride. In this

case, the system accrues fij in revenue and the vehicle moves to j, ending this trip in tij

periods (hence the discount factor βij) with a charge of w− bij. The Offer term captures the

value of offering a free ride and the recursion considers the probability that this offer will be

accepted by the user. If the offer is accepted, the vehicle reaches the charging station z in

tiz periods with w− biz remaining battery. If the offer is declined, then the user rides to her

desired destination and pays the full fare.

Equation (1.2) models a scenario in which the vehicle is in state (i, w) and has enough

battery to complete short trips, but is still eligible for a manual reposition to the charging

station. The structure of (1.2) is similar to (1.1), but the MoveOccurs term accounts for the

possibility of a manual repositioning event, which occurs with probability pm. If a manual

repositioning event occurs, the system incurs a cost of cm and the vehicle is moved to the

charging station z in tm periods. If the vehicle is not moved, then the value function takes

the form of (1.1). We note that the formulations in (1.1) and (1.2) can be modified to

incorporate more flexible discounts, in addition to or in lieu of the free-ride discounts. For

instance, offering a (1 − σ)-discount for some σ ∈ [0, 1] is possible by adding an additional

term into the maximization. This term would have the same structure as the Offer term,

but the system would realize a revenue of σfij and the utility gained from accepting the

(1 − σ)-discounted ride would be u(dzjj, σfij). This generalization would allow the system

operator to offer a full-fare ride, a (1− σ)-discounted ride, or a free ride.

Free-ride policies. For free-ride policy π : R × W 7→ {DoNotOffer, Offer}, we define

Sπ = {(i, w) : π(i, w) = Offer} to be the set of states in which a free-ride is offered. A

free-ride policy π is a single-offer range (SOR) policy if for each region i, there exists battery
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charge levels wi
2 ≥ wi

1 ≥ biz, such that if the vehicle is in state (i, w), then π(i, w) = Offer if

and only if w ∈ [wi
1, w

i
2]. We let Π and ΠSOR ⊂ Π respectively denote the set of all free-ride

policies and all SOR policies. Further, let π∗ ∈ Π be the optimal free-ride policy, which can

easily be derived via value function iteration since the dynamic program given in (1.1)-(1.2)

has only r · |W| states, however there is no guarantee that π∗ ∈ ΠSOR.

Next, we present conditions that would guarantee that π∗ ∈ ΠSOR. At first glance, these

conditions seem to be trivially satisfied for any reasonable network, however we are able to

present simple counter-example to break this intuition. First, note that by re-arranging the

DoNotOffer and Offer terms in (1.1) and (1.2), we see that π∗(i, w) = Offer if

∑
j∈R(i,w)

pij · P(Acceptijz) ·
(
βizV (z, w − biz)− βijV (j, w − bij)− fij

)
≥ 0, (1.3)

and w ≥ biz. Hence an SOR policy will be optimal if βizV (z, w− biz) ≥ fij +βijV (j, w− bij)

for a single continuous battery charge level interval. A sufficient pair of conditions for this

to hold are (i) the value functions V (i, w) are increasing in the battery level w and (ii) the

marginal value of each percentage of charge is larger at charging stations than at standard

regions. With respect to (i), it seems intuitive that a vehicle with more charge should be able

to generate more revenue than a vehicle with less charge, since vehicles with more charge

can serve a broader collection of ride requests. However, we quickly discovered that it is not

difficult to construct a system in which more battery is not always beneficial. An example of

such a network is provided in Appendix A.3. Consequently, (1.3) can be satisfied for several,

disjoint battery ranges and hence π∗ is not guaranteed to be an SOR policy. In what follows,

we show how to use the above dynamic program to obtain optimal SOR policies in a setting

with a single vehicle and multiple charging stations.
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1.3.3 Single Vehicle and Multiple Charging Stations (1VMC)

In this section, we consider an EVSS with a single vehicle and m charging stations indexed

by the set Z = {1, . . . ,m}. We assume that if a user whose desired destination is region

j accepts a free ride, then she will only park her vehicle at the charging station closest to

her destination, which we define as zj = arg minz∈Z djz. We define b̄i = minz∈Z biz as the

minimum battery level required to reach a charging station from region i, and note that the

system operator will only consider offering a free ride if the vehicle’s battery level satisfies

w ≥ b̄i, so at least one charging station can be reached. Since we assume that each user’s

destination is unknown to the system, it is possible for a free ride to be offered to a user who

cannot reach the charging station closest to her desired location. In the case, we assume

that the user will reject the free ride.

To find the optimal SOR policy, we first consider the equivalent linear programming

of the dynamic program for the 1VMC instance, which is provided in Appendix A.2. For

simplicity, in the LP that follows, we only include the constraints for the cases in which

i 6∈ Z and w ≥ bm, but note that the analysis holds when the constraints are added for all

cases. Let

V no(i, w) = λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w)

and

V o(i, w) =λi

∑
j∈R(i,w):
w≥bizj

pij ·
(
P(Declineijzj) ·

(
fij + βijV (j, w − bij)

)

+ P(Acceptijzj) · βizjV (zj, w − bizj)
)

+ λi

∑
j∈R(i,w):
w<bizj

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w),
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where these two expressions respectively correspond to the case in which the system operator

does not and does offer a free ride. The linear program of interest in given below in LP Full.

Z∗ =min
V (·)

∑
i∈R

∑
w∈W

V (i, w) (LP Full)

V (i, w) ≥ V o(i, w) ∀i 6∈ Z , w ≥ max{bm, b̄i}

V (i, w) ≥ V no(i, w) ∀i 6∈ Z , w ≥ max{bm, b̄i}

V (i, w) = λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w) ∀i 6∈ Z , bm ≤ w < b̄i.

From the optimal solution to LP Full, which we denote as V ∗(i, w), we can find the

optimal free-ride policy by setting π∗(i, w) = Offer if V ∗(i, w) = V o∗(i, w), and hence the

set of states where the system operator should offer a free ride is Sπ∗ = {(i, w) : V ∗(i, w) =

V o∗(i, w)}. In fact, for any free-ride policy π ∈ Π, we can find the total discounted expected

revenue from a vehicle in region i with battery level w by solving the following LP

Z(π) =min
V (·)

∑
i∈R

∑
w∈W

V (i, w) (LP Policy)

V (i, w) = 1(i,w)∈SπV
o(i, w) + 1(i,w)/∈SπV

no(i, w) ∀i 6∈ Z , w ≥ max{bm, b̄i}

V (i, w) = λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w) ∀i 6∈ Z , bm ≤ w < b̄i.

Building on the above two LPs, we can find the optimal SOR free-ride policy by solving
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the following mixed-integer linear program

Z̃ = max
∑
i∈R

∑
w∈W

V (i, w) (Single Threshold)

V (i, w) ≤ V o(i, w) +Mxno(i, w) ∀i 6∈ Z , w ≥ max{bm, b̄i}

V (i, w) ≤ V no(i, w) +Mxo(i, w) ∀i 6∈ Z , w ≥ max{bm, b̄i}

V (i, w) = λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w) ∀i 6∈ Z , bm ≤ w < b̄i

xo(i, w) + xno(i, w) = 1 ∀i 6∈ Z , w ≥ max{bm, b̄i}

xo(i, w − δ) ≥ xo(i, w)− y(i, w) ∀i 6∈ Z , w − δ ≥ b̄i

(1.4)∑
w∈W

y(i, w) + xo(i, b̄i) ≤ 1 ∀i 6∈ Z

(1.5)

xo(i, w), xno(i, w), y(i, w) ∈ {0, 1} ∀i 6∈ Z , w ≥ max{bm, b̄i},

where M is a large constant. The binary decision variables xo(i, w) and xno(i, w) respectively

denote whether or not a free ride is offered when the vehicle is in state (i, w). The binary

variable y(i, w) denotes whether or not battery w is the lower threshold battery level wi
1 for

region i. The upper threshold wi
2 is equal to 1 if xo(i, 1) = 1, otherwise it is equal to smallest

w such that xo(i, w)− xo(i, w + δ) = 1. Furthermore, we call attention to two fundamental

changes in Single Threshold in relation to LP Full: (1) the objective is a maximization

and (2) the sign of the inequalities in the constraints is reversed. In Single Threshold, the

“big-M” terms in the first two constraints force the one of the two right-hand sides of these

constraints to be quite large, effectively making this constraint irrelevant. The constraint

without the large right-hand side is the binding constraint and corresponds to the optimal

action that maximizes the expected discounted reward.
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In the optimal solution to Single Threshold, we refer to the optimal, binary decision

variables as x̃o(i, w), x̃no(i, w) and ỹ(i, w). Based on this optimal solution, we define the

free-ride policy π̃(i, w) = Offer if x̃o(i, w) = 1, and therefore Sπ̃ = {(i, w) : x̃o(i, w) = 1}. In

the following proposition, we show that π̃ ∈ ΠSOR. All proofs are provided in Appendix A.4.

Proposition 1.3.1. Let π̃ be the free-ride policy derived from Single Threshold. We have

that π̃ ∈ ΠSOR.

Next, we build on Proposition 1.3.1 and show that π̃ is actually the optimal SOR policy.

Theorem 1.3.1. The policy π̃ that is derived from the optimal solution to Single Threshold

is the optimal SOR free-ride policy. In other words, π̃ = arg maxπ∈ΠSOR
Z(π).

Theorem 1.3.1 shows that we can recover the optimal SOR policy by solving Single

Threshold and constructing π̃.

1.3.4 Multiple Vehicle and Multiple Charging Stations (NVMC)

For the multiple vehicle setting, our dynamic program must keep track of the location and

battery level of every vehicle in the network. Further, since each ride can last multiple time

periods, we also must account for vehicles that are currently in use. More formally, the state

of each vehicle can be represented by the 4-tuple (i, w, τ, j), where i ∈ R gives the vehicle’s

current (or last) location, w ∈ W gives the vehicle’s battery level when it was at region

i, and τ gives the number of time periods until the vehicle reaches the desired destination

j. We assume access to each user’s end destination j only after deciding whether or not to

offer them a free ride. If the vehicle is idle, we set τ = 0 and j = 0 . Finally, we let S

be all possible 4-tuples for the n vehicles of the system, and for state s ∈ S, we let V (s)

be the optimal value functions. We do not give the explicit form of these value functions

since they are simply more cluttered versions of those presented for the 1VMC problem

instance. Naturally, computing the optimal policy in this setting, much less characterizing
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its structure, is quite a difficult task. As such, we elect to employ the approximate dynamic

programming approach of Desai, Farias, and Moallemi (2012). In what follows, we summarize

this approach and describe how we apply it to our setting.

We develop and test free-ride policies by solving the smoothed approximate linear pro-

gram (SALP) introduced by Desai, Farias, and Moallemi (2012). In this approach, the

dynamic program is formulated as an equivalent linear program and the value functions are

approximated by a linear combination of L basis functions, which capture key properties

of the state of the system. More specifically, we approximate the value functions V (s) by

Ṽ (s) =
∑L

l=1 rl · ϕl(s), where ϕl : S 7→ R is the l-th basis function and rl is its weight. These

weights are the decision variables within the linear program. Once the optimal weights have

been derived, free-ride policies can be developed by using the value function approximations

Ṽ (s) to approximate the revenue trade-off between offering a free ride or letting the user

take her desired ride.

This approximation reduces the number of variables in the LP formulation of the dy-

namic program (we have just L decision variables, one for each basis function), but there

is still a constraint for every state-action pair, and hence the resulting linear program can

be intractable when the state space is large, as is the case in our problem. In such scenar-

ios, Desai, Farias, and Moallemi (2012) propose an approach in which the constraints are

randomly sampled and then the linear program is solved using this subset of states. Further,

the optimal solution to this linear program is permitted to violate the constraints up to a

certain “budget”, whose magnitude reflects the extent to which the sampled linear program

is further approximated. We explain how we sample constraints and choose the budget in

Appendix A.8. Surprisingly, Desai, Farias, and Moallemi (2012) show both theoretically and

numerically that the number of constraints that one must sample to arrive at reasonable1

approximation of the original linear program that contains all possible constraints does not

1The exact theoretical guarantee is fairly technical and hence we leave our description of this guarantee
at this high level.
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depend on the size of the underlying state space S, but only on L, the number of basis

functions.

1.4 Numerical Experiments

In this section, we present the details and results of a series of three distinct large-scale

discrete event simulations, which we carry out on EVSS networks inspired by those of our

collaborator. We crafted these experiments in an effort to study the efficacy of free-ride

policies under varying demand patterns and system parameters. We benchmark the per-

formance of the free-ride policies that we develop against our EVSS collaborator’s current

fine-based practice, under which users are fined for street-parking low-battery vehicles. We

present the details of our experiments in the following three sections. In Section 1.4.1, we

begin by providing a high-level description and motivation for each of the three experiments

that we conduct. Following this high-level summary of each experiment, we describe the key

ingredients and assumptions that go into setting up and running each experiment. Next, in

Section 1.4.2, we discuss the various policies that we test, and list the performance metrics

that guide our assessment of each policy’s performance. Finally, in Section 1.4.3, we summa-

rize the results of the three experiments, and in doing so, we provide high-level managerial

insights that surface from our extensive series of simulations.

1.4.1 The Three Experiments: Motivation and Set-Up

We begin by summarizing the distinguishing features and high-level goals of our three ex-

periments. This summary is followed by a description of how we design and set up each

individual experiment to match these intentions. As part of this latter description, we ex-

plain how we use the historical ride data provided to us by our EVSS collaborator, which

includes transactional data based on all rides from 9/20/15 to 11/21/15. Each vehicle in

the fleet is equipped with a device that continually transmits information every minute to
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the company’s database. As a result, for each ride, we know the starting and ending times-

tamps, origin and destination coordinates, fare paid, battery consumed, distance traveled,

and a variety of other readings. As suggested by the company, we removed rides greater than

15 miles, since it is likely that these rides do not reflect a commute, but rather a leisure trip

without a pre-conceived destination. Further, we removed rides that end in regions that do

not serve as an origin for any other rides, since these rides will create “sink” regions in our

simulation. The data cleansing ultimately leaves us with ∼28,300 rides. About 85% of these

rides are less than an hour, and the average distance traveled is 3.6 miles. It is important

to note that over the two month period that our data set spans, the system was static and

had no change in fleet, service area, or pricing. As we discuss later on, in each of the three

experiments, we use this data set to varying degrees to guide our choices for the key system

parameters within our simulations.

The three experiments that we conducted are respectively labeled True_EVSS, Parame-

ter_Sensitivity, and Demand_Sensitivity and are summarized below. We note that we refer

to the arrival probabilities λi and the transition probabilities pij as demand parameters,

while any other system parameter is referred to as an operational parameter.

• Experiment True_EVSS: The intent of this first set of experiments is to measure the

performance of each policy that we consider using a simulated EVSS network that

most closely resembles that of our collaborator. For this purpose, we use the historical

ride data to guide many of the underlying parameter values within our discrete event

simulation. We carry out this simulation on only a single set of parameter values,

which we refer to as the baseline parameters. We believe these values to be the most

realistic based on the historical ride data and discussions with our EVSS collaborator.

• Experiment Parameter_Sensitivity: In this experiment, we fix demand to be uniform

across the network, and then we study the overall impact of changing key operational

parameters on both the performance of various policies, and on the specific structure
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of the optimal SOR policies. We delay a detailed description of the exact nature of this

parameter sensitivity analysis until after fully formalizing the set-up of our simulations.

• Experiment Demand_Sensitivity: In our final experiment, we fix all of the operational

parameters that were varied in the previous experiment to the baseline values, and

instead only vary the two parameters related to demand. Our goal in this setting is to

understand how the performance and structure of the optimal SOR policies is affected

by shifting the demand towards or away from the charging stations in the network.

Again, we delay a formal description of how we vary demand in this way until after

fully formalizing the set-up of our simulations.

Next, we move to describing how we set up each of the three experiments. As should

be evident from the summaries above, the three experiments only differ by the manner in

which the demand and operational parameters are set and varied across simulations. As

such, the experimental set-ups for each of experiment share quite a bit of common ground.

In an effort to succinctly describe the set-up for each experiment, we first describe their

shared features, before sequentially addressing the defining elements that make each of the

experiments unique.

Common features of each experiment.

In what follows, we detail the elements of our simulation that remain fixed as we move

from experiment to experiment. First, among these common elements is the structure of the

underlying EVSS network, which includes how we partition the service area into discrete re-

gions, the number of vehicles in the system, and the number/location of the charging stations.

Furthermore, throughout each of our experiments, we use the same random ride generator to

determine each user’s exact trip when they rent a vehicle, and we also use the same random

utility model to capture customer preferences when a free ride is offered. Finally, the random

process governing manual respositions by the system operator remains unchanged across the
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experiments. Next, we discuss each of these common aspects individually in greater detail.

EVSS network. The service area that we use within the simulations is modeled off of the

location of our EVSS collaborator. We create a discretized service region by partitioning our

EVSS collaborator’s service area into a collection of square regions that comprise R, the set

of feasible locations for vehicles and charging stations within our models and simulations.

The size of each square was chosen so that it takes no more than four minutes to walk

from end-to-end based on the assumption that people walk at 3.1 miles per hour (Browning

et al., 2006). This partitioning scheme leaves us with 577 square regions, where the distance

between opposite corners is approximately 0.2 miles. Our EVSS collaborator has charging

stations positioned in 40 of these regions, and manages a total of 300 electric vehicles.

Generating trips. To generate the inter-arrival times of users, we fit the historical inter-

arrival data to several distributions and find that the best fit is the inverted beta distribution

with shape parameters α = 0.92 and β = 4.07, location parameter = 0.01, and scale pa-

rameter = 8.86. This parameter set gives a mean inter-arrival time of 2.66 minutes, which

we use as our period length when deriving the discount policies. If a customer arrives to a

region with several vehicles available, we assume that she always rents the highest-charged

vehicle 2. In the event that a vehicle is rented in region i ∈ R and the user’s desired location

is j ∈ R, we use a linear regression model fitted to the historical ride data to randomly

generate the ride duration (in minutes) tij and battery consumption bij of the given user’s

trip. We refer the reader to Appendix A.5.1 for the full regression output and a detailed

description of how the regressions are used to generate each ride in the simulation. The fare

for the given trip is then set to be fij = 1 + 0.15 · tij, which is a pricing scheme vetted by

our collaborator and common in many modern dockless EVSSs.

2Our historical data set does reveal that users generally choose the highest charged vehicle when presented
with a choice among many vehicles.
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Customer utility model. If the system operator offers a free ride, we assume that the user

trades off the inconvenience of walking a distance of d to her desired destination and paying a

fare of f for her ride. We capture this trade-off using a common linear structure for the utility

function throughout all of our experiments. More specifically, we set u(d, f) = −αd ·d−αf ·f ,

where αd ∼ U(0,DM), αf ∼ U(0, 1) are generated randomly for each arriving user. The

operational parameter DM captures the extent to which there is variability within the

customer population with regards to the inconvenience of walking the extra leg to the desired

destination of the user. Note that we only consider the disutility associated with each ride,

however this utility function could easily be updated by simply adding a constant term µ,

which reflects the utility gained from a successful commute. We discard this positive term

simply for notational convenience.

Manual repositioning events. Finally, recall that a vehicle is deemed move-eligible if it

has a battery level below bm. Furthermore, in each time period, if there are any move-eligible

vehicles in the network, then with probability pm we uniformly select one to be moved to

a charging station. The selected vehicle is then assumed to be unavailable for a random

amount of time, generated from a truncated normal distribution with a mean of four hours

and standard deviation of 30 minutes. Given that such moves could require an employee to

go between opposite ends of the city, we felt this was a reasonable distribution for the time

required for a manual move.

Battery recharging. When solving for the policies that we test, we discretize the set of

battery levels W by δ = 0.02. Further, we set the re-charging rate to be γ = 0.02 , which

corresponds to a charging time of 2.25 hours to replenish a completely depleted vehicle. While

our collaborator’s vehicles take 3-5 hours to fully recharge, we were not able to discretize

the battery levels in any finer increments than 0.02 and still tractably solve Single Threshold

to optimality in a reasonable amount of time. In the simulation however, we take a more

conservative approach and assume that the battery takes 5 hours to replenish.
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Distinguishing features for experiment True_EVSS.

As noted above, the intention of this experiment is to recreate the EVSS network of our

collaborator with as much accuracy and nuance as possible. For this purpose, we use

the historical ride data to govern the demand parameters. More formally, for each re-

gion i, we set λi = # of rides originating at i
# of total rides , and for each pair of regions i, j ∈ R, we set

pij = # of rides from i to j
# of rides originating at i

. In total, the data set of ∼28,300 rides is spread across 16,720

unique origin-destination pairs out of a possible r2 = 332, 929 such pairs. The remaining set

of operational parameters are fixed to the following values, which we denote as our baseline

parameter set. We set the cost cm of a manual move to be $25 since this is the fine our

collaborator enacts for street-parking a low-battery vehicle that eventually must be moved

to a charging station. We set the battery move-threshold bm = 0.2, the probability of a

move pm = 20%, and the dollar-to-mile sensitivity parameter in the customer utility func-

tion DM = 5. These values are our best guesses at reality after several discussions with our

EVSS collaborator.

Distinguishing features for experiment Parameter_Sensitivity.

In this experiment, we assume uniform demand and transition probabilities across the entire

network. As a result, rides between any pair of regions can occur, hence we have r2 possible

trips and we set λi = pij = 1
r
. The motivation behind this assumption is rooted in the

historical arrival probabilities, which are reasonably uniform across each region as indicated

in the heatmap of λi in Appendix A.9. For this fixed uniform demand pattern, we vary

pm = {5%, 10%, 20%} and use a battery move thresholds of bm ∈ {0.05, 0.10, 0.20}.

We also consider manual move costs of cm ∈ {$5, $25, $50} and dollar-to-mile sensitivity

parameter DM ∈ {0.5,5, 20}. The baseline values introduced in our description above of

experiment True_EVSS are bolded for reference.
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Distinguishing features for experiment Demand_Sensitivity.

In this final experiment, we fix the operational parameters at their baseline values and we

vary the two demand parameters to capture scenarios in which demand is either generally

close or far away from the charging stations. In total, we test nine different ride patterns

that are generated by varying arrival and destination demand to reflect the following three

scenarios: either clustered close (C) to charging stations, uniform (U) across the service area,

or far (F) from charging stations.

When demand is assumed to be clustered close to (far away from) charging stations,

we assume that the arrival probability at region i and the probability that a user ends her

trip at region i is linearly decreasing (increasing) in dizi , the distance between region i and

its closest charging station. Specifically, when demand is close to charging stations, we set

λi =
d∗−dizi∑

j∈R d∗−djzj
, where we define d∗ = 0.1+maxj∈R{djzj}. Note that regions that are closer

to charging stations will have larger arrival probabilities. When demand is assumed to be

farther from charging stations, we set λi =
0.1+dizi∑

j∈R 0.1+djzj
. In both cases, we use the additive

factor of 0.1 to ensure that the relative magnitudes of the arrival probabilities are reasonable

and non-zero. We set the transition probabilities for each of the three scenarios in a similar

fashion.

1.4.2 Policies Tested and Performance Metrics

In this section, we summarize the various free-ride and benchmark policies that we implement

within the three experimental settings that we consider. We begin by describing the handful

of free-ride-based policies that are derived from the models presented in Section 1.3. These

policies are all computed using a discount factor of β = 0.999 and discretized battery levels

in increments of δ = 0.02. Next, we describe two benchmark policies; one of which is the

current fine-based practice of our EVSS collaborator and the other is a “hands-off” policy

in which the system operator lets the system unfold naturally. We then detail the numerous
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performance metrics that we use to measure the efficacy of each policy. The union of all

policies that we consider across the three experiments are summarized below:

1VMC-SOR: This is the optimal SOR free-ride policy π̃ that is derived by solving Single

Threshold. Recall that under the policy π̃, we offer a free ride each time that a user

rents a vehicle in region i with battery level w and (i, w) ∈ Sπ̃.

1VMC-50: This is the discount-ride policy that we derive from solving the 1VMC dynamic

program modified so that in addition to having the option to offer a free-ride, the

system operator can also offer a half-priced, or 50%-discounted, ride.

NVMC-SALP: This is the policy derived from solving the smoothed-ALP described in

Section 1.3.4. Due to the fact that this policy is computationally intensive to imple-

ment, we only consider its performance in experiment True_EVSS. We seed our value

function approximation using ten basis functions, which we list in Appendix A.8 along

with other key details for implementing this policy.

Fine-Based (FB): Under the Fine-Based policy, users will be fined $25 for street-parking

a vehicle that has a charge level less than bm, the battery threshold for a manual

move. The user can avoid this fine by parking the low-battery vehicle at a charging

station. This is the current policy implemented by our EVSS collaborator to alleviate

“stranded” low-battery vehicles in their network. Hence the interesting scenario within

the simulation arises when the user’s preferred trip does not end at a charging station

and leaves the rented vehicle depleted. In this case, the user will trade off the utility

u(0, $25 + fij) of incurring a fine, but getting to her desired location, with the utility

u(dzjj, fij) of dropping the vehicle at a charging station. Ultimately the user will select

the higher utility option.

Never-Offer (NO): Under this policy, the system operator lets the system unfold naturally

and so the only way for a vehicle’s battery to be replenished is if the customer’s intended
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destination is a charging station or if the vehicle is selected for a manual repositioning

to a charging station.

We evaluate the performance of these policies via Monte Carlo simulation. Each simulation

begins with fully-charged vehicles assigned to regions according to the distribution of arrival

probabilities, and then runs for 100 days. Since the network we consider is fairly large,

we use the first 70 days in each simulation as a warm-up period. Using rides from the

last 30 days, we compute a wide variety of performance metrics, which are all listed in

Table 1.1. The values that we eventually report in our results are per-day averages of

each metric over 30 distinct simulations of the 100 day time horizon. We note that we

do not report profit in Table 1.1, but we do track revenue generated from fares and the

number of manual repositioning moves, which is a proxy for operational costs. Both of these

metrics can be used together to develop a sense of profit. Additionally, for experiments

Parameter_Sensitivity and Demand_Sensitivity, we summarize the structure of the SOR

policies that we derive from solving Single Threshold by reporting the average battery charge-

level range that characterizes these threshold-based policies.

1.4.3 Results and Managerial Insights

In this section, we sequentially present the results of each experiment. In doing so, we

concisely summarize the core trade-off between revenue earned and customer satisfaction

that arises when designing incentive-driven (or penalty-driven) policies in dockless EVSS

networks. Furthermore, we highlight the high-level managerial insights that we are able to

glean from our simulations, which we believe to be impactful take-home points.

1.4.3.1 Results of Experiment True_EVSS.

The performance of all five policies listed above is presented in Table 1.2. What is imme-

diately evident is that the Fine-Based policy garners more revenue that the discount-based
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Table 1.1: Description of Performance Metrics.

Metric Description

Revenue Daily revenue accrued by the system.
Rides Completed Rides taken per day.
Moves Number of manual repositioning moves completed per day.
Offers Number of discounted-ride offers extended per day. For the

Fine-Based policy, this is the number of times per day that a
customer decides between accepting or avoiding a fine.

Accepts Number of discounted-ride offers accepted per day. For the
Fine-Based policy, this is the number of times per day that
a customer avoids a fine by ending their trip at a charging
station.

Unmet Demand | Ve-
hicle

Total unmet demand per day due to users not finding a vehicle
at their origin region or at one of the neighboring regions.

Unmet Demand | Bat-
tery

Total unmet demand per day due to vehicles not having
enough charge.

Utility per Ride Average utility of users who were offered the discounted ride
option. For the Fine-Based policy, this metric is computed
only using rides where the user had to trade-off a fine and the
inconvenience of dropping the vehicle at a charging station.

Average Battery Average charge of the fleet (with and without the vehicles at
charging stations) at the end of the day.

Proportion in Z Proportion of the fleet at a charging station (in Z) at the end
of the day.

Rides Fulfilled at i Proportion of rides fulfilled at a customer’s arriving region
versus at one of the neighboring regions.
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policies, but users of the system under the Fine-Based policy experience at least double

the disutility of users in the discount-based policies. More specifically, we observe that the

revenue earned under the Fine-Based policy is 2% and 10% higher than the revenue earned

under the NVMC-SALP and 1VMC-SOR policies respectively. This trend is likely a result

of the stringent $25 fine that is enough to prevent users from leaving uncharged vehicles on

the street, without having to discount their ride. Consequently, users will often forgo their

desired ride in order to avoid a fine, and instead park the vehicle at a (potentially undesir-

able) charging station. This leads to far fewer manual moves per day, but an average utility

that is ten times worse than the 1VMC-SOR policy. Hence the notion that the Fine-Based

policy generates the most revenue should be taken with a grain of salt, as our simulation

does not account for the long-term consequences of a dissatisfied user-base. In short, the

potential negative impact of the Fine-Based policy on customer satisfaction could outweigh

the short-term benefits of increased revenue.

1.4.3.2 Results of Experiment Parameter_Sensitivity.

Recall that in this experiment, we depart from the historical demand patterns and set

the arrival and transition probabilities to be uniform across the entire network. For this

fixed demand pattern, we consider eight configurations of the operational parameters, where

each configuration is distinguished by a deviation from the baseline setting along one pa-

rameter. More specifically, we test cm ∈ {$5,$25, $50}, bm ∈ {0.05, 0.10,0.20}, pm ∈

{5%, 10%,20%}, and DM ∈ {0.5,5, 20}, where the bolded values indicate the baseline

values. Again, we arrive at eight different parameter configurations by choosing one pa-

rameter whose value will deviate from the baseline, and then enumerating over all such

combinations. For this second experiment, we only test the 1VMC-SOR and the Fined-

Based policies, whose performance along all of the dimension listed in Table 1.1 is reported

in Appendix A.6. While our primary focus of this experiment is to conduct a performance

sensitivity analysis with regards to the many operational parameters, we first comment on
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the relative overall performance of the two tested policies. In general, we observe that the

relative performance of these two policies matches that of experiment True_EVSS, however

interestingly, when we consider the test case where the battery move threshold is set to

its lowest value (bm = 0.05), the FB policy is dominated by the 1VMC-SOR policy along

all performance metrics. This is likely a result of the fact that when bm is low, users can

street-park low-battery vehicles that cannot serve many future rides without incurring a fine.

With regards to the sensitivity analysis, Table 1.3 summarizes the impact of varying

each operational parameter on the performance of 1VMC-SOR policies. More specifically,

this table presents the percentage change in each performance metric as the operational

parameters cm and bm are changed from their baseline values. This table does does include

the sensitivity analysis for DM and pm since changing these parameters had only a mild

impact on the many performance metrics that we consider. Of particular interest is how the

repositioning cost cm affects the number of manual repositioning events, which is reported

in column four of Table 1.3. When the cost cm decreases, the system realizes 16% more

revenue, but the caveat is that the number of manual movements jumps by 238% because

manual moves are cheaper. As expected, the system relies on manual repositioning much

more to bring vehicles back to charging stations when cm is low. When the cost cm is

higher, we see the opposite effect: accrued revenues drop by 9% and the system utilizes free

rides instead of high-cost more manual movements to keep to prevent stranded low-battery

vehicles. Interestingly, we also see dramatic swings in the levels of both types of unmet

demand as the battery-move threshold bm is changed. Naturally, as bm is decreased from

its baseline value of 0.2, we see more unmet demand due to insufficient battery levels, since

low-battery vehicles will not always prompt a manual move. However, increases of over 100%

and 800% are surprising and reflect the potential impact of the parameter bm. These large

percentage increases can be explained by noting that when bm is set to its lowest value of

0.05, a vehicle with a battery level of 0.06, for example, will not be manually moved to a

charging station and will result in lots of unmet demand due to the fact that this vehicle
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cannot serve many rides.

In addition to monitoring changes in performance metrics, we also study how the struc-

ture of the SOR policy changes as we vary key operational parameters. The first column

of Table 1.4 reports the average length of the offer range across all regions of the SOR

policy under each parameter configuration that we consider. The remaining three columns

report the correlation of the length of the offer range with several region-specific features,

such as the arrival rate λi and the expected battery consumption from i when the vehicle

is fully charged (i.e., w = 1). Note that if the correlation is negative, the average SOR

length decreases with the corresponding feature. This analysis helps illuminate additional

drivers behind the frequency with which free-rides are offered. For instance, the last column

indicates that offer ranges are larger at regions where users take rides that consume more

battery, since, in this case, vehicles are more likely to end trips with low battery.

Perhaps the most striking insight from Table 1.4 is how the cost of manual moves cm and

customers’ willingness to walk DM impact the length of the SOR. Our results indicate that

the mean SOR length approximately doubles both when cm increases from $5 to $50, and

when the variability in willingness to walk increases from DM = 0.5 to DM = 20. This

latter change corresponds to a decrease from 97% to 49% in the probability of accepting a

free-ride offer, and hence we observe larger free-ride offer ranges as the system operator faces

more uncertainty surrounding each customer’s response to a free-ride offer.

Results of experiment Demand_Sensitivty.

In this experiment, we fix the operational parameters at their baseline values and we study

the impact of varying demand patterns on the performance of the Fine-Based and 1VMC-

SOR policies. For the 1VMC-SOR policy, we also study how the structure of the SOR

changes as we shift demand. To accomplish this task, we create nine different demand

settings which are characterized by the generall proximity of the underlying demand to

the scattered charging stations. The full set of results are presented in Table 1.5, where
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the performance of the 1VMC-SOR policy is reported relative to that of the Fine-Based

policy on six different performance metrics (the top six charts) for each of the nine demand

scenarios. The full set of results are available in Appendix A.7.

As is the case in the previous two experiments, the revenue generated under the Fine-

Based policy is greater than that generated under the 1VMC-SOR policy over each demand

scenario that we consider. However again, this realization should be taken with a grain of

salt, since this lower revenue is driven by the fact that the 1VMC-SOR policy forgoes revenue

in exchange for the opportunity to keep a charged fleet, and not because it fulfills fewer rides

per day. As a result, the 1VMC-SOR policy is indeed able to preserve a higher charged

fleet, which in turn results in less unmet demand as users are able to access sufficiently

charge vehicles that allow them to take their desired rides. And like we see in the previous

experiments, the free-ride policy provides a better customer experience with an average

disutility that is 13-16% of the disutility under the Fine-Based policy.

We note that the metric most strongly affected by the shifting demand is the number of

moves per day. As users’ intended destinations shift to being farther from charging stations,

the number of manual moves decreases. This occurs because free rides are offered more

liberally in this setting in an attempt to lure vehicles back towards charging stations.

The bottom three charts in Table 1.5 show how the structure of the SOR changes as

demand is varied. Generally, we find that if users are already planning on ending their trip

near a charging station, then there is less of a need to offer discounts to charging stations.

When the demand pattern flips in the opposite direction and users generally begin their

rides near charging stations and end far away from charging stations, then the SORs are

selected to be quite large in an effort to keep traffic in close proximity to where demand is

expected to arise. The results in the bottom right of Table 1.5 shows that dizi , the distance

between each region and its closest charging station, can be useful in characterizing SOR

length when destinations are far away from charging stations. In the left-most column (i.e.,

pij = C), the correlation between distance and offer range is fairly non-existent, but as the
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destinations move farther away from charging stations, the correlation becomes larger. One

explanation for this phenomena is that when regions near charging stations are not common

destinations, free rides need to be offered liberally to maintain a charged fleet.

1.5 Conclusion and Directions for Future Work

In this paper, we study the use of discounted rides as a mechanism to directly incentivize

users to park vehicles at charging stations in order to keep the fleet of vehicles adequately

charged. We focus on developing simple free-ride offer policies, which we refer to as single-

offer range policies. These policies specify a critical battery levels for each region i, which

serve as cut-off points for whether or a not a free ride should be offered. Not only do we

provide a formulation to find the optimal single-offer range policy for certain settings, but we

also demonstrate that such policies can be quite effective in terms of their ability to generate

revenue, keep the fleet of vehicles charged and keep the user-base happy. We show this

latter point through an extensive discrete event simulation that is seeded with historical ride

data from a real EVSS. While offering price incentives to users to change their destination

to charging stations seems like a good idea, our results show that Fine-Based policies are

also effective, and the advantages between the two types of policies depend on the system’s

objectives and features of the network and user base.

There are many interesting directions for future work with regards to dockless EVSS

systems. Since most mobility sharing systems experience travel demands varying by hours

over the day, one potential extension of our work involves incorporating time-varying ride

patterns. We attempted to extend our infinite horizon framework to a time-varying setting

where we solved for an time-specific SOR policy for several time windows throughout the day.

Depending on the time block of an arriving customer, the corresponding time-specific policy

is used to determine if a free ride should be offered. Unfortunately, this time-block policy did

not perform as well as the free-ride policy generated from using the ride data from the entire
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Table 1.4: Experiment Parameter_Sensitivity: Sensitivity of SOR Size for
Various Network Configurations.

Correlation between SOR Length and:

Instance Parameter
Changes

Mean
Length

Arrival
Probability

Distance to
Closest Charging

Station

Expected Battery
Consumption
with w = 1

1 Baseline 37.97 -0.29 -0.27 0.62
2 cm = $5 22.32 -0.26 -0.26 0.49
3 cm = $50 42.59 -0.26 -0.26 0.53
4 bm = 0.05 33.53 -0.32 -0.18 0.70
5 bm = 0.10 33.53 -0.32 -0.18 0.70
6 pm = 5% 37.50 -0.29 -0.21 0.66
7 pm = 10% 37.79 -0.29 -0.26 0.64
8 DM = 0.5 26.30 -0.07 -0.43 0.14
9 DM = 20 53.40 -0.34 -0.09 0.80

Note: The mean length of the SOR policy is computed as the average length over all the regions in the
network
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day. Another direction for future work within the multiple-vehicle framework could consider

a setting in which the EVSS consists of multiple vehicle types. In our case, we assume that

all vehicles are homogeneous, but many VSSs have several vehicle types (i.e. sedan and

SUV or e-scooters and e-bikes) whose functionalities are all different. On the behavioral

revenue management side, there are several fascinating directions. For instance, in a ride-

sharing setting, Cohen, Fiszer, and Kim (2018) compare the effectiveness of immediate ride

discounts versus future ride credit. In the same spirit, an interesting question is examining

the long-term implications that discounts and fines have on customer retention and ridership

in a dockless, EVSS.
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CHAPTER 2

Estimation of Price and Spatial Elasticity

In this chapter, we use two different datasets from our industry partner, a software company

that develops a suite of tools to transportation-related operations, such as manage parking

and permitting, for cities, universities, and organizations throughout the North America. In

many cities, our partner provides a mobile phone application for on-street parking payments.

Using the detailed transactions panel data from this mobile phone application, we are able

to estimate the price elasticity and spatial elasticity of parking.

In Chapter 2.1, we estimate the price elasticity of parking demand using a regression

discontinuity framework. The dataset comes from a mid-sized U.S. city’s mobile phone

application for parking payments and spans several years before and after an announced

price change. Following an increase of 20% from $1.25 per hour to $1.50 per hour, we

find the average price elasticity of parking demand to be between -3.42 and -1.57, which

is slightly higher than existing estimates. Our study, to the best of our knowledge, is the

first to use transactions data from a mobile phone application for parking payments, so this

could be driving the higher estimates. We also use our model to explore how long it takes for

customers to learn about and respond to the price change. We find that it takes between 6 to

8 weeks after the price change for users to respond to change their behavior. This duration

aligns with the mean inter-purchase time on the pre-price change data, suggesting that it

takes about one transaction for customers to experience the price change firsthand before

responding.

In Chapter 2.2, we estimate spatial elasticity, a measure of how individuals quantify the
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cost of walking an additional mile, in an urban transportation setting. We leverage a panel

dataset of parking transactions spanning 21 months from a large U.S. city’s mobile applica-

tion. During this time frame, there was an unannounced pricing error where two neighboring

blocks were discounted by 67% for 16 months. Using this natural pricing experiment, our

identification strategy involves using the pre-exposure data to build a person-specific distri-

bution over true, intended destinations, and then using the post-exposure data to estimate

how distance affects customer’s actual destination choice. In a perfect foresight model where

consumers have full information on all prices and know their exact duration before transact-

ing, we find that customers require approximately $81 to walk an additional mile to their

intended destination. This estimate increases 13% in the presence of rain and 36% during

the morning rush hour. Under alternative utility specifications that relax the perfect fore-

sight assumptions, we find that customers may be more sensitive to distance. The estimates

we compute are valuable in any context where walking is a mode of transportation, such

as metropolitan facility location and spatial pricing for dockless, vehicle and bike sharing.

However, we note that the estimates will vary based on the realities and demographics of the

city from where the data was collected. For instance, neighborhoods surrounding universities

tend to have price-sensitive students, which can affect
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2.1 Price Elasticity of Parking

2.1.1 Introduction

The economics of on-street parking have been studied since automobiles became popular

(Vickrey, 1955; Roth, 1965; Gillen, 1978). One reason for the interest in research on park-

ing is that a significant portion of metropolitan traffic congestion is caused by individuals

“cruising,” or circling the block, in search of a vacant, convenient parking space. Thirty

percent is the most commonly used figure by academics and policy makers for the share of

traffic attributable to cruising (Shoup, 2006). Other estimates range from as low as 15%

to as high as 50% (Hampshire and Shoup, 2018; Arnott and Rowse, 1999). In a neighbor-

hood in Los Angeles, California, it has been estimated that cruising causes over 3,500 miles

of superfluous travel (Shoup, 2017). One of the major, hypothesized causes of cruising is

that public parking is severely under-priced. However, correctly priced public parking can

mitigate cruising and traffic congestion, and also achieve other benefits, such as lower green-

house emissions, fewer accidents, and cleaner air, can also be realized. In order to price

public parking in a manner that can reduce congestion, city planners must understand how

parking demand fluctuates with price. In other words, transportation agencies that want to

implement congestion-aware, demand-based pricing, first need to know the price elasticity of

parking. In this paper, we use transactions data from a mid-sized U.S. city’s mobile phone

application for metered parking payments to estimate this elasticity.

Accurately setting the prices of parking, tolls, and other transportation modes can have

implications beyond revenue gained and the traffic congestion that is induced by the prices.

For instance, Christensen and Osman (2021) run a field experiment with Uber in Egypt and

find that a 50% price discount quadruples ride-sharing usage and leads to a 42% increase in

total travel, but they also find that the gains are realized more by women, who are less mobile

and feel less safe on public transit. In another study, Simeonova et al. (2019) investigate

the impact of a tax on entering the central business district in Stockholm, Sweden, by car.
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They find that after this policy was instituted, inner-city traffic dropped 20–25%, and even

more impressive is that ambient air pollution decreased 5–15% and the rate of acute asthma

attacks among young children decreased between 16-50%. These studies highlight the impact

that price changes can have beyond the immediate transportation setting.

Using parking transactions data from the mid-sized U.S. city’s mobile parking applica-

tion, we examine the impact of a 20% increase in the price of public, on-street parking after

a publicly announced price change. We specifically study how a price change from $1.25

per hour to $1.50 per hour affects the total volume of transactions and the amount of time

it takes for customers to respond to the price change. The dataset we received is from a

privately-held technology company that provides transportation and mobility software solu-

tions to cities across North America.

2.1.1.1 Related Literature

There exists extensive research on the price elasticity of parking and the various methods

available to compute it. In a meta-study of over 50 articles that examine the price elasticty

of parking, Lehner and Peer (2019) distinguish between price elasticity of occupancy (EPO),

dwell time (EPD), and volume (EPV), where EPO is the sum of EPD and EPV. Furthermore,

they find that the elasticities based on stated preference (SP) data (i.e., detailed surveys)

lead to different managerial and policy insights than estimates based on revealed preference

(RP) data. For the (dis)advantages of SP versus RP data in a transportation context, we

refer the reader to Chapter 4 of Dell’Olio et al. (2017). The majority of parking elasticty

estimates come from SP data research. By comparison, there are only a few articles using

RP data from actual customer transactions during real pricing experiments, which is where

our work is positioned. In the context of the meta-study, our work classifies as (1) an RP

study since we examine the actual choices that individuals have made and (2) an EPV study

since we examine how the total transaction volume changes after the price change.

There are several papers that estimate the price elasticity using transactions data and
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our work contributes to this literature. For example, Yan, Levine, and Marans (2019) use a

joint parking and mode choice model to estimate the elasticity for quarterly parking permits.

In contrast, we use a detailed, daily-level panel data of transactions to estimate the elasticity.

Kelly and Clinch (2009) and Ottosson et al. (2013) both focus on how elasticities change as a

function of time of the day. In the former, the authors focus on EPO and use the transactions

from on-street parking stations before and after a 50% price increase in Dublin, Ireland, and

find that price elasticity by time of day ranges from -0.15 to -0.61 during weekday, with

demand being more sensitive in the mornings. They also investigate how parking duration

changes due to the price change, which we do not. In the latter, the authors use data from

parking meters in Seattle, Washington and calculate the price elasticity of on-street parking

by time of day at the block level and as a function of distance to the city’s center. Since

the authors did not have data on parking occupancy, they infer occupancy from the meter

payment data. Both of these studies find that, while elasticisty of parking varies depending

on the time of day and the specific location or block, parking is, on average, inelastic in the

short-term and is likely elastic in the long-term.

Some of the most recent and closely related research to ours analyzes data from SFpark,

a large-scale, controlled, dynamic pricing experiment in San Francisco, where prices were

adjusted on blocks that deviate from a 60-80% occupancy target (Pierce and Shoup, 2013).

The SFpark parking initiative was designed to improve the utilization of on and off-street

parking, and a key aspect is that the project includes both treatment and control areas.

The San Francisco Municipal Transportation Agency (SFMTA) managed the program and

collected both parking sensor data, which consists of hourly block-level occupancy rates and

on-street meter payment data containing all parking transactions. However, the sensor data

eventually became unreliable and incomplete due to battery failures and sensor outages.

Pierce and Shoup (2013) calculate the elasticity of demand revealed by over 5,000 price

changes during SFpark’s first year, and find that elasticity varies according to location, time,

day of the week, initial price of the block, and the date of the price change. They also find that
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short term-parking is inelastic whereas longer-term parking likely is elastic. These takeaways

align with other studies that use the SFpark data (Fabusuyi and Hampshire, 2018). Millard-

Ball, Weinberger, and Hampshire (2013) rebut the estimates and methodological approach

in Pierce and Shoup (2013), and instead present estimates using a regression discontinuity

methodology, which we also use. Using this methodology, they find parking to be less elastic

than what Pierce and Shoup (2013) estimates for short-term parking suggest. Millard-Ball,

Weinberger, and Hampshire (2014) also analyze SFpark data, but they focus on cruising and

find that the SFpark program reduced cruising by 50%. Feldman, Li, and Tsai (2020) use

the same data and find similar estimates of elasticity as (Pierce and Shoup, 2013). However,

they focus on the program’s welfare implications.

2.1.1.2 Contributions

This paper on the price elasticity of parking differs from the current literature in several

ways. First, to the best of our knowledge, there are no studies using transactional data from

a mobile phone application (app) that allows users to pay for parking via the app to estimate

price elasticity. This is important because it gives us precise counts of parking volume. The

price elasticity estimates reported in previous studies use data from meters, which is often

aggregated at the hour level or can be unreliable due to logging errors. We note that studies

that estimate the share of cruising use GPS data from mobile phones. The transactional

dataset we use has high granularity, a panel structure (i.e., it contains timestamps and unique

identifiers for each individual), spans several years, and comes directly from the city’s mobile

app. Because our dataset only contains transactions by customers who pay via the app, we

cannot estimate EPO, and instead focus on EPV.

Second, we use a regression discontinuity (RD) approach to estimate the elasticity of

demand. We are aware of only one study that uses a similar approach (Millard-Ball, Wein-

berger, and Hampshire, 2013). Our work differs in that we estimate the elasticity by measur-

ing how the adoption rate of the mobile app changes, whereas Millard-Ball, Weinberger, and
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Hampshire (2013) measures how the raw volume changes. We do note that other empirical

studies using detailed transactions data have used RD to compare how parking occupancy,

as opposed to parking volume, changes before and after a price change.

Third, we adopt a behavioral perspective by estimating the time it takes customers to

learn about a price change after it goes into effect. The existing literature does not study this

behavioral question of “how long does it take for customers to respond to a price change?”

Even though customers knew about the price change six weeks before it went into effect,

our analysis suggests that it takes users one transaction post-price change to modify their

behavior.

2.1.1.3 Paper Organization

The paper is organized as follows: Section 2.1.2 describes the setting and the data used in

the estimation. Section 2.1.3 describes the model and estimation strategy, and presents our

main elasticity estimates. The approach and results for understanding a customer’s time to

learn about the pricing change are in Section 2.1.4. Finally, we conclude with a summary,

discussion of policy implications, and several extensions in Section 2.1.5.

2.1.2 Setting and Data

This section provides details about our industry partner, setting, and data we use in the

estimation.

2.1.2.1 Setting & System Dynamics

Our collaborator develops a software-as-a-service platform to help cities, universities, and

organizations throughout North America manage their transportation infrastructure. One

service they provide to its customers is a mobile phone application (app) for processing

payments from parking lots and on-street, metered parking. Users always have the ability
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to pay in-person with cash or credit card, but those who pay via the app benefit by saving

time and receiving notifications before their meter is about to expire, in which case they

can remotely buy additional time. Cities also benefit by digitizing their revenue and having

access to real-time usage across their network. Users who pay via the app pay a convenience

and credit card processing fee of $0.25 per transaction. Two examples of these types of

mobile phone apps are ParkMobile1 and PayByPhone.2

Our partner city is a mid-sized, U.S. city with approximately 100,000 residents. In the

downtown, central business district (CBD), the hourly parking rate increased from $1.25 per

hour to $1.50 per hour on April 1, 2017. The city council voted on this increase approximately

six weeks before the price change was to go into effect. The CBD has both on-street, metered

parking and off-street (i.e., lot and garaged) parking available. Since the price change only

affected on-street parking, our study only includes on-street parking transactions.

In the CBD, parking is enforced from 8:00AM to 6:00PM from Monday through Saturday.

Occasionally parking enforcement can extend beyond these times and days due to special

events. Parking spaces are grouped into large, multi-city block areas called zones. The

timeline of a parking transaction is as follows. Users search for an open space to park near

their desired destination. When they find a parking space, they pay for it for a fixed amount

a time. The maximum length of stay allowed in the CBD is 2 hours. Users can pay either

directly at the meter (with cash or credit card) or via the mobile app. To pay on the app,

they must locate the zone number on the meter or on a street sign next to the parking spot

(see Figure 2.1) and enter this information in the mobile app to purchase time. Regardless

of how users pay, they must vacate their spot before their time expires; otherwise, they could

be fined for occupying a parking space without paying to park there.

1See https://parkmobile.io/
2See https://www.paybyphone.com/
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Figure 2.1: Example of Stickers and Signs with Zone Numbers in CBD.

(a) (b)

(c)

Note: the images are sourced from Virgina Beach, Virginia’s Parking Management website; see:
https://www.vbgov.com/government/departments/sga/parking-management/pages/parking-meters.aspx
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2.1.2.2 Data Description

We consider a panel dataset that includes the transactions of all customers paying their

parking fees via the mobile app over a period that lasts over four years between 2012 and

2018. For each transaction, we know the unique customer identification code, zone name

and number, starting timestamp, duration, rate information, and, in some cases, the specific

space number.

We use the day of the price change, April 1, 2017, to split the data into two periods: First,

the pre-treatment period, which includes all transactions through March 31, 2017. Second,

the post-treatment period, which includes all transactions beginning April 1, 2017. In our

analysis, we define TPC to be the date of the price change. Since TPC is a Saturday, we also

redefine weeks to start on Saturdays and end on Fridays. As we describe in Section 2.1.3,

we perform our analysis at the week-level, so we also define WPC to be the week of the price

change, where weeks strictly before WPC fall in the pre-treatment period and weeks on or

after WPC fall in the post-treatment period.

The data only includes transactions on the mobile application and does not contain

payments made directly at the meter. As shown in Figure 2.2, which plots the number of

transactions over our observation window, adoption and usage of the mobile app increased

over time. The figure indicates that the growth in the volume of TRANSACTIONS slows

down and flattens after the price change came into effect. Because of this, our model considers

the adoption rate and the increasing volume of transactions per week, and then measures

how these figures shift after the price change.

2.1.2.3 Data Preparation

Our initial data contains 103,153 customers who completed 572,538 parking transactions in

nine parking zones from November 19, 2013 through March 5, 2018. Before engaging in any

analysis, we complete several data cleansing and pre-processing steps:
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Figure 2.2: Transactions Per Month From 12/2012 through 1/2018.

The x-axis contains the year and month expressed as YYYYMM in ascending order. The red, vertical line
is the month of the price change.
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• Remove transactions from 2 zones, resulting in the removal of ∼10 transactions.

• Remove transactions where customers received a discount or parked for free, which

affected ∼500 transactions.

• Remove transactions on Sundays (∼6,000 transactions).3

• Remove transactions before 8:00AM.4

• Only include transactions from January-2014 through February-2018.

This leaves us with 524,405 transactions spread in seven parking zones. To give a sense of the

distribution of transactions across zones, in Table 2.1, we show the number of transactions by

zone for the pre- and post-treatment periods. We refer to the zones with the number assigned

to them in our dataset from our partner. Zone 44 is the zone with the most transactions, so

we use it as a reference point in our model and also refer to it as the “main” zone. During

the range that our data spans, we confirmed that the size of the zones did not change. In

our estimation approach, which we describe in Sections 2.1.3.1-2.1.3.2, we describe how we

restrict the date range of the dataset to have an equal number of months in both the pre-

and post-treatment periods.

We note that we do not combine “re-up” occurrences in this study. A “re-up” occurs when

a customer consecutively buys multiple blocks of parking time, or re-purchases time within

same zone after their initial time expires. Most often, customers combine these transactions

in order to park for a longer time than what is allowed. While this is a parking violation,

it is quite common in practice and our data reflects this. These transactions in a “re-up”

3Parking is free on Sundays, but due to a few special events, occasionally parking was not free on several
Sundays.

4Parking is free before 8:00AM and after 6:00PM. Due to special events, parking was not free outside
of this time range, and fees were assessed. There are approximate 80,000 transactions between 6:00pm and
12:00AM in the dataset, so we keep these, but only less than a few hundred between 12:00AM and 8:00AM,
so we remove these. We suspect the transactions between 12:00AM and 8:00AM are due to data logging
errors.
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chain can be collapsed into a single transaction where the duration and transaction cost are

both updated to reflect the totals across the entire chain. In this study, we do not combine

these transactions because we do not study the impact of the price change on total duration

or occupancy, but instead are only interested in how the price change affects the volume of

transactions.

Table 2.1: Transactions By Zone for Pre- and Post-Treatment Periods

Zone Number Pre-Treatment Post-Treatment Total

Main 62,718 33,277 95,995
41 57,408 25,789 83,197
42 38,804 22,740 61,544
43 47,116 25,109 72,225
45 47,434 25,555 72,989
46 34,908 17,587 52,495
48 57,401 28,559 85,960

Total 345,789 178,616 524,405

2.1.3 Estimating Price Elasticity

This section describes our modeling approach, which we use to obtain estimates of the price

elasticity of parking, and the results.

2.1.3.1 Model

To study how parking demand changes after the price change, we develop four models that

allow us to ultimately estimate the price elasticity of parking demand. These are designed us-

ing the regression discontinuity (RD) framework; we refer the reader to Imbens and Lemieux

(2008) for detailed RD information.

In all of the specifications, we define Z to be the set of zones in the datset and let z ∈ Z

refer to an arbitrary zone. Due to high variability in the weekly and daily time series data,

we perform our analysis at the week level. We define Week to be the week number in the
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dataset and we always begin numbering weeks at 1. For robustness, we vary the size of the

dataset to measure how the estimates vary with the amount of data before and after TPC .

One implication of this numbering approach is that WPC takes a different value depends on

the number of weeks that we include in the estimation data.5 In all models, the dependent

variable is Yz,Week, the number of transactions in zone z during week number Week.

Eqs. (2.1)-(2.4) contain the four models. The first is the baseline model and follows

the canonical RD design and contains a fixed effect for each zone (INTz), a zone-specific

coefficient for Week (βz,1), and a single post-treatment adjustment on Week (β2), which

is the amount the demand changes after the price change. This is the main coefficient of

interest. At the week of the price change (Week = WPC), there is a discrete jump or

discontinuity in demand. If β2 > 0, the jump is upwards and the demand increases in weeks

beginning WPC , and if β2 is negative, the jump is downwards and the demand decreases.

The next two models, in Eqs. (2.2)-(2.3), are generalizations of the first model. In

Eq. (2.2) we add a second intercept (INT2), that only affects the fit in weeks on and after

WPC . The model in Eq. (2.3) is a further relaxation as we let the second intercept be zone-

specific (INTz,2). In this sense, we are adding a second fixed effect for zone that only kicks

in when Week ≥ WPC . Both of these extensions result in better fits, which is seen by the

R2 being greater than in the baseline model.

Instead of allowing a discontinuity at Week = WPC , the last specification, in Eq. (2.4),

enforces a continuity at this changeover point. In effect, this enforces a “hinge” at the joint

Week = WPC , and is sometimes called a “hinge estimator” or a “hockey stick regression”

due to the resemblance of the fitted regression line to an ice hockey stick. This approach has

a rich history, and its variants have been studied by many researchers (Quandt, 1960; Sprent,

1961; Hudson, 1966; Vieth, 1989; Barrowman and Myers, 2000). While Eqs. (2.2)-(2.3) are

less constrained versions of the baseline model, this fourth specification is neither more or

5This numbering system does not effect the efficacy of our estimates; we include this detail to clearly
define our approach.
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less constrained version of the baseline; it is simply a different model.6

Basic Model

Yz,Week = INTz + βz,1 ·Week + β2 ·Week · I[Week ≥ WPC ] (2.1)

Two Intercept Models

Yz,Week = INTz + βz,1 ·Week + (INT2 + β2 ·Week) · I[Week ≥ WPC ] (2.2)

Yz,Week = INTz + βz,1 ·Week + (INTz,2 + β2 ·Week) · I[Week ≥ WPC ] (2.3)

Hinge Estimator Model

Yz,Week = INTz + βz,1 ·Week + β3 · (WPC · I[Week < WPC ] +Week · I[Week ≥ WPC ])

(2.4)

2.1.3.2 Methodology

To accurately measure the price elasticity of demand for parking, we focus on customers with

transactions before and after the price change. Some customers only transact before TPC

and some only after, but these individuals are uninformative because we do not know their

6While the hinge model does add a constraint to the baseline since it enforces a hinge, the fit is not always
worse than the baseline case due to technical details of the model; we refer the reader to the aforementioned
articles for a discussion of this.
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behavior in the period we do not have data for them. From a methodological perspective,

the RD framework does not require the panel units (i.e., customers) to be the same. In fact,

when we do not restrict our analysis to customers with pre- and post-treatment transaction,

our results hold convincingly, so we are being conservative by only focusing on customers

with data before and after TPC .

We estimate the price elasticity by using different slices of data. Each slice is created

by varying the amount of data we include before and after the price increase. First, we

only include those customers with at least one transaction ∆ months (where one month is

equivalent to four weeks) before TPC (i.e., before TPC − ∆) and ∆ months after TPC (i.e.,

after TPC + ∆). Next, in the estimation, we only use the transactions in the date range

[TPC − ∆, TPC + ∆]. Table 2.2 contains the number of customers and transactions in the

data slices given by the different values of ∆. We note that in the first row, we include all

customers, which contain individuals who only transacted before or only after, and in the

second row, we include those individuals who transact at least once before and after the

price change. All subsequent rows include customers who transact at least once ∆ months

before and after the price change.

2.1.3.3 Estimation Results

We present the parameter estimates of each model in Table 2.3, using ∆ = 3 months (12

weeks). In our robustness checks, we also perform the estimation for ∆ > 3 months. In

Figure 2.3, we plot the dependent variable Yz,Week for each zone, along with the linear

estimates using the outputs in Table 2.3. For robustness, in Appendix B.1, we also present

the results for ∆ = 0 months for various date ranges and for the cases when ∆ ∈ {4, ..., 11}

months. From these additional checks, we notice that as ∆ increases from 4 to 11 months,

the magnitude of β2 decreases. Or, as the window of consideration around WPC expands,

the effects weakens. This is maybe to be expected as the RD methodology literature suggest

using a smaller window around the policy change date for the most accurate estimates.
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Table 2.2: Descriptive Statistics

Entire Dataset Data Range: TPC ±∆ · 4 Weeks

∆ (Months) # of Customers # of Transactions # of Customers # of Transactions

– 94,985 524,405 – –
0 12,434 315,921 – –
3 9,561 281,542 6,498 48,104
4 8,574 269,740 6,406 58,462
5 7,675 256,260 6,105 67,039
6 6,843 244,075 5,716 74,899
7 6,026 229,953 5,205 80,839
8 5,138 213,772 4,594 84,335
9 4,330 194,884 3,964 84,187
10 3,372 171,589 3,188 80,764
11 2,225 136,917 2,143 70,405

Note: We start with ∆ = 3 months because anything smaller than this did not give us enough data to
accurately measure the effect.
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Finally, we note that in the results in Table 2.3, we include βz,1 for each of the zones listed

in Table 2.1.

2.1.3.4 Price Elasticity

Using the coefficients from the estimation output, we can calculate the price elasticity using

the formulas in Eqs. 2.5-2.6. The first is based on the standard definition, which states the

elasticity is equal to the percent change in demand divided by the percent change in price.

We know the price increased by 20% from $1.25 per hour to $1.50 per hour, so this is in

the denominator of Eqs. (2.5)-(2.6). The second formula is based on the arc-log formula,

which accounts for the non-linearity of the demand curve in parking contexts (Lehner and

Peer, 2019). Regardless of which formula is used, if parking is elastic, the numerator will be

negative, indicating demand decreases with a price increase. We note that for small values

of β2

β1+βz,1
, both formulates yield similar results.

% Change in Demand
% Change in Price =

β2

β1+βz,1

0.20
(2.5)

log
(

New Demand
Old Demand

)
log
(

New Price
Old Price

) =
log
(
1 + β2

β1+βz,1

)
log
(
1.20

) (2.6)

In Table 2.4, we report the price elasticity from estimating the baseline model (Eq. 2.1)

for different values of ∆. We report the minimum, maximum, and average elasticity over

all zones except the main zone (z = 44). Since we use zone fixed effects with zone 44 as

the reference zone, we do not report an estimate β1,z=44 in Table 2.3, and therefore do not

include this reference zone in the elasticity calculations.

We first note that the sign of our estimations agree with our intuition: as prices in-

crease, demand decreases. Next, we observe that our estimates align with the estimates
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in the literature (Lehner and Peer, 2019). Existing estimates have been in the following

ranges [−1.89,−0.21] (Yan, Levine, and Marans, 2019), [−3.00,−0.30] (Kanafani and Lan,

1988), and [−1.80,−1.20] (Albert and Mahalel, 2006). Yan, Levine, and Marans (2019)

use a discrete choice modeling framework, Kanafani and Lan (1988) use a simpler approach

leveraging raw vehicle counts before and after the price change, and Albert and Mahalel

(2006) use stated preferences data analysis. In contrast, our estimates are [−3.42,−1.57],

suggesting that parking is more elastic than what other studies have found. We also note

that the log elasticity formula returns larger estimates.

One reason that our estimates may be higher is because prices are directly accessible

via the mobile app, and are thus more salient than prices posted directly at meters. It is

well-known in economics that salient pricing has larger effects on demand, which aligns with

our estimates. It is also worth noting that our estimates could be conservative because our

methodology does not include nor account for parkers who stop using the app in response

to the price change. If we were to include these individuals, the magnitude of the estimates

would be even larger.

Finally, we see that as the amount of time before and after the price change at week WPC

increases, the price elasticity decreases. Note that as ∆ increases, it gets less likely that the

identifying assumption required by RD holds, so for large ∆, the elasticity estimates have

to be interpreted with caution. This is to be expected as Table 2.3 and Appendix B.1 show

that β2 decreases as ∆ increases. This could suggest that customers initially react to price

changes, but in the long-run, they become desensitized to the higher prices and demand

reverts back to its usual, pre-treatment levels. The discussion of how customers respond to

the price change motivates the next section, where we examine how many transactions it

takes for customers to react to a price change.
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Table 2.4: Price Elasticity as a Function of ∆

∆ (Months) Standard Formula (Eq. (2.5)) Arc-Log Formula (Eq. (2.6))
Minimum Maximum Average Minimum Maximum Average

3 -5.90 -1.67 -3.42 -14.95 -2.23 -6.65
4 -5.20 -2.12 -3.04 -17.58 -3.03 -6.40
5 -3.90 -1.60 -2.72 -8.31 -2.12 -4.71
6 -3.59 -1.81 -2.55 -6.93 -2.47 -4.14
7 -2.99 -1.40 -2.23 -4.99 -1.80 -3.35
8 -2.95 -1.30 -2.17 -4.89 -1.65 -3.20
9 -2.85 -1.42 -2.20 -4.62 -1.82 -3.25
10 -2.74 -1.36 -2.13 -4.36 -1.74 -3.11
11 -1.96 -0.96 -1.57 -2.72 -1.17 -2.09

2.1.4 Estimating Optimal Price Change Date

In this section, we describe how long it takes customers to react to a change in the price of

public parking. To do this, we relax the assumption that customers change their behavior

exactly on the day or week of the price change coming into effect. For example, customers

could change their behavior before the price change, such as when the legislation passed, or

at a later point, such as the next occasion when they park their car. Thus, we are no longer

looking at WPC as the week of the price change, but instead we want to see if another value of

WPC , such as WPC−1 week, WPC+1, or some other week, fits the data better. For a fixed ∆

(months), we create a slice of the data (as described in 2.1.3.2) that spans weeks in the range

from WPC−4 ·∆ to WPC +4 ·∆. We multiply ∆ by 4 to clearly indicate weeks. Then, we let

WPC to take every possible value in {WPC−4·∆, ...,WPC−1,WPC ,WPC+1, ...,WPC+4·∆}.

For each of these “fictitious” price change weeks, we record how well the model fits the data.

We measure fit by sum of squared errors and pay particular attention to which fictitious

price change week corresponds to the best fit. This will help illuminate when customers

actually responded to the price change.

Using the true, actual value of WPC , we estimate the model in Eq. 2.1, which gives

us the estimated coefficients (i.e., ˆINT z(∀z), β̂1, β̂z,1(∀z), β̂2). Then, with these coefficients
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and with every possible fictitious value of WPC , we compute Ŷz,Week, the model’s estimate of

Yz,Week. Finally, we compute the sum of squared errors (SSE),
∑

z

∑
Week(Yz,Week−Ŷz,Week)

2,

to measure how well the model fits the data. A lower SSE indicates a better fit. We do this

for every possible value of ∆ ∈ {3, ..., 11}.

We report the results in the heatmap in Figure 2.4, where the spectral color range is

blue if the SSE is low (fit is high) and red if SSE is high (fit is low). We can only interpret

the numerical SSE value within columns (i.e. within the same value of ∆) because the data

in each column is constant. We cannot compare the SSE across columns because there is

generally more data as ∆ increases (see Table 2.2), so the SSE will likely be greater. This

is why we use a heatmap to indicate where the SSE fit is best for each ∆. This allows us to

visually compare across all values of ∆.

For nearly all data ranges, i.e., ∆ > 16 weeks, the SSE is lowest six to eight weeks

after the price change. This shows that it took time until customers learned about and

responded to the price change. Using all of the pre-treatment data, we inspect the inter-

purchase (or interarrival) time of customers before the price change, i.e., the average time

between two transactions by the same customer. We find that the mean time is six to nine

weeks.7 Table 2.5 contains these interarrival times for customers with at least two through

six transactions before the price change.

These figures indicate that even though the price change legislation passed in mid-

February, and press releases were made through the date of the price change on April 1,

customers did not respond until 6-8 weeks after the price change, or approximately the

mean interarrival time between transactions. This suggests that customers do not respond

until they actually experience the price change firsthand. This notion of a “learning trans-

action” after an experience seems intuitive and natural, but, to the best of our knowledge,

it appears to be understudied and not yet widely acknowledged in the literature.

7We use two or more transactions as the minimum threshold because we cannot compute the interarrival
time between transactions for customers with only 1 transaction.
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There are studies on the long term effects of interventions after the treatment period

ends. These studies focus on how well customers remember and how quickly (or slowly)

they forget, and behavior reverts to pre-intervention levels (Allcott and Rogers, 2014; Frey

and Rogers, 2014; Simon and Spiller, 2016; Brandon et al., 2017). DellaVigna and Kaplan

(2007) is tangentially related as the authors study teases out temporary versus long-term

learning effects of a media news outlet on voting behavior. However, none of this related

work explores the response time after an intervention starts or the response time after the

first exposure to the intervention.

Table 2.5: Mean Interarrival Time During Pre-Treatment Data

Minimum Number of
Pre-Treatment

Transactions per Customer

Number of
Customers

Mean Number of
Weeks between
Transactions

2 22,188 9.6
3 14,385 8.8
4 11,221 7.6
5 9,411 6.8
6 8,288 6.2

2.1.5 Discussion and Future Work

Using data from a mid-sized U.S. city before and after 20% increase in the hourly price of

parking, this paper uses the regression discontinuity framework to estimate the price elastic-

ity of parking. Though the price elasticity of parking demand has been studied previously,

our paper contributes to the literature in several ways. First, our data comes from a mobile

phone app that customers use to pay for parking. The existing literature estimated price

elasticities with stated preference data. The studies that do use revealed preference data,

such as our ours, rely on parking meter data, which can be less reliable and less granular

than the data we have. To the best of our knowledge, our study is the first to estimate

the price elasticity of parking using data on payment transactions from a mobile phone ap-
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plication. Second, we develop several models that can be used to estimate the change in

the weekly number of transactions before and after a price change while accounting for the

increasing adoption of the app over time. Previous approaches using parking meter data

simply measure the change in demand before and after the price change. Finally, we study

the time after the price change it takes for customers to change their behavior. To do this, we

leverage the panel structure of our data and quantify the inter-purchase time of customers

in the time before the price change.

Our study shows that the price elasticity of parking lies between -3.42 and -1.57, which is

greater than the existing estimates in the literature. These estimates suggest that parking is

more elastic than what has been thought previously. Policy makers can use this information

for price setting of public parking in metropolitan areas. For example, our industry partner,

which provides a parking payment app for local governments in U.S. and Canadian cities, is

beginning to offer dynamic pricing services for their parking clients. Many of the algorithms

designed for the dynamic pricing of reusable resources (e.g., parking), assume knowledge of

the price elasticity (Owen and Simchi-Levi, 2018; Rusmevichientong, Sumida, and Topaloglu,

2020). Even to compute the optimal static prices for reusable resources, knowing the price

elasticity is vital (Besbes, Elmachtoub, and Sun, 2021).

2.1.5.1 Limitations and Future Work

Future research could extend our work and address its limitations. With parking, the price

elasticity is likely to vary significantly across individual customers and parking occasions.

While we have access to unique identifiers for each customer in our panel data, we do not

have any socioeconomic or demographic information about the customers, such as the gender,

income, or education level. Incorporating this information into our data could show which

type of customers are more or less sensitive to price changes. Furthermore, our data comes

from a central business district with many retail stores in a mid-sized city. The existing

literature shows that elasticities vary depending on whether long-term parking is required,

65



the city size, and location type (i.e. retail versus non-retail).

While we have a rich, detailed dataset, our study only utilizes data from transactions that

occur via the mobile app. We do not have any data on transactions that were made directly

at the meter, e.g., with cash or credit card. Due to this limitation, we could be missing

out on the accurate demand profile. Another issue is that the number of transactions is not

stationary, as more users sign up for the payment app over time. We address this by using

the weekly rate of transactions instead of the transactions per week. However this could be

skewing our results and estimates to be higher than the existing literature. Replicating our

study once demand has stabilized on the mobile phone app could be worthwhile.
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2.2 Spatial Elasticity

2.2.1 Introduction

With ride sharing and vehicle sharing becoming more popular over the past several years,

the pricing of these services has been highly scrutinized by the media and well studied by

researchers. Of particular interest is the emergence of spatial, or location-based, pricing,

where prices vary as a function of the precise geo-coordinates, in addition to the traditional

factors, such as time, inventory, and forecasted future demand, that are present in classic

dynamic pricing. Spatial pricing is particularly important in the context of micro-mobility,

which includes various light transportation modes, such as electric scooters and bicycles,

which have gained ridership across the world thanks to companies like Bird, Lime, and Spin

who operate dockless, electric vehicle sharing systems (BBC, 2020). While shared vehicle

fleets are not perfect (Observer, 2020), they are popular and convenient because they can be

street-parked on any block or sidewalk in the service area and are affordable with a typical

start-up price of $1.00 and per-minute rate between $0.15 and $0.40 (Santa Monica Daily

Press, 2019). As a result, they are commonly used to travel the “last mile” or “micro mile,”

which are distances that are too far to walk but too close to drive. For example, the distance

between a parking spot or a public transit center (e.g., bus stop or rail station) and an

individual’s desired destination (e.g., home, doctor’s office, etc.) could take over 20 minutes

to traverse on foot, but can be covered in less than 5 minutes with a fee of less than $5 on

a dockless electric scooter.

In this paper, we study this relationship between distance (or time) and cost to answer

“how much money would one pay to directly reach their intended, desired destination, instead

of having to walk the last mile to reach this destination?” This trade-off, which we term

“spatial elasticity,” hinges on the assumption that individuals are utility-maximizing, which,

in our setting, means they minimize their fiscal costs and walking distances. The former is

tied to basic pricing theory of cost-minimization and profit-maximization, and the latter is

67



backed by marketing and economics research. For example, Bucklin, Siddarth, and Silva-

Risso (2008) show that prospective car buyers are more likely to purchase vehicles as the

distance to dealers decreases. Similarly, utilizing the locations of consumers and car dealers,

Albuquerque and Bronnenberg (2012) find that consumers experience a disutility for travel.

In a grocery store setting, Hui et al. (2013) use path tracking data in a supermarket to

measure the impact of path length, or travel distance, on purchases and the effectiveness of

mobile promotions. Rennhoff and Owens (2012) show that competition amongst churches

decreases with distance. In all of these examples, consumer preferences and competition

are both higher with shorter distances, underscoring the value that consumers put on close

proximity to their destinations.

To estimate spatial elasticity, we study how a non-publicized pricing change in on-street,

metered parking prices impacts customer choice. In particular, the shift in choice behavior

after customers are exposed to the pricing change allows us to quantify how customers value

their time against walking.

In modern transportation settings, having accurate estimates of spatial elasticity is criti-

cal. For instance, consider the micro-mobility setting. Proponents of theses shared mobility

services contend they are solutions to traversing the micro mile and will therefore encourage

more public transportation usage and adoption. However, there are anecdotal accounts of

a dearth of dockless vehicles at key public transit hubs. One reason is because the vehicles

are unevenly dispersed across the service area, leading to a unavailability at popular ori-

gins. This is typically assuaged through rebalancing and repositioning efforts, which is the

practice of manually moving vehicles across the network in anticipation of future demand,

but it is known to be costly and operationally intense (Fishman, Washington, and Haworth,

2014). Another form of rebalancing is called “rider-based rebalancing,” where customers are

incentivized to end their rides at key locations. For instance, Chung, Freund, and Shmoys

(2018) study “Bike Angels,” point-based incentive program in New York City’s bikesharing

system, and Nyotta, Bravo, and Feldman (2019) examine the effectiveness of offering free-
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ride discounts to users who end their trips at charging stations. For either of these incentive

schemes and pricing algorithms to be realistically implemented, operators need to precisely

understand how their riders value walking an additional leg in their journey versus reaching

their exact destination, which is exactly what spatial elasticity quantifies.

Beyond these pricing incentives in micro-mobility, spatial elasticity can be used in other

aspects of revenue, operations, and transportation management. Ride share operators, such

as Uber and Lyft, can inform the pricing of their services that require riders walk to desig-

nated pick-up points or accept a closeby drop-off point that is away from the specific, desired

destination, in exchange for a cheaper fare (CNN, 2017). Fielbaum, Bai, and Alonso-Mora

(2021) study this exact problem and assume that the willingness to walk is known. City

planners should consider spatial elasticity when pricing and placing public transit locations

and street parking options. In facility location models where walking is incorporated as a

transportation option (Owen and Daskin, 1998), an accurate estimate of spatial elasticity is

necessary. In the instance of delivery networks, Amazon can use it to optimally locate their

locker pick-up locations (Deutsch and Golany, 2018) or place their in-city, metropolitan ful-

fillment centers to meet the tight, two-hour delivery window promises they offer with Prime

Now (Amazon, 2020).

The parking transactions data that we use comes from a company that provides trans-

portation and mobility software solutions to cities across North America. In one city, the

metered parking spots on two blocks in a high-traffic, downtown area were accidentally un-

derpriced by 67% from the true hourly rate of $3.75 to $1.25. This unannounced, discounted

price was only accessible to users who pay via the mobile phone application. Users who paid

directly at the meter paid the true rate. Our data only covers those users who paid via

the mobile application. Our estimation framework involves maximum likelihood estimation

(MLE) with the latent class logit (LC-MNL) discrete choice model, which is also known as

the discrete, or finite, mixture of multinomial logit (MMNL) model. McFadden and Train

(2000) define it as a mixed logit model with discrete mixing distributions, to emphasize the
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similarities with the original, continuous-mixture logit model, and demonstrate the model’s

flexibility by showing it can accurately approximate any choice model based on random util-

ity maximization. While this is a strong result that highlights the value of the continuous-

mixture model, Hess et al. (2011) identifies the possible advantages of latent class structures

over the continuous version, especially in a transportation context. We refer the reader to

McFadden and Train (2000) and Hensher and Greene (2003) for more information on the

LC-MNL and its variants. While none of these explicitly consider the LC-MNL model in

an revenue management application, the model has been used in this domain. For instance,

when customers chose according to the LC-MNL, Bront, Méndez-Díaz, and Vulcano (2009)

and Feldman and Topaloglu (2015) provide methods for computing the revenue-maximizing

assortments, and Li et al. (2019) study the multi-product pricing problem.

2.2.1.1 Contributions

In this paper, we have two main goals. First, from an empirical perspective, we want to

estimate spatial elasticity. We do this by leveraging panel data that spans 21 months and

examining changes in parking behavior before and after an unannounced pricing change is

released via the mobile application. While the true destination is unobserved in our data

and we only observe the actual parking destinations, our strategy involves using data from

the pre-treatment period to create a distribution over the true, intended destination blocks.

Then, using the during-treatment data, which includes all transactions after customers are

exposed to the pricing change, we measure how behavior changes. Furthermore, we want

to understand factors that may cause changes to the spatial elasticity, so we examine the

impact of the presence of rain and the morning rush hour on the baseline estimates. We

find that customers require approximately $81 to walk a mile to their intended destination.

This estimate increases 13% in the presence of rain and 36% during the morning rush hour.

In both scenarios, the impact on spatial elasticity attenuates as we expand the window of

when rain must occur near a transaction time or the window of what constitutes “morning
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hours.” These core estimates hold under extensive robustness checks (see Section 2.2.4.4 and

Appendix C.3 for details).

Secondly, we demonstrate how spatial elasticity impacts decisions. In a series of numerical

experiments, we compare the performance of two dynamic pricing policies, one that considers

spatial elasticity and one that does not, when customers are spatially-sensitive. We find that

accounting for the spatial component can significantly increase revenue and satisfied demand–

this effect is more pronounced in cities with shorter walking distances between zones or larger

arrival rates.

To the best of our knowledge, our work provides one of the early estimates of spatial

elasticity, and can contribute to the increasing use of empirical methods in revenue man-

agement. Recent examples in this area are Li, Granados, and Netessine (2014), who use

structural estimation to determine the fraction of strategic consumers who delay purchases

in anticipation of future price discounts, Fisher, Gallino, and Li (2018) who use field ex-

periments to find measures of price elasticity and test their impact on pricing strategy, and

Stamatopoulos, Bassamboo, and Moreno (2020) who use difference-in-differences to quantify

the effect of physical menu costs on retail performance metrics.

The paper is organized as follows: Section 2.2.2 describes the setting and the data used

in the estimation. Section 2.2.3 describes the model and estimation strategy. Results and

robustness checks are presented in Section 2.2.4. To demonstrate the importance of spa-

tial elasticity in an urban mobility setting, in Section 2.2.5 we perform a numerical study

where we compute the optimal dynamic prices of parking spaces with and without spatial

considerations. Finally, we conclude with a summary and discussion of several extensions in

Section 2.2.6.
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2.2.2 Setting and Data

This section provides details the setting and its dynamics, and the data we will use in the

estimation.

2.2.2.1 Setting & System Dynamics

Our research partner operates a software-as-a-service (SaaS) platform to facilitate mobile

payments for parking, permitting, and micro-mobility management for municipalties and or-

ganizations throughout the world. In many cities, our collaborator provides a mobile phone

application (app) to aide in the management of parking lots and on-street, metered parking.

While users still have the opportunity to pay in-person with cash or credit card, users who

choose to pay through the app save time and are given notifications when their time is about

to expire, in which case they can remotely buy additional time. Cities benefit by digitizing

their revenue and having access to real-time usage across their network. ParkMobile (Park-

Mobile, 2021) and PayByPhone (Pay By Phone, 2021) are similar examples of mobile phone

apps.

Parking spaces on city blocks (or zones), are priced at an hourly rate with a maximum

duration, which, in most cities, is enforced during working hours (i.e., 8AM-6PM) from

Monday through Saturday. The timeline of a parking transaction is as follows. Users looking

for an open space park when they find one. Users who want to pay via cash or credit card

directly at the meter can do so, but those who wish to pay via the mobile app locate the zone

and space number on the meter (See Figure 2.5), and use this information in the mobile app

to purchase time. Those who pay with the app are subjected to a flat, 15-cent transaction

fee. Regardless of how users pay, they must vacate their spot before their time expires.

If not, they could receive a fine from parking enforcement for occupying a parking space

without paying to park there. Of course, customers can always purchase more time up until

the maximum, allowable time limit. If customers procure multiple, consecutive transactions
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at the same spot without moving their vehicle, they are also risking a fine as this would

qualify as a single transaction beyond the maximum, allowable limit. In a popular, high-

Figure 2.5: Example of a Sticker With the Zone Number on Parking Meters

traffic neighborhood in our partner city, which is just under 50 square miles, there is only

on-street, metered parking and there are not any parking lots. For 16 months, two adjacent

blocks, containing a total of 14 parking spaces, were priced incorrectly, but only via the

mobile app. Those who paid with cash or credit card at the meter were subjected to the

true hourly rate of $3.75, but those who chose to pay via the app paid the incorrect, reduced

rate of $1.25 per hour. This error occurred because the wrong pricing code was entered in

the back-end system. The error was not public knowledge and only those who parked in

the affected zones after the pricing error was live and paid via the mobile app realized the

discount. It is possible that the affected subset of users who experienced this pricing change

modified their parking behavior in response to these newly discounted prices. Since we have

users’ parking behavior both before and after the pricing change, this error is giving us the

pricing variation we need to measure how customers value the total cost with the distance

they need to walk between zones.

We group the two, mispriced blocks and refer to the pair as “treated” zones. We restrict

our analysis to the quarter-mile radius around the treated zones, with the assumption that
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most individuals will not walk more than 0.25 miles for a parking spot. We refer to this

circle as the “neighborhood” or the “catchment area.” During our analysis period, neither the

capacity (i.e., number of spaces) of each zone nor the signage in the neighborhood changed.

We provide a map of the catchment area, with the treated and untreated zones, in Figure 2.6.

Figure 2.6: Map of the Catchment Area

Note: Diamonds denote the two treated zones and solid circles denote the non-treated zones.

2.2.2.2 Data Description

We consider a panel data that includes all transactions from all customers who pay with the

mobile application during a 21-month timeframe in 2017-2018. The data does not include

transactions that occur directly at the meter. Approximately 40% of all transactions take

74



place via the app. For each transaction, we know the unique customer identification code,

zone name and number, starting timestamp, duration, and rate information. Our data

spans two periods: (1) the pre-treatement period, which lasts nearly five full months in

2017, and (2) the during-treatment period, which lasts just over 16 months spanning 2017

and 2018. We use “before treatment” or “before pricing error” and “during treatment” or

“during pricing error” to refer to these time periods. Our data ends approximately two weeks

before the pricing error is discovered and corrected. In the catchment area, customers do

not specify a space number when procuring time, so our data only contains the zone number

of the transaction. As such, we do not know the precise parking location in the zone, so we

assume that all transactions on a particular block occur at the block’s centroid. We cull the

geocoordinates, i.e. latitude and longitude, for each block’s center point information into a

supporting dataset using Google’s Geocoding API.

Data Preparation. We begin with 105,401 customers and 609,516 total transactions in

the catchment area. To prepare our dataset for our estimation, we complete several pre-

processing steps. First, there are instances where zones are re-assigned unique identifiers

over the time horizon, so we rectify this. The data also has zones and rate codes that

appear only during special events and holidays, so we remove these transactions since hourly

rates and maximum allowable durations are relaxed in these transactions. We also remove

a handful of transactions that have a length of stay of 0 minutes. We suspect this anomaly

is related to a data-logging error. Finally, we consolidate several zones during the data

preparation. For instance, a street can have parking on both sides of the street, and in some

cases this is considered two distinct zones, so we combine these in our analysis. In total, we

remove 4,285 transactions, and are left with 105,401 unique customers who generate 609,516

transactions, 99.3% of our original dataset, across 43 zones in our neighborhood.

While 3,291 customers are exposed to the pricing error (i.e., parked at least once in a

treated zone after the price change was live and paid via the mobile app), the final data set
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is reduced to 180 customers who we identify as regular users. These are individuals who

were also parking in the treated zones before experiencing the price error in the app. Using

each user’s first exposure to the pricing error, we split their transactions as BeforeExposure

and AfterExposure. As we describe in detail in Section 2.2.3, we remove the transaction

where customers are exposed to a treatment and we note that transactions in non-treated

zones after the pricing error was live are in the BeforeExposure set as the consumer had not

yet been exposed to the pricing error at the time of these transactions. Overall, this group

of 180 users amasses 6,477 transactions during the price change and 4,183 transaction prior

to it. Since these were regularly parking in the area prior to the pricing error, we will use

the BeforeExposure data set to model customers’ true destination preferences, before any

price change could have affected their choices. In our robustness checks, which we describe

in Section 2.2.4.4, we consider the full set of 3,291 users, which includes new users to the

system and users who were not regular users prior to the pricing change. We provide several

descriptive statistics of the pre and post exposure datasets in Table 2.6.

2.2.3 Econometric Analysis

We index customers with i from the set of all customers I, and use the set Ti to represent

customer i’s transactions, where t ∈ Ti is a single transaction. We define Z to be the set

of zones in the catchment area. We use j, k ∈ Z to represent an arbitrary zone and let

djk ∈ R+ be the distance between zones. We use zA, zB ∈ Z to refer to the two treated

zones. Since these are adjacent to one another, we group them and simply consider treated

versus non-treated zones, we define ZT = {zA, zB} ⊂ Z to represent the set, or pair, of

treated zones in our analysis. We further define ZNT = Z \ ZT to represent the zones not

affected by the price change.

Since we assume each parker learns about the pricing error when they first park in one

of the treated zones, each parker has a different exposure date to the treatment. We define

τi to be the transaction where parker i is exposed to the rate change and we refer to this
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Table 2.6: Descriptive Statistics

BeforeExposure AfterExposure

Number of Users 180 180
Transactions 4183 6477
Transactions in Treated Zones 525 1061

Transactions per Customer

Mean 23.24 35.98
St. Dev. 28.12 67.61
Min 1 1
Max 173 613
Median 12.5 12.5

Transactions per Day per Customer

Mean 0.18 0.26
St. Dev. 0.27 0.36
Min 0.01 0.01
Max 2.00 2.00
Median 0.09 0.1

Length of Stay (Hours)

Mean 1.56 1.49
St. Dev. 0.58 0.61
Min 0.05 0.03
Max 2.00 2.00
Median 2.00 1.83
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transaction as the “learning transaction.” At τi, the parker does not know about the rate

change, but upon completion, the parker observes the total cost is one third of what it

should be and officially learns that this block is priced incorrectly. At this point we assume

the user is aware of the pricing error and we group the subsequent transactions, i.e., t > τi

in the AfterExposure dataset. Similarly, transactions prior to the learning transaction, i.e.,

t < τi are part of the BeforeExposure data set. In the remainder of the paper we use

p ∈ {BeforeExposure,AfterExposure} to refer to the two time periods. Figure 2 describes

how we structure the data based on τi.

In the analysis, we drop the learning transaction from the data to account for any id-

iosyncratic effects the first time a user is exposed to the pricing error, assuming user will

fully incorporate the learned information for their next transaction. This approach is also

used in “regression discontinuity design studies” (Imbens and Lemieux, 2008). For instance,

Aguiar and Waldfogel (2018) do it with when studying the impact of a song’s popularity

by comparing streams a full day before and a full day after inclusion on key playlist, and

ignoring the 48 hours surrounding the inclusion time to eliminate time-of-day effects and to

ensure a full day of streaming data has been accrued before doing their analysis.

2.2.3.1 Model-Free Support

Before introducing our model, we conduct several expository analyses to determine if there

is any evidence in a behavioral change after the pricing change.

Change in Proportion of Transactions: Entire Catchment Area. In this analysis,

we consider all of the zones in the entire catchment area. For each parker i, we compute

Yi,p ∈ [0, 1], the proportion of parker i’s transactions in the treated zones for both time

periods p ∈ {BeforeExposure, AfterExposure}. Figure 2.8 contains a boxplot of both

proportions side-by-side and we see that the mean and median proportion is greater post-

exposure. To avoid bias, we restrict this analysis to only those users who have at least
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Figure 2.7: Visual Depiction of How the BeforeExposure and AfterExposure
Datasets are Created

Note: For two users, i1, i2 ∈ I, the transaction history where circles with a T and NT to respectively
represent transactions in treated and non-treated zones.

one transaction in ZT both before and after τi. Without this additional criterion in this

comparison, we have a glut of individuals with either Yi,AfterExposure > 0 or Yi,BeforeExposure = 0

because they never parked in a treated zone before their learning transaction. The shift in

the treated zones proportion of transaction is significant (p-value < 10−4) as suggested by a

t-test for matched pairs and a Wilconxon signed-rank test. To further buttress this diagram,

we estimate Yi,p = α+ γ · I[p = AfterExposure] using ordinary least squares. In Table 2.7,

we present the results and note that the sign of γ is positive and significant, again suggesting

that the pricing change could have played a part in driving more demand into the treated

zones after the pricing mistake.

Change in Proportion of Transactions: Adjacent Zones. With a 0.25-mile radius

neighborhood, the proportions Yi,p could include zones that are several city blocks away from

the treated zones, which may be too far from the treated zones to include in the analysis

since some customers may not be willing to walk that far for a cheaper rate. Rather than

computing these proportions across the entire catchment area, we compute them for each
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Figure 2.8: BeforeExposure and AfterExposure: Boxplot of Proportion of
Transactions in Treated Zones.

Table 2.7: Proportion of Transactions in Treated Zones

Yi,p

Intercept (α) 0.276∗∗∗

(0.026)

AfterExposure (γ) 0.095∗∗∗

(0.036)

Observations 246
R2 0.027
F Statistic 6.798∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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adjacent zone-pair combinations. In the map in Figure 2.6, we observe that there are 5

zones that are directly adjacent to the treated zones, with 3 next to zA only, 1 next to zB

only, and 1 next to both. In total, this gives six zone pairs for comparison. In Figure 2.9,

we plot the proportion of transactions in the treated zone for each of the six zone-pairs

and when aggregated across all comparison pairs. For each comparison, the proportion is

greater during the treatment period, but we note that the difference is only significant at

the aggregate level.

Figure 2.9: Proportion of Transactions in Treated Zones (Only Using the
Adjacent Non-Treated Zones)

Note: Zone Pairs 1-4 correspond to zA and Zone Pairs 5-6 correspond to zB .

Change in Market Share. Finally, for the entire population we compute the share of

all transactions in each zone z ∈ Z, both before and after exposure. We denote this value

MarketSharez,p and for each period we plot the cumulative proportion of transactions as a

function of distance from the treated zones. While Yi,p represents the proportion of user i’s
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transactions in the treated zones during period p, MarketSharez,p represents the proportion,

or percentage, of the population’s transactions in zone z during period p. In Figure 2.10,

the x-axis is the distance (d) from the treated zones, and the y-axis plots the cumulative

share of transactions within d miles of ZT . Mathematically, for each distance d on the x-

axis, the y-axis plots
∑

z∈Z|min(dzA,z ,dzB,z)≤d MarketSharep,z. We see that the post-exposure

line lies above the pre-exposure line for small values of d, which captures the total market

share for the treated zones and the zones that are closest to the treated zones. However,

as the distance d around the treated zones increases, the post-exposure line falls below the

pre-exposure line. This shift in market share from zones farther away from the treated

zones before the pricing change into the treated zones after the pricing mistake is additional

evidence in the population’s behavioral change after learning of the pricing error.

Figure 2.10: Shift in Market Share Towards Treated Zones
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2.2.3.2 Latent Class Multinomial Logit Model

In this section we describe the model we use to estimate the spatial elasticity while high-

lighting our underlying assumptions.

Assumption 2.2.1. A customer’s parking choice behavior is captured by the latent class

multinomial logit (LC-MNL) model.

First, we assume the latent class multinomial logit (LC-MNL) choice model governs

parking decisions. Embedded in the LC-MNL is the multinomial logit (MNL) choice model,

which is commonly used in many disciplines including economics, marketing, transportation,

and revenue management. In the LC-MNL, a customer belongs to a particular class k

with a probability captured by the mixing distribution. Given membership in a class k,

choices for a particular product j occur according to the MNL model, which is based on

the Random Utility Maximization (RUM) framework where consumers choose the product

j that maximizes their utility. Under RUM theory, each product’s utility can be divided

into a random, stochastic component and a deterministic component. This deterministic

component represents the utility gained from procuring product j, and is a weighted sum of

the product features, such as price and quality. In the utility, the features are multiplied by

parameters. Depending on the feature, the associated parameter can be either class-agnostic

(i.e., the same parameter for all classes) or class-specific (i.e., the parameter varies by class)

in the LC-MNL. We refer the reader to (Train, 2009) for a thorough description of both

models. Extending the class-product framework to the parking context, class k is analogous

to zone k being the desired, or intended, destination street block and product j corresponds

to parking zone j being the actual chosen street block that a user selects.

In our setting, the discrete mixing distribution represents the probability that parking

zone k is the intended destination zone, or the zone the customer wants to ultimately reach.

Given that a customer’s intended destination is zone k, we let qjt|k denote the conditional

MNL choice probability that a customer chooses to park in zone j at time t. When we
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uncondition qjt|k with a specific discrete mixing distribution, we arrive the expression for the

LC-MNL probability any given customer parks in zone j, as described in Assumption 2.2.1.

Assumption 2.2.2. The utility a customer gains during a parking transaction is solely a

function of the total cost and the walking distance from their parking zone to their intended

destination.

With this structural form for the utility, we are imposing the simplest behavioral model

for customers. We assume that they have full information of their length of stay and the

rates in each zone, linearly trade off their transaction cost with walking distance, and value

their utility in terms of dollars.

Initially, utility is only a function of two components: (1) the total service cost, LOSt ·

ratejt, which is the length of stay (LOS) of transaction t multiplied by the hourly rate

at zone j during transaction t, the zone where the customer actually parks, and (2) the

distance between zone j and k, djk, where zone k is the customer’s desired, yet unobserved,

intended destination. We note that the hourly rate is static over time across all zones during

the treatment period, so we could drop the index t and simply use ratej, but we keep the

transaction index as it is helpful for describing the extensions in Section 2.2.4.1. This yields

the baseline utility function in Eq. (2.7), where the coefficient β is the spatial elasticity we

will estimate and ϵjkt is a random noise term that captures unobserved features, which is

assumed to be an i.i.d standard Gumbel random variable with mean zero.

vjt|k = β · djk − LOSt · ratejt + ϵjkt (2.7)

Under this functional form, the maximum attainable utility from any transaction is 0, which

occurs when the customer pays nothing and parks exactly at their intended destination (i.e.,

ratejt = 0 and djk = 0). With vjt|k, we can derive an expression for qjt|k in Eq. (2.8). We

note note that we do not account for the no-purchase option in the choice probability qjt|k

because our dataset only considers purchases. This follows classic choice model estimation
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(Kamakura and Russell, 1989; Balachander and Ghose, 2003).

qjt|k =
exp(vjt|k)∑

j′∈Z exp(vj′kt)
(2.8)

As mentioned before, in the traditional LC-MNL, parameters can be either class-specific

(e.g., βk) or take the same value across all classes. We do the latter and compute a single,

population-wide spatial elasticity. In our setting, the equivalence to a product feature is the

distance from the chosen zone j (the product) to the intended zone k, which obviously varies

with the class. This is in contrast to the canonical LC-MNL model, where the features for

each product j do not vary by the class k, which in our setting will be equivalent to having

all zones equally spaced from each other. With this in mind, we can only estimate a single

value for β for the entire population.

Since qjt|k is a conditional choice probability, conditioned on zone k being the customer’s

true, intended destination, we must uncondition the intended destination to get the full

LC-MNL choice probability of a customer choosing to park in zone j described in Assump-

tion 2.2.1. To uncondition, we define λi
k to be the probability zone k is the customer i’s

desired destination zone, where
∑

k λ
i
k = 1. In this sense, λi

k is our discrete mixing distribu-

tion over intended zones.

We note that the expression for qjt|k is not person-specific and generic for the entire

population, but as we describe next in Assumption 2.2.3, λi
k is computed to be a person-

specific mixing distribution.

Assumption 2.2.3. Pre-exposure transactions capture each individual’s true, intended des-

tination zone preferences.

Computing λi
k is challenging because each customer i’s intended zone is unknown and

unobserved in our dataset. Under Assumption 2.2.3, we consider the transactions from the

BeforeExposure period to capture customers’ true, intended destinations preferences. The

rationale is that the entire system was static during this period—prices and the capacity
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of each block did not change—so transactions should represent customers’ true, intended,

desired destinations if the blocks were not full at the time of the transaction.

To compute λi
k, we first determine counts nik and ni, respectively the number of transac-

tions customer i has during the BeforeExposure period in zone k and over the entire neigh-

borhood. To ensure that we are computing the true preferences of intended zones, we only

include transactions in the counts nik and ni that occur when all zones in the catchment area

were not at full capacity. While this may be conservative, it ensures that customers could

have theoretically parked at any zone they wanted to at the time of their transaction–the

included records better capture their true preferences.

With ni and nik, we compute the population’s probability for zone k being the intended

destination zone. We denote this value λk and it is defined λk =
∑

i∈I nik∑
i∈I ni

. We use population-

level distribution over intended zones as a prior belief on customer i’s specific distribution,

and update it using Bayesian smoothing. We refer the reader to Manning, Schütze, and

Raghavan (2008) for a complete description of the mechanics of various smoothing tech-

niques. To arrive at λi
k, the prior belief λk is given a pseudo-count of 1 and updated using

nik and ni. The expression for λi
k computed via Bayesian smoothing is in Eq. (2.9).

λi
k =

λk + nik

1 + ni

(2.9)

The advantage of using smoothing to compute λi
k instead of using the simple, counted-based,

empirical distribution, i.e. λi
k = nik

ni
, is that it does not suffer from the “zero-probability

problem” or “zero-frequency problem” (Witten and Bell, 1991). The count-based approach

can be problematic when there are not any pre-treatment transactions in a particular zone

k (i.e., nik = 0), then λi
k = 0. We acknowledge that the count-based distribution is an

intuitive, natural way of thinking about the distribution over intended zones, so in our

robustness checks, which we describe in Section 2.2.4.4, we also include a series of estimates

using the count-based distribution.
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We note that the typical LC-MNL implementation considers customer-agnostic mixing

probabilities and assumes a parametric representation for them, and the parameters are

jointly estimated in the MLE step. In contrast to the typical LC-MNL, we use customer-

specific probabilities λi
k, and estimate their values using BeforeExposure data. The estimates

are then used as exogenous parameters in the MLE procedure. The motivation behind

this approach is the fact that these probabilities do not represent membership to a class

in our setting, but rather probabilistic preferences over destinations. Moreover, we note

that this two step approach will return accurate estimates because the estimation of λi
k

and the MLE procedure use different data. The λi
k distributions are computed using the

BeforeExposure data and the MLE uses the AfterExposure data. In our setting, if λi
k is

estimated simultaneously with β during the MLE procedure, i.e. on the same dataset, the

estimates of λi
k and β can be uninformative and undefined. More generally, the following

Lemma 2.2.1 shows that, in our setting, the traditional LC-MNL approach of estimating both

the mixing distribution and the parameters in the utility function can result in undefined

estimates. For readability, the proof is available in the Appendix.

Lemma 2.2.1. Estimating λi
k and β jointly via Maximum Likelihood Estimation can result

in uninformative estimates, i.e., β → −∞ and λi
k equal to user i’s exact proportion of

transactions in zone k in the estimation dataset.

The observation in Lemma 2.2.1 highlights the necessity of exogenously providing values

of λi
k to the MLE estimation. Note that the behavior as β → −∞ is unique to our setting

since distance, the key feature in our utility function, varies with both the class (or intended

zone) k and the product (or actual parking zone chosen) j. This is contrast to the canonical

LC-MNL as mentioned in the explanation of Assumption 2.2.2.

Finally, combining the expressions for λi
k and qjt|k, we can derive an expression for P i

jt,

the customer-specific, LC-MNL probability that customer i chooses to park in zone j during

occasion t, which we define in Eq. (2.10). This expression is a key input in the estimation
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procedure which we describe next.

P i
jt =

∑
k∈Z

qjt|k · λi
k (2.10)

2.2.3.3 Estimation

To estimate the spatial elasticity, we do maximum likelihood estimation (MLE) using the

AfterExposure data. Building on the notation in the previous section, we respectively define

L(β) and l(β), the likelihood and log-likelihood functions, in Eqs. (2.11) and (2.12), where

the binary indicator Si
jt takes the value 1 if customer i parked in zone j during transaction

t.

L(β) = Πi∈IΠt∈TiΠj∈Z

(∑
k∈Z

λi
k · qjt|k(β)

)Si
jt (2.11)

l(β) = ln(L(β)) =
∑
i∈I

∑
t∈Ti

∑
j∈Z

Si
jt · ln

(∑
k∈Z

λi
k · qjt|k(β)

)
(2.12)

Since the log-likelihood function, is not concave in its parameters, the MLE can converge

to a local maxima depending on the initial point supplied to the optimization procedure. To

assuage this, we run the maximization procedure with many different starting points and

only retain the point estimate that returns the maximum log-likelihood value. To generate

standard errors, we use the bootstrapping procedure described in Efron and Tibshirani (1986)

with 50 resampling iterations.

Finally, we note that the LC-MNL, when features of products (or actual zones) do not

vary by class (or intended zones), is readily estimated in off-the-shelf statistical software

(Sarrias and Daziano, 2017; Croissant, 2020; Beath, 2017), but as mentioned previously, in

our setting a critical feature of each “product” or parking zone is the distance to the intended

zone, which is directly defined by the “class”. Because of this, we cannot use any pre-existing

packages and must develop a custom estimation procedure, which is available upon request.
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2.2.4 Results

Using the baseline utility model, defined in Eq. (2.7) (also included in Table 2.8), we present

our estimation results in Table 2.9. Like we suspect, the sign of β is negative, indicating

that as the distance between the customer’s intended and actual destinations increases, the

utility of the choice decreases. Ultimately, the results show that spatial elasticity is $80.84

per mile.

Table 2.8: Utility Specifications

Specification Parameters vjt|k

Baseline β β · djk − LOSt · ratejt

Rain β; βrain (β + βrain · raint) · djk − LOSt · ratejt

AM β; βAM (β + βAM · AMt) · djk − LOSt · ratejt

LOS-II β; βcost β · djk + βcost · LOSt · ratejt

LOS-III β; βrate β · djk + βrate · ratejt − LOSt · ratejt

LOS-IV β; βrate; βcost β ·djk+βrate ·ratejt+βcost ·LOSt ·ratejt

2.2.4.1 Extensions

Next, we make several modifications to the baseline utility specification in Eq. (2.7) to

explore the impact of rain and morning hours on the elasticity estimate. We present the

utility expression for both of these alongside the baseline utility specification in Table 2.8.

Impact of Precipitation. The first extension deals with the idea that people do not

enjoy walking in the rain, so spatial elasticity should be stronger when precipitation is

present. We gather rain data using weather.com’s historical data API which logs all real-

time, weather statistics at approximately one hour intervals from the nearest weather station

to our catchment area, which is less than 6 miles away from the treated zones. In the worst
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case, the time between weather log entries can be separated by slightly over 2 hours. We note

that light snow is included as precipitation in the weather data. We use the binary variable

raint to represent if precipitation was present during transaction t. If raint = 1, then rain

is present when person i transacts during occasion t and the spatial elasticity is accordingly

adjusted by βrain, which has the same units as β, dollars per mile. Most of the time, raint

refers to rain, but it can also refer to snow. We note that days with heavy snowstorms are

removed from our data as the city usually closes during these days and driving is deemed

dangerous. We consider rain in three cases: (a) if precipitation occurs (a) 30 minutes or (b)

60 minutes before or after of the transaction; and (c) if precipitation is logged at any time

on the day of the transaction. For transactions without data within 30 or 60 minutes of the

starting timestamp, we conservatively presume that there was not any precipitation present.

Impact of Morning. The second extension involves the “morning rush hour” phenomenon.

In particular, we hypothesize that during the morning hours, spatial elasticity should be

larger since people usually have appointments and meetings first thing in the morning, and

if they are running late then walking distance is something they would try to minimize. In

the same way we define raint, we define a binary variable AMt, which takes the value 1 if

transaction t occurs during the morning time frame. In transactions where AMt = 1, the

spatial elasticity is adjusted by βAM . We consider the morning period with two morning

windows: the first (d) 60 minutes and (e) 120 minutes of the day.

Discussion. The estimates of the rain and morning extensions are presented in Table 2.9.

Precipitation being present increases the magnitude of spatial elasticity. This is to be ex-

pected and aligns with the intuition that people do not like to walk in the rain, especially in a

metropolitan area where they are likely headed into an office, store, or restaurant. However,

at the day-level (c) the effect is mild, as it only increases spatial elasticity by $5.94 per mile,

or 7.7%. We believe that the day-level modeling of rain may not be granular enough to

capture impact of precipitation. Rain is likely to disrupt users experience only when present
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around the parking transaction. So, we also consider situations where rain is present within

30 minutes of a transaction (a), the magnitude increases by $11.26 per mile, or about 13%

over the baseline estimate and is significant. Note that the effect size doubled compared to

the day-level estimate (c). And when we increase the window around the transaction to be

60 minutes (b), the effect weakens and is statistically insignificant. As the length of time

for measuring the presence of rain widens, we lose detail and granularity, and the effect

attenuates. With a 60-minute window on either side of the transaction, it is possible that

rain could dry up or stop with such a large window, in which case the rain effect vanishes.

However, with a 30-minute window, rain is more likely to be present at the transaction time,

so the effect is stronger.

When we consider the impact of the morning hours, the estimates confirm the intuition

that people are usually busy in the mornings, and therefore less willing to walk. When we

consider the morning to only be the first hour of the day (d), the magnitude increases by

$31.28 per mile, or 36%. Like the precipitation time frame, when we increase the morning

window to two hours (e), this early morning impact dissipates rapidly. The raw data reveals

that the duration of transactions that begin in the morning tend to be longer than trans-

actions that begin in non-morning hours. These observations are combined in Table 2.10

where we show the mean length of stay of transactions that occur in morning and non-

morning hours. We report the means for when the morning window definition is the first 60

minutes and the 120 minutes, and for both the BeforeExposure and AfterExposure datasets.

The differences in duration across morning and non-morning are significant in an unpaired,

two-sample t-test.

If we assume that consumers interpret of the cost of a transaction as two separate costs

– the fixed cost, which is a function of the walking distance, and the variable cost, which

is a function of the length of stay – then a longer length of stay in the morning means the

variable cost component is greater in the morning. Because the hourly rate is multiplied by

the length of stay, the impact of a cheaper rate is felt more in the morning when the duration
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Table 2.10: Mean Length of Stay in the Morning Hours

AM Window: 60 Minutes AM Window: 120 Minutes

Time Frame Morning Non-Morning Morning Non-Morning

BeforeExposure 1.53 1.48 1.57 1.47
AfterExposure 1.59 1.49 1.62 1.47

of transactions is longer. This increased variable cost could also be driving the larger spatial

elasticity in the morning, (d) and (e) in Table 2.9, since there are larger potential savings

available.

2.2.4.2 Relaxing Behavioral Assumptions

In our baseline structural form, we assume the decision maker has perfect foresight on their

duration and all prices in the catchment area. We impose this by using a unit coefficient in

front of the transaction cost term LOSt ·ratejt. However, it could be the case that customers

value length of stay and rates differently than assumed, in which case the units of utility

would not be in dollars. In light of this, we test three additional structural utility forms

to model how users value transaction cost (length of stay and rate) in their parking choice.

We denote these LOS-II, LOS-III, and LOS-IV and present these in the last three rows of

Table 2.8.

In LOS-II, we add a coefficient βcost on LOSt·ratejt. This coefficient normalizes the utility

expression to achieve a better estimate of β. We note that LOS-II subsumes the baseline

utility specification, and we recover the baseline utility from LOS-II if we constrain βcost to

-1 in LOS-II. In LOS-III, we add the term βrate ·ratejt to the baseline utility expression. This

allows us to measure if the rate alone causes any change in behavior. We note that since this

functional form still has the term −LOSt · ratejt and builds on the baseline specification,

we can interpret the units of utility in dollars. Finally, in LOS-IV, we combine both of the
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changes incorporated into LOS-II and LOS-III.

Table 2.11: Regression Results: Baseline, LOS-II, LOS-III, LOS-IV

Utility Specification

Baseline LOS-II LOS-III LOS-IV

β −80.84∗∗∗ −39.41∗∗∗ −44.13∗∗∗ −40.26∗∗∗

(6.47) (3.13) (3.06) (3.27)

βrate 1.30∗∗∗ 0.21∗∗

(0.03) (0.09)

βLOS −0.15∗∗∗ −0.27∗∗∗

(0.02) (0.04)

Num PIDS 180 180 180 180
Num Txns 6477 6477 6477 6477
Log Likelihood -19132.6 -18125.8 -18235.6 -18093.2
AIC 38267.3 36255.5 36475.3 36192.3
BIC 38274 36269.1 36488.9 36212.7

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

We present the new estimates, next to the baseline, in Table 2.11. Since we interpret

utility in terms of dollars in the baseline specification, the units of spatial elasticity are

dollars per mile. However, under LOS-II, LOS-III, and LOS-IV, the spatial elasticity cannot

be interpreted with these units. Instead, we compare the ratio of β
βcost

. Under LOS-II, this

ratio is 262.73, and under the baseline utility, this ratio is 80.84. This difference indicates

that customers appear to value distance (or time to get) to their desired destination more

than the total transaction cost. We also note that βcost < 0, indicating that as the total

transaction cost of transacting at zone j increases, the utility gained from choosing zone j

decreases.

In LOS-III and LOS-IV, we see a similar relationship in the ratio β
βcost

. This suggests that
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the baseline utility formulation may be overemphasizing the transaction cost, and distance

is a relatively bigger driver of customer choice. One plausible explanation is that parking

preferences are inelastic and last-mile/walked distance may be a more important factor in

urban transportation settings. In Section 2.2.5 we demonstrate the importance of spatial

elasticity by evaluating two pricing policies, one that considers spatial elasticity and one that

does not, in the presence of spatially sensitive customers.

2.2.4.3 Partial Effects

Because the LC-MNL model is highly non-linear, our estimates only provide insight on

how utility changes as a function of distance, length of stay, rate, and total transaction

cost. However, it is unclear how these factors truly interact and ultimately affect individual

customer choice. To more thoroughly understand this relationship, we consider the structural

form in LOS-III, where the units of utility can be interpreted in dollars, and compute the

partial effect to study how qj|k, the conditional choice probabilities, change with length of

stay and distance between zones.

We assume that the intended destination zone k is known, and we compute two condi-

tional partial effects for selecting zone j: one with respect to length of stay and one with

respect to distance between zones j and k. Since we are conditioning on the intended zone

k, we refer to these as conditional partial or marginal effects. We provide the expressions

in Eq. (2.13)-(2.14), which are obtained following Section 15.9 of Wooldridge (2010). Note

that when computing partial effects, it is common practice to take the average partial effect

over all individuals. But since qj|k does not vary with customer i, the average partial effect

is not informative, so we do not compute it here. For notational brevity, we drop the index
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t in this section.

∂qj|k
∂LOS

=
−ratej · exp(vj|k)

(∑
j′ exp(vj′|k)

)
− exp(vj|k) ·

(∑
j′ −ratej′ · exp(vj′|k)

)(∑
j′ exp(vj′|k)

)2 (2.13)

∂qj|k
∂djk

=
β · exp(vj|k)

(∑
j′ exp(vj′|k)

)
− β · exp(vj|k)2(∑

j′ exp(vj′|k)
)2 (2.14)

We illustrate the partial effects in Figure 2.11. To measure the conditional marginal

effects we do the following: we consider the actual destination zone j to be the treated zone

(i.e., j = zA). Then, for a fixed LOS, we use the pricing-error rates, and calculate the partial

effect for each intended destination zone k, in the order from the closest intended destination

to the farthest possible destination from j. We do this for four different lengths of stay and

respectively plot the effects. In this exercise, we only include destination zones k that are

priced at $3.75/hour in this exercise and ignore zones that are priced at $1.25/hour. We do

this because the conditional marginal effect is effectively 0 when the intended destination is

priced the same as the treated zone.

In Figure 2.11a, we see that as the distance between the intended zone and the treated

zone increases, the LOS marginal effect on choosing the treated zone (Eq. (2.13)) decreases,

but it is always positive. We also note that when the duration of the transaction increases,

the LOS marginal effect is more pronounced. In Figure 2.11b, we see that the distance

between the actual and intended zones has a strong negative impact on choice, but weakens

as the distance increases. As expected, this effect is stronger for longer LOSs.

One interpretation of these plots is that customers can be segmented into short-stay and

long-stay users. Due to the cheaper rate at the treated zone j, all users gain utility if they

park in j instead of k. However, the transaction cost for long-stay users is higher than it

is for short-stay users, so the total savings of the cheaper rate at the treated zone j are

greater – long-stay users gain more utility for parking in a treated zone. In other words, the

savings for short-stay users are simply not significant enough to compensate for added cost
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of walking out of their way for the cheaper rate, so they are less sensitive. In practice, if the

system operator has full knowledge of a customer’s duration and intended destination before

the transaction, they can tailor personalized discounts. In particular, users with longer LOS

and closer intended destinations are more sensitive to discounted rates.

2.2.4.4 Robustness Checks

To ensure that our assumptions and data-processing methods are sound, we complete several

robustness checks. We observe that, in general, our results and insights are preserved across

the various scenarios considered, but the magnitudes of the estimates do change. The detailed

results to these are available in the Online Appendix.

• Alternative Mixing Distributions (Tables C.4-C.5): Instead of computing the mixing

distribution λi
k via Bayesian smoothing and exogenously providing this to the MLE

procedure, we consider two other distributions over intended zones.

In the first, we use the count-based, empirical distribution over intended zones, i.e.

λi
k = nik/ni. The key difference between the two approaches is that the empirical,

count-based distribution can be quite sparse. Specifically, many zones k can have

λi
k = 0 because a user i could have no pre-exposure transactions in zone k. As a result

of this change the spatial elasticity weakens from $80.84 per mile to $51.76 per mile.

In the second, we retain the learning transaction. In Section 2.2.3, we describe how

we remove the “learning transaction,” for each user and do not include it in either the

BeforeExposure and AfterExposure datasets. Since we use the BeforeExposure to com-

pute the intended destination distribution λi
k, not including the learning transaction

can be wasteful, especially since the count-based, empirical λi
k are quite sparse. In this

exercise, we include the learning transaction in the BeforeExposure dataset and then

compute λi
k via Bayesian Smoothing. This shifts more mass to either λi,zA or λi,zB ,

depending on which zone customer i’s learning transaction occurs in, and shifts mass
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Figure 2.11: Conditional Partial Effect with Respect to (a) Length of Stay and
(b) Distance at Treated Zone #1

(a) Length of Stay Conditional Partial Effect

(b) Distance Conditional Partial Effect
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away from all other zones. The implication of this is that the mixing distribution re-

flects a stronger affinity for treated zones. As such, we would expect that users would

be more sensitive to distance after learning about the pricing error, which is exactly

what we see in the results. The spatial elasticity moves from $80.84 per mile to $87.12

per mile, meaning that users require a larger cost savings to walk the same distance

to their intended destination.

• Neighborhood Size (Tables C.6-C.8): We vary the neighborhood size to include 0.10,

0.15, and 0.20-mile radius around the treated zones. When the catchment area radius

is respectively 0.20 miles and 0.15 miles, the spatial elasticity estimates weakens by

12.7% and 3.5%, but when the radius is 0.10 miles, the estimate does not change from

the baseline. Overall, the estimates that include rain seem unreliable as the catchment

region shrinks, as the sign of βrain is not consistent across day, ± 30 minutes, and ± 60

minutes. This is direct consequence of having less transactions affected by rain, which

reduces the estimate’s power.

• Distance Norm (Tables C.9-C.10): In addition to using Haversine distance for measur-

ing the separation between zones (djk), we use Manhattan distance and the walking

distance, which we query using the Google’s Direction and Distance Matrix APIs.

These distances are both longer than the Haversine distance. For both norms, the

magnitude of the spatial elasticity estimates across all utility specifications decreases

by approximately 20%. Since these measures likely reflect more accurate walking dis-

tances over the Haversine distances, one could claim that these estimates are more

realistic estimates of spatial elasticity.

• User Inclusion Criteria (Table C.11): We perform the estimation with a second, less

restrictive subset of the population. This group includes all individuals who were

exposed to the pricing error. The main difference with the original cohort is that

these users may not have any transactions prior to the pricing error or not have any
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transaction in the treated zones. In total, there are 2,003 parkers that satisfy this

criteria. For these individuals, we use the population’s distribution over intended

zones, i.e., λk. We find that spatial elasticity drops from approximately $80/hour to

$64/hour when we relax the inclusion criteria. Moreover, the effect of rain vanishes

but the morning-hour estimates hold. It is possible that assigning the population’s

distribution to individuals without pre-treatment data is not effective because there is

no reason to believe that the distribution of the whole population’s preferences align

with an individual parker’s.

• Extended Service Sessions (Table C.12): We notice that there are instances when

users have multiple, consecutive transactions on the same zone. For instance, when

the maximum stay is 2 hours, a customer could pay for 2 hours, and then when their

time expires, they immediately can buy x hours of additional time. This appears as

two separate transactions in the data, where the first transaction is 2 hours and the

second is x hours. While this is illegal and users who engage in this behavior can

receive parking citations, it is quite common in the data. We refer to this situation as

a “re-up” and note that one could collapse a re-up chain into a single transaction with

a duration of 2 + x hours. In this check, we identify a re-up when the end and start

of two consecutive transactions occurred within 30 minutes of each other. Before any

data processing, the dataset has over 609,000 transactions in the catchment area, and

of these, there over 69,000 re-up chains. After collapsing the transactions in a chain

into a single transaction and updating the duration and cost to reflect the combined

values, over 89,000 transactions are removed. The resulting dataset has approximately

519,000 transactions, and this is what we use to repeat all of our estimate exercises

outlined in this paper beginning in Section 2.2.2. Note that we recompute λi
k before

completing the estimation. We find that the magnitude of the estimates increases by

10%.

Similar to the case of βrain estimates in the previous exercise with smaller neighborhood
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sizes, the sign of βrain here also lacks consistency between the day, ± 30 minutes, and

± 60 minutes. Since collapsing re-ups results in less transactions, we also have fewer

transactions that are impacted by rain, so the power for estimating βrain decreases.

• Alternative Utility Specification (Table C.13): We also consider a slightly simpler

utility model that only depends on the rate ratejt but not on the length of stay LOSt–

i.e., it only considers the rate, not the total transaction cost. We find that the estimates

do not vary much and our insights hold.

2.2.5 Numerical Study

In Section 2.2.4.2, our results indicate that customers are more spatially sensitive than our

baseline, perfect foresight model indicates. Ultimately, this suggests that price is less impor-

tant than distance in making parking decisions. In transportation settings with competition,

multi-homing across platforms, and a dearth of brand loyalty, such as with dockless electric

scooters, this spatial elasticity is an important consideration that should influence how sys-

tems manage and price their network. In this section, we unpack this and demonstrate the

benefit of spatially-aware pricing policies.

To highlight the importance of spatial elasticity in this pricing context, we perform a

numerical study where we evaluate two pricing policies, one that considers spatial elasticity

and one that does not, in a setting where customers are spatially sensitive. Since parking

spots are a reusable resource, we leverage the existing literature on pricing reusable prod-

ucts, such as Rusmevichientong, Sumida, and Topaloglu (2020); Lei and Jasin (2020), and

Besbes, Elmachtoub, and Sun (2021). We compute the optimal, time-varying policy using

the methodology proposed by Owen and Simchi-Levi (2018). Under this policy, in each

time period t, arriving customers are presented with one of several pricing configurations

over zones with some probability. Since a stochastic pricing policy does not make sense in a

parking setting, since all customers in time period t should see the same prices, we convert
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this policy to a deterministic policy. In each time period t, we offer all arriving customers

the pricing configuration that occurs with the highest probability in that time period.

We consider a simple system with 3 parking zones, i.e. Z = {A,B,C}, and a capacity of

10 spaces in each zone. We choose the optimal prices from the discrete set [$0.25, $0.50, ...,

$10.00] for each time period over a finite horizon of 10 hours, where the time is discretized

into 30-minute periods. This gives a total of 20 time windows in the horizon, and we use

t to represent an arbitrary time block. We set the distance between each zone as follows:

dAB = 0.20, dAC = 0.25, dBC = 0.10. Length of stay is independent of t and exponentially

distributed with a mean of 1.5 hours. Time-varying Poisson arrivals are randomly generated

for each zone and period t as follows: ΛA,t = 0.5 + U(0, 1) per hour, ΛB,t = 4 + U(0, 2) per

hour, ΛC,t = 9 + U(0, 2) per hour, where U(0, x) represents the uniform random variable

between 0 and x. Due to the choices of distances, we use a spatial elasticity of $5 per mile

and our baseline utility specification in the first row of Table 2.8.

To measure how the policies perform in different settings, we generate a variety of system

configurations by scaling either the arrival rates or the distance upwards or downwards.

Then, for each configuration, we create 30 instances by randomly generating ΛA,t,ΛB,t, and

ΛC,t. For each instance, we compute two optimal policies: WithDistance, which incorporates

spatial elasticity (i.e., β > 0), and WithoutDistance, which incorrectly assumes customers are

not spatially sensitive (i.e., β = 0). For each instance, we simulate the system for 30 days,

using the same stream of spatially-sensitive arrivals to evaluate each policy. We track the

unmet demand, revenue generated, and several other key metrics. Experiments are run in

Python 2.7 on a Dell Inspiron 13 with 16GB of RAM and an Intel Core i7 1.8GHz processor.

We present the results in Figure 2.12, where the line and shaded area respectively represent

the average and standard deviation over 30 random instances. As we scale the distance

and arrival rate upwards from the base scenario, the spatially-aware policy generates more

revenue and meets more demand. When we scale the distance and arrival rate down, the two

policies perform similarly. Ultimately, this exercise shows that when customers are spatially
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sensitive, then using a pricing policy that captures this behavior, i.e. the WithDistance

policy, is beneficial. For cities with large demand, ignoring spatial elasticity can significantly

reduce a system’s performance. The results also indicate that regardless of how close or

far spread out a city may be, incorporating spatial elasticity can improve key operational

metrics.

Figure 2.12: Simulation Results from Dynamic Pricing With and Without
Spatial Elasticity

(a) Daily Revenue vs. Scaled Distance (b) Demand Met vs. Scaled Distance

(c) Daily Revenue vs. Scaled Arrival Rate (d) Demand Met vs. Scaled Arrival Rate
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2.2.6 Conclusion and Future Work

Using nearly two years of transactions from a large metropolitan city’s mobile parking ap-

plication, we measure spatial elasticity, a trade-off between walking distance and cost. Nor-

mally, estimating this would require a large-scale pricing experiment, but during this period

there was a pricing error on two, adjacent, downtown blocks, giving us the pricing variation

that we can do our estimation.

In a parking-specific context, spatial elasticity is critical for cities that want to develop

dynamic, traffic-minimizing, pricing policies for on-street, metered parking. Understanding

spatial elasticity can allow city planners and policy makers to set prices in a way that

incentivizes users to park on less-congested blocks that are away from popular areas. And

while our data comes from a parking setting, these estimates can be insightful in many

urban mobility settings. For instance, privately-held, venture-backed micro-mobility systems

and ride-sharing platforms need to understand how users value walking distance if they

want to encourage users to start and end their journeys at locations that might be a short

distance away from their users’ actual origins and intended destinations. Beyond mobility

and transportation, these estimates can be used in other settings where walking is a mode of

transportation, such as metropolitan facility location problems where the goal is to optimally

place schools and transit centers.

Our empirical approach involves using the LC-MNL discrete choice model to capture

customer’s parking behavior. We use data before users were exposed to the pricing error

to estimate a discrete distribution over customers’ true destination preferences. In the tra-

ditional LC-MNL context, these intended destination preferences are incorporated into the

model as class probabilities, then we use the transaction data after users were exposed to

the pricing error to measure the spatial elasticty using maximum likelihood estimation. We

add in additional factors, such as if rain was present at the time of the transaction or if

the transaction was during the morning hours, and we find that both of these increase the

104



spatial elasticity.

One area for future work is to test if our estimates are robust to the initial transportation

mode. In our setting, customers travel in their personal vehicle, but if the initial transporta-

tion mode is a bus, a shared vehicle (i.e., bike or electric scooter), or ride share, then it is

possible that the spatial elasticities can be more or less sensitive. Another interesting di-

rection involves a thorough examination of demographic and time factors that affect spatial

elasticity, such as gender and time of day. For instance, during dusk or night time hours,

when more crime occurs, spatial elasticity may be higher.

One important question that we did not explore deals with the counter-factual scenario

after the pricing error was corrected. We did not have access to post-treatment data to

measure if customers revert to pre-treatment behavior after the pricing change is correct. If

customers do, that would give stronger veracity to our estimates.

It is important to acknowledge that the estimates we report are unique to the features

of our city and demographics of the population. For instance, our data comes from a neigh-

borhood in one of the most highly educated cities in America and with one of the highest

average salaries in the country. Moreover, this specific vicinity is home to high-end bou-

tiques and restaurants. Because of these characteristics, we suspect that our estimates are

quite high since many residents and visitors are affluent and busy young professionals, so

they are more time sensitive. We hypothesize that the estimates will likely change depend-

ing on the characteristics, realities, features of each city. For instance, in areas surrounding

college campuses, we would expect the estimates to be much lower as students are much

more price sensitive and would be much more likely to change their behavior in response to

price discounts.

Finally, we use pre-treatment data to create a distribution over each customer’s intended

destination, but it may be possible to gather better estimates. For instance, Zhang et al.

(2019) use a Wi-Fi-based tracking technology to determine if phones were inside a specific

store. Merging a dataset like this into the panel dataset we have would allow for more
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accurate intended destination estimates.
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CHAPTER 3

Price Optimization

In this chapter, we study how to optimally price reusable resources (or products) as a function

of the remaining inventory. The elasticities we estimate in Chapter 2 can be fed into the

models we develop in this section. We focus on the single-zone problem, where a single

zone can be thought of as a single resource with finite inventory. For example, a single

block with several parking spots on the block or a single cloud-based server with several

processors. Then, in future work, we will consider the multi-zone problem, where we want

to price a network of several reusable resources, each with a finite capacity, where there

are substitution effects between products. The pricing policies are a function of the current

state of the system, the remaining time in the horizon, and the expected future demand.

Continuing with the previous examples, this would be setting the price for each block in a

neighborhood of multiple streets blocks, where each block contains several parking spots,

or setting the price for various servers where each server has different computing power,

memory, and speed. These policies can also be used for pricing storage units (i.e., Public

Storage, CubeSmart) and fashion rentals (i.e., Rent The Runway, Le Tote, Bag Romance).

In this chapter, we consider a single reusable product with a finite capacity. Assuming an

infinite-time horizon, price-sensitive Poisson arrivals, and price-agnostic exponential service

times, we want to compute the prices as a function of the number of occupied products. The

objective is to set the prices to maximize the long-run average revenue, which is also known

as expected revenue per unit time. This setting can be modeled as an Erlang loss system

and several researchers have studied how to compute the optimal, congestion prices under
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stationary (Low, 1974) and non-stationary (Yoon and Lewis, 2004) arrival and service rates.

For more information on queuing systems and Erlang loss systems, we refer the reader to

Kelly (2011); Allen (2014); Ross (2014).

In the stationary setting, the long-run average revenue objective can be written as

R(p0, ..., pn) =
n∑

i=1

πi(p0, ..., pn) · λ(pi) · pi ·
1

µ
,

where there are n resources (or servers), pi is the price to charge under when i ∈ {0, ..., n}

resources are occupied, λ(pi) is the Poisson arrival rate when the price is pi, and µ is the

exponential service rate. The parameter πi is the stationary probability of having i resources

in use, which is a function of the service rate, µ, and the arrival rates λ(p1), ..., λ(pn).

Given any price vector and the corresponding stationary distribution, for every possible

state of the system, we want to know the probability that a customer paid p0, ..., or pn.

For example, consider a system that has 3 customers in service. We want to know the

expected number of the 3 customers in service that entered when the system was in state 0

(and therefore paid p0), in state 1 (and therefore paid p1), etc. There does not exist a way

to compute this metric, so we name it the conditional entry-state distribution, and in this

chapter we develop a tractable method for computing it. We show the algorithm we develop

converges to the true conditional entry-state distribution for any Erlang loss system.

We note that with the conditional entry-state distribution, the long-run average revenue

objective function can be rewritten as

R(p0, ..., pn) =
n∑

i=1

πi(p0, ..., pn)
n−1∑
j=0

xj|i · pj,

where xj|i is the conditional entry-state distribution and represents the expected number

resources that went into service when j resources were in use, given the system currently has

i resources in use.
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3.1 Introduction

Erlang loss systems, which are also known as finite-state, Birth-Death Markov chains or

M/M/n/n queues, have a rich history in stochastic modeling and have applications to trans-

portation, health care, and communications. We specifically consider systems where the

Poisson arrival rate fluctuates with the state, or the number of busy servers. State-dependent

arrivals have been used to model customer behavior related to price sensitivity and balking.

This model, in its purest form, with constant, state-independent arrival and departure rates,

is extensively analyzed by Takacs (1969). Brumelle (1978) performs a comparable analysis,

but models both state-dependent arrivals and departures, while we only consider the former.

Burman (1981) examines a similar Erlang loss system while relaxing the Markovian service

time assumption. In any of these systems, the operator may wish to know what is the prob-

ability a customer entered when the system was empty, when the system had 1 customer,

and so on, given the current state, or occupancy, of the system. We denote this metric as the

“conditional entry-state distribution,” where conditioning is on the system’s current state.

In this paper, we develop an algorithm to compute its value.

One application of where this metric can be valuable is described in Low (1974). The

setting consists of an Erlang loss system with Poisson arrival rates that are a decreasing

function of price. The author is interested in finding the optimal entry fee to charge arriving

customers at each state and develops an algorithm to compute the prices that maximize the

long-run average revenue per unit time. Given any feasible set of prices, the system operator

may like to know where the revenue is coming from at each state, so the operator would like

to know the expected proportion of the customers who pay the entry fee when the system is

empty, has 1 customer, and so on.

In these queuing systems, many steady-state performance statistics can be computed,

such as the blocking probability, the steady-state distribution, the expected number of busy

servers, and more. We refer the reader to Allen (2014) for further material on computable
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system metrics. To the best of our knowledge, there does not exist a tractable way to

compute the metric we study.

Since this work relates to the expected state at which customers enter, or arrive, to the

system, the well-known “Poisson Arrivals See Time Averages” (PASTA) property (Wolff,

1982) and the related Conditional PASTA property (Van Doorn and Regterschot, 1988) are

both relevant. The latter is pertinent since our metric also involves computing steady-state,

stationary values that are conditional on the system being in a particular state. However,

their work does not provide any method for computing any conditional metric, so this work

compliments their result.

The paper is organized as follows. Section 3.2 describes the model. The algorithm and

convergence proof follows in Section 3.3. Numerical results are detailed in Section 3.4, and

future directions are summarized in Section 3.5.

3.2 Model

We consider an M/M/n/n queuing system with state-dependent arrival rates. This sys-

tem can be modeled as a finite-state, birth-and-death Markov chain with state-space S =

{1, . . . , n} representing the number of busy servers. We consider the system in steady-state,

denote the current state as Z ∈ S, and use the indexes i, j, k to refer to arbitrary states.

Customers arrive to the system according to a Poisson process with a state-dependent rate,

i.e., for Z = k the arrival rate is λk > 0. Service times for an individual server are exponen-

tially distributed with rate µ, so we use µk = k · µ to denote the service rate of the entire

system in state k.

We are interested in computing the steady-state probability that an in-service customer

joined the system when there were i servers busy, given the system is currently in state j.

Namely,

Pr[In-service customer entered in state i|Z = j], ∀i, j ∈ S.
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We refer to the above probability as the conditional entry-state probability. To compute it,

we define Ωij ∈ R+ to be the expected number of in-service customers (out of j currently

being served) who arrived when the system was in state i. To recover the conditional entry-

state probability, we simply compute Ωij/j, hence hereafter we focus on obtaining Ωij. Since

Ωij = 0 when either j = 0 or i = n, we focus on i ∈ S \ {n} and j ∈ S \ {0}. Thus, for

each state j, we define the column vector Ωj = [Ω0j, ...,Ωn−1,j] ∈ Rn
+, and we note that the

entries of Ωj sum to j:
∑n−1

i=0 Ωij = Ω⊤
j 1 = j, where 1 is the vector of all ones. Finally, we

define the matrix Ω = [Ω1, ...,Ωj, ...,Ωn] ∈M = {Y ∈ Rn×n
+ :

∑
i Yij = j, j = 1, ..., n}, where

Y is an arbitrary matrix in the set M, which contains matrices with positive entries where

the entries of the j-th column sum to j.

3.2.1 System Dynamics

We now describe how to analytically compute Ωij by applying the conservation flow principle

that is typically used to compute steady-state probabilities in Markov chains.

Before deriving the system of equations for Ωij, we first introduce some additional prob-

abilities. The steady-state probability of a given state j can be expressed as

πj = pj,j−1 · πj−1 + pj,j+1 · πj+1 ∀j ∈ S \ {0}

where pi,k is the probability of transitioning to i from k and πk are the steady-state proba-

bilities. Next, we define “j ← i” to mean “Enter j from i”. Using Bayes’ rule we can then

derive

Pr[j ← j − 1|Z = j] =
pj,j−1 · πj−1

pj,j−1 · πj−1 + pj,j+1 · πj+1

=
µj

λj + µj

(3.1)

The last equality is obtained by making two observations. First, transitions out of state

j are with probability pj−1,j =
µj

λj+µj
to state j − 1 if a departure occurs, or with probability

pj+1,j =
λj

λj+µj
to state j + 1 if an arrival happens instead. Second, using the reversibility
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property of M/M/n/n queuing systems (Kelly, 2011), which implies that pj,j−1 =
µj

λj+µj
· πj

πj−1

and pj,j+1 =
λj

λj+µj
· πj

πj+1
. For ease of exposition we hereafter define αj :=

µj

λj+µj
and α =

[α0, ..., αn], and note α0 = 0 and αn = 1.

We now proceed to write the system of equations to compute Ωi,j. We do this by condi-

tioning on the two events that can lead to the system reaching state j: (1) from j − 1 when

an arrival occurs or (2) from j + 1 when a departure occurs. Thus, the expected number

of customers in state j who entered in state i (Ωi,j) can be expressed as a combination of:

(1) the expected number of existing customers in state j − 1 who first arrived when the

system was in state i (Ωi,j−1) and the expected number of new customers into j who enter

the system in state i (I[i = j−1]) and (2) the expected number of existing customers in state

j+1 who first arrived when the system was in state i (Ωi,j+1) minus the departing customers

from state j + 1 who first arrived when the system was in state i ( 1
j+1
· Ωi,j+1, where 1

j+1
is

the probability that any of the existing customers depart from the system, which is due to

the memoryless property of exponential service times). Namely,

Ωij =(Ωi,j−1 + I[i = j − 1]) · Pr[j ← j − 1|Z = j]

+

(
Ωi,j+1 −

1

j + 1
· Ωi,j+1

)
· Pr[j ← j + 1|Z = j]

=(Ωi,j−1 + I[i = j − 1]) · αj +

(
Ωi,j+1 −

1

j + 1
· Ωi,j+1

)
· (1− αj) (3.2)

We extend this flow conservation between Ωij,Ωi,j−1, and Ωi,j+1 to matrix form in

Eq. (3.3) with the function g : M 7→ M. We define ej as the unit vector with a 1 in

the j-th component, and use it to capture an arrival from state j − 1 so the system evolves

112



from having j − 1 to j servers busy.

g(Y ) =


α1(e1) +

1−α1

2
Y2 if j = 1

αj(Yj−1 + ej) + (1− αj)
j

j+1
Yj+1 if 1 < j < n

Yn−1 + en if j = n

(3.3)

To understand the intuition in g, consider the general case of 1 < j < n: the function

mixes the distribution at j − 1 while considering an arrival into j (i.e., Yj−1 + ej), and the

distribution at j + 1 considering the potential departures (i.e., j
j+1

Yj+1). We note g can be

applied to any Y ∈ M and for each column Yj, g computes a convex combination of two

vectors that sum to j. This means g(Y ) maps to an element of M.

3.3 An Algorithm to Compute the Conditional Expected Entry

State

Next, we present an algorithm to compute Ω. To simplify notation, we define the function

f(Y ) = g(g(Y )) = Y ′ and note that f : M 7→ M. The output Y ′ = [Y ′
1 , ..., Y

′
j , ..., Y

′
n]

has several unique, structural properties, such as its columns Y ′
j are weighted, linear sum

of the columns of Y , where the coefficients are polynomial functions of α (Property D.1.1).

Lemma 3.3.1 states a key property that f is a contraction mapping. For readability, all

properties and proofs are available in Appendix D.

Lemma 3.3.1. The function f :M 7→M is a contraction mapping.

We next present a simple algorithm that repeatedly applies f to any matrix inM until the

desired tolerance ϵ is reached. Then, in Theorem 3.3.1 we show that the algorithm converges

to the correct value of Ω, and in Theorem 3.3.2, we give an upper bound on the algorithm’s

iteration limit. The proofs for both theorems are available in Appendices D.3-D.4.

Theorem 3.3.1. For all Y ∈M, as ϵ→ 0, the algorithm converges to Ω.
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Algorithm 1: Computing the Conditional Expected Entry State
Input: ϵ > 0, Y ∈M
Compute Y ′ = f(Y )

while d(Y, Y ′) = ||Y − Y ′||∞ = maxi,j{|Yij − Y ′
ij|} > ϵ do

Set Y = Y ′

Compute Y ′ = f(Y )

end
Output: Y ′

Theorem 3.3.2. For all ϵ ∈ (0, 1) and Y = [Y1, ..., Yn] ∈M, where Yj =
j
n
·1, the algorithm

terminates in at most logA(ϵ) + 1 iterations. The parameter A = maxj=1,...,n{Hj(α)}, where

Hj(α), defined in Table D.1, is the maximum absolute difference in the estimate of Ωj after

one iteration.

Theorem 3.3.2 presents an upper bound on the number of iterations the algorithm runs

until convergence. However, we note that the bound is not tight. This is because A, the

upper bound on the rate at which the distance d decreases in each iteration, is bounded

above by n−1
n

and approaches 1 when n becomes large, so logA(ϵ) becomes large. When A

does equal its upper bound of n−1
n

, the term logn−1
n
(ϵ) is concave increasing in n. In the next

section, we observe that the numerical performance is much better.

3.4 Numerical Experiments

In this section we numerically demonstrate the speed and efficacy of our algorithm in com-

puting the metric of interest Ω. For several system sizes n ∈ {2, 5, 10, 25, 50, 100, 250}, we

generate 50 random instances where µ ∼ U(0, 5) and λk ∼ U(0, 10) for k = 0, ..., n. For each

instance, we run the algorithm with ϵ = 10−12 and initial point Y = [Y1, ..., Yk, ..., Yn] ∈ M,

where Yk = 1 · k
n
, and we record the number of iterations and time to convergence. We also

simulate the system for 25,000 arrivals and compute Ω using the second half of the simula-

tion, when the system is in steady-state. We denote this value Ωsim. Using the output of
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the algorithm, Ω, and Ωsim, we compute two metrics: the maximum and the mean absolute

deviation between the Ω and Ωsim. Experiments are run in Python 2.7 on a Dell Inspiron

13 with 16GB of RAM and an Intel Core i7 1.8GHz processor.

For each value of n, we report the average and standard deviation over the 50 random

instances in Table 3.1. These results show the algorithm and simulation return values very

close to each other. However, as n increases, the simulation rarely reaches some states in

steady-state, so reliably computing Ωsim
ij is challenging (and impossible when state j is never

reached). This is evident in the last two columns of Table 3.1 where the deviation between

Ω and Ωsim increases with n because Ωsim. The algorithm is never victim to this issue and

always converges to the true value of Ω, which is why we can run the algorithm for all n but

can only simulate for n ≤ 25.

Table 3.1 also shows that the algorithm computes Ω faster than the simulation method.

To capture the algorithm’s convergence speed, in Figure 3.1 we report the algorithm’s av-

erage distance by iteration over 50 random instances. The figure shows that the algorithm

converges rapidly for several values of n. We note that there is a “kink” and speed-up around

the n/2-th iteration.

One potential interpretation is related to the structure of Y ′ = f(Y ). Per Property D.1.1,

Y ′
j has two components: a weighted sum of the columns of Y and a vector Cj. With each

iteration, the weights on the columns of Y approach 0, so the influence of Y effectively

vanishes after many iterations. The vector Cj is a function of α. After one iteration, Cj

is only a function of αj−1, αj, and αj+1, but after after two iterations, Cj is a function of

αj−2, . . . , αj+2. It takes at most n/2 iterations for Cj to be a function of all α1, . . . , αn.

Once Cj depends on all αj, the vector finally captures the entire system’s dynamics, so the

convergence rate increases after this iteration.
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Figure 3.1: Mean Convergence Rate with Shaded Standard Deviation for
Various n.

Note: We report average distance values for all iterations up until the quickest random instance terminates.
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3.5 Future Work and Extensions

An area for future work is to improve the bound we present for the algorithm’s iteration

limit. One approach worth exploring involves deriving an analytical expression to compute

any value in the Cauchy sequence converging Ωij. This is different from our approach which

shows a contraction modulus less than 1 exists. Two possible extensions include the cases

with finite capacities (i.e. M/M/n/L queues with L > n) and with infinite capacity (i.e.

L =∞).
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APPENDIX A

Appendix for Chapter 1

A.1 Notation Table

A.2 1VMC Dynamic Program for an Arbitrary Discount

The state of a vehicle, (i, w), can be categorized into 6 cases, which we outline in Figure A.1

and Table A.2. Based on each case, the value function takes a different form and in three of

the cases the system operator needs to decide whether or not to offer a discounted ride. For

the 1VMC network with a general 1− σ discount for σ ∈ [0, 1], the value function for each

case is provided in equations (i)-(vi).

Figure A.1: Description of Different Cases for State (i, w) in 1VMC.

Note: For a vehicle at (i, w), there are six cases depending on if the vehicle is at a charging station (i.e.,
i 6∈ Z), if the vehicle can reach a charging station (i.e., w ≥ b̄i), and if the vehicle is eligible for a manual
move (i.e., w ≥ bm).
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Table A.1: Summary of Notation.

Parameter Description
R Set of regions in the network, where i, j denote arbitrary locations in R.

Z ⊂ R Regions with charging stations, where z denotes an arbitrary charging station
in Z.

R(i, w) ⊆ R Subset of regions that can be reached from location i ∈ R with battery w ∈ W .
Defined as R(i, w) = {j ∈ R : w ≥ bij}.

W Set of feasible battery levels. Values are equally separated by δ, so W =
[0, δ, 2δ, ..., 1].

δ ∈ [0, 1] Battery increment used in W.
σ ∈ [0, 1] Percentage of the full fare that the firm decides to offer. σ = 1 corresponds to

no discount and σ = 0 corresponds to a 100%, or free-ride, discount.
n Number of vehicles in the network.
m Number of charging stations in the network, so |Z| = m.

bm ∈ [0, 1] Battery threshold for manual move. If a parked vehicle has a battery level
w < bm, then this vehicle is eligible for manual repositioning.

cm ∈ [0, 1] Cost of a manual repositioning move.
pm ∈ [0, 1] Probability that a manual repositioning move occurs.
tm ∈ [0, 1] Mean number of periods for a manual move to be completed.
γ ∈ W Battery recharge rate.
b̄i ∈ W The minimum battery required to reach the nearest charging station from i.

Defined as b̄i = minz∈Z{biz}.
zi ∈ Z Closest charging station to region i ∈ R.

λi ∈ [0, 1] Probability of seeing a request for a vehicle in region i ∈ R.
pij ∈ [0, 1] Probability of a ride starting at region i ∈ R and ending at j ∈ R.
bij ∈ W Battery consumption of a ride starting at region i ∈ R and ending at j ∈ R.
dij ∈ R+ Distance between regions i, j ∈ R. We note that dii = 0 and the distance

between regions does not depend on the direction, so dij = dji.
fij ∈ R++ Revenue or fare of a ride starting at region i ∈ R and ending at i ∈ R.
tij ∈ Z++ Duration of a ride starting at region i ∈ R and ending at j ∈ R.
β ∈ (0, 1) Discount factor used in the dynamic programs.
βij ∈ (0, 1) Adjusted discount factor of a ride starting at region i ∈ R and ending at

j ∈ R. Defined as βij = βtij .
u(d, f) The utility gained on a ride where d is the distance between the vehicle drop-

off destination and desired destination, and f is the fare for the ride.
P(Acceptijz) The probability a customer accepts the free-ride from i to z instead of paying

the full fare to go to j, the desired destination. Defined as P
[
u(dzj , 0) ≥

u(0, fij)
]
.

DM Dollar-to-Mile ratio captures the amount of money a user would take in ex-
change for walking 1 mile. The units are $

Mile .
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Table A.2: Description of Six Cases for State (i, w) in 1VMC

Case Region
Charging
Station

Accessible

Manual Move
Eligible

Description of Case

(i)

i 6∈ Z
w ≥ b̄i

w ≥ bm Do not move and potentially offer.
(ii) w < bm Move and potentially offer.
(iii)

w < b̄i
w ≥ bm Do not move and do not offer.

(iv) w < bm Move and do not offer.
(v)

i ∈ Z
w ≥ b̄i - Battery replenishes and potentially offer.

(vi) w < b̄i - Battery replenishes and do not offer.

Note: This table maps a vehicle’s state (i, w) to one of six cases in the 1VMC dynamic program. The first
four rows are for vehicles not in charging stations stations and the last two rows are for vehicles in charging
stations. The column “Charging Station Accesible” contains w ≥ b̄i if a vehicle at (i, w) can reach a charging
station. The column “Manual Move Eligible” contains w < bm if a vehicle at (i, w) is eligible to be manually
repositioned.

V (i, w) = max
σ∈[0,1]

{
λi

∑
j∈R(i,w)

pij ·
(
P(Declineσijzj) ·

(
fij + βijV (j, w − bij)

)
+ P(Acceptσijzj) ·

(
σfij + βizjV (zj, w − bizj)

))}
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w) (i)

V (i, w) =pm ·
(
− cm + βmV (zi, w)

)
+ (1− pm)·(

max
σ∈[0,1]

{
λi

∑
j∈R(i,w)

pij ·
(
P(Declineσijzj) ·

(
fij + βijV (j, w − bij)

)
+ P(Acceptσijzj) ·

(
σfij + βizjV (zj, w − bizj)

))}

+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w)

)
(ii)
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V (i, w) =λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w) (iii)

V (i, w) =pm · (−cm + βmV (zi, w)) + (1− pm)·(
λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i, w)

)
(iv)

V (i, w) = max
σ∈[0,1]

{
λi

∑
j∈R(i,w)

pij ·
(
P(Declineσijzj) ·

(
fij + βijV (j, w − bij)

)
+ P(Acceptσijzj) ·

(
σfij + βizjV (zj, w − bizj)

))}
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i,min{w + γ, 1}) (v)

V (i, w) =λi

∑
j∈R(i,w)

pij ·
(
fij + βijV (j, w − bij)

)
+
(
1− λi

∑
j∈R(i,w)

pij

)
· βV (i,min{w + γ, 1}) (vi)

A.3 Example More Battery Being Less Lucrative

The following example illustrates that more battery can be less lucrative. Let us consider

a network with three regions and one charging station, R = {1, 2, 3} and Z = {2}, respec-

tively. The arrival and transition probabilities, revenues, battery consumption, and manual

repositioning parameters are defined in Table A.3. Furthermore, we assume that users accept

a free ride half of the time. We plot the optimal value function at region #1 in Figure A.2 for

two values of bm, the battery threshold required for a vehicle to be manually repositioned.

When bm = 50%, more battery is always lucrative, however when bm = 25%, more battery

can be less lucrative (w ≤ 25%).
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Table A.3: Parameters for Example where More Battery is Less Lucrative

pij 1 2 3

1 1/3 1/3 1/3
2 1/3 1/3 1/3
3 1/3 1/3 1/3

fij 1 2 3

1 $1 $2 $2
2 $2 $1 $2
3 $2 $2 $1

bij 1 2 3

1 25% 50% 75%
2 50% 25% 50%
3 75% 50% 25%

λ1 1/3
λ2 1/3
λ3 1/3
pm 0.5
bm 25%
cm $1

Figure A.2: More Battery is Not Always Lucrative
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A.4 Proofs

Proof of Proposition 1.3.1.

For an arbitrary region i, we show that there exist threshold battery levels wi
1 and wi

2 such

that x̃o(i, w) = 1 if wi
1 ≤ w ≤ wi

2 and x̃o(i, w) = 0 otherwise. Based on our construction of

π̃, this is equivalent to showing that π̃ ∈ ΠSOR. We note that if
∑

w∈W x̃o(i, w) = 0, then the

result holds trivially. Hence for the remainder of the proof, we assume that
∑

w∈W x̃o(i, w) ≥

1. First, we consider the case in which x̃o(i, b̄i) = 1 and so we know that
∑

w∈W ỹ(i, w) = 0

by constraint (5). In this case, we claim that π̃ is the single-offer range policy where wi
1 = b̄i

and wi
2 = max{w ∈ W : x̃o(i, w) = 1}. To see this, note that constraint (4) together with

the definition of wi
2 ensure that both x̃o(i, w) = 1 if wi

1 ≤ w ≤ wi
2 and x̃o(i, w) = 0 if w > wi

2.

Next, we consider the case in which x̃o(i, b̄i) = 0. Here, we see that constraint (5) ensures

that there must exists w′ ∈ W such that ỹ(i, w′) = 1. We claim that in this case, π̃ is the

single-offer range policy with wi
1 = w′ and wi

2 = max{w ∈ W : x̃o(i, w) = 1}. To show this

claim, we first note that we must have x̃o(i, w) = 0 for b̄i ≤ w < w′ due to constraint (4)

and the assumption that x̃o(i, b̄i) = 0 and the fact that ỹ(i, w) = 0 for a fixed region i and

any w 6= w′. Finally, using the same argument as above, we can show that x̃o(i, w) = 1 if

wi
1 ≤ w ≤ wi

2 and x̃o(i, w) = 0 if w > wi
2.

Proof of Theorem 1.3.1.

We focus on the case where w ≥ max{b̄i, bm} for the definition of the value functions,

which is the most common case, and note that the proof goes through in the case when

b̄i ≤ w < bm. We assume that M ≥ max{Z̃,maxπ∈ΠSOR
Z(π)}. First, we show that Z̃ ≤

maxπ∈ΠSOR
Z(π). Let Ṽ (i, w) be the optimal V (·) decision variables in Single Threshold,

and abusing notation slightly, we let Ṽ o(i, w) and Ṽ no(i, w) denote the value of V o(i, w) and

V no(i, w) at optimality. We establish that Z̃ ≤ maxπ∈ΠSOR
Z(π) by showing that Ṽ (i, w) is
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a feasible solution to LP Policy when π = π̃. First, we note that at optimality Ṽ (i, w) =

min{Ṽ o(i, w)+Mx̃no(i, w), Ṽ no(i, w)+Mx̃o(i, w)} for i ∈ R\Z , w ≥ max{bm, b̄i}. Without

loss of generality, we assume x̃o(i, w) = 1 and x̃no(i, w) = 0, since the other case in symmetric.

Then, we have

Ṽ (i, w) = min{Ṽ o(i, w), Ṽ no(i, w) +M}

= Ṽ o(i, w)

= 1(i,w)∈Sπ̃
Ṽ o(i, w) + 1(i,w)/∈Sπ̃

Ṽ no(i, w).

The second equality follows because M ≥ Z̃ ≥ Ṽ (i, w) = Ṽ o(i, w) and third equality follows

by definition of Sπ̃. The other constraints are trivially satisfied and hence we get that Ṽ (i, w)

is feasible to LP Policy when π = π̃ and so Z̃ =
∑

i∈R
∑

w∈W Ṽ (i, w) ≤ maxπ∈ΠSOR
Z(π)

since π̃ ∈ ΠSOR by Proposition 1.

Next, we show that Z̃ ≥ maxπ∈ΠSOR
Z(π). Let π∗

SOR = arg maxπ∈ΠSOR
Z(π) be the

optimal single-offer range free-ride policy and let Vπ(i, w) be the optimal decision variables

to LP Policy when π = π∗
SOR. Further, for each region i, assume that wi∗

1 and wi∗
2 give

the critical battery level threshold under π∗
SOR. To show the desired result, we construct

a feasible solution V̂ (i, w), x̂o(i, w), x̂no(i, w), ŷ(i, w) for each i ∈ R and w ∈ W to Single

Threshold that achieves an objective of Z(π∗
SOR). First, we set x̂o(i, w) = 1 if (i, w) ∈ Sπ∗

SOR
,

x̂o(i, w) = 0 if (i, w) /∈ Sπ∗
SOR

. We then set ŷ(i, w) = 1 if w = max{w > b̄i : (i, w) ∈ Sπ∗
SOR
}

and ŷ(i, w) = 0 if w 6= max{w > b̄i : (i, w) ∈ Sπ∗
SOR
}. Finally, we set V̂ (i, w) = Vπ(i, w) and

let V̂ o(i, w) and V̂ no(i, w) be the resulting values of V o(i, w) and V no(i, w). First, we show

that this solution is feasible in Single Threshold. We trivially get that x̂o(i, w)+ x̂no(i, w) = 1

and that constraint (5) is satisfied by construction. To show that constraint (4) is satisfied

note that we have x̂o(i, w − δ) = x̂o(i, w) if w /∈ {wi∗
1 , w

i∗
2 − δ}. If w = wi∗

1 , then we get that

x̂o(i, w)− y(i, w) = 0 ≤ x̂o(i, w− δ) and if w = wi∗
2 − δ then we get that xo(i, w− δ) = 1 and

so the constraint must be satisfied. Hence it remains to show that V̂ (i, w) ≤ min{V̂ o(i, w)+
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Mx̂no(i, w), V̂ no(i, w) + Mx̂o(i, w)} when w ≥ max{bm, b̄i}. We again assume without loss

of generality that x̂o(i, w) = 1 and x̂no(i, w) = 0. We have that

V̂ (i, w) = Vπ(i, w) = V̂ o(i, w)

≤ min{V̂ o(i, w), V̂ no(i, w) +M}

= min{V̂ o(i, w) +Mx̂no(i, w), V̂ no(i, w) +Mx̂o(i, w)},

where the second equality follows by definition of π∗
SOR and the fact that we assumed that

x̂o(i, w) = 1. The third equality follows because M ≥ Z(π∗
SOR) ≥ Vπ(i, w) = V̂ o(i, w).

Finally note that this solution attains the desired objective value of
∑

i∈R
∑

w∈W V̂ (i, w) =

Z(π∗
SOR) and so we have established that Z(π̃) = Z̃ = Z(π∗

SOR) as desired.

A.5 Description of Discrete Event Simulation

In this section we provide additional details of our simulation and experiments to complement

the description provided in Section 4 of the paper. First we describe how we use the historical

data to estimate trip parameters, such as duration, battery consumption, and fare, between

regions in the network. Then we describe how to solve for the optimal discount policies.

And finally, we describe the dynamics of the simulation, which includes how the system is

seeded, how trips are generated, and how manual moves take place.

A.5.1 Estimating Parameters

Trip Features. Using all trips in the data, we run three linear regressions to estimate a

trip’s mileage (m), duration (t), and battery consumption (b). We index trips from k =

1, ..., K and in all regressions we use the geocoordinates of the trip’s origin and destination,

respectively (ilat
k , ilong

k ) and (jlat
k , jlong

k ), and the distance between the two locations, dikjk . The

output to the regression in Eqs. (A.1)-(A.3) is available in Table A.4.
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mk = β0 + βilat · ilat
k + βilong · ilong

k + βjlat · jlat
k + βjlong · jlong

k + βd · dikjk + ϵk (A.1)

tk = β0 + βilat · ilat
k + βilong · ilong

k + βjlat · jlat
k + βjlong · jlong

k + βd · dikjk +mk + ϵk (A.2)

bk = β0 + βilat · ilat
k + βilong · ilong

k + βjlat · jlat
k + βjlong · jlong

k + βd · dikjk +mk + tk + ϵk (A.3)

We use the above regressions to generate the specific features of a ride from i to j in

the simulation. Thus, using Eqs. (A.1)-(A.3) and the coefficients detailed in Table A.4, we

compute each trip’s predicted mileage (m̂ij), predicted duration (t̂ij), and predicted battery

consumption (b̂ij). Using t̂ij, we compute the predicted fare fij = $1 + $0.15 · t̂ij. Since

the units of t̂ij are in minutes, the value must be converted to periods (recall that 1 period

equals 2.66 min) to compute the adjusted discount rate βij.

Users Utility. To compute the utility gained from a trip, we assume the utility function

u(d, f) takes the form u(d, f) = −αd ·d−αf ·f . With this structure, the utility is decreasing

in both distance and price and the maximum utility is 0. We assume αd ∼ U(0,DM) and

αf ∼ U(0, 1), and use DM = $5/mile as the baseline value. This value is equivalent to

$15 per hour, which will be in the minimum wage in 2023 in California, where the EVSS

collaborator is based, when we assume people walk at 3 miles per hour. Under this utility

model, the probability of accepting a free ride is given in Eq. (A.4). To see how P
(
Acceptijzj)

fluctuates relative to the willingness to pay and walk, in Table A.5 we show the average value

over all feasible origin-destination routes in historical ride data.

P
(
Acceptijzj

)
=


fij
dzjj
· 1
2·DM ,

fij
dzjj
≤ DM

1− DM
2
· dzjj

fij
, otherwise

(A.4)
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Table A.5: Average Probability of Accepting a Free-Ride Offer for Various
Dollar-to-Mile (DM) Values.

DM ($/Mile) 0.5 1 2 5 10 20
Avg. P

(
Acceptijzj

)
94.6% 91.9% 86.6% 72.5% 58.9% 49.3%

A.5.2 Computing Policies

Using the sets R, Z, and W , and the parameters λi, pij, t̂ij, b̂ij, fij, βij, β, P(Acceptijz),

cm, bm, pm, tm, and γ, we solve for the optimal 1VMC-SOR policy, by solving the MIP

described in Single Threshold, and we solve for the optimal 1VMC-50 policy via linear

programming. We found that value iteration and policy iteration did not scale well to

large, realistic instances. Note that policies need to be recomputed anytime any of these

parameters change. We provide a description of how we compute the NVMC-SALP policy

in Appendix A.8.

A.5.3 Generating Trips in Simulation

A new trip is generated as follows,

• Sample inter-arrival time τ from the Beta Prime(α = 0.92, β = 4.07, location = 0.01,

and scale = 8.86) distribution. We set the ride request’s arrival time to T + τ , where

T is the simulation’s current time.

• Sample i, the trip’s origin region, from the discrete distribution of λi.

• Given the trip’s origin region i, sample the destination region j from the discrete

distribution of pij.

• Given i and j, we randomly generate the ride features (we use the tilde above m, t,

and b to denote the trip specific features) by using the regression output in Table A.4

as follows:
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– We sample a random error ϵ ∼ N (0, σm). Using the predicted mileage value m̂ij

computed using the regression in Eq. (A.1) and the corresponding coefficients in

Table A.4, we set m̃ij = m̂ij + ϵ.

– Taking m̃ij to be the trip’s true mileage, we use the regression in Eq. (A.2) and

the corresponding coefficients in Table A.4 to compute the trip’s duration t̃ij. In

order to ensure that the trip’s duration and mileage are related, we do not sample

an error term when generating the trip’s duration.

– Taking m̃ij and t̃ij to be respectively the trip’s true mileage and duration, we

use the regression in Eq. (A.3) and the coefficients in Table A.4 to compute the

trip’s battery consumption b̃ij. Again, we do not sample an error term when gen-

erating b̃ij to ensure that the trip’s mileage, duration, and battery consumption

are correlated.

– Finally, using t̃ij, the duration of the trip in minutes, we compute the fare for the

trip fij = $1 + $0.15 · t̃ij. This corresponds to a base fare of $1 per trip plus a

per-minute charge of $0.15/minute.

• To generate the customer’s willingness to walk and pay, we sample αd ∼ U(0,DM)

and αf ∼ U(0, 1).

Therefore, a new trip request is characterized by the following information: (T + τ , i, j,

t̃ij, b̃ij, fij, αd, αf ). We note that we generate ride requests dynamically in the simulation,

that is, at any time T , we can generate a stream of future demand requests. This approach

is in contrast to generating all demand requests in advance, which turned out to be much

more computationally expensive.
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A.5.4 Simulation Dynamics

Initializing System.

We track time in seconds and the simulation starts at T = 0. We randomly assign n = 300,

fully-charged vehicles, to regions according to λi. We store the location and battery of each

vehicle in a System State (SS) table. We also track in SS whether or not a vehicle is busy

on a ride or being manually repositioned. Thus, vehicles status is either idle or busy. We

seed the system with a single ride based on the procedure described in Appendix A.5.3, and

store the request arrival time and the corresponding ride information in a Pending Events

(PE) list. In PE we also keep track of in-progress rides and manual moves. We denote

Time_Event as the time when the pending event is scheduled to occur in the simulation,

that is, the request arrival time for a new trip, the completion time for an in-progress ride,

and the completion time for an in-progress manual move. While each policy we test runs

in its own simulation and has its own SS table and PE list, they all start under the same

configuration and see the same stream of demand.

Run Simulation.

While T ≤ 100 days, we sequentially perform the following six steps:

1. Find “next event” (NE). The NE is the event in the PE list with the minimum

Time_Event. Thus, we sort the PE list in ascending order of Time_Event and

update T ′ ← T and T ← min{Time_Event}, where T ′ is the time of the previous

event. If NE occurs on the next day, then we record the status of the network and

the corresponding performance measures that we track. Before we update the system

based on the NE type (Steps 4-6), we update the battery of idle vehicles at charging

stations (Step 2) and potentially schedule a manual move for a vehicle with remaining

battery below bm (Step_3).
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2. Update battery. For idle vehicles in table SS that are at charging stations, we update

the battery level at the rate of corresponding to 5 hours for a full charge for a time

interval corresponding to T − T ′.

3. Schedule manual move of vehicles. We check SS for idle vehicles not parked at charging

stations that have remaining battery below the move threshold bm. If there are any

move-eligible vehicles, then a crew member will arrive with probability pm. If there is

more than one move-eligible vehicle, then we select one to move at random. The move

is scheduled as an in-progress move on the PE list with Time_Event set to T + t′m,

where t′m is drawn from a truncated normal distribution with a mean of 4 hours and

standard deviation of 30 minutes. The selected vehicle will be moved to the nearest

charging station at Time_Event. The SS table is updated so the selected vehicle is

shown as busy until the repositioning is completed.

4. The NE is a new request for a ride.

(a) Check for available vehicles. We search the SS table for idle vehicles at the arrival

region and in the regions immediately around the arrival region. If there are no

available vehicles, we track the unmet demand due to not having a vehicle present.

If there are vehicles, but they do not have enough battery to fulfill the ride, we

track the unmet demand due to not having enough battery. Then we go to step

(c).

If there are available, idle vehicles at the arrival region, or in the neighborhood of

the arrival region, that have enough battery to complete the ride, then we assume

users select the highest charged vehicle. We update the status of the vehicle in

the SS table to be busy.

(b) Users’ choice of drop-off location. Regardless of the policy in place, at the time

of renting the vehicle, users weigh the utility of ending the ride at their in-

tended destination with the utility of ending the ride at the charging station
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closest to their intended destination. Based on this decision, we schedule an in-

progress ride on the PE list with a completion time and end destination of either

Time_Event = T + t̃ij and j or T + t̃izj and zj. We make several distinctions in

how customers choose their end destination depending on the policy being tested

in the simulation:

Fine-Based policy: We note that the user only has to decide on their end destina-

tion if (i) their end destination is not at a charging station and (ii) the remaining

battery at the end of the ride will be less than bm, the manual move threshold. To

decide on the end destination, the user computes her utilities u(0, fij + fine) and

u(dzjj, fij) using αd, αf , the customer’s willingness to walk and pay parameters.

If u(0, fij + fine) ≤ u(dzjj, fij), the user chooses zj as the end destination and

the system accrues fij in revenue. Otherwise, the end destination is the user’s in-

tended destination, and the system collects fij in revenue plus the fine. However,

we do not count the fine as revenue since this money will be used to subsidize the

cost of a manual move. Regardless of what the user ultimately decides, we track

that the customer had a decision to make, whether the customer paid the fine or

not, and the utility gained in the chosen action.

Free-ride policy: First we note that the user only has a decision to make if the

system actually offers a free ride to a charging station. The system does this

by checking if, given the vehicle’s location and the vehicle’s remaining battery,

offering is the optimal action. In other words, the operator offers a free ride

if the state describing the location and remaining battery of the vehicles to be

rented (i, w) ∈ Sπ̃. If a free ride is offered, then the user computes her utilities

u(fij, 0) and u(0, dzjj) using αd, αf , the customer’s willingness to walk and pay

parameters. If u(fij, 0) ≤ u(0, dzjj), the customer chooses to accept the free ride

to the charging station zj and we update the ride’s end destination to zj and the

fare of the ride to $0, otherwise we leave the ride information the same. We track
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that a free ride was offered, whether the customer accepted, and the utility gained

in the chosen action. We note that under the 1VMC-50 policy, users also consider

the utility of a 50% discounted-ride option by computing u(0.5 · fij, dzjj). If this

option results in the highest utility, then we update the ride’s end destination to

zj and the fare paid to 0.5 · fij.

(c) Update PE list. First, we remove this arrival request event from the PE list.

Next, we add a new arrival request onto the PE list per the process described in

Appendix A.5.3.

5. The NE is the completion of an in-progress ride:

(a) Update the SS table with the vehicle’s region, remaining battery, and availability

(to idle).

(b) Update PE list. We remove this in-progress ride event from the PE list. We track

that a ride was completed and the fare collected by the system.

6. The NE is the completion of an in-progress manual move. We update the SS table

with the vehicle’s new destination, which is a charging station, and allow the vehicle

to be eligible for rides. We track that a manual move occurred in the metrics.

A.6 Experiment Parameter_Sensitivity Description and Results

In our second numerical experiment, Parameter_Sensitivity, we use a synthetic demand

scenario where λi = pij = 1
|R| and generate 8 parameter instances of an EVSS network by

varying four parameters: cm, bm, pm, and DM. Table A.6 describes each instance and the

parameters values we vary from the baseline. For each instance, we report the performance

of four policies: the optimal free-ride, the single-offer range (1VMC-SOR), the policy where

the system operator can choose between offering a free ride, a 50% discounted ride, and not

offering at all (1VMC-50), the Fine-Based policy (FB), and the “never offer” policy (NO).
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Tables A.7-A.10 show how each policy performed across different metrics. The values

presented have been averaged over the last 30 days of the 100-day simulation. Since the

network we consider is fairly large, we use the first 70 days as a warm-up period. The results

provide a comparative statics analysis of each policy that shows the impact that increasing

each of the 4 parameters has on several performance metrics.

Table A.6: Description of Each Instance

Instance Varying Parameter cm bm pm DM

1 Base $25 0.2 20% 5
2

cm
$5

0.2 20% 5
3 $50
4

bm $25
0.05

20% 5
5 0.10
6

pm $25 0.2
5%

5
7 10%
8

DM $25 0.2 20%
0.5

9 20

A.7 Experiment Demand_Sensitivity Description and Results

In our third numerical experiment, Demand_Sensitivity, we vary the demand parameters,

λi and pij and fix the operational parameters to their baseline values. We specifically allow

the arrival and transition probabilities to be either clustered close (C) to charging stations,

spread uniformly (U) across the entire service area, or spread far (F) from charging stations.

In total, this gives us 9 synthetic demand scenarios.

Tables A.11-A.13 show how each policy performed in each of the nine demand scenarios

across several metrics. The values presented have been averaged over the last 30 days of the

100-day simulation. Since the network we consider is fairly large, we use the first 70 days as
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a warm-up period. In this experiment we only test the 1VMC-SOR policy since the previous

experiment indicated the 1VMC-SOR and 1VMC-50 policy perform similarly. We present

the results to Demand_Sensitivity in Tables A.11-A.13.

A.8 NVMC-SALP: Description of Basis Functions and Weight

Vector

In Table A.14, we provide a description of the 10 basis functions we use for solving NVMC-

SALP. Each basis function captures valuable information about the system state and relates

to the percentage of the fleet that is available, the geographic dispersion of vehicles, and the

average charge of the fleet.

Next, we specify how we sample states and choose the constraint violation budget when

solving the NVMC-SALP. Solving the resulting linear program yields a vector of basis func-

tion weights, which we provide in Table A.14. It is these weights that we ultimately use

to approximate the value function for a multi-vehicle network. Under the NVMC-SALP

policy in the simulation, we use the approximate value functions to compute the expected

discounted revenue of the NoOffer and Offer actions and choose the revenue-maximizing

decision. In this sense, we say that the policy is greedy with respect to the value function

approximations.

To generate the NVMC-SALP policy, we sample 500 states. In sampling a single state,

we assume that each of the n vehicles are randomly chosen to be either busy or idle. If a

vehicle is idle, then it is located in region i with probability λi. We assume that each vehicle

has a remaining battery that is randomly drawn from W . If a vehicle is busy, we sample

the remaining time busy from a triangular distribution with mean 53 minutes and support

[1 minutes, 180 minutes], the minimum and maximum trip duration in the data.

The violation budget restricts the expected constraint violation over all 500 states. Per

the guidance of Desai, Farias, and Moallemi (2012), we test several budget values ranging
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from 0 to 0.05 and then test the performance out of sample and in the simulation. For extreme

values, the resulting policy would offer too liberally, resulting in a policy that forgoes too

much revenue by offering free rides, and poor dispersion of vehicles since there would be a

glut of vehicles at charging stations.

Table A.14: Description of Basis Functions used in NVMC-SALP and the
Corresponding Weight Vectors.

Basis
Function

Description r

1 % of fleet on trips busy on rides -1846.83
2 % of busy vehicles available in 1 period 403.41
3 Mean fleet charge (available and non-available vehicles) 5219.46
4 Mean fleet charge (available and non-available vehicles) without

vehicles located in Z
-4679.12

5 % of available vehicles with |R(i, w)| = 0 -132.896
6 % of available vehicles with |R(i, w)| > 0, w < b̄i 408.34
7 % of available vehicles with |R(i, w)| > 0, w ≥ b̄i 639.047
8 % of regions with available vehicles 1729.18
9 % of available vehicles located in Z 188.071
10 % of available vehicles eligible for a move (with battery < bm) 2863.42

A.9 Heatmap of Historical Arrival Probability
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Figure A.3: Heatmap of Historical Arrival Probability.
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APPENDIX B

Appendix for Chapter 2.1

B.1 Robustness Checks – Estimation with Various Values of ∆

In this section, we present the estimation results for the models described in Eqs. 2.1-2.4 for

∆ ∈ {16, 20, 24, 28, 32, 36, 40, 44}, where ∆ is in weeks. The results are in Tables B.1-B.8.

We also have the results using the data from customers who transact at least once before

and after WPC (i.e., ∆ = 0), but we vary the data range in WPC ±∆′ for ∆′ ∈ {12, 16, 20,

24, 28, 32, 36, 40, 44}, where ∆′ is in weeks. The results are in Tables B.9-B.17.
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APPENDIX C

Appendix for Chapter 2.2

This appendix is divided into three sections. In Section C.1 we provide the Proof to

Lemma 2.2.1. In Section C.2, we provide additional descriptive statistics on our dataset,

especially for the slices of the data that appear in the robustness checks. In Section C.3 we

present a series of tables with the results to our robustness checks described in Section 2.2.4.4

of the main paper.

C.1 Proof of Lemma 2.2.1

Let D represent the set of during-treatment transactions used in the MLE estimation. From

D, we can compute the binary indicator Si
jt that takes value 1 if customer i parked in zone

j during transaction t, and we can compute mi
j =

∑
t S

i
jt and mi =

∑
t

∑
j S

i
jt, respectively

the number of transactions by i in zone k and the total number of transactions by i.

First, we refer to the LC-MNL likelihood and log-likelihood functions in Eqs. (2.11)-

(2.12). For simplicity in this section, we define

q = (q11|1, ..., qjt|k, ..., qZT |Z),λ = (λ1
1, ..., λ

i
k, ..., λ

I
Z), Z = |Z|, I = |I|, T =

∑
i

|Ti|.

We note that β is embedded in conditional choice probability qjt|k and that the log-likelihood

function can be re-written as Eq. (C.1), where, for ease of exposition, we drop the index t

164



and replace Si
jt.

l̂(q,λ|D) =
∑
i∈I

∑
j∈Z

mi
j · ln

(∑
k

λi
k · qj|k

)
(C.1)

To find MLE estimates, we need solve maxq,λ≥0

{
l̂(q,λ|D)

}
subject to two constraints:∑

k λ
i
k = 1 ∀ i and

∑
j qj|k = 1 ∀ i, k. To find a local maxima, we formulate the asso-

ciated Lagrangian function L(q,λ,α,µ) in Eq. (C.2), where α = (α1, ..., αi, ...αI) and

µ = (µ1, ..., µk, ...µZ) are the multipliers associated with each constraint. Then we can

derive the corresponding KKT conditions. We provide the first-order, stationarity condi-

tions in Eqs. (C.3)-(C.4). The remaining conditions are as follows:
∑

k λ
i
k − 1 = 0 ∀ i and∑

j qj|k − 1 = 0 ∀ k (Primal Feasibility); αi ≥ 0 ∀ i and µk ≥ 0 ∀ k (Dual Feasibility);∑
i αi ·

(∑
k λ

i
k − 1

)
= 0 and

∑
k µk ·

(∑
j qj|k − 1

)
= 0 (Complementary Slackness).

L(q,λ,α,µ) =
∑
i

∑
j

mi
j· log

(∑
k

λi
k · qj|k

)
−
∑
i

αi ·
(∑

k

λi
k − 1

)
−
∑
k

µk ·
(∑

j

qj|k − 1
)

(C.2)

∂

∂qj|k
L(q,λ,α,µ) =

∑
i

∑
j

mi
j ·

1∑
z λ

i
z · qj|z

· λi
k − µk = 0 ∀ j, k (C.3)

∂

∂λi
k

L(q,λ,α,µ) =
∑
j

mi
j ·

1∑
z λ

i
z · qj|z

· qj|k − αi = 0 ∀ i, k (C.4)

Next, we observe that when we set λi
k =

mi
k

mi and qj|k = 1 if j = k and qj|k = 0 if

j 6= k, and we use multipliers with the value αi = mi ∀ i and µk = Z ·
∑

i m
i
k ∀ k, the KKT

conditions are satisfied. Therefore, this point is a feasible MLE estimate. If we compute

the determinant of the Hessian at this point the determinant is equal to 0. However, as

β → −∞, the determinant of the Hessian is approaching zero from below, which shows
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that the function is concave at the point and the point does not occur at a saddle point or

inflection point, but at a local maxima.

Finally, we show that when β → −∞, qj|k naturally takes 1 if j = k and 0 if j 6= k, which

proves that as β → −∞ and λi
k =

mi
k

mi are feasible MLE estimates. Recall from Eq. (2.8) that

qj|k =
exp(vj|k)∑

j′∈Z exp(vj′k)
. We begin by observing a key property of the utility function vj|k: as

β → −∞, exp(vj|k)→ 0 if j 6= k and exp(vj|k) = exp(−LOS ·ratej) if j = k. This is because

djk > 0 if j 6= k and djk = 0 if j = k. These observations imply that, as β → −∞, qj|k ≈ 0

if j 6= k and qj|k ≈ 1 if j = k. With these values of qj|k, we saw in the previous paragraph

that the LC-MNL likehood function attains a local maxima when the class probabilities λi
k

equal the exact proportion of transactions by i in zone k in the estimation dataset D.

C.2 Data Pre-Processing and Descriptive Statistics

For each neighborhood radius, ranging from 0.25 miles, which we use in the main paper,

down to 0.10 miles, which we use as a robustness check of our results, Table C.1 contains

the number of transactions that occur during the morning hours, and when precipitation is

present, at the daily level, and within 30 or 60 minutes. The bottom section of Table C.1

reports this same breakdown but for the larger subset of the population, which is also used as

a robustness check. Furthermore, for each neighborhood size, Table C.2 contains a summary

of the number of zones and the number of unique parkers in the dataset.

C.3 Robustness Checks

This section describes the results to all of the robustness checks described in Section 2.2.4.4.

Table C.3 serves as a “Table of Contents” with a description of each robustness check, relative

to the original, baseline case that we present in the main paper. Each row of the table

represents a different configuration or change that we make to test as a robustness check.
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Table C.1: Data Description: Number of Transactions as a Function of
Neighborhood Size

Population Size Neighborhood
Radius (Miles)

Description Number of
Transac-

tions

Percentage
of Dataset

Original

0.25

Total Transactions 6,477 100%
Precipitation: Daily 2,234 34.5%
Precipitation: ± 30 Minutes 413 6.4%
Precipitation: ± 60 Minutes 499 7.7%
Morning: First 60 Minutes 976 15.1%
Morning: First 120 Minutes 1,810 27.9%

0.20

Total Transactions 5,777 100%
Precipitation: Daily 2,005 34.7%
Precipitation: ± 30 Minutes 367 6.4%
Precipitation: ± 60 Minutes 444 7.7%
Morning: First 60 Minutes 825 14.3%
Morning: First 120 Minutes 1,600 27.7%

0.15

Total Transactions 4,047 100%
Precipitation: Daily 1,385 34.2%
Precipitation: ± 30 Minutes 256 6.3%
Precipitation: ± 60 Minutes 306 7.6%
Morning: First 60 Minutes 551 13.6%
Morning: First 120 Minutes 1,082 26.7%

0.10

Total Transactions 2,718 100%
Precipitation: Daily 943 34.7%
Precipitation: ± 30 Minutes 178 6.5%
Precipitation: ± 60 Minutes 217 8.0%
Morning: First 60 Minutes 308 11.3%
Morning: First 120 Minutes 697 25.6%

Large Population 0.25

Total Transactions 29,012 100%
Precipitation: Daily 10,109 34.8%
Precipitation: ± 30 Minutes 1,971 6.8%
Precipitation: ± 60 Minutes 2,333 8.0%
Morning: First 60 Minutes 4,406 15.2%
Morning: First 120 Minutes 7,339 25.3%
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Table C.2: Data Description: Neighborhood Size

Neighborhood
Radius (Miles)

Number
of Zones

Number of Zones
at Original

Hourly Rate of
$3.75

Number of
Transac-

tions

Number of
Parkers

0.25 43 24 6,477 180

0.20 29 16 5,777 177

0.15 17 11 4,047 173

0.10 9 4 2,718 160

Any entry that contains Xmeans the value takes the same value as the baseline configuration,

which is described in detail in the second row in the table. The second column of Table C.3

contains the Table number that houses the results of the corresponding estimation.
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Table C.3: Tables for the Estimation Outputs Associated with Each
Robustness Check

Difference
from Baseline

Table Distance Population Intended
Destination
Probability

Catchment
Area

Radius

Re-Ups

Baseline 2.9 Haversine Baseline Bayesian
Smoothing

0.25-Mile None

Count-Based
Intended

Destination
Probability

C.4 X X Count-
Based

X X

Keep Learning
Transaction

C.5 X X Keep
Learning

Transaction

X X

0.20-Mile
Neighborhood

Size

C.6 X X X 0.20-Mile X

0.15-Mile
Neighborhood

Size

C.7 X X X 0.15-Mile X

0.10-Mile
Neighborhood

Size

C.8 X X X 0.10-Mile X

Google
Walking API

Distance

C.9 Google
Walking

API

X X X X

Manhattan
Distance

C.10 Manhattan X X X X

Less
Restrictive
Population

C.11 X Less
Restrictive

X X X

Combine
30-Minute

Re-Up
Transactions

C.12 X X X X 30
Minutes

Rate-Only
Utility

C.13 Haversine Baseline Bayesian
Smoothing

0.25-Mile None
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Table C.13: Rate-Only Utility Specification – Regression Results: Baseline,
Rain, and Morning

Utility Specification

Baseline With Rain With Morning

Day ± 30 Min. ± 60 Min. 60 Min. 120 Min.

β −52.10∗∗∗ −51.65∗∗∗ −51.88∗∗∗ −51.94∗∗∗ −50.90∗∗∗ −51.56∗∗∗

(2.69) (3.49) (3.44) (3.66) (3.46) (3.32)

βrain −1.33∗∗∗ −4.32∗∗∗ −2.54∗∗

(0.38) (1.35) (1.04)

βAM −9.88∗∗∗ −2.03∗∗∗

(1.38) (0.78)

Num PIDS 180 180 180 180 180 180
Num Txns 6477 6477 6477 6477 6477 6477
Log Likelihood -18432.6 -18432.2 -18431.7 -18432.2 -18423.4 -18431.8
AIC 36867.2 36868.4 36867.4 36868.4 36850.8 36867.6
BIC 36874 36881.9 36881 36882 36864.4 36881.1

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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APPENDIX D

Appendix for Chapter 3.1

D.1 Properties of f

Property D.1.1. Let X ∈M and X ′ = f(X).

1. (Affine Structure) Each column in X ′ has the form: X ′
j = Cj +

∑n
l=1 bj,l · Xl, where

Cj ∈ Rn
+ and bj,l ∈ R+ are polynomial functions of α = [α1, ..., αn].

D.2 Proof of Lemma 3.3.1.

For all X,Y ∈ M, we first define the distance metric ∆ = d(X,Y ) = maxi,j{|Xij − Yij|} =

||X − Y ||∞. We note that (M, d) is a non-empty complete metric space. Equivalently,

∆ = maxj{∆j} where ∆j = d(Xj, Yj). Let X ′ = f(X), Y ′ = f(Y ), and ∆′ = d(X ′, Y ′).

To show that f is a contraction on M, we show that for all X,Y ∈ M, ∃ 0 ≤ q < 1 s.t.

∆′ ≤ q ·∆. Since ∆′ = maxj{∆′
j}, we will show that for all j, ∃ 0 ≤ q < 1 s.t. ∆′

j ≤ q ·∆.

The proof has four steps: (1) we upper bound ∆′
j by a constant times ∆. (2) we show

this constant is a function of α. In (3) and (4), we show this constant is always strictly less

than 1, proving f is a contraction.
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(1) Upperbound on ∆′
j.

For an arbitrary j, we can find an upperbound on ∆′
j as follows:

∆′
j = max

i
|X ′

ij − Y ′
ij| = max

i
|Cij +

n∑
l=1

bj,l ·Xil − Cij −
n∑

l=1

bj,l · Yil|

= max
i
|

n∑
l=1

bj,l · (Xil − Yil)|

≤ max
i

n∑
l=1

|bj,l| · |Xil − Yil|

≤
n∑

l=1

|bj,l| ·max
i
|Xil − Yil|

=
n∑

l=1

bj,l ·∆l

≤
n∑

l=1

bj,l ·∆

The second and last equality in the above equation come from Property D.1.1. This shows

that ∆′
j ≤

∑n
l=1 bj,l ·∆, where

∑n
l=1 bj,l ∈ R+. If

∑n
l=1 bj,l < 1 for all j, then f is a contraction.

(2) Expressing
∑n

l=1 bj,l as a Function of α.

For the general case when n ≥ 5, the columns in the output matrix X ′ = f(X) for an

arbitrary X ∈M fall into one of five categories based on the column number j: left columns

(j = 1, 2), right columns (j = n−1, n), and interior columns (2 < j < n−1). Using Eq. (3.3)

and f , we derive the expressions for X ′
j in terms of α and present them in Table D.1. We

also define the function Hj =
∑n

l=1 bj,l as a function of α. We note when n = 2, we use

columns X ′
1 and X ′

n. When n = 3, we use columns X ′
1, X

′
n−1, X

′
n. For n = 4, we use columns

X ′
1, X

′
2, X

′
n−1, X

′
n.
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(3) Showing Maximum Value of Hj is Strictly Less Than 1.

For the five cases described in Table D.1, we want to show maxα∈[0,1]n:0<αk<1{Hj(α)} < 1.

We refer to this as Problem A and denote zA its optimal value and α∗
A its maximizer.

However, problem A’s feasible region is not a compact set due to the strict inequalities on

α. Relaxing the strict inequalities in A, we have maxα∈[0,1]n:0≤αk≤1{Hj(α)}, which we refer

to problem B. We define zB and α∗
B similarly. Since A’s feasible region is strictly contained

within B’s, we have zA ≤ zB, and since B’s feasible region is compact, we can solve for zB

and α∗
B. If we show that zB < 1 or zA < zB = 1 for all j, then we have shown f is a

contraction. Below, we compute zB and α∗
B for each case.

j = 1: zB = max0≤α1,α2≤1

{
H1(α1, α2)

}
= 1

2
since ∂H1

∂α2
= 1−α1

6
≥ 0, so α∗

B = (0, 1) and

zB = 1
2
.

j = 2: zB = max0≤α1,α2,α3≤1

{
H2(α1, α2, α3)

}
= 2

3
since ∂H′

2

∂α1
= −α2

2
≤ 0, ∂H′

2

∂α2
= −α1

2
−α3

6
≤ 0,

and ∂H′
2

∂α3
= 1−α2

6
≥ 0. Therefore, α∗

B = (0, 0, 1) and zB = 2
3
.

2 < j < n− 1: zB = max0≤αj−1,αj ,αj+1≤1

{
Hj(αj−1, αj, αj+1)

}
= 1 since ∂Hj

∂αj−1
=

αj

j
≥ 0 and

∂Hj

∂αj+1
=

j(1−αj)

(j+1)(j+2)
≥ 0, so α∗

j−1,B = α∗
j+1,B = 1. Then ∂Hj

∂αj
= j−2

j(j+2)
+

αj−1

j
− αj+1·j

(j+2)(j+1)
> 0, so

α∗
B = (1, 1, 1) and zB = 1.

j = n − 1: zB = max0≤αn−2,αn−1≤1

{
Hn−1(αn−2, αn−1)

}
= 1 since ∂Hn−1

∂αn−2
= 1

n
αn−1 ≥ 0,

which implies α∗
n−2,B = 1. When αn−2 >

1
n
, we have ∂Hn−1

∂αn−1
= αn−2

n−1
− 1

n(n−1)
> 0. Therefore,

α∗ = (1, 1) and zB = 1.

j = n: zB = max0≤αn−1≤1

{
Hn(αn−1)

}
= 1 since ∂Hn(αn−1)

∂αn−1
= 1

n
≥ 0, so α∗

n−1,B = 1 and

zB = 1.
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(4) Final Step.

For j = 1, 2, zB < 1, so we are done for those cases. However, for the cases j > 2, zB = 1. All

of the solutions in these cases are corner solutions where the elements of α∗
B take either 0 or 1.

Since problem A’s feasible region is strictly contained in B’s, the corner solution α∗
B cannot

be reached in A. Therefore, zA < zB = 1 for all j ∈ {1, ..., n} and f is a contraction.

D.3 Proof of Theorem 3.3.1.

From Lemma 3.3.1 and the Banach fixed-point theorem, we know there exists a unique

Y ∗ ∈ M such that Y ∗ = f(Y ∗) and d(Y ∗, f(Y ∗)) = ||Y ∗ − f(Y ∗)||∞ = 0. We also know

d(Y, Y ′) ≥ d(Y ′, Y ′′) ≥ ... > 0, where Y (k) = f ◦k(X) for k ∈ Z+. For each application of

f , or as k → ∞, the distance d successively decreases. Therefore as ϵ → 0, the algorithm

converges to Y ∗.

Next, we show Y ∗ = Ω. Assume that Y ∗ 6= Ω. Embedded within f is g, which uses

steady-state transition probabilities to model the flow between states, so we know g(Ω) = Ω,

which means that f(Ω) = g(g(Ω)) = Ω. If Y ∗ 6= Ω, then f(Y ∗) 6= Y ∗ and d(Y ∗, f(Y ∗)) > 0,

which is impossible since Y ∗ is the fixed point of the contraction mapping f . Therefore

Y ∗ = Ω and the algorithm converges to the correct Ω as ϵ→ 0.

D.4 Proof of Theorem 3.3.2.

If d1 is the distance after the first iteration of the algorithm and q is the number of subsequent

iterations until the distance reaches the stopping tolerance ϵ, then the algorithm terminates

when d1 · Aq < ϵ, where A = maxj=1,...,n{Hj(α)} ∈ (0, 1). Note that Hj(α) (see Table D.1)

is the upper bound on the rate at which the distance decreases in successive iterations.

Rearranging the expression, we have q < logA(ϵ/d1), so the algorithm terminates in, at

most, logA(ϵ/d1)+1 iterations. When the input matrix is Y = [Y1, ..., Yj, ..., Yn] ∈M, where
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Yj =
j
n
· 1, then the distance d1 = d(Y, Y ′) → 1 as n →∞. Applying this insight, we know

the algorithm terminates in at most logA(ϵ) + 1 iterations.
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