
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
MIP-Coated Microbeam Mass Sensing Utilizing Noise Squeezing Effect in Parametric 
Resonance

Permalink
https://escholarship.org/uc/item/2059j076

Author
Li, Lily L.

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2059j076
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
Santa Barbara

MIP-Coated Microbeam Mass Sensing Utilizing
Noise Squeezing Effect in Parametric Resonance

A Thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in

Mechanical Engineering

by

Lily Lijuan Li

Committee in Charge:

Professor Kimberly Turner, Chair

Professor Jeff Moehlis

Professor Sumita Pennathur

June 2014



The Thesis of Lily Lijuan Li is approved:

Professor Jeff Moehlis

Professor Sumita Pennathur

Professor Kimberly Turner, Committee Chairperson

May 2014



MIP-Coated Microbeam Mass Sensing Utilizing Noise Squeezing Effect in Parametric

Resonance

Copyright c© 2014

by

Lily Lijuan Li

iii



Acknowledgements

I would like to acknowledge my advisor Kimberly Turner for her patience and support.

She has made herself available for individual meetings, which is always an enjoyable

and productive time to discuss our progress, difficulties and goals. I would also like

to thank Professor Sumita Pennathur and Professor Jeff Moehlis for being part of my

committee.

It is my great pleasure to be part of the Turner MEMS group with wonderful colleagues.

I appreciate Kamala Qalandar, Brian Gibson, Tobias Hiller, Mrigank Sharma, Jamie

Booth for their friendship and help. I would also like to thank Zi Yie for his devices,

Luke Shaw for his patience in helping me to get start with experimental work, Chris

Burgner for his wisdom and inspiration, and Ellen Holthoff for coating my devices.

Many thanks to Dave Bothman and clearoom staff for their guidance and support.

Lastly, I would like to thank my family for always being there with love and generous

support.

This work was supported by the Institute for Collaborative Biotechnologies under Grant

W911NF-09-0001 through the U.S. Army Research Office.The content of the informa-

tion does not necessary reflect the position or the policy of the Government and no

official endorsement should be inferred.

iv



The contents and figures in this thesis are reprinted with permission from Li, L.,

Holthoff, E.L., Shaw, L.A., Burgner, C.B., Turner, K.L. Noise Squeezing Controlled

Parametric Bifurcation Tracking of MIP-Coated Microbeam MEMS Sensor for TNT

Explosive Gas Sensing. IEEE/ASME Journal of IEEE, Microelectromechanical Sys-

tems. March 2014. ( c©2014 IEEE )

v



Curriculum Vitæ

Lily Lijuan Li

Education

2014 Master of Science in Mechanical Engineering, University of California,

Santa Barbara. GPA: 3.95/4.0

2012 Bachelor of Science in Mechanical Engineering, University of California,

Santa Barbara. GPA: 4.0/4.0

Experience

2012-Present Graduate Research Assistant at Turner MEMS Group

2014 Teaching Assistant, ME Design (ME 153)

2013 Teaching Assistant, Statics (ME 14)

2012-2013 Teaching Assistant, Senior Capstone Projects (ME 189)

2012 Teaching Assistant, Biomedical Devices (ME 128)

2012 Research Mentor, JKC Bridge Program at University of California,

Santa Barbara

2011 Summer Research Internship at Dr. Kimberly Turner’s Lab

2011-2012 FEA Modeling of Beam Vibration for Energy Harvesting Project at

Dr. Jeff Moehlis’s Research Group

2013 Advanced Vacuum Science Conference Poster Presentation, Long Beach,

CA

vi



2014 Oral Presentation in Solid-State, Actuator, and Microsystems Work-

shop, Hilton Head, SC

Selected Publications

Li, L. L., Holthoff, E. L., Shaw, L. A., Burgner, C. B.,Turner, K. L.:

“Noise Squeezing Controlled Parametric Bifurcation Tracking of MIP-

Coated Microbeam MEMS Sensor for TNT Explosive Gas Sensing,”

Journal of Microelectromechanical Systems,(Volume:PP , Issue: 99 ),

March 2014

Li, L. L., Holthoff, E. L., Shaw, L. A., Burgner, C. B., Turner, K.

L. : “Phase Noise Squeezing Based Parametric Bifurcation Tracking of

MIP-Coated Microbeam MEMS Sensor for TNT Explosive Gas Sens-

ing,” in Solid-State Sensor,Actuator, and Microsystems Workshop,

Hilton Head Workshop,2014

vii



Abstract

MIP-Coated Microbeam Mass Sensing Utilizing Noise

Squeezing Effect in Parametric Resonance

by

Lily Lijuan Li

A real-time explosive gas sensing (DNT) in atmospheric pressure utilizing the noise

squeezing effect that occurs before a bifurcation event is investigated. A noise-squeezing

controller based on the statistics of phase noise is implemented using high-speed Lab-

VIEW field programmable gated array. A high frequency TNT-molecularly imprinted

fixed-fixed microbeam sensor utilizes this nontraditional sensing strategy and performs

DNT sensing at various concentrations. Experiments are conducted using both noise-

based and sweep-based bifurcation tracking for a direct comparison. Results demon-

strate noise-based bifurcation tracking is not only capable of performing reliable fre-

quency tracking, but also show the method is superior to the bifurcation sweep-based

tracking. Over three orders of magnitude improvement in acquisition rate is achieved,

and as a result, confidence and precision on bifurcation frequency estimation is signifi-

cantly improved over the bifurcation sweep tracking method, enabling DNT sensing at

concentrations much below sub-ppb (parts-per-billion) level.
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Chapter 1

Introduction

1.1 Overview

High sensitivity and selectivity and low cost are key considerations for trace ex-

plosive detection sensors [5]. Commercially available explosive detection systems can

detect with a mass sensitivity in the range of pg to ng, however, these equipments are

usually large, some are up to a few hundred pounds, hence, not feasible for detection

of explosives on sites of interests. In addition, some of them are slow and expensive

[6]. Low mass, high frequency and low cost micro/nano sensors, commonly known as

microelectromechanical systems (MEMS) have draw increasing attention in the area of

mass sensing in recent years [7][8]. The smallness of these sensors enables the detec-

tion of molecules in vapors, making it a very prominent technology in the field of trace

detection, especially in the area of explosive detection for homeland security. Silicon

fabricated MEMS sensors themselves do not have the capability of mass sensing, hence,

a surface modification combining with novel coating that demonstrated high affinity and
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Chapter 1. Introduction

selectivity to target molecules can be employed to activate the sensing ability of the

devices. In this project, we are collaborating with scientists from the Army Research

Laboratory (ARL) who are working on a coating chemistry called molecular imprinted

polymers (MIPs). MIPs have become an attractive thin-film coating for many MEMS

sensors, and a deeper understanding of binding sites in MIPs has been achieved [9][10].

In this work, ∼15 nm-thick films of sol-gel-derived xerogels molecularly imprinted for

trinitrotoluene (TNT) have demonstrated selectivity and stability in combination with

a fixed-fixed beam MEMS sensor [11][12]. Traditionally, mass sensing using MEMS

has been achieved based on the natural frequency shift due to an increase of resonator

mass. However, thermomechanical noise has determined the limit of detection for lin-

ear sensing [13]. The ability to track the minimum shift of the natural frequency

is determined by both the intrinsic and extrinsic noise of the system. Dynamics of

parametrically excited oscillators and their applications have been previously studied

extensively [14][15][16]. Successful attempts to improve the effective quality factor of

microcantilever arrays operating in the linear regime utilizing parametric amplification

have been made [17] [18] [19]. However, bifurcation mass sensing has demonstrated su-

perior sensitivity in the presence of measurement noise when compared to linear sensing

in air [20].

2



Chapter 1. Introduction

1.2 Cantilever in Sensing

The microcantilever is one of the most commonly known resonant structures in

MEMS used in the area of physical and chemical sensing. For example, the atomic

forced microscope tip is basically a cantilever [21]. The smallness of these MEMS devices

offers high sensitivity that allows measurement down to 0.1 Å. In the area of sensing,

mass added to the cantilever can be measured by its deflection [22][23] or surface stress

[24][25]. A popular way to do it is to operate the cantilever at its harmonic resonant

mode and measure its frequency shift as a result of mass loading. Resonant sensing

can be done in the linear harmonic region [5][26] and the nonlinear harmonic region

[27][16]. In this work, we are interested in exploiting nonlinearity in MEMS cantilevers

and apply it in mass sensing.

1.3 Harmonic Resonance Mass Sensing

Linear harmonic resonance mass sensing is based on the natural frequency shift of

the MEMS device when particles are attached to the surface (Fig.1.3 (a) and (b)). The

dynamics of the microcantilever can be modeled as a mass spring damper system:

mẍ+ cẋ+ kx = F (t), (1.1)

3



Chapter 1. Introduction

where m is the mass, c is damping, and k is spring stiffness, and F is the forcing.

Natural frequency of the harmonic oscillator is:

f0 =
1

2π

√
k

m
, (1.2)

The addition of mass is directly related to the change of the harmonic frequency. Assume

the added mass 4m is small and the stiffness change can be ignored, then the new

frequency f can be expressed as:

f =
1

2π

√
k

m+4m
, (1.3)

Performing a Taylor expansion on Eq.1.2 with 4m being very small, we get an approx-

imate relationship between the frequency change and added mass as follows [28]:

4f = −1

2

4m
m

f0 (1.4)

As seen in Eq.1.4, improving the frequency sensitivity ultimately leads to a lower order of

mass detection limit. Improving the quality factor (Q factor) by ultilizing parametric

pumping improves the frequency resolution in linear sensing [17], however, previous

work showed that nonlinear sensing offered higher frequency resolution in the presence

of measurement noise [20].
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Chapter 1. Introduction

1.4 Parametric Mass Sensing

In the context of this work, we consider the nonlinear sensing of a cantilever op-

erating near/at its parametric resonance. Parametric sensors operate by periodically

modulating the effective stiffness of the system [29]. The dynamics of the resulting

system is governed by the Mathieu equation with a cubic nonlinearity [29].

mÿ + cẏ + (k + ν cos 2ωt)y + k3y
3 = 0, (1.5)

where m is the mass, c is the damping coefficient, k is the spring stiffness and is being

periodically modulated by a sinusoidal input with strength ν, and k3y
3 is the cubic

nonlinearity term. The above equation can be derived by calculating the total kinetic

energy (T ) and potential energy (V ) of the system and applying them in the Lagrange’s

equation [30] [3]:

d

dt
(
∂T

∂ẏ
)− ∂T

∂y
+
∂V

∂y
= −cẏ (1.6)

The solution to Eq.1.5 is solved using the method of averaging [31]. See Appendix C

for detailed derivation of steady state solutions. The dynamic response is illustrated by

Fig.1.1. When operated above the threshold voltage determined by mapping the Arnold

tongue [32] that defines the stable and unstable regions, a subcritical/supercritical pitch-

fork bifurcation results, depending on the parameter sweep direction. As shown in

Fig.1.1, the boundary that defines the change of stability of the system is called the

Arnold tongue. Outside the Arnold tongue, zero is always a stable solution. For a

5



Chapter 1. Introduction

Figure 1.1: Bottom: Schematic of stability transition curve (black). The blue lines
symbolize the amplitude R at constant voltage. Solid blue lines are stable solutions,
dashed blue lines are unstable ones. Top: Phase diagrams of the amplitude for each of
the three regions. The red dot indicates the point of operation of the feedback controller,
that in turn tracks the shift to the left and the right of the transition curve induced by
change in mass [1][2].

hardening case (Fig.1.1), on the right hand side of the Arnold tongue, there exist two

large stable solutions and one zero stable solution. Inside the tongue, zero becomes

unstable and two large stable solutions are born.

The effective stiffness modulation can be achieved by relying on the nonlinear actu-

ation force produced by non-interdigitated combs [33] or by gap varying shaped combs

[34]. In this work, the effective stiffness is modulated by applying a periodic voltage (to

an external shear piezo), which is equivalent to applying a periodic forcing in the axial

direction of the cantilever beam, as illustrated in Fig.1.2. The parameters in Eq.1.5

6



Chapter 1. Introduction

Figure 1.2: Illustration of forcing applied to a cantilever to achieve parametric res-
onance. The fixed-fixed beam is driven at ∼ twice its natural frequency (ω). When
driven above the threshold of the Arnold tongue, a subcritical/supercritical bifurcation
results at ω.

can be determined by applying curve fitting to the experimental data. Damping (c)

and forcing strength (ν) can be obtained from mapping the Arnold tongue. The cubic

nonlinearity k3 can be obtained from the transition curve (bistable branch inside the

Arnold tongue) [1]. When frequency is swept from right to left in Fig.1.1, large am-

plitude jumps of the system occur when crossing the instability boundary (Fig. 1.4),

where the drive frequency is approximately twice the system’s natural frequency [35].

In contrast to linear mass sensing (Fig.1.3 (a) and (b)), bifurcation mass sensing

utilizes the occurrence of the jump event as an on/off indication of the bifurcation

location to directly relate it to the natural frequency of the system. As a result, natural

frequency shifts due to mass loading can be traced by tracking the shifts in bifurcation

location (Fig.1.3), since a corresponding shift of frequency is observed in the instability

boundary (Arnold Tongue).

1.5 Sweep Based Parametric Mass Sensing

For bifurcation tracking-based mass sensing, the frequency is swept towards the

critical point. Note that voltage can be varied to achieve bifurcation as well, as seen in

7



Chapter 1. Introduction

Figure 1.3: (a) and (b) corresponds to the amplitude and phase response in linear
mass sensing. The blue and red curves represent the system response before and after
mass loading. (c) describes the Arnold tongue correspondence to the natural frequency
before and after mass absorption. 4f is the change of frequency. B is the bifurcation
location where the jump event occurs [3].

Fig.1.4. However, it is more sensible to sweep frequency due to its direct correlation to

mass change. Once the system response amplitude crosses a set threshold, the location

of the bifurcation is found, and the sensor is reset to a low amplitude(zero solution

stable state) state. Frequency sweep then restarts to find the next bifurcation point

(shown in green in Fig.1.4). Precise frequency estimation in micromechanical parametric

oscillators can be achieved by statistics of multiple bifurcation events acquired with

8



Chapter 1. Introduction

Figure 1.4: Schematic of both noise squeezing-based tracking (left) and bifurcation
sweep-based tracking methods (right). The bifurcation sweep based tracking method
tracks the bifurcation locations by repeatedly performing frequency sweeps towards
critical point until large amplitude results. Then the device is relaxed to a zero stable
state before the next sweep starts. However, in the noise squeezing control tracking
method, the device approaches the critical point until the noise squeezes below some
threshold, then a feedback control keeps the device close to the edge of instability while
maintaining small a response amplitude. Note that voltage can be used as a control
parameter instead of frequency to map the bifurcation location as well, but it is not
demonstrated in this work.

small frequency sweep steps [36]. However, the bifurcation tracking method is highly

dependent on a parameter α, defined as sweep rate to noise ratio [37]. If the sweep rate

is too slow, noise activated escape can occur where the bifurcation occurs before the

critical point is reached [38][39]. On the other hand, if the sweep rate is too fast, delay

bifurcation can result where bifurcation occurs after the critical point [40][41]. Even

though an optimum α can be chosen for an experiment, that particular sweep rate may

not offer the acquisition speed needed for acceptable sensor performance.

9



Chapter 1. Introduction

1.6 Noise Squeezing Based Mass Sensing

The noise squeezing effect in parametrically excited system was first demonstrated

in [19]. Recent work on parametric noise squeezing and parametric resonance of micro-

cantilever utilizing feedback control has shown significant improvement in the effective

quality factor, opening the field to high sensitivity mass sensing even in liquid envi-

ronment [42]. A similar sensing strategy based on phase noise for fast estimation of

bifurcation location has been developed and verified with a low frequency MEMS gy-

roscope as seen in [43][44][45]. The phase squeezing effect is explained in Fig.1.5. It

demonstrates the dynamic behavior of the device before and after the bifurcation event.

Far away from the pitchfork bifurcation (in red), the zero-fixed point of the system is

stable and the phase space appears random with a large variance. As the device ap-

proaches the critical point, the system dynamics collapse onto a slow manifold, where

the amplitude response of the system started to grow, but remains small (as shown in

Fig.1.5 where the transition varies from red to green). The slow manifold corresponds

to the system eigenvector associated with the eigenvalue with small magnitude. The

time scale that governs the slow manifold is much slower than the natural frequency of

the oscillator. As the zero state loses its stability, the resulting motion moves along the

slow manifold to one of the newly formed large amplitude stable fixed points (in pur-

ple) [4]. The change in phase variance is obvious just prior to the critical point; hence,

this squeezing state can be used as a precursor to the bifurcation event. A feedback

10
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Figure 1.5: Transient Response of a parametrically excited gyro before and after the
critical bifurcation point. A coordinate transformation of (q1, q2) into a frame rotating
at half the drive frequency is used. The system undergoes a subcritical pitchfork bifur-
cation. Far away from the critical point, the phase (in red) alternates randomly with a
large variance. As the device approaches the critical point, indicated by the transition
from red to green, the dynamics collapse onto a one dimensional slow manifold, where
the phase variance drops dramatically, making it an ideal location for control. As a
consequence,the phase noise correlates and the amplitude starts to grow. Escape to a
large amplitude (in purple) occurs as the parameters cross the instability boundary [4].
Note that this figure is used for the purpose of illustration; it does not represent the
actual system of the device under test in this work, but a similar one.
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controller based on the phase variance can therefore be implemented to keep the device

at the edge of instability (Fig.1.4).

Using the statistics of the phase noise to estimate the bifurcation location leads to

over three orders of magnitude improvement in acquisition rate when compared with

the frequency sweep based bifurcation-tracking method. These results [42][43][44][45]

imply potential applications in improving sensitivity of mass sensing using MEMS, but

no one has yet fully taken advantage of this sensing strategy and combined it with real

time mass sensing. In this work, a noise-squeezing controller implemented on National

Instrument LabVIEW CompactRIOTM platform consisting of a field programmable

gated array (FPGA) was combined with a high frequency molecularly imprinted (for

TNT) fixed-fixed microcantilever to perform real time dinitrotoluene (DNT) gas sensing

experiments. To demonstrate the advantages of noise squeezing controlled bifurcation

tracking, we conducted experiments using both noise squeezing-based and sweep-based

bifurcation tracking as described in [12]. Results showed that the noise squeezing sensing

strategy led to a significant improvement in acquisition rate and frequency stability,

both being crucial for improving the sensitivity of MEMS mass sensors.

1.7 Effect of Damping in Parametric Resonance

In harmonic resonance, damping significantly reduces the quality factor and hence,

lowers the mass sensitivity in the application of mass sensing. As a result, various

techniques are employed to improve the quality factor when operating the sensor in

12
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atmospheric pressure using harmonic resonance tracking. One example of quality factor

enhancement is parametric amplification [17]. However, when operating the device

in parametric resonance mode, damping does not hinder the performance as much

compared to linear harmonic sensing. The effect of damping is reflected on the tongue

shape, as shown in Fig. 1.6. Without damping, the tip of the tongue is very sharp, and

any nonzero forcing can drive the device into the nonlinear region inside the tongue. In

a damped environment, the bottom of the tongue is rounded, and a higher actuation

forcing is required to achieve parametric resonance. However, damping does not affect

the sharpness of the bifurcation jumps, nor the slope of the instability edges at high

forcing strengths. Hence, one can still track the tongue with high accuracy in the

presence of damping, which makes the parametric resonance sensing ideal for mass

sensing in atmospheric pressure.

13
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Figure 1.6: Effect of damping in parametric resonance system. Without damping,
the tip of the tongue is very sharp, and theoretically, any nonzero forcing can drive
the device into the nonlinear region inside the tongue. With damping, the bottom of
the tongue is rounded, and a higher actuation force is required to achieve parametric
resonance. However, damping does not affect the sharpness of the bifurcation event,
nor does it affect the slope of the instability edges at higher forcing strengths.
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Device Fabrication and
Characterization

2.1 Device Fabrication

The sensors are fixed-fixed beams of varied lengths and widths. The beam thickness

was 2 µm. The values were chosen so that the natural frequencies of the beams were

less than half the natural frequency of the shear piezo actuator (330 kHz) used to drive

device. The microbeams were fabricated using a standard SOI process (Fig.2.1) [3].

The SOI wafer used was 2 µm Si device layer with 1 µm buried oxide and 520 µm

Si handle. First, oxide was grown on both sides of the wafer. Si3N4 was deposited

on the backside on top of silicon oxide; together they serve as masks to protect the

backside for KOH etch in a later step [Fig.2.1 (a)]. After front side oxide removal,

it was then spun with photoresist and pattern was transferred [Fig.2.1 (b)]. Then a

deep reactive-ion etching was used to etch the device features [Fig.2.1 (c)]. Backside

mask features were defined using photolithography and inductively coupled plasma
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Figure 2.1: Fabrication process schematics of the fixed-fixed beams using standard
SOI process. (a) SiN and SiO2 is deposited on backside of SOI wafer as a mask for
KOH backside etch in step (h). (b) Front side lithography with photoresist to pattern
the beam features. (c) Dry etch silicon with deep reactive ion etching (DRIE). (d) Back
side lithography with second mask align to front side pattern. (e) Dry etch SiN and
SiO2 induction coupled plasmas etcher (ICP). (f) Spin coat ProTEK on front side as
protection during back side etching. (g) KOH etch back side until reaching buried oxide
layer. (h) Remove ProTEK and HF etch buried oxide to release devices [3].

[Fig.2.1 (d) and (e)]. The front side was spun with protected coating called ProTEK to

protect features during backside release etch [Fig.2.1 (f)]. The backside was opened by

anisotropic KOH etch and stopped at the buried oxide. The device was then finished

with removal of ProTEK and buried oxide layer [Fig.2.1 (g) and (h)]. KOH etch rate is
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highly dependent on parameters such as temperature, agitation, concentration, etc. It

is easy to under/over etch the backside. The fact that the proTEK peels off when the

wafer is taken out of the KOH (to check the etch depth) makes this wet etching less

desirable. An easier process to fabricate fixed-fixed beams was also developed. Instead

of using ProTEK and KOH to etch the backside, DRIE dry etch can be used to etch

away 500 µm of Si and stop at the buried SiO2. This results in a more controllable

backside etching. Detail on the fabrication processes can be found in Appendix A.

2.2 Device Functionalization

Molecular imprinted polymer (MIP) is a product of the molecular imprinting tech-

nology. It involves an initial polymerization between functional monomers and tem-

plate, then the removal of the template, formation of a cavity in the polymer which

has a “memory” and affinity for the template molecule. They can be used as robust

artificial recognition elements for target chemical anaytes of interest. Their physio-

chemical properties can be adjusted by the choice of functional monomers. In this

work, xerogel-based MIPs were used for coating. The MIP used was a combination

of 3-aminopropyltriethoxysilane (APTES), methyl-triethoxysilane (C1-TriEOS), and 3-

mercatoproyt rimethoxysilane (MPTMS). This integrated MIP has shown that it is

selective to TNT and has demonstrated reliable reversibility and stability. It was ex-

pected to maintain its selective properties for at least six months [11]. The devices were

spin-coated with the xerogel-based MIPs, a coating method that was found to offer
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Figure 2.2: SEM image of a 450 µm x 20 µm x 2 µm sensor coated with MIPs [3].

the best results compared with microdrop deposition. Fig.2.2 shows an SEM image

of a microsensor spin-coated with MIPs [3]. Note that the MIPs were developed to

detect TNT, however, DNT, a chemical precursor to TNT, was used in the experiments

conducted in this work. Conclusions drawn from the results of DNT testing will be

similar to TNT since they are structurally similar. Devices described here are the same

as those used to compare bifurcation tracking to natural frequency tracking of DNT in

[12]. Results successfully demonstrated the capability of microbeam sensor detecting

DNT with a limit of detection (LOD) in the sub-ppb range using the bifurcation sweep

tracking method. Note that the sensors were coated and last tested in September 2011.

They were later introduced to DNT gas sensing with noise squeezing controller for bi-

furcation sensing in May 2013. One drawback to MIPs is their stability after aging.

This particular MIP displayed resistance to this degradation. Nearly two years of idling

18



Chapter 2. Device Fabrication and Characterization

can degrade the effectiveness of the polymers, which is addressed in the results section.

The sensor used in this work is 600 µm x 20 µm x 2.462 µm with a natural frequency

of 49.33 kHz.

2.3 Natural frequency

The natural frequency of the fixed-fixed beam can be calculated from the following

equation:

fn = 1.03
h

L2

√
E

ρ
, (2.1)

where h is the thickness of the beam, L is the length, E is the Young’s Modulus of

[1 0 0] silicon (130 GPa) and ρ is density of silicon (2650 kg/m3). Substituting the

dimensions of the beams from the previous section, a natural frequency of 49.336 kHz

is obtained from Eq.2.1.
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Experimental Setup and Controller
Design

Theory and an earlier proof of concept experiment on a low frequency MEMS with

a fundamental frequency of 8448 Hz showed that phase noise squeezes onto the slow

manifold prior to the bifurcation event. The statistics of the phase noise squeezed state

can be used as a precursor to the critical location [40][41][43]. Taking advantage of

this sensing method, we implemented it on a TNT-molecularly imprinted sensor with

a natural frequency of 49.33 kHz. The experimental setup is shown in Fig.3.1.

The sensor was mounted on a shear piezo, driven by the function generator at nearly

twice the resonant frequency (to drive parametric resonance) at a fixed voltage of 32

Volts. The experiment was conducted at atmospheric pressure and room temperature

in an enclosed chamber. DNT vapor was generated in a permeation oven by heating

a 2-4 DNT permeation tube at constant temperature mixed with N2. The flow rates

were controlled by mass flow controllers (MFC). Concentration of the DNT/N2 mixture

can be adjusted by changing the flow rate and oven temperature (see Appendix B for
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Figure 3.1: Experimental setup and FPGA controller design schematics. The device
is mounted onto a shear piezo and is driven at twice its natural frequency. The
sensor’s out of plane velocity response is coupled by a laser vibrometer through an
optical microscope. The vibrometer signal and the reference square wave at half the
drive frequency are fed into a phase lock amplifier (PLA). The FPGA samples the
outputs of the PLA and provides feedback control to hold response close to the edge
of bifurcation. The 2-4 DNT/N2 gas test experiment is conducted in a closed chamber
at atmospheric pressure and room temperature. DNT/N2 is generated by heating the
2-4 DNT permeation tube in a permeation oven at constant temperature. DNT vapor
is carried by N2 and the mixture is fed into the test chamber at constant flow rate
controlled by mass flow controllers. When the device is not under active DNT test,
only N2 is used.
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detailed calculation of concentration). The sensor response was detected using a laser

doppler vibrometer (LDV) through an optical microscope, although on-chip sensing

using piezoresistors is possible at these scales [46]. The velocity signal was then sent to

a phase lock amplifier (PLA). The PLA provided outputs that include the “in phase”

component (X) of the signal, Vsig cosφ and the “quadrature” component (Y), Vsig sinφ.

They correspond to the sin and cos quadrature of the slow dynamic response of the

system. The X and Y components were acquired by the FPGA controller at 250 kHz.

Amplitude and phase information of the signal can be calculated from the X and Y data.

Based on the statistics of the phase, the controller provides feedback to the function

generator to perform corresponding frequency modulation to maintain the device close

to the edge of bifurcation instability. The feedback controller was implemented on a

National Instruments CompactRIOTM platform that contains FPGA input and output

modules. It was invoked by the host VI to perform stand-alone tasks that will continue

until either it is manually stopped or a bifurcation occurs. The FPGA sampled the X

and Y components from the PLA at fixed loop rate of 250 kHz, limited by the maximum

sampling frequency of the PLA. Phase and variance calculations are executed in parallel

to the sampling loop. Based on the statistics of the phase and the phase variance set

point, the FPGA output correspondingly increased or decreased the DC voltage to

modulate the frequency of the function generator. The control rate can be tuned based

on the variance set point, a threshold for control action. The rate was set at 1 ms .

Predetermined knowledge of the natural frequency of the device is necessary to set
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sensible parameters for the controller, so that the starting frequency is between the

natural frequency of the sensor and its double. The drive frequency approaches the

bifurcation until the phase noise squeeze state occurs (below the phase variance set

point), then the controller actively controls the device at the edge of bifurcation and

tracks its change as explosive gas is introduced.
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Results

Noise squeezing behavior was observed in the device under testing and matched

the description in [27] and [28] when under no control action. To see how the sensor

responded to the noise squeezing controller, data was collected when the controller was

in action. X and Y data from the phase lock amplifier was collected from oscilloscope

(DPO 2024) at a sampling rate of 625 kS/s and a data length of 1.25 million. The

collected data was then analyzed in MATLAB. Phase was calculated by

φ = arctan
Y

X
(4.1)

and amplitude was calculated by correlating the output voltage to sensitivity of the laser

vibrometer. Phase variance was calculated from the most recent 100 samples. Note that

for better visualization, data shown in Fig.4.1 is only one tenth of the collected data.

The highlighted portion of phase variance data in red is shown in an inset to get

a closer look at the parameter of interest. As shown in Fig.4.1(a), when the device is

away from the critical point, the phase varies between −π to π, and the phase variance
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Figure 4.1: Sensor response to noise squeezing controller. Fig.4.1(a) shows the re-
sponse of the sensor when noise squeezing controller is in action. When the sensor is
away from the edge of instability, the phase is varying between -π and π, and that
corresponds to the zero stable solution of the supercritical pitchfork bifurcation. As the
device approaches the edge of bifurcation, phase squeezes and amplitude starts to grow.
When phase variance goes below threshold, the controller brings the sensor back to the
stable state. Such process repeats and the time between one squeeze state and the next
is less than 10 ms. Fig.4.1(b) is the phase variance data blow up of the highlighted
portion in red in Fig.4.1(a). Minimum variance is found to be 0.002. This corresponds
to the variance set point at which a feedback control was employed by adjusting the
drive frequency to keep the device getting too close to the escape event.
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is above 2 rads. This state corresponds to the zero stable solution of the pitchfork

bifurcation. As the device approaches the edge of instability, the phase squeezes and

the amplitude starts to grow. The phase variance drops to a minimum variance of

0.002. This apparent change in phase variance prior to the bifurcation event is the key

to the feedback control. The cycle between one squeeze state to the next is less than

10 ms. 2-4 dinitrotoluene (2-4 DNT) gas sensing experiment was performed with the

noise-squeezing controller at a low concentration of 0.93 parts-per-billion (ppb) DNT/N2

mixture. In this experiment, nine repeated tests of 15 minutes of pure N2 followed by

10 minutes of DNT/N2 were conducted. Fig.4.2 shows the change of natural frequency

as a function of time. Data in Fig. 4.2 has taken a linear frequency drift of 0.05 Hz/min

into account. Higher concentration DNT gas experiments were also conducted. These

Figure 4.2: The figure shows a constant concentration of 0.93 ppb DNT/N2 gas ex-
periment. Pure N2 was first introduced for 15 minutes and was followed 10 minutes of
DNT/N2. The parametric drive frequency was lowered by 67 ± 3 Hz due to the polymer
absorption of DNT. The same process was repeated 9 times. The linear frequency drift
of 0.05 Hz/min was accounted for in the post processing.

experiments were carried out by the noise squeezing bifurcation sensing method and

the bifurcation sweep tracking method described in [12] for comparison, as shown in
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Figure 4.3: DNT gas sensing using a noise squeezing controller. Fig.4.3 (a) shows the
gas experiment with lowest concentration of 1.38 ppb and highest concentration of 18.13
ppb. Fig.4.3(b) is a zoom in figure of the portion inside the square window in Fig.4.3(a).
The highlighted portion corresponds to pure N2 purging after the 1.38 ppb DNT/N2 gas
test. However, absorbed DNT did not completely come off, and the frequency did not
fully recover initial starting frequency. Hence, this explains why the highlighted data
in red does not start at zero. Fig.4.3 (b) is used to make direct comparison with the
data collected from the bifurcation sweep method (Fig.4.4) at the same concentration.

Fig.4.3 and Fig.4.4. Increasing concentration of DNT gas mixture was introduced after

the steady state of the lower concentration of DNT testing was reached. Hence, after

each cycle of DNT testing, no pure N2 was used to release the absorbed DNT molecule.

The motivation for this test came from the observation that the coatings would not

fully recover following an N2 purge. It was therefore necessary to understand potential
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saturation effects. However, each higher concentration of DNT introduced results in a

larger shift of natural frequency at saturation state in reference to initial state before

introduction of any DNT. Hence, this experiment was valid in finding the absorption

calibration curve for the sensor. Calibration curve of frequency shift as function of

Figure 4.4: Comparison test showing DNT gas sensing using the bifurcation sweep
method. Pure N2 was introduced after the first and last DNT gas test (2.03 ppb and
10.88 ppb). Absorption phenomenon persisted, and the following higher concentration
DNT/N2 experiments were conducted after the steady state of lower concentration was
reached.

concentration is plotted in Fig.4.5 and the slope is a measure of the sensitivity of the

MIPs response in the presence of DNT. Allan deviation [47] calculated as

σ =

√√√√ 1

2(n− 1)

n∑
j=2

(fj − fj−1)2 (4.2)

was used to quantify the frequency stability of the highlighted portion of the data from

the two tracking methods in Fig.4.3 and Fig.4.4. This corresponds to the minimum
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frequency (minFreq) that can be detected. Slopes (sensitivity) of the calibration curve

were fitted with a first-order polynomial. They are found to be 87.62 ± 3 Hz/ppb with

Figure 4.5: Calibration of DNT ploted with change of frequency as a function of DNT
concentration using both tracking methods. The slope corresponds to sensitivity in
units of Hz/ppb. The error bar is not shown in the figure, as it is invisible in the plot
using the plot dot size shown.

R2 of 0.9985 and 94.7 ± 13.5 Hz/ppb with R2 of 0.9941 for noise squeezing bifurcation

tracking and bifurcation sweep tracking correspondingly. Note that the frequency shift

shown in all the figures in this work correspond to the drive frequency shift. Hence, to

relate them to natural frequency shift, a multiplication factor of 0.5 is needed. The limit

of detection (LOD) is calculated by minFreq/Sensitivity. The results are summarized

in Table 4.1.

In gas sensing experiments, switching from DNT/N2 to pure N2 caused a drop in

frequency before rising. This was observed in both sensing strategies, shown in Fig.
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4.6. It could be the results of the pressure change resulting from the manual switching

of valves or sudden temperature change from DNT to N2. However, it is most likely

due to the energy dissipation when DNT molecules breaks the bonds with the MIP

cavity, which leads to temperature change between the gas and polymer interface. The

sensor is sensitive enough to capture this transient effect of the polymer interaction

dynamics. In fact, using microcantilever to charaterize energy absorption or dissipation

in chemical reactions can be a potential new direction for research.

Noise Squeezing Bifurcation Sweep
Method Method

Minimum Frequency
(Hz) 0.045 5.43

Sensitivity
(Hz/ppb) 87.62 ± 3 94.7 ± 13.5

LOD (ppb) 0.0005 0.06

Table 4.1: Comparison of the two nonlinear tracking methods. This table summarizes
the results of both the noise squeezing-based and bifurcation sweep-based methods.
Minimum frequency corresponds to the Allan Variance for each method and the sen-
sitivity relates to the slope of the calibration curve. LOD is the ratio between the
minimum frequency and the sensitivity
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Figure 4.6: Transition from DNT gas testing to pure N2. Fig.4.6 (a) shows the
1.38 ppb DNT tracking using the noise squeezing controller and sharper transition is
observed compared to the bifurcation sweeping method of 2.03 ppb in Fig.4.6 (b). Note
that concentration is different in this figure; however, the focus on this result is not the
frequency shift but the sensor response to the environmental change when switching
the control valves on and off. Hence, the comparison is still valid despite being two
different concentration tests.
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Discussion

Experimental results demonstrate that noise-squeezing control for bifurcation sens-

ing is a better sensing strategy than the bifurcation sweep method previously described

in [12]. It uses the statistics of the phase noise as a precursor to the bifurcation event,

and the control time is less than 10 ms, as shown in Fig.4.1. The average time for a

bifurcation sweep method to track a bifurcation event is 15 to 20 seconds, depending

on sweep rate, since it takes time for oscliations to build. This method involve time for

a system reset due to hysteresis and time for the sweep steppings towards the critical

point. And the sweep rate can result in delay bifurcation or activate escape if swept

too fast or too slow. More than three orders of magnitude improvement in acquisition

is achieved using the noise squeezing method for bifurcation detection. Since the phase

squeezes onto the slow manifold before the bifurcation event takes place, and it pos-

sesses a more dramatic transition than the amplitude growth at this stage, it is a faster

and more accurate approach to estimate the bifurcation location. The advantage of

the noise squeezing method is evident in the frequency stability of the sensor, which is
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over two orders of magnitude smaller than that of the bifurcation sweep method. This

is significant because it means two orders improvement in ultimate sensitivity of the

sensor. Furthermore, fast data acquisition employing the noise squeezing strategy not

only results in higher confidence on the estimation of the bifurcation locations, but also

enables more information on the response dynamics of the MIPs, as shown in Fig.4.6.

As a result, the noise squeezing-based bifurcation tracking can be used for other appli-

cations in addition to mass sensing, for example, to characterize the absorption kinetics

of MIP to further improve surface coating chemistry. The sharp transition between

switching from DNT/N2 to pure N2 is likely due to the pressure change when one man-

ually turns the gas valves on and off. Both methods capture the changes, however, the

noise squeezing method captures more detail. The relatively slow bifurcation sweep

method can result in an “aliasing effect”, where the sampling rate is slow compared to

the rate of environmental change. It is obvious from the results that the noise squeez-

ing controller offers more advantages in gas sensing than the previous bifurcation sweep

method in the sense of frequency tracking mechanism, however, the sensor response time

and reversibility did not improve compared to the results in [12]. The sensor response

time to DNT from [12] is 90 seconds at a concentration of 1.8 ppb while it is found to

be about 7 minutes at the lowest concentration tested (0.93 ppb, Fig.4.2). Moreover,

absorption and stiction of DNT molecule during pure N2 purging cycle was evident in

Fig.4.6, where frequency stabilized below the initial frequency before DNT gas testing.

However, it was not an issue in low concentration gas testing in Fig.4.2, where the
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sensor demonstrated consistent repeatability and reversibility. Note that the sensor’s

sensitivity to the absorption of DNT is directly correlated to the surface coating chem-

istry. Hence, time response during DNT test is not an implication of the slow response

from the controller or the MEMS device itself, since the absorption is characterized by

the sensitivity of the MIPs. The differences in the results are likely due to degradation

of the MIPs, since the sensors were coated over two years ago, which is also the duration

between the experiment shown in [12] and the experiments conducted in this paper.

A direct comparison between the noise squeezing method and harmonic resonance

method for tracking is not presented in this thesis. However, based on the previous

work seen in [12][20][27], it has been shown that the natural frequency tracking results

in lower frequency resolution in air as it is dependent on the quality factor, though

it can be enhanced in high vacuum, it is not ideal for applications for mass sensing

at atmospheric pressure. The limit of detection for this method is also limited by the

measurement noise and thermo-mechanical sensor noise. In bifurcation tracking, despite

the change in damping due to pressure has little effect on the sharpness and location

of the parametric resonance, as seen in [27]. In addition, the frequency resolution is

enhanced compared to harmonic resonance sensing in the presence of measurement noise

[12]. Hence, one can be confident in the improvement of the noise squeezing sensing

technique over the harmonic resonance tracking for mass detection in air.

34



Chapter 6

Conclusion

Experiments successfully demonstrate that noise squeezing based sensing is a supe-

rior sensing strategy over sweep-based bifurcation tracking methods for real time DNT

explosive sensing at atmospheric pressure. Three orders of magnitude improvement in

acquisition rate leads to faster, more confident and more precise estimation over the

compared sensing method. The significant improvement in the minimum frequency res-

olution leads to lowest order of detection limit down to vapor concentrations of parts

per trillion (ppt). Even though the sensor response to the TNT is slow due to the

degradation of the MIPs, it does not question the sensitivity of the noise-squeezing

controller, since the TNT/DNT sensitivity of the sensor is highly dependent on the sen-

sitivity of the coating. Based on the positive results of the new sensing strategy applied

to real-time sensing, a newly developed MIP-coating with better sensitivity, selectivity

and stability will be used in a new set of microbeams and better sensor response is

expected.
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The advantage of using a microcantilever as a gas sensor is the feasibility of making

it selective to vapors/particles of interest by functionalizing it with different coatings.

Currently our collaborator from Army Research Laboratory(ARL) is working on a new

type of MIP that provide good affinity for dimethyl methyl phosphate(DMMP), a com-

mon nerve agent stimulant. They are focusing on improving the MIP coating by opti-

mizing the chemistry to better cover the surface of the microcantilevers and optimize the

DMMP interaction. The effectiveness and absorption dynamics of the newly developed

MIP can be characterized using noise squeezing bifurcation resonant tracking.

Furthermore, the system can be integrated into on-chip level sensing and actuation

using piezoresistive and piezoelectric materials.
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Future Work

Thus far we have demonstrated parametric mass sensing by sweeping towards the

bifurcation jump location and by tracking the edge of instability without actually bi-

furcating. But what about inside the Arnold tongue, where large stable solutions exist?

Can we operate at some point along the bistable branch and track the change of the

frequency shifts as the tongue moves? Absolutely – an amplitude control operating

parametrically along the stable branch. Mass absorption or release will result in a

change in Tongue location, and therefore, the shift of the stable branch(Fig.7.1). By

actively controlling at constant amplitude through frequency modulation will allow us

to trace the corresponding frequency shifts.

7.1 Choice of Control Locations

As seen in Fig.7.1, controller can be implemented at various amplitude control set

point. Point A is closer to the wedge of instability, and the response amplitude rises at

a steeper slope than anywhere else along the bistable branch. This location can be an
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Figure 7.1: Control locations inside the Arnold Tonuge. Point A and B are possible
control set points. A is closer to the transition location where zero instability changes.
At this point, the amplitude response along the bistable branch is steeper, which is
likely to be more sensitive. B is further inside the tongue at a large amplitude,this
location is less steep, but easier to control [2][1].

Figure 7.2: Illustration of how control set point A and B moves with the bistable
branch in mass sensing experiment. Red and blue curve represent after and before
mass absorption respectively.

38



Chapter 7. Future Work

ideal operation point for high sensitivity detection in mass sensing, since a small change

in frequency can lead to significant change in amplitude. Point B is further inside the

tongue at a higher amplitude. It is possible to control at B, and a PI controller would

likely to be sufficient since the change of amplitude is more gradual than A.

7.2 Implementation of PI controller and its limita-

tion

To demonstrate the ability of amplitude control application in mass sensing, we

designed a simple PI controller and performed water vapor sensing experiment in atmo-

spheric pressure. This controller is designed without the use of FPGA, which simplifies

the electronics, however, FPGA can be implemented into the controller design in the

future if speed becomes a limiting factor. Preliminary results with the PI controller

demonstrated the capability of amplitude control in the application of mass sensing,

as shown in Fig. 7.2. Reversibility and repeatability is validated with a water vapor

experiment. The mass change in this experiment is 8.052 ng, and a standard deviation

of the minimum frequency resolution is 0.52 Hz, corresponding to a lowest order of

detection of 0.568 pg.

However, when controlling at an amplitude at point A, the controller fails to remain

at A. Due to the sharp slope at point A, a small error results in a large gain, causing the

control to loop around the set point, but it never converges. Hence, a more sophisticated
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Figure 7.3: Water vapor experiment. Top: The controller actively controls the
amplitude at set point (in red) by modulating the drive frequency. Bottom: When
water vapor is introduced, natural frequency change of the sensor cause a shift of the
tongue, and thus the stable branch. By controlling constant amplitude, the change in
frequency is traced by the controller simutaneously. The change in mass 4m is directly
related to 4f . The water vapor experiment is conducted by alternating water vapor
and N2 purging cycles. Reversibility and repeatability are demonstrated [2].

40



Chapter 7. Future Work

controller such as H∞ control might be implemented. For such controller, careful system

identification is necessary to determine coefficients such as damping, nonlinear stiffness

and forcing strength. With these parameters identified, a linearized model can be used

for the controller design. Currently this controller is being designed, and excellent

agreement between the numerical simulation and the physical model based on [1] gives

us great confidence of eventually having a working controller that will be able to operate

and maintain constant amplitude at point A. The sensitivity is expected to be as good

or better than the phase noise squeezing controller.
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Appendix A

Fabrication Of Fixed-Fixed Beams

The fabrication process in recipe I involved wet KOH etching for the fixed-fixed

beam is adopted from Dr. Zi Yie’s dissertation [3]. However, an improved fabrication

process is developed and executed, as shown in Recipe II. The following processes use

SOI wafer with the following dimensions: 2 µm Si device, 1 µm burried SiO2 and 520

µm Si handle.

A.1 Recipe I

1. Wet thermal oxidation (thickness 5000 Å)

• 1050 oC for 48 min

2. PECVD SiN on backside (thickness 2000 Å)

• Use program yie z01 (time = 22 min and 13.2 sec)

3. Remove SiO2 on frontside
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Appendix A. Fabrication Of Fixed-Fixed Beams

• Ultrasonic in acetone, isopropanol, DI water for 2 min each

• Cover backside with blue masking tape

• BHF etch for 7 min and 30 sec

• Remove blue masking tape

• Ultrasoinc in acetone, isopropanol, DI water for 2 min each

4. Lithography on frontside

• Spin HMDS at 4000 rpm for 30 sec

• Spin SPR 510A at 4000 rpm for 30 sec

• Soft bake at 90 oC for 1 min

• Login to GCA 6300 Stepper: [10, 322] and use program ffbeams\1020

• Expose for 1.2 sec

• Post bake at 105 oC for 1 min

5. DRIE to define frontside features

• Use program yie z01 (time = 90 sec)

6. Solvent clean

• Strip PR using PRX–127 at 80 oC for 1 hr

• Rinse in acetone, isopropanol, DI water for 2 min each

7. Lithography on backside
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Appendix A. Fabrication Of Fixed-Fixed Beams

• Spin HMDS at 4000 rpm for 30 sec on frontside

• Spin SPR 220–3 at 2500 rpm for 30 sec on frontside

• Soft bake at 115 oC for 90 sec

• Spin HMDS at 4000 rpm for 30 sec on backside

• Spin SPR 220–3 at 2500 rpm for 30 sec on backside

• Soft bake at 115 oC for 90 sec

• Align backside transparency mask to frontside on Karl Suss MA 6

• Expose for 45 sec

• Post bake at 115 oC for 90 sec

• Develop in AZ300MIF for 1 min

• Rinse with DI water for 2 min

8. ICP etch to open the vias on backside

• Use program SiOVert (time = 3 min and 30 sec)

9. Solvent clean

• Strip PR using PRX-127 at 80 oC for 1 hr

• Rinse in acetone, isopropanol, DI water for 2 min each

10. Apply ProTEK on frontside

• O2 plasma descum frontside for 1 min
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Appendix A. Fabrication Of Fixed-Fixed Beams

• Spin ProTEK primer at 1500 rpm (1000 rpm/s) for 60 sec

• Bake at 205 oC for 1 min

• Spin ProTEK B3 at 1500 rpm (1000 rpm/s) for 60 sec

• Bake at 140 oC for 2 min

• Spin ProTEK B3 at 1500 rpm (1000 rpm/s) for 60 sec

• Bake at 140 oC for 2 min

• Bake at 205 oC for 1 min

11. KOH etch on backside

• Prepare 20% KOH bath from 45% w/w stock solution (add 180 mL of KOH

to 325 mL of DI water)

• Etch for 8 hr and 42 min or until backside Si is etched through

12. Solvent clean

• Rinse in acetone, isopropanol, DI water for 2 min each

13. BHF etch to release device

• BHF etch for 14 min or until fully released

• O2 plasma descum frontside for 10 min
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Appendix A. Fabrication Of Fixed-Fixed Beams

A.2 Recipe II

1. Clean particulate with nanostrip for 10 min

2. PECVD SiO2 on backside (thickness ∼ 3 µ m)

• Use standard HF oxide for 130 min

3. Clean particulate with nanostrip for 10 min

4. Lithography on fronside

• Spin HMDS at 4000rpm for 30 sec

• Spin SPR 955cm–0.9 at 3000 RPM for 30 sec

• Soft bake at 95 oC for 60 sec

• Login to GCA 6300 stepper:[10,322] and use program ffbeams \ w1020

• Expose for 1.2 sec

• Post bake at 110 oC for 60 sec

• Develop in AZ300MIF for 1 min

• Rinse with DI water for 3 min

5. DRIE Bosch process

• Use the standard bosch process for 3 min. However, it is advised to do a test

run to obtain approximate etch rate prior to this step.
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Appendix A. Fabrication Of Fixed-Fixed Beams

6. Solvent clean

• Strip off PR using PRX–127 at 80 oC for 30 min

• Replace with a new bath of PRX-127 for another 30 min

• Rinse in acetone, isopropanol, DI water for 3 min

7. Lithography on backside

• Spin HMDS at 4000 rpm for 30 sec on backside

• Spin SPR220–3 at 2500 rpm for 30 sec on backside

• Soft bake at 115 oC for 90 sec

• Align backside to transparency mask to frontside on Karl Suss MA 6.

• Expose for 45 sec ( hard contact, gap 35)

• Post bake at 115 oC for 90 sec

• Develop in AZ300MIF for 60 sec

• Rinse in DI water for 2 min

8. ICP etch to open the vias on backside

• Use SIOVERT program for 18 minutes etched

9. Remover backside PR

• Strip off PR using PRX–127 at 80 oC for 30 min
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Appendix A. Fabrication Of Fixed-Fixed Beams

• Replace with a new bath of PRX-127 for another 30 min Rinse in acetone,

isopropanol, DI water for 3 min

10. Apply thick PR on frontside

• Spin HMDS at 4000 rpm for 30 sec on backside

• Spin SPR220–7 at 1500 rpm for 60 sec on backside

• Soft bake at 115 oC for 90 sec

11. HCl dip to remove native oxide

• Mix HCL:DI (1:10)

• Dip 30 seconds

• Rinse in DI water for 3 min

12. DRIE 500 µm

• Use CAO N 02 for 2 hour 46 min 30 sec. Characterization prior to this step

to obtain etch rate is highly recommended

13. Remove resist

• Clean with acetone, isopropanol and DI water for 3 min each.

• PRX–127 at 80 oC for 1 hr

• New bath PRX–127 at 80 oC for 30 min

• O2 plasma ashing for 3 min
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Appendix A. Fabrication Of Fixed-Fixed Beams

14. HF vapor etch burried oxide

• O2 descum front and backside for 3 min each

• Carry the wafer to HF vapor machine without contact of any polymer sur-

faces

• Leave wafer on top of three pin stand in HF machine

• Use Receipe No.3 for 5 cycles (300 sec/ cycle) rate:994 Å/min

15. Au Coating

• Use E–Beam No.3 (Temescal)

• Deposite 100Å Ti at 0.5 Å/sec

• Deposite 300Å Au at 0.5 Å/sec
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DNT Concentration Calculation

The specifications of the 2-4 DNT permeation tube are shown in Table B.1, where

Po is the DNT vaporizing rate at To. MW is the molecular weight of 2-4 DNT.

P0 (ng/min) at T0 (oC) MW (g/mol) K0 = 22.40
MW

2-4 DNT 926 at 110 182.14 0.123

Table B.1: Specifications of 2-4 DNT permeation tube.

The DNT concentration can be calculated as follows:

1. Given P0 and T0, the rate at temperature T can be estimated to be

P = 10log10(P0)+0.034(T−T0), (B.1)

where P is the new permeation rate at temperature T .
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Appendix B. DNT Concentration Calculation

2. The concentration in parts–per–billion (ppb) is given by

C =

(
K0P

F

)
× 1000 (B.2)

where F is the flow rate in sccm (standard cm3/min)

As shown in the equation B.2, changing either the flow rate F or the oven temperature

will change the concentration. In this work, concentration is altered by changing the flow

rate, since this can be done much easier and faster than changing the oven temperature.

For the concentrations mentioned in this work, the temperature and flow rate settings

are as follows:

T (oC) F(sccm) C (ppb)

70 5350 0.93

75 5350 1.38

80 5350 2.03

80 3000 3.63

80 2000 5.44

80 1000 10.88

80 850 12.80

80 750 13.60

80 600 18.13

Table B.2: Concentrations of DNT and its corresponding temperature and flowrate
settings.
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Appendix C

Method of Averaging and Steady
State Solution

The steady state solution to the nonlinear Mathieu equation (Eq. 1.5) can be solved

by the method of averaging. We begin with

mÿ + cẏ + (k + ν cos 2ωt)y + k3y
3 = 0 (C.1)

Normalizing the above equation by m, we get:

ÿ +
c

m
ẏ + (

k

m
+
ν

m
cos 2ωt)y +

k3
m
y3 = 0 (C.2)

Let µ = c
m

, ω2
o = k

m
,λ = ν

m
and γ = k3

m
. Then Eq.C.2 is simplified to the following:

ÿ + µẏ + (ω2
o + λ cos 2ωt)y + γy3 = 0 (C.3)
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Appendix C. Method of Averaging and Steady State Solution

Assume the response to the system to be periodic oscillations of the form:

y = y1 cos
ωt

2
− y2 sin

ωt

2
,

dy

dt
= −ω

2
(y1 sin

ωt

2
+ y2 cos

ωt

2
) (C.4)

Substitute C.4 into C.3. Then the individual term are written as follows:

ÿ = h1(t) = −ω
2

(ẏ1 sin
ω

2
+
ω

2
y1 cos

ωt

2
+ ẏ2 cos

ωt

2
− ωt

2
y2 sin

ωt

2
) (C.5)

µẏ = h2(t) = −µω
2

(y1 sin
ωt

2
+ y2 cos

ωt

2
(C.6)

ω2
oy = h3(t) = ω2

o(y1 cos
ωt

2
− y2 sin

ωt

2
) (C.7)

γy = h4(t) = γ(y1 cos
ωt

2
− y2 sin

ωt

2
)3 (C.8)

λ cosωty = h5(t) = λ cosωt(y1 cos
ωt

2
− y2 sin

ωt

2
) (C.9)

= λ(y1 cos
ωt

2
− y2 sin

ωt

2
) (C.10)

Expand h5, perform the trigonometric product identities and ignoring the nonsecular

terms (sin ωt
2
, cos ωt

2
). Then from C.3, we get

∑
n hn(t) = 0. By summing the effect of

each h(t) and averaging it over one period of oscillation T = 4π
ω

, we get:

1

T

T∫
0

(
∑
n

hn(t)) sin
ωt

2
dt = 0 (C.11)

1

T

T∫
0

(
∑
n

hn(t)) cos
ωt

2
dt = 0 (C.12)
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Appendix C. Method of Averaging and Steady State Solution

Expand each coefficients in the sin quadrature:

1

T

T∫
0

h1(t) sin
ωt

2
dt =< h1 sin

ωt

2
> = −1

2
(
ω

2
ẏ1 − (

ω

2
)2y2) (C.13)

< h2 sin
ωt

2
> = −µω

4
y1 (C.14)

< h3 sin
ωt

2
> = −ω

2
oy2
2

(C.15)

< h4 sin
ωt

2
> = −γ 3

8
y2(y

2
1 + y22) (C.16)

< h5 sin
ωt

2
> =

λy2
4

(C.17)

And the cos quadrature:

1

T

T∫
0

h1(t) cos
ωt

2
dt =< h1 cos

ωt

2
> = −1

2
((
ω

2
)2y1 −

ω

2
ẏ2) (C.18)

< h2 cos
ωt

2
> = −µω

4
y2 (C.19)

< h3 cos
ωt

2
> =

ω2
oy1
2

(C.20)

< h4 cos
ωt

2
> = γ

3

8
y1(y

2
1 + y22) (C.21)

< h5 cos
ωt

2
> =

λy1
4

(C.22)
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Summing all the terms in sin and cos quadrature respectively, we get the governing

equation for the slow variables.

ẏ1 = −µy1 + 2Ωy2 +
λ

ω
y2 −

3γ

2ω
y2(y

2
1 + y22) (C.23)

ẏ2 = −µy2 − 2Ωy1 +
λ

ω
y1 +

3γ

2ω
y1(y

2
1 + y22) (C.24)

where Ω = ω
2
− ωo, defined as the detuning parameter of the system. The steady state

solution can be solved by setting ẏ1 = ẏ2 = 0. Assume amplitude to be R, the y1 and

y2 are related to R as:

y1 = R cos(θ) (C.25)

y2 = R sin(θ) (C.26)

R2 = y21 + y22 (C.27)

Substitute C.25 and C.26 into C.23 and C.24 at steady state:

0 = −µy1 + (
λ

ω
+ 2Ω− 3γ

2ω
R2)y2 (C.28)

0 = −µy2 + (
λ

ω
− 2Ω +

3γ

2ω
R2)y1 (C.29)
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Appendix C. Method of Averaging and Steady State Solution

Plugging y1 or y2 from one equation to the other, we then reach the followings:

0 = ((
λ

ω
)2 − (2Ω− 3γ

2ω
R2)2 − µ2)2y21 (C.30)

0 = ((
λ

ω
)2 − (2Ω− 3γ

2ω
R2)2 − µ2)2y22 (C.31)

Then adding the two equations together gives:

((
λ

ω
)2 − (2Ω− 3γ

2ω
R2)2 − µ2)2R2 = 0 (C.32)

Solving the above equation and we get the expression for R:

R = ±

√√√√4ω0

3γ

[
2Ω±

√
(
λ

2ωo
)2 − µ2)

]
(C.33)

The above result is valid when ω ' 2ωo, hence it can be expressed as ω = 2ωo + εω1,

with ε � 1. Other averaging techniques such as two variable expansion method can

also be used to find the steady state solution [1][31].

The system dynamics in the y1 and y2 quadrature can be transformed into polar

coordinates through C.25 – C.27 and substituting them into C.23 and C.24. Taking

derivatives of C.25 and C.26, we get:
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Appendix C. Method of Averaging and Steady State Solution

ẏ1 = Ṙ cos(θ)−R sin(θ)θ̇ (C.34)

ẏ2 = Ṙ sin(θ) +R cos(θ)θ̇ (C.35)

After substitution and regrouping terms, with ω ' 2ωo, we arrive at:

Ṙ = −µR +
Rλ

2ωo
sin(2θ) (C.36)

θ̇ = −2Ω +
3R2γ

4ωo
+

λ

2ωo
cos(2θ) (C.37)
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