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Abstract

The Magnetohydrodynamics of the Solar Tachocline

by

Luis Antonio Acevedo-Arregúın

According to helioseismic inversions, the Sun exhibits two different rotational regimes. The inner

radiative region rotates almost uniformly whereas the outer convection zone rotates differentially

with the rotation rate decreasing with latitude. The transition region, which is located in the

vicinity of the radiative-convective interface, is a very thin layer known as the solar tachocline.

Both hydrodynamical and magnetohydrodynamical theories have been proposed to explain such

a sharp rotational transition. This thesis presents and analyzes numerical simulations of the

solar tachocline that explain the rotational regimes of the interior of the Sun as the result of the

interaction between fluid in motion and magnetic fields.
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Introduction

Solar physics has seen remarkable progress since the mid-90s thanks to helioseismology.

This new scientific field, whose theoretical foundation is briefly described in Chapter 1, relies on

detailed measurements of the solar surface obtained over long periods of time. These observations

of the solar disk are statistically analyzed to infer some properties of the solar interior. The

structure thus revealed distinguishes two important regions in the Sun: a quiet, radiative, inner

zone and a turbulent, convective, outer envelope. The interface between these two regions is

located at the radius r0 = 0.7127R�, where R� is the radius of the Sun (Gough , 2007).

One of the most important helioseismic discoveries is the unexpected rotation profile of

the Sun. Inversions of the angular velocity profile of the solar interior show that the convection

zone is differentially rotating while the radiative zone is rotating almost uniformly, a remarkable

distinction observable in Figure 0.1 (Schou et al. , 1998; Christensen-Dalsgaard and Thompson

, 2007). The tachocline is the very thin layer where these sharp changes in angular velocity

occur. The phenomena underlying this rotational behavior have put the tachocline in the center

of a quite a few scientific endeavors in modern times.

The importance of the tachocline cannot be understood without looking at the solar

magnetic cycle. Since Galileo’s time, dark spots on the solar surface have captured the attention

of astronomers, and NASA currently keeps a daily record of their appearance, number, and

location. Approximately every eleven years, sunspots start emerging at latitudes around 30
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Figure 0.1: The rotational profile of the Sun as inferred by Helioseismology (Schou et al. , 1998;
Christensen-Dalsgaard and Thompson , 2007).

degrees, and throughout the cycle their peak location moves toward the equator (Figure 0.2).

The current paradigm explains that the solar cycle is generated by a solar dynamo, a mechanism

in which electrical currents driven by plasma in motion create a magnetic field. Analysis of the

records of the solar magnetic cycle, combined with mathematical models, suggests the location

of the solar dynamo to be near the base of the convection zone in the region of the tachocline

(Tobias and Weiss , 2007).

The magnetic activity associated with sunspots affects anything beyond the protective

terrestrial atmosphere. Astronauts performing maneuvers in space, and electronic equipment

carried by communication satellites are examples of possible targets vulnerable to solar magnetic

storms. Hence, the study of the dynamics of the tachocline is important to understand and

predict the solar weather, to attenuate its harmful effects on human life.

This research project aims to develop numerical simulations of the solar tachocline and

explain the solar internal rotation profile as the result of the interaction between fluid in motion
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Figure 0.2: Spatial temporal histogram of the solar magnetic activity showing cycles of ap-
proximately eleven years (from NASA). Prediction of solar weather from these observations
becomes complicated as cycles approach their end because determinations of the minimum are
not sufficiently accurate yet.

and magnetic fields.

In the first part, we examine the existing mathematical models, which basically can

be classified in hydrodynamic and hydromagnetic models, as a way to justify the theoretical

framework for our own numerical model. Chapter 1 presents an overview of the solar structure as

inferred by helioseismology. Chapter 2 then introduces the theory underlying the hydrodynamic

models. There, we provide some details of the work by Ed Spiegel and Jean Paul Zahn, which

proposes a hydrodynamical explanation for the existence of the tachocline, its evolution, and

a model for its angular velocity shear. Chapter 3 deals with the hydromagnetic models and

presents the theory by Gough and McIntyre, where magnetic fields and large-scale meridional

flows interacting around the convective-radiative interface form the tachocline. The rest of our

work will be based on the Gough and McIntyre model.

The second part describes different stages of the construction of our model. Chapter

3



4 introduces the hydrodynamical component of the model in a Cartesian coordinate system. In

Chapter 5, we study the magnetohydrodynamics of the radiative interior in a spherical frame-

work and perform some numerical experiments to identify the effect of some parameters on the

structure of the solar tachocline. We also present results, conclusions, and recommendations for

future research.

4



Part I

Theoretical Framework
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Chapter 1

The Structure of the Sun

This chapter provides a review of what is known about the interior of the Sun as inferred

from helioseismic observations. Section 1.1 briefly describes the principles of helioseismology.

Then, we present in section 1.1.1 the rotational profile of the Sun and other characteristics of

the tachocline as obtained by helioseismic inversions.

1.1 Solar oscillations and Helioseismology

The Sun supports a vast spectrum of acoustic oscillations, with the fundamental radial

mode having a period of approximately 1 hour and with the vast majority of observed modes

exhibiting periods around 5 minutes. The study of these solar oscillations constitutes the field

of helioseismology.

Solar oscillations are stochastically excited by turbulent convection within a layer right

below the solar surface (Gough et al. , 1996). The waves then travel through different regions

of the solar interior, so their frequencies can provide information about these regions.

Measurements of the solar atmosphere are used to characterize the solar oscillations.
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First, time series of the radial velocity at each point of the solar surface are obtained (by

determining the Doppler shift of a certain spectral emission line). The results are projected

on to spherical harmonics and then Fourier transformed in time to determine the oscillation

frequencies ωnlm
1.

The experimental frequencies ωnlm are compared with frequencies ωnl computed from

perturbations of a spherically symmetric, standard solar model, which assumes a non rotating

Sun, to infer the sound speed profile c(r) within the solar interior. The effect of rotation manifests

itself through a variation of the frequencies with azimuthal wave number m, which results in

the inversion problem defined by

δωnlm = m

∫ R�

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ , (1.1)

where R� is the radius of the Sun, Ω is its angular velocity, and δωnlm = ωnlm − ωnl0. The

smoothing kernels Knlm(r, θ) are determined from the eigenfunctions for the nonrotating model

(Christensen-Dalsgaard , 2002). In this way, the estimation of the angular velocity of the Sun

reduces to a spatio-temporal statistics problem.

1.1.1 The solar rotation profile

Figure 1.1 shows the angular velocity of the Sun inferred by using different smoothing

kernels. The radiative interior rotates with a period of approximately 27 days, whereas the

convective region rotates faster at the equator ( ≈ 25 days) than at the poles (> 30 days)

(Gough , 2007). Also, as shown in Figures 1.1 and 1.2, the radiative interior and the convective

region at 30 degrees exhibit almost the same rotation rate, which is worth noting because it is

at this latitude that sunspots emerge at the start of a new magnetic cycle (Gough , 2010).

1Here, the oscillation modes are characterized by three wave numbers: the degree l and azimuthal order m
which describe the wave properties on a sphere (horizontal direction), and the radial order n which describes the
properties in the radial direction.
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Figure 1.1: The rotational profile of the Sun as inferred by statistical analysis of the solar
oscillation frequencies (Schou et al. , 1998) using 4 different types of kernels.

1.2 The solar tachocline

Figure 1.2 shows two regions exhibiting thin shear layers. In the sub-surface shear

layer, the rotation rate at all latitudes increases sharply with depth within the outer 5% of the

solar radius, then matches on to the rotation profile of the bulk of the convection zone. Another

shear layer is visible near the base of the convection zone where the angular velocity profile

rapidly converges to an internal uniform value in the radiative region. This shear layer is the

solar tachocline.

1.2.1 The thickness of the tachocline

Given the low resolution of helioseismic inversions, the mere determination of the

tachocline thickness has been a challenging task. As a result, instead of using full 2D di-

rect inversions of the angular velocity profile, the tachocline thickness is usually estimated by

assuming a 1D or 2D profile and then constraining its unknown coefficients by fitting predicted

oscillation frequencies with observed ones. Regression models with different fitting equations

8



Figure 1.2: The solar rotation profile at 5 different latitudes (from Howe et al., 2000), where a
sharp transition of the angular velocity Ω/2π is observed around 0.70R�. The region where this
change occurs is the solar tachocline.

provide different estimates of the thickness of the tachocline. This is why estimates have ranged

from 0.03R� to 0.09R� (for more details on these regression models see Kosovichev , 1996;

Charbonneau et. al , 1999, and Antia and Basu , 2011).

Charbonneau et. al (1999) also found the tachocline to be prolate, i.e. having a

difference in central radius of about 0.024R� between latitude 60 degrees and the equator, and

more recently, Antia and Basu (2011) found that the tachocline exhibits no rotational radial

shear around 30o latitude.

1.2.2 Mixing in the tachocline

Following a different approach, Elliot and Gough (1999) estimated the tachocline

thickness by studying the difference between observed and theoretical sound speed profiles in

the Sun. They assumed that the tachocline is a well mixed region, which has the same chemical
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Figure 1.3: Difference (symbol points) between helioseismic inferences of sound speed and values
computed with Christensen-Dalsgaard’s Model S are compared with the difference (solid line)
between helioseismic observations and values computed by the model by Elliot and Gough
(1999), which includes a well-mixed tachocline.

composition as the convection zone. This implies a molecular weight profile that is different

from the ones assumed by standard solar models. This mixing affects, for instance, the Helium

settling below the base of the convection zone, so the levels of this element in the tachocline

are indeed lower than the predicted values from the standard solar model S. Figure 1.3 shows

how this difference in Helium concentration affects the sound speed in a manner that is more

significant in the tachocline region. The depth of the well-mixed radiative region right below

the base of the convection zone was calibrated to fit the sound speed data. This way, Elliot and

Gough found the tachocline to be very thin, i.e. extending from 0.677R� to 0.693R�, which

represents a thickness of 0.016R�.

The existence of mixing regions beneath the convection zone also explains the differ-

ence between the Lithium concentrations at the solar surface and the expected levels of Lithium

according to stellar evolution modeling. The measurements of Lithium from spectroscopic anal-

ysis of the solar surface differ from their expected concentrations (the abundances found in

meteorites) by a factor of 150 (Christensen-Dalsgaard , 2002). However, the temperatures near

the base of the solar convection zone are too low to burn Lithium. This chemical element
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density ρ 0.21 g cm−3

pressure p 6.7× 1013 g cm−2 s−2

temperature T 2.3× 106 K
sound speed c 2.3× 107 cm s−1

opacity κ̂ 19 g−1 cm2

gravitational acceleration g 5.4× 104 cm s−2

adiabatic exponent γ1 1.665
magnetic diffusivity η 4.1× 102 cm2 s−1

kinematic viscosity ν 2.7× 101 cm2 s−1

thermal diffusivity κ 1.4× 107 cm2 s−1

helium diffusion coefficient χ 8.7 cm2 s−1

buoyancy frequency N 8.0× 10−4 s−1

Table 1.1: Solar parameters in the vicinity of the tachocline as determined by Gough
(2007).

burns at 2.5 × 106 K, a temperature reachable at much deeper regions in the Sun. Hence,

models incorporating mixing in the tachocline can account for the Lithium depletion problem

(Christensen-Dalsgaard , 2002). Interestingly, the fact that Beryllium burns at deeper regions

than Lithium and shows only moderate depletion at the solar surface also supports the notion

of a thin tachocline.

Finally, Table 1.1 shows some other properties of the Sun near the base of the convection

zone, as compiled by Gough (2007).
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Chapter 2

Hydrodynamic Modeling

Two families of models have been proposed to characterize and describe the dynamics

of the solar tachocline: hydrodynamic models and hydromagnetic models. This chapter aims to

provide a brief overview of the theory that explains the solar tachocline as a hydrodynamical

phenomenon, for both historical and pedagogical reasons.

2.1 The Spiegel and Zahn’s model

Spiegel and Zahn (1992) proposed the first model of the tachocline, which was based

on a purely hydrodynamical mechanism. They studied the evolution of large-scale flows in the

radiative zone when the latter is subjected to a rotational shear imposed by the convection zone

above. Let us first look at the equations governing the hydrodynamics of the solar interior. This

will allow us to set the mathematical framework we will use throughout the rest of this thesis.
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2.1.1 The hydrodynamics equations

The equations governing the hydrodynamics of a stably-stratified region, in a steadily

rotating frame are the momentum equation:

ρ
∂u

∂t
+ ρ(u · ∇)u+ 2ρΩ0 × u = −∇p− ρ∇Φ+∇ ·Π , (2.1)

the energy equation:

ρT
∂S

∂t
+ ρTu · ∇S = ∇ · (k∇T ) , (2.2)

the mass conservation law:

∂ρ

∂t
+∇ · (ρu) = 0 , (2.3)

and the ideal gas law:

p =
ρRT

M . (2.4)

Here, u is the velocity field, Ω0 is the rotation rate of the frame, t is time, ρ is mass density,

p is pressure, T is temperature, S is entropy, Φ is the gravitational potential, Π is the viscous

stress tensor, and M is the molecular weight of the gas. The thermal conductivity is represented

by k and the ideal gas constant by R. We consider a spherically symmetric, time-independent

background state.

Once the system is perturbed, the variables of interest can be decomposed as:

q(r, θ, φ, t) = q̄(r) + q̃(r, θ, φ, t) , (2.5)

where q stands for any field, the bar indicating the background state and the tilde indicating

the perturbations to such an equilibrium state. If the thermodynamic perturbations are small,

the governing equations can be linearized around the background state.

Spiegel and Zahn then also make the following assumptions: axial symmetry, the

anelastic approximation, small Rossby number, a very thin tachocline, and geostrophic flow.
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In addition, they assume that the system has already reached thermal equilibrium via a fast

adiabatic adjustment phase. Then, by introducing a stream function for the meridional flow

with ur and uθ defined by

∂ψ

∂µ
= ρ̄r2ur (2.6)

∂ψ

∂r
= ρ̄r

√
1− µ2uθ , (2.7)

they express the system of governing equations in spherical coordinates as:

−1

ρ̄

∂p̃

∂r
+ ḡ

T̃

T̄
= 0 (2.8)

−2Ω0Ω̃rµ =
1

ρ̄r

∂p̃

∂µ
(2.9)

ρ̄r2(1− µ2)
∂Ω̃

∂t
+ 2Ω0µ

∂ψ

∂r
=

(1− µ2)

r2
∂

∂r

[
ρ̄νr4

∂Ω̃

∂r

]

+ρ̄
∂

∂µ

[
ν(1 − µ2)2

∂Ω̃

∂µ

]
(2.10)

N2

ḡ

T̄

ρ̄r2
∂ψ

∂µ
=

1

ρ̄cpr2
∂

∂r

(
kr2

∂T̃

∂r

)
(2.11)

0 =
ρ̃

ρ̄
+
T̃

T̄
, (2.12)

where µ = cos θ and u(r, θ, φ) = (ur, uθ, r sin θΩ̃) is the velocity field.

These equations governing the hydrodynamics of the solar interior are solved only for

the radiative zone by imposing top boundary conditions at the radiative-convective interface

(r = r0). The boundary conditions are expressed in terms of the angular velocity as:

Ω̃(r, µ, t) = Ωeq(1− aµ2 − bµ4)− Ω0 at r = r0 (2.13)

∂Ω̃(r, µ, t)

∂r
= 0 at r = r0 (2.14)

Ω̃(r, µ, t) → 0 for r → 0 , (2.15)
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Here, the expression Ωeq(1−aµ2−bµ4) models the differential rotation at the radiative-convective

interface, where a and b are constants determined from helioseismic information, and where Ωeq

is the equatorial rate. Spiegel and Zahn used the expression derived by Goode et al. (1991),

which has Ω0 = 462 nHz, a = 64/462, and b = 73/462 for Ωeq/2π.

It is important to note that Equations 2.8 and 2.9 indicate that the system in Spiegel

and Zahn’s model is in thermal wind balance, whereas Equation 2.11 emphasizes the balance

between radiative diffusion and transport of the background entropy gradient, which means that

the system is also in thermal equilibrium. We examine these conditions next.

2.1.1.1 The thermal-wind balance

We first obtain the azimuthal component of the vorticity equation for this system by

performing

1
r

∂
∂r (r Equation 2.9 )− 1

r
∂
∂θ (Equation 2.8 ),

which yields

−2Ω0r sin θ

[
cos θ

∂Ω̃

∂r
− sin θ

r

∂Ω̃

∂θ

]
=

1

rρ̄2
∂ρ̄

∂r

∂p̃

∂θ
− ḡ

rT̄

∂T̃

∂θ
(2.16)

2sΩ0
∂Ω̃

∂z
≈ ḡ

rT̄

∂T̃

∂θ
, (2.17)

where z = r cos θ and s = r sin θ. This is the so-called thermal wind equation, which relates

the rotational shear along the polar axis to the latitudinal temperature gradient for systems in

geostrophic and hydrostatic equilibrium.

2.1.1.2 The impact of thermal equilibrium

Equation 2.11, which can also be written as

N̄2T̄

ḡ
ur ≈ 1

ρ̄c̄p

1

r2
∂

∂r

(
r2k

∂T̃

∂r

)
, (2.18)
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indicates that in stratified systems, there is a balance between advection of the background

stratification and radiative diffusion. In particular, any temperature perturbation resulting

from thermal wind balance must be compensated by radial flows to keep the system in thermal

equilibrium. The amplitude of those flows is constrained by stratification and rotation. The

overall effect is a chemically well-mixed tachocline.

Spiegel and Zahn (1992) solve the system of governing equations 2.8 - 2.12 and associ-

ated boundary conditions for two distinct scenarios for the tachocline. They found expressions

for the angular velocity perturbation Ω̃(r, θ, t) for the cases where viscosity in the tachocline is

isotropic and strongly anisotropic, respectively.

2.1.2 Tachocline spreading

If viscous stresses are assumed to be isotropic and if the tachocline is very thin, then

the angular momentum conservation equation becomes

ρ̄r2(1− µ2)
∂Ω̃0

∂t
+ 2Ωµ

∂ψ

∂r
=

(1− µ2)

r2
∂

∂r

[
ρ̄νr4

∂Ω̃

∂r

]
. (2.19)

By assuming a solution of the form

Ω̃ =
∑
i>0

Ω̂i(r, t)fi(µ) , (2.20)

where fi(µ) are eigenfunctions to be numerically determined, Spiegel and Zahn combine Equa-

tions 2.8, 2.9, 2.11, 2.12, and 2.19 to find an expression for the perturbations Ω̂i(r, t) as

∂Ω̂i

∂t
+ κ

(
2Ω0

N

)2(
r0
λi

)2
∂4Ω̂i

∂r4
− ν

∂2Ω̂i

∂r2
= 0 , (2.21)

where the thermal diffusivity κ = k/ρ̄cp, and λi is an eigenvalue. Equation 2.21 indicates

that no steady-state is attainable, which means that the differential rotation will continue to

spread toward the center of the Sun and the tachocline will thicken over time. Two dynamical

regimes are possible: thermal and viscous spreading. The second term of Equation 2.21 models a
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Figure 2.1: The evolution of the tachocline thickness h depends on the form of the function t1/n.
For n = 4, the blue curve models the hyperviscous spreading (as a function of t1/4), whereas for
n = 2, the red curve models the viscous spreading (as a function of t1/2).

hyperviscous spreading of thermal origin (Zahn , 2007), which takes place on a local Eddington-

Sweet timescale tES , with

tES =

(
N

2Ω

)2
r20
κ

. (2.22)

The last term of Equation 2.21 represents a more standard viscous spreading, which

takes place on a timescale tν = r20/ν where ν is the viscosity, which was assumed isotropic.

Each of these two regimes can be studied individually. By introducing the similarity

variable u = (r − r0)/t
1/n, then viscous spreading yields

−1

2
u
dΩ̂

du
− νr

d2Ω̂

du2
= 0 , (2.23)

with n = 2, which indicates that Ω̂(r, t) is just a function of (r−r0)/t1/2. Similarly, when n = 4,

hyperviscous spreading reduces to:

−1

2
u
dΩ̂

du
+ κ

(
2Ω0

N

)2 (r0
λ

)2 d4Ω̂

du4
= 0 , (2.24)
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which indicates that Ω̂(r, t) is just a function of (r − r0)/t
1/4. This suggests that the thickness

of the tachocline varies as:

h = r0

(
t

tν

) 1
2

[viscosity driven system], (2.25)

h = r0

(
t

tES

) 1
4

[hyperviscosity driven system], (2.26)

where r0 is the radius of the convection zone. Both regimes are shown in Figure 2.1. We see

that the effect of viscosity is negligible at early times, whereas viscosity drives the thickening of

the tachocline at later times. It is important to note that the thickness of the tachocline h at

the intersection of these two curves corresponds to

h =

(
tν
tES

) 1
2

r0 =
r0
σ

, (2.27)

where σ =
√
PrN/Ω0 is a stratification parameter governing the dynamics of meridional flows in

the radiative zone (Garaud and Acevedo-Arreguin , 2009), and Pr = ν/κ is the Prandtl number.

Hence, the growth of the tachocline is driven by meridional flows (thermoviscous spreading)

when h < r0/σ and by molecular friction (viscous spreading) when h > r0/σ.

By considering only the contribution of the various terms in Equation 2.21, Spiegel

and Zahn (1992) estimated (a) the tachocline is still in the thermal spreading phase, and (b)

the thickness of the tachocline, h ≈ r0(t/tES)
1/4, as of 2 × 105 km after 4.6 × 109 years, by

considering tES = 2.2× 1011 years.

2.1.3 Anisotropic turbulent viscosity

Since thermal spreading has to be taking place in the Sun, the fact that the tachocline

is so thin means that some mechanism must actively prevent it.

Spiegel and Zahn then proposed that the growth of the tachocline could be halted

if anisotropic turbulent stresses were operating along the base of the convection zone. They
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modeled these stresses by assuming that they take the form of a viscosity, but with different

values of ν in the radial and latitudinal direction (νr and νθ, respectively). If the contribution

of νθ dominates the other viscous term in Equation 2.10, then a steady state can be achieved,

satisfying (
2Ω0

N

)2
κ

νθ

(
r0
λi

)
d4Ω̂i

dr4
+ Ω̂i = 0 , (2.28)

from which the tachocline thickness can be estimated as

h =
3π

2λmin
r0

(
Ω0

N

) 1
2
(
κ

νθ

) 1
4

, (2.29)

where λmin is the smallest non-zero eigenvalue of the eigenfunction associated with a solution

similar to Equation 2.20, but now for Equation 2.10 with νr = 0.

By using some values from Table 1.1 and assuming a tachocline thickness h = 0.03R� =

20880 km, we can compute the order of magnitude of the horizontal, turbulent viscosity to be

of 7.89× 109 cm2 s−1.

2.2 The problem with the Spiegel and Zahn model

Spiegel and Zahn (1992) introduced the notion of a 2-D eddy viscosity to justify an

accelerated transport of angular momentum in the latitudinal direction. However, it is now

recognized that this mechanism cannot explain the uniformly rotating radiative interior because

Reynolds stresses smooth out potential vorticity, not angular velocity (Gough , 2007). Contrary

to the idea conveyed by eddy viscosity, turbulent motions drive a rotating, stratified fluid away

from solid-body rotation. This phenomenon had been already observed in the laboratory by

Plumb and McEwan (1978), as reported by (McIntyre , 2003).

Even if the concept of 2-D eddy viscosity somehow holds, the next question is whether

a viscosity νθ ≈ 7.89× 109 cm2 s−1 is realistic or not 1. We believe it is unlikely.

1This value increases almost four times if we use the thickness of the tachocline calculated by Elliot and Gough
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In Chapter 3, we review the models considering magnetic stresses to explain the thin-

ness of the solar tachocline.

(1999).
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Chapter 3

Hydromagnetic Modeling

The inadequacy of hydromodels in reproducing observations suggested the necessity for

other forces to be incorporated. The most commonly-accepted paradigm for the tachocline today

involves magnetic fields. Indeed, magnetic fields and fluids in motion can affect one another. In

cases where there is no magnetic dissipation, i.e. the fluid is highly conductive, the magnetic

field lines are forced to be aligned with the flow (Alfven’s theorem). The opposite is also true,

so when the poloidal component of an axially symmetric field acts on a rotating fluid and the

system reaches the equilibrium, the resulting angular velocity should be constant on magnetic

field lines according to Ferraro (1937):

B · ∇Ω = 0, (3.1)

where B is the axisymmetric magnetic field, and Ω is the angular velocity . This property of

magnetized fluids inspired the idea that some configurations of magnetic field lines might force

the radiative zone to rotate uniformly (Mestel , 1953; Mestel and Weiss , 1987).
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Figure 3.1: This picture of a meridional quadrant of the Sun shows the tachocline and adjacent
regions according to Gough and McIntyre’s theory. Here, we see meridional flows generated
inside the convection zone (the orange region), and some of them enter the tachocline (green) at
high latitudes. These meridional flows are deflected by the magnetic field in a diffusive boundary
layer (blue) located in the bottom of the tachocline, and then return to the convection zone at
mid-latitudes. In the meantime, the radiative region (pink) remains rotating as a solid body due
to the poloidal field (red lines) trapped there by the meridional circulation in the tachocline, a
mechanism in place for most of the Sun’s lifetime.

3.1 First models of the solar tachocline

Rüdiger and Kitchatinov (1997) proposed the first magnetic model of the tachocline

and showed that a confined, primordial magnetic field can force the angular velocity of the

radiative interior of the Sun to be constant. For simplicity, they assumed the existence of a

prescribed poloidal magnetic field, confined entirely within the radiative zone, and studied its

interaction with zonal flows through the azimuthal components of the momentum and induction

equations. They found that this interaction can result in a solar-like rotation profile with a

thin tachocline. Using a very similar model, MacGregor and Charbonneau (1999) showed

that the field had to be confined for a tachocline to exist. A poloidal field with a nonzero
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component normal to the radiative-convective interface transmits differential rotation to the

radiative interior instead of suppressing it.

However, while providing an interesting look into the problem, these two models failed

in two fundamental aspects. Firstly, neither of these works elaborated on the mechanisms for

magnetic confinement. Secondly, by neglecting meridional flows in the system, both sets of

results placed an unphysical emphasis on viscous stresses, since they become the only force

available to balance the Lorentz force in the φ-component of the momentum equation. In the

real Sun, however, viscous stresses are not expected to be important.

3.2 The Gough and McIntyre model

Gough and McIntyre (1998) were the first to describe self-consistently the existence of

the tachocline as the result of an interaction between large-scale flows and a primordial magnetic

field (Figure 3.1). In their model, meridional flows are driven in the convection zone by the

gyroscopic pumping effect induced by differential rotation, and penetrate into the top of the

radiative region. These meridional flows first travel across a region with no significant presence

of magnetic field (the tachocline), and then reach a deeper magnetically dominated region (the

tachopause). There, the interaction between the downwelling meridional flows and the magnetic

field becomes important for the dynamics of the region. The Lorentz and Coriolis forces, in

the azimuthal component of the momentum equation, are in balance. The flows decrease in

amplitude whereas the field is distorted, so streamlines and field lines run horizontally. The

field is then prevented from diffusing outward and the meridional flows stop their burrowing

into the interior.

Gough and McIntyre argue that the governing equations must be completed by incor-

porating the energy equation to model the tachocline meridional flows correctly. In absence of
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azimuthal forces, the transport of angular momentum in the tachocline is thermally driven, as

described by Spiegel and Zahn (see Chapter 2).

3.2.1 The MHD equations

For a system in steady state and negligible presence of inertial force, the equations

governing its magnetohydrodynamics are:

2ρ̄Ω0 × u = −∇p̃− ρ̃g+ j×B+∇ ·Π (3.2)

ρ̄T̄u · ∇S̄ = ∇ · (k∇T̃ ) (3.3)

∇ · (ρ̄u) = 0 (3.4)

∇× (u×B) = ∇× (η∇×B) (3.5)

∇ ·B = 0 (3.6)

p̃

p̄
=

ρ̃

ρ̄
+
T̃

T̄
, (3.7)

The magnetic field is represented by B = (Br, Bθ, Bφ), whereas the electric current density by

j. The magnetic diffusivity is η, and the rest of the variables were already defined in Chapter 2.

3.2.2 The tachocline force balance

As in Spiegel and Zahn , Gough and McIntyre assume hydrostatic and geostrophic

balance in the radial and latitudinal components of the momentum equation. The tachocline

is therefore in thermal-wind balance (see Equation 2.17). Assuming that the tachocline is thin

and that its thickness is ∆, a boundary-layer approximation yields

T̃

T̄
≈ αΩ2

0r
2
0

ḡL∆
, (3.8)
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where the rotational shear is approximated as ∂Ω/∂z ≈ (Ωcz − Ω0)/∆ ≈ αΩ0/∆, and the

latitudinal temperature perturbation as ∂T̃ /∂θ ≈ LT̃ , where L is a number of order unity.

According to Spiegel and Zahn and Gough and McIntyre , the tachocline is also in

thermal equilibrium, so Equation 2.18 yields

ur ∝ κḡ

N̄2∆2

(
T̃

T̄

)
, (3.9)

where ∂/∂r ∝ 1/∆ and κ = k/ρ̄c̄p.

From these two equilibriums, Gough and McIntyre deduce that

ur ∝ αr20κ

L

Ω2
0

N̄2

(
1

∆3

)
. (3.10)

This equation is very important because relates the amplitude of the downwelling meridional

flows in the tachocline to its thickness. We will return to this equation in Chapter 5.

3.2.3 The tachopause force balance

Gough and McIntyre assume the tachopause is still in thermal wind balance and in

thermal equilibrium. In addition, the Lorentz and Coriolis forces now become significant terms

in the azimuthal momentum equation. The φ-component of the momentum equation, when

expressed in spherical coordinates, is

2Ω0uθ cos θ + 2Ω0ur sin θ =
1

4πρ̄

[
Bθ

r sin θ

∂

∂θ
(Bφ sin θ)− Br

r

∂

∂r
(rBφ)

]
. (3.11)

By assuming the poloidal magnetic field to be horizontal, i.e. Br = 0 and Bθ = B0, and

the meridional flows to run parallel in the tachopause, Gough and McIntyre reduce Equation

3.11 to:

2Ω0uθ cos θ ≈ B0

4πρ̄r sin θ

∂

∂θ
(Bφ sin θ) . (3.12)

The left-hand side of this equation expresses the magnitude of the Coriolis force as a function
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of uθ. The right-hand side expresses the magnitude of the Lorentz force as a function of the

magnetic field strength and the rate of change of the toroidal field with latitude.

The differential rotation twists and stretches the poloidal field in the tachopause to

generate the toroidal field. This can be modeled by the zonal component of the magnetic

induction equation:

∂

∂r
[uφBr −urBφ]+ [uφBr −urBφ]− 1

r

∂

∂θ
[uθBφ−uφBθ] = −η

[
∇2Bφ − 1

r2 sin2 θ
Bφ

]
, (3.13)

which Gough and McIntyre simplified by considering again the meridional flows and the poloidal

magnetic field being horizontal and almost constant. These assumptions and the fact that

perturbations of the toroidal field and of the angular velocity change rapidly in the tachopause

yield:

−B0 sin θ
∂Ω̃

∂θ
≈ η

∂2Bφ

∂r2
. (3.14)

Here, any reduction of rotational shear is directly balanced by generation of toroidal field.

3.2.4 Approximate solutions for the tachopause

The equations derived in section 3.2.1 along with the thermal wind and energy equa-

tions (Equations 2.17 and 2.18, respectively) were examined by Gough and McIntyre . Using a

boundary-layer analysis, they showed that

∂6T̃

∂r6
− 1

δ6
T̃ ≈ 0 , (3.15)

where the tachopause thickness δ is given by

δ =

(
8πρ̄ηκΩ2

0

B2
0r

2
0N̄

2L4

) 1
6

r0 . (3.16)

This expression can be used with the magnetic advection-diffusion balance

|ur| ≈ η

δ
(3.17)
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to relate the thickness of the tachocline with the strength of the magnetic field at its base:

|B0|√
4πρ̄

∝ α3

L5

(
κ

η

)3(
Ω0

N̄

)7 (r0
∆

)9 √
κη

r0
, (3.18)

which simply suggests that

∆ ∝ |B0|−1/9 . (3.19)

Gough and McIntyre estimated that, given present tachocline thickness of the order of 0.018R�,

B0 should be of the order of 10−4 Tesla. This is consistent with what we would expect of a

primordial field strength from flux conservation during stellar formation.

3.3 Numerical models of the Radiative Zone

Since Gough and McIntyre published their theory in 1998, the implementation of nu-

merical experiments to verify it became an important line of investigation. A few attempts were

made using different techniques. They are reviewed here in two groups depending on whether

magnetic confinement was achieved or not.

3.3.1 Simulations with no magnetic confinement

The first time-dependent, 3-D simulations of the tachocline were conducted by Brun

and Zahn (2006) using the ASH code1. ASH solves the anelastic magnetohydrodynamic equa-

tions for a stratified, rotating, spherical shell of ionized gas. Brun and Zahn (2006) ran numerical

simulations of a model of the radiative interior only, under the influence of a fixed differential

rotation profile imposed by the convection zone on the top, as modeled through boundary con-

ditions. At time t = 0, the radiative interior is rotating uniformly and is threaded by a confined,

purely poloidal magnetic field. They subsequently evolved this system to see whether or not it

1The ASH code was developed by modifying Glatzmaier’s code (Glatzmaier , 1985) for modeling convection
in a spherical shell.
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would reach the steady state proposed by Gough and McIntyre (1998). Brun and Zahn (2006)

found that, regardless of initial conditions, the magnetic field always eventually diffuses outward

and opens up into the convection zone. When this happens, the imposed differential rotation

propagates into the interior.

Gough (2010) discussed Brun and Zahn’s results and argued that at their selected

parameters, the thicknesses of the tachocline and the tachopause are roughly equal. This is

markedly different from the Gough and McIntyre’s criterion δ � ∆ and indicates the absence of

a magnetic-free region between the radiative interior and the convection zone (Gough , 2010),

i.e. in the strict sense of the definition, no tachocline at all was simulated by Brun and Zahn .

Before that, Garaud and Garaud (2008) also pointed out that by assuming the

convective-radiative interface to be closed to meridional flows, Brun and Zahn (2006) pre-

vented the very mechanism that is supposed to maintain the magnetic field confined to the

radiative interior.

Strugarek, Brun, and Zahn (2011) then upgraded their first 3-D simulations by in-

corporating the convection zone into the model and generating meridional circulations self-

consistently. However, they still found that the initially confined magnetic field diffused into the

convection zone and that the flows were unable to confine the field. In fact, they found that the

evolution of the magnetic field had significant effects on the meridional circulation patterns in

the radiative zone. The internal magnetic field was so strong that the polar radiative region was

not in thermal-wind balance. Large-scale meridional flows were not generated by differential

rotation near the poles. Inspection of the azimuthal component of the vorticity equation (see

Figure 17 in their paper) showed, however, that the tachocline dynamics were still dominated

by viscous stresses. In terms of Spigel and Zahn’s work, the tachocline is now in the viscous

spreading regime (see Equation 2.27), where σ =
√
PrN/Ω0 � 1.

Rogers (2011) ran similar simulations, but this time using a 2.5-D model. She included
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a forcing term in the momentum equation to drive differential rotation in the convection zone.

In her simulations, by contrast with Strugarek, Brun, and Zahn (2011), the magnetic field was

very weak and had little effect on Ω. The viscous stresses were also dominating the system

(again the stratification parameter σ � 1). It is not clear why the tachocline in Roger’s model

remained thin.

In all 3-D global models presented here, the fact that viscous stresses dominate the

dynamics of the system is an important clue to the claim that the parameters have not been

chosen correctly. As seen in Section 2.1.2, in absence of anisotropic turbulent viscosity (or

magnetic stresses as discussed in this chapter), the tachocline dynamics is governed by either

thermal or viscous spreading. The parameter σ =
√
PrN/Ω0 indicates which of the two regimes

is in operation, i.e. thermal spreading when σ � 1 or viscous spreading when σ � 1. Since

thermal spreading occurs in the early stages of the tachocline formation, any simulation involving

viscous spreading models an unrealistic tachocline.

In the next part of this thesis, we will discuss in more detail the problem of parameter

selection.

3.3.2 Simulations with magnetic confinement

To investigate whether interaction between magnetic field and meridional flows in the

radiative zone is possible, Garaud and Garaud (2008) developed a code to perform 2-D simula-

tions of the radiative zone only. They imposed a boundary condition at the radiative-convective

interface to reproduce the downwelling flows at high latitudes described by the Gough and McIn-

tyre theory. An internal magnetic field was prescribed and steady-state solutions were obtained

for the MHD equations. Garaud and Garaud found that the meridional flows were able to

confine the field (Figure 3.2).

Since Garaud and Garaud kept the buoyancy frequency N̄ with its solar profile and
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Figure 3.2: Magnetic field confinement (left lower panel) caused by flows penetrating the ra-
diative region (left upper panel), obtained numerically by Garaud and Garaud (2008). The
temperature perturbations and the angular velocity are shown in the right, upper and lower
panel, respectively.

used the right combination of diffusivities, their simulations were indeed within a parameter

space that corresponded to a thermally-driven tachocline, i.e. σ � 1. However, the meridional

flows associated with this thermal condition were already in the tachocline by definition. It

remained then to be investigated whether these flows could actually penetrate the radiative-

convective interface if they were generated in the convection zone instead.
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Part II

Model Development
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One of the main discoveries of helioseismology is the solar tachocline. In Chapter 1, we

learned that the tachocline is too thin to be resolved by helioseismic inversions. Understanding

the tachocline dynamics requires the help of theory.

Thanks to the work by Spiegel and Zahn (1992), we learned in Chapter 2 that, in the

absence of magnetic fields or other anisotropic stresses, the tachocline thickens over time as a

result of advection by meridional flows burrowing into the radiative region. The dynamics of

these flows is controlled by thermal-wind balance and thermal equilibrium. Spiegel and Zahn

showed that the tachocline would grow and eventually span the entire radiative interior.

Gough and McIntyre (1998) first proposed a self-consistent theory to explain the way

an internal magnetic field may prevent the tachocline from growing indefinitely. The field im-

poses uniform rotation through Ferraro’s law. Meridional flows driven by differential rotation in

the convection zone travel across the radiative-convective interface to stop the internal magnetic

field from diffusing outside the radiative region. Although these flows cannot block completely

the field from reaching the convection zone, their action is sufficient to create a tachopause, a

sort of magnetic wall that divides the radiative interior in two regions: a magnetically dom-

inated and uniformly rotating region below, and the tachocline, with just traces of magnetic

field, above.

In this thesis, we develop a numerical model of the Gough and McIntyre theory, based

on the original work of Garaud and Garaud (2008). Our goal is to obtain answers for some of

the following questions:

1. Under which conditions can large-scale meridional flows generated in the convection zone

cross the convective-radiative interface?

2. Under which conditions can large-scale meridional flows circulating in the tachocline con-

fine an internal magnetic field?
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3. Which assumptions of the theory by Gough and McIntyre (1998) are verifiable by numer-

ical simulations?

In Chapter 4, we study question 1. We focus in the hydrodynamical part of the phe-

nomenon underlying the formation of the tachocline. We investigate how large-scale meridional

flows can move from the convection zone into the radiative zone, and especially how these flows

can reach deeper regions within the radiative zone.

In Chapter 5, we study the last two questions. We build and run a 2-D model of a

sphere of an ideal gas, whose dynamics is governed by the MHD equations. We then analyze

the results in the light of the Gough and McIntyre theory.
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Chapter 4

Hydrodynamics of the Tachocline:

Analytical Solutions

Based on the discussion of Chapter 3, section 3.3, we began to study more system-

atically the gyroscopic pumping mechanisms, and under which conditions it can indeed drive

sufficiently high amplitude flows from the convection zone to the radiative zone. A first purely

hydrodynamic study was published in the Astrophysical Journal, On the penetration of merid-

ional circulation below the solar convection zone. II. Models with convection zone, the Taylor-

Proudman constraint, and applications to other stars, by Garaud and Acevedo-Arreguin (2009),

and forms the content of this chapter.

4.1 Introduction

Various related mechanisms are thought to contribute to the generation and mainte-

nance of large-scale meridional flows in the solar convection zone. The effect of rotation on

turbulent convection induces a relatively strong anisotropy in the Reynolds stresses (Kippen-
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hahn 1963), in particular near the base of the convection zone where the convective turnover

time is of the order of the solar rotation period. The divergence of these anisotropic stresses

can directly drive large-scale meridional flows (see Rüdiger, 1989, for a discussion of this effect).

It also drives large-scale zonal flows (more commonly referred to as differential rotation) which

then induce meridional forcing through the bias of the Coriolis force, a mechanism referred to

as “gyroscopic pumping” (McIntyre 2007). Indeed, the polar regions of the convection zone

are observed to be more slowly rotating than the bulk of the Sun (Schou et al. 1998), so that

the associated Coriolis force in these regions drives fluid towards the polar axis. Meanwhile,

equatorial regions are rotating more rapidly than the average, and are therefore subject to a

Coriolis force pushing fluid away from the polar axis. The most likely flow pattern resulting

from the combination of these forces is one with an equatorial upwelling, a surface poleward flow

and a deep return flow. This pattern is indeed observed near the solar surface: poleward surface

and sub-surface flows with velocities up to a few tens of meters per second have been observed

by measurements of photospheric line-shifts (Labonte & Howard 1982) and by time-distance

helioseismology (Giles et al. 1997) respectively.

The amplitude and spatial distribution of these meridional flows deeper in the convec-

tion zone remains essentially unknown, as the sensitivity of helioseismic methods rapidly drops

below the surface. As a result, the question of whether some of the pumped mass flux actually

penetrates into the underlying radiative zone is still open, despite its obvious importance for

mixing of chemical species (Pinsonneault, 1997; Elliott & Gough, 1999), and its presumed role

in the dynamical balance of the solar interior (Gough & McIntyre 1998, McIntyre, 2007, Garaud,

2007, Garaud & Garaud, 2008) and in some models of the solar dynamo (see Charbonneau, 2005

for a review).

In Paper I (Garaud & Brummell, 2008), we began a systematic study of the penetration

of meridional flows from the convection zone into the radiative zone by considering a related but
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easier question: assuming that the amplitude and geometry of meridional flows in the convection

zone are both known, what is their influence on the underlying radiative zone? This simpler

question enabled us to study the dynamics of the radiative zone only by assuming a flow profile

at the radiative–convective interface (instead of having to include the more complex convection

zone in the calculation). The overwhelming conclusion of that first study was that the degree to

which flows penetrate into the stratified interior (in the model) is very sensitive to the interfacial

conditions selected. Hence, great care must be taken when using a “radiative-zone-only” model

to make definite predictions about interior flow amplitudes. In addition, that approach makes

the implicit assumption that the dynamics of the radiative zone do not in return influence

those of the convection zone, but the only way to verify this is to construct a model which

includes both regions. This was the original purpose of the present study; as we shall see, the

combined radiative–convective model we construct here provides insight into a much broader

class of problems.

We therefore propose a simplified model of the Sun which includes both a “convective”

region and a “radiative” region, where the convective region is forced in such a way as to

promote gyroscopic pumping of meridional flows. We calculate the flow solution everywhere

and characterize how it scales in terms of governing parameters (e.g. stellar rotation rate,

stratification, diffusivities, etc..), focusing in particular on the flows which are entering the

radiative zone. We begin with a simple Boussinesq Cartesian model (Section 4.2), first in the

unstratified limit (Section 4.2.3) and then in the more realistic case of a radiative–convective

stratification (Section 4.2.4). Although the Cartesian results essentially illustrate most of the

relevant physical phenomena, we confirm our analysis with numerical solutions of the full set of

equations in a spherical geometry in Section 4.3. We then use this information in Section 4.4 to

discuss the effects of mixing by meridional flows both in the Sun and in other Main Sequence

stars.
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4.2 A Cartesian model

4.2.1 Model setup

As in Paper I, we first study the problem in a Cartesian geometry. Since our primary

aim is to understand the behavior of the meridional flows generated (e.g. scaling of the solutions)

in terms of the governing parameters, this approach is sufficient and vastly simplifies the required

algebra. In Section 4.3, we turn to numerical simulations to study the problem in a spherical

geometry.

In this Cartesian model section, distances are normalized to the solar radius R�, and

velocities to R�Ω� where Ω� is the mean solar angular velocity (the exact value is not par-

ticularly relevant here). The coordinate system is (x, y, z), where x should be thought of as

the azimuthal coordinate φ, with x ∈ [0, 2π]; y represents minus the co-latitude and spans the

interval y ∈ [0, π] (the poles are at y = 0 and y = π while the equator is at y = π/2). Finally the

z-direction is the radial direction with z ∈ [0, 1], and represents the direction of (minus) gravity

so that z = 0 is the interior, and z = 1 is the surface.

In this framework, the system rotates with mean angular velocity Ω = (0, 0, 1), thereby

implicitly assuming that the rotation axis is everywhere aligned with gravity. This assumption

induces another “geometric” error in the velocity estimates for the meridional flows, comparable

with the error made in reducing the problem to a Cartesian analysis; it does not influence the

predicted scalings (except in small equatorial regions which we ignore here).

We divide the domain in two regions, by introducing the dimensionless constant h to

represent the radiative–convective interface. Thus z ∈ [0, h] represents the “radiative zone”

while z ∈ [h, 1] represents the “convection zone”. From here on, h = 0.7. Figure 4.1 illustrates

the geometry of the Cartesian system.
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Figure 4.1: Cartesian model geometry and intended correspondence with the spherical case.
The shaded area marks the convective region, where forcing is applied. The y = 0 and y = π/2
lines mark the “poles” and the “equator”. The system is assumed to be periodic with period π
in the y−direction.

4.2.2 Model equations

For this simple Cartesian approach, we work with the Boussinesq approximation (this

assumption is dropped in the spherical model but doesn’t affect the predicted scalings). The

background state is assumed to be stratified, steady, and in hydrostatic equilibrium. The back-

ground density and temperature profiles are denoted by T̄ (z) and ρ̄(z) respectively. Density and

temperature perturbations to this background state (ρ and T ) are then assumed to be linearly

related: ρ = −αT (z)T , where αT (z) is the coefficient of thermal expansion. For simplicity, we

will assume that the background temperature gradient T̄z is constant throughout the domain

z ∈ [0, 1], and treat the convection zone as a region where αT → 0 while the radiative zone

has αT �= 0 (see below). The alternative option of using a constant αT and a varying T̄z yields

qualitatively equivalent scalings for the meridional flows (a statement which is verified in Section

4.3) although the algebra is trickier.

The set of equations governing the system in this approximation are the momentum,
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mass and thermal energy conservation equations respectively:

∂u

∂t
+ u · ∇u+ 2ez × u = −∇p+Ro2(z)Tez + Eν∇2u ,

∇ · u = 0 ,

∂T

∂t
+ u · ∇T + u · ez =

Eν

Pr
∇2T , (4.1)

where u = (u, v, z) is the velocity field. In these equations, temperature perturbations have

been normalized to the background temperature difference across the box R�T̄z. The governing

non-dimensional parameters are:

Ro(z) = N(z)/Ω� the Rossby number ,

Eν =
ν

R2�Ω�
the Ekman number ,

Pr =
ν

κT
the Prandtl number , (4.2)

where the dimensional quantity N2(z) = αT (z)T̄zg is the square of the Brunt-Väisälä frequency

(g is the magnitude of gravity and is assumed to be constant). The microscopic diffusion

coefficients ν (the viscosity) and κT (the thermal conductivity) are both assumed to be constant.

In the Sun, near the radiative–convective interface, Eν � 2× 10−15 and Pr � 2× 10−6 (Gough,

2007).

As mentioned earlier, the transition between the model radiative zone and convection

zone is measured by the behavior of αT (z), which goes from 0 for z > h to a finite value for

z < h. This can be modeled in a non-dimensional way through the Rossby number, which we

assume is of the form:

Ro(z) =
Rorz
2

[
1 + tanh

(
h− z

∆

)]
, (4.3)

where Rorz is constant. The lengthscale ∆ may be thought of as the thickness of the “overshoot”

region near the base of the convection zone, but in practice is mostly used to ensure continuity

and smoothness of the background state through the tanh function.
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In what follows, we further restrict our study to an “axially” symmetric (∂/∂x = 0),

steady-state (∂/∂t = 0) problem. Within the radiative zone, the nonlinear terms u · ∇u and

u · ∇T are assumed to be negligible. Within the convection zone on the other hand, anisotropic

turbulent stresses are thought to drive the observed differential rotation1. We model this effect in

the simplest possible way, replacing the divergence of the stresses by a linear relaxation towards

the observed convection zone profile:

u · ∇u → Fturb =
u− ucz

τ
, (4.4)

where ucz = ucz(y, z)ex and the function ucz(y, z) models the observed azimuthal velocity profile

in the solar convection zone. This is analogous to the prescription used by Spiegel & Bretherton

(1968) in their study of the effect of a convection zone on solar spin-down, although in their

model the convection zone was not differentially rotating. The dimensionless relaxation timescale

τ can be thought of, for example, as being of the same order of magnitude as the convective

turnover time divided by the rotation period. It is modeled as:

τ−1(z) =
Λ

2

[
1 + tanh

(
z − h

∆

)]
. (4.5)

Note that in the real solar convection zone, τ varies by orders of magnitudes between the surface

(τ ∼ 10−3) and the bottom of the convection zone (τ ∼ 1). Here, we assume that Λ is constant

for simplicity.

We adopt the following profile for ucz(y, z):

ucz(y, z) =
U0(z)

2

[
1 + tanh

(
z − h

∆

)]
eiky = ûcz(z)e

iky ,

U0(z) = U0(h) + S(z − h) , (4.6)

where k = 2 to match the equatorial symmetry of the observed solar rotation profile. The tanh

function once again is merely added to guarantee continuity of the forcing across the overshoot

1Note that for slowly rotating stars, such as the Sun, the direct generation of meridional flows by anisotropic
stresses is a much weaker effect in the bulk of the convection zone. We neglect it here.
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layer. The function U0(z) describes the imposed “vertical shear”, and is for simplicity taken

to be a linear function of z. If U0(h) = 0, the forcing effectively vanishes at the base of the

convection zone. If U0(h) �= 0 on the other hand, a strong azimuthal shear is forced at the

interface. The observed solar rotation profile appears to be consistent with U0(h) and S both

being non-zero (and of the order of 0.1, although since we are studying a linear problem, the

amplitude of the forcing is somewhat irrelevant). Note that if S = 0 the forcing velocity ucz has

zero vorticity.

Finally, the observed asphericity in the temperature profile is negligible in the solar

convection zone; this is attributed to the fact that the turbulent convection very efficiently mixes

heat both vertically and horizontally. We model this effect as:

u · ∇T → −D(z)∇2T , (4.7)

where the turbulent heat diffusion coefficient is modeled as

D(z) =
D0

2

[
1 + tanh

(
z − h

∆

)]
, (4.8)

and thus vanishes beneath the overshoot layer. We will assume that the diffusion timescale

1/D0 (in non-dimensional units) is much smaller than any other typical timescale in the system

(D0 � 1).

Projecting the remaining equations into the Cartesian coordinate system, and seeking
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solutions in the form q(y, z) = q̂(z)eiky for each of the unknown quantities yields

−2v̂ = Eν

(
d2û

dz2
− k2û

)
− û− ûcz

τ
,

2û = −ikp̂+ Eν

(
d2v̂

dz2
− k2v̂

)
− v̂

τ
,

0 = −dp̂

dz
+Ro2(z)T̂ + Eν

(
d2ŵ

dz2
− k2ŵ

)
− ŵ

τ
,

ikv̂ +
dŵ

dz
= 0 ,

ŵ =

(
Eν

Pr
+D(z)

)(
d2T̂

dz2
− k2T̂

)
, (4.9)

Note that as required, the imposed forcing term drags the fluid in the azimuthal direction: for

τ → 0, û → ûcz in the convection zone. The meridional flows v̂ and ŵ on the other hand are

generated by the y−component of the Coriolis force and by mass conservation respectively (the

essence of gyroscopic pumping, see McIntyre 2007).

We now proceed to solve these equations to gain a better understanding of the merid-

ional flows and their degree of penetration into the radiative zone below. We use a dual ap-

proach, solving these equations first analytically under various limits, and then exactly using a

simple Newton-Raphson-Kantorovich (NRK) two-point boundary value algorithm. The analyt-

ical approximations yield predictions for the relevant scalings of the solutions in terms of the

governing parameters (an in particular, the Ekman number and the Rossby number) which are

then confirmed by the exact numerical solutions.

4.2.3 The unstratified case

Although this limit is not a priori relevant to the physics of the solar interior, we begin

by studying the case of an unstratified region, setting Rorz = 0 (in this case, the thermal energy

equation can be discarded). This simpler problem, as we shall demonstrate, contains the essence

of the problem.
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In order to find analytical approximations to the solutions, we solve the governing

equations separately in the convective zone and in the radiative zone. At this point, it may be

worth pointing out that in the unstratified case, the nomenclatures “convective” and “radiative”

merely refer to regions which respectively are and are not subject to the additional forcing.

We assume that the transition region is very thin2. In this case, τ−1 = Λ for z > h

while τ−1 = 0 for z < h. Similarly, ûcz(z) = U0(h) + S(z − h) in the convection zone while

ûcz(z) = 0 in the radiative zone. Once obtained, the solutions are patched at the radiative–

convective interface.

4.2.3.1 Solution in the convection zone

In the convection zone, the equations reduce to

−2v̂ = −Λ(û− ûcz) ,

2û = −ikp̂− Λv̂ ,

0 = −dp̂

dz
− Λŵ ,

ikv̂ +
dŵ

dz
= 0 , (4.10)

where we have neglected the viscous dissipation terms in favor of the forcing terms since Eν � Λ

for all reasonable solar parameters. Combining them yields

d2ŵ

dz2
=

k2Λ2

4 + Λ2
ŵ + 2ik

Λ

4 + Λ2

dûcz
dz

. (4.11)

This second-order ordinary differential equation3 for ŵ(z) suggests the introduction of a new

lengthscale

δ =

√
4 + Λ2

kΛ
, (4.12)

2More precisely, ∆ � E
1/2
ν , see Section 4.2.3.5.

3The original order of the system is much reduced in the convection zone since we ignored the effect of viscous
terms there.
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so that the general solution to (4.10) is

ŵ(z) = Aez/δ +Be−z/δ − 2iS

kΛ
,

v̂(z) = − 1

ikδ

[
Aez/δ −Be−z/δ

]
,

û(z) = ûcz(z)− 2

ikΛδ

[
Aez/δ −Be−z/δ

]
,

p̂(z) = − 2

ik
ûcz(z)− δΛ

[
Aez/δ −Be−z/δ

]
. (4.13)

The constants A and B are integration constants which must be determined by applying bound-

ary conditions (at z = 1) and matching conditions (at z = h). Note from the û-equation that

the actual rotation profile approaches the imposed (observed) profile ûcz provided A and B tend

to 0, or when Λ � 2 (in which case δ → 1/k).

4.2.3.2 Solution in the radiative zone with stress-free lower boundary, and match-

ing

In the radiative region, the equations reduce to

−2v̂ = Eν

(
d2û

dz2
− k2û

)
,

2û = −ikp̂ ,

dp̂

dz
= 0 ,

ikv̂ +
dŵ

dz
= 0 , (4.14)

if we neglect viscous stresses in both y and z components of the momentum equation. Note that

viscous stresses in the x−equation cannot be dropped since they are the only force balancing
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the Coriolis force. These equations are easily solved:

p̂(z) = prz ,

û(z) = − ik
2
prz ,

v̂(z) = − iEνk
3

4
prz ,

ŵ(z) = wrz − Eνk
4

4
przz , (4.15)

where prz and wrz are two additional integration constants. Here, we recover the standard

Taylor-Proudman constraint where in the absence diffusion or any other stresses, the velocity

must be constant along the rotation axis (here, ez); in the limit Eν → 0, û(z) and ŵ(z) become

independent of z, while v̂(z) → 0.

We are now able to match the solution in the radiative zone to that of the convection

zone. The two constants prz and wrz form, together with A and B, a set of 4 unknown con-

stants which are determined by application of boundary and matching conditions. Since we have

neglected viscous effects in the convection zone, we cannot require any boundary or matching

condition on the horizontal fluid motions. On the other hand, we are allowed to impose imper-

meability ŵ = 0 at the surface (z = 1) and at the bottom (z = 0). Moreover, we request the

continuity of the radial (vertical) velocity and of the pressure at the interface (z = h). Applying

these conditions yields the set of equations

wrz = 0 ,

Aeh/δ +Be−h/δ − 2iS

kΛ
= wrz − Eνk

4

4
przh ,

− 2

ik
U0(h)− δΛ

[
Aeh/δ −Be−h/δ

]
= prz ,

Ae1/δ +Be−1/δ − 2iS

kΛ
= 0 , (4.16)
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which have the following solution for A and B:

A =

Eνhk
3

2i U0(h) +
2iS
kΛ

[
1− e(1−h)/δ

[
1 + Eνk

4

4 hδΛ
]]

eh/δ
[
1− Eνk4

4 hδΛ
]
− e(2−h)/δ

[
1 + Eνk4

4 hδΛ
] ,

B =
2iS

kΛ
e1/δ −Ae2/δ . (4.17)

These can be substituted back into (4.13) to obtain the meridional flow velocities in the convec-

tion zone. While the exact form of A and B are not particularly informative, we note that in

the limit S = 0 (i.e. the forcing velocity has no azimuthal vorticity), both A and B scale as Eν .

This implies that the amplitude of meridional flows everywhere in the solar interior scales like

Eν (even in the convection zone). The physical interpretation of this somewhat surprising limit

is discussed in Section 4.2.3.4, but turns out to be of academic interest only (Section 4.2.3.5).

When S �= 0 then A and B are of order S/kΛ in the convection zone regardless of the

Ekman number, and respectively tend to

A =
2iS

kΛ

1− e(1−h)/δ

eh/δ − e(2−h)/δ
+O(Eν) ,

B =
2iS

kΛ

1− e(h−1)/δ

e−h/δ − e(h−2)/δ
+O(Eν) , (4.18)

as Eν → 0. This implies that ŵ is of order S/kΛ in the convection zone. Since significant flows

are locally generated, one may reasonably expect a fraction of the forced mass flux to penetrate

into the lower region, especially in this unstratified case.

Using (4.17) in (4.16), solving for prz, then plugging prz into (4.15), we find that the

general expression for ŵ(z) in the radiative zone z ∈ [0, h] is

ŵ(z) = − iEνk
3

2

(
U0(h) +

cosh((1 − h)/δ)− 1

sinh((1 − h)/δ)
δS

)
z . (4.19)

This implies that only a tiny fraction of the large mass flux circulating in the convection zone

actually enters the radiative zone. Instead, the system adjusts itself in such a way as to ensure

that most of the meridional flows return above the base of the convection zone.
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We now compare this a priori counter-intuitive4 analytical result with exact numerical

solutions of the governing equations. The numerical solutions were obtained by solving (4.9)

for Rorz = 0 (unstratified case), and are uniformly calculated in the whole domain (i.e. there is

nothing special about the interfacial point z = h). The boundary conditions used are imperme-

able boundary conditions at the top and bottom of the domain for ŵ, and stress-free boundary

conditions for û and v̂.

In Figure 4.2 we compare numerical and analytical solutions for ŵ(z), in a case where

the forcing function parameters are ∆ = 10−4, Λ = 10, U0(h) = 0 and S = 1, for four values

of the Ekman number. The analytical solution is described by equations (4.13) and (4.17) (for

the convection zone) and (4.15) (for the radiative zone). As Eν → 0 the numerical solution

approaches the analytically derived one, confirming in particular that ŵ(z) ∝ zEν in the radia-

tive zone. The convection zone solution is also well-approximated in this case by the analytical

formula.

A full 2D visualization of the flow for Eν = 10−4 but otherwise the same governing pa-

rameters is shown in Figure 4.3. This figure illustrates more clearly the fact that the meridional

flows are negligible below the interface, and mostly return within the convection zone. Note

that given our choice of the forcing function ucz(y, z) ∝ cos(2y), the induced Coriolis force does

not vanish at y = 0 or y = π (the “poles”). This explains why the meridional flows apparently

cross the polar axis in this simple model. This is merely a geometric effect: in a true spherical

geometry the forcing azimuthal velocity ucz(r, θ) would be null at the poles, and meridional

flows cannot cross the polar axis. More realistic calculations in spherical geometry are discussed

in Section 4.3.

Finally, it is interesting to note that the analytical solution for the azimuthal velocity

4but a posteriori obvious, see Section 4.2.3.4
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Figure 4.2: Numerical (solid) and analytical (dashed) solutions for |ŵ(z)|, in the case of a stress-
free bottom boundary. From the uppermost to lowermost curves, Eν = 10−3, 10−4, 10−5 and
10−6 respectively, confirming the analytical scaling that ŵ(z) ∝ Eνz in the radiative zone while
ŵ(z) becomes independent of Eν in the convection zone. These solutions were obtained with
forcing defined by the parameters ∆ = 10−4, Λ = 10, U0(z) = S(z − h) and S = 1.

û(z) exhibits a “discontinuity” across the base of the convection zone, which tends to

û(h+)− û(h−) =
(

2

ikδΛ
+
ikδΛ

2

)(
Aeh/δ −Be−h/δ

)
(4.20)

as Eν → 0. The numerical solutions of course are continuous, but the continuity is only assured

by the viscosity in the system (in the y− direction) and the fact that the overshoot layer depth

is finite. This is shown in Figure 4.4, together with a comparison of the numerical solutions with

the analytical solution, again confirming the analytical approximation derived.

This highlights another and equally a priori counter-intuitive property of the system:

the value of urz in the radiative zone is markedly different from the imposed ûcz(h) = U0(h) at

the interface:

urz = U0(h) +
ikδΛ

2

(
Aeh/δ −Be−h/δ

)
. (4.21)

Hence, even if the imposed differential rotation is exactly 0 at the radiative–convective interface
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Figure 4.3: 2D visualization of the flow for Eν = 10−4, in the case of a stress-free bottom
boundary. Shown as solid and dotted line respectively are linearly spaced streamlines of counter-
clockwise and clockwise meridional flows. As predicted, the flows appear to return entirely
within the convection zone and carry a negligible mass flux into the radiative zone. Meanwhile
the azimuthal velocity (û) as displayed in the filled contours is constant along the rotation axis
(z−axis) below the interface (z = h = 0.7), but is strongly sheared at the interface. This solution
was obtained with forcing defined by the parameters ∆ = 10−4, Λ = 10, U0(z) = S(z − h) and
S = 1, as in Figure 4.2.
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(as it is the case in the simulation presented in Figure 4.4 since U0(z) = S(z − h)), a large-scale

latitudinal shear measured by urz may be present in the radiative zone, as illustrated in Figure

4.3. This shows that the propagation of the azimuthal shear into the radiative zone is non-local

(i.e. does not rely on the presence of shear at the interface), and is instead communicated by

the long-range pressure gradient.

Figure 4.4: Numerical (solid) and analytical (dashed) solutions for û(z), in the case of a stress-
free bottom boundary. From the lowermost to uppermost curves, Eν = 10−3, 10−4, 10−5 and
10−6 respectively, confirming that û(z) tends to a constant in the radiative zone, while sustaining
a finite discontinuity at the radiative-convective interface (z = h = 0.7). These solutions were
obtained with forcing defined by the parameters ∆ = 10−4, Λ = 10, U0(z) = S(z−h) and S = 1,
as in Figure 4.2.

4.2.3.3 Solution in the case of no-slip bottom boundary

The stress-free bottom boundary conditions studied in the previous Section are at

first glance the closest to what one may expect in the real Sun, where the “bottom” boundary

merely represents the origin of the spherical coordinate system. However, let us now explore

for completeness (and for further reasons that will be clarified in the next Section) the case of
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no-slip bottom boundary conditions.

When the lower boundary is a no-slip boundary, the nature of the solution in the whole

domain changes. This change is induced by the presence of an Ekman boundary layer, which

forms near z = 0. Just above the boundary layer, in the bulk of the radiative zone, the solution

described in 4.2.3.2 remains valid. However, matching the bulk solution with the boundary

conditions can no longer be done directly; one must first solve for the boundary layer dynamics

to match the bulk solution with the boundary conditions across the boundary layer. This is a

standard procedure (summarized in Appendix A for completeness), and leads to the well-known

“Ekman jump” relationship between the jump in ŵ(z) and the jump in û(z) across the boundary

layer:

ûbulk − û(0) =
2i

k
E−1/2

ν (ŵbulk − ŵ(0)) . (4.22)

By impermeability, ŵ(0) = 0. Moreover, by assuming that the total angular momentum

of the lower boundary is the same as that of the convection zone, we require that û(0) = 0.

Meanwhile, ûbulk = urz and ŵbulk = wrz in the notation of equation (4.15). So finally, for no-slip

boundary conditions, we simply replace the impermeability condition (wrz = 0) in (4.16) by

urz =
2i

k
E−1/2

ν wrz , (4.23)

and solve for the unknown constants A, B, wrz and prz as before.

The exact expressions for the resulting integration constants A and B are now slightly

different from those given in (4.17), but are without particular interest. However, it can be

shown that they have the same limit as in the stress-free case as Eν → 0 (with S �= 0). This

implies that the meridional flows driven within the convection zone, in the limit Eν → 0, and

with S �= 0, are independent of the boundary condition selected at the bottom of the radiative
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zone. However, we now have the following expression for ŵ(z) in the bulk of the radiative zone:

ŵ(z) = −
(
k2

4
E1/2

ν +
Eνk

4

4
z

)
prz ,

= − ik
2
E1/2

ν

(
U0(h) +

cosh((1− h)/δ)− 1

sinh((1 − h)/δ)
δS

)
+O(Eν)z , (4.24)

which has one fundamental consequence: the amplitude of the flows allowed to penetrate into

the radiative zone is now of order E
1/2
ν instead of being O(Eν). This particular statement is

actually true even if S = 0, although in that case both convection zone and radiative zone flows

scale with E
1/2
ν .

Figure 4.5 shows a comparison between the approximate analytical formula and the

numerical solution for the same simulations as in Figure 4.2, but now using no-slip bottom

boundary conditions. For ease of comparison, the results from the stress-free numerical simula-

tions (for exactly the same parameters) have also been drawn, highlighting the much larger am-

plitude of the meridional flows down-welling into the radiative zone in the no-slip case, and their

scaling with E
1/2
ν . Figure 4.6 shows an equivalent 2D rendition of the solution, and illustrates

the presence of large-scale mixing in the bulk of the radiative zone when the bottom-boundary

is no-slip.

4.2.3.4 Physical interpretation

The various sets of solutions derived above can be physically understood in the following

way. Let us first discuss the solution in the convection zone. In the limit where ucz(y, z) is

independent of z (equivalently, S = 0), the azimuthal (x−) component of the vorticity of the

forcing is zero. In that case there is no injection of x−vorticity into the system aside from that

induced in the viscous boundary layers, and the amplitude of the meridional flows generated

in the convection zone scales with Eν . This limit is somewhat academic in the case of the

Sun, however given the observed rotation profile (see also Section 4.2.3.5). When S �= 0, the
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Figure 4.5: Numerical (solid) and analytical (dashed) solutions for |ŵ(z)|, in the case of a
no-slip bottom boundary. From the uppermost to lowermost curves (as seen in the radiative
zone), Eν = 10−3, 10−4, 10−5 and 10−6 respectively, confirming the analytical scaling that

ŵ(z) ∝ E
1/2
ν in the radiative zone while ŵ(z) becomes independent of Eν in the convection

zone. These solutions were obtained with forcing defined by the parameters ∆ = 10−4, Λ = 10,
U0(z) = S(z − h) and S = 1, as in Figure 4.2. For comparison, the previous simulations with
stress-free bottom boundary, for the same parameters, are shown as dotted lines.

amplitude of the induced meridional flows in the convection zone scales linearly with S and is

independent of viscosity.

In the radiative zone, the Taylor-Proudman constraint enforces invariance of the flow

velocities along the rotation axis, except in regions where other forces balance the Coriolis

force. In the non-magnetic, unstratified situation discussed in the two previous sections, the

only agent capable of breaking the Taylor-Proudman constraint are viscous stresses, which are

only significant in two thin boundary layers: one right below the convection zone and the other

one near the bottom boundary. These two layers are the only regions where flows down-welling

into the radiative zone are allowed to return to the convection zone. The question then remains

of what fraction of the mass flux entering the radiative zone returns within the upper Ekman
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Figure 4.6: The same as for Figure 4.3 but for no-slip boundary conditions. The Ekman layer
near the lower boundary is clearly visible. For ease of comparison, the same streamlines are
shown in the two plots. The two figures illustrate how the nature of the lower boundary condition
influences the mass flux through the radiative zone.

layer, and what fraction returns within the lower Ekman layer. The latter, of course, permits

large-scale mixing within the radiative zone.

In the first case studied, the bottom boundary was chosen to be stress-free. This

naturally suppresses the lower viscous boundary layer so that the only place where flows are

allowed to return is at the radiative-convective interface. As a result, only a tiny fraction of

the mass flux penetrates below z = h, and the turnover time of the remaining flows within the

radiative zone is limited to a viscous timescale of the order of 1/EνΩ�.

Following this reasoning, we expect and indeed find quite a different behavior when

the bottom boundary is no-slip. In that case viscous stresses within the lower boundary layer

break the Taylor-Proudman constraint and allow a non-zero mass flux (of order E
1/2
ν ) to return

near z = 0. This flow then mixes the entire radiative zone as well, with an overall turnover time

of order of 1/E
1/2
ν Ω� (in dimensional units).
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To summarize, in this unstratified steady-state situation, the amount of mixing induced

within the radiative zone by convective zone flows depends (of course) on the amplitude of the

convection zone forcing, but also on the existence of a mechanism to break the Taylor-Proudman

constraint somewhere within the radiative zone. That mechanism is needed in order to allow

downwelling flows to return to the convection zone. But more crucially, this phenomenon implies

that the dynamics of the lower boundary layer entirely control the mass flux through the system.

Here, we studied the case of viscous stresses only. One can rightfully argue that there

are no expected “solid” boundaries in a stellar interior and that the overall behavior of the system

should be closer to the one discussed in the stress-free case than the no-slip case. However, we

chose here to study viscous stresses simply because they are the easiest available example. In

real stars viscous stresses are likely to be negligible compared with a variety of other possible

stresses: turbulent stresses at the interface with another convection zone, magnetic forces, etc.

Nevertheless, these stresses will play a similar role in allowing flows to mix the radiative zone

if they become comparable in amplitude with the Coriolis force, and help break the Taylor-

Proudman constraint. This issue is discussed in more detail in Section 4.4.

4.2.3.5 The thickness of the overshoot layer

Before moving on to the more realistic stratified case, note that this unstratified system

holds one final subtlety. In all simulations presented earlier, the overshoot layer depth was

selected to be very small – and in particular, smaller than the Ekman layer thickness. In that

case, the transition in the forcing at the base of the convection zone is indeed close to being a

discontinuity, and the analytical solutions presented in Sections 4.2.3.1 and 4.2.3.2 are a good

fit to the true numerical solution.

In the Sun, the overshoot layer depth ∆ is arguably always thicker than an Ekman

lengthscale E
1/2
ν . When this happens, the solution “knows” about the exact shape of the forcing
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function within the transition region, and therefore depends on it. This limit turns out to be

rather difficult to study analytically, and since in the case of the Sun we do not know the actual

profile of τ−1(z), there is little point in exercise anyway.

We can explore the behavior of the system numerically, however, for the profile τ−1(z)

discussed in equation (4.5), in the limit where ∆ > E
1/2
ν . The example for which this effect

matters the most is the somewhat academic limit where S = 0 in the convection zone, but

U0(h) �= 0. In this case, the asymptotic analysis predicts that the meridional flow amplitudes

are O(E
1/2
ν ) in both the convection zone and in the radiative zone for the no-slip case. We see

in Figure 4.7 that this is indeed the case in simulations where ∆ � E
1/2
ν . However, when the

overshoot thickness is progressively increased and becomes larger than the Ekman layer thick-

ness, the amplitude of the meridional circulation in the convection zone is no longer O(E
1/2
ν )

but much larger. Meanwhile, the scaling of the radiative zone solutions with Eν remain qualita-

tively correct. The difference with the analytical solution in the convection zone can simply be

attributed to the fact that when the system knows about the shear within the overshoot layer

the limit S = 0 is no longer relevant.

4.2.4 The stratified case

While the previous section provides interesting insight into the problem, notably on

the role of the Taylor-Proudman constraint, we now move to the more realistic situation where

stratification plays a role in the flow dynamics. In this section, we generalize our Cartesian

study to take into account the stratification of the lower region (Rorz �= 0). For this purpose,

we go back to studying the full system of equations (4.9). As before, we first find approximate

analytical solutions to derive the overall scaling of the solutions with governing parameters, and

then compare them to the full numerical solutions of (4.9). The analytical solutions are obtained

by solving the system in the convective region and radiative region separately, and matching
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Figure 4.7: Comparison of numerical simulations (solid lines) with analytical prediction (dashed
line) for a no-slip bottom boundary, for Eν = 10−6, and forcing functions defined with Λ = 10,
S = 0 and U0(h) = 1. The three numerical solutions are obtained for various values of the
overshoot layer depth: from lowermost to uppermost curves (as seen in the convective zone),

∆ = 10E
1/2
ν , E

1/2
ν , and 0.1E

1/2
ν . The analytical solution assumes an infinitely thin overshoot

layer and is therefore independent of ∆. Note that the analytical solution in the convection

zone is only a good approximation to the true solution if ∆ � E
1/2
ν . The overall scalings in the

radiative zone, however, are preserved.

them at z = h.

4.2.4.1 Convection zone solution

The equations in the convection zone are now given by

−2v̂ = −Λ(û− ûcz) ,

2û = −ikp̂− Λv̂ ,

0 = −dp̂

dz
− Λŵ ,

ŵ = D0

(
d2T̂

dz2
− k2T̂

)
,

ikv̂ +
dŵ

dz
= 0 , (4.25)
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where we have assumed that D0 � Eν/Pr. Eliminating variables one by one yields the same

equation for ŵ(z) in the convection zone as before (4.11), as well as a Poisson equation for T̂

once ŵ is known. The solutions are then as (4.13), together with

T̂ (z) = T0e
kz + T1e

−kz +
δ2
[
Aez/δ +Be−z/δ

]
D0(1 − δ2k2)

+
2iS

k3ΛD0
, (4.26)

where the integration constants T0 and T1 remain to be determined. For the sake of analytical

simplicity, we will assume that D0 � 1 in all that follows (i.e. very large thermal diffusivity

in the convection zone), and thus neglect the third and fourth terms in (4.26). This limit is

relevant for the Sun.

4.2.4.2 Radiative zone solution

The radiative zone equations are now

−2v̂ = Eν

(
d2û

dz2
− k2û

)
,

2û = −ikp̂ ,

0 = −dp̂

dz
+Ro2rz(z)T̂ ,

ŵ =
Eν

Pr

(
d2T̂

dz2
− k2T̂

)
,

ikv̂ +
dŵ

dz
= 0 , (4.27)

and can be combined to yield

d4û

dz4
− k2

(
1 +

PrRorz
2

4

)
d2û

dz2
+ k4

PrRorz
2

4
û = 0 , (4.28)

and similarly for T̂ . The characteristic polynomial is

(λ2 − k2)

(
λ2 − PrRorz

2

4
k2
)

= 0 , (4.29)
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with solutions

±λ1 = ±k ,

±λ2 = ±
√
Pr

Rorz
2

k . (4.30)

These solutions are the same as those presented in Paper I, and will be referred to as the “global-

scale” mode and the thermo-viscous mode respectively. Note that here, λ2 corresponds to k2 in

Paper I.

In this steady-state study, the quantity λ2 summarizes the effect of stratification. It

is important to note that it contains information about the rotation rate of the star as well as

the Prandtl number, in addition to the buoyancy frequency. If λ2 � 1, then the thermo-viscous

mode essentially spans the whole domain: the system appears to be “unstratified”, and is again

dominated by the Taylor-Proudman constraint. On the other hand, if λ2 � 1 then the flows

only penetrate into the radiative zone within a small thermo-viscous boundary layer of thickness

1/λ2 as a result of the strong stratification of the system. The Taylor-Proudman constraint is

irrelevant in this limit, since the magnitude of the buoyancy force is much larger than that of

the Coriolis force.

The calculation above was made in the limit where the viscous terms in the latitudinal

and radial components of the momentum equation are discarded. Paper I shows that two addi-

tional Ekman modes are also present if they are instead kept. By analogy with the unstratified

case, we expect that these Ekman modes do not influence the solution for stress-free boundary

conditions, but that additional care must be taken for no-slip boundary conditions.

Note that the equation for ŵ instead simplifies to

d2ŵ

dz2
= k2

PrRorz
2

4
ŵ , (4.31)

and similarly for v̂ (i.e. both equations are only second order in z, and only contain the thermo-
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viscous mode). The radiative zone (z ∈ [0, h]) solutions are now

û(z) = u1e
kz + u2e

−kz + u3e
λ2z + u4e

−λ2z ,

v̂(z) =
Eν

2
(k2 − λ22)

[
u3e

λ2z + u4e
−λ2z

]
,

ŵ(z) = −ikEν

2

(k2 − λ22)

λ2

[
u3e

λ2z − u4e
−λ2z

]
,

p̂(z) = − 2

ik

[
u1e

kz + u2e
−kz + u3e

λ2z + u4e
−λ2z

]
,

T̂ (z) = − 2

ikRo2rz

[
ku1e

kz − ku2e
−kz + λ2u3e

λ2z − λ2u4e
−λ2z

]
. (4.32)

where the 4 constants {ui}i=1,4 are integration constants, to be determined.

4.2.4.3 The stratified stress-free case

We now proceed to match the solutions in the two regions, assuming stress-free bound-

ary conditions near the lower boundary. Since there are in total 8 unknown constants (including

A, B, T0 and T1 from the convection zone solution and {ui}i=1,4 from the radiative zone solu-

tion), we need a total of 8 matching and boundary conditions.

At the lower boundary (z = 0) we take ŵ = dû/dz = 0; this condition in turn implies

that T̂ = 0. At the surface (z = 1), we take as before ŵ = 0, and select in addition T̂ = 0. We

then need 4 matching conditions across the interface: these are given by the continuity of ŵ, p̂,

T̂ and dT̂ /dz. Note that it is important to resist the temptation of requiring the continuity of

v̂, since viscous stresses have been neglected in the analytical treatment of the y− component

of the momentum equation in both radiative and convective zones. Moreover, we know that in

the unstratified limit, û actually becomes discontinuous at the interface in the limit Eν → 0.

Since we expect the stratified solution to tend to the unstratified one uniformly as Rorz → 0,

we cannot require the continuity of û at the interface5.

The equations and resulting solutions for the integration constants are fairly compli-

5a fact which is again only obvious in hindsight
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cated. The most important ones are reported in the Appendix B for completeness, and are used

to justify mathematically the following statements:

• In the limit of Rorz → 0, we find as expected that the solutions uniformly tend to the un-

stratified solution summarized in equations (4.13), (4.15), and (4.17). Indeed, in that case

λ2 → 0 and the thermo-viscous solution spans the whole radiative zone (mathematically,

it tends to the linear solution found in the unstratified case).

• In the strongly stratified case (defined as λ2 � k), as described earlier, ŵ in the radiative

zone decays exponentially with depth on a lengthscale 1/λ2, with an amplitude which

scales as Eν/λ2. The flows are therefore very strongly suppressed, and return to the

convection zone within a small thermo-viscous layer. Note that Eν/λ2 = Ra−1/2 where

Ra is the usually defined Rayleigh number.

The two limits are illustrated in Figure 4.8, which shows the numerical solution to

(4.9) for two values of the Rossby number Rorz, but otherwise identical parameters. In the

strongly stratified limit (λ2 = 10, using Pr = 0.01 and Rorz = 102) we see that the solution

decays exponentially below the interface, with an amplitude which scales as Eν/λ2 as predicted

analytically. In the weakly stratified case (λ2 = 0.1, using Pr = 0.01 and Rorz = 1) the solution

tends to the unstratified limit and scales as Eνz.

4.2.4.4 Matching in the no-slip case

By analogy with the previous section, we expect to recover the unstratified limit when

λ2 → 0, so that ŵ(z) ∝ E
1/2
ν in this no-slip case. In the strongly stratified limit on the other

hand, the amplitude of the flows decays exponentially with depth below the interface as a result

of the thermo-viscous mode and is negligible by the time they reach the lower boundary. In that

case, we do not expect the applied lower boundary conditions to affect the solution, so that the
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Figure 4.8: Numerical solutions of (4.9) with the following parameters: ∆ = 0.01, Λ = 10, S = 0,
U = 1, Pr = 0.01 and D0 = 10. Stress-free bottom boundary conditions are used. The solid
lines correspond to the “strongly” stratified case with Rorz = 10, with Eν = 10−5 and 10−6 for
the top and bottom curves respectively. The dashed lines correspond to the “weakly” stratified
case, with Rorz = 1, with Eν = 10−5 and 10−6 for the top and bottom curves respectively. Note
that for k = 2, λ2 is simply equal to Pr1/2Rorz. For comparison, the unstratified case (Rorz =
0) is shown as dotted lines. At these parameters and with these boundary conditions, Rorz = 1
already belongs to the weakly stratified limit.

scalings found in the strongly stratified limit with stress-free boundary conditions should still

apply: ŵ(z) ∝ Eν/λ2.

These statements are verified in Figure 4.9. There, we show the results of a series of

numerical experiments for no-slip boundary conditions where we extracted from the simulations

the power α in the expression ŵ ∝ Eα
ν , and plotted it as a function of stratification (λ2). To

do this, we integrated the solutions to equations (4.9) for the following parameters: ∆ = 0.01,

Λ = 10, S = 1, U0(h) = 1, Pr = 0.01 and D0 = 10 and calculated ŵ(z = 0.5) for 4 values of Eν :

10−6, 10−7, 10−8 and 10−9. We estimated α by calculating the quantity

α = log10
ŵ(z = 0.5,Eν = 10−6)

ŵ(z = 0.5,Eν = 10−7)
(4.33)
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for the (Eν = 10−6, Eν = 10−7) pair (diamond symbols) and similarly for the pairs (Eν = 10−7,

Eν = 10−8) (triangular symbols) and (Eν = 10−8, Eν = 10−9) (star symbols). In the weakly

stratified limit (λ2 → 0), we find that α → 1/2 while in the strongly stratified limit (λ2 � 1),

α → 1, thus confirming our analysis. The transition between the two regimes appears to occur

for slightly lower-than expected values of λ2, namely 0.1 instead of 1.

Figure 4.9: This figure shows the power α in the expression ŵ ∝ Eα
ν , as a function of λ2 (see

main text for detail). In the weakly stratified limit, α→ 1/2 while in the strongly stratified limit
α→ 1 as predicted analytically. This calculation was done for no-slip boundary conditions, and
the following parameters were held constant: ∆ = 0.01, Λ = 10, S = 1, U0(h) = 1, Pr = 0.01
and D0 = 10

A final summary of our findings for the stratified case together with its implications

for mixing between the solar convection zone and the radiative interior, is deferred to Section

4.4. There, we also discuss the consequences in terms of mixing in other stars. But first, we

complete the study by releasing some of the simplifying assumptions made, and moving to more

realistic numerical solutions to confirm our simple Cartesian analysis.
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4.3 A “solar” model

In this section we improve on the Cartesian analysis by moving to a spherical radiative–

convective model. The calculations are thus performed in an axisymmetric spherical shell, with

the outer radius rout selected to be near the solar surface, and the inner radius rin somewhere

within the radiative interior. This enables us to gain a better understanding of the effects of the

geometry of the system on the spatial structure of the flows generated. In addition, we use more

realistic input physics in particular in terms of the background stratification, and no longer use

the Boussinesq approximation for the equation of state. We expect that the overall scalings

derived in Section 4.2 still adequately describe the flow amplitudes in this new calculation.

However, the use of a more realistic background stratification adds an additional complication

to the problem: the background temperature/density gradients are no longer constant, so that

the measure of stratification λ2 varies with radius (see Figure 4.10, for an estimate of λ2 in the

Sun). This aim of this section is therefore to study the impact of both geometry and non-uniform

stratification on the system dynamics.

4.3.1 Description of the model

The spherical model used is analogous to the radiative-zone-only model presented in

Paper I and described in detail (including the magnetic case) by Garaud & Garaud (2008). The

salient points are repeated here for completeness, together with the added modifications made

to include the “convective” region.

We consider a spherical coordinate system (r, θ, φ) where the polar axis is aligned with

rotation axis of the Sun. The background state is assumed to be spherically symmetric and in

hydrostatic equilibrium. The background thermodynamical quantities such as density, pressure,

temperature and entropy are denoted with bars (as ρ̄(r), p̄(r), T̄ (r) and s̄(r) respectively), and
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Figure 4.10: Variation of λ2/k =Pr0.5N/Ω� in the Sun, as determined from Model S of
Christensen-Dalsgaard et al. (1996). The Prandtl number Pr is calculated using Model S
together with the formulae provided by Gough (2007) for the microscopic values of the viscosity
ν̂ and the thermal conductivity κT (see also Garaud & Garaud, 2008). The inset zooms into
the region near the base of the convection zone, which is the only region of the radiative zone
where λ2 ≤ 1 (aside from r → 0).

extracted from the standard solar model of Christensen-Dalsgaard et al. (1996). Perturba-

tions to this background induced by the velocity field u = (ur, uθ, uφ) are denoted with tildes.

In the frame of reference rotating with angular velocity Ω�, in a steady state, the linearized

perturbation equations become

∇ · (ρ̄u) = 0 ,

2ρ̄Ω�ez × u = −∇p̃+ ρ̃g+ f∇ ·Π− ρ̄Ω�
u− ucz

τ(r)
,

ρ̄c̄pT̄ N̄
2

g
ur = ∇ ·

[
(f k̄T +R2

�Ω�D(r))∇T̃
]
,

p̃

p̄
=
ρ̃

ρ̄
+
T̃

T̄
, (4.34)

where c̄p is the specific heat at constant pressure, k̄T (r) = ρ̄c̄pκ̄T is the thermal conductivity in

the solar interior, Π is the viscous stress tensor (which depends on the background viscosity ν̄)
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and g = −g(r)er is gravity. Note that this set of equations is given in dimensional form here,

although the numerical algorithm used further casts them into a non-dimensional form. Also

note that both diffusion terms (viscous diffusion and heat diffusion) have been multiplied by the

same factor f . This enables us to vary the effective Ekman number Eν(r) = fE�
ν = f ν̄(r)/R2�Ω�

while maintaining a solar Prandtl number at every radial position. As a result, the quantity

λ2 used in the simulations and represented in Figure 4.10 is the true solar value (except where

specifically mentioned).

As in the Cartesian case, we model the dynamical effect of turbulent convection in the

convection zone through a relaxation to the observed profile in the momentum equation, and

a turbulent diffusion in the thermal energy equation. The expressions for the non-dimensional

quantities τ(r) and D(r) are the same as in equations (4.5) and (4.8) with z replaced by r/R�,

and h = 0.713 instead of h = 0.7 (Christensen-Dalsgaard et al. 1996). In what follows, we take

∆ to be 0.01 (i.e. the overshoot layer depth is 1% of the solar radius) although the choice of

∆ has little influence on the scalings derived. The rotation profile in the convection zone ucz is

selected to be

ucz(r, θ) = r sin θΩcz(θ) eφ , (4.35)

where

Ωcz(θ) = Ωeq

(
1− a2 cos

2 θ − a4 cos
4 θ
)
, (4.36)

with

a2 = 0.17 , a4 = 0.08 ,

Ωeq

2π
= 463 nHz , (4.37)

which is a simple approximation to the helioseismically determined profile (Schou et al. 1998;

Gough, 2007). Here, Ωeq is the observed equatorial rotation rate. As in Paper I, we finally select
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Ω� to be

Ω� = Ωeq

(
1− a2

5
− 3a4

35

)
, (4.38)

to ensure that the system has the same specific angular momentum as that of the imposed profile

ucz(r, θ).

The computational domain is a spherical shell with the outer boundary located at

rout = 0.9R�. It is chosen to be well below the solar surface to avoid complications related

to the very rapidly changing background in the region r > 0.95R�. The position of the lower

boundary will be varied.

The upper and lower boundaries are assumed to be impermeable. The upper boundary

is always stress-free, while the lower boundary is assumed to be either no-slip or stress-free

depending on the calculation. In the no-slip case, the rotation rate of the excluded core is

an eigenvalue of the problem, calculated in such a way as to guarantee that the total torque

applied to the core is zero. Finally, the boundary conditions on temperature are selected in

such a way as to guarantee that ∇2T̃ = 0 outside of the computational domain, as in Garaud

& Garaud (2008). We verified that the selection of the temperature boundary conditions only

has a qualitative influence on the results, and doesn’t affect the scalings derived.

The numerical method of solution is based on the expansion of the governing equations

onto the spherical coordinate system, followed by their projection onto Chebyshev polynomials

Tn(cos θ), and finally, solution of the resulting ODE system in r using a Newton-Raphson-

Kantorovich algorithm. The typical solutions shown have 3000 meshpoints and 60-80 Fourier

modes. For more detail, see Garaud (2001) and Garaud & Garaud (2008).
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4.3.2 The weakly stratified case

We first consider the artificial limit of weak stratification. In the following numeri-

cal experiment, we use the available solar model background state, but divide the buoyancy

frequency N̄ by 103 everywhere in the computational domain (all other background quantities

remain unchanged). As a result, the new value of λ2 in the domain is artificially reduced from

the one presented in Figure 4.10 by 103, and is everywhere much smaller than one. The position

of the lower boundary is arbitrarily chosen to be at rin = 0.35R�.

Two sets of solutions are computed for no-slip lower boundary and for stress-free lower

boundary. Figure 4.11 is equivalent to Figure 4.5: it displays the radial velocity ur as a function

of radius near the poles (latitude of 80◦) for various values of f – in other words, Eν – and clearly

illustrates the scalings of ur ∝ E
1/2
ν in the radiative zone for the no-slip case, and ur ∝ Eν for

the stress-free case.

Figure 4.12 illustrates the geometry of the flow in both no-slip and stress-free cases

for f = 109 (which corresponds to an Ekman number near the radiative–convective interface of

about 2×10−6). The geometrical pattern of the flows observed within the convection zone show

a single-cell, with poleward flows near the surface and equatorward flows near the bottom of

the convection zone. Below the convection zone we note the presence of three distinct regions:

the polar region, a Stewardson layer region (at the tangent cylinder) and an equatorial region.

Flows within the equatorial region are weak regardless of the lower boundary conditions. In

the stress-free case, even in the tangent cylinder the flows tend to return mostly within the

convection zone. If the lower boundary is no-slip on the other hand, flows within the tangent

cylinder are stronger, although the effect is not as obvious as in the Cartesian case because of

the anelastic mass conservation equation used here.
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Figure 4.11: Vertical velocity at 80◦ latitude in units of R�Ω� for an artificially weakly stratified
simulation (where N̄ was uniformly divided by 103 everywhere). The solid lines show three
simulations for f = 1011, f = 1010 and f = 109 (from top to bottom) for the no-slip case. These
correspond to Eν = 2 × 10−4, Eν = 2 × 10−5 and Eν = 2 × 10−6 at the base of the convection

zone respectively, hence showing how ur ∝ E
1/2
ν . The dotted lines show simulations with stress-

free boundary conditions for the same parameters, showing ur ∝ Eν . In this calculation the
overshoot depth ∆ was selected to be 0.01R�, and Λ = 10. The value of D0 is irrelevant in this
very weakly stratified simulation.

4.3.3 The stratified case

Let us now consider the case of a true solar stratification. Since λ2 increases rapidly

with depth beneath the convection zone (from 0 to about 10 in the case of the Sun), the radius

at which λ2 � 1 (r1 for short) plays a special role: we expect the dynamics of the system to

depend on the position of the lower boundary rin compared with r1 � 0.55R�.

This is indeed observed in the simulations, as shown in Figure 4.13. If rin > r1, then

λ2 < 1 everywhere in the modeled section of the radiative zone. In this case, the dynamics

follow the scaling for the unstratified case, and depend on the nature of the lower boundary

(ur ∝ Eν if the lower boundary is stress-free, and ur ∝ E
1/2
ν if the lower boundary is no-slip).
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Figure 4.12: Normalized angular velocity (Ω̃/Ωeq) and streamlines solutions to equations (4.34)
for an artificially weak stratification (see Figure 4.11), and for f = 109 (corresponding to Eν =
2 × 10−6 at the base of the convection zone). On the left, we show the solution with no-slip
lower boundary conditions, and on the right the stress-free solution. Dotted lines represent
clockwise flows, and solid lines counter-clockwise flows. In this calculation, the overshoot layer
depth ∆ was selected to be 0.01R�, and Λ = 10. The value of D0 is irrelevant in this very
weakly stratified simulation.

On the other hand, if rin < r1 then the flows are strongly quenched by the stratification before

they reach the lower boundary. As a result, the radial velocities scale with Eν/λ2 regardless of

the applied boundary conditions.

The implications of this final result, namely the importance of the location of the

stresses involved in breaking the Taylor-Proudman constraint in relation to the radius at which

λ2 � 1, are discussed in Section 4.4.3.
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Figure 4.13: Vertical velocity (in units of R�Ω�) in nine different simulations, at latitude 80◦.
The background stratification in each case is solar, but the position of the lower boundary is
moved through the radiative zone from 0.65R� to 0.35R� and 0.1R�. The solid-line plots are
for no-slip lower boundary conditions while the dotted lines are for stress-free lower boundary
conditions. Three simulations are shown in each case: (from lowest to highest curve) for f = 108,
f = 109 and f = 1010 corresponding to Eν = 2× 10−7 to Eν = 2× 10−5. The logarithmic scale
clearly shows that ur scales with Eν in the radiative zone in the stress-free cases for all values
of rin while in the no-slip case, rin scales with Eν if rin < 0.6, as expected from Figure 4.10.

4.4 Implications of this work for solar and stellar mixing

4.4.1 Context for stellar mixing

The presence of mixing in stellar radiative zones has long been inferred from remaining

discrepancies between models-without-mixing and observations (see Pinsonneault 1997 for a

review). The most commonly used additional mixing source is convective overshoot, whereby

strong convective plumes travel beyond the radiative–convective interface and cause intense but
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very localized (both in time and space) mixing events (Brummell, Clune & Toomre, 2002). The

typical depth of the layer thus mixed, the “overshoot layer”, is assumed to be a small fraction

of a pressure scaleheight in most stellar models.

A related phenomenon is wave-induced mixing (Schatzman, 1996). While most of the

energy of the impact of a convective plume hitting the stably stratified fluid below is converted

into local buoyancy mixing, a fraction goes into the excitation of a spectrum of gravity waves,

which may then propagate much further into the radiative interior. Where and when the waves

eventually cause mixing (either through mutual interactions, thermal dissipation or by trans-

ferring momentum to the large-scale flow) depends on a variety of factors. It has recently been

argued that the interaction of the gravity waves with the local azimuthal velocity field (the dif-

ferential rotation) would dominate the mixing process (Charbonnel & Talon 2005), although this

statement is not valid unless the wave-spectrum is near-monochromatic. For the typically flat-

ter wave spectra self-consistently generated by convection, wave-induced mixing has much more

turbulent characteristics (Rogers, MacGregor & Glatzmaier 2008), and is again fairly localized

below the convection zone.

Mixing induced by large-scale flows comes in two forms: turbulent mixing resulting

from instabilities of the large-scale flows, and direct transport by the large-scale flows them-

selves. The former case is the dominant mechanism in the early stages of stellar evolution

when the star is undergoing rapid internal angular-momentum “reshuffling” caused by external

angular-momentum extraction (disk-locked and/or jet phase, early magnetic breaking phase).

In these situations, regions of strong radial angular-velocity shear develop, which then become

unstable and cause local turbulent mixing of both chemical species and angular momentum.

Studies of these processes were initiated by the work of Endal & Sofia (1978). Later, Chaboyer

& Zahn (1992) refined the analysis to consider the effect of stratification on the turbulence, and

showed how this can differentially affect chemical mixing and angular-momentum mixing. Fi-
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nally, Zahn (1992) proposed the first formalism which combines mixing by large-scale flows and

mixing by (two-dimensional) turbulence. In addition to the flows driven by angular-momentum

redistribution, he also considered flows driven by the local baroclinicity of the rotating star,

and showed that their effect can be represented as a hyperdiffusion term in the angular velocity

evolution equation. In a quasi-steady, uniformly rotating limit, the flows described are akin to a

local Eddington-Sweet circulation. His formalism is used today in stellar evolution models with

rotation (Maeder & Meynet, 2000).

In all cases described above, mixing is either localized near the base of the convection

zone (overshoot, gravity-wave mixing), or significant only in very rapidly rotating stars (local

Eddington-Sweet circulations) or stars which are undergoing major angular-momentum redis-

tribution (during phases of gravitational contraction, spin-down, mass loss, etc..). In this paper,

we have identified another potential cause of mixing, where the original energy source is the dif-

ferential rotation in the stellar convective region: gyroscopic pumping (induced by the Coriolis

force associated with the differential rotation, see McIntyre 2007) drives large-scale meridional

flows which may – under the right circumstances – penetrate the radiative region and cause a

global circulation.

This source of mixing is intrinsically non-local to the radiative zone. The simplest way

of seeing this is to consider a thought-experiment where the radiative–convective interface is

impermeable: as shown in Paper I, the amplitude of the meridional flows generated locally (i.e.

below the interface) is then much smaller than the one calculated here. The origin of the flows

is also clearly independent of the baroclinicity (since the same phenomenon is observed in the

unstratified limit), although the flows themselves can be influenced by the stratification. This

implies that they are not related to Eddington-Sweet flows. Finally, contrary to some of the

other mixing sources listed above, the one described here does not rely on the system being

out-of-equilibrium: it is an inherently quasi-steady phenomenon, implying that this process is
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an ideal candidate for “deep mixing” for stars on the Main Sequence.

The process together with the conditions under which strong mixing might occur, are

now summarized and discussed.

4.4.2 Qualitative summary of our results

The differential rotation observed in stellar convective envelopes (e.g. Barnes et al.

2005) is thought to be maintained by anisotropic Reynolds stresses, arising from rotationally

constrained convective eddies (Kippenhahn, 1963). The details of this particular process are

beyond the scope of this study, but are the subject of current investigation by others (Kitchatinov

& Rüdiger, 1993, 2005; Rempel, 2005). Instead, we have assumed here the simplest possible

type of forcing which mimics the effect of convective Reynolds stresses in driving the system

towards a differentially rotating state. Using this model, we then derive the expected mixing

caused by large-scale meridional flows6.

We first found that large-scale flows are indeed self-consistently driven by gyroscopic

pumping in the convection zone, as expected (McIntyre, 2007). The amplitude of these flows

within the convection zone scales roughly as

Vcz ∼ τR�(∆Ω) , (4.39)

where (∆Ω) is the observed equator-to-pole differential rotation, R� is the stellar radius, and

τ is, as discussed in Section 4.2.2, related to the ratio of the convective turnover time divided

by the rotation period. Note that for the Sun, with (∆Ω) ∼ 0.1Ω�, the typical amplitude of

the corresponding meridional flows would be of the order of 200 τ m/s – which doesn’t seem

too unreasonable given the observations of subsurface flows (Giles et al. 1997) and the typical

values of τ in the solar convection zone (see Section 4.2.2).

6It is worth noting here that while we expect the details of the flow structure and amplitude to be different
when a more realistic forcing mechanism is taken into account, the overall scalings derived should not be affected.

74



Next, we studied how much mixing these flows might induce in the underlying radiative

zone. In this quasi-steady formalism, we found that the magnitude of convection-zone-driven

flows decays exponentially with depth below the radiative–convective interface on the lengthscale

l2, where l2 = R�/Pr1/2Rorz, as determined in Section 4.2.4.2 (see also Gilman & Miesch,

2004 and Garaud & Brummell, 2008). This penetration corresponds (in the linear regime) to

a so-called “thermo-viscous” mode. The limit l2 � R� corresponds to a strongly stratified

limit, where the flow velocities are rapidly quenched beneath the convection zone. The limit

l2 � R� corresponds to the weakly stratified case, where the thermo-viscous mode spans the

whole radiative interior and the stratification has little effect on the flow. It is important to

note that “weakly stratified” regions in this context can either correspond to regions with weak

temperature stratification (small N̄), or in rapid rotation, or with small Prandtl number – this

distinction will be used later.

The amplitude of the flows upon entering the radiative zone Vrz, together with l2,

uniquely define the global circulation timescale in the interior (roughly speaking, l2/Vrz). In the

weakly stratified/rapidly rotating limit, we find that the fraction of the meridional mass flux

pumped in the convection zone which is allowed to enter the radiative zone is strongly constrained

by Taylor-Proudman’s theorem. This theorem, which holds when the pressure gradient7 and the

Coriolis force are the two dominant forces and are therefore in balance, enforces the invariance

of all components of the flow velocities along the rotation axis. Hence, flows which enter the

radiative zone cannot return to the convection zone unless the Taylor-Proudman constraint

is broken. However, additional stresses (such as Reynolds stresses, viscous stresses, magnetic

stresses) are needed to break this constraint. As a result, two regimes may exist. If the (weakly

stratified/rapidly rotating) radiative zone is in pure Taylor-Proudman balance, then the system

adjusts itself, by adjusting the pressure field, in such a way as to ensure that the convection zone

7more precisely, the perturbation to the pressure gradient around hydrostatic equilibrium
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flows remain entirely within the convection zone. On the other hand, if there are other sources of

stresses somewhere in the radiative zone to break the Taylor-Proudman balance, then significant

large-scale mixing is possible since flows entering the radiative zone are allowed to return to the

convection zone. Furthermore, the resulting meridional mass flux in the radiative zone depends

rather sensitively on the nature of the mechanism which breaks the Taylor-Proudman constraint

(see next section).

The strongly stratified/slowly rotating limit exhibits a very different behavior. Because

of the strong buoyancy force, the Taylor-Proudman balance becomes irrelevant, the flows are

exponentially suppressed, and the induced radiative zone mixing is independent of the lower

boundary conditions. However, note that since N̄ tends to 0 at a radiative–convective interface,

there will always be a “weakly stratified” region in the vicinity of any convective zone. In that

region the dynamics described in the previous paragraph apply.

4.4.3 Applications to the Sun and other stars

In the illustrative model studied here, the only stresses available to break the Taylor-

Proudman constraint are viscous stresses, which are only significant within the thin Ekman

layer located near an artificial impermeable inner boundary. We do not advocate that this is

a particularly relevant mechanism for the Sun! However, it is a useful example of the sensitive

dependence of the global circulation mass flux on the mechanism responsible for breaking the

Taylor-Proudman constraint.

In the limit of weak stratification, we found that if the inner boundary is a stress-free

boundary then the global turnover time within the radiative zone is the viscous timescale. This

is because stress-free boundary conditions effectively suppress the Ekman layer. On the other

hand if the boundary layer is no-slip, then the global mass flux through the radiative zone is

equal to the mass flux allowed to return through the Ekman layer. In that case, and according
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to well-known Ekman layer dynamics, the overall turnover time within the bulk of the domain

is the geometric mean of the viscous timescale and the rotation timescale (1/E
1/2
ν Ω�), which

correspond to a few million years only.

Going beyond simple Ekman dynamics, a much more plausible related scenario for the

solar interior was studied by Gough & McIntyre (1998). They considered the same mechanism

for the generation of large-scale flows within the convection zone, studied how these flows down-

well into the radiative zone and interact with an embedded large-scale primordial magnetic

field. They showed that the field can prevent the flows from penetrating too deeply into the

radiative zone, while the flows confine the field within the interior. In their model, this nonlin-

ear interaction occurs in a thin thermo-magnetic diffusion layer, located somewhat below the

radiative–convective interface. One can therefore see an emerging analogy with the dynamics

discussed here: in the Gough & McIntyre model, the field does act as a somewhat impermeable

barrier, and provides an efficient and elegant mechanism for breaking the Taylor-Proudman

constraint within the radiative zone. The only significant difference is that the artificial Ekman

layer is replaced by a more convincing thermo-magnetic diffusion layer: the mass flux allowed

to down-well into the radiative zone, and mix its upper regions, is now controlled by a balance

between the Coriolis force and magnetic stresses (instead of the viscous stresses). With this new

balance, they find that the global turnover time for the circulation in the region between the

base of the convection zone and the thermo-magnetic diffusion layer is of the order of a few tens

of millions of years (which is still short compared with the nuclear evolution timescale).

This mixed region is the solar tachocline. By relating their model with observations,

Gough & McIntyre were able to identify the position of the magnetic diffusion layer to be just at

the base of the observed tachocline (around 0.68± 0.01R�, see Charbonneau et al. 1999). This

turns out to be close enough to the base of the convection zone for the dynamics of the radiative

region to be weakly-stratified in the sense used in this paper (see Figure 4.10 and Section 4.3.3)
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so that the meridional flows are indeed able to penetrate, and do so with “significant” amplitude

(about 10−5 cm/s) down to the magnetic diffusion layer. However, it is rather interesting to note

that the Gough & McIntyre model could not have worked had today’s tachocline been observed

to be much thicker. It is also interesting to note that for younger, more rapidly rotating solar-

type stars, a much larger region of the radiative zone can be considered “weakly stratified”,

possibly leading to much deeper mixed regions if these stars also host a large-scale primordial

field. The implications of these findings for Li burning, together with a few other interesting

ideas, will be discussed in a future publication.
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Appendix A: Ekman jump condition

Equation (4.15) provides the solution “far” from the lower boundary, in the bulk of

the fluid. Let us refer to the limit of bulk solutions as z → 0 as ûbulk(0
+) (and similarly for the

other quantities). We now derive the Ekman solution close to the boundary, for the unstratified

case. Let’s study the problem using the stream-function ψ with

(û, v̂, ŵ) =

(
û,

dψ̂

dz
,−ikψ̂

)
. (4.40)
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Moreover, let us assume that within the boundary layer, dψ̂/dz � kψ̂. The governing equations

are then approximated by

−2
dψ̂

dz
= Eν

d2û

dz2
,

2û = −ikp̂+ Eν
d3ψ̂

dz3
,

dp̂

dz
= −ikEν

d2ψ̂

dz2
, (4.41)

which simplify to

d5ψ̂

dz5
= −4

dψ̂

dz
, (4.42)

with solutions

ψ̂(z) = ψ0 + ψ1e
λ3 + ψ2e

−λ3z + ψ3e
λ4z + ψ4e

−λ4z ,

û(z) = u0 − 2

Eν

[
1

λ3
ψ1e

λ3z − 1

λ3
ψ2e

−λ3z +
1

λ4
ψ3e

λ4z − 1

λ4
ψ4e

−λ4z

]
, (4.43)

where

λ3 = (1 + i)E−1/2
ν , λ4 = (1− i)E−1/2

ν . (4.44)

The growing exponentials are ignored to match the solution far from the boundary layer; it then

becomes clear that u0 = ûbulk(0
+), while −ikψ0 = ŵbulk(0

+). Requiring no-slip, impermeable

conditions at z = 0 implies

ψ0 + ψ2 + ψ4 = 0 ,

λ3ψ2 + λ4ψ4 = 0 ,

u0 − 2

Eν

[
− 1

λ3
ψ2 − 1

λ4
ψ4

]
= 0 , (4.45)

which in turn implies

ψ4 = −λ3
λ4
ψ2 ,

ψ2 =
λ4

λ3 − λ4
ψ0 ,

u0 =
2

Eν

λ3 + λ4
λ3λ4

ψ0 = 2E−1/2
ν ψ0 . (4.46)
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This last equation then uniquely relates the limit of the bulk solution û(0+) and ŵ(0+) as z → 0

as

ûbulk(0
+) =

2i

k
E−1/2

ν ŵbulk(0
+) , (4.47)

yielding the standard Ekman jump condition.

Appendix B: Stratified stress-free solution

The boundary conditions discussed in Section 4.2.3.3 imply the following set of equa-

tions. At z = 0, ŵ = 0 and ûz = 0 (alternatively, T̂ = 0):

0 = u3 − u4 ,

0 = ku1 − ku2 + λ2u3 − λ2u4 . (4.48)

At z = 1: ŵ = 0 and T̂ = 0:

0 = Ae1/δ +Be−1/δ − 2iS

kΛ
, (4.49)

0 = T0e
k + T1e

−k . (4.50)

Finally, matching conditions on ŵ, p̂, T̂ and dT̂ /dz at z = h:

−ikEν
k2 − λ22
λ2

u3 sinh(λ2h) = Aeh/δ +Be−h/δ − 2iS

kΛ
,

2u1 cosh(kh) + 2u3 cosh(λ2h) = U0(h) +
ik

2
δΛ
[
Aeh/δ −Be−h/δ

]
,

T0e
kh + T1e

−kh = − 4

ikRo2rz
[ku1 sinh(kh) + λ2u3 sinh(λ2h)] ,

T0e
kh − T1e

−kh = − 4

ik2Ro2rz

[
k2u1 cosh(kh) + λ22u3 cosh(λ2h)

]
, (4.51)
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where u4 and u2 were already eliminated using equations (4.50). We now proceed to eliminate

A, B, T0 and T1, which leaves two equations for u1 and u3:

2G [u1 cosh(kh) + u3 cosh(λ2h)]− δΛk2Eν
k2 − λ22
2λ2

u3 sinh(λ2h) ,

= δS
(
e(h−1)/δ(1−G)− 1

)
+GUo(h) ,

(F − 1)ku1 sinh(kh) + ku1 cosh(kh) = −λ
2
2

k
u3 cosh(λ2h)− (F − 1)λ2u3 sinh(λ2h) ,(4.52)

where the functions F (h, k) and G(h, h) are geometric factors defined as

F (h, k) =
2

1− e2k(h−1)
,

G(h, k) =
e(h−2)/δ − e−h/δ

e(h−2)/δ + e−h/δ
. (4.53)

These equations form a linear system for u1 and u3 with

u1 = −Hu3 ,

u3 =
δS
(
e(h−1)/δ(1 −G)− 1

)
+GUo(h)

2G [−H cosh(kh) + cosh(λ2h)]− δΛk2Eν
k2−λ2

2

2λ2
sinh(λ2h)

, (4.54)

and where the function H(h, k, λ2) is given as

H(h, k, λ2) =
λ2
k

λ2

k cosh(λ2h) + (F − 1) sinh(λ2h)

cosh(kh) + (F − 1) sinh(kh)
. (4.55)

These rather opaque solutions can be clarified a little by looking at the various relevant

limits. For weakly stratified fluids λ2 → 0. Then H(h, k, λ2) = O(λ22) → 0, and so

u3 =
δS
(
e(h−1)/δ(1−G)− 1

)
+GUo(h)

2G− δΛk4Eν
h
2

+O(λ22) . (4.56)

In the limit Eν → 0 this then becomes

u1 = O(λ22) ,

u3 =
1

2

[
Uo(h)− δS

1− cosh((1− h)/δ)

sinh((1 − h)/δ)

]
. (4.57)
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Folding this back into the original solution in the radiative zone then yields

ŵ(z) = −ik3Eνu3z = − ik
3Eν

2

[
Uo(h)− δS

1− cosh((1− h)/δ)

sinh((1− h)/δ)

]
z , (4.58)

which is identical to equation (4.19).

In the opposite, strongly stratified limit, λ2 � k. Then we have instead

H(h, k, λ2) � λ22
k2

cosh(λ2h)

cosh(kh) + (F − 1) sinh(kh)
, (4.59)

so that this time u3 = O(λ−2
2 ) → 0, and in the limit Eν → 0

u1 =
1

2 cosh(kh)

[
Uo(h)− δS

1− cosh((1 − h)/δ)

sinh((1 − h)/δ)

]
. (4.60)

Folding this back into the equation for ŵ(z) in the radiative zone now yields

ŵ(z) = − ik
3Eν

2λ2

sinh(λ2z)

cosh(λ2h)

(
1− tanh(kh)

tanh(k(1 − h))

)[
Uo(h)− δS

1− cosh((1 − h)/δ)

sinh((1 − h)/δ)

]
, (4.61)

therefore justifying the scaling discussed in 4.2.4.3.
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Chapter 5

Magnetohydrodynamics:

Numerical Solutions

This chapter is in preparation for publication of the paper 2-D Numerical simulations of

the Solar Tachocline in the Astrophysical Journal. It focuses on the development of a numerical

model to validate the Gough and McIntyre theory on the solar tachocline. The model solves

for the interaction between large-scale meridional flows generated in the convection zone with

an internal magnetic field residing in the radiative zone. We have found solutions that have

qualitative similarity with observations. An analysis of the forces dominating the dynamics

of the radiative zone confirms the assumptions and predictions about the tachopause and the

tachocline in the Gough and McIntyre’s theory.

Our model is built upon the work of Garaud and Garaud (2008, referred to as GG08

hereafter). GG08 developed a code to find 2-D steady state, axisymmetric solutions of the MHD

equations in the radiative zone only. They started from a spherically symmetric background state

in hydrostatic equilibrium derived from 1-D solar standard models, and studied perturbations

to the system caused by a differential rotation imposed from an overlying convection zone and
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an internal, primordial magnetic field. They included perturbations of all thermodynamical

quantities as well as the velocity and magnetic fields. The system solved was fully non-linear

in terms of velocity and magnetic field perturbations, but was linearized in the thermodynamic

perturbations.

Their computational domain was a spherical shell with r in [0.35, r0]. The background

state was computed from model S Christensen-Dalsgaard, Gough, and Thompson (1991), and

the diffusivities using formulae derived by Gough (2007). It is important to note that all the

forcing (differential rotation and magnetic field) was applied through the boundary conditions.

The radiative-convective interface was assumed to be differentially rotating, and inflow/outflow

boundary conditions were used to model the effects of an overlying convection zone in driving

large-scale azimuthal and meridional flows. GG08 also assumed the presence of a primordial

field maintained by a point dipole located at the origin. The core field was matched onto the

computational domain field at the lower boundary.

Under the point dipole assumption, unfortunately, the magnetic field B reaches unreal-

istically high amplitudes near the center, leading to numerical convergence difficulties and driv-

ing artificial MHD instabilities near the lower boundary. This ultimately prevented GG08 from

obtaining solutions at low enough diffusivities to exhibit a Gough and McIntyre-like tachocline.

In order to improve the stability of the numerical scheme and model the dynamics of

the complete system, including both the convection zone and the radiative zone, we revisit their

model extending the computational domain and introducing body terms to drive the flows and

maintain the field. The equations governing the dynamics of the system, all variables of interest,

boundary conditions, and the method of solution are described in the following section.
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5.1 The Model

5.1.1 The background state

As in GG08, our background state is a non-rotating, non-magnetic Sun in hydrostatic

equilibrium. We interpolate Model S (Christensen-Dalsgaard etal., 1996) to obtain the density ρ̄,

temperature T̄ , pressure p̄, gravity ḡ, and heat capacity at constant pressure c̄p of the background

fluid as a function of radius r.

Our computational domain is larger than that of GG08, and consists of a spherical

shell with r ranging from rin = 0.05R� to rout = 0.95R�. The system is assumed to be rotating

with mean angular velocity

Ω� = Ωeq

[
1− 1

5
a2 − 3

35
a4

]
, (5.1)

where Ωeq, a2, and a4 were defined in Section 4.3.1. This expression results from assuming

the total angular momentum of the convection zone to be zero in the rotating frame (Gilman,

Morrow and Deluca, 1989).

Our goal is to study how this background changes under forcing by the differential

rotation in the convection zone and by a large-scale primordial field.

5.1.2 The model equations

To find steady-state solutions for the equations governing the magnetohydrodynamics

(MHD) of the solar interior, we assume that all resulting fluid motions are sufficiently slow to

apply the anelastic approximation and assume axial symmetry. In spherical coordinates (r, θ,

φ), perturbed thermodynamical fields q are written as q(r, θ) = q̄(r) + q̃(r, θ), where the bar

indicates the background state and the tilde refers to the (small) perturbations.
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Under these assumptions, the system of governing equations can be written as:

2ρ̄(r)Ω × u = −∇p̃− ρ̃ḡ(r)er + j×B+∇ ·Π− 1

τ(r)
(u− ucz) (5.2)

ρ̄(r)T̄ (r)u · ∇s̄(r) = ∇ · (k(r)∇T̃ ) (5.3)

∇× (u×B) = ∇× [η(r)(∇ ×B− 4πj0)] (5.4)

p̃

p̄(r)
=

ρ̃

ρ̄(r)
+

T̃

T̄ (r)
(5.5)

∇ · (ρ̄(r)u) = 0 (5.6)

∇ ·B = 0 , (5.7)

where u is the velocity of the fluid, B the magnetic field, j the electric current density, η the

magnetic diffusivity, and k the thermal conductivity. The viscous stress tensor Π incorporates

the contribution of the viscosity ν:

Π = ρ̄(r)ν(r)

[
∇u+ (∇u)T − 2

3
(∇ · u)I

]
, (5.8)

where I is the identity matrix.

The non-linear advection term in the momentum equation is neglected in the radiative

region. In the convection zone, its main effect is assumed to be the driving of the differential

rotation. For this reason we replace (u · ∇)u by the body force term − 1
τ (u − ucz) where 1/τ

vanishes in the radiative zone (see Section 5.1.6.1 for more detail). Similarly, we introduce a

forcing term j0 in the magnetic induction equation to maintain a background magnetic field (see

Section 5.1.6.2 for detail).

5.1.3 The diffusivity profiles

In all what follows, we use r0 to denote the radius of the radiative-convective interface.

For simplicity, diffusivities in the radiative zone (r < r0) are assumed to be constant, with values

νrz, ηrz , and κrz. In the convection zone, we assume that magnetic and thermal diffusivities

86



both increase to model the effects of the turbulence on the field and on heat transport 1. Thus,

for r > r0:

ν(r) = νrz (5.9)

η(r) = ηrz + ηturb(r) (5.10)

κ(r) = κrz + κturb(r) , (5.11)

where

ηturb(r) =
1

2
(ηcz,max − ηrz)

r − r1
rout − r1

[
tanh

(
r − r2
∆cz

)
+ 1

]
(5.12)

κturb(r) =
1

2
(κcz,max − κrz)

r − r1
rout − r1

[
tanh

(
r − r2
∆cz

)
+ 1

]
, (5.13)

where r1 is the location where thermal and magnetic diffusivities start increasing. Note that

r1 does not necessarily have to be equal to the radius of the radiative-convective interface r0.

In fact, we choose r1 > r0 for the reasons explained in Section 5.2. The selection of the offset

δcz = r1−r0 is also discussed in Section 5.2. In addition, we include a tanh term in the diffusivity

profiles with midpoint r2 and width ∆cz. This smoothes out the transition of diffusion from

laminar to turbulent regimes. In all that follows, we take r2 = 0.7427R� and ∆cz = 0.02R�.

5.1.4 The stratification parameter σ and the selection of N2

In Chapter 4 (see also Wood, McCaslin, and Garaud , 2011), we showed the importance

of the stratification parameter σ =
√
PrN/Ω� in setting the vertical scale of the penetration of

the flows into the radiative interior. If σ is too large, flows are rapidly damped and will not be

able to confine the magnetic field. We therefore have to ensure that σ is of the same order as in

1We do not increase the viscosity in the convection zone to prevent the formation of Ekman layers near the
radiative-convective interface, which might drive flows not associated with the differential rotation. By keeping
ν = νrz across the convection zone, we guarantee that the meridional flows generated in the convection zone are
the result of gyroscopic pumping only, as recommended by Gough and McIntyre (1998)
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Figure 5.1: This plot shows the diffusivity profiles for our fiducial model. The non-dimensional
diffusivities in the radiative zone are Eν = 5.0× 10−9, Eη = 1.5 × 10−8, and Eκ = 5.0 × 10−7.
The diffusion parameters are kept constant inside the radiative region, and both the magnetic
and thermal diffusivities are sharply increased in the convection zone.

the Sun. Since our Prandtl number is not solar, we chose to modify the background stratification

profile N in the simulation in such a way to ensure that σ(r) is the actual solar σ profile, σ�(r),

as computed from Model S. We proceed as follows.

First, we compute the ”true” background diffusivities ν�(r) and κ�(r) in the radiative

zone by using the expressions derived by Gough (2007). Then, we compute the solar profile for

the stratification parameter

σ�(r) =

√
ν�(r)
κ�(r)

(
N̄�(r)
Ω�

)
, (5.14)

where N̄�(r) is the solar profile for the buoyancy frequency from standard Model S.

Once the numerical diffusivity profiles ν(r) and κ(r) have been selected (see Section

5.1.3), we construct an artificial buoyancy frequency profile N̄2 satisfying:

N(r) =




1
2σ�(r)Ω�

√
κrz

νrz

[
1− tanh

(
r−r3
∆rz

)]
, for r < r0

0 otherwise.
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Figure 5.2: This plot shows the computed buoyancy frequency profile needed to recover the solar
σ profile in our numerical experiments. The plot shown here corresponds to non-dimensional
diffusivities Eν = 5.0× 10−9, Eη = 1.5× 10−8, and Eκ = 5.0× 10−7.

The added tanh profile and its parameters r3 and ∆rz are chosen to smooth out the N profile

a little bit compared with that of Model S. Indeed, the latter is too sharp, which is particularly

difficult to treat numerically and is furthermore known to be likely sharper than the true solar

profile. In what follows, we take r3 = 0.7127R� and ∆rz = 0.02R�. Figure 5.2 shows the

modified buoyancy frequency used in our fiducial model.

5.1.5 Non-dimensional equations

The variables are non-dimensionalized as follows: distances with respect to the solar

radius R�, time to the inverse of the mean solar rotation rate Ω�, velocities to R�Ω�, density

to ρ0 = 1 g cm−3, temperature to T0 = 1 K, pressure to ρ0R
2
�Ω

2
�, and the magnetic field B

is normalized to B0, which is the value of the imposed primordial field in the core (see Section

5.1.6.2).

The non-dimensionalization of the governing equations yields the following non-dimensional
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(constant) model parameters:

Λ =
B2
0

4πρ0R2�Ω2�

Eκ =
κrz

R2�Ω�

Eη =
ηrz

R2�Ω�

Eν =
νrz

R2�Ω�
. (5.15)

Under these circumstances and omitting the notation (r) for the radial dependency of

all background quantities for simplicity, the system of equations becomes:

2er × û = −ρ0
ρ̄
∇p̂+ ρ0ρ̂

ρ̄

ḡ

R�Ω2�
er +

Λ

ρ̄
(∇× B̂)× B̂ (5.16)

+
1

ρ̄
∇ ·Π− 1

τ
(û− ûcz) (5.17)

N2

ḡ

T̄

T0
û · er =

1

ρ̄c̄p
∇ · [ρ̄c̄p(Eκ + Eκ,turb)∇T̂ ] (5.18)

∇× (û× B̂) = ∇× [(Eη + Eη,turb)(∇× B̂− 4πĵ0)] (5.19)

ρ0R
2
�Ω

2
�
p̂

p̄
= ρ0

ρ̂

ρ̄
+ T0

T̂

T̄
(5.20)

∇ · (ρ̄û) = 0 (5.21)

∇ · B̂ = 0 , (5.22)

where the non-dimensional, computed perturbation fields are denoted by hats. Here

Eη,turb =
ηturb
R2�Ω�

(5.23)

Eκ,turb =
κturb
R2�Ω�

. (5.24)
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5.1.6 The forcing terms

5.1.6.1 Convection zone forcing

With the available code we cannot model the short-term turbulent flows that character-

ize the convection zone. As such, we cannot model the generation of the large-scale differential

rotation self-consistently either. Instead, we use a forcing term that drives large-scale zonal

flows to reproduce the observed differential rotation, i.e.

ucz = x sin θR�
Ωcz(x, θ)

Ω�
eφ , (5.25)

where x = r/R�. This forced shear flow in the azimuthal direction also guarantees a con-

tinuous gyroscopic pumping of meridional flows in the convection zone (GAA09; Garaud and

Bodenheimer , 2010), with downwelling in polar regions and upwelling near the equator2.

The forcing is imposed as

− 1

τ
(u− ucz) , (5.26)

where the relaxation timescale τ is defined such that

1

τ(x)
=

1

τcz

[
x− x0
xout − x0

]
, for x > x0 . (5.27)

The quantity τcz can be interpreted as the turnover time for the convective flows3. We have

chosen the τ profile so that 1/τ(x) starts increasing linearly exactly from the base of the convec-

tion zone upward. By gradually increasing the forcing, we prevent the formation of boundary

layers at the radiative-convective interface that a step function, as

1

τ(x)
=




1
τcz

, for x > x0 ,

0 otherwise,

2According to Gough and McIntyre (1998), one of the main conditions in modeling the dynamics of the solar
interior is the existence of large-scale meridional flows generated by gyroscopic pumping in the convection zone.

3Note that the forcing term in the momentum equation is similar to the one used by Garaud and Bodenheimer
(2010) and by Rogers (2011) in their modeling of the hydrodynamics of the convection zone.
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might otherwise generate (see GAA09).

The shape and magnitude of the of the function τ(x) has little direct impact on the

resulting dynamics in the radiative interior (Wood, McCaslin, and Garaud , 2011).

5.1.6.2 The new magnetic background

Another modification to GG08’s model is in the treatment of the background magnetic

field. Instead of maintaining it through boundary conditions, we assume the presence of an

azimuthal electric current density in the region where ra ≤ r ≤ rb, which induces a magnetic

field B0. With x = r/R� again, the non-dimensional expression for this current density is

chosen to be:

ĵ0(x, θ) =




J0(x− xa)(x − xb) sin θeφ , for xa < x < xb

0 everywhere else

where xa and xb are both far below the region where the tachocline is expected to form. In all

that follows, we take xa = 0.1 and xb = 0.3. This generates a dipolar magnetic field, whose

exact radial dependence is shown in Appendix B. By restricting this forcing term to a short

radial interval within the radiative zone, we reduced the scope for numerical instabilities near

the core, which created difficulties in GG08.

The non-dimensional, electric current density amplitude J0 is specifically chosen so

that the induced non-dimensional magnetic field within the core sphere (x < xa) is constant

and equal to 1. This is done in the following way.

The magnetic potential Â0
4, solution of

ĵ0 = ∇×∇×
(

Â0

4πx sin θ
êφ

)
(5.28)

4We define the magnetic vector potential as in Garaud and Guervilly (2009).
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is:

Â0(x, θ) =




1
2x

2 sin2 θ , 0 ≤ x ≤ xa

−8πJ0x
2
[

1
18x

3 − 1
10 (xa + xb)x

2 + 1
4xaxbx+ c1

3 + c2
x3

]
sin2 θ , xa ≤ x ≤ xb

c3
2x sin2 θ , xb ≤ x

(5.29)

thus guaranteeing that the field in the core (x < xa) is B0 = êz.

J0 and the other constants c1, c2, and c3 are then obtained by requiring continuity of

Br and dBr/dx at x = xa and x = xb, which results in:

c1 = −
[
1

3
x3b −

1

2
(xa + xb)x

2
b + xax

2
b

]
(5.30)

3c2 =
1

6
x6a −

1

5
(xa + xb)x

5
a +

1

4
xaxbx

4
a (5.31)

3c3 = 8πJ0

[
1

6
(x6b − x6a)−

1

5
(xa + xb)(x

5
b − x5a) +

1

4
xaxb(x

4
b − x4a)

]
, (5.32)

and

J0 =
3

8π
[
1
3 (x

3
b − x3a)− 1

2 (xa + xb)(x2b − x2a) + xaxb(xb − xa)
] . (5.33)

For our fiducial model with xa = 0.1 and xb = 0.3, we have J0 = −1125/4π = −89.52466,

c1 = 0.00000, c2 = 3.88889× 10−8, and c3 = 8.25556× 10−6. Figure 5.3 shows contour lines of

the magnetic potential A0 induced by this forcing term j0,φ.

5.1.7 Boundary conditions

The bottom boundary at xin is considered impermeable and stress-free. The core

angular velocity, Ωin, is chosen in such a way as to guarantee that the fluid exerts a zero total
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Figure 5.3: Plot of the magnetic field lines that result from the definition of an electric current
density in the azimuthal direction near the core.
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torque on the core. This implies:

ûr(xin, θ) = 0 (5.34)

∂ûθ(xin, θ)

∂x
= 0 (5.35)∫ π/2

−π/2

(
ρ̄

ρ0
Eνx

2
in

∂Ω̂

∂x
sin2 θ +

B̂rB̂φ

4π
xin sin θ

)
sin θdθ = 0 . (5.36)

The inner core (x < xin) is also considered as a thermally conducting solid (out of

the computational domain) with the same thermal diffusivity as the fluid close to the bottom

boundary (x = xin). The temperature perturbations in the core satisfy the Laplace equation:

∇2T̃ (xin, θ) = 0 . (5.37)

Requiring continuity of T̃ and dT̃/dx at the interface between the core and the bottom region of

the system, the solutions of Equation 5.37 are matched onto the solutions of the computational

domain at the boundary x = xin.

Similarly, the inner core is electrically conducting and with the same electric current

density and electric conductivity as the fluid near the bottom boundary of the radiative zone.

The magnetic field perturbations also satisfy the Laplace equation in the core:

∇2B(xin, θ) = 0 . (5.38)

Requiring continuity of Br and Bθ at the interface core-model domain, the solutions in the

computational domain are matched onto the core solution at the bottom boundary.

The inner core boundary conditions are completed with the following equations for the

top boundary at xout:
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ûr(xout, θ) = 0 (5.39)

ûθ(xout, θ) = 0 (5.40)

ûφ(xout, θ) = xout sin θΩ̂cz(θ) (5.41)

∇2T̃ (xout, θ) = 0 (5.42)

∇2B(xout, θ) = 0 , (5.43)

which simply indicate that we model a impermeable, no-slip top boundary with temperature

perturbations and the magnetic field satisfying the Laplace equation outside the domain. The

top boundary condition for the zonal flow indicates that we assume the fluid to rotate with

the angular velocity as estimated from helioseismic inversions, namely Ω̂cz(x, θ) ≈ Ωeq(x)(1 −

a2(x) cos
2 θ − a4(x) cos

4 θ) with x = xout, a2 = 0.17, and a4 = 0.08.

5.1.8 The Newton-Raphson-Kantorovich method

Once the parameterization for the model is set, the system of partial differential equa-

tions governing the magnetohydrodynamics of the solar interior is numerically solved by using

the algorithm developed by GG08. The details on how these equations are solved and imple-

mented in our model are well described in GG08. Here, we give a brief description of th method

for completeness.

The system of governing equations and boundary conditions is expanded in terms of

Chebyshev polynomials and projected onto the radial coordinate to generate a system of ordinary

differential equations. Numerical solutions of these coupled nonlinear ODEs are obtained by the

parallel implementation of the Newton-Raphson-Kantorovich method, coded in FORTRAN 77,

by Garaud and Garaud (2008). This research project used the same FORTRAN routines.

Appendix G provides several examples on how to use the NRK method.
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5.2 Model sensitivity to turbulent magnetic diffusivity in

the convection zone

Flows of significant amplitude are driven in the convection zone by gyroscopic pumping.

As a result, the geometry and the structure of the magnetic field in the convection zone is very

sensitive to the assumed magnetic diffusivity profile, Eη,turb(r), in that region. In this section,

we describe the impact that small changes in the magnetic diffusivity profile have on the overall

magnetic field configuration.

By testing different profiles while keeping the rest of the parameters unchanged, we

noticed that small changes near the base of the convection zone led to major changes in the

magnetic field configuration in the steady-state solution. More precisely, we varied δcz = r1−r0,

the offset between the position r1 (see Equation 5.12) where the magnetic diffusivity starts in-

creasing above its basic radiation zone value, and the radius of the radiative-convective interface

r0. Figure 5.4 illustrates the two possible scenarios in terms of the resulting configuration of the

magnetic field. In both cases, the functional form of the diffusion parameters is similar to the

one described in Table 5.1, with Eν,rz = 5.0× 10−9, Eη,rz = 1.5× 10−8, and Eκ,rz = 5.0× 10−6.

When the magnetic diffusivity turns turbulent at the radiative-convective interface (i.e.

when δcz = 0.000), we see that the field remains open. On the other hand, when we move up the

point of transition even a tiny distance into the convection zone (δcz = 0.002R�), the magnetic

field is confined by the convection zone flows, just above the radiative-convective interface. For

the sake of clarity, in all that follows we will call this confinement by convection zone flows

”pre-confinement” to contrast it with the effect of confinement by meridional flows deeper in

the radiative zone. Pre-confinement is quite different from the dynamics described by Gough

and McIntyre for the reasons pointed out below.

However, let us first describe why such a small offset δcz of the Eη,turb profile results in
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Figure 5.4: Effect of the location where the magnetic diffusivity becomes turbulent on the ge-
ometry of the magnetic field. Here we see, on the left panel, that when the magnetic diffusivity
starts its turbulent behavior at the base of the convection zone, the steady-state resulting mag-
netic field is open. On the other hand, when the point of turbulent magnetic diffusivity shifts
upward as a small distance as δcz = 0.002R�, the steady-state configuration of the magnetic
field exhibits confinement at the base of the convection zone, as we see on the right panel.
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magnetic pre-confinement in the lower convection zone by contrast with the unconfined solution

when δcz = 0. We compute the magnetic Reynolds number Rm = urL/η, where L is arbitrarily

selected to be L = 0.10R�, for both simulations shown in Figure 5.4. The results are shown

in Figure 5.5. Since downwelling flows reaching the lower convection zone show similar profiles

in both cases (see Figure 5.6), the magnetic Reynolds number Rm is mostly controlled by the

value of the magnetic diffusivity. In the case where δcz = 0.000, the flow amplitude drops to

zero, approaching the base of the convection zone, at the same rate (more or less) as Eη, leading

to Rm < 1 in the entire convection zone, as shown in Figure 5.5. On the other hand, when

δcz = 0.002R�, the location where magnetic diffusivity turns turbulent moves higher up into the

convection zone, and a shallow region r0 < r < 0.7145R� appears where strong meridional flows,

combined with a sufficiently low magnetic diffusivity, yield Rm � 1. This indicates a strong

interaction between flows and magnetic field, which results in magnetic field ”pre-confinement”

in the convection zone.

In the absence of any other dynamics, this ”pre-confinement” model is not dissimilar

from the one described by Kitchatinov and Rüdiger (2006), who built a model of the radiative

region with meridional flows only penetrating an Ekman layer of the order of 100 meters (when

microscopic viscosity is assumed). They argued that these meridional flows are suficiently strong

to confine the field. However, any meridional flows in the bulk of the radiative interior were

neglected. As a result, their tachocline is very different from the one described by the Gough and

McIntyre model, because it is a laminar layer in magnetoviscous balance. In essence, it is more

like a ”tachopause” than a ”tachocline” (see Gough and McIntyre , 1998). The quantitative

difference between ”pre-confinement-only” models a la Kitchatinov and Rüdiger and the Gough

and McIntyre model is discussed in more detail in Section 5.4.3.2. What is interesting, however,

is that pre-confinement appears to be needed to facilitate the deeper Gough and McIntyre’s

confinement process. Indeed, with pre-confinement, we are able to find deeply confined solutions
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Figure 5.5: This plots shows the magnetic Reynolds number, Rm = urL/η, with L = 0.10R�,
as computed for the two cases illustrated in Figure 5.4. As we can see in this zoomed in region
near the base of the convection zone, Rm � 1 for the pre-confined field case (dotted line),
which indicates that the flows are interacting with the magnetic field to a great extent within
the convection zone. On the other hand, Rm � 1 for the open case (dashed line), which
corresponds to a situation where there is no flow-magnetic field interaction.

as described in Section 5.3.

Is magnetic field pre-confinement in the convection zone a possible scenario in the real

Sun? Brummell, Clune, and Toomre (2001), as well as Garaud and Rogers (2007) proposed

that magnetic ”pre-confinement” could be the result of turbulent pumping of magnetic field by

overshooting plumes crossing the radiative-convective interface. Since the transport of angular

momentum and magnetic fields can only be modeled in three dimensions, Wood and Brummell

(2012 submitted) have performed 3-D numerical simulations of the vicinity of the radiative-

convective interface. Their preliminary results show that ”horizontal” magnetic field in the

equatorial region can be pre-confined by convective plumes regardless the presence of meridional

flows. In the case of ”polar” magnetic field, however, the confinement can only be achieved by
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Figure 5.6: These plots show the mass flux at 80o latitude for the two cases depicted in Figure
5.4, respectively. First, we see in the left panel how the downwelling mass flux remains high in
amplitude even at very deep zones in the radiative zone. This happens when the magnetic field
remains open at the radiative-convective interface. On the other hand, we see in the right panel
how a pre-confined magnetic field at the radiative-convective interface affects the downwelling
mass flux to the extent that the fluid in the radiative zone stops its burrowing at depths not so
far from the interface.

meridional flows, as suggested by Wood and McIntyre (2011).

Since we cannot self-consistently model turbulent pumping in our simulation, we will

use a non-zero δcz to force magnetic pre-confinement in the lower convection zone. In our fiducial

model, we therefore fix δcz = 0.0003R� unless otherwise indicated.

5.3 Fiducial model results

We present in this section the results of our fiducial model. The governing parameters

for this reference case were selected after a series of experiments starting from a parameter

regime similar to the one proposed by Wood, McCaslin, and Garaud (2011) and gradually

reducing all parameters simultaneously. The model selected is our best outcome for a well-

resolved simulation. The parameterization of our fiducial model is summarized in Table 5.1. We
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Parameter Radiative Zone Convection Zone
Eν 5.0× 10−10 5.0× 10−10

Eη 1.5× 10−9 1.5× 10−9 + 5.0 r−r1
rout−r1

[
tanh

(
r−r2
∆rz

)
+ 1
]

Eκ 5.0× 10−7 5.0× 10−7 + 0.5 r−r1
rout−r1

[
tanh

(
r−r2
∆rz

)
+ 1
]

σ σ�(r)
[
1− tanh

(
r−r0
∆rz

)]
0.0

1
τ 0.0 1

τcz

[
r−r0

rout−r0

]
Λ 1.0× 10−3 1.0× 10−3

Table 5.1: Non-dimensional parameters for the fiducial model. Here, r0 = 0.7127R� is
the location of the radiative-convective interface, r1 = 0.7130R� is the location where thermal
and magnetic diffusivities start increasing, and r2 and ∆rz define the transition from laminar
to turbulent diffusivities. Also, r0 and ∆rz are parameters of the transition of σ(r) to zero
near the base of the convection zone. The domain for this model runs from rin = 0.05R� to
rout = 0.90R�.

will first describe its qualitative properties and then analyze it more quantitatively by studying

the balance of dominant forces responsible for the formation of the tachocline, and by comparing

our findings with theoretical expectations from previous semi-analytical models (e.g. Gough and

McIntyre , 1998; Wood, McCaslin, and Garaud , 2011).

5.3.1 A first glimpse of the solar tachocline

Figure 5.7 shows the steady-state solution of the flow field, temperature perturbation,

magnetic field, and angular velocity, and demonstrates that magnetic confinement below the

radiative-convective interface is possible.

The top left figure shows the steady-state meridional flows generated in the model.

From the surface to the center, we identify three main regions. In the convection zone, the

flows are driven by the gyroscopic pumping effect of the imposed zonal flow. We observe a

single meridional cell with surface flows moving toward the poles and fluid near the base of the

convection zone moving toward the equator.

The tachocline is located below the radiative-convective interface. Since the radiative

region in our fiducial model is weakly stratified in terms of the parameter σ, a fraction of the
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Figure 5.7: This plots shows the steady-state solution of the equations governing the magneto-
hydrodynamics of the solar tachocline in our fiducial model (see Table 5.1). Starting from the
top left panel and going clockwise, we show plots of the streamlines, temperature perturbations,
angular velocity, and magnetic field lines. The top left panel shows that large-scale meridional
flows generated in the convection zone are able to penetrate into the radiative interior at high
latitudes. These downwelling flows are deflected by the internal magnetic field in the tachopause
and, in turn, confine the field. This results in solid-body rotation of the radiative interior below
the tachopause, as depicted in the bottom right panel.
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Figure 5.8: This plot shows the magnetic Reynolds number, Rm = urL/η, with L = 0.10R�.
Thick contour lines correspond to Rm = {1.0, 10.0, 100.0}, and emphasize the region below
the radiative-convective interface where the advection of the field is expected to dominate over
diffusion.

meridional mass flux driven in the convection zone downwells into the tachocline. We observe

two cells, including a large polar cell with meridional flows circulating clockwise, and a small

equatorial cell with meridional flows circulating in the opposite direction. Both extend down

to about 0.50R�. The downwelling flows in the large cell, although weak in amplitude, are

sufficiently strong to distort the magnetic field (see below). Below the tachocline, we observe

a large meridional counter-cell. We show later that it is part of the tachopause. Below that

region, the velocities are negligible.

The bottom left figure shows the effect of these flows on the poloidal magnetic field. In

the upper part of the convection zone, the magnetic diffusivity is high and the flows do not affect

the field. By contrast, we see that the field lines are strongly distorted by the flows in the lower
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part of the convection zone, where the magnetic diffusivity drops and the magnetic Reynolds

number increases above 10. Equatorward flows advect field lines from high to low latitudes, so

their geometry in the vicinity of the base of the convection zone is mostly horizontal. This is

what we call magnetic pre-confinement and was extensely discussed in Section 5.2.

Despite the fact that the flow velocities are much smaller within the tachocline than

in the convection zone, the local magnetic Reynolds number remains relatively high (again, see

Figure 5.8). Polar field lines are bent horizontally and advected toward mid-latitudes (roughly

30 degrees) as predicted by Gough and McIntyre (1998) and studied by Wood, McCaslin, and

Garaud (2011). Below the tachopause at r = 0.5R�, by contrast, we see that the field is not

affected by the flows and is more or less equal to the imposed primordial field (see Figure 5.3).

The right bottom panel of Figure 5.7 illustrates the steady-state configuration of the

angular velocity. The convection zone, as expected, rotates with the imposed differential ro-

tation. Most of the radiative zone, by contrast, exhibits a uniform angular velocity, namely

Ω ≈ 0.92Ωeq, which extends from the base of the tachocline to the core albeit with some shear

near the polar axis. The tachocline lies between these two regions and matches their respective

rotation profiles, although not necessarily monotonically (see in particular the polar sub-rotating

region).

The remaining plot in Figure 5.7 provides the temperature perturbation computed by

our fiducial model. The temperature perturbations are negligible in the magnetically dominated

part of the radiative region, below the tachopause. By contrast, the tachocline exhibits a strong

latitudinal temperature gradient consistent with thermal wind balance (see below).

We now analyze the results of the fiducial model more quantitatively to determine

the dominant balances in each region, and verify whether this model satisfies the Gough and

McIntyre’s, as well as Wood, McCaslin, and Garaud’s models.
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Figure 5.9: This figure shows a comparison of the various terms contributing to the global force
balance in the azimuthal vorticity equation in our fiducial model. Note that these plots show
the balance in the radiative region only (the convection zone appears in white). The rotational
shear, as expressed in the left hand side of Equation 5.44 is shown in the top left panel, and is
clearly in balance with the baroclinicity terms (right hand side of the same equation), as we can
see in the top right panel. The remaining terms in the vorticity equation are shown in the two
lower panels, and confirm that both viscous (left) and magnetic (right) stress-related terms are
negligible.

106



5.3.2 Thermal wind balance in the radiative interior

The first aspect of Gough and McIntyre’s theory that we verify is the assumption of

thermal-wind balance. This equilibrium occurs when the system satisfies the hydrostatic and

geostrophic balances. Taking the curl of the steady-state momentum equation divided by the

background density ρ̄, we obtain:

−2Ωr sin θ

[
cos θ

∂Ω̃

∂r
− sin θ

r

∂Ω̃

∂θ

]
=

1

rρ̄2
∂ρ̄

∂r

∂p̃

∂θ
− g

rT̄

∂T̃

∂θ

+

[
∇×

(
1

ρ̄
j×B

)]
φ

+

[
∇×

(
1

ρ̄
∇ ·Π

)]
φ

−
[
∇×

(
u− ucz

ρ̄τ

)]
φ

,

(5.44)

where the left-hand side term represents the rotational shear5, and the first two terms of the

right-side account for the total baroclinicity. The balance between rotational shear and total

baroclinicity is the thermal wind equation. The remaining terms on the right side are the

magnetic and viscous torques as well as the curl of the gyroscopic pumping term. The latter is

included for completeness but is zero in the radiative interior.

The two top panels in Figure 5.9 show the rotational shear (left panel) and the baro-

clinicity term (right panel), which clearly balance each other. The bottom panels, which show

the viscous (left) and magnetic (right) terms, confirm that their respective contribution to the

azimuthal vorticity equation is negligible. Hence, the assumption of thermal wind balance is

valid.

5.3.3 The azimuthal force balance in the tachocline

The second aspect of Gough and McIntyre’s theory that we examine is the angular

momentum transport balance by studying the azimuthal component of the momentum equation.

5These two terms can be reduced to 2sΩ ∂Ω̃
∂z

when s = r sin θ and z = r cos θ, which better represent the

rotational shear along the polar axis
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Figure 5.10: This figure shows the various terms that contribute to the azimuthal force balance
in the radiative zone in our fiducial model . Note that these plots show the balance in the
radiative region only (the convection zone appears in white). Shown are the Coriolis force (top
left panel), Lorentz force (top right panel), viscous-stresses (bottom left panel), and the inertial
term (bottom right panel). These plots illustrate the balance between Coriolis and Lorentz
forces, while the viscous stresses and the non-linear advection term remain negligible. Note how
the tachocline is mostly force-free while the tachopause stands out as the region where strong
Coriolis and Lorentz forces balance out.
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The following forces operate in the azimuthal direction:

−2ρΩ�(uθ cos θ + ur sin θ) (Coriolis)

−ρ
[
ur
∂uφ
∂r

+
uθ
r

∂uφ
∂θ

+
1

r
uφur +

cos θ

r sin θ
uφuθ

]
(Inertial)

jrBθ − jθBr (Lorentz)

−ρ
τ
[uφ − uCZ ] (Gyroscopic pumping)

(∇ ·Π)φ (Viscous stresses)

Here, Π = ρν[∇u+ (∇u)T − 2
3∇ · uI].

Figure 5.10 shows each of these terms individually (i.e. except the pumping term,

which does not act in the radiative zone). We verified that their sum is zero, as expected in

steady state.

First and foremost, note that the viscous stresses are negligible in the tachocline,

confirming the theoretical expectation that viscosity should play no role in its dynamics 6. This

finding contrasts with the results obtained by Strugarek, Brun, and Zahn (2011) and Rogers

(2011). Their 3-D, time-dependent simulations show a viscous tachocline unable to confine an

internal magnetic field. We discuss in Chapter 6 the reason for this difference with our own

model results.

The top panels of Figure 5.10 show, from left to right, the azimuthal component of the

Coriolis and Lorentz forces, which are clearly in balance in the most of the radiative zone. This

is consistent with the assumptions from Gough and McIntyre (1998) and Wood, McCaslin, and

Garaud (2011). In addition, we see that the tachocline is mostly force-free by contrast with the

tachopause below, where we see a strong presence of Lorentz and Coriolis forces.

6Viscous stresses are significant in the proximity of the polar axis, in a thin boundary layer where they balance
the Lorentz forces associated with the interaction of the primordial field with the boundary near the inner core.
However, we do not expect these stresses to occur in the real Sun.
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Figure 5.11: Downwelling meridional mass flux |ρ̄ur| at 80 degrees latitude. We observe that it is
constant from the convective-radiative interface down to about r = 0.58R�, a region we identify
as the tachocline. Below 0.58R�, |ρ̄ur| starts decreasing. We identify the region between the
base of the tachocline and the first zero of |ρ̄ur| as the tachopause (here at r = 0.525R�).

5.3.4 Estimating the thickness of the tachopause and the tachocline

The fact that the tachocline is magnetic-free (in the sense that the Lorentz force is

negligible) has implications on the mass flux coming from the convection zone (see Wood, Mc-

Caslin, and Garaud , 2011 for a complete discussion). Indeed, taking the curl of the momentum

equation and combining it with the mass conservation law yields:

−2(Ω · ∇)(ρ̄u) = ∇ρ̃× g +∇× (j×B) , (5.45)

(where viscous stresses were neglected). The radial component of this expression reduces to:

−2Ω
d

dz
(ρ̄ur)− 2

r
Ωuθ sin θ = [∇× (j×B)]r , (5.46)
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where z = r cos θ. Note that uθ sin θ is negligible at high latitudes. This expression therefore

indicates that in absence of magnetic stresses in the tachocline, the change of radial mass flux

along the polar axis is zero. This is illustrated in Figure 5.11, which shows the mass flux |ρur|

at 80 degrees latitude. We see that |ρur| is constant between the radiative-convective interface

and r ≈ 0.58R� and then decreases rapidly to zero as a result of the effect of the magnetic field.

We can therefore use Figure 5.11 to identify the tachocline and the tachopause regions.

In what follows, we define the base of the tachocline to be located at the depth where |ρ̄ur|

drops by 5% from its value just below the convection zone, as measured at 80o latitude. Based

on Figure 5.11, we find that the base of the tachocline is at rT = 0.575R� in the fiducial model.

Then, we define the tachopause as the region located between the base of the tachocline

and the depth at which the mass flux equals zero. From Figure 5.11, we find that this happens

at rt = 0.525R�. Hence, we found in our fiducial model that the thickness of the tachocline

is roughly three times the thickness of the tachopause, which marks an important distinction

between our model and others where the tachopause is thicker than the tachocline (Kitchatinov

and Rüdiger, 2006; Strugarek, Brun, and Zahn, 2011).

These definitions are arguably somewhat arbitrary: one could equally well define the

base of the tachocline to be where the mass flux drops by Q%, where Q is any number between

0 and say, 20. Furthermore, since the radial mass flux in the tachopause varies sinusoidally

with depth (Wood, McCaslin, and Garaud , 2011), we could equally well define the base of the

tachopause to be the position of the second zero, or the maximum between them. In this sense,

the values obtained for the respective thicknesses of the tachocline and the tachopause should

be viewed as rough estimates rather than precise measurements. However, the hope is that

the manner in which both thicknesses vary with governing parameters (e.g. Eκ, Eη) should be

independent of our strategy to estimate them.
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Figure 5.12: This figure shows the magnetic confinement parameter |Br/B0,r| (see the main
text for details) and clearly illustrates efficient magnetic confinement at high latitudes in the
tachocline.

5.3.5 Magnetic confinement

Another way of quantifying magnetic confinement is by constructing the parameter

|Br/B0,r| (shown in Figure 5.12), as defined by Garaud and Garaud (2008), where Br is

the radial component of the magnetic field in the fiducial model, whereas B0,r is the radial

component of the imposed, background magnetic field. From this plot, we see that the field is

strongly confined at high latitudes.

From the results discussed in Sections 5.3.3, 5.3.4, and this one, we say that the model

achieved magnetic confinement by the tachocline meridional flows, as predicted by Gough and

McIntyre (1998).
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Figure 5.13: The toroidal field in the radiative zone.

5.3.6 Toroidal field

The final aspect of the Gough and McIntyre’s theory that we investigate is the dis-

tribution of toroidal fields in the tachocline and in the tachopause. Strong toroidal fields are

expected to be generated as poloidal magnetic field is twisted by the azimuthal flows. Gough

and McIntyre argue that this effect should be most important in the tachopause (where the

azimuthal shear winds up the primordial field).

Figure 5.13 shows the distribution of toroidal field in the radiative region for our fiducial

model. As expected, we find that strong fields are indeed generated in the tachopause and in

a localized region of the tachocline, around 45o latitude. Interestingly, this region is somewhat

closer to the poles than the center of the upwelling region around 30o. In fact, we do not expect

the presence of toroidal field in the so-called upwelling region in the tachocline because it is a
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shear-free region.

5.4 Numerical experiments at different parameter regimes

5.4.1 The effect of thermal diffusivity

Let us first vary Eκ, keeping all other parameters fixed (in particular, without changing

Eν or N2). This implies that σ changes as well, but in all cases presented we made sure that

σ remains smaller than 1 to guarantee that the effects of viscosity are always negligible in the

tachocline and tachopause. The results are shown in Figure 5.14. On the left panel, we see the

effect of a reduction of Eκ from the fiducial model value by a factor of 0.49. Since the tachocline

is in thermal equilibrium, this reduction in the thermal diffusivity directly affects the amplitude

of the downwelling meridional flows in the tachocline and therefore the depth at which these

flows confine the field. We see in the streamline plot that the tachocline is now narrower than

in the reference case (see Figure 5.7 for comparison). Also, the field exhibits less distortion in

the tachocline than in the fiducial model. On the other hand, the right panel shows the effects

on field and flows of an increment of Eκ by a factor of 2.25 with respect to the fiducial model.

This time, flows and magnetic field are able to interact at deeper regions in the radiative zone.

The streamline plot shows a tachopause-tachocline region thicker than the one in the fiducial

case, and the distortion of the field by meridional flows is greater. We now study these trends

more quantitatively.

As discussed by Spiegel and Zahn (1992) and Gough and McIntyre (1998), thermal

wind balance and thermal equilibrium imply specific scalings for the tachocline. Indeed, thermal-

wind balance implies

2sΩ0
∂Ω̃

∂z
≈ ḡ

rT̄

∂T̃

∂θ
, (5.47)
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Figure 5.14: The effect of varying the non-dimensional thermal diffusivity Eκ profile on the
dynamics of the tachocline. Here we see the steady-state results for Eκ = 0.49Eκ,REF on the
left panel and for Eκ = 2.25Eκ,REF on the right panel.
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where z = r cos θ and s = r sin θ. Assuming that the tachocline is thin and that its thickness is

∆, a boundary-layer approximation yields

T̃

T̄
≈ αΩ2

0r
2
0

ḡL∆
, (5.48)

where the rotational shear is approximated as ∂Ω/∂z ≈ (Ωcz − Ω0)/∆ ≈ αΩ0/∆, and the

latitudinal temperature perturbation as ∂T̃ /∂θ ≈ LT̃ , where L is a number of order unity. If

the tachocline is also in thermal equilibrium, then

N̄2T̄

ḡ
ur ≈ 1

ρ̄c̄p

1

r2
∂

∂r

(
r2k

∂T̃

∂r

)
, (5.49)

which yields

ur ∝ κḡ

N̄2∆2

(
T̃

T̄

)
, (5.50)

when ∂/∂r ∝ 1/∆ and κ = k/ρ̄c̄p.

From these two equilibria, Gough and McIntyre deduce that

ur ∝ αr20κ

L

Ω2
0

N̄2

(
1

∆3

)
. (5.51)

This equation is very important because relates the amplitude of the downwelling meridional

flows in the tachocline to its thickness under very plausible assumptions. It is a generic property

of many models (Spiegel and Zahn , 1992; Gough and McIntyre , 1998; Wood, McCaslin, and

Garaud , 2011). Using the measurement technique for the thickness of the tachocline and

tachopause described earlier, we can check its validity. However, first note that in the original

derivation by Gough and McIntyre , they assume that the tachopause is much thinner than the

tachocline, so that they did not need to differentiate between ∆ (tachocline thickness only) and

∆+ δ (tachocline and tachopause) in Equation 5.51. Here, δ is approximately of the same order

of magnitude than ∆, so we must decide whether Equation 5.51 or

ur ∝ αr20κ

L

Ω2
0

N̄2

[
1

(δ +∆)3

]
(5.52)
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is more appropriate. Indeed, since the tachopause is also in thermal equilibrium and in thermal

wind balance, both equations are plausible. We consider Equation 5.52 to better represent

the dynamics of the tachocline and tachopause in our model for two reasons. First, in the

approximation of the rotational shear,

∂Ω

∂z
≈ Ωcz − Ω0

D
≈ αΩ0

D
, (5.53)

Gough and McIntyre consider the depth D (from the radiative-convective interface) at which the

rotation becomes uniform (Ω0), which in our model corresponds to the base of the tachopause.

Similarly, for the boundary layer analysis of the energy equation, they approximate

∂T̂

∂r
≈ T̂

D
, (5.54)

whereD is again a lengthscale, this time associated with the region in thermal equilibrium. Since

both the tachopause and the tachocline are in thermal-wind balance and in thermal equilibrium,

D = ∆+ δ.

The relationship among Eκ, the amplitude of the mass flux in the tachocline |ρur|0,

and the thickness of the tachocline-tachopause region D = r0 − rt = δ +∆ is shown in Figure

5.157. The top panel shows that the downwelling mass flux |ρ̄ur|0 and the thickness D both

increase with thermal diffusivity. As Eκ increases, temperature perturbations diffuse faster

reaching deeper regions in the radiative zone. The lower panel shows that the thermal spreading

ratio Eκ/|ρ̄ur|0D3 is constant for varying Eκ, as predicted by Gough and McIntyre (1998) as

well as Wood, McCaslin, and Garaud (2011) with the minor correction for D noted before.

5.4.2 The effect of magnetic diffusivity

We tested the effect of the magnetic diffusivity on our fiducial model by decreasing

and increasing the reference value Eη = 1.5 × 10−9. Figure 5.17 shows the cases where Eη =

7Both in Gough and McIntyre (1998) and Wood, McCaslin, and Garaud (2011), D is assumed to be the
tachocline thickness ∆ only.
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Figure 5.15: The thermal wind balance and the thermal energy balance in the tachocline are
tested by computing the ratio Eκ/|ρ̄ur|0D3, where |ρ̄ur|0 is the downwelling mass flux in the
tachocline. In the top panel we see the variation of the mass flux |ρ̄ur|0 and the quantity
D = r0 − rt with respect to Eκ, where rt is the base of the tachopause. Both |ρ̄ur|0 and
D increase with thermal diffusivity. The lower panel shows that the thermal spreading ratio
Eκ/|ρ̄ur|0D3 is almost independent of Eκ as predicted by Gough and McIntyre. Both panels
show a vertical line indicating where Eκ,REF is located within the interval under study.
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7.5× 10−10 and Eη = 5× 10−9. There, we can appreciate how the thickness of the tachopause-

tachocline region changes with Eη. From the streamline plots (top left panels), we see that

the tachocline looks slightly thicker for the case with lower magnetic diffusivity. The same case

shows also a greater distortion of the magnetic field (see bottom left panels).

To quantify this change, let us look at the balance between the advection and the

diffusion of the magnetic field in the radiative region. In steady-state, Gough and McIntyre

(1998) argued that (in dimensional terms)

|ur| ≈ η

δ
, (5.55)

which relates the downwelling meridional flow velocity to the thickness of the tachopause and

magnetic diffusivity. We computed the ratio Eη/|ur|tδ for a series of simulations where Eη varied

from 5 × 10−10 to 1 × 10−8, and |ur|t was the radial velocity at the base of the tachocline rT .

We use our definition of the tachocline and tachopause, described in Section 5.3.4, to estimate

δ and |ur|t. The results are plotted in Figure 5.16.

The bottom panel of Figure 5.16 shows that the dimensions of the tachocline and the

tachopause change significantly with magnetic diffusivity. It is interesting to note that as Eη

decreases, the base of the tachopause remains roughly at the same place; however, the geometry

of the tachocline/tachopause system changes with the tachopause becoming thinner whereas the

tachocline thickens. As a result, the ratio δ/∆ decreases. As the magnetic diffusivity is lowered,

the steady-state solution approaches the condition δ � ∆ assumed by Gough and McIntyre

(1998).

The top panel shows that the downwelling radial velocity ur at the base of the tachopause

rt decreases as the magnetic diffusivity is reduced. We also found that the ratio of diffu-

sion/advection of the magnetic field is independent of Eη, as shown in the top panel of Figure

5.16, which is in agreement with another assumption of the Gough and McIntyre model. This
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Figure 5.16: The balance between the advection and the diffusion of the magnetic field in the
tachocline is tested by computing the ratio Eη/|ur|tδ, where |ur|t is the downwelling radial
velocity at the base of the tachocline, and δ is the thickness of the tachopause as defined in
Section 5.3.4. In the top panel we see the variation of |ur|t (curve with blue circles) and
Eη/|ur|tδ (curve in red squares) with respect to Eη. Both quantities increase with magnetic
diffusivity, although the ratio Eη/|ur|tδ remains almost constant for mid and low values of Eη.
The lower panel shows the position of the base of the tachopause (black curve at the bottom),
the base of the tachocline (red dashed curve at the middle), and the base of the convection
zone (blue curve at the top). As the magnetic diffusivity reduces, the tachocline becomes much
thicker than the tachopause, as predicted by Gough and McIntyre. Both panels show a vertical
line indicating where Eη,REF is located within the interval under study, which satisfies two more
assumptions of the Gough and McIntyre model.

relationship only departs from its constant value for high magnetic diffusivity values.

The results discussed so far prove that the assumptions in the model of Gough and

McIntyre are correct. Our fiducial model reproduces for the first time the tachocline and the

tachopause as described by their theory. Unfortunately, our parameter regime is in the borderline

where numerical instabilities arise, so we are unable to obtain sufficient data to verify their

scalings. Their relationships between the tachocline thickness and and field strength, as well

as the tachopause thickness and the magnetic diffusivity require simulations with parameters

varying in domains still computationally intractable. However, since we have already validated
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Figure 5.17: The effect of the non-dimensional magnetic diffusivity Eη profile on the dimensions
of the tachopause. Here we see the steady-state results for Eη = 7.5×10−10 and Eη = 5.0×10−9

on the left and right panels, respectively. We can see how the tachocline-tachopause region
changes in dimension with Eη. However, the effect of Eη on the thickness of the tachopause can
only be assessed by looking at Figure 5.16.
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their model, we have gone a long way towards showing that those scalings are also correct.

5.4.3 Relationship to previous models

5.4.3.1 Basic Strugarek, Brun, and Zahn model

In this section, we now revisit the results of Strugarek, Brun, and Zahn (2011) and

explain why they could not achieve magnetic confinement and, at the same time why their

simulations were viscously dominated. We ran numerical experiments in a parameter regime as

close as possible to that of Strugarek, Brun, and Zahn. We adopted their diffusion parameters

ν(r) = 8.0× 109 + 8.0× 1012
[
1.0 + tanh

(
r − 0.6753R�

0.01R�

)]
(5.56)

η(r) = 8.0× 1010 + 1.6× 1013
[
1.0 + tanh

(
r − 0.6753R�

0.01R�

)]
(5.57)

κ(r) = 8.0× 1012 + 3.2× 1013
[
1.0 + tanh

(
r − 0.6753R�

0.01R�

)]
, (5.58)

which are shown in non-dimensional form in Figure 5.18 (left panel). They used the solar profile

for the buoyancy frequency N . The corresponding profile for the stratification parameter σ is

therefore quite different from the solar profile σ� as shown in Figure 5.18 (right panel). As we

can see, σ � 1 in the entire radiative region. We imposed differential rotation in the convection

zone by using a similar forcing term as in our fiducial model. While Strugarek, Brun, and Zahn

model a time-dependent decaying magnetic field, we still have to impose a background magnetic

field in our simulation to get steady-state solutions. We do this in a similar way to the one

described in Section 5.1.6.2, but with Λ = 334. A much larger value of Λ is needed in their

model in comparison with our fiducial model to guarantee that the rotational Elsasser number

Λ/Eη will be greater than one in the radiative zone. Since their Eη is much larger than ours,

their field must also be larger.

The resulting steady-state solution for this case is shown in Figure 5.19. We can

immediately see that the downwelling flows penetrating the radiative zone from above decay
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rapidly into the interior and are unable to confine the internal magnetic field, so the latter

diffuses across the convection zone. As a result, the radiative zone is differentially rotating, in

a Ferraro state.

Figure 5.20 shows the forces operating in the azimuthal momentum equation. It is

clear, by contrast with our fiducial model, that Coriolis force and viscous stresses are in balance

just below the radiative-convective interface. As suggested by GAA09, this balance implies that

any meridional flows crossing the interface must decay on a lengthscale R�/σ. This is confirmed

in Figure 5.21, which shows the downwelling mass flux |ρ̄ur| below the interface.

The fact that Lorentz force does not play a role in the angular momentum balance

just beneath the convection zone is due to the fact that their η is still very large in that region.

Further down, η drops to its radiative zone value and the Lorentz force becomes important.

Finally, since the stratification parameter σ � 1 for Strugarek, Brun, and Zahn model,

any meridional flows downwelling into the radiative region must decay rapidly, so interaction

between those flows and the internal field in the radiative zone is not possible. Hence, the field

lines connecting the radiative and the convective zones help transport angular momentum from

the convection zone into the radiative region, so differential rotation spreads to the interior.

5.4.3.2 Strugarek, Brun, and Zahn model with pre-confinement

So far, we have compared Strugarek, Brun, and Zahn model with our fiducial model

and found that they cannot reproduce confinement. However, we note that one of the main

differences between ours and their model is preconfinement. The question that then arises is

whether a pre-confinement of the magnetic field would lead to a more tachocline-like structure

in the Strugarek, Brun, and Zahn model. To answer this question, we ran simulations with the

same parameters except that the magnetic diffusivity profile was shifted up as we did in our

fiducial model (see Section 5.2) to pre-confine the field in the convection zone. Thus, the new
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Figure 5.18: On the left panel, we show the diffusivity profile from the model by Strugarek,
Brun, and Zahn (2011). See the text for the exact parameterization of these profiles. On the
right panel, we show the computed sigma profile corresponding to their model.

Eη profile had its transition point at r = 0.8127R� instead of the original r = 0.6753R� as we

see in Figure 5.22.

Figure 5.23 shows the results for this new experiment. Even though the magnetic

field is now indeed somewhat pre-confined, as the bottom left panel illustrates, the field in the

radiative zone remains unaffected by the meridional flows downwelling from the convection zone.

The top left panel shows that, as in Section 5.4.3.1, these flows decay rapidly with distance from

the interface, on the same lengthscale R�/σ. In fact, comparing Figure 5.21 and Figure 5.24,

we see that in both cases the field hardly affects the flows. We can also look at the magnetic

confinement plot in Figure 5.25 to confirm that the interaction between meridional flows and the

background magnetic field is circumscribed to the region very close to the radiative-convective

interface.

Looking at the force balance in the radiative zone (Figure 5.26), we now see that

the latter is quite different from that of Section 5.4.3.1. The main force balance is between
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Figure 5.19: This plot shows the steady-state solution obtained in a parameter regime close to
the one used by Strugarek, Brun, and Zahn (2011). Starting from the top left panel and going
clockwise, we show plots of the streamlines, temperature perturbations, angular velocity, and
magnetic field lines. The top left panel shows that large-scale meridional flows generated in
the convection zone are not able to penetrate into the radiative interior at high latitudes. As a
result, the magnetic field is not confined and the differential rotation pattern of the convection
zone is communicated to the radiative interior.
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Figure 5.20: This figure shows the various terms that contribute to the azimuthal force balance
in the radiative zone in the simulation presented in Figure 5.19. Shown are the Coriolis force
(top left panel), Lorentz force (top right panel), viscous-stresses (bottom left panel), and the
inertial term (bottom right panel). These plots illustrate the balance between Coriolis force and
viscous stresses just below the convection zone, while the Lorentz force only becomes important
when η drops to its radiative zone value (here around r = 0.62R�). By contrast with our
fiducial model, however, viscous stresses are everywhere important. The non-linear advection
term remains negligible.
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Figure 5.21: Downwelling meridional mass flux |ρ̄ur| at 80 degrees latitude for the simulation
presented in Figure 5.19. This model failed to develop a tachocline because the large-scale
meridional flows decay rapidly to zero at the radiative-convective interface. The dash-dotted line
is the exponential function e−σt(x0−x), where σt = 100, which illustrates the rapid exponential
decay of downwelling flows when σ � 1.
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Figure 5.22: In the new experiment discussed here, the magnetic diffusivity profile is moved up
into the convection zone to pre-confine the magnetic field in the convection zone.
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Figure 5.23: As in Figure 5.19 but with a ”pre-confined” field. Starting from the top left
panel and going clockwise, we show plots of the streamlines, temperature perturbations, angular
velocity, and magnetic field lines. The top left panel shows that even though the magnetic field
lines are forced to be confined in the convection zone, the large-scale meridional flows generated
there are not able to penetrate into the radiative zone. As a result, the magnetic field is
NOT confined below the radiative-convective interface, so the differential rotation pattern of
the convection zone is communicated to the radiative interior.
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Figure 5.24: Downwelling meridional mass flux |ρ̄ur| at 80 degrees latitude. We observe that
the mass flux crossing the convective-radiative interface decays abruptly. The dash-dotted line
is the exponential function e−σt(x0−x), where σt = 100, which illustrates the rapid exponential
decay of downwelling flows when σ � 1.
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Figure 5.25: This plot shows the confinement parameter |Br/B0,r| (see Section 5.3.5 for details)
for the numerical experiment where we reproduce the model by Strugarek, Brun, and Zahn
(2011) with pre-confinement.
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Figure 5.26: This figure shows the various terms that contribute to the azimuthal force balance
in the radiative zone in the viscous-stress driven model with imposed magnetic pre-confinement
in the convection zone. Shown are the Coriolis force (top left panel), Lorentz force (top right
panel), viscous-stresses (bottom left panel), and the inertial term (bottom right panel). These
plots illustrate that viscous stresses balance this time both Coriolis and Lorentz forces.

the viscous stresses and the Lorentz force; this time the Elsasser number near the interface

is greater than one because the magnetic diffusivity remains low in that region. Given this

magnetoviscous balance and the rapid decay of large-scale meridional flows below the interface,

the tachocline thus obtained is much more similar to that of Kitchatinov and Rüdiger (2006)

than the tachocline of the Gough and McIntyre model.

As we have demonstrated in this chapter, a careful parameter selection makes Gough

and McIntyre-like solutions possible. Another important finding is that pre-confinement helps

obtain those solutions more easily. Hence, the development of tachopause-tachocline structures

as described by the Gough and McIntyre theory relies not only on the presence of a primordial

magnetic field in the interior, but also on the nature of the assumed radiative interior and the

effect of the convective zone flows on the primordial field..
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Chapter 6

Conclusions

Our fiducial model and its associated numerical experiments, which we described in

Chapter 5, demonstrate that the model proposed by Gough and McIntyre in 1998 to explain

self-consistently the dynamics of the solar tachocline is based on correct assumptions. Our model

reproduces the interactions between magnetic fields and meridional flows below the radiative-

convective interface as described by the Gough and McIntyre theory. Its results show an almost

uniformly rotating radiative interior and a differentially rotating convection zone coupled by

two layers: a thin, non-viscous, and magnetic-free tachocline, and a much thinner, magnetically

dominated, tachopause. Here we summarize the key components of our model and briefly discuss

why this simple 2-D model yields the best numerical simulations that validate the Gough and

McIntyre theory.

Even though Spiegel and Zahn (1992) proposed the first model of the tachocline based

on purely hydrodynamical mechanisms, and Rüdiger and Kitchatinov (1997) studied the first

magnetic model of the solar interior with no presence of meridional flows in the radiative zone,

Gough and McIntyre (1998) provided the first self-consistent explanation of the dynamics of

the tachocline based on the interaction between meridional flows and a primordial magnetic
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field. Based on this notion of a dual mechanism (flows acting on the field and field reacting on

the flows, all happening below the radiative-convective interface), we proceed to describe our

fiducial model.

6.1 Our fiducial model: The importance of parameter se-

lection

In Chapter 4, we tackled the problem of modeling the dynamics of the tachocline by

analyzing its purely hydrodynamic mechanisms to learn the circumstances under which large-

scale meridional flows might circulate through the interior of the Sun. Garaud and Brummell

(2008) had anticipated the role of the stratification-rotation parameter σ =
√
PrN

Ω in the dy-

namics of meridional flows crossing the radiative-convective interface. These flows can penetrate

the radiative zone to a depth R�/σ, which opens the possibility of interactions between flows

and magnetic field. In a model by Garaud and Garaud (2008), meridional flows were forced

at the interface, penetrated a radiative region with solar σ profile, and confined the internal

magnetic field. In a sequel of that study, we ran some numerical experiments to confirm that

large-scale meridional flows, this time generated in the convection zone by gyroscopic pumping,

can downwell into the radiative zone only if σ � 1. When this criterion is not satisfied, any

internal magnetic field will not be confined by large-scale meridional flows. This is the reason

why the 3-D time-dependent numerical simulations by Strugarek, Brun, and Zahn (2011) ended

up with the initial strong magnetic field diffused throughout the radiative and convection zones,

and with no evidence of a tachocline. A similar model by Rogers (2011) did not set a weakly

stratified radiative zone, so the addition of a weak magnetic field did not have any impact on

the dynamics of the zone either.

The reason previous numerical simulations accidentally used σ � 1 was because they
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focused on lowering the diffusivities to very small values, the smallest possible, and on using as

many as possible parameters from a standard solar model. They did so as if by reaching the

most solar-like computational domain, they would obtain the most solar-like tachocline. That

did not work. Wood, McCaslin, and Garaud (2011) found that more importantly than getting

the solar parameterization, the model should reproduce the force balances that contribute to

the formation and evolution of the tachocline. We built our fiducial model starting from the

diffusion parameterization suggested by Wood, McCaslin, and Garaud and completed with a

solar σ profile and few more parameters from Model S.

A weakly stratified radiative zone and a correct parameter regime are just the first

steps to facilitate large-scale meridional flows to circulate the radiative region. Models need

a mechanism to generate these flows in the convection zone. Kitchatinov and Rüdiger (2006)

and Garaud and Garaud (2008) implemented each a model with boundary conditions driving

meridional flows along the radiative-convective interface. Contrary to this approach, we included

a forcing term in the momentum equation to model gyroscopic pumping, which is the mechanism

described by Gough andMcIntyre (1998) as the main source of meridional flows in the convection

zone. Thus, the incorporation of the convection zone (with a gyroscopic pumping mechanism)

and the radiative zone (with the appropriate conditions of diffusion and stratification) into our

model satisfy the hydrodynamical conditions in the Gough and McIntyre model.

6.2 Our fiducial model: the internal magnetic field

The next piece of the model is the internal primordial magnetic field. We replaced the

boundary condition approach used by Garaud and Garaud (2008) to impose the background

magnetic field by a ”forcing” term approach. We induced an internal magnetic field by defining

an electric current density profile in such a way to prevent numerical instabilities near the core.
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The field thus generated was of the dipolar type with field lines connecting both the radiative

and convective zones. The field was then pre-confined by choosing an appropriate magnetic

diffusivity profile. This ”pre-confinement” step is very important for large-scale meridional flows

entering the radiative zone to confine the internal magnetic field more efficiently. It certainly

helps our model from a computational perspective, but magnetic pre-confinement is not an

unrealistic phenomenon at all.

Tobias, Brummell, Clune, and Toomre (2001) ran 3-D numerical simulations to in-

vestigate the transport of magnetic field by turbulent flows in the convection zone. They found

that the magnetic field is preferentially transported from the convection zone into the radiative

region by overshooting plumes, where the field finds a more stable region to reside. The depth

of penetration, however, is limited to the overshoot region. Large-scale meridional flows can

also confine the field in the lower convection zone, and these flows can be originated either by

turbulent flows or by large-scale zonal flows. In any case, we considered that field confinement

in the convection zone (by turbulent magnetic pumping or large-scale meridional flows) should

be taken into account, but only as an intermediate step in the process of getting magnetic con-

finement at much deeper zones below the radiative-convective interface. Even though our 2-D

model is unable to model turbulent flows, choosing the appropriate magnetic diffusivity profile

can model pre-confinement.

6.3 The tachopause-tachocline structure and its underly-

ing assumptions

With all these ingredients in place, our fiducial model could provide steady-state so-

lutions for the MHD equations modeling the dynamics of the solar interior. Its results show

the presence of two important layers in the radiative interior that were predicted by Gough and
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McIntyre (1998): the tachocline and the tachopause. By defining a method to determine the lo-

cation of the tachocline and the tachopause, we proceeded to verify the main assumptions in the

Gough and McIntyre theory that describe these layers. We found that both the tachocline and

the tachopause are in thermal-wind balance and thermal equilibrium. We did it by computing

the quantity

GMI1 =
Eκ

|ρ̄ur|0(∆ + δ)3
, (6.1)

which must be constant to satisfy both equilibria.

We also found a magnetic-free tachocline and a strong magnetically dominated tachopause

just by looking at a mass flux plot at 80o latitude as well as a plot of the terms in the azimuthal

momentum equation. The latter shows that Lorentz and Coriolis forces are in balance in the

tachopause-tachocline region. Also, by varying the magnetic diffusivity and by using our defini-

tion of the tachopause and tachocline, we verified the assumption of magnetic advection/diffusion

balance in the tachopause. We did it by computing the quantity

GMI2 =
Eη

|ur|T δ , (6.2)

which must also be constant.

We verified that GMI1 and GMI2 remained constant for numerical experiments vary-

ing the thermal diffusivity and the magnetic diffusivity, respectively. We could not verify other

scalings proposed by the Gough and McIntyre theory, such as the relationship between the

tachocline thickness and the magnetic strength B0, but we can argue that by having validated

their main assumptions, those scalings might also be correct.

Therefore, we conclude that our fiducial model is the first numerical model that self-

consistently reproduces the solar tachocline (and tachopause) described by the Gough and McIn-

tyre theory. Our fiducial model reproduces the uniformly rotating radiative interior and the

rotational transition observed in the tachocline. It confirms that the azimuthal balance between
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Coriolis and Lorentz forces is at the core of this rotational transition, and that the tachopause

separates the magnetically dominated radiative interior from the magnetic-free tachocline. It

also verifies that both the tachopause and the tachocline are in thermal equilibrium and in

thermal-wind balance, and that viscous stresses play no role in the dynamics of the radiative

zone.

It is important to note that our fiducial model provides evidence of the key role of

the stratification parameter σ for the interaction between meridional flows and magnetic field

in the radiative zone. Since σ is a function of the rotation rate among other parameters, our

fiducial model might be used to infer tachopause-tachocline structures of other stars rotating

faster or slower than the Sun. We might expect, for example, that a star rotating slower than

the Sun might have no tachocline. Our model could also be used to infer the internal structure

of the Sun in previous or future ages. But more importantly perhaps, our 2-D fiducial model

might provide more complicated 3-D models with starting parameter regimes, so computational

resources could be better applied in the study of the dynamics of the Sun and other stars.
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Appendix A

Computing the mean rotation rate Ω0 of

the solar interior

To have a system rotating with zero net angular momentum,

∫ π

0

L0 sin θdθ = 0∫ π

0

(LCZ − L�) sin θdθ = 0∫ π

0

r2 sin2 θ(ΩCZ − Ω�) sin θdθ = 0 , (A.1)

where ΩCZ = Ωeq(1−a cos2 θ− b cos4 θ), with a and b estimated from helioseismic observations.

Then, by the change of variable µ = cos θ, we find:

∫ 1

−1

(1− µ2)[Ωeq(1− aµ2 − bµ4)− Ω�]dµ = 0

2

∫ 1

0

[(1− µ2)(Ωeq − Ω�)− a(µ2 − µ4)Ωeq − b(µ4 − µ6)Ωeq ]dµ = 0

(Ωeq − Ω�)− 1

3
(Ωeq − Ω�)− a(

1

3
− 1

5
)Ωeq − b(

1

5
− 1

7
)Ωeq = , (A.2)

which yields:

Ω0 = 1− Ω�
Ωeq

=
3

15
a+

3

35
b . (A.3)
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Appendix B

Derivation of the radial component for

the background magnetic field

We derive the background magnetic field B, which we assumed to be poloidal only, by

integrating twice the given expression for the electric current density j0. The background mag-

netic field B with no toroidal component can be expressed in terms of its poloidal components

Br = br cos θ (B.1)

Bθ = bθ sin θ , (B.2)

where br and bθ are functions of r. To induce a poloidal magnetic field we force an electric

current density in the azimuthal direction:

jφ = − 1

4π
[∇×B]φ = J0(r − ra)(r − rb) , ra ≤ r ≤ rb , (B.3)

with jφ = 0 everywhere else.

We combine then the φ-component of ∇×B with the solenoidal condition ∇ ·B = 0
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to eliminate bθ, and obtain the following differential equation:

−
[
r
∂2br
∂r2

+ 4
∂br
∂r

]
sin θ = 2J0(r − ra)(r − rb) sin θ , ra ≤ r ≤ rb , (B.4)

which by a first integration with respect to r, in ra ≤ r ≤ rb, yields:

d

dr

[
r
dbr
dr

+ 3br

]
= −8πJ0

[
r2 − (ra + rb)r + rarb

]
dbr
dr

+
3

r
br = −8πJ0

[
r2

3
− (ra + rb)

2
r + rarb +

c1
r

]
. (B.5)

We integrate again with respect to r to obtain:

d

dr

[
r3br

]
= −8πJ0

[
1

3
r5 − 1

2
(ra + rb)r

4 + rarbr
3 + c1r

2

]

br = −8πJ0

[
r3

18
=
ra + rb)

10
r2 +

rarb
4
r +

c1
3

+
c2
r3

]
, (B.6)

which is the solution for the interval ra ≤ r ≤ rb. We also obtain

br = c0 +
c3
r3

(B.7)

for the remaining domain.

By applying the conditions br → 0 as r → ∞, continuity of br and dbr/dr at r = ra

and r = rb, and br = 1 at the core, we end up with the solution:

Br(r, θ) =




c0 cos θ , 0 ≤ r ≤ ra

−8πJ0
[

1
18r

3 − 1
10 (ra + rb)r

2 + 1
4rarbr +

c1
3 + c2

r3

]
cos θ , ra ≤ r ≤ rb

c3
r3 cos θ , rb ≤ r

(B.8)

where constants c0, c1, c2, and c3 are functions of the geometric parameters ra and rb. Note

that the solution guarantees the amplitude of the magnetic field at the center of the sphere to

be finite, an advantage from a computational perspective over the expression for a dipole point

used by GG08.
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Appendix C

Chebyshev polynomials

C.1 Integration and differentiation of Tn(µ)

Garaud (2000) provides the following identities (Garaud , 2000):

(1− µ2)Tn =
Tn
2

− Tn+2

4
− Tn−2

4

(1− µ2)
dTn
dµ

=
n

2
(Tn−1 − Tn+1)

d

dµ
[(1− µ2)Tn] =

n− 2

2
Tn−1 − n+ 2

2
Tn+1

TmTn =
1

2
Tm+n +

1

2
Tm−n (C.1)

∫ +1

−1

Th(µ)T2k(µ)√
1− µ2

dµ =




π
2 if h = 2k �= 0

π if h = 2k = 0

0 if h �= 2k

. (C.2)

Here, we have some useful identities from Mason and Handscomb’s (2003) book (Mason
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and Handscomb , 2003)]:

d2Tn(µ)

dµ2
=

(n
4

)[ (n+ 1)T|n−2|(µ)− 2nTn(µ) + (n− 1)Tn+2(µ)

(1 − µ2)2

]

(C.3)

∫
Tn(µ)dµ =




1
2

[
Tn+1(µ)

n+1 − T|n−1|(µ)
n−1

]
if n �= 1

1
2

[
Tn+1(µ)

n+1

]
if n = 1

. (C.4)

Another identities I derived:

(1 − µ2)
d2Tn(µ)

dµ2
= µ

dTn(µ)

dµ
− n2Tn(µ) (C.5)

(1 − µ2)
d3Tn(µ)

dµ3
= 3µ

d2Tn(µ)

dµ2
+ (1− n2)

dTn(µ)

dµ
(C.6)

(1 − µ2)
d4Tn(µ)

dµ4
= 5µ

d3Tn(µ)

dµ3
+ [3 + (1− n2)]

d2Tn(µ)

dµ2
, (C.7)

which can also be written as:

d3Tn(µ)

dµ3
=

[
3µ2

(1− µ2)2
+

1− n2

1− µ2

]
dTn(µ)

dµ
− 3µn2

(1− µ2)2
Tn(µ) (C.8)

d4Tn(µ)

dµ4
=

[
15µ3

(1− µ2)3
+

5µ(1− n2)

(1− µ2)2
+

[3 + (1− n2)]µ

1− µ2

]
dTn(µ)

dµ

−
[

15µ2n2

(1− µ2)3
+

[3 + (1− n2)]n2

1− µ2

]
Tn(µ) . (C.9)
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C.2 An example: Differentiation of uφ

Provided that the non-dimensional L̂ = L̂(x, µ), we can write:

uφ(r, θ) = R2
�Ωeq

L̂

r sin θ
(C.10)

uφ(x, µ) = R2
�Ωeq

L̂

x
√
1− µ2

(C.11)

∂uφ
∂θ

(r, θ) = =
R2

�Ωeq

r

[
1

sin θ

∂L̂

∂θ
− cos θ

sin2 θ
L̂

]

=
R2�Ωeq

r sin θ

[
− sin θ

∂L̂

∂ cos θ
− cos θ

sin θ
L̂

]
(C.12)

−
√
1− µ2

∂uφ
∂µ

(x, µ) = =
R�Ωeq

x

[
−∂L̂
∂µ

− µ

1− µ2
L̂

]
(C.13)

∂2uφ
∂θ2

(r, θ) =
R2

�Ωeq

r sin θ

[
− sin θ

∂

∂θ

(
∂L̂

∂ cos θ

)
+ cos θ

∂L̂

∂ cos θ
+

2 cos2 θ

sin2 θ
L̂+ L̂

]

(C.14)

∂2uφ
∂µ2

(x, µ) =
R�Ωeq

x
√
1− µ2

[
∂2L̂

∂µ2
+

µ

1− µ2

∂L̂

∂µ
+

1 + µ2

1− µ2
L̂

]
. (C.15)
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Appendix D

How to plot the potential magnetic field

The potential magnetic field A and the poloidal magnetic field BP are related in spher-

ical coordinates through the following expression:

BP = ∇×
(

A

r sin θ
êφ

)
, (D.1)

from which we can determine the radial and latitudinal components of the magnetic field:

Br =
1

r sin θ

∂

∂θ

(
A

r

)
= − 1

r2
∂A

∂µ
(D.2)

Bθ = − 1

r sin θ

∂A

∂r
= − 1

r
√
1− µ2

∂A

∂r
, (D.3)

where we made the substitution µ = cos θ. We also define non-dimensional radial and latitudinal

componentes of the magnetic field, B and b, respectively (see Garaud and Garaud, 2008), which

under the Chebyshev expansion can be written as:

B =

N∑
n=1

Bn(r)T2n−1(µ) (D.4)

b =
N∑

n=1

bn(r)(1 − µ2)T2n−2(µ) . (D.5)
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We can numerically obtain the Chebyshev modes Bn and bn, which we then will use to compute

the corresponding Chebyshev modes An needed to evaluate the potential magnetic field as:

A =

N∑
n=1

An(r)(1 − µ2)T2n−2(µ) . (D.6)

The computation of An from given Bn and bn can be achieved either by integration or differen-

tiation.

D.0.1 Differentiation of Chebyshev Modes

Here, we derive the relationship between An and Bn by taking the first derivative of

equation D.6 with respect to µ, and then using the first identity of equation D.2:

N∑
n=1

Bn(r)T2n−1(µ) = − 1

r2
∂

∂µ

[
N∑

n=1

An(r)(1 − µ2)T2n−2(µ)

]

= −
N∑

n=1

An(r)

[
2n− 4

2
T2n−3(µ)− 2n

2
T2n−1(µ)

]
, (D.7)

where we have used some identities included in the appendix. Then, by a projection onto T2k−1,

we can obtain a relationship between Bn and An:

Bk = −(k − 1)Ak+1 + kAk , (D.8)

which can be used to recursively obtain Ak by assuming, for example, AN = 0. A plot of the

potential field obtained by using this formula is shown on the third panel of figure D.1.

Another process of differentiation can be used to determine An. This time, we will use

bn modes and the second identity of equation D.2 as follows:

N∑
n=1

rbn(r)(1 − µ2)T2n−2(µ) = −
N∑

n=1

∂An(r)

∂r
(1 − µ2)T2n−2(µ)

= −
N∑

n=1

An(i + 1)−An(i)

r(i + 1)− r(i)
(1− µ2)T2n−2(µ) ,

(D.9)
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which reduces to the following formula relating An and bn:

r(i)bn(i) =
An(i+ 1)−An(i)

r(i + 1)− r(i)
. (D.10)

Alternatively, a centered finite difference scheme can be used to express ∂A/∂r, which

leads to the following expression for An(i):

An(i) = An(i+ 1) +
[bn(i+ 1) + bn(i)][r(i + 1)2 − r(i)2]

4
, (D.11)

where i is an index corresponding to the discretization of r. A plot of the potential field lines

obtained by using this recursion formula is shown on figure D.2.

D.0.2 Integration of Chebyshev modes

Finding relationships between An modes by integrating the corresponding magnetic

field ones is slightly more complicated, especially with respect to r. Here, we only show how to

integrate with respect to µ. In a first case, we integrate the Chebyshev expansion of Br (see

equation D.4) by using the identities provided in the appendix:

A(r, µ) = −r2
∫ µ

1

B(r, µ)∂µ

= −r2
n∑

n=1

Bn(r)

∫ µ

1

T2n−1(µ)∂µ

= −r2B1(r)

2

T2(µ)− T2(1)

2
− r2

N∑
n=2

Bn(r)

2

(
T2n(µ)

2n
− T|2n−2|(µ)

2n− 2

)∣∣∣∣
µ

1

.

(D.12)

A plot of the potential field lines obtained by using this expression is shown on figure D.3.

Finally, to obtain An as a function of Bn, we can use the following identity:

−r2
N∑

n=1

Bn(r)

∫
T2k−1(µ)∂µ = −

N∑
n=1

[
(k − 1)Bn+1(r) −Bn(r)

n

]
(1− µ2)T2n−2(µ) , (D.13)
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which, once implemented for plotting, yields the plot of magnetic field lines shown on figure

D.4, which shows a slightly different configuration. Therefore, we use any of the first three

formulations to plot the magnetic potential field.
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Figure D.1: Contour plots showing streamlines (left upper panel), perturbations of the temper-
ature background (right upper panel), magnetic field lines (left lower panel), and the ratio of
angular velocity in the solar interior with respect to the equatorial angular velocity in the solar
surface (right lower panel). The magnetic field lines were plotted by using An modes obtained
by a process of differentiation with respect to µ, as indicated in the text.
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Figure D.2: Contour plots showing streamlines (left upper panel), perturbations of the temper-
ature background (right upper panel), magnetic field lines (left lower panel), and the ratio of
angular velocity in the solar interior with respect to the equatorial angular velocity in the solar
surface (right lower panel). The magnetic field lines were plotted by using An modes obtained
by a process of differentiation with respect to r, as indicated in the text.
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Figure D.3: Contour plots showing streamlines (left upper panel), perturbations of the temper-
ature background (right upper panel), magnetic field lines (left lower panel), and the ratio of
angular velocity in the solar interior with respect to the equatorial angular velocity in the solar
surface (right lower panel). The magnetic field lines were plotted by using An modes obtained
by a process of integration with respect to µ, as indicated in the text.
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Figure D.4: Contour plots showing streamlines (left upper panel), perturbations of the temper-
ature background (right upper panel), magnetic field lines (left lower panel), and the ratio of
angular velocity in the solar interior with respect to the equatorial angular velocity in the solar
surface (right lower panel). The magnetic field lines were plotted by using An modes obtained
by a process of coefficient inversion, as indicated in the text.
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Appendix E

The Chebyshev transformation of the

integrated induction equation

E.0.3 The integrated induction equation

We write the additional contribution to the induction equation in terms of a prescribed

background current density j̄:

∇× (u×B) = ∇× (η∇×B)− 4π∇× (ηj̄) . (E.1)

After integration, we obtain the φ-component of the integrated induction equation in

spherical coordinates:

(u×B)φ = (η∇×B)φ − B0ηĵ0,φ(r) sin θ , (E.2)

with

j̄φ =
B0

4π
ĵφ(r) sin θeφ . (E.3)

The φ-component of the integrated induction equation can also be written as

urBθ − uθBr = 4πfηη̄�jφ + fη η̄�B0ĵ0,φ(r) sin θ , (E.4)
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where we have introduced an amplification factor fη to facilitate the numerical computations,

and the magnetic diffusivity η has been assumed without perturbation from its background state

η̄�.

Now we make a change of variables to non-dimensionalize the equation according to

Garaud and Garaud (Garaud and Garaud , 2008). They proposed:

Eη =
fηη̄

R2�Ωeq

u =
ur

R�Ωeq

v =
uθ sin θ

R�Ωeq

B =
Br

B0

b =
Bθ sin θ

B0

J =
4πr sin θjφ

B0
. (E.5)

By applying these expressions, we obtain:

B0R�Ωeq

sin θ
[ub− vB] = fη

η̄�B0

sin θ

J

r
− fηη̄�B0ĵ0,φ(r) sin θ (E.6)

ub− vB = fηEη
J

x
− fηEη ĵ0,φ(x) sin

2 θ (E.7)

ub− vB = fηEη

[
J

x
− (1 − µ2)ĵ0,φ(x)

]
, (E.8)

where x = r
R�

and µ = cos θ.

E.0.4 Chebyshev expansion of the fields

The next step is writting the variables of interest in terms of linear combinations

of Chebyshev polynomials. Again, we use the Chebyshev identities provided by Garaud and
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Garaud (Garaud and Garaud , 2008):

u(x, µ) =
N∑

n=1

ψn(x)
∂

∂µ

[
(1− µ2)T2n−1(µ)

]
,

v(x, µ) = (1− µ2)

N∑
n=1

vn(x)T2n−1(µ) ,

B(x, µ) =

N∑
n=1

Bn(x)T2n−1(µ) ,

b(x, µ) = (1− µ2)

N∑
n=1

bn(x)T2n−2(µ) ,

J(x, µ) = (1− µ2)
N∑

n=1

Jn(x)T2n−2(µ) . (E.9)

This transformation yields

N∑
n=1

ψn(x)
∂

∂µ

[
(1− µ2)T2n−1(µ)

]
(1− µ2)

N∑
m=1

bm(x)T2m−2(µ)

−(1− µ2)

N∑
n=1

vn(x)T2n−1(µ)

N∑
m=1

Bm(x)T2m−1(µ)

= Eη

[
(1− µ2)

x

N∑
n=1

Jn(x)T2n−2(µ) − 2

x0
(1− µ2)

]
, (E.10)

which simplyfies to

N∑
n=1

ψn(x)
∂

∂µ

[
(1− µ2)T2n−1(µ)

] N∑
m=1

bm(x)T2m−2(µ)

−
N∑

n=1

vn(x)T2n−1(µ)

N∑
m=1

Bm(x)T2m−1(µ)

= Eη

[
(1

x

N∑
n=1

Jn(x)T2n−2(µ)− 2

x0

]
. (E.11)
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This equation can be written now in terms of a vector Y containing all the dependent variables.

To do that, we follow Garaud’s (2000) notation:

ψn → Yn ,

vn → YN+n ,

Bn → Y6N+n ,

bn → Y7N+n , and

Jn → Y10N+n , (E.12)

which yields

∑
n,m

Yn
∂

∂µ

[
(1 − µ2)T2n−1

]
Y7N+mT2m−2 −

∑
n,m

YN+nT2n−1Y6N+mT2m−1 =

= Eη

[
1

x

∑
n

Y10N+nT2n−2 − 2

x0

]
. (E.13)

We use some of the identities included in Appendix D to simplify Equation E.13 into:

∑
n,m

YnY7N+m

[
2n− 3

2

(
1

2
T2n+2m−4 +

1

2
T2n−2m

)
− 2n+ 1

2

(
1

2
T2n+2m−2 +

1

2
T2n−2m+2

)]

−
∑
n,m

YN+nY6N+m

[
1

2
T2n+2m−2 +

1

2
T2n−2m

]
= Eη

∑
n

[
1

x
Y10N+nT2n−2

]
− 2Eη

x0
T0 .(E.14)

E.0.5 Projection onto the radial direction

We project the equation by applying the following identity (Garaud , 2000):

∫ +1

−1

Th(µ)T2k(µ)√
1− µ2

dµ =




π
2 if h = 2k �= 0

π if h = 2k = 0

0 if h �= 2k
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This results, for 2k �= 0, in

1

4

(π
2

)∑
k,m

(2k − 2m+ 1)Yk−m+2Y7N+m +
1

4

(π
2

)∑
k,m

(2k + 2m− 3)Yk+mY7N+m

−1

4

(π
2

)∑
k,m

(2k − 2m+ 3)Yk−m+1Y7N+m − 1

4

(π
2

)∑
k,m

(2k + 2m− 1)Yk+m−1Y7N+m

−1

2

(π
2

)∑
k,m

YN+k−m+1Y6N+m − 1

2

(π
2

)∑
k,m

YN+k+mY6N+m

= Eη
1

x

(π
2

)∑
k

Y10N+k+1 . (E.15)

On the other hand, when 2k = 0,

π

4

∑
m

(−2m+ 1)Y−m+2Y7N+m +
π

4

∑
m

(2m− 3)YmY7N+m

−π
4

∑
m

(−2m+ 3)Y−m+1Y7N+m − π

4

∑
m

(2m− 1)Ym−1Y7N+m

−π
2

∑
m

YN−m+1Y6N+m − π

2

∑
m

YN+mY6N+m = Eηπ

[
1

x
Y10N+1 − 2

x0

]
. (E.16)

Alternatively, we can derive these expressions in terms of n. For example, for 2k �= 0, we obtain

1

4

(π
2

)∑
k,n

(2n− 3)YnY7N+k−n+2 +
1

4

(π
2

)∑
k,n

(2n− 3)YnY7N−k+n

−1

4

(π
2

)∑
k,n

(2n+ 1)YnY7N−k+n+1 − 1

4

(π
2

)∑
k,n

(2n+ 1)YnY7N+k−n+1

−1

2

(π
2

)∑
k,n

YN+nY6N+k−n+1 − 1

2

(π
2

)∑
k,n

YN+nY6N−k+n

= Eη
1

x

(π
2

)∑
k

Y10N+k+1 . (E.17)

Likewise, for 2k = 0, we obtain

π

4

∑
n

(2n− 3)YnY7N−n+2 +
π

4

∑
n

(2n− 3)YnY7N+n

−π
4

∑
n

(2n+ 1)YnY7N+n+1 − π

4

∑
n

(2n+ 1)YnY7N−n+1

−π
2

∑
n

YN+nY6N−n+1 − π

2

∑
n

YN+nY6N+n

= Eηπ

[
1

x
Y10N+1 − 2

x0

]
. (E.18)
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Note that some of the terms in the previous equations can be simplify by considering only the

indexes which stay in range. However, they introduce some conditional commands in the code

to guarantee the correct indexing.
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Appendix F

The Force Balances in the Tachocline

Here, we derive expressions for each term of the momemtum and vorticity equations,

which we use to visualize the force balances taking place in the tachocline.

F.1 Force balances from the momentum equation

The momentum equation

ρ
∂u

∂t
= −ρu · ∇u− 2Ω� × u−∇p− ρg+ j×B+∇ ·Π (F.1)

is one of the equations governing the magnetohydrodynamics of the solar interior. It is per-

turbed with respect to a background in hydrostatic equilibrium, and numerically solved within

a spherical framework rotating with angular velocity Ω0. We assume a system in steady state

with axial symmetry, and with meridional flows generated in the convection zone by a force,

(u−uCZ)/τ , driven by the differential rotation estimated from helioseismic observations. Then,

168



the φ-component of the corresponding forces are:

−2ρΩ�(uθ cos θ + ur sin θ) (Coriolis force) (F.2)

−ρ
[
ur
∂uφ
∂r

+
uθ
r

∂uφ
∂θ

+
1

r
uφur +

cos θ

r sin θ
uφuθ

]
(Advection) (F.3)

jrBθ − jθBr (Lorentz force) (F.4)

−ρ
τ
[uφ − uCZ ] (Gyroscopic pumping) (F.5)

(∇ ·Π)φ = fνρν[∇u+ (∇u)T − 2

3
∇ · uI]φ (Viscous stresses) (F.6)

We now derive these forces in terms of Chebyshev polynomials to construct the solutions from

the numerically computed modes.

F.1.1 Coriolis Force

We define the components of the velocity field in terms of non-dimensional variables

by using:

ur = R�Ωeqû (F.7)

uθ =
R�Ωeq

sin θ
v̂ , (F.8)

(F.9)

which yields:

FCoriolis = −2ρΩ�(uθ cos θ + ur sin θ)

= −2R�ΩeqρΩ�

[
cos θ

sin θ
v̂ + û sin θ

]

= −2R�ΩeqρΩ�

[
µ√

1− µ2
v̂ +
√
1− µ2û

]
, (F.10)

where µ = cos θ. Since Ω0 = 1− Ω�/Ωeq (see Appendix A),

FCoriolis

R�Ω2
eq

= −2ρ(1− Ω0)

[
µ√

1− µ2
v̂ +
√
1− µ2û

]
. (F.11)
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Then, we use the following Chebyshev transformations:

û(x, µ) =
N∑

n=1

ψn(x)
∂

∂µ
[(1− µ2)T2n−1(µ)]

=

N∑
n=1

ψn(x)

[
2n− 3

2
T2n−2(µ)− 2n+ 1

2
T2n(µ)

]

=

N−1∑
m=0

ψm(x)

[
2m− 1

2
T2m(µ)− 2m+ 3

2
T2m+2(µ)

]
(F.12)

v̂(x, µ) = (1− µ2)

N∑
n=1

vn(x)T2n−1(µ)

= (1− µ2)
N−1∑
m=0

vm(x)T2m+1(µ) (F.13)

to compute FCoriolis from the correspondig Chebyshev modes, ψm(x) and vm(x).

F.1.2 Advection term

We define uφ in terms of a non-dimensional variable L̂ as:

uφ = R2
�Ωeq

1

r sin θ
L̂ , (F.14)

which, in conjuction with the non-dimensional expressions for ur and uθ, yields:

FAdvection = −ρ
[
ur
∂uφ
∂r

+
uθ
r

∂uφ
∂θ

+
1

r
uφur +

cos θ

r sin θ
uφuθ

]

= −R�Ω2
eqρ

[
û

x sin θ

∂L̂

∂x
− 1

x2 sin θ
ûL̂

+
1

sin θ
v̂

(
1

x2 sin θ

∂L̂

∂θ
− cos θ

x2 sin2 θ
L̂

)

+
1

x2 sin θ
ûL̂+

cos θ

x2 sin2 θ
v̂L̂

]
, (F.15)

which simplifies to:

FAdvection

R�Ω2
eq

= − ρ

x
√
1− µ2

[
û
∂L̂

∂x
− 1

x
v̂
∂L̂

∂µ

]
. (F.16)
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Here, we used:

∂uφ
∂r

= R2
�Ωeq

[
1

r sin θ

∂L̂

∂r
− 1

r2 sin θ
L̂

]
,

∂uφ
∂θ

= R2
�Ωeq

[
1

r sin θ

∂L̂

∂θ
− cos θ

r sin2 θ
L̂

]
, and

x =
r

R�
. (F.17)

In addition to û and v̂, we will need L̂ and its derivatives with respect to x and with respect to

µ to be expressed in terms of Chebyshev polynomials:

L̂(x, µ) = (1− µ2)

N∑
n=1

Ln(x)T2n−2(µ)

= (1− µ2)

N−1∑
m=0

Lm(x)T2m(µ) (F.18)

∂L̂(x, µ)

∂x
= (1− µ2)

N∑
n=1

dLn(x)T2n−2(µ)

= (1− µ2)
N−1∑
m=0

dLm(x)T2m(µ) (F.19)

∂L̂(x, µ)

∂µ
=

N∑
n=1

Ln(x)
∂

∂µ
[(1 − µ2)T2n−2(µ)]

=

N∑
n=1

Ln(x)[(n− 2)T|2n−3|(µ) − nT2n−1(µ)]

=

N−1∑
m=0

Lm(x)[(m − 1)T|2m−1|(µ)− (m+ 1)T2m+1(µ)] . (F.20)

This way, we will compute FAdvection from ψm(x), vm(x), Lm(x), and dLm(x).
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F.1.3 Lorentz force

We non-dimensionalize the Lorentz force expression by using1:

Br = B0B̂

Bθ =
B0

sin θ
b̂

Bφ =
B0R�
r sin θ

Ŝ

Λ =
B2

0

4πρ0R�Ω2
eq

, (F.21)

which yields:

FLorentz = jrBθ − jθBr

=
1

4π

[
Br

∂Bφ

∂r
+

1

r
BrBφ +

1

r
Bθ

∂Bφ

∂θ
+

cos θ

r sin θ
BθBφ

]

=
B0R�
4π

Br

[
1

r sin θ

∂Ŝ

∂r
− 1

r2 sin θ
Ŝ +

1

r2 sin θ
Ŝ

]

+
B0R�
4π

Bθ

r

[
1

r sin θ

∂Ŝ

∂θ
− cos θ

r sin2 θ
Ŝ +

cos θ

r sin2 θ
Ŝ

]

=
B0R�
4π

1

r sin θ

[
Br

∂Ŝ

∂r
+

1

r
Bθ

∂Ŝ

∂θ

]

=
B2

0R�
4π

1

r sin θ

[
B̂
∂Ŝ

∂r
+

1

r sin θ
b̂
∂Ŝ

∂θ

]

=
B2

0

4πR�
1

x
√
1− µ2

[
B̂
∂Ŝ

∂x
− 1

x
b̂
∂Ŝ

∂µ

]
, (F.22)

which simplifies to:

FLorentz

R�Ω2
eq

= Λ
1

x
√
1− µ2

[
B̂
∂Ŝ

∂x
− 1

x
b̂
∂Ŝ

∂µ

]
. (F.23)

1Note that we assume ρ0 = 1 to simplify Λ.
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Then, the required Chebyshev transformations of B̂, b̂, as well as Ŝ and its derivatives, are:

B̂(x, µ) =
N∑

n=1

Bn(x)T2n−1(µ)

=

N−1∑
m=0

Bm(x)T2m+1(µ) (F.24)

b̂(x, µ) = (1− µ2)

N∑
n=1

bn(x)T2n−2(µ)

= (1− µ2)

N−1∑
m=0

bm(x)T2m(µ) (F.25)

Ŝ(x, µ) = (1− µ2)
N∑

n=1

Sn(x)T2n−1(µ)

= (1− µ2)

N−1∑
m=0

Sm(x)T2m+1(µ) (F.26)

∂Ŝ(x, µ)

∂x
= (1− µ2)

N∑
n=1

dSn(x)T2n−1(µ)

= (1− µ2)

N−1∑
m=0

dSm(x)T2m+1(µ) (F.27)

∂Ŝ(x, µ)

∂µ
=

N∑
n=1

Sn(x)
∂

∂µ
[(1− µ2)T2n−1(µ)]

=

N∑
n=1

Sn(x)

[
2n− 3

2
T2n−2(µ)− 2n+ 1

2
T2n(µ)

]

=

N−1∑
m=0

Sm(x)

[
2m− 1

2
T2m(µ)− 2m+ 3

2
T2m+2(µ)

]
, (F.28)

which we will use to obtain FLorentz from Bm(x), bm(x), Sm(x), and dSm(x).

F.1.4 Gyroscopic Pumping term

We write the term that drives meridional flows in the convection zone as:

FGyropump = −ρ
τ
[uφ − uCZ ]

= −ρR
2
�Ωeq

τ

1

r sin θ
[L̂− L̂CZ ] , (F.29)
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which reduces to:

FGyropump

R�Ω2
eq

= −ρ
τ̂

1

x
√

1− µ2
[L̂− x2(1− µ2)Ω̂CZ ] . (F.30)

Then, we will use the Lm(x) modes, along with a and b, to find FGyropump.

F.1.5 Viscous stresses

To compute the viscous stresses on the azimuthal direction, we start from:

(∇ ·Π)φ =
∂Πrφ

∂r
+

1

r

∂Πθφ

∂θ
+

3

r
Πrφ + 2

cos θ

r sin θ
Πθφ , (F.31)

where:

Πrφ = ρν

(
∂uφ
∂r

− 1

r
uφ

)

Πθφ = ρν

(
1

r

∂uφ
∂θ

− cos θ

r sin θ
uφ

)
. (F.32)

Hence,

FV iscous = ρν

[
∂2uφ
∂r2

− 1

r2

(
r
∂uφ
∂r

− uφ

)

+
1

r

{
1

r

∂2uφ
∂θ2

− 1

r sin2 θ

(
sin θ

∂

∂θ
[uφ cos θ]− uφ cos

2 θ

)}

+
3

r

(
∂uφ
∂r

− 1

r
uφ

)

+ 2
cos θ

r sin θ

(
1

r

∂uφ
∂θ

− cos θ

r sin θ
uφ

)]

+
∂(ρν)

∂r

[
∂uφ
∂r

− 1

r
uφ

]
, (F.33)

which reduces to:

FV iscous = ρν

[
∂2uφ
∂r2

+
2

r

∂uφ
∂r

− 2

r2
uφ

+
1

r2
∂2uφ
∂θ2

− 1

r2

(
−uφ +

cos θ

sin θ

∂uφ
∂θ

)

+
2 cos θ

r2 sin θ

∂uφ
∂θ

− cos2 θ

r2 sin2 θ
uφ

]

+
∂(ρν)

∂r

[
∂uφ
∂r

− 1

r
uφ

]
, (F.34)
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which simplifies to:

FV iscous = ρν

[
∂2uφ
∂r2

+
1

r2
∂2uφ
∂θ2

+
2

r

∂uφ
∂r

− 1

r2
uφ

+
cos θ

r2 sin θ

∂uφ
∂θ

− cos2 θ

r2 sin2 θ
uφ

]
+
∂(ρν)

∂r

[
∂uφ
∂r

− 1

r
uφ

]
. (F.35)

By replacing uφ by its corresponding non-dimensional expression, we find:

∂uφ
∂r

=
R2

�Ωeq

r sin θ

[
∂L̂

∂r
− 1

r
L̂

]

∂2uφ
∂r2

=
R2

�Ωeq

r sin θ

[
∂2L̂

∂r2
− 2

r

∂L̂

∂r
+

2

r2
L̂

]

∂uφ
∂θ

=
R2

�Ωeq

r sin θ

[
− sin θ

∂L̂

∂ cos θ
− cos θ

sin θ
L̂

]

∂2uφ
∂θ2

=
R2�Ωeq

r sin θ

[
− sin θ

∂

∂θ

(
∂L̂

∂ cos θ

)
+ cos θ

∂L̂

∂ cos θ
+

2 cos2 θ

sin2 θ
L̂+ L̂

]
, (F.36)

which we then incorporate into our last expression for the viscous stresses:

FV iscous = ρν
R2

�Ωeq

r sin θ

[
∂2L̂

∂r2
− 2

r

∂L̂

∂r
+

2

r2
L̂

− sin θ

r2
∂

∂θ

(
∂L̂

∂ cos θ

)
+

cos θ

r2
∂L̂

∂ cos θ
+

2 cos2 θ

r2 sin2 θ
L̂+

1

r2
L̂

+
2

r

∂L̂

∂r
− 2

r2
L̂

− 1

r2
L̂

+
cos θ

r2 sin θ

(
− sin θ

∂L̂

∂ cos θ
− cos θ

sin θ
L̂

)

− cos2 θ

r2 sin2 θ
L̂

]

+
R2

�Ωeq

r sin θ

∂(ρν)

∂r

[
∂L̂

∂r
− 1

r
L̂− 1

r
L̂

]
, (F.37)

which we furtherly simplify to:

FV iscous = ρν
R2

�Ωeq

r sin θ

[
∂2L̂

∂r2
− sin θ

r2
∂

∂θ

(
∂L̂

∂ cos θ

)]

+
R2

�Ωeq

r sin θ

∂(ρν)

∂r

[
∂L̂

∂r
− 2

r
L̂

]
. (F.38)
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Then, a change of variables yields:

FV iscous = ρν
Ωeq

R�x
√

1− µ2

[
∂2L̂

∂x2
+

1− µ2

x2
∂2L̂

∂µ2

]

+
Ωeq

R�x
√

1− µ2

∂(ρν)

∂x

[
∂L̂

∂x
− 2

x
L̂

]
, (F.39)

which yields:

FV iscous

R�Ω2
eq

=
ρEν

x
√
1− µ2

[
∂2L̂

∂x2
+

1− µ2

x2
∂2L̂

∂µ2

]

+
1

x
√
1− µ2

∂(ρEν)

∂x

[
∂L̂

∂x
− 2

x
L̂

]
, (F.40)

where Eν = ν/R2�Ωeq. We include the derivation of the second derivatives of uφ with respect

to θ and with respect to µ in Appendix C.

Alternatively, we can derive FV iscous by performing the change of variables in earlier

steps than in the previous derivation. Let us start by rewriting the components of the stress
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tensor in terms of the non-dimensional variable L̂ and the coordinates x and µ, as follows:

uφ(r, θ) = R2
�Ωeq

L̂

r sin θ
(F.41)

uφ(x, µ) = R�Ωeq
1

x
√

1− µ2
L̂ (F.42)

uφ(x, µ)

x
= Ωeq

1

x2
√
1− µ2

L̂ (F.43)

∂uφ(r, θ)

∂r
=

R2
�Ωeq

r sin θ

(
∂L̂

∂r
− 1

r
L̂

)
(F.44)

∂uφ(x, µ)

∂x
=

Ωeq

x
√

1− µ2

(
∂L̂

∂x
− 1

x
L̂

)
(F.45)

∂uφ(r, θ)

∂θ
=

R2�Ωeq

r sin θ

(
∂L̂

∂θ
− cos θ

sin θ
L̂

)
(F.46)

−
√
1− µ2

∂uφ(x, µ)

∂µ
= −R�Ωeq

x

(
∂L̂

∂µ
+

µ

1− µ2
L̂

)
(F.47)

Πrφ(r, θ) = ρν

[
∂uφ(r, θ)

∂r
− 1

r
uφ(r, θ)

]
(F.48)

Πxφ(x, µ) = ρνΩeq
1

x
√
1− µ2

[
∂L̂

∂x
− 2

x
L̂

]
(F.49)

Πθφ(r, θ) = ρν

[
1

r

∂uφ(r, θ)

∂θ
− cos θ

r sin θ
uφ(r, θ)

]
(F.50)

Πµφ(x, µ) = −ρνΩeq

[
1

x2
∂L̂

∂µ
+

2µ

x2(1− µ2)
L̂

]
. (F.51)

177



Now, we can express the φ-component of the viscous stress tensor in terms of L̂, x, and µ:

(∇ ·Π)φ(r, θ) =
∂Πrφ

∂r
+

1

r

∂Πθφ

∂θ
+

3

r
Πrφ +

2 cos θ

r sin θ
Πθφ (F.52)

R�(∇ ·Π)φ(x, µ) =
∂Πxφ

∂x
−
√
1− µ2

x

∂Πµφ

∂µ
+

3

x
Πxφ +

2µ

x
√
1− µ2

Πµφ (F.53)

= ρνΩeq
1√

1− µ2

(
1

x

∂2L̂

∂x2
− 2

x2
∂L̂

∂x
+

2

x3
L̂− 1

x2
∂L̂

∂x
+

2

x3
L̂

)

+ρνΩeq

√
1− µ2

x3

(
∂2L̂

∂µ2
+

2µ

1− µ2

∂L̂

∂µ
+ L̂

∂

∂µ

[
2µ

1− µ2

])

+ρνΩeq
3

x2
√
1− µ2

(
∂L̂

∂x
− 2

x
L̂

)

−ρνΩeq
2µ

x3
√
1− µ2

(
∂L̂

∂µ
+

2µ

1− µ2
L̂

)

+Ωeq
1

x
√
1− µ2

∂(ρν)

∂x

(
∂L̂

∂x
− 2

x
L̂

)
, (F.54)

which reduces to:

R�(∇ ·Π)φ(x, µ) = ρνΩeq
1

x
√
1− µ2

[
∂2L̂

∂x2
− 2

x2
L̂+

(1− µ2)

x2
∂2L̂

∂µ2

+
(1− µ2)

x2
L̂
∂

∂µ

(
2µ

1− µ2

)
− 4µ2

x2(1− µ2)
L̂

]

+Ωeq
1

x
√
1− µ2

∂(ρν)

∂x

[
∂L̂

∂x
− 2

x
L̂

]
(F.55)

R�(∇ ·Π)φ(x, µ) = ρνΩeq
1√

1− µ2

[
∂2L̂

∂x2
+

(1− µ2)

x2
∂2L̂

∂µ2
− 2

x2
L̂+

2

x2
L̂

+
(1− µ2)

x2
(2µ)

(2µ)

(1 − µ2)
L̂− 4µ2

x2(1− µ2)
L̂

]

+Ωeq
1

x
√
1− µ2

∂(ρν)

∂x

[
∂L̂

∂x
− 2

x
L̂

]
, (F.56)

to finally yield:

(∇ ·Π)φ
R�Ω2

eq

=
ρEν

x
√

1− µ2

[
∂2L̂

∂x2
+

(1− µ2)

x2
∂2L̂

∂µ2

]

+
1

x
√
1− µ2

∂(ρEν)

∂x

[
∂L̂

∂x
− 2

x
L̂

]
. (F.57)
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Then, the viscous stresses in the azimuthal direction are computed from Lm(x) and its

derivatives with respect to x and with respect to µ. The second derivatives are obtained with

the following relationships:

∂2L̂(x, µ)

∂x2
= (1− µ2)

N∑
n=1

(
dLn[i+ 1]− dLn[i]

x[i+ 1]− x[i]

)
T2n−2(µ)

= (1− µ2)

N−1∑
m=0

(
dLm[i+ 1]− dLm[i]

x[i + 1]− x[i]

)
T2m(µ)

∂2L̂(x, µ)

∂µ2
=

N∑
n=1

Ln(x)

[
(1− µ2)

∂2T2n−2(µ)

∂µ2
− 4µ

∂T2n−2(µ)

∂µ
− 2T2n−2(µ)

]

=

N−1∑
m=0

Lm(x)

[
(1− µ2)

∂2T2m(µ)

∂µ2
− 4µ

∂T2m(µ)

∂µ
− 2T2m(µ)

]
(F.58)

along with the identities for Chebyshev polynomials included in Appendix C.

F.2 Balances from the vorticity equation

The vorticity equation is obtained by taking the curl of the momentum equation

ρ
∂u

∂t
= −ρu · ∇u− 2Ω� × u−∇p− ρg+ j×B+∇ ·Π . (F.59)

The vorticity and the momentum equations are perturbed with respect to a background in hy-

drostatic equilibrium, and numerically solved within a spherical framework rotating with angular

velocity Ω0. We assume a system in steady state with axial symmetry, and with meridional flows

generated in the convection zone by a force, (u − uCZ)/τ , driven by the differential rotation

estimated from helioseismic observations.

We now derive the φ- component of the vorticity equation by taking the curl of each

term of the momentum equation, ∇×F , which we later express in terms of Chebyshev polyno-

mials to verify force and torque balances.
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F.2.1 Coriolis term

We define the components of the velocity field in terms of non-dimensional variables

by using:

ur = R�Ωeq û (F.60)

uθ =
R�Ωeq

sin θ
v̂ (F.61)

uφ = R2
�Ωeq

L̂

r sin θ
. (F.62)

Then, the φ-component of the Coriolis torque (divided by ρ̄), can be expressed as:

∇× FCoriolis =
2Ω�
R�

[
µ
∂uφ
∂x

+
(1− µ2)

x

∂uφ
∂µ

]

=
2Ω�Ωeq

x
√

1− µ2

[
µ
∂L̂

∂x
+

(1− µ2)

x

∂L̂

∂µ

]
, (F.63)

where µ = cos θ and x = r/R�. Since Ω0 = 1− Ω�/Ωeq (see the Appendix in Note 003),

∇× FCoriolis

Ω2
eq

=
2(1− Ω0)

x
√

1− µ2

[
µ
∂L̂

∂x
+

(1− µ2)

x

∂L̂

∂µ

]
. (F.64)
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We need L̂ and its derivatives with respect to x and with respect to µ to be expressed in terms

of Chebyshev polynomials:

L̂(x, µ) = (1− µ2)

N∑
n=1

Ln(x)T2n−2(µ)

= (1− µ2)

N−1∑
m=0

Lm(x)T2m(µ) (F.65)

∂L̂(x, µ)

∂x
= (1− µ2)

N∑
n=1

dLn(x)T2n−2(µ)

= (1− µ2)
N−1∑
m=0

dLm(x)T2m(µ) (F.66)

∂L̂(x, µ)

∂µ
=

N∑
n=1

Ln(x)
∂

∂µ
[(1 − µ2)T2n−2(µ)]

=

N∑
n=1

Ln(x)[(n− 2)T|2n−3|(µ) − nT2n−1(µ)]

=

N−1∑
m=0

Lm(x)[(m − 1)T|2m−1|(µ)− (m+ 1)T2m+1(µ)] . (F.67)

This way, we will compute ∇× FCoriolis from Lm(x) and dLm(x).

F.2.2 Advection term

We write the φ-component of the advection term (divided by ρ̂) in the vorticity equation

as:

∇× FAdvection =
2

R2�

[
µ

x
√

1− µ2
uφ
∂uφ
∂x

+

√
1− µ2

x2
uφ
∂uφ
∂µ

]

=
2Ω2

eq

x
√
1− µ2

[
µ

x2(1 − µ2)
L̂
∂L̂

∂x
+

1

x3
L̂
∂L̂

∂µ

]
, (F.68)

which simplifies to:

∇× FAdvection

Ω2
eq

=
2

x
√

1− µ2

[
µ

x2(1− µ2)
L̂
∂L̂

∂x
+

1

x3
L̂
∂L̂

∂µ

]
. (F.69)

We compute ∇× FAdvection from modes Lm(x) and dLm(x).

181



F.2.3 Thermal Wind, Stratification, and Baroclinicity terms

Taking the curl of the gradient pressure divided by density as well as the curl of the

gravity forces divided by density yields the following expression:

∇× Fthermalstrat = − 1

R2�

√
1− µ2

x

p̄

ρ̄2
∂ρ̄

∂x

[
1

T̄

∂T

∂µ
+

1

ρ̄

∂ρ̃

∂µ

]

− 1

R�

√
1− µ2

x

ḡ

ρ̄

∂ρ̃

∂x

= − 1

R2�x
√

1− µ2

[
(1 − µ2)

p̄

ρ̄2
∂ρ̄

∂x

(
1

T̄

∂T

∂µ
+

1

ρ̄

∂ρ̃

∂µ

)]

− 1

R�x
√

1− µ2

[
(1 − µ2)

ḡ

ρ̄

∂ρ̃

∂x

]
, (F.70)

where the quantities with bars correspond to the background state, whereas the quantities with

tilde or without marks correspond to the perturbed thermodynamical variables. We obtain then

the non-dimensional expression:

∇× Fthermalstrat

Ω2
eq

= − 1

R2�Ω2
eqx
√

1− µ2

[
(1 − µ2)

p̄

ρ̄2
∂ρ̄

∂x

(
1

T̄

∂T

∂µ
+

1

ρ̄

∂ρ̃

∂µ

)]

− 1

R�Ω2
eqx
√

1− µ2

[
(1 − µ2)

ḡ

ρ̄

∂ρ̃

∂x

]
, (F.71)

F.2.4 Lorentz term

We non-dimensionalize the Lorentz torque expression by using2:

Br = B0B̂

Bθ =
B0

sin θ
b̂

Bφ =
B0R�
r sin θ

Ŝ

jφ =
B0

4πR�
Ĵ

x
√
1− µ2

Λ =
B2

0

4πρ0R�Ω2
eq

, (F.72)

2Note that we assume ρ0 = 1 to simplify Λ.
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so that taking the curl of the Lorentz force divided by ρ̄ results in:

∇× FLorentz =
1

R�ρ̄

[
jφ
∂Br

∂x
+Br

∂jφ
∂x

− jr
∂Bφ

∂x
−Bφ

∂jr
∂x

]

+
1

R�

(
1

xρ̄
− 1

ρ̄2
∂ρ̄

∂x

)
[jφBr − jrBφ]

+
1

R�ρ̄

√
1− µ2

x

[
jθ
∂Bφ

∂µ
+Bφ

∂jθ
∂µ

− jφ
∂Bθ

∂µ
−Bθ

∂jφ
∂µ

]

=
B2

0

4πR2�

1

x
√
1− µ2

{
1

ρ̄

[
Ĵ
∂B̂

∂x
+ B̂

∂Ĵ

∂x

− 1

x
Ĵ
∂b̂

∂µ
− 2µ

x(1 − µ2)
Ĵ b̂ − 1

x
b̂
∂Ĵ

∂µ

− 2µ

x2(1 − µ2)
Ŝ
∂Ŝ

∂x
− 2

x3
Ŝ
∂Ŝ

∂µ

]
− 1

ρ̄2
∂ρ̄

∂x

[
ĴB̂ +

1

x2
Ŝ
∂Ŝ

∂µ

]}
, (F.73)

which, by virtue of

∇ ·B =
∂B̂

∂x
+

2

x
B̂ − 1

x

∂b̂

∂µ
= 0 (F.74)

simplifies to:

∇× FLorentz

Ω2
eq

=
Λ

x
√

1− µ2

{
1

ρ̄

[
B̂
∂Ĵ

∂x
− 2

x
ĴB̂ − 2µ

x(1 − µ2)
Ĵ b̂− 1

x
b̂
∂Ĵ

∂µ

− 2µ

x2(1 − µ2)
Ŝ
∂Ŝ

∂x
− 2

x3
Ŝ
∂Ŝ

∂µ

]
− 1

ρ̄2
∂ρ̄

∂x

[
ĴB̂ +

1

x2
Ŝ
∂Ŝ

∂µ

]}
,

(F.75)

Then, the required Chebyshev transformations of B̂, b̂, as well as Ŝ, Ĵ and their
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derivatives, are:

B̂(x, µ) =
N∑

n=1

Bn(x)T2n−1(µ)

=

N−1∑
m=0

Bm(x)T2m+1(µ) (F.76)

b̂(x, µ) = (1− µ2)

N∑
n=1

bn(x)T2n−2(µ)

= (1− µ2)

N−1∑
m=0

bm(x)T2m(µ) (F.77)

Ŝ(x, µ) = (1− µ2)
N∑

n=1

Sn(x)T2n−1(µ)

= (1− µ2)

N−1∑
m=0

Sm(x)T2m+1(µ) (F.78)

∂Ŝ(x, µ)

∂x
= (1− µ2)

N∑
n=1

dSn(x)T2n−1(µ)

= (1− µ2)

N−1∑
m=0

dSm(x)T2m+1(µ) (F.79)

∂Ŝ(x, µ)

∂µ
=

N∑
n=1

Sn(x)
∂

∂µ
[(1− µ2)T2n−1(µ)]

=

N∑
n=1

Sn(x)

[
2n− 3

2
T2n−2(µ)− 2n+ 1

2
T2n(µ)

]

=

N−1∑
m=0

Sm(x)

[
2m− 1

2
T2m(µ)− 2m+ 3

2
T2m+2(µ)

]
, (F.80)

which we will use to obtain ∇× FLorentz from Bm(x), bm(x), Jm(x), Sm(x), and dSm(x).

F.2.5 Gyroscopic Pumping term

We write the term that drives zonal vorticity in the convection zone as:

∇× FGyropump = − Ωeq

R�xτ

[√
1− µ2

∂ur
∂µ

+ x
∂uθ
∂x

+ uθ

]

= − Ω2
eq

τx
√

1− µ2

[
(1− µ2)

∂û

∂µ
+ x

∂v̂

∂x
+ v̂

]
, (F.81)
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which reduces to:

∇× FGyropump

Ω2
eq

= − 1

τx
√

1− µ2
Ŵ . (F.82)

Here, we use the non-dimensional vorticity, Ŵ = (1− µ2) ∂û∂µ + x∂v̂
∂x + v̂.

Then, we use the following Chebyshev transformations:

û(x, µ) =

N∑
n=1

ψn(x)
∂

∂µ
[(1− µ2)T2n−1(µ)]

=

N∑
n=1

ψn(x)

[
2n− 3

2
T2n−2(µ)− 2n+ 1

2
T2n(µ)

]

=
N−1∑
m=0

ψm(x)

[
2m− 1

2
T2m(µ)− 2m+ 3

2
T2m+2(µ)

]
(F.83)

v̂(x, µ) = (1− µ2)

N∑
n=1

vn(x)T2n−1(µ)

= (1− µ2)

N−1∑
m=0

vm(x)T2m+1(µ) (F.84)

to compute ∇× FGyropump from the correspondig Chebyshev modes.

F.2.6 Viscous stress term

To compute the viscous torques on the azimuthal direction, we start from:

[∇× (∇ ·Π)]φ =
1

r

∂

∂r
[r(∇ ·Π)θ]− 1

r

∂

∂θ
[(∇ ·Π)r] , (F.85)
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which we transform into a non-dimensional expression by using the following relationships:

Πrr = ρ̄ν

[
2
∂ur
∂r

− 2

3
∇ · u

]
(F.86)

Πθθ = ρ̄ν

[
2

r

∂uθ
∂θ

+
2

r
ur − 2

3
∇ · u

]
(F.87)

Πφφ = ρ̄ν

[
2

r
ur +

2 cos θ

r sin θ
uθ − 2

3
∇ · u

]
(F.88)

Πrθ = ρ̄ν

[
1

r

∂ur
∂θ

+
∂uθ
∂r

− 1

r
uθ

]
(F.89)

Πrφ = ρ̄ν

[
∂uφ
∂r

− 1

r
uφ

]
(F.90)

Πθφ = ρ̄ν

[
1

r

∂uφ
∂θ

− cos θ

r sin θ
uφ

]
(F.91)

∇ · u = Ωeq

[
∂û

∂x
+

2

x
û− 1

x

∂v̂

∂µ

]
(F.92)

∇ · (ρ̄u) =
ρ̄

x2

[
x2
∂û

∂x
+ 2xû

]
+ û

∂ρ̄

∂x
− ρ̄

x

∂v̂

∂µ
= 0 . (F.93)

Here we have a summary with the main expressions needed to compute the viscous torque,

which we provide in the order we derived them:
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Πrr =
Ωeq ρ̄ν

R�

[
4

3

∂û

∂x
− 4

3

1

x
û+

2

3

1

x

∂v̂

∂µ

]
(F.94)

∂

∂x
(x2Πrr) =

Ωeq ρ̄ν

R�

[
2

3

∂Ŵ

∂µ
+

4

3
x2
∂2û

∂x2

−2

3
(1 − µ2)

∂2û

∂µ2
+

4

3
x
∂û

∂x
+

4

3
µ
∂û

∂µ
− 4

3
û

]

+
1

R�
∂(ρ̄ν)

∂x

[
4

3
x2
∂û

∂x
− 4

3
xû +

2

3
x
∂v̂

∂µ

]
(F.95)

Πrθ =
Ωeq ρ̄ν

R�

[
1

x
√
1− µ2

Ŵ − 2
√
1− µ2

x

∂û

∂µ
− 2

x
√
1− µ2

v̂

]
(F.96)

∂

∂µ
(
√

1− µ2Πrθ) =
Ωeq ρ̄ν

R�

[
1

x

∂Ŵ

∂µ
− 2(1− µ2)

x

∂2û

∂µ2
+

4µ

x

∂û

∂µ
− 2

x

∂v̂

∂µ

]
(F.97)

Πθθ =
ρ̄ν

R�

[
−2

3

∂û

∂x
+

2

3

1

x
û− 4

3

1

x

∂v̂

∂µ
− 2µ

x(1 − µ2)
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]
(F.98)

Πφφ =
Ωeq ρ̄ν

R�

[
−2

3

∂û

∂x
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3

1

x
û+

2

3

1

x

∂v̂

∂µ
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x(1− µ2)
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]
(F.99)

R�(∇ ·Π)r =
1

x2
∂

∂x
(x2Πrr)− 1

x

∂

∂µ
(
√

1− µ2Πrθ)− 1

x
Πθθ − 1

x
Πφφ , (F.100)

which yields the first two big terms to compute the viscous torque:

(∇ ·Π)r =

Ωeq ρ̄ν

R2�
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3
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∂Ŵ
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∂û
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(F.101)

∂

∂µ
(∇ ·Π)r =

Ωeq ρ̄ν

R2�
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∂µ2

+
8

3

1

x

∂2û
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. (F.102)
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Then, other two big terms for the viscous torque expression will be derived by using the following

relationships:

∂

∂x
(x2Πrθ) =

Ωeq ρ̄ν

R2�

[
x√

1− µ2

∂Ŵ

∂x
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]
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∂x

[
x√

1− µ2
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]

(F.103)

∂

∂µ
(
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∂x

+
2

3

√
1− µ2

x

∂û
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µ
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]
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(F.104)

which turn out to be:
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(∇ ·Π)θ =
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Ŵ
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√
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x
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4
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x
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]
. (F.105)

Finally, we obtain the expression for the viscous stresses as follows:
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(F.106)

which we rewrite as:

x
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(∇ ·Π
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. (F.107)
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F.2.7 High order derivatives of expressions involving T2n−1(µ)

Here, we have compiled the expressions needed to implement the IDL code to generate

plots of each term in the vorticity equation. In the code listing included in the appendix, some

derivatives are expressed in two or more ways depending on whether we used the Chebishev

differential equation to simplify algebraic computations. Also, by writing some derivatives in

more than one way, we were able to verify the accuracy of our computations.

We start by using the Chebyshev differential equation to reduce higher order derivatives

of T2n−1(µ), which show up when deriving high order derivatives of û:

û(x, µ) =

N∑
n=1

ψn
∂

∂µ

[
(1− µ2)T2n−1(µ)

]
(F.108)

∂û

∂µ
(x, µ) =

N∑
n=1

ψn
∂2

∂µ2

[
(1 − µ2)T2n−1(µ)

]

=

N∑
n=1

ψn

[
(1− µ2)

∂2T2n−1(µ)

∂µ2
− 4µ

∂T2n−1(µ)

∂µ
− 2T2n−1(µ)

]
,

(F.109)

from which we can obtain:

∂û

∂µ
(x, µ) =

N∑
n=1

ψn

[
−3µ

∂T2n−1(µ)

∂µ
− [2 + (2n− 1)2]T2n−1(µ)

]
(F.110)

∂2û

∂µ2
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N∑
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{
−
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3µ2
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]
∂T2n−1(µ)
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+
3µ
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(2n− 1)2T2n−1(µ)

}
(F.111)

∂3û

∂µ3
(x, µ) =

N∑
n=1

ψn

{
−
[

9µ3

(1− µ2)2
+

11µ− 2µ(2n− 1)2

1− µ2

]
∂T2n−1(µ)

∂µ

+

[
9µ2

(1− µ2)2
+

8 + (2n− 1)2

1− µ2

]
(2n− 1)2T2n−1(µ)

}
. (F.112)
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We use these expressions to compute the vorticity and its derivatives:

∂v̂

∂x
(x, µ) =

N∑
n=1

dvn(x)(1 − µ2)T2n−1(µ) (F.113)

∂v̂

∂µ
(x, µ) =

N∑
n=1

vn(x)

[
(1 − µ2)

∂T2n−1(µ)

∂µ
− 2µT2n−1(µ)

]
(F.114)

∂2v̂

∂µ2
(x, µ) =

N∑
n=1

vn

[
−3µ

∂T2n−1(µ)

∂µ
− [2 + (2n− 1)2]T2n−1(µ)

]
(F.115)

∂3v̂

∂x∂µ2
(x, µ) =

N∑
n=1

dvn

[
−3µ

∂T2n−1(µ)

∂µ
− [2 + (2n− 1)2]T2n−1(µ)

]
(F.116)

Ŵ (x, µ) = (1− µ2)
∂û

∂µ
+ x

∂v̂

∂x
+ v̂ (F.117)

∂Ŵ

∂x
(x, µ) = (1− µ2)

∂2û

∂x∂µ
+ x

∂2v̂

∂x2
+ 2

∂v̂

∂x
(F.118)

∂2Ŵ

∂µ2
(x, µ) = (1− µ2)

∂3û

∂µ3
− 4µ

∂2û

∂µ2
− 2

∂û

∂µ
+ x

∂3v̂

∂x∂µ2
+
∂2v̂

∂µ2
. (F.119)
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The rest of the expressions we need are:

T̂ (x, µ) =
N∑

n=1

Θn(x)T2n−2(µ) (F.120)

∂T̂

∂µ
(x, µ) =

N∑
n=1

Θn(x)
n− 1

1 − µ2
[T2n−3(µ)− T2n−1(µ)] (F.121)

ρ̂(x, µ) =

N∑
n=1

ρn(x)T2n−2(µ) (F.122)

∂ρ̂

∂µ
(x, µ) =

N∑
n=1

ρn(x)
n− 1

1 − µ2
[T2n−3(µ)− T2n−1(µ)] (F.123)

Ĵ(x, µ) =
N∑

n=1

Jn(x)(1 − µ2)T2n−2(µ) (F.124)

Ĵ(x, µ) = (1− µ2)
∂B̂

∂µ
+ x

∂b̂

∂x
+ b̂ (F.125)

∂2L̂(x, µ)

∂x2
= (1− µ2)
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)
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)
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N∑
n=1

Ln(x)

[
(1− µ2)

∂2T2n−2(µ)

∂µ2
− 4µ

∂T2n−2(µ)
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− 2T2n−2(µ)

]

=
N−1∑
m=0

Lm(x)

[
(1− µ2)

∂2T2m(µ)

∂µ2
− 4µ

∂T2m(µ)

∂µ
− 2T2m(µ)

]
(F.126)

Some identities for Chebyshev polynomials are included in Appendix C.
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Appendix G

NRK ParaSol: The User’s Guide

G.1 Description of the package

NRK ParaSol is a parallel implementation of the commonly-used Newton-Raphson-

Kantorovich (NRK) algorithm ((Garaud and Garaud , 2008),(Press et al. , 2007)) originally

developed by Gough & Moore, which solves systems of I first order, nonlinear, coupled, ordinary

differential equations (ODEs) in the two-point boundary value problem expressed as

I∑
j=1

Mij(x,y)
dyj
dx

= fi(x,y) , where i = {1, 2, . . . I} , (G.1)

with boundary conditions

gk(xA,y) = 0 , where k = {1, 2, . . . kA} ,

gk(xB,y) = 0 , where k = {kA + 1, . . . I} , (G.2)

for the vector of dependent variables y = {y1(x), y2(x), . . . yI(x)} on a discretized interval

[xA, xB] = {x1, x2, . . . xN}. Here, xA = x1 and xB = xN , kA is the number of conditions

set at the boundary located at xA, whereas kB = I − kA is the number of conditions set at the

boundary located at xB. The code implementation requires that (1) the mesh be either mono-
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tonically increasing or monotonically decreasing, and (2) the number of boundary conditions at

the first meshpoint be greater than or equal to that at the second meshpoint1: kA ≥ kB . Note

that this version of the algorithm is second-order accurate in the spatial discretization.

G.1.1 Installation

To install the package, untar the file NRK ParaSol.tar. This creates a directory struc-

ture with seven directories: five of them containing the examples provided in this guide, a

/templates directory, and the directory /docs with the documentation.

Each example contains the software organized in two folders: /src and /workdir.

• The folder /src contains the subroutines organized in two sub-folders: the solver routines

/src solver routines, which should not be modified, and the user routines /src user routines,

which can be tailored at will.

• The folder /workdir contains the initialization .h file, and a sample Makefile and PBS file.

This folder also contains all the output files organized in various directories (see below).

The directory /templates is organized in the same way as the example directories, but the

subroutines in /src user routines should be completed by the user as explained in Section

1.3.

G.1.2 Directory Workdir

The directory /workdir is where the code is executed. It contains both input and

output files and directories as described below. The Makefile provided is generic and should be

modified to include the user’s version of Fortran (FORTRAN). A pp.pbs file is provided if necessary

(for users on the Pleiades supercomputer at Santa Cruz for example), though the code can be

1Note that if kB > kA, the user simply needs to reverse the mesh.
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run directly using the standard mpirun command. Note that the user should verify that the

number of processors used in the mpirun command matches that of the init simu.h file.

G.1.2.1 Input files

The main input parameters are entered into the init simu.h file:

• ii, the number of ordinary differential equations,

• ka, the number of conditions at the boundary xA,

• kb, the number of conditions at the boundary xB,

• linearlhs, an optimization flag which is set to 1 if the coefficients of the left-hand-side

matrix Mij are all independent of y.

• nn, the number of meshpoints,

• xa, the coordinate of the first boundary,

• xb, the coordinate of the second boundary,

• nprev, an indicator for the use of previous results as initial guess,

• niter, the maximum number of iterations to be attempted, and

• nproc, the number of processors.

The file init simu.h can be modified to include any user-defined parameter if needed

(see Example 4). All other input files/data should be stored for clarity in the directory /workdir/inputfiles.
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G.1.2.2 Output files

The output files are organized in the following folders:

• /guessd: The NRK solver saves the initial guess in this folder.

• /tempor: The NRK solver saves the solution at each iteration in this folder.

• /result: The NRK solver saves the results in this folder once the accuracy criterion is

satisfied.

• /diagnosticfiles: Solution errors are written in the file ea.dat included in this folder.

The file ea.dat reports both the average error and the maximum error for each element

of the computed vector y.

G.1.3 User-defined subroutines

The directory /src/src user routines contains all user-modified routines. The driver

routine is the main.f. Subroutines describing the ODEs and boundary conditions of the problem

to be solved are lhs.f, rhs.f, and bc.f, respectively. In addition, the user should modify

mesh.f where the mesh is created, guess.f where a guess is generated and printresult.f

where results are printed to files.

• main.f: Driver routine.

• rhs.f: The user inputs the right hand side of equation (G.1), represented by the vector f ,

into the array f(i). The non-zero elements of the Jacobian, ∂fi/∂yj, are input into the

array fd(i, j). See examples for detail.

• lhs.f: The user inputs the non-zero elements of the matrix M corresponding to the left-

hand-side of equation (G.1) through the function am(i, j). Likewise, the non-zero elements
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of the left-hand-side Jacobian ∂Mij/∂yk are input through the function amd(i, j, k). See

examples for detail.

• bc.f: The user inputs the boundary conditions, defined by the vector g, into the array

g(i). The user also inputs the non-zero elements of the Jacobian ∂gi/∂yj into the array

gs(i, j). Finally, a permutation vector v is also defined in this subroutine to renumber the

dependent variables to prevent formation of singular matrices. See Example 2b for detail.

• mesh.f: The user defines an array of meshpoints. A default file creating a linearly-spaced

mesh is provided.

• guess.f: The user provides a trial solution either by writing a mathematical function, or

by reading external files. A default file creating a constant initial guess is provided.

• printresult.f: The user specifies in this subroutine how the vector solution y is printed

to files. A default file for printing is provided.

Some examples follow illustrating how to apply NRK ParaSol under different circum-

stances.

G.2 Examples

G.2.1 Example 1

Let us consider first the following differential equation

d2y

dx2
+

dy

dx
− 2y = ex (G.3)

on the interval (0, 1), under the following boundary conditions

y(0) = 1 ,

y(1) = 0 . (G.4)
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This second-order equation can be rewritten as two first-order equations, hence I = 2. We define

the parameters for this case in the file init simu.h as follows:

c Initialization file for the specific simulations

c Initialization of parameters specific to the system of ODEs to solve

integer ii,ka,kb

parameter(ii = 2) ! Number of equations

parameter(ka = 1) ! Number of boundary conditions at first meshpoint

parameter(kb = 1) ! Number of boundary conditions at second meshpoint

integer linearlhs

parameter(linearlhs=1) !If the lhs is linear then 1, otherwise 0

c Initialization of parameters specific to the mesh used

integer nn

parameter(nn = 1000) !number of meshpoints

double precision xa,xb ! First and last meshpoint

parameter(xa=0.d0)

parameter(xb=1.d0)

c Initialization of relaxation parameters

integer nprev

parameter(nprev = 0) !use previous guess (1) or not (0)

double precision ucy,acy

parameter(ucy = 1.d0) ! convergence speed (must be le 1.0)

parameter(acy = 1.d-16) ! accuracy required

integer niter

parameter(niter = 10) ! number of iterations to try.

c Initialization of quantities specific to the parallel implementaion

integer nproc,nbppmax

c Number of processors :

parameter(nproc=4)

c Maximum number of blocks per processor

parameter(nbppmax = (nn+1)/nproc +1 )

Note that this input file also specifies the number of processors to be 4.

G.2.1.1 Case 1a

By defining

y1 = y ,

y2 =
dy

dx
, (G.5)
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we can rewrite equation (G.3) in the following way

d

dx


 y1

y2


 =


 y2

2y1 − y2 + ex


 , (G.6)

from which we can obtain the expressions for the RHS functions:

f1 = y2 ,

f2 = 2y1 − y2 + ex . (G.7)

The Jacobian matrix is




∂f1
∂y1

= 0 ∂f1
∂y2

= 1

∂f2
∂y1

= 2 ∂f2
∂y2

= −1


 ,

for which only the non-zero terms need to be entered. Hence, the core part of the subroutine

rhs.f is written as

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = 2.d0*y(1)-y(2)+dexp(x)

fd(2,1) = 2.d0

fd(2,2) = -1.d0

The corresponding boundary conditions can be expressed within the subroutine bc.f

as

g1 = y(xA)− 1 = y1(xA)− 1 ,

g2 = y(xB)− 0 = y1(xB)− 0 . (G.8)

We define y1(xA) as ya(1) and y2(xA) as ya(2). Similarly, y1(xB) is yb(1) and y2(xB) is yb(2).

Hence, these functions along with their corresponding derivatives are coded in the subroutine

bc.f as
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g(1) = ya(1)-1.d0

gs(1,1) = 1.d0

g(2) = yb(1)

gs(2,1) = 1.d0

In a similar fashion, the subroutine lhs.f contains the expressions forMij and ∂Mij/∂yk.

By contrast with rhs.f and bc.f these quantities are returned through function calls, Mij in

am and ∂Mij/∂yk in amd. This is done to ease the memory requirement for very large systems

of ODEs. In this example, the Mij matrix is unity. This can be input as:

am=0.d0

if(i.eq.j) am=1.d0

in the am function. The amd function needs not to be entered if Mij is independent of y (i.e. if

linearlhs = 1).

All the corresponding subroutines adapted for this example are included in the directory

/example1a/src/src user routines.

G.2.1.2 Case 1b

Alternatively, we can express equation (G.3) as
 1 0

1 1


 d

dx


 y1

y2


 =


 y2

2y1 + ex


 , (G.9)

from which we can obtain the expressions for the subroutines rhs.f, bc.f, and lhs.f to be

slightly different. In the case of lhs.f, for example, the nonzero elements of the matrix M are

now input as

am=0.d0

if(i.eq.j) am=1.d0

if(i.eq.2 .and. j.eq.1) am=1.d0

The user may compare the subroutines rhs.f, bc.f, and lhs.f in the directory

/example1b/src/src user routines
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with the corresponding subroutines at

/example1a/src/src user routines.

G.2.1.3 Result comparison

When the code for this example is executed, the exact solution is written along with

the numerical one in the file Y001.dat both in the directory

/example1a/workdir/result

and

/example1b/workdir/result.

G.2.2 Example 2

NRK can also be used to find solutions to eigenvalue problems. Let us consider now

the following eigenvalue differential equation

d2y

dx2
+ ω2y = 0 (G.10)

on the interval (0, 1), under the following boundary conditions

y(0) = 0 ,

y(1) = 0 ,

dy

dx
(0) = 1 . (G.11)

G.2.2.1 Case 2a

By defining

y1 = y ,

y2 =
dy

dx
,

y3 = ω , (G.12)

202



we can rewrite equation (G.10) in the following way

d

dx




y1

y2

y3




=




y2

−y23y1

0




(G.13)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = y2 ,

f2 = −y23y1 ,

f3 = 0 . (G.14)

Hence, the core part of the subroutine rhs.f is written as

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = -y(3)**2*y(1)

fd(2,1) = -y(3)**2

fd(2,3) = -2*y(3)*y(1)

f(3) = 0.d0

Likewise, the corresponding boundary conditions can be expressed within the subrou-

tine bc.f as

g1 = y(xA)− 0 = y1(xA) = yA(1) ,

g2 =
dy

dx
(xA)− 1 = y2(xA)− 1 = yA(2)− 1 ,

g3 = y(xB)− 0 = y1(xB) = yB(1) . (G.15)

These functions along with their corresponding derivatives are coded in the subroutine bc.f as

g(1) = ya(1)

gs(1,1) = 1.d0

g(2) = ya(2) - 1.d0

gs(2,2) = 1.d0
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g(3) = yb(1)

gs(3,1) = 1.d0

Finally, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj, which reduce to

am=1 for the elements on the diagonal of the matrix M. As in Example 1, amd needs not to be

entered if the problem in lhs.f is linear.

Note that since this is an eigenvalue problem, we expect a number of solutions. Typ-

ically, different solutions are found starting from different initial guesses. The user can modify

the subroutine guess.f to find solutions corresponding to different eigenvalues. We change the

default values in guess.f to solve case 2b to obtain a specific eigenvalue solution. For exam-

ple, if y3 is set to 7 for all x(i) in guess.f, then we get the eigenvalue y3 closest to 7 and its

corresponding solution y1.

G.2.2.2 Case 2b

This example illustrates the use of the permutation vector. By defining

y1 = ω ,

y2 = y ,

y3 =
dy

dx
, (G.16)

we can rewrite equation (G.10) in the following way

d

dx




y1

y2

y3




=




0

y3

−y21y2




(G.17)
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from which we can obtain the expressions for the subroutine rhs.f:

f1 = 0 ,

f2 = y3 ,

f3 = −y21y2 . (G.18)

Hence, the core part of the subroutine rhs.f is finally written as

f(2) = y(3)

fd(2,3) = 1.d0

f(3) = -y(1)**2*y(2)

fd(3,2) = -y(1)**2

fd(3,1) = -2*y(1)*y(2)

f(1) = 0.d0

Similarly the boundary conditions are now

g(1) = ya(2)

gs(1,2) = 1.d0

g(2) = ya(3) - 1.d0

gs(2,3) = 1.d0

g(3) = yb(2)

gs(3,2) = 1.d0

Note that in this case, the Jacobian matrix gs becomes

gs(I, I) =




0 1 0

0 0 1

0 1 0




(G.19)

We then see that the submatrix associated with the boundary conditions at xA, namely

gs(kA, kA) =


 0 1

0 0


 (G.20)
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is singular. The matrix gs(kA, kA) must be non-singular for this parallel algorithm to work.

Hence, we create a permutation of the columns of gs(I, I) (which is equivalent to renumbering

the dependent variables) to make the new gs(kA, kA) non-singular:


0 1 0

0 0 1

0 1 0




vT=[2,3,1]−−−−−−−→




1 0 0

0 1 0

1 0 0




, (G.21)

where v(I) is the permutation vector, whose subroutine is in the last part of the file bc.f:

subroutine pervector(v)

c ********************************************************************

c Subroutine where the permutation vector for the boundary condition

c functions is input

c ********************************************************************

implicit none

include ’init_simu.h’

integer v

dimension v(ii)

integer i

v(1) = 2

v(2) = 3

v(3) = 1

return

end

Finally, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj, which

reduce to am=1 for the elements on the diagonal of the matrix M.

G.2.3 Example 3

Let us consider now the Chebishev differential equation ((Rivlin , 1974)):

(1− x2)
d2y

dx2
− x

dy

dx
+ ω2y = 0 (G.22)
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under the following boundary conditions

y(0) = 0 ,

y(1) = 1 ,

dy

dx
(0) = −3 . (G.23)

By defining

y1 = y ,

y2 =
dy

dx
,

y3 = ω , (G.24)

we can rewrite equation (G.22) in the following way


1 0 0

0 (1− x2) 0

0 0 1




d

dx




y1

y2

y3




=




y2

xy2 − y23y1

0




, (G.25)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = y2 ,

f2 = xy2 − y23y1 ,

f3 = 0 . (G.26)

The core part of the subroutine rhs.f is

f(1) = y(2)

fd(1,2) = 1.d0

f(2) = x*y(2)-y(3)**2.d0*y(1)

fd(2,1) = -y(3)**2.d0

fd(2,2) = x

fd(2,3) = -2.d0*y(3)*y(1)

f(3) = 0.d0
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Likewise, the corresponding boundary conditions can be expressed within the subrou-

tine bc.f as

g1 = y(xA)− 0 = y1(xA) = yA(1) ,

g2 =
dy

dx
(xA) + 3 = y2(xA) + 3 = yA(2) + 3 ,

g3 = y(xB)− 1 = y1(xB)− 1 = yB(1)− 1 . (G.27)

These functions along with their corresponding derivatives are coded in the subroutine bc.f as

g(1) = ya(1)

gs(1,1) = 1.d0

g(2) = ya(2) + 3.d0

gs(2,2) = 1.d0

g(3) = yb(1) - 1.d0

gs(3,1) = 1.d0

As in previous examples, the subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj.

This example requires setting M2,2 = (1− x2). This is done as:

am=0.d0

if(i.eq.j) am=1.d0

if(i.eq.2 .and. j.eq.2) am=1.d0-x**2.d0

The exact solution is written along with the numerical one in the file Y001.dat in the directory

/example3/workdir/result. The file Y003.dat in the same directory shows the eigenvalue

numerically computed, and the eigenvalue which corresponds to the exact solution provided in

the file Y001.dat.
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G.2.4 Example 4

Let us consider now the van der Pol’s differential equation ((Fogiel , 1996)):

d2y

dx2
− ε(1− y2)

dy

dx
+

1

4
u20y = 0 (G.28)

under the following boundary conditions

y(0) = 0 ,

dy

dx
(0) = u0 . (G.29)

In this example, the parameters u0 and ε are entered in the init simu.h file as

c Initialization of model-specific parameters

double precision epsil,u0

parameter(epsil=1.d-6)

parameter(u0=1.d0)

By defining

y1 = y ,

y2 =
dy

dx
, (G.30)

we can rewrite equation (G.28) in the following way
 1 0

−ε(1− y21) 1


 d

dx


 y1

y2


 =


 y2

1
4u

2
0y1


 , (G.31)

from which we can obtain the expressions for the subroutine rhs.f:

f1 = y2 ,

f2 =
1

4
u20y1 . (G.32)

The core part of the subroutine rhs.f is
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f(1) = y(2)

fd(1,2) = 1.d0

f(2) = 0.25d0*u0**2.d0*y(1)

fd(2,1) = 0.25d0*u0**2.d0

Likewise, the corresponding boundary conditions can be expressed within the subroutine bc.f

as

g1 = y(xA)− 0 = y1(xA) = yA(1) ,

g2 =
dy

dx
(xA)− u0 = y2(xA)− u0 = yA(2)− u0 . (G.33)

These functions along with their corresponding derivatives are coded in the subroutine bc.f as

g(1) = ya(1)

gs(1,1) = 1.d0

g(2) = ya(2) - u0

gs(2,2) = 1.d0

The subroutine lhs.f contains the expressions for Mij and ∂Mij/∂yj. This example no longer

has a linear left-hand-side. Indeed,

M2,1 = −ε(1− y21) , (G.34)

∂M2,1

∂y1
= 2εy1 , (G.35)

As a result, we must set linearlhs=0 in the file /workdir/init simu.h. The LHS is then

coded as

double precision function am(i,j,x,y,in)

implicit none

include ’init_simu.h’

integer i,j,in

double precision x,y
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dimension y(*)

am=0.d0

if(i.eq.j) am=1.d0

if(i.eq.2 .and. j.eq.1) am=-epsil*(1.d0-y(j)**2)

return

end

c *************************************************************

double precision function amd(i,j,l,x,y,in)

implicit none

include ’init_simu.h’

integer i,j,l,in

double precision x,y

dimension y(*)

amd=0.d0

if(i.eq.2 .and. j.eq.1 .and. l.eq.1) amd=2.d0*epsil*y(j)

return

end

The first-order approximate solution (for ε→ 0) is written along with the numerical one in the

file Y001.dat in the directory /example4/workdir/result.
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