
Lawrence Berkeley National Laboratory
Applied Math & Comp Sci

Title
An immersed boundary method for rigid bodies

Permalink
https://escholarship.org/uc/item/2057k2x1

Journal
Communications in Applied Mathematics and Computational Science, 11(1)

ISSN
1559-3940

Authors
Kallemov, Bakytzhan
Bhalla, Amneet
Griffith, Boyce
et al.

Publication Date
2016

DOI
10.2140/camcos.2016.11.79
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2057k2x1
https://escholarship.org/uc/item/2057k2x1#author
https://escholarship.org
http://www.cdlib.org/


An Immersed Boundary Method for Rigid Bodies
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We develop an immersed boundary (IB) method for modeling flows around fixed or mov-

ing rigid bodies that is suitable for a broad range of Reynolds numbers, including steady

Stokes flow. The spatio-temporal discretization of the fluid equations is based on a stan-

dard staggered-grid approach. Fluid-body interaction is handled using Peskin’s IB method;

however, unlike existing IB approaches to such problems, we do not rely on penalty or

fractional-step formulations. Instead, we use an unsplit scheme that ensures the no-slip

constraint is enforced exactly in terms of the Lagrangian velocity field evaluated at the IB

markers. Fractional-step approaches, by contrast, can impose such constraints only approx-

imately, which can lead to penetration of the flow into the body, and are inconsistent for

steady Stokes flow. Imposing no-slip constraints exactly requires the solution of a large

linear system that includes the fluid velocity and pressure as well as Lagrange multiplier

forces that impose the motion of the body. The principal contribution of this paper is that

it develops an efficient preconditioner for this exactly constrained IB formulation which is

based on an analytical approximation to the Schur complement. This approach is enabled

by the near translational and rotational invariance of Peskin’s IB method. We demonstrate

that only a few cycles of a geometric multigrid method for the fluid equations are required

in each application of the preconditioner, and we demonstrate robust convergence of the

overall Krylov solver despite the approximations made in the preconditioner. We empiri-

cally observe that to control the condition number of the coupled linear system while also

keeping the rigid structure impermeable to fluid, we need to place the immersed boundary

markers at a distance of about two grid spacings, which is significantly larger from what

has been recommended in the literature for elastic bodies. We demonstrate the advantage

of our monolithic solver over split solvers by computing the steady state flow through a

two-dimensional nozzle at several Reynolds numbers. We apply the method to a number of

benchmark problems at zero and finite Reynolds numbers, and we demonstrate first-order

convergence of the method to several analytical solutions and benchmark computations.
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I. INTRODUCTION

A large number of numerical methods have been developed to simulate interactions between

fluid flows and immersed bodies. For rigid bodies or bodies with prescribed kinematics, many

of these approaches [1–5] are based on the immersed boundary (IB) method of Peskin [6]. The

simplicity, flexibility, and power of the IB method for handling a broad range of fluid-structure

interaction problems was demonstrated by Bhalla et al. [2]. In that study, the authors showed

that the IB method can be used to model complex flows around rigid bodies moving with specified

kinematics (e.g., swimming fish or beating flagella) as well as to compute the motion of freely

moving bodies driven by flow. In the approach of Bhalla et al., as well as those of others [1, 3–5],

the rigidity constraint enforcing that the fluid follows the motions of the rigid bodies is imposed

only approximately. Here and throughout this manuscript, when we refer to the no slip condition,

we mean the requirement that the interpolated fluid velocity exactly match the rigid body velocity

at the positions of the IB marker points. In this work, we develop an effective solution approach

to an IB formulation of this problem that exactly enforces both the incompressibility and no-slip

constraints, thus substantially improving upon a large number of existing techniques.

A simple approach to implementing rigid bodies using the traditional IB method is to use

stiff springs to attach markers that discretize the body to tether points constrained to move as a

rigid body [7]. This penalty-spring approach leads to numerical stiffness and, when the forces are

handled explicitly, requires very small time steps. For this reason, a number of direct forcing IB

methods [8] have been developed that aim to constrain the flow inside the rigid body by treating the

fluid-body force as a Lagrange multiplier Λ enforcing a no-slip constraint at the locations of the IB

markers. However, to our knowledge, all existing direct forcing IB methods use some form of time

step splitting to separate the coupled fluid-body problem into more manageable pieces. The basic

idea behind these approaches is first to solve a simpler system in which a number of the constraints

(e.g., incompressibility, or no-slip along the fluid-body interface) are ignored. The solution of the

unconstrained problem is then projected onto the constraints, which yields estimates of the true

Lagrange multipliers. In most existing methods, the fluid solver uses a fractional time stepping

scheme, such as a version of Chorin’s projection method, to separate the velocity update from the

∗Electronic address: donev@courant.nyu.edu

mailto:donev@courant.nyu.edu


3

pressure update [1, 3, 5]. Taira and Colonius also use a fractional time-stepping approach in which

they split the velocity from the Lagrange multipliers (π,Λ). They obtain approximations to (π,Λ)

in a manner similar to that in a standard projection method for the incompressible Navier-Stokes

equations. A modified Poisson-type problem (see (26) in [3]) determines the Lagrange multipliers

and is solved using an unpreconditioned conjugate gradient method. The method developed in Ref.

[2] avoids the pressure-velocity splitting and instead uses a combined iterative Stokes solver, and

in Ref. [4] (see supplementary material), periodic boundary conditions are applied, which allows

for the use of a pseudo-spectral method. In both works, however, time step splitting is still used to

separate the computation of the rigidity constraint forces from the updates to the fluid variables.

In the approach described in the supplementary material to Ref. [4], the projection step of the

solution onto the rigidity constraint is performed twice in a predictor-corrector framework, which

improves the imposition of the constraint; however, this approach does not control the accuracy of

the approximation of the constraint forces. Curet et al. [9] and Ardekani et al. [10] go a step closer

in the direction of exactly enforcing the rigidity constraint by iterating the correction until the

relative slip between the desired and imposed kinematics inside the rigid body reaches a relatively

loose tolerance of 1%. The scheme used in Ref. [9] is essentially a fixed-point (Richardson)

iteration for the constrained fluid problem, which uses splitting to separate the update of the

Lagrange multipliers from a fluid update based on the SIMPLER scheme [11]. Unlike the approach

developed here, fixed point iterations based on splitting are not guaranteed to converge, yet alone

converge rapidly, especially in the steady Stokes regime for tight solver tolerances.

An alternative view of direct forcing methods that use time step splitting is that they are penalty

methods for the unsplit problem, in which the penalty parameter is related to the time step size.

Such approaches inherently rely on inertia and implicitly assume that fluid velocity has memory.

Consequently, all such splitting methods fail in the steady Stokes limit. Furthermore, even at

finite Reynolds numbers, methods based on splitting cannot exactly satisfy the no-slip constraint

at fluid-body interfaces. Such methods can thereby produce undesirable artifacts in the solution,

such as penetration of the flow through a rigid obstacle. It is therefore desirable to develop a

numerical method that solves for velocity, pressure, and fluid-body forces in a single step with

controlled accuracy and reasonable computational complexity.

The goal of this work is to develop an effective IB method for rigid bodies that does not rely on

any splitting. Our method is thus applicable over a broad range of Reynolds numbers, including

steady Stokes flow, and is able to impose rigidity constraints exactly. This approach requires us

to solve large linear systems for velocity, pressure, and fluid-body interaction forces. This linear
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system is not new. For example, (13) in Ref. [3] is essentially the same system of equations that we

study here. The primary contributions of this work are that we do not rely on any approximations

when solving this linear system, and that we develop an effective preconditioner based on an

approximation of the Schur complement that allows us to solve (3). The resulting method has a

computational complexity that is only a few times larger than the corresponding problem in the

absence of rigid bodies. In the context of steady Stokes flows, a rigid-body IB formulation very

similar to the one we use here has been developed by Bringley and Peskin [12]; however, that

formulation relies on periodic boundary conditions, and uses a very different spatial discretization

and solution methodology from the approach we describe here. Our approach can readily handle a

broad range of specified boundary conditions. In both Refs. [12] and a very recent work by Stein

et al. on a higher-order IB smooth extension method for scalar (e.g., Poisson) equations [8], the

Schur complement is formed densely in an expensive pre-computation stage. By contrast, in the

method proposed here we build a simple physics-based approximation of the Schur complement

that can be computed “on the fly” in a scalable and efficient manner.

Our basic solution approach is to use a preconditioned Krylov solver for the fully constrained

fluid problem, as has been done for some time in the context of finite element methods for fluid

flows interacting with elastic bodies [13, 14]. A key difficulty that we address in this work is the

development of an efficient preconditioner for the constrained formulation. To do so, we construct

an analytical approximation of the Schur complement (i.e., the mobility matrix) corresponding to

Lagrangian rigidity forces (i.e., Lagrange multipliers) enforcing the no-slip condition at the positions

of the IB markers. We rely on the near translational and rotational invariance of Peskin’s IB method

to approximate the Schur complement, following techniques commonly used for suspensions of

rigid spheres in steady Stokes flow such as Stokesian dynamics [15, 16], bead methods for rigid

macromolecules [17–20] and the method of regularized Stokeslets [21–23]. In fact, as we explain

herein, many of the techniques developed in the context of steady Stokes flow can be used with the

IB method both at zero and also, perhaps more surprisingly, finite Reynolds numbers.

The method we develop offers an attractive alternative to existing techniques in the context of

steady or nearly-steady Stokes flow of suspensions of rigid particles. To our knowledge, most other

approaches tailored to the steady Stokes limit rely on Green’s functions for Stokes flow to eliminate

the (Eulerian) fluid degrees of freedom and solve only for the (Lagrangian) degrees of freedom

associated to the surface of the body. Because these approaches rely on the availability of analytical

solutions, handling non-trivial boundary conditions (e.g., bounded systems) is complicated [24] and

has to be done on a case-by-case basis [25–31]. By contrast, in the method developed here, analytical
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Green’s functions are replaced by an“on the fly”computation that may be carried out by a standard

finite-volume, finite-difference, or finite-element fluid solver 1. Such solvers can readily handle

nontrivial boundary conditions. Furthermore, suspensions at small but nonzero Reynolds numbers

can be handled without any extra work. Additionally, we avoid uncontrolled approximations relying

on truncations of multipole expansions to a fixed order [15, 34–36], and we can seamlessly handle

arbitrary body shapes and deformation kinematics. For problems involving active [37] particles, it is

straightforward to add osmo- or electro-phoretic coupling between the fluid flow and additional fluid

variables such as the electric potential or the concentration of charged ions or chemical reactants.

Lastly, in the spirit of fluctuating hydrodynamics [38–40], it is straightforward to generate the

stochastic increments required to simulate the Brownian motion of small rigid particles suspended

in a fluid by including a fluctuating stress in the fluid equations. We also point out that our method

also has some disadvantages compared to methods such as boundary integral or boundary element

methods. Notably, it requires filling the domain with a dense uniform fluid grid, which is expensive

at low densities. It is also a low-order method that cannot compute solutions as accurately as

spectral boundary integral formulations. We do believe, nevertheless, that the method developed

here offers a good compromise between accuracy, efficiency, scalabilty, flexibility and extensibility,

compared to other more specialized formulations.

II. SEMI-CONTINUUM FORMULATION

Our notation uses the following conventions where possible. Vectors (including multi-vectors),

matrices, and operators are bolded, but when fully indexed down to a scalar quantity we no longer

bold the symbol; matrices and operators are also scripted. We denote Eulerian quantities with

lowercase letters, and the corresponding Lagrangian quantity with the same capital letter. We use

the Latin indexes i, j, k, l,m to denote a specific fluid grid point or IB marker (i.e., physical location

with which degrees of freedom are associated), the indices p, q, r, s, t to denote a specific body in the

multibody context, and Greek superscripts α, β, γ to denote specific Cartesian components. For

example, v denotes fluid velocity (either continuum or discrete), with vαk being the fluid velocity

in direction α associated with the face center k, and V denotes the velocity of all IB markers,

with V α
i being the velocity of marker i along direction α. Our formulation is easily extended to a

collection of rigid bodies, but for simplicity of presentation, we focus on the case of a single body.

1 In this work, we use a staggered-grid discretization on a uniform grid combined with multigrid-preconditioned
Stokes solvers [32, 33].
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We consider a region D ⊂ Rd (d = 2 or 3) that contains a single rigid body Ω ⊂ D immersed in

a fluid of density ρ and shear viscosity η. The computational domain D could be a periodic region

(topological torus), a finite box, an infinite domain, or some combination thereof, and we will

implicitly assume that some consistent set of boundary conditions are prescribed on its boundary

∂D even though we will not explicitly write this in the formulation. We require that the linear

velocity of a given reference point (e.g., the center of mass of the body) U(t) and the angular

velocity Ω(t) of the body are specified functions of time, and without loss of generality, we assume

that the rigid body is at rest 2. In addition to features of the fluid flow, typical quantities of

interest are the total drag force F (t) and total drag torque T (t) between the fluid and the body.

Another closely related problem to which IB methods can be extended is the case when the motion

of the rigid body (i.e., U(t) and Ω(t)) is not known but the body is subject to specified external

force F (t) and torque T (t). For example, in the sedimentation of rigid particles in suspension, the

external force is gravity and the external torque is zero. Handling this free kinematics problem

[2, 41] requires a nontrivial extension of our formulation and numerical algorithm.

In the immersed boundary (IB) method [6, 42, 43], the velocity field v(r, t) is extended over the

whole domain D, including the body interior. The body is discretized using a collection of markers,

which is a set of N points that cover the interior of the body and at which the interaction between

the body and the fluid is localized. For example, the markers could be the nodes of a triangular

(d = 2) or tetrahedral (d = 3) mesh used to discretize Ω; an illustration of such a volume grid of

markers discretizing a rigid disk immersed in steady Stokes flow is shown in the left panel of Fig. 1.

In the case of Stokes flow, the specification of a no slip condition on the boundary of a rigid body

is sufficient to ensure rigidity of the fluid inside the body [21]. Therefore, for Stokes flow, the grid

of markers does not need to extend over the volume of the body and can instead be limited to the

surface of the rigid body, thus substantially reducing the number of markers required to represent

the body. In this case, the markers could be the nodes of a triangulation (d = 3) of the surface of

the body; an illustration of such a surface grid of markers is shown in the right panel of Fig. 1.

We discuss the differences between a volume and a surface grid of markers in Section VII.

The traditional IB method is concerned with the motion of elastic (flexible) bodies in fluid

flow, and the collection of markers can be viewed as a set of quadrature points used to discretize

integrals over the moving body. The elastic body forces are most easily computed in a Lagrangian

2 The case of more general specified kinematics is a straightforward generalization and does not incur any additional
mathematical or algorithmic complexity [2, 41].
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coordinate system attached to the deforming body, and the relative positions of the markers in the

fixed Eulerian frame of reference generally vary in time. For a rigid body, however, the relative

positions of the markers do not change, and it is not necessary to introduce two distinct coordinate

frames. Instead, we use the same Cartesian coordinate system to describe points in the fluid domain

and in the body; the positions of the N markers in this fixed frame of reference will be denoted

with R = {R1, . . . ,RN}, where R ⊂ Ω for volume meshes or R ⊂ ∂Ω for surface meshes.

Figure 1: Two-dimensional Steady Stokes flow past a periodic column of circular cylinders (disks) at zero

Reynolds number obtained using our rigid-body IB method (the same setup is also studied at finite Reynolds

numbers in Section VII F). The markers used to mediate the fluid-body interaction are shown as small

colored circles. The Lagrangian constraint forces Λ that keep the markers at their fixed locations are shown

as colored vectors; the color of the vectors and the corresponding marker i are based on the magnitude of

the constraint force Λi (see color bar). The fluid velocity field is shown as a vector field (black arrows) in the

vicinity and the interior of the body; further from the body, flow streamlines are shown as solid blue lines.

The magnitude of the Eulerian constraint force SΛ is shown as a gray color plot (see greyscale bar). (Left

panel) A volume marker grid of 121 markers is used to discretize the disk. The majority of the constraint

forces are seen to act near the surface of the body, but nontrivial constraint forces are seen also in the

interior of the body. (Right panel) A surface grid of 39 markers is used to discretize the disk, which strictly

localizes the constraint forces to the surface of the body.

In the standard IB method for flexible immersed bodies, elastic forces are computed in the

Lagrangian frame and then spread to the fluid in the neighborhood of the markers using a regu-

larized delta function δa (r) that integrates to unity and converges to a Dirac delta function as the

regularization width a→ 0. The regularization length scale a is typically chosen to be on the order

of the spacing between the markers (as well as the lattice spacing of the grid used to discretize the

fluid equations), as we discuss in more detail later. In turn, the motion of the markers is specified

to follow the velocity of the fluid interpolated at the positions of the markers.

The key difference between an elastic and a rigid body is that, for a rigid object, the motion of
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the markers is known (e.g, they are fixed in place or move with a specified velocity) and the body

forces are unknown and must be determined within each time step. To obtain the fluid-marker

interaction forces Λ (t) = {Λi (t) , . . . ,ΛN (t)} that constrain the motion of the N markers, we

solve for the Eulerian velocity field v (r, t), the Eulerian pressure field π (r, t), and the Lagrangian

constraint forces Λi (t) the system

ρ (∂tv + v ·∇v) +∇π = η∇2v +

N∑
i=1

Λiδa (Ri − r) ,

∇·v = 0,

V i =

∫
δa (Ri − r)v (r, t) dr = 0, i = 1, . . . , N, (1)

along with suitable boundary conditions. In the case of steady Stokes flow, we set ρ = 0. The first

two equations are the incompressible Navier-Stokes equations with an Eulerian constraint force

λ (r, t) =
N∑
i=1

Λiδa (Ri − r) .

The last condition is the rigidity constraint that requires that the Eulerian velocity averaged around

the position of marker i must match the known marker velocity V i. This constraint enforces a

regularized no-slip condition at the locations of the IB markers, which is a numerical approximation

of the true no-slip condition on the surface (or interior) of the body. Observe that flow may still

penetrate the body in-between the markers and this leads to a well-known small but nonzero “leak”

in the traditional Peskin IB method. This leak can be greatly reduced by adopting a staggered-

grid formulation [44], as done in the present work. Other more specialized approaches to reducing

spurious fluxes in the IB method have been developed [45–47], but will not be considered in this

work.

Notice that for zero Reynolds number, the semi-continuum formulation (1) is closely related

to the popular method of regularized Stokeslets, which solves a similar system of equations for Λ

[21, 22]. The key difference 3 is that in the method of regularized Stokeslets, the fluid equations

are eliminated using analytic Green’s functions; this necessitates that nontrivial pre-computations

of these Green’s functions be performed for each type of boundary condition [30, 31].

3 Another important difference is that we follow Peskin and use the regularized delta function both for spreading
and interpolation (this ensures energy conservation in the formulation [6]), whereas in the method of Regularized
Stokeslets only the spreading uses a regularized delta function. Our choice ensures that the linear system we solve
is symmetric and positive semi-definite, which is crucial if one wishes to account for Brownian motion and thermal
fluctuations.
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In this work, we treat (1) as the primary continuum formulation of the problem. This is a semi-

continuum formulation in which the rigid body is represented as a discrete collection of markers but

the fluid description is kept as a continuum, which implies that different discretizations of the fluid

equations are possible. One can, in principle, try to write a fully continuum formulation in which

the discrete set of rigidity forces Λ are replaced by a continuum force density field λ (R ∈ Ω, t).

The well-posedness and stability of such a fully continuum formulation is mathematically delicate,

however, and there can be subtle differences between weak and strong interpretations of the equa-

tions. To appreciate this, observe that if each component of the velocity is discretized with Nf

degrees of freedom, it cannot in general be possible to constrain the velocity strongly at more than

Nf points (markers). By contrast, in our strong formulation (1), the velocity is infinite dimensional

but it is only constrained in the vicinity of a finite number of markers. Therefore, the problem

(1) is always well posed and is directly amenable to numerical discretization and solution, at least

when it is well-conditioned. As we show in this work, the conditioning of the fully discrete problem

is controlled by the relationship between the regularization length a and the marker spacing.

The physical interpretation of the constraint forces Λi depends on details of the marker grid

and the type of the problem under consideration. For fully continuum formulations, in which the

fluid-body interaction is represented solely as a surface force density, the force Λi can be interpreted

as the integral of the traction (normal component of the fluid stress tensor) over a surface area

associated with marker i. Such a formulation is appropriate, for example, for steady Stokes flow. In

particular, for steady Stokes flow our method can be seen as a discretized and regularized first-kind

integral formulation in which Green’s functions are computed by the fluid solver. This approach

is different from the method of regularized Stokeslets, in which regularized Green’s functions must

be computed analytically [21, 22].

For cases in which markers are placed on both the surface and the interior of a rigid body,

the precise physical interpretation of the volume force density, and thus of Λ, is delicate even for

steady Stokes flow. Notably, observe that the splitting between a volume constraint force density

and the gradient of the pressure is not unique because the pressure inside a rigid body cannot be

determined uniquely. Specifically, only the component of the constraint force density projected

onto the space of divergence-free vector fields is uniquely determined. In the presence of finite

inertia and a density mismatch between the fluid and the moving rigid bodies, the inertial terms

in (1) need to be modified in the interior of the body [35]. Furthermore, sufficiently many markers

in the interior of the body are required to prevent spurious angular momentum being generated

by motions of the fluid inside the body [1]. We do not discuss these physical issues in this work
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because they do not affect the numerical algorithm, and because we restrict our numerical studies

to flow past stationary rigid bodies, for which the fluid-body interaction force is localized to the

surface of the body in the continuum limit.

III. DISCRETE FORMULATION

The spatial discretization of the fluid equation uses a uniform Cartesian grid with grid spacing

h and is based on a second-order accurate staggered-grid finite-difference discretization, in which

vector-valued quantities, including velocities and forces, are represented on the faces of the Carte-

sian grid cells, and scalar-valued quantities, including the pressure, are represented at the centers

of the grid cells [2, 35, 42, 43]. Our implicit-explicit temporal discretization of the Navier-Stokes

equation is standard and summarized in prior work; see for example the work of Griffith [43]. The

key features are that we treat advection explicitly using a predictor-corrector approach, and that

we treat viscosity implicitly, using either the backward Euler or the implicit midpoint method. For

steady Stokes flow, no temporal discretization required, although one can also think of this case as

corresponding to a backward Euler discretization of the time-dependent problem with a very large

time step size ∆t. A key dimensionless quantity is the viscous CFL number β = ν∆t/h2, where

the kinematic viscosity is ν = η/ρ. If β is small, the pressure and velocity are weakly coupled, but

for large β, and in particular for the steady Stokes limit β →∞, the coupling between the velocity

and pressure equations is strong.

We do not use a fractional time-stepping scheme (i.e., a projection method) to split the pressure

and velocity updates; instead, the pressure is treated as a Lagrange multiplier that enforces the

incompressibility and must be determined together with the velocity at the end of the time step

[32]; except in special cases, this is necessary for small Reynolds number flows. This approach also

greatly aids with imposing stress boundary conditions [32]. The constraint force λ (r, t) is treated

analogously to the pressure, i.e., as a Lagrange multiplier. Whereas the role of the pressure is to

enforce the incompressibility constraint, λ enforces the rigidity constraint. Like the pressure, λ is

an unknown that must be solved for in this formulation.

A. Force spreading and velocity interpolation

In the fully discrete formulation of the fluid-body coupling, we replace spatial integrals by sums

over fluid or body grid points in the semi-continuum formulation (1). The regularized delta function
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is discretized using a tensor product in d-dimensional space (see [35] for more details),

δa(r) = h−d
d∏

α=1

φa (rα) ,

where hd is the volume of a grid cell. The one-dimensional kernel function φa is chosen based on

numerical considerations of efficiency and maximized approximate translational invariance [6]. In

this work, for reasons that will become clear in Section IV, we prefer to use a kernel that maximizes

translational and rotational invariance (i.e., improves grid-invariance). We therefore use the smooth

(three-times differentiable) six-point kernel recently described by Bao et al. [48]. This kernel is more

expensive than the traditional four-point kernel [6] because it increases the support of the kernel to

62 = 36 grid points in two dimensions and 63 = 216 grid points in three dimensions; however, this

cost is justified because the new six-point kernel improves the translational invariance by orders of

magnitude compared to other standard IB kernel functions [48].

The interaction between the fluid and the rigid body is mediated through two crucial operations.

The discrete velocity-interpolation operator J averages velocities on the staggered grid in the

neighborhood of marker i via

(J v)αi =
∑
k

vαk φa (Ri − rαk ) ,

where the sum is taken over faces k of the grid, α indexes coordinate directions (x, y, z) as a

superscript, and rαk is the position of the center of the grid face k in the direction α. The discrete

force-spreading operator S spreads forces from the markers to the faces of the staggered grid via

(SΛ)αk = h−d
∑
i

Λαi φa (Ri − rαk ) , (2)

where now the sum is over the markers that define the configuration of the rigid body. These

operators are adjoint with respect to a suitably-defined inner product, J = S? = hd ST , which

ensures conservation of energy [6]. Extensions of the basic interpolation and spreading operators

to account for the presence of physical boundary conditions are described in Appendix D.

B. Rigidly-constrained Stokes problem

At every stage of the temporal integrator, we need to solve a linear system of the form
A G −S

−D 0 0

−J 0 0



v

π

Λ

 =


g

h = 0

W = 0

 , (3)
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which is the focus of this work. The right-hand side g includes all remaining fluid forcing terms,

explicit contributions from previous time steps or stages, boundary conditions, etc. Here, G is

the discrete gradient operator, D = −GT is the discrete divergence operator, and A is the vector

equivalent of the familiar screened Poisson (or Helmholtz) operator

A =
ρ

∆t
I − κη

h2
Lv,

with κ = 1 for the backward Euler method or for steady Stokes, and κ = 1/2 for the implicit

midpoint rule. Here Lv is the dimensionless vector Laplacian operator, which takes into account

boundary conditions for velocity such as no-slip boundaries. Since the viscosity appears multiplied

by the coefficient κ, we will henceforth absorb this coefficient into the viscosity, η ← κη, which

allows us to assume, without loss of generality, that κ=1 and to write the fluid operator in the

form

A = ηh−2
(
β−1I −Lv

)
. (4)

We remark that making the (3, 3) block in the matrix in (3) non-zero (i.e., regularizing the

saddle-point system) is closely related to solving the Brinkman equations [49] for flow through

a permeable or porous body suspended in fluid [4]. In particular, by making the (3, 3) block a

diagonal matrix with suitable diagonal elements, one can consistently discretize the Brinkman

equations. Such regularization greatly simplifies the numerical linear algebra except, of course,

when the permeability of the body is so small that it effectively acts as an impermeable body. In

this work, we focus on developing a solver for (3) that is effective even when there is no regularization

(permeability), and even when the matrix A is the discretization of an elliptic operator, as is the

case in the steady Stokes regime. This is the hardest case to consider, and a solver that is robust

in this case will be able to handle the easier cases of finite Reynolds number or permeable bodies

with ease.

It is worth noticing the structure of the linear system (3). First, observe that the system is

symmetric, at least if only simple boundary conditions such as periodic or no-slip boundaries are

present [32]. In the top 1×1 block, A % 0 is a symmetric positive-semidefinite (SPD) matrix. The

top left 2 × 2 block represents the familiar saddle-point problem arising when solving the Navier-

Stokes or Stokes equations in the absence of a rigid body [32]. The whole system is a saddle-point

problem for the fluid variables and for Λ, in which the top-left block is the Stokes saddle-point

matrix.

...
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C. Mobility matrix

We can formally solve (3) through a Schur complement approach, as described in more detail in

Section V. For increased generality, which will be useful when discussing preconditioners, we allow

the right hand side to be general and, in particular, do not assume that h and W are zero.

First, we solve the unconstrained fluid equation for pressure and velocity A G

−D 0

 v
π

 =

 SΛ + g

h

 , (5)

where we recall that A = ηh−2
(
β−1I −Lv

)
. The solution can be written as v = L−1 (SΛ + g) +

L−1p h, where L−1 is the standard Stokes solution operator for divergence-free flow (h = 0), given

by

L−1 = A−1 −A−1G
(
DA−1G

)−1DA−1, (6)

where we have assumed for now thatA−1 is invertible. For a periodic system, the discrete operators

commute, and we can write

L−1 = PA−1 =
(
I − G (DG)−1D

)
A−1, (7)

where P is the Helmholtz projection onto the space of divergence-free vector fields. We never

explicitly compute or form L−1; rather, we solve the Stokes velocity-pressure subsystems using the

projection-method based preconditioner developed by Griffith [32]. Let us define ṽ = L−1f+L−1p h

to be the solution of the unconstrained Stokes problem A G

−D 0

 ṽ
π̃

 =

 f
h

 , (8)

giving v = ṽ +L−1SΛ.

Next, we plug the velocity v into the rigidity constraint, J v = −W , to obtain

MΛ = − (W +J ṽ) , (9)

where the Schur complement or marker mobility matrix is

M = JL−1S = S?L−1S. (10)

The mobility matrixM % 0 is SPD and has dimensions dN ×dN , and the d×d blockMij relates

the force applied at marker j to the velocity induced at marker i. Our approach to obtaining an
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efficient algorithm for the constraind fluid-solid system is to develop a method for approximating

the marker mobility matrixM in a simple and efficient way that leads to robust preconditioners

for solving the mobility subproblem (9); see Section IV.

Observe that the conditioning of the saddle-point system (3) is controlled by the conditioning

of M. In particular, if the (non-negative) eigenvalues of M are bounded away from zero, then

there will be a unique solution to the saddle-point system. If this bound is uniform as the grid

is refined, then the problem is well-posed and will satisfy a stability criterion similar to the well-

known Ladyzenskaja-Babuska-Brezzi (LBB) condition for the Stokes saddle-point problem (8). We

investigate the spectrum of the the marker mobility matrix numerically in Section V. In practice,

there may be some nearly zero eigenvalues of the matrixM corresponding to physical (rather than

numerical) null modes. An example is a sphere discretized with markers on the surface: we know

that a uniform compression of the sphere will not cause any effect because of the incompressibility

of the fluid filling the sphere. This compression mode corresponds to a null-vector for the constraint

forces Λ; it poses no difficulties in principle because the right-hand side in (9) is always in the range

ofM. Of course, when a discrete set of markers is placed on the sphere, the rotational symmetry

will be broken and the corresponding mode will have a small but nonzero eigenvalue, which can

lead to numerical difficulties if not handled with care.

D. Periodic steady Stokes flow

In the time-dependent context, β is finite, and it is easy to see that A � 0 is invertible. The

same happens even for steady Stokes flow if at least one of the boundaries is a no-slip boundary.

In the case of periodic steady Stokes flow, however, A = −ηh−2Lv has in its range vectors that

sum to zero, because no nonzero total force can be applied on a periodic domain. This means that

a solvability condition is

〈SΛ + g〉 = vol−1
N∑
i=1

Λi + 〈g〉 = vol−11TΛ + 〈g〉 = 0,

where 〈〉 denotes an average over the whole system, 1 is a vector of ones, and vol is the volume

of the domain. This is an additional constraint that must be added to the constrained Stokes

system (3) for a periodic domain the steady Stokes case. In this approach, the solution has an

indeterminate mean velocity 〈v〉 because momentum is not conserved. This sort of approach is

followed for a scalar (reaction-diffusion) equivalent of (3) in the Appendix of Ref. [50], for the

traditional Peskin IB method in Ref. [7], and for a higher-order IB method in [8].
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Here, we instead impose the mean velocity 〈v〉 = 0 and ensure that the total force applied to

the fluid sums to zero, i.e., we enforce momentum conservation. Specifically, for the special case of

periodic steady Stokes, we solve the system
A G −

(
S − vol−11T

)
−D 0 0

−J 0 0



v

π

Λ

 =


g

h

W

 , (11)

together with the constraint 〈v〉 = 0, where we assume that 〈g〉 = 0 for consistency. This change

amounts to simply redefining the spreading operator to subtract the total applied force on the

markers as a uniform force density, S ← S − vol−11T . This can be justified by considering the

unit cell to be part of an infinite periodic system in which there is an externally applied constant

pressure gradient, which is balanced by the drag forces on the bodies so as to ensure that the

domain as a whole is in force balance [51–53].

IV. APPROXIMATING THE MOBILITY MATRIX

A key element in the preconditioned Krylov solver for (3) that we describe in Section V is an

approximate solver for the mobility subproblem (9). The success of this approximate solver, i.e.,

the accuracy with which we can approximate the Schur complement of the saddle-point problem

(3), is crucial to an effective linear solver and one of the key contributions of this work.

Because it involves the inverse Stokes operator L−1, the actual Schur complement M =

S?L−1S cannot be formed efficiently. Instead of forming the true mobility matrix, we instead

approximateM ≈ M̃ by a dense but low-rank approximate mobility matrix M̃ given by simple

analytical approximations. To achieve this, we use two key ideas:

1. We ignore the specifics of the boundary conditions and assume that the structure is immersed

in an infinite domain at rest at infinity (in three dimensions) or in a finite periodic domain

(in two dimensions). This implies that the Krylov solver for (3) must handle the boundary

conditions.

2. We assume that the IB spatial discretization is translationally and rotationally invariant;

that is,M does not depend on the exact position and orientation of the body relative to the

underlying fluid grid. This implies that the Krylov solver must handle any grid-dependence

in the solution.
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The first idea, to ignore the boundary conditions in the preconditioner, has worked well in the

context of solving the Stokes system (8). Namely, a simple but effective approximation of the

inverse of the Schur complement for (8),
(
DA−1G

)−1
, can be constructed by assuming that the

domain is periodic so that the finite difference operators commute, and thus the Schur complement

degenerates to a diagonal or nearly-diagonal mass matrix [32, 33, 54]. The second idea, to make

use of the near grid invariance of Peskin’s regularized kernel functions, has previously been used

successfully in implicit immersed-boundary methods by Ceniceros et al. [55]. Note that for certain

choices of the kernel function, the assumption of grid invariance can be a very good approximation

to reality; here, we rely on the recently-developed six-point kernel [48], which has excellent grid

invariance and relatively compact support.

In the remainder of this section, we explain how we compute the entries in M̃ in three dimen-

sions, assuming an unbounded fluid at rest at infinity. The details for two dimensions are given in

Appendix B and are similar in nature, except for complications for two-dimensional steady Stokes

flow resulting from the well-known Stokes paradox.

The mobility matrix M is a symmetric block matrix built from N × N blocks of size d × d.

The blockMij corresponding to markers i and j relates a force applied at marker j to the velocity

induced at marker i. Our basic assumption is that Mij does not depend on the actual position

of the markers relative to the fluid grid, but rather only depends on the distance between the two

markers and on the viscous CFL number β in the form

M̃ij = fβ (rij)I + gβ (rij) r̂ij ⊗ r̂ij , (12)

where rij = Ri − Rj and rij is the distance between the two markers, and hat denotes a unit

vector. The functions of distance fβ(r) and gβ(r) depend on the specific kernel chosen, the specific

discretization of the fluid equations (in our case the staggered-grid scheme), and the the viscous

CFL number β. To obtain a specific form for these two functions, we empirically fit numerical

data with functions with the proper asymptotic behavior at short and large distances between the

markers. For this purpose, we first discuss the asymptotic properties of fβ(r) and gβ(r) from a

physical perspective.

It is important to note that the true mobility matrixM is guaranteed to be SPD because of its

structure and the adjointness of the spreading and interpolation operators. This can be ensured

for the approximation M̃ by placing positivity constraints on suitable linear combinations of the

Fourier transforms of fβ (r) and gβ(r), which ensure that the kernel M (ri, rj) given by (12) is

SPD in the sense of integral operators. It is, however, very difficult to place such constraints on
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empirical fits in practice, and in this work, we do not attempt to ensure M̃ is SPD for all marker

configurations.

A. Physical Constraints

Let us temporarily focus on the semi-continuum formulation (1) and ignore Eulerian discretiza-

tion artifacts. The pairwise mobility between markers i and j for a continuum fluid is

Mij = η−1
∫
δa(Ri − r′′)G(r′′, r′)δa(Rj − r′) dr′′dr′, (13)

where G(r, r′) is the the Green’s function for the fluid equation, i.e., v(r) =
(
L−1f

)
(r) =∫

G(r, r′)f(r′)dr′, where

ρ

∆t
v +∇π − η∇2v = f , (14)

∇·v = 0.

It is well-known that G has the same form as (12),

G(R1,R2) = f (r12)I + g (r12) r̂12 ⊗ r̂12.

For steady Stokes flow (β → ∞), G ≡ O is the well-known Oseen tensor or Stokeslet 4, and

corresponds to fS(r) = gS(r) ≈ (8πηr)−1. For inviscid flow, β = 0, and we have thatA = (ρ/∆t)I

and (7) applies, and therefore L−1 = (∆t/ρ)P is a multiple of the projection operator. For finite

nonzero values of β, we can obtain G from the solution of the screened Stokes (i.e., Brinkman)

equations (14) [23, 49, 56], and corresponds to the “Brinkmanlet” [23, 56]

fB(r) =
e−αr

4πηr

((
1

αr

)2

+
1

αr
+ 1

)
− 1

4πηα2r3
, (15)

gB(r) = − e
−αr

4πηr

(
3

(
1

αr

)2

+
3

αr
+ 1

)
+

3

4πηα2r3
,

where α2 = ρ/ (η∆t) =
(
βh2

)−1
. Note that in the steady Stokes limit, α→ 0 and the Brinkmanlet

becomes the Stokeslet.

We can use (15) to construct M̃ij when the markers are far apart. Namely, if rij � h, then

we may approximate the IB kernel function by a true delta function, and thus fβ(r) and gβ(r) are

4 Observe that the regularized Stokeslet of Cortez [21] is similar to (13) but contains only one regularized delta
function in the integrand; this makes the resulting mobility matrix asymmetric, which is unphysical.
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well-approximated by (15). For steady Stokes flow, the interaction between markers decays like

r−1. For finite β, however, the viscous contribution decays exponentially fast as exp
(
−r/

(
h
√
β
))

,

which is consistent with the fact that markers interact via viscous forces only if they are at a

distance not much larger than h
√
β =
√
ν∆t, the typical distance that momentum diffuses during

a time step. For nonzero Reynolds numbers, the leading order asymptotic r−3 decay of fβ(r) and

gβ(r) is given by the last terms on the right hand side of (15) and corresponds to the electric field

of an electric dipole; its physical origin is in the incompressibility constraint, which instantaneously

propagates hydrodynamic information between the markers 5.

For steady Stokes flow, we can say even more about the approximate form of fβ(r) and gβ(r).

As discussed in more detail by Delong et al. [38], for distances between the markers that are not

too small compared to the regularization length a, we can approximate (13) with (12) using the

well-known Rotne-Prager-Yamakawa (RPY) [57–59] tensor for the functions fβ(r) and gβ(r),

fRPY (r) =
1

6πηa


3a
4r + a3

2r3
, r > 2a,

1− 9r
32a , r ≤ 2a,

(16)

gRPY (r) =
1

6πηa


3a
4r −

3a3

2r3
, r > 2a,

3r
32a , r ≤ 2a,

where a is the effective hydrodynamic radius of the specific kernel δa, defined by (6πa)−1 =∫
δa(r

′′)O(r′′, r′)δa(r
′) dr′′dr′. Note that for r � a the RPY tensor approaches the Oseen tensor

and decays like r−1. A key advantage of the RPY tensor is that it guarantees that the mobility

matrix (12) is SPD for all configurations of the markers, which is a rather nontrivial requirement

[59]. The actual discrete pairwise mobility Mij obtained from the spatially-discrete IB method

is well-described by the RPY tensor [38] (see Fig. 2). The only fitting parameter in the RPY

approximation is the effective hydrodynamic radius a averaged over many positions of the marker

relative to the underlying grid [35, 38]; for the six-point kernel used here 6, a = 1.47h. For the

Brinkman equation, the equivalent of the RPY tensor can be computed for r ≥ 2a by applying

a Faxen-like operator from the left and right on the Brinkmanlet (see Eq. (26) in Ref. [56]); the

resulting analytical expressions are complex and are not used in our empirical fitting.

5 In reality, of course, this information is propagated via fast sound waves and not instantaneously.
6 As summarized in Refs. [35, 38], a ≈ 1.25h for the widely used four-point kernel [6], and a ≈ 0.91h for the

three-point kernel [60].
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B. Empirical Fits

In this work, we use empirical fits to approximate the mobility. This is because the analytical

approximations, such as those offered by the RPY tensor, are most appropriate for unbounded

domains and assume the markers are far apart compared to the width of the regularized delta

function. In numerical computations, we use a finite periodic domain, and this requires corrections

to the analytic expressions that are difficult to model. For example, for finite β, we find that

the periodic corrections to the inviscid (dipole) r−3 contribution dominate over the exponentially

decaying viscous contribution, which makes the precise form of the viscous terms in (15) irrelevant

in practice. For r � h, only the asymptotically-dominant far-field terms survive, and we make an

effort to preserve those in our fitting because the numerical results are obtained using finite systems

and thus not reliable at large marker distances. At shorter distances, however, the discrete nature

of the fluid solver and the IB kernel functions becomes important, and empirical fitting seems to

be a simple yet flexible alternative to analytical computations. At the same time, we feel that is

important to constrain the empirical fits based on known behavior at short and large distances.

Firstly, for r � h, the pairwise mobility can be well-approximated by the self-mobility (r = 0,

corresponding to the diagonal elements M̃ii), for which we know the following facts:

• For the steady Stokes regime (β → ∞), the diagonal elements are given by Stokes’s drag

formula, yielding

f∞(0) = (6πηa)−1 ∼ 1/ηh and g∞(0) = 0,

where we recall that a is the effective hydrodynamic radius of a marker for the particular

spatial discretization (kernel and fluid solver).

• For the inviscid case (β = 0), it is not hard to show that [35]

f0(0) =
d− 1

d

∆t

ρ
V −1m ∼ β/ηh and g0(0) = 0, (17)

where d = 3 is the dimensionality, and Vm = cV h
3 is the “volume” of the marker, where the

constant cV is straightforward to calculate.

• The above indicates that fβ(0) goes from ∼ β/ (ηh) for small β to ∼ 1/ (ηh) for large β. At

intermediate viscous CFL numbers β, we can set

fβ (0) =
C (β)

ηh
and gβ(0) = 0, (18)
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where C (β � 1) ≈ 2β/(3cV ) is linear for small β and then becomes O(1) for large β. We

will obtain the actual form of C (β) from empirical fitting.

Secondly, for r � h, we know the asymptotic decay of the hydrodynamic interactions from (15):

• For the steady Stokes regime (β →∞), we have the Oseen tensor given by

f∞(r � h) ≈ g∞(r � h) ≈ (8πηr)−1 . (19)

• For the inviscid case (β = 0), we get the electric field of an electric dipole,

f0(r � h) ≈ − ∆t

4πρr3
and g0(r � h) ≈ 3∆t

4πρr3
, (20)

which is also the asymptotic decay for β > 0 for r � h
√
β.

We obtain the actual form of the functions fβ(r) and gβ(r) empirically by fitting numerical data

for the parallel and perpendicular mobilities

µ
‖
ij = r̂TijM̃ij r̂ij ≈ fβ (rij) + gβ (rij) ,

µ⊥ij =
(
r̂⊥ij

)T
M̃ij r̂

⊥
ij ≈ fβ (rij) ,

where r̂⊥ij · r̂ij = 0. To do so, we placed a large number of markers N in a cube of length l/8 inside

a periodic domain of length l. For each marker i, we applied a unit force Λi with random direction

while leaving Λj = 0 for j 6= i, solved (8), and then interpolated the fluid velocity v at the position

of each of the markers. The resulting parallel and perpendicular relative velocity for each of the

N(N − 1)/2 pairs of particles allows us to estimate fβ (rij) and gβ (rij). By making the number

of markers N sufficiently large, we sample the mobility over essentially all relative positions of the

pair of markers. For the self-mobility M̃ii (rii = 0), we take gβ(0) = 0 and compute fβ(0) from

the numerical data.

If the spatial discretization were perfectly translationally and rotationally invariant and the

domain were infinite, all of the numerical data points for fβ (r) and gβ (r) would lie on a smooth

curve and would not depend on the actual position of the pair of markers relative to the underlying

grid. In reality, it is not possible to achieve perfect translational invariance with a kernel of finite

support [6], and so we expect some (hopefully small) scatter of the points around a smooth fit.

Normalized numerical data for fβ(r) and gβ(r) are shown in Fig. 2, and we indeed see that the data

can be fit well by smooth functions over the whole range of distances. To maximize the quality of the

fit, we perform separate fits for β →∞ (steady Stokes flow) and finite β. We also make an effort to
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Figure 2: Normalized mobility functions f̃(x) (left) and g̃(x) (right) defined similarly to (A1) as a function

of marker-marker distance x = r/h, in three dimensions for the six-point kernel of Bao et al. [48], over a

range of viscous CFL numbers (different colors, see legend). Numerical data is shown with symbols and

obtained using a 2563 periodic fluid grid, while dashed lines show our empirical fit of the form (A2) for

steady Stokes (β → ∞) and (A6) for finite β. For steady Stokes flow, the numerical data is in reasonable

agreement with the RPY tensor (16) (dashed red line).

make the fits change smoothly as β grows towards infinity, as we explain in more detail in Appendix

A. Code to evaluate the empirical fits described in Appendices A and B is publicly available to

others for a number of kernels constructed by Peskin and coworkers (three-, four-, and six-point)

in both two and three dimensions at http://cims.nyu.edu/~donev/src/MobilityFunctions.c.

V. LINEAR SOLVER

To solve the constrained Stokes problem (3), we use the preconditioned flexible GMRES (FGM-

RES) method, which is a Krylov solver. We will refer to this as the“outer”Krylov solver, as it must

be distinguished from “inner” Krylov solvers used in the preconditioner. Because we use Krylov

solvers in our preconditioner and because Krylov solvers generally cannot be expressed as linear

operators, it is crucial to use a flexible Krylov method such as FGMRES for the outer solver. The

overall method is implemented in the open-source immersed-boundary adaptive mesh refinement

(IBAMR) software infrastructure [42]; in this work we focus on uniform grids and do not use the

AMR capabilities of IBAMR (but see [2, 41]). IBAMR uses Krylov solvers that are provided by

the PETSc library [61].

http://cims.nyu.edu/~donev/src/MobilityFunctions.c
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A. Preconditioner for the constrained Stokes system

In the preconditioner used by the outer Krylov solver, we want to approximately solve the nested

saddle-point linear system 
A G −S

−D 0 0

−J 0 0



v

π

Λ

 =


g

h

W

 ,
where we recall that A = (ρ/∆t)I − ηh−2Lv. Let us set α = 1 if A has a null-space, (e.g., for

a fully periodic domain for steady Stokes flow) and we set α = 0 if A is invertible. When α = 1,

let us define the restricted inverse A−1 to only act on vectors of mean value zero, and to return a

vector of mean zero.

Applying our Schur complement based preconditioner for solving (3) consists of the following

steps:

1. Solve the (unconstrained) fluid sub-problem, A G

−D 0

 v
π

 =

 g
h

 .
To control the accuracy of the solution one can either use a relative tolerance based stopping

criterion or fix the number of iterations Ns in the inner solver.

2. Calculate the slip velocity on the set of markers, ∆V = − (J v +W ).

3. Approximately solve the Schur complement system,

M̃Λ = ∆V , (21)

where the mobility approximation M̃ is constructed as described in Section IV.

4. Optionally, re-solve the corrected fluid sub-problem, A G

−D 0

 v
π

 =

 g + SΛ− αvol−11TΛ

h

 .
All linear solvers used in the preconditioner can be approximate, and this is in fact the key to

the efficiency of the overall solver approach. Notably, the inner Krylov solvers used to solve the

unconstrained Stokes sub-problems in steps 1 and 4 above can be done by using a small number Ns
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of iterations using a method briefly described in the next section. If the fluid sub-problem is ap-

proximately solved in both steps 1 and 4, which we term the full Schur complement preconditioner,

each application of the preconditioner requires 2Ns applications of the Stokes preconditioner (22).

It is also possible to omit step 4 above to obtain a block lower triangular Schur preconditioner

[62], which requires only Ns applications of the unconstrained Stokes preconditioner (22). We will

numerically compare these two preconditioners and study the effect of Ns on the convergence of

the FGMRES outer solver in Section VII A.

B. Unconstrained Fluid Solver

A key component we rely on is an approximate solver for the unconstrained Stokes sub-problem, A G

−D 0

 v
π

 =

 g
h

 ,
for which a number of techniques have been developed in the finite-element context [62]. To

solve this system, we use GMRES with a preconditioner P−1S based on the projection method,

as proposed by Griffith [32] and improved to some extent by Cai et al. [33]. Specifically, the

preconditioner for the Stokes system that we use in this work is

P−1S =

 I h2GL̃p
−1

0 B̃
−1

 I 0

−D −I

 Ã−1 0

0 I

 , (22)

where Lp = h2 (DG) is the dimensionless pressure (scalar) Laplacian, and Ã
−1

and L̃p
−1

denote

approximate solvers obtained by a single V-cycle of a geometric multigrid solver for the vector

Helmholtz and scalar Poisson problems, respectively. In the time-dependent case, the approximate

Schur complement for the unconstrained Stokes sub-problem is

B̃
−1

= −ρh
2

∆t
L̃p
−1

+ ηI,

and for steady Stokes flow, B̃
−1

= ηI. Further discussion of the relation of these preconditioners

to the those described in the book [62] can be found in [32].

Observe that one application of P−1S is relatively inexpensive and involves only a few scalar

multigrid V-cycles. Indeed, solving the Stokes system using GMRES with this preconditioner is

only a few times more expensive than solving a scalar Poisson problem, even in the steady Stokes

regime [33]. Note that it is possible to omit the upper right off-diagonal block in the first matrix on

the right hand side of (22) to obtain a block lower triangular preconditioner that is also effective,
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and may in fact be preferred at zero Reynolds number since it allows one to skip a sweep of

the pressure multigrid solver [33]. We empirically find that including the Poisson solve (velocity

projection) improves the overall performance of the outer solver.

C. Mobility Solver

From a computational perspective, one of the most challenging steps in our preconditioner is

solving the mobility sub-problem (21). Since this is done inside a preconditioner, and because M̃

is itself an approximation of the true mobility matrixM, it is not necessary to solve (21) exactly.

In the majority of the examples presented herein, we solve (21) using direct solvers provided by

LAPACK. This is feasible on present hardware for up to around 105 markers and allows us to focus

on the design of the approximation M̃ and to study the accuracy of the overall method.

Let us denote with s the smallest marker-marker spacing. For well-spaced markers, s/h ' 2,

our approximate mobility M̃ is typically SPD even for large numbers of markers, and in these

cases, we can use the Cholesky factorization to solve (21). In some cases, however, there may

be a few small or even negative eigenvalues of M̃ that have to be handled with care. We have

found that the most robust (albeit expensive) alternative is to perform an SVD of M̃, and to

use a pseudoinverse of M̃ (keeping only eigenvalues larger than some tolerance εSV D > 0) to

solve (21). This effectively filters out the spuriously small or negative eigenvalues. Note that

the factorization of M̃ needs to be performed only once per constrained Stokes solve since the

body is kept fixed during a time step. In cases where there is a single body, the factorization

needs to be performed only once per simulation and can be reused; if the body is translating or

rotating, one ought to perform appropriate rotations of the right hand side and solution of (21).

In some cases of practical interest where the number of markers is not too large, it is possible

to precompute the true mobility M0 with periodic boundary conditions (for a sufficienly large

domain) and to store its factorization. Even if the structure moves relative to the underlying grid,

such a precomputed (reference) mobilityM0 is typically a much better approximation to the true

mobility than our empirical approximation M̃, and can effectively be used in the preconditioner.

Determining effective approaches to solving the mobility sub-problem in the presence of multiple

moving rigid bodies remains future work, as discussed further in the Conclusions.
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VI. CONDITIONING OF THE MOBILITY MATRIX

The conditioning of the constrained Stokes problem (3) is directly related to the conditioning

of the Schur complement mobility matrix M = JL−1S, which is intimately connected to the

relation between the fluid solver grid spacing h and the smallest inter-marker spacing s. Firstly,

it is obvious that if two markers i and j are very close to each other, then the fluid solver cannot

really distinguish between Λi and Λj and will instead effectively see only their sum. We also

know that using too many markers for a fixed fluid grid will ultimately lead to a rank-deficient

M, because it is not possible to constrain a finite-dimensional discrete fluid velocity at too many

points. This physical intuition tells us that the condition number of M should increase as the

marker spacing becomes small compared to the grid spacing. This well-known intuition, however,

does not tell us how closely the markers can or must be placed in practice. Standard wisdom for

the immersed boundary method, which is based on the behavior of models of elastic bodies, is to

make the marker spacing on the order of half a grid spacing. As we show, this leads to extremely

ill-conditioned mobility matrices for rigid bodies. We note that the specific results depend on the

dimensionality, the details of the fluid solver, and the specific kernel used; however, the qualitative

features we report appear to be rather general.

To determine the condition number of the mobility matrix, we consider “open” and “filled”

sphere models. We discretize the surface of a sphere as a shell of markers constructed by a recursive

procedure suggested to us by Charles Peskin (private communication). We start with 12 markers

placed at the vertices of an icosahedron, which gives a uniform triangulation of a sphere by 20

triangular faces. Then, we place a new marker at the center of each edge and recursively subdivide

each triangle into four smaller triangles, projecting the vertices back to the surface of the sphere

along the way. Each subdivision approximately quadruples the number of vertices, with the k-th

subdivision producing a model with 10 · 4k−1 + 2 markers. To create filled sphere models, we

place additional markers at the vertices of a tetrahedral grid filling the sphere that is constructed

using the TetGen library, starting from the surface triangulation described above. The constructed

tetrahedral grids are close to uniform, but it is not possible to control the precise marker distances

in the resulting irregular grid of markers. We use models with approximately equal edges (distances

between nearest-neighbor markers) of length ≈ s, which we take as a measure of the typical marker

spacing. We numerically computed the mobility matrixM for an isolated spherical shell in a large

periodic domain for various numbers of markers N . Here we keep the ratio s/h fixed and keep
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the marker spacing fixed at s ≈ 1; one can alternatively keep the radius of the sphere fixed 7. In

Fig. 3, we show the spectrum ofM for varying levels of resolution for three different spacings of

the markers, s/h = 1, s/h = 3/2, and s/h = 2. Similar spectra, but with somewhat improved

condition number (i.e., fewer smaller eigenvalues), are seen for nonzero Reynolds numbers (finite

β).

The results in Fig. 3 strongly suggest that as the number of markers increases, the low-lying

(small eigenvalue) spectrum of the mobility matrix approaches a limiting shape. Therefore, the

nontrivial eigenvalues remain bounded away from zero even as the resolution is increased, which

implies that for s/h & 1 the system (3) is uniformly solvable or “stable” under grid refinement.

Note that in the case of a sphere, there is a trivial zero eigenvalue in the continuum limit, which

corresponds to uniform compression of the sphere; this is reflected in the existence of one eigenvalue

much smaller than the rest in the discrete models. Ignoring the trivial eigenvalue, the condition

number ofM is O(N) for this example because the largest eigenvalue in this case increases like the

number of markers N , in agreement with the fact that the Stokes drag on a sphere scales linearly

with its radius. This is as close to optimal as possible, because for the continuum equations for

Stokes flow around a sphere, the eigenvalues corresponding to spherical harmonic modes scale like

the index of the spherical harmonic. However, what we are concerned here is not so much how the

condition number scales with N , but with the size of the prefactor, which is determined by the

smallest nontrivial eigenvalues ofM.

Figure 3 clearly shows that the number of very small eigenvalues increases as we bring the

markers closer to each other, as expected. The increase in the conditioning number is quite rapid,

and the condition number becomes O(106−107) for marker spacings of about one per fluid grid cell.

For the conventional choice s ≈ h/2, the mobility matrix is so poorly conditioned that we cannot

solve the constrained Stokes problem in double-precision floating point arithmetic. Of course, if the

markers are too far apart then fluid will leak through the wall of the structure. We have performed

a number of heuristic studies of leak through flat and curved rigid walls and concluded that s/h ≈ 2

yields both small leak and a good conditioning of the mobillity, at least for the six-point kernel

used here [48]. Therefore, unless indicated otherwise, in the remainder of this work, we keep the

markers about two grid cells apart in both two and three dimensions. It is important to emphasize

that this is just a heuristic recommendation and not a precise estimate. We remark that Taira and

7 The scaling used here, keeping s = 1 fixed, is more natural for examining the small eigenvalues of M, which are
dominated by discretization effects, as opposed to the large eigenvalues, which correspond to physical modes of
the Stokes problem posed on a sphere and are insensitive to the discretization details.
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Figure 3: Eigenvalue spectrum of the mobility matrix for steady Stokes flow around a spherical shell covered

with different numbers of markers (42, 162, 642, or 2562, see legend) embedded in a periodic domain. Solid

lines are for marker spacing of s ≈ 2h, dashed-dotted lines for spacing s ≈ 1.5h, and dashed lines for spacing

of s ≈ 1h. The marker spacing is s ≈ 1 in all cases; for s ≈ 2h, the fluid grid size is 1283 for 2562 markers

and 643 for smaller number of markers, and scaled accordingly for other spacings. For comparison, we show

the spectrum of M̃RPY for the most resolved model (N = 2562 markers) at s/h ≈ 2. Also shown is the

spectrum of the empirical (fit) approximation to the mobility M̃ for the two larger spacings; for s ≈ h our

empirical approximation is very poor and includes many spurious negative eigenvalues (not shown).

Colonius, who solve a different Schur complement“modified Poisson equation”, recommend s/h ≈ 1

to “achieve a reasonable condition number and to prevent penetration of streamlines caused by a

lack of Lagrangian points.”

It is important to observe that putting the markers further than the traditional wisdom will

increase the “leak” between the markers. For rigid structures, the exact positioning of the markers

can be controlled since they do not move relative to one another as they do for an elastic bodies;

this freedom can be used to reduce penetration of the flow into the body by a careful construction

of the marker grid. In the Conclusions, we discuss alternatives to the traditional marker-based IB

method [46] that can be used to control the conditioning number of the Schur complement and

allow for more tightly-spaced markers.

It is worthwhile to examine the underlying cause of the ill-conditioning as the markers are

brought close together. One source of ill-conditioning comes from the discrete (finite-dimensional)
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nature of the fluid solver, which necessarily limits the rank of the mobility matrix. But another

contributor to the worsening of the conditioning is the regularization of the delta function. Observe

that for a true delta function (a→ 0) in Stokes flow, the pairwise mobility is the length-scale-free

Oseen tensor ∼ r−1, and the shape of the spectrum of the mobility matrix has to be independent

of the spacing among the markers. In the standard immersed boundary method, a ∼ h, so the

fluid grid scale h and the regularization scale a are difficult to distinguish.

To try to separate h from a, we can take a continuum model of the fluid, but keep the discrete

marker representation of the body; see (1). In this case the pairwise mobility would be given by

(13), which leads to the RPY tensor (16) for a kernel that is a surface delta function over a sphere

of radius a (see (4.1) in [59]). In Fig. 3 we compare the spectra of the discrete mobilityM with

those of the analytical mobility approximation M̃RPY constructed by using (16) for the pairwise

mobility. We observe that the two are very similar for s ≈ 2h, however, for smaller spacings

M̃RPY does not have very small eigenvalues and is much better conditioned than M (data not

shown). In Fig. 3 we also show the spectrum of our approximate mobility M̃ constructed using

the empirical fits described in Section IV. The resulting spectra show a worsening conditioning for

spacing s ≈ 1.5h consistent with the spectrum of M. These observations suggest that both the

regularization of the kernel and the discretization artifacts contribute to the ill-conditioning, and

suggest that it is worthwhile to explore alternative discrete delta function kernels in the context of

rigid-body IB methods.

We also note that we see a severe worsening of the conditioning ofM, independent of β, when

we switch from a spherical shell to a filled sphere model. Some of this may be due to the fact that

the tetrahedral volume mesh used to construct the marker mesh is not as uniform as the surface

triangular mesh. We suspect, however, that this ill-conditioning is primarily physical rather than

numerical, and comes from the fact that the present marker model cannot properly distinguish

between surface tractions and body (volume) stresses. Therefore, Λ remains physically ill-defined

even if one gets rid of all discretization artifacts.

Lastly, it is important to emphasize that in the presence of ill-conditioning, what matters in

practice are not only the smallest eigenvalues but also their associated eigenvectors. Specifically,

we expect to see signatures of these eigenvectors (modes) in Λ, since they will appear with large

coefficients in the solution of (9) if the right hand side has a nonzero projection onto the cor-

responding mode. As expected, the small-eigenvalue eigenvectors of the mobility correspond to

high-frequency (in the spatial sense) modes for the forces Λ. Therefore, if the markers are too

closely spaced the solutions for the forces Λ will develop unphysical high-frequency oscillations or
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jitter, even for smooth flows, especially in time-dependent flows, as observed in practice [63]. We

have observed that for smooth flows (i.e., smooth right hand-side of (9)), the improved translational

invariance of the 6-point kernel reduces the magnitude of this jitter compared to the traditional

Peskin four-point kernel.

VII. NUMERICAL TESTS

In this section we apply our rigid-body IB method to a number of benchmark problems. We first

present tests of the preconditioned FGMRES solver, and then demonstrate the advantage of our

method over splitting-based direct forcing methods. We further consider a simple test problem at

zero Reynolds number, involving the flow around a fixed sphere, and study the accuracy of both the

fluid (Eulerian) variables v and π, as well as of the body (Lagrangian) surface tractions represented

by Λ, as a function of the grid resolution. We finally study flows around arrays of cylinders in two

dimensions and spheres in three dimensions over a range of Reynolds numbers, and compare our

results to those obtained by Ladd using the Lattice-Boltzmann method [52, 53, 64].

A. Empirical convergence of GMRES

Here we consider the model problem of flow past a sphere in a cubic domain that is either periodic

or with no-slip boundaries. Except for the largest resolutions studied here, the number of markers

is relatively small, and dense linear algebra can be used to solve the mobility subproblem (21)

robustly and efficiently, so that the cost of the solver is dominated by the fluid solver. We therefore

use the number of total applications of the Stokes preconditioner (22) as a proxy for the CPU

effort, instead of relying on elapsed time, which is both hardware and software dependent. A key

parameter in our preconditioner is the number of iterations Ns used in the iterative unconstrained

Stokes solver. We recall that in the full preconditioner, there are two unconstrained inexact Stokes

solves per iteration, giving a total of 2Ns applications of P−1S per outer FGMRES iteration. If the

lower triangular preconditioner is used, then the second inexact Stokes solve is omitted, and we

perform only Ns applications of P−1S per outer FGMRES iteration.

In the first set of experiments, we use the full preconditioner and periodic boundary conditions.

We represent the sphere by a spherical shell of markers that is either empty (162 markers) or is

filled with additional markers in the interior (239 markers). The top panels of Fig. 4 show the

relative FGMRES residual as a function of the total number of applications of P−1S for several
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Figure 4: FGMRES convergence for the constrained problem (3) for different numbers of iterations Ns

in the unconstrained Stokes solver used in the preconditioner. The specific problem is a rigid sphere of

hydrodynamic radius R moving through a stationary domain of length L ≈ 4.35R, with the marker spacing

fixed at s/h ≈ 2 and the GMRES restart frequency set to 100 iterations. (Top left panel) Steady Stokes

(Re = 0) flow for an empty 162-marker shell and a filled 239-marker sphere moving through a periodic

domain of 323 fluid grid cells. (Top right panel) Same as top left but for Re ≈ 10. (Bottom left panel)

As top left panel but now in domain with no slip boundary conditions applied on all sides of the domain.

(Bottom right panel) A spherical shell moving in a non-periodic domain (as in bottom left panel) for different

resolutions of the shell (162, 642, 2562, and 10242 markers, respectively) and the fluid solver grid (323, 643,

1283, and 2563 grid cells, respectively), fixing Ns = 4, for both the full Schur complement preconditioner

and the lower triangular approximate Schur complement preconditioner.

different choices of Ns, for both steady Stokes flow (left panel) and a flow at Reynolds number

Re = 10 (right panel). We see that for spherical shells with well-conditioned M and M̃, the

exact value of Ns does not have a large effect on solver performance. However, making Ns very

large leads to wasted computational effort by “over-solving” the Stokes system. This degrades the

overall performance, especially for tight solver tolerance. For the ill-conditioned case of a filled

sphere model in steady Stokes flow, the exact value of Ns strongly affects the performance, and

the optimal value is empirically determined to be Ns = 2. As expected, the linear system (3) is

substantially easier to solve at higher Reynolds numbers, especially for the filled-sphere models.

In the bottom left panel of Fig. 4 we show the FGMRES convergence for a non-periodic system.
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In this case, we know that the Stokes preconditioner P−1S itself does not perform as well as in the

periodic case [32, 33], and we expect slower overall convergence. In this case, we see that Ns = 2

and Ns = 4 are good choices. Investigations (data not shown) show that Ns = 4 is more robust

for problems with a larger number of markers. Also, note that increasing Ns decreases the total

number of FGMRES iterations for a fixed number of applications of P−1S , and therefore reduces

the overall memory usage and the number of times the mobility subproblem (21) needs to be

solved; however, note that each of these solves is just a backward/forward substitution if a direct

factorization of M̃ has been precomputed.

The bottom right panel of Fig. 4 shows the FGMRES convergence for a non-periodic system

as the resolution of the grid and the spherical shell is refined in unison, keeping Ns = 4. The

results in Fig. 4 demonstrate that our linear solver is able to cope with the increased number

of degrees of freedom under refinement relatively robustly, although a slow increase of the total

number of FGMRES iterations is observed. Comparing the full preconditioner with the lower

triangular preconditioner, we see that the latter is computationally more efficient overall; this is

in agreement with experience for the unconstrained Stokes system [33]. In some sense, what this

shows is that it is best to let the FGMRES solver correct the initial unconstrained solution for

the velocity and pressure in the next FGMRES iteration, rather than to re-solve the fluid problem

in the preconditioner itself. However, if very tight solver tolerance is required, we find that it is

necessary to perform some corrections of the velocity and pressure inside the preconditioner. In

principle, the second unconstrained Stokes solve in the preconditioner can use a different number

of iterations N ′s from the first, but we do not explore this option further here. Also note that if

M̃ ≈M (for example, if it was computed numerically rather than approximated), then the full

Schur complement preconditioner will converge in one or two iterations and there is no advantage

to using the lower triangular preconditioner.

B. Flow through a nozzle

In this section we demonstrate the strengths of our method on a test problem involving steady-

state flow through a nozzle in two dimensions. We compare the steady state flow through the

nozzle obtained using our rigid-body IB method to the flow obtained by using a splitting-based

direct forcing approach [1, 2]. Specifically, we contrast our monolithic fluid-solid solver to a split

solver based on performing the following operations at time step n:Solve the fluid sub-problem as
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if the body were not present,  A G

−D 0

 ṽn+1

π̃n+
1
2

 =

 gn+ 1
2

0

 .
1. Calculate the slip velocity on the set of markers, ∆V = −

(
J n+ 1

2 ṽn+1 +W n+ 1
2

)
, giving

the fluid-solid force estimate Λn+ 1
2 = (ρ/∆t) ∆V .

2. Correct the fluid velocity to approximately enforce the no-slip condition,

vn+1 = ṽn+1 + Sn+
1
2 ∆V .

Note that in the original method of [2] in the last step the fluid velocity is projected onto the space of

divergence-free vector fields by re-solving the fluid problem with the approximation A ≈ (ρ/∆t) I

(i.e., ignoring viscosity). We simplify this step here because we have found the projection to make

a small difference in practice for steady state flows, since the same projection is carried out in the

subsequent time step.

We discretize a nozzle constriction in a slit channel using IB marker points about 2 grid spacings

apart. The geometry of the problem is illustrated in the top panel of Fig. 5; parameters are ρ = 1,

grid spacing ∆x = 0.5, nozzle length l = 55.5, nozzle opening width d ≈ 2.9, and η variable (other

parameters are given in the figure caption). No slip boundary conditions are specified on the top

and bottom channel walls, and on the side walls the tangential velocity is set to zero and the normal

stress is specified to give a desired pressure jump across the channel of ∆π = 2. The domain is

discretized using a grid of 256 × 128 cells and the problem evolved for some time until the flow

becomes essentially steady. The Reynolds number is estimated based on the maximum velocity

through the nozzle opening and the width of the opening.

In the bottom four panels in Fig. 5 we compare the flow computed using our method (left panels)

to that obtained using the splitting-based direct forcing algorithm summarized above (right panels).

Our method is considerably slower (by at least an order of magnitude) for this specific example

because the GMRES convergence is slow for this challenging choice of boundary conditions at

small Reynolds numbers in two dimensional (recall that steady Stokes flow in two dimensions has

a diverging Green’s function). To make the comparison fairer, we use a considerably smaller time

step size for the splitting method, so that we approximately matched the total execution time

between the two methods. Note that for steady-state problems like this one with fixed boundaries,

it is much more efficient to precompute the actual mobility matrix (Schur complement) once at the
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Figure 5: Two-dimensional flow through a nozzle (top panel) in a slit channel computed by our rigid IB

method (left panels) and a simplified version of the splitting-based method of Bhalla et al. [2] (right panels).

(Top panel) The geometry of the channel along with the (approximately) steady state flow at Re≈19, as

obtained using our method. The color plot shows the pressure and the velocity is shown as a vector field.

(Middle panels) Flow at Re ≈ 19, computed at time T = 102. For our method (left) we use a time step size

of ∆t = 5 · 10−2 (corresponding to advective CFL number of Umax∆t/∆x ≈ 0.13), while for the splitting

method (right) we use ∆t = 10−3. The streamlines are traced from the entrance to the channel for a time

of Ts = 7 · 103 and shown as black lines. (Bottom panels) Same as the middle row but now for Re ≈ 0.2,

final time T = 10 and streamlines followed up to Ts = 4 · 104, with ∆t = 0.125 for our method (left), and

∆t = 10−3 for the splitting method (right).
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beginning, instead of approximating it with our empirical fits. However, for a more fair and general

comparison we instead use our preconditioner to solve the constrained fluid problem in each time

step anew to a tight GMRES tolerance of 10−9. For this test we use Ns = 2 iterations in the fluid

solves inside our preconditioner.

The visual results in the right panels of Fig. 5 clearly show that the splitting errors in the

enforcement of the no-slip boundary condition lead to a notable “leak” through the boundary,

especially at small Reynolds numbers. To quantify the amount of leak we compute the ratio of the

total flow through the opening of the nozzle to the total inflow; if there is no leak this ratio should

be unity. Indeed, this ratio is larger than 0.99 for our method at all Reynolds numbers, as seen in

the lack of penetration of the flow inside the body in the left panels in Fig. 5. For Re ≈ 19, we

find that even after reducing the time step by a factor of 50, the splitting method gives a ratio of

0.935 (i.e., 6.5% leak), which can be seen as a mild penetration of the flow into the body in the

middle right panel in Fig. 5. For Re ≈ 0.2, we find that we need to reduce ∆t by a factor of 1250

to get a flow ratio of 0.94 for the splitting method; for a time step reduced by a factor of 125 there

is a strong penetration of the flow through the nozzle, as seen in the bottom right panel of Fig. 5.

C. Stokes flow between two concentric shells

Steady Stokes flow around a fixed sphere of radius R1 in an unbounded domain (with fluid at

rest at infinity) is one of the fundamental problems in fluid mechanics, and analytical solutions

are well known. Our numerical method uses a regular grid for the fluid solver, however, and thus

requires a finite truncation of the domain. Inspired by the work of Balboa-Usabiaga et al. [65],

we enclose the sphere inside a rigid spherical shell of radius R2 = 4R1. This naturally provides a

truncation of the domain because the flow exterior to the outer shell does not affect the flow inside

the shell. Analytical solutions remain simple to compute and are given in Appendix C.

We discretize the inner sphere using a spherical shell of markers, since for steady Stokes flow

imposing a rigid body motion on the surface of the inner sphere guarantees a stress-free rigid body

motion for the fluid filling the inner sphere [21]. We use the same recursive triangulation of the

sphere, described in Section V, to construct the marker grid for both the inner and outer shells.

The ratio of the number of markers on the outer and inner spheres is approximately 16 (i.e., there

are two levels of recursive refinement between the inner and outer shells), consistent with keeping

the marker spacing similar for the two shells and a fixed ratio R2/R1 = 4. The fluid grid size

is set to keep the markers about two grid cells apart, s ≈ 2h. The rigid-body velocity is set to
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Figure 6: Marker configuration for computing Stokes flow between two concentric spherical shells. Markers

are shown as spheres with size on the order of their effective hydrodynamic radius. The inner shell of markers

is shown in red, and the outer shell of markers is shown in gray. (Left) Intermediate resolution, inner shell

of 162 markers and outside shell of 2562 markers. (Right) Highest resolution studied here, inner shell of 642

markers and outside shell of 10242 markers.

V = (1, 0, 0) for all markers on the outer shell, and to V = 0 on all markers on the inner shell. The

outer sphere is placed in a cubic box of length l = 4.15R2 with specified velocity v = (1, 0, 0) on all

of the boundaries; this choice ensures that the flow outside of the outer shell is nearly uniform and

equal to v = (1, 0, 0). In the continuum setting, this exterior flow does not affect the flow of interest

(which is the flow in-between the two shells), but this is not the case for the IB discretization since

the regularized delta function extends a few grid cells on both sides of the spherical shell.

A spherical shell of geometric radius Rg covered by markers acts hydrodynamically as a rigid

sphere of effective hydrodynamic radius Rh ≈ Rg + a [66], where a is the hydrodynamic radius

of a single marker [12, 35, 38] (we recall that for the six-point kernel used here, a ≈ 1.47h).

A similar effect appears in the Lattice-Boltzmann simulations of Ladd, with a being related to

the lattice spacing [51, 53, 66]. When comparing to theoretical expressions, we use the effective

hydrodynamic radii of the spherical shells (computed as explained below) and not the geometric

radii. Of course, the enhancement of the effective hydrodynamic radius over the geometric one

is a numerical discretization artifact, and one could choose not to correct the geometric radius.

However, this comparison makes immersed boundary models of steady Stokes flow appear much

less accurate than they actually are in practice. For example, one should not treat a line of markers
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as a zero-thickness object of zero geometric radius; rather, such a line of rigidly-connected markers

should be considered to model a rigid cylinder with finite thickness proportional to a [12].

We can measure the effective hydrodynamic radius Rh of a spherical shell of markers from the

drag force on a periodic cubic lattice of such objects moving with velocity V . Specifically, we

place a single shell of N markers in a triply-periodic domain with cubic unit cell of length l, set

V = (1, 0, 0) on all markers, solve (3), and measure the total drag force as F =
∑N

i=1 Λi. The

periodic correction to the Stokes drag formula is well-known [67],

F

ηV
=

6πRh
1− 2.8373(Rh/l) + 4.19(Rh/l)3 − 27.4(Rh/l)6 + h.o.t.

, (23)

and allows us to obtain a very accurate estimate of Rh from the drag for l � Rh. The results are

given in the left half of table I in the form of the dimensionless ratio Rh/Rg; we see that as the

resolution is increased Rh → Rg with an approximately linear rate of convergence, as expected.

Since this computation refers to flow outside of the shell of markers, we can call the computed Rh

the effective outer hydrodynamic radius and use it to set the value of R1 in the theory. We use

a similar procedure to measure an effective inner hydrodynamic radius R2 for the outer spherical

shell. Specifically, we obtain R2 from the drag on the inner sphere based on the theoretical formula

(C1), where we use the previously-determined value of R1 for the effective radius of the inner

sphere. The results are given in the right half of Table I and again show that as the grid is refined

the hydrodynamic radii converge to the geometric ones.

Table I: Ratio of the effective hydrodynamic and geometric radii of the inner (left half) and outer (right

half) spherical shells for simulations of steady Stokes flow around a fixed sphere embedded within a moving

spherical cavity, at different resolutions.

Resolution Number markers Rh/Rg Number markers Rh/Rg

grid size Inner shell Outer shell

303 12 1.48 162 0.93

603 42 1.22 642 0.96

1203 162 1.09 2562 0.98

2403 642 1.04 10242 0.99

1. Convergence of fluid flow (pressure and velocity)

The top panel of Fig. 7 shows a slice through the middle of the nested spherical shells along

with the fluid velocity v. Recall that the flow inside the inner sphere should vanish, implying that
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the pressure inside the inner shell should be constant (set to zero here), and the flow outside of the

outer sphere should be uniform. The bottom right panel of the figure zooms in around the inner

sphere to reveal that there is some spurious pressure gradient and an associated counter-rotating

vortex flow generated inside the inner sphere. The bottom right panel shows the error in the

computed fluid flow (v, π), that is, the difference between the computed flow and the theoretical

solution given in Appendix C. It is clear that the majority of the error is localized in the vicinity

of the inner shell and in the interior of the inner sphere. Note that these errors would be much

larger if the theory had used the geometric radii instead of the hydrodynamic radii for the shells.

Figure 7: Flow field around a fixed sphere inside a moving spherical cavity. The outer shell is discretized using

2562 markers, while the inner one has 162 markers, shown as black circles. (Top) Velocity field. (Bottom

Left) Zoom of the velocity (vector field) and pressure (color plot) around the inner shell. (Bottom Right)

Same as bottom left but now showing the error in the velocity and pressure compared to the theoretical

expressions.
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Tables II and III show the norms of the error in the computed flow field as a function of

resolution. Asymptotically first-order convergence is observed in the L1 and L2 norms for both

the velocity and the pressure. In the L∞ norm, we expect the velocity to also converge linearly,

but we do not expect to see convergence in the pressure, since the velocity is continuous across the

interface but the pressure has a jump; this is consistent with the numerical data.

Table II: Normalized norms of the error in the computed velocity (∆v) for steady Stokes flow around a fixed

sphere embedded within a moving spherical cavity, at different resolutions (see two left-most columns). An

estimated order of convergence based on successive refinements is indicated in the column to the right of

the corresponding error norm.

Markers Resolution ||∆v||1/||v||1 Rate ||∆v||2/||v||2 Rate ||∆v||∞/||v||∞ Rate

162-12 303 4.08 · 10−2 6.39 · 10−2 0.558

642-42 603 1.14 · 10−2 1.83 2.08 · 10−2 1.62 0.322 0.79

2562-162 1203 4.61 · 10−3 1.30 8.74 · 10−3 1.24 0.160 1.01

10242-642 2403 2.16 · 10−3 1.09 4.26 · 10−3 1.04 0.091 0.82

Table III: Normalized norms of the error in the pressure (∆π) for steady Stokes flow around a fixed sphere

embedded within a moving spherical cavity, at different resolutions (see two left-most columns). An esti-

mated order of convergence based on successive refinements is indicated in the column to the right of the

corresponding error norm.

Markers Resolution ||∆π||1/||π||1 Rate ||∆π||2/||π||2 Rate ||∆π||∞/||π||∞ Rate

162-12 303 0.849 0.788 1.0

642-42 603 0.567 0.58 0.486 0.70 1.0 0.0

2562-162 1203 0.344 0.72 0.275 0.82 0.860 0.22

10242-642 2403 0.196 0.81 0.164 0.75 0.704 0.29

2. Convergence of Lagrangian forces (surface stresses)

The first-order convergence of the pressure and velocity is expected and well-known in the im-

mersed boundary community. The convergence of the tractions (σ · n) on the fluid-body interface

is much less well studied, however. This is in part because in penalty-based or splitting methods,

it is difficult to estimate tractions precisely (e.g., for penalty methods using stiff springs, the spring

tensions oscillate with time), and in part because a large number of other studies have placed the

markers too closely to obtain a well-conditioned mobility matrix and thus to obtain accurate forces.



39

Furthermore, there are at least two ways to estimate surface tractions in IB methods, as discussed

in extensive detail in Ref. [68]. One method is to estimate fluid stress from the fluid flow and

extrapolate toward the boundary. Another method, which we use here, is to use the computed

surface forces Λ to estimate the tractions.
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Figure 8: Convergence of surface stresses to their theoretical values for the three different resolutions.

Pointwise traction estimates are shown with symbols as a function of the angle θ relative to the direction of

the flow, while the theory is shown with a solid black line. (Left columns) Normal component of the traction

σn = r̂ ·σ ·n. (Center columns) Tangential component of traction in direction of flow, σθ = θ̂ ·σ ·n. (Right

columns) Tangential component in the direction perpendicular to the flow, σφ = φ̂ · σ · n, which should

vanish by symmetry. (Top row) Different resolutions (see legend) for a fixed spacing s ≈ 2h. Note that

for the coarsest resolution of only 12 markers on the inner sphere, the computed tractions have values off

the scale of this plot and are thus not shown. (Bottom row) The most resolved case of 2562− 162 markers

for different spacing between markers, as indicated in the legend. Note that using s ≈ h leads to severe

ill-conditioning and the computed tractions show random scatter well beyond the scale of the plot and are

thus not shown.

We obtain pointwise estimates of the tractions at the positions of the markers from the relation

(σ · n) (Ri) ≈ Λi/∆Ai, where ∆Ai is the surface area associated with marker i. We obtain ∆Ai

from the surface triangulation used to construct the marker of grids by assigning one third of the

area of each triangle to each of its nodes. In Fig. 8 we show the computed normal and tangential

components of the traction in polar coordinates, with the z symmetry axes along the direction of

the flow. The theoretical prediction given in Appendix C is shown with a black line and is based
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on the geometric radii.

The top row of Fig. 8 shows the computed tractions for several resolutions with marker spacing

s ≈ 2h. It is seen that as the grid is refined, the computed tractions appear to converge pointwise to

the correct values. However, the convergence is very slow, and even for the large resolutions reported

here, it is evident that the asymptotic convergence regime has not been reached. Consequently, no

precise statement about the order of convergence can be made from these data. At lower resolution,

some of the results even show qualitatively wrong behavior. For example, the normal traction

σn = n · σ ·n for a resolution of 42 inner and 642 outer markers grows with θ, but the theoretical

result decreases with θ. We also see scatter in the values among individual markers, indicating

that the geometrical and topological non-uniformity of the marker grid affect the pointwise values.

Nonetheless, we remark that low-order moments of the surface tractions are much more accurate

than the pointwise tractions. For example, the total drag on the inner sphere is much more accurate,

as seen in Table I. Other test problems not reported here indicate that stresslets are also computed

quite accurately, especially if one accounts for the distinction between geometric and hydrodynamic

radii. These findings suggest that weak convergence of the tractions is more robust than strong

convergence. In fact, lower order moments can show reasonable behavior even if the marker spacing

is small and the pointwise forces are numerically unstable to compute. Somewhat unsurprisingly,

we find that the pointwise traction estimates are improved as the spacing among the markers is

increased; see the bottom row in Fig. 8. The improvement is not only due to the reduction of the

scatter, as expected from the improvement in conditioning number of the mobility matrix, but also

due to global reduction of the error in the tractions; the observed global reduction may, however,

be specific to steady Stokes flow. For widely spaced markers, however, the error in the computed

flow field field will increase because the flow will penetrate the shell boundary. This once again

demonstrates the delicate balance that is required in choosing the marker spacing for rigid bodies,

as we discuss further in the Conclusions.

D. Steady Stokes flow around sphere in a slit channel

In this section we study a problem at zero Reynolds numbers with nontrivial boundary condi-

tions, namely, steady Stokes flow around a sphere in a slit channel (flow between two parallel walls).

It is well-known that computing flows in such geometries using Green’s function based methods

such as boundary-integral methods is highly-nontrivial [27, 69, 70]. Specific methods for spheres in

a channel have been developed [71] but these are not general, in particular, flow in a square channel
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requires a different method, and incorporating the periodicity in some of the dimensions is non-

trivial [70, 72]. At the same time, we wish to point out that boundary-integral methods have some

advantages over our IB method as well. Notably, they are considerably more accurate, and han-

dling domains unbounded in one or more directions is possible by using the appropriately-decaying

Green’s function.

Unlike the case of a single no-slip boundary, writing down an analytical solution for slit channels

is complex and requires numerically-evaluating the coefficients in certain series expansions [27]. For

the component of the mobility µ = F/V of a sphere in an infinite slit channel, Faxen has obtained

exact series expansions for the mobility at the half and quarter channel locations,

µ‖

(
H =

d

2

)
=

1

6πηRh

[
1− 1.004

Rh
H

+ 0.418
R3
h

H3
+ 0.21

R4
h

H4
− 0.169

R5
h

H5
+ . . .

]

µ‖

(
H =

d

4

)
=

1

6πηRh

[
1− 0.6526

Rh
H

+ 0.1475
R3
h

H3
− 0.131

R4
h

H4
− 0.0644

R5
h

H5
+ . . .

]
(24)

where Rh is the (hydrodynamic) radius of the sphere, H is the distance from the center of the

particle to the nearest wall, and d is the distance between the walls.

To simulate a spherical particle in a slit channel we place a single spherical shell with different

number of IB markers in a domain of size L× L× d, at either a quarter or half distance from the

channel wall. No slip walls are placed at z = 0 and z = L, and periodic boundary conditions are

applied in the x and y directions. For each L, we compute an effective hydrodynamic radius RL

by assuming (24) holds with Rh replaced by RL. We know that as L → ∞ we have RL → Rh,

however, we are not aware of theoretical results for the dependence RL(L) at finite L. In Fig. 9, we

plot RL/Rh − 1 versus Rh/L for d ≈ 8Rh. Here the effective hydrodynamic radius of the shell Rh

is estimated by using (23), as shown in Table I (see inner radius). We see that we have consistent

data for RL(L) among different resolutions, and we obtain consistency in the limit L → ∞. This

indicates that even a low-resolution model with as few as 12 markers offers a reasonably-accurate

model of a sphere of effective radius Rh, independent of the boundary conditions.

E. Steady Stokes flow around cylinders

Here we study the drag force on a periodic square array of cylinders (i.e., disks in two dimensions)

with lattice spacing l. The corresponding study in three dimensions is presented in Section VII G.

The equivalent of (23) in two dimensions for dilute systems is [52, 67]

F

ηV
=

4π

− ln(
√
φ)− 0.738 + φ− 0.887φ2 + 2.038φ3 +O (φ4)

, (25)
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Figure 9: Effective hydrodynamic radius RL(L) of a sphere of hydrodynamic radius Rh, translating parallel

to the walls of a slit channel of dimensions L × L × d. Red symbols are for the sphere at the midplane of

the channel, H/d = 0.5, and blue symbols are for H/d = 0.25; these two give different dependence RL(L)

as expected. The channel width is taken d ≈ 8RH and different numbers of markers are used for the sphere

(see legend), and the grid spacing is set to give a marker spacing s as close as possible to a/s ≈ 0.5. Note

that similar to the example of flow between concentric spheres the correct value of the drag is determined

by the larger hydrodynamic and not by the geometric radius of the shell.

where φ = πR2
h/l

2 is the packing fraction of the disks and Rh is the hydrodynamic radius of

the cylinder, which is defined from (25). Observe that in two dimensions, there is no limit as

φ → 0, in agreement with Stokes’s paradox for flow around a single cylinder; one must account

for inertial effects for very small volume fractions in order to obtain physically-relevant results.

Table IV reports Rh for several different marker models of a cylinder, as estimated by computing

the drag for a range of packing fractions and extrapolating to φ � 1 using (25). As expected,

the more resolved the cylinder, the closer Rh is to Rg. Filling the cylinder with markers both

substantially enlarges the effective hydrodynamic radius and also degrades the conditioning of the

mobility matrix, and is therefore not advised at zero Reynolds number.

Another interesting limit for which there are theoretical results is the dense limit, in which the

disks/cylinders almost touch, so that there is a lubrication flow between them. In this limit [52],

F

ηV
≈ 9π

2
3
2

ε−
5
2 , (26)
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Table IV: Hydrodynamic radii of several discretizations of a cylinder with different numbers of markers on

the surface and the interior of the body, keeping s/h ≈ 2. Two models have markers only on the surface of

the cylinder (see the right panel of Fig. 12 for a 39-marker shell). The rest of the models are constructed

from a regular polar grid of markers filling the interior of the cylinder (see, for example, left panel of Fig.

12 for a 121-marker cylinder).

Number markers Surface markers Interior markers Rh/Rg

39 shell 39 0 1.04

121 cylinder 37 84 1.15

100 shell 100 0 1.02

834 cylinder 100 734 1.03

where ε = 1−
√

4φ/π = (l − 2Rh) /l is the relative gap between the particles. Note that because

the number of hydrodynamic cells must be an integer, we cannot get an arbitrary gap between the

cylinders for a given cylinder model and fixed s/h (i.e., a fixed Rh/Rg). Also note that when the

gap between the cylinders is too small, the kernels from markers on two cylinders start to overlap,

and the problem becomes ill-conditioned; we have been able to compute reliable results down to a

relative gap of ε & 10−2 for the resolutions studied here.
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Figure 10: The drag coefficient for a periodic array of cylinders in steady Stokes flow for different resolutions

(see Table IV). (Left) As function of volume fraction, compared to the results of a highly-accurate boundary-

integral method. (Right) Zoom in for close-packed arrays with inter-particle gap plotted on a log scale to

show the asymptotic ε−
5
2 divergence of the lubrication force.

Numerical results for the normalized drag over a broad range of volume fractions are shown

in Fig. 10 and compared to results obtained using an in-house two-dimensional version of the

spectrally-accurate boundary integral method proposed in Ref. [72]. We obtain very good agree-

ment, similar to that observed using the Lattice Boltzmann method [52], indicating that even
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moderately-resolved cylinders are good representations so long as one uses their hydrodynamic

rather than their geometric radius when computing the effective volume fraction. In particular, in

the right panel, we obtain excellent agreement with the lubrication result (26), seeing an increase

in the drag of over six orders of magnitude consistent with theory. Of course, the IB method results

for the drag do not have a true divergence as ε → 0 because of the regularization of the singular

kernel; one must use adaptively-refined non-regularized boundary integral methods to truly resolve

the divergence. In practice, however, effects not included in the theoretical model, such as surface

roughness or partial slip, will mollify the unphysical divergence.

F. Unsteady flow around cylinders

Next, we examine the ability of our rigid-body IB method to model unsteady two-dimensional

flow around cylinders (disks). We define Reynolds number by

Re =
ρV Rh
η

=
V Rh
ν

,

where Rh is the hydrodynamic radius of the cylinder measured at Re = 0 (see table IV), and V is

the velocity of the incident flow. For small Reynolds numbers, the mean drag per unit length F is

given by [52]

F

ηV
= k0 + k2Re2,

where k0 (φ) and k2 (φ) are constants that depend on the packing fraction φ (defined using the

hydrodynamic radius). In the range Re ∼ 2− 5, the drag becomes quadratic in the flow rate [52],

and for moderate Reynolds numbers, a drag coefficient is defined from the empirical relation

CD =
F

ρV 2Rh
.

As the Reynolds number is increased, the flow becomes unsteady and vortex shedding occurs, and

eventually there is a transition to three-dimensional flow. Here we focus on steady flow at Re ≤ 100.

A staggered-grid variant of the piecewise-parabolic Godunov method is used for spatial dis-

cretization of the advective terms, as explained in detail by Griffith [32]. In our tests, the time step

size is determined by fixing the advective Courant number V∆t/h = 0.1; this value is well bellow

the stability limit and ensures that the discretization errors coming from the (unconstrained) fluid

solver are small. The Adams-Bashforth method is used to handle advection explicitly. The viscous

terms are handled implicitly using the backward Euler method rather than the implicit midpoint
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rule because we are interested in steady states and not transient phenomena. We initialize the

simulations with the fluid moving at a uniform velocity but allow enough time for a steady-state

to be reached.

1. Drag on periodic array of disks

The permeability of a periodic array of aligned cylinders is a well-studied problem and can be

computed by placing a single cylinder in a periodic domain. To create flow through the periodic

system, we follow Ladd et al. [51, 52] and apply a constant body force f throughout the domain

(including in the interior of the body). We solve the constrained time-dependent problem to

a steady state, keeping the cylinder at rest, and measure the average velocity in the domain,

v̄ = vol−1
∫
V v dr. In two spatial dimensions, the dimensionless drag coefficient is defined by

k =
Fx
ηv̄x

,

where the force F = volf = −1TΛ is the total force applied to the fluid, which must also equal

the negative of the total force exerted on the rigid body.

Theory suggests that the correction to the drag scales as Re2 for small Reyonds numbers due

to the anti-symmetry of the correction to the flow (relative to steady Stokes) of order Re [52], so

that

k = k0 + k2Re2, (27)

where the values k0(φ) and k2(φ) depend on the packing fraction φ. To obtain k0, we move the body

at a constant velocity and obtain the drag force 1TΛ from the solution of the constrained steady

Stokes problem (11). Because marker-based models of rigid bodies do not have perfect symmetry,

the force f0 = −vol−1
(
1TΛ

)
has small nonzero components in the direction perpendicular to the

flow. To ensure that in the limit Re → 0+ we have perfect consistency between the finite Re and

zero Re computations, we use the force f = (k/k0)f0 to drive the flow at finite Re numbers.

Note that it can take thousands of time steps for the steady state to be established for Re & 1;

to accelerate convergence, we initialize the computation for a given Re from the steady state for

the closest smaller Re. Also note that the exact mobility matrix M and its factorization can be

precomputed once at the beginning and used repeatedly for these steady-state calculations.

Fig. 11 shows the dimensionless excess drag k − k0 as a function of Re at packing fraction

φ = 0.193, which is close to the packing fraction φ = 0.2 studied using the Lattice-Boltzmann
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Figure 11: The dimensionless excess (over Stokes flow) drag coefficient for a square array of disks with

packing fraction φ ≈ 0.193 (129-marker filled cylinder model, fluid grid of 642 cells). Comparison is made

to known small-Re dependence of the form k0 + k2Re2, with the coefficients k0 and k2 taken from the work

of Koch and Ladd [52] at φ = 0.2.

method in Ref. [52]. We see very good agreement of the theoretical formula (27) with our results

using the values of k0 = 49.2 and k2 = 0.24, which are in good agreement with the values of

k0 = 51.2 and k2 = 0.26 given in the caption of Fig. 1 in Ref. [52].

2. Flow past a periodic column of cylinders

Here we compute several solutions for flow past a column of cylinders at somewhat larger

Reynolds numbers, mimicking the setup of Ladd [53]. The domain is a long narrow channel of

2048 × 128 grid cells 8 with grid spacing h = 0.5, keeping the markers at a distance 2h. Periodic

boundary conditions are used in the direction of the short side of the channel (y). The flow is

driven by “uniform” inflow and outflow boundary conditions in the long direction (x). Specifically,

we impose a specified normal velocity V and zero tangential velocity at both ends of the channel

8 For very elongated domains, our multigrid-based preconditioner converges much faster for grid sizes that are powers
of two.
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9. The center of the cylinder is fixed at a quarter channel length from the inlet. The cylinders in

the periodic column are separated by approximately 10 hydrodynamic radii in the y direction (the

separation is 9.958Rh for the 121-marker cylinder, and 9.875Rh for the 39-marker shell).

Figure 12: Steady incompressible flow at Re = 10 past a periodic column of cylinders represented as either

filled disks of 121 markers (left) or a shell of 39 markers (right). We show the magnitude of the Eulerian

constraint force SΛ (gray color map), the streamlines outside of the wake (solid blue lines), the wake velocity

field (black arrows), and the Lagrangian constraint forces associated with each marker (color arrows). The

red arrow marks the stagnation point where vx = 0, as used to determine the wake length.

Representative flow fields are shown in Fig. 12 for Re = 10 for a filled cylinder model (left) and

an empty shell model (right). Note that for the computation of total drag on a fixed cylinder either

model can be used since the spurious flow seen inside the empty shell does not generate any overall

acceleration of the fluid inside the body. Also note that the spurious counter-rotating vortex pair

inside the shell diminishes under refinement, at an approximately linear convergence rate, just as

for steady Stokes flow. Computed drag coefficients k and wake lengths are shown in Table V, and

good agreement is seen with the results of Lattice-Boltzmann and finite difference schemes [53].

The wake length measures the distance from the cylinder center to the stagnation point, which is

obtained by finding the largest x coordinate on the contour of zero horizontal velocity, vx = 0.

G. Flow past periodic arrays of spheres

Finally, we study the drag on a cubic arrays of spheres of radius a at zero and finite Reynolds

numbers, and compare our results to those of Hill et al. [51]. At small packing (volume) fractions

φ and Reynolds numbers, according to Eqs. (1-2) in [64], F −F0 = 3Re/8+h.o.t. if
√
φ� Re� 1,

9 An alternative is to use zero tangential stress on both boundaries, or zero normal and tangential stress on the
outflow; such stress boundary conditions are supported in the fluid solver in the IBAMR library [32].
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Table V: Numerical results for steady flow past a periodic column of cylinders at different Reynolds number,

for two different models of the body (see Fig. 12), either a filled cylinder or an empty shell of markers. For

comparison we reproduce the results in Table 5 in [53], which are computed either using either a Lattice-

Boltzmann (LB) or a finite difference (FD) method. (Left) Mean drag coefficient. (Right) Wake length in

units of Rh.

Re 121 cyl 39 shell LB FD

5 4.31 4.35 4.21 4.32

10 2.96 2.99 2.91 2.98

20 2.16 2.19 2.17 2.19

50 1.55 1.58 1.67 1.61

Re 121 cyl 39 shell LB FD

5 1.52 1.40 1.5 1.49

10 2.55 2.59 2.6 2.65

20 4.50 4.61 4.7 4.74

50 9.96 9.91 10.7 10.3

or, more relevant to our study, F − F0 ∼ Re2/
√
φ if Re �

√
φ � 1. For small Re and at larger

densities, the theoretical arguments in [51, 52] predict that the dimensionless drag is quadratic in

Re because the linear term vanishes by symmetry, so that

k =
F

6πηaV
≈ k0 + k2Re2.

For larger Re, the dependence is expected to switch to linear in Re.

Here we focus on close-packed cubic lattices of spheres with packing fraction φ = π/6 ≈ 0.5236.

Note that unlike the case of two spatial dimensions, in three dimensions the flow does not need to

squeeze in-between the (nearly) touching bodies, so the drag does not diverge even at close packing.

The value of the steady Stokes drag k0 is tabulated in Table VI for several resolutions. Different

resolutions are examined: an empty shell (see Table I) of 162 (grid size is 163) or 642 markers (303

grid), as well as a filled sphere of 56 (42 on the surface, 103 grid) or 239 (162 on the surface, 163

grid) markers; the actual value of the packing fraction based on the effective hydrodynamic radius

of the model is indicated in the table. A large difference is seen between the filled and empty

shell models at this high packing fractions because the spheres are very close to each other and

discretization artifacts become pronounced. We have also performed simulations at a lower (but

still high) packing fraction of φ = 0.44, and there we see much better agreement between the filled

and empty sphere models; note that at small φ� 1 the value of k0 must match among resolutions

since we define the packing fraction from Rh, which is itself determined from the value of k0 at

small φ using (25).

Numerical results for the dimensionless drag coefficient k near the close-packed density φ ≈ 0.52

are shown in Fig. 13. Because our discrete models of spheres do not have the same symmetry as

a perfect sphere, we numerically observe a small O(Re) correction that can dominate the true
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Table VI: Dimensionless drag force k0 for steady Stokes flow (Re = 0) past a simple-cubic array of spheres

at volume fraction φ ≈ π/6 (close packing). For the highest-resolution LB simulations in [53] the reported

value is k0 = 42.8.

Number of markers φ k0

56 filled 0.5236 40.08

239 filled 0.5238 40.73

162 shell 0.5213 44.49

642 shell 0.5236 43.29

correction k2Re2 for Re � 1; this is especially evident in the right panel of Fig. 13 for coarsely-

resolved models (e.g., a 56-marker sphere) 10. Empirical fits to literature data for k0, k1, k2, and the

range of Re values over which the various fits are valid are tabulated in Ref. [73]. Fig. 13 compares

our results to these fits, as well as to reference results obtained using the Lattice Boltzmann method

[53] at close packing. We observe the expected switch from linear to quadratic dependence on Re

and also a reasonable agreement with the literature data, and the agreement appears to improve

with increasing resolution.
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Figure 13: Numerical values (symbols) for the drag coefficient of a periodic array of spheres close packed in

a cubic lattice of volume fraction φ = π/6 ≈ 0.52, for several resolutions (see legend), using a linear (left)

or log scaling (right). Comparison is made to empirical formulas given in [73] (lines), as well as Lattice

Boltzmann results for close-packed cubic arrays given in Table 6 in [53] (crosses).

10 In two dimensions, we can more easily make the discrete models symmetric and this is why Fig. 11 does not show
deviations from the expected quadratic behavior even at rather small Re.
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VIII. CONCLUSIONS

This paper develops an immersed boundary method that enforces strict rigidity of immersed

bodies at both zero and finite Reynolds numbers. Unlike existing approaches, we do not rely on

penalty or splitting approaches, and we instead directly solve a saddle-point system that couples

the fluid velocity and pressure to the unknown rigidity forces. We developed a physics-inspired

approximation M̃ to the Schur complement (mobility matrix)M of the constrained system, based

on analytical considerations for a continuum fluid model, and demonstrated that this leads to a

robust preconditioner so long as the immersed boundary markers are kept sufficiently far to ensure

a well-conditioned mobility matrix. Contrary to common practice, we found that the markers

should be kept approximately two fluid grid cells apart in rigid-body models in order to obtain

accurate and stable pointwise estimates for the traction. We tested our method on a number

of standard test problems in both two and three spatial dimensions, and at both zero and finite

Reynolds number, and we observed good agreement with theory and literature values. Although

in this work we focused on rigid bodies, our method can directly be applied to study fluid flow

around bodies with specified kinematics. For example, it can be used to model the flow around a

swimming body deforming with a specified gait. We have implemented the method described here

in the open-source IBAMR software infrastructure [42] in the hope it will be useful to other users

of the IB method.

Another challenge that we did not explore here is the efficient computation of the action of M̃
−1

when there are many markers present; there are many approximate solvers and emerging fast solvers

we plan to explore in the future. Of course, using dense linear algebra to solve (21) is likely to

be suboptimal, as these solves have O(N2) memory complexity and O(N3) time complexity. The

problem of solving a linear systems similar in structure to (21) appears in many other methods

for hydrodynamics of suspensions, including Brownian [74, 75] and Stokesian [15] dynamics, the

method of regularized Stokeslets [21, 22], computations based on bead models of rigid bodies [17–

20], and first-kind boundary integral formulations of Stokes flow [76]. Similar matrices appear

in static Poisson problems such as electrostatics or reaction-diffusion models [50], and there is a

substantial ongoing work that can be applied to our problem. Notably, the approximate mobility

matrix M̃ is dense but has a well-understood low-rank structure that can be exploited. Specifically,

matrix-vector products M̃Λ can be performed in almost linear time using the Fast Multipole

Method [58]. If the condition number of M̃ is not too large, one can solve linear systems involving

M̃ efficiently using an unpreconditioned Krylov solver. For poorly conditioned cases, however,
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a good preconditioner based on an approximate factorization of M̃ is required. In recent years,

several approximate low-rank factorizations of matrices of this type have been developed [77–79],

and can be used as preconditioners in Krylov methods. We have had reasonable success using a fast

hierarchically off-diagonal low-rank (HODLR) factorization code developed by Ambikasaran and

Darve [77], with significant improvement offered by a recently-developed boundary distance low-

rank approximation [79]. Preliminary results indicate great promise for the inverse fast multipole

(iFMM) method [80]; we have been able to use iFMM to solve the system (21) for as many as

5 · 105 markers to a relative tolerance of 10−8. These methods are, however, still under active

development, and a significant amount of investigation is necessary to integrate them into the

method described here. Notably, we only require an approximate solver for (21) and the impact

of the innacuracy in solving (21) on the overall convergence of the outer Krylov solver needs to be

assessed.

The type of linear system we solve here is closely connected to those appearing in implicit

immersed boundary methods [81–83]. It is in fact possible to recast the saddle-point problem

we consider here into a form closely-related to that appearing in implicit IB methods; the Schur

complement for this system is in Eulerian rather than Lagrangian variables as it was for this work,

and involves the matrix

Lv + κS (JS)−1J , (28)

for some constant κ that does not need to go to infinity. It may be that geometric multigrid

methods [82] developed for implicit IB methods can be applied to the Eulerian Schur complement

(28). At the same time, techniques developed herein may be useful in the development of more

efficient implicit IB methods for nearly-rigid bodies.

Our work is only the first step toward the ultimate goal of developing methods able to handle

large numbers of rigid bodies in flow. Several computational challenges need to be tackled to

realize this goal. Firstly, and most importantly, it is crucial to develop a preconditioner for the

enlarged linear system (??) that appears in the context of freely-moving rigid bodies. An additional

Schur complement appears when solving this saddle-point problem, and the challenge for future

work is approximating the body mobility matrix N =
(
K?M−1K

)−1
. Initial investigations have

shown great promise in block-diagonal preconditioners with one block per body. In this approach,

we neglect the hydrodynamic interactions between bodies, but use the mobility approximation

developed in this work together with dense linear algebra for each body.

In the marker-based method described in this work, one must adjust the marker spacing to
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be “neither too small nor too large”. The sensitivity of the solver performance and the numerical

results to the exact spacing of the markers, which comes from the ill-conditioning of the mobility

matrix, is one of the key deficiencies of the marker-based representation inherent to the traditional

IB method. Recently, Griffith and Luo have proposed an alternative IB approach that models

the deformations and stresses of immersed elastic body using a finite element (FE) representation

[46]. In their IB/FE approach, the degrees of freedom associated with Λ are represented on an FE

mesh that may be coarser than the fluid grid, and the interaction between the fluid grid and body

mesh is handled by placing IB markers at the numerical quadrature points of the FE mesh. When

such an approach is generalized to rigid bodies, the conditioning of the mobility becomes much less

sensitive to the marker spacing. Using a finite-element basis to represent the unknown fluid-body

interaction force amounts to applying a filter Ψ to the marker-based mobility matrix, which is a

well-known and robust technique to regularize ill-conditioned systems. Specifically, in the context

of the IB/FE approach, the mobility operator becomes

MFE = Ψ
(
JL−1S

)
ΨT = ΨMΨT ,

where Ψ is a matrix that contains quadrature weights as well as geometric information about the

relation between the nodes and quadrature points of the FE mesh. The FE mobility matixMFE

is still symmetric, but now can be much smaller because the number of unknowns is equal to the

number of FE degrees of freedom rather than the number of markers. Even if markers are closely

spaced, the filtering of the high-frequency modes performed by representing forces in a smooth FE

basis makes the mobility much better conditioned than for marker-based schemes. Furthermore,

the mobility matrix, or approximations of it used for preconditioning, will be smaller and thus

easier to fit in memory. We also expect the resulting method to be more accurate because the

tractions are represented in a smoother basis. We will explore this promising extension of our

rigid-body IB methods in future work.
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Appendix

Appendix A: Approximating the mobility in three dimensions

In this appendix we give the details of our empirical fits for the approximations to the functions

fβ(r) and gβ(r) in (12) in three spatial dimensions, following the physics-based constraints discussed

in Section IV. To maximize the quality of the fit, we perform separate fits for β →∞ (steady Stokes

flow) and finite β. We also make an effort to make the fits change smoothly as β grows towards

infinity.

a. Steady Stokes flow

Because our numerical computations are done in a periodic domain of length l rather than an

unbounded domain, we need to apply a well-known correction to the Oseen tensor [35, 67],

f∞(h� r � l) ≈ (8πηr)−1 − 2.84 (6πηl)−1 .

From the numerical data, we calculated the normalized functions

f̃(x) = (8πηr)
(
f∞(r) + 2.84/ (6πηl)−1

)
, (A1)

g̃(x) = (8πηr) g∞(r),

where x = r/h is the normalized distance between the markers. As explained previously, we know

that f̃ ≈ (8πηr) / (6πηa) = 4r/(3a) for x � 1 (in practice, markers are never too close to each

other so we only need the self-mobility, i.e., x = 0), and that g̃ grows at least quadratically for

small x (since g(0) = 0). We also know that f̃ ≈ 1 and g̃ ≈ 1 for large r � h. The numerical data

for the normalized functions f̃(x) and g̃(x) are shown in Fig. 2 along with fits to the following
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semi-empirical rational functions,

f̃(x) =


x

(3a)/(4h)+b0x2
if x < 0.8,

b1xe
−b2x + b3x2+x4

1+b4x2+x4
if x ≥ 0.8,

(A2)

g̃(x) =
x3

b5 + b6x2 + x3
.

As the figure shows, the numerical data are well described by these formulas, and there is only

small scatter of the numerical data around the fit, indicating approximate discrete translational

and rotational invariance 11. We also obtain a reasonable agreement with the RPY tensor (16)

approximation; however, as expected, the empirical fits yield a better match to the data.

b. Nonzero Reynolds numbers

For finite β, we consider separately the case r = 0 (giving the diagonal elements M̃ii) and

r > 0.1h (giving the off-diagonal elements). For r = 0 we use an empirical fit designed to conform

to (18),

ϕ0 (β) =
ηhfβ(0)

β
=

1 + z1
√
β + z2β

z0 + z3β + 6π(a/h)z2β2
, (A3)

gβ(0) = 0,

where z1−z3 are coefficients obtained by fitting the numerical data for the self mobility for different

β. Note that z0 = 2h3/ (3Vm) is fixed by the inviscid condition (17). Also note that as β → ∞,

our fit obeys the correct Stokes limit,

ϕ0 (β � 1)→ 1

6π (a/h)
· 1

β
.

We show the empirical fit for ϕ0 (β) in Fig. 16 in Appendix B.

For nonzero r, we introduce normalized functions f̃β and g̃β via

fβ(r) = − β

ηh
· 1

4πx3
· f̃β(x), (A4)

gβ(r) =
β

ηh
· 3

4πx3
· g̃β(x),

11 Most of the scatter comes from the finite size of the periodic box and can be explained using a known periodic
correction to the RPY tensor [84].
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where x = r/h is the normalized distance, and β/η = ∆t/ρh2. For finite β, we know that f̃β(x�
√
β) ≈ g̃β(x�

√
β) ≈ 1 according to (20). As β →∞, we want to reach the Stokes limit

f̃∞ (x� 1)→ −x
2

2β
, (A5)

g̃∞ (x� 1)→ x2

6β
,

and for finite β, we want the viscous contribution to decay as exp
(
−x/

(
C
√
β
))

for some constant

C that should be close to unity. Furthermore, we would like to ensure continuity near the origin

with the fit for r = 0,

f̃β(x→ 0)→ −4πx3ϕ0 (β) .

A fitting formula that obeys these conditions that we find to work well for r > 0.1h is

f̃β(x) = ϕ0(β)
−4πx3 + a4

[
x5 − x7e(−a3x/

√
β)/(2β)

]
1 + a0x+ a1x2 + a2x3 + a4x5ϕ0(β)

+

+
a5x

4e−a6x + a7x
4

1 + a8x3 + a9x5
, (A6)

g̃β(x) = ϕ0(β)
b5

[
x5 + x7e(−b0x/

√
β)/(6β)

]
1 + b1x+ b2x2 + b3x3 + b4x4 + b5ϕ0(β)x5

,

where a0-a9 and b0-b5 are empirical coefficients. It is important to emphasize that (A6) was chosen

in large part based on empirical trial and error. Many other alternatives exist. For example,

one could use the analytical Brinkmanlet (15) for sufficiently large distances and then add short-

ranged corrections for nearby markers. Alternatively, one could first subtract the inviscid part

f0(r) and g0(r) and then fit the viscous contribution only. As discussed above, ideally the fits

would be constrained to guarantee an SPD approximate mobility matrix, but this seems difficult

to accomplish in practice.

We computed the fitting coefficients in (A6) for β ∈ {0, 0.1, 0.25, 0.5, 1, 10, 100, 1000}; the

coefficients for other values in the range 0 < β < 1000 are interpolated using linear interpolation,

and β > 1000 is treated using the steady Stokes fitting. We see a good match between the

numerical data and our empirical fits in Fig. 14, with good translational and rotational invariance

(i.e., relatively small scatter of the numerical points around the fits).

Appendix B: Approximating the mobility in two dimensions

To construct empirical approximations to the functions fβ(r) and gβ(r) in (12) in two spatial

dimensions, we follow the same approach as we did for three dimensions in Appendix A. Specifically,



56

Figure 14: Normalized fitting functions f̃β(x) (left) and g̃β(x) (right) at finite β in three dimensions for the

6-point kernel, for different values of the viscous CFL number (see legend). Symbols are numerical data

obtained by using a 2563 periodic fluid grid, and dashed lines show the best fit of the form (A6).

we first discuss the known asymptotic behavior of these functions at short and large distances, and

use this to guide the construction of empirical fitting formulas.

1. Physical constraints

In two dimensions, we need to modify (18) to agree with (17) for small β. For d = 2, Vm = c
′
V h

2

and f0(0) ∼ β/η so that we use the fit

fβ (0) =
C (β)

η
and gβ(0) = 0, (B1)

where C(β) has the same asymptotic scaling as in three dimensions and is obtained from empirical

fits (see Fig. 16). A key difference exists between two and three spatial dimensions in the limit

Re→ 0. For steady Stokes flow in a square two dimensional periodic domain, the Green’s function

diverges logarithmically with the system size l. Therefore, it is not possible to write a formula for

the asymptotic behavior at large distances for an infinite system. Instead, we must subtract the

divergent piece to get a well-defined answer. The standard Green’s function for Stokes flow in two

dimensions has logarithmic growth at infinity, which suggests that (19) should be replaced by

f∞(r � h)− f∞(r = 0) ≈ − ln (r/h)

4πη
and g∞(r � h) ≈ 1

4πη
. (B2)

For inviscid flow we should replace (20) by the field of a dipole in two dimensions,

f0(r � h) ≈ − ∆t

2πρr2
and g0(r � h) ≈ ∆t

πρr2
. (B3)

In two dimensions the solutions of the Brinkmann equation (14) are analytically complicated and

involve special functions. Even without solving these equations, however, physical scaling suggests
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that the same physical length scale h
√
β should enter, in particular, the viscous corrections should

decay to zero exponentially fast with h
√
β.

2. Empirical fits

We have used the analytical results above to construct empirical fitting formulas that have the

correct asymptotic behavior, as we now explain in more detail.

a. Steady Stokes flow

In two dimensions, steady Stokes flow (β →∞) is not well behaved because the Green’s function

does not decay sufficiently rapidly (Stokes paradox). This makes the mobility an essentially dense

matrix that is sensitive to boundary conditions and difficult to approximate. Nevertheless, we have

used a periodic system to fit empirical data based on the theory (B2). The diagonal value f∞(0)

diverges logarithmically with the system size L for periodic boundaries. Specifically, for a square

unit cell of length l� h, it is known that [67]

f∞(0) = (4πη)−1 ln

(
l

3.708 a

)
,

and this relation defines the effective hydrodynamic radius of a marker a (note that a/h is a

universal value for a given spatial discretization, as it is in three dimensions). Since the precise

form depends on boundary conditions and is not known in general, we treat f∞(0) as an input

parameter.

From the numerical data, we calculated the normalized functions

f̃(x) = − (4πη) (f∞(x)− f∞(0)) (B4)

g̃(x) = (4πη) g∞(x),

where x = r/h is the normalized distance between the markers. Observe that from (B2) we know

that f̃(x� 1) ≈ lnx and g̃(x� 1) ≈ 1. For the normalized functions, we use the fits

f̃(x) =
a0x

2 + a1x
3 + a2x

3 lnx

1 + a3x+ a4x2 + a2x3
, (B5)

g̃(x) =
b0x

2 + b1x
3

1 + b2x+ b3x2 + b1x3
.

Numerical results and empirical fits for f̃(x) and g̃(x) are shown in Fig. 15. While the numerical

data do conform to the theoretical asymptotic behavior, there is substantial scatter for larger

distances because of the strong sensitivity to the boundaries.
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Figure 15: Empirical fits (lines) to numerical data (symbols) for f̃(x) (left) and g̃(x) (right), for the 6-point

kernel in two dimensions, obtained using a periodic system of either 2562 or 5122 grid cells. Observe that

both follow the correct asymptotic behavior at large distances, with scatter dominated by boundary effects.

b. Nonzero Reynolds numbers

For r = 0, we use a fitting formula in agreement with (B1),

ϕ0 (β) =
ηfβ(0)

β
=

z0 + z1β
3 log(β)

1 + z2β + z3β2 + z4β4
, (B6)

gβ(0) = 0,

where z1 − z4 are coefficients (obtained by fitting for each kernel data over a range of β’s) and z0

is fixed from the inviscid condition (17). The empirical fit for ϕ0 (β) is shown in Fig. 16. Note

that for finite β, one must ensure that the system size used to tabulate the values of fβ and gβ is

sufficiently large, l� h
√
β.
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Figure 16: Empirical fit for ϕ0 (β) as a function of β for different vaues of β. (Left) Three dimensions, 2563

grid. (Right) Two dimensions, 5122 grid.
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For r > 0.1h we introduce normalized functions f̃β and g̃β via

fβ(r) = − β

2πηx2
· f̃β(x), (B7)

gβ(r) =
β

πηx2
· g̃β(x),

where in the inviscid case we take β/η = ∆t/ρh2, and x = r/h is the normalized distance. For

finite β, we know that f̃β(x �
√
β) ≈ g̃β(x �

√
β) ≈ 1 according to (B3). The numerical data is

fitted with the empirical fitting functions

f̃β(x) =
x3 ln(x)

β(a0 + 2x)
e
− p1x√

β +
a1x

2 + a2x
3 + a3x

4

1 + b1x2 + b2x3 + a3x4
, (B8)

g̃β(x) =
x3

β(c0 + 4x)
e
− p2x√

β +
x3

e−p3x(c1 + c2x+ c3x2) + x3
,

as shown in Fig. 17. Here a0 − a3, p1 − p3, b1 − b3, c0 − c3 are empirical coefficients, computed

by fitting numerical dats for β in {0, 0.1, 0.25, 0.5, 1.0, 5.0, 10.0}. Intermediate values in the

range 0 < β < 10.0 are interpolated using linear interpolation, and larger β’s are handled using

the steady Stokes fit (B5).

Figure 17: Empirical fitting of f̃β(r) and g̃β(r) in two dimensions for different values of β for the 6-point

kernel, 5122 grid.

Appendix C: Stokes flow between two concentric spheres

Consider steady Stokes flow around a rigid shell or sphere of radius a, placed in a centered

position inside another spherical shell or cavity of radius b = a/λ. We consider the case when

the outer shell is moving with velocity V and the inner shell is at rest, and for simplicity set the

viscosity to unity, η = 1. Brenner [85] gives the drag force on the inner sphere for no slip boundary
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conditions as

F = −6πaV K, (C1)

where

K =
1− λ5

α
and α = 1− 9

4
λ+

5

2
λ3 − 9

4
λ5 + λ6.

Let us denote the constants

A = −15V

4a2
· λ

3 − λ5

α
,

B =
3V a

2
· 1− λ5

α
,

C =
V

2
·

1 + 5
4λ

3 − 9
4λ

5

α
,

D =
V a3

4
· 1− λ3

α
.

The velocity in the region between the two spherical shells can be obtained from the expressions

given by Brenner as

vr = − cos θ

(
A

5
r2 −B 1

r
+ 2C + 2D

1

r3

)
,

vθ = sin θ

(
A

5
r2 − B

2

1

r
+ 2C −D 1

r3

)
,

vφ = 0,

and the pressure is

π = π∞ + µB
cos θ

r2
− 2µAr cos θ,

where π∞ = 0 since we impose that the pressure have mean zero to remove the null mode for

pressure. In spherical coordinates, with the symmetry axes aligned with the direction of the flow,

the traction on the surface of the inner sphere, which is the jump in the stress across the inner

shell, is

λ = σ · n = µ cos θ

(
2Ar − B

r2

)
r̂ + µ sin θ

(
Ar +

B

r2

)
θ̂,

where r̂ = (sin θ cosφ, sin θ sinφ, cos θ) and θ̂ = (cos θ cosφ, cos θ sinφ, − sin θ).
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Appendix D: Imposing Physical Boundary Conditions

The local averaging and spreading operators have to be modified near physical boundaries,

specifically, when the support of the kernel δa overlaps with a boundary. A proposal for how to do

that has been developed by Yeo and Maxey [86], and an alternative proposal has been developed in

the context of the immersed boundary method by Griffith et al. [87]. Here we have chosen to use

the former approach because of its simplicity and the fact that it is independent of the kernel, as

well as the fact that it ensures that the interpolated velocity strictly vanishes at a no-slip boundary;

this ensures that the mobility of a marker is a monotonically decreasing function as it approaches a

no-slip boundary. Since the description in [86] is limited to steady Stokes flow and a single no-slip

boundary, we give here an algebraic formulation that extends to a variety of boundary conditions;

this formulation is implemented in the IBAMR library and used in the examples in this paper in

non-periodic domains.

The basic idea in the handling spreading and interpolation near boundaries is to use the standard

IB kernel functions in a domain extended with sufficiently many ghost cells so that the support of

all kernels is strictly within the extended domain. For interpolation, we first fill ghost cells and

then interpolate as usual using the ghost cell values. For spreading, we take the adjoint operator,

which basically means that we first spread to the extended domain including ghost cells in the

usual manner, and then we accumulate the value spread to the ghost cell in the corresponding

interior grid point, using the same weight (coefficient) that was used when filling ghost cells for

the purposes of interpolation.

This process requires a consistent method for filling ghost cells, that is, for extending a (cell-

centered or staggered) field u from the interior to the extended domain. In general, this will be an

affine linear mapping of the form

uext = Euint + c,

where E is an extension matrix and c encodes inhomogeneous boundary conditions. Let us denote

with J 0 the standard IB interpolation operator that interpolates an extended field at a position

inside the interior of the domain. The interpolated value in the presence of physical boundary

conditions is then given by the affine linear mapping

J BC (uint) = J 0uext = J 0Euint +J 0c.

The corresponding spreading operation is defined to be the adjoint of J BC for homogeneous bound-

ary conditions, as this ensures energy conservation in the absence of boundary forcing. Specifically,
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we use

SBC = ETJ ?
0 = ETS0.

The specific form of the extension operator E used in our implementation is based on linear

extrapolation to a given ghost point based on the corresponding value in the interior and the values

at the boundary as specified in the boundary conditions. Specifically, for homogeneous Neumann

conditions we do a mirror image ughost = −uint, while for homogeneous Dirichlet boundary con-

ditions, such as no slip boundaries, we simply do a mirror inversion ughost = −uint. This makes

our implementation exactly identical to that proposed by Yeo and Maxey [86] in the context of

the FCM method. One can think of this approach to no-slip boundaries as taking an inverted

mirror image of the portion of the kernel outside of the domain [86]. Note that the same E is used

to implement boundary conditions both in the fluid solver and when interpolating/spreading near

boundaries; this greatly simplifies the implementation without lowering the second-order accuracy

of the fluid solver [32]. In our implementation, we use simple transpose for spreading which is the

adjoint E? with respect to the standard inner product.
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[19] A Ortega, D Amorós, and J Garćıa de La Torre. Prediction of hydrodynamic and other solution

properties of rigid proteins from atomic-and residue-level models. Biophysical journal, 101(4):892–898,

2011. Code available at http://leonardo.inf.um.es/macromol/programs/hydropro/hydropro.htm.
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