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ABSTRACT 

 

Formalized Harmony 

 

by 

 

Pau Roselló Díaz 

 

 

The progress in electronic and computer sciences has transformed music, introducing 

new techniques and tools that have completely impacted the way we compose, perform, and 

distribute music. As creators and consumers, our experience with music has been shaped by 

these new technologies, resulting in a rapid evolution of the art form. 

However, Western music theory has remained largely unchanged, with technology 

settling into the current system and formalizing its rules in each protocol and platform 

developed. Since Western music, and specifically its harmonic rules, were developed in a 

technological context that has since changed, it stands to reason that the theory should 

evolve as well. Several artists have expanded their artistic practice by exploring new 

systems, such as serialism, stochastic music, and microtonality. Composers such as Xenakis, 

Partch, Johnston, Tenney and Barlow have laid the foundation for a new computational 

system in music. 

Understanding the perceived root phenomenon is essential to explain the most 

fundamental structures in twelve-tone equal temperament or 5-limit just intonation, as well 

as proposing new chords for new tunings. Through a music perception study conducted on 
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41 participants and 10 different tunings empirically establishes harmonic dualism, negative 

harmony and Barlow’s harmonicity as the key factors for the perception of the harmonic 

root and the origin of the major and minor triads, and proposes a model as a basis for a 

tuning-agnostic – trans-spatial – music theory. 

As a result, a set of rules and algorithms are introduced to expand music’s harmonic 

system through computation. This thesis proposes a tuning-agnostic music theory, 

organizing and codifying the principles and rules of harmony into a systematic and 

recognizable form.  
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I. Introduction 

A. Problem statement 

Computation and electronics have enabled the development of tools and instruments 

capable of producing harmonies beyond the traditional twelve-tone system. However, the 

process of abstracting, formalizing, and codifying the rules of harmony in a tuning-agnostic 

manner involves many unknown steps. 

There are several ways in which the axioms of Western music theory can be translated 

into higher-level structures. However, the theories that support these structures lack 

coherence outside of the twelve-tone system. Therefore, further research is needed to 

develop a comprehensive understanding of how to apply harmonic principles beyond 

traditional tuning systems. 

B. Relevance of the research 

To compose using unexplored tunings and develop a music theory that is independent of 

specific tunings, it is crucial to define a model capable of predicting the perceived harmonic 

root and identifying the perceived fundamental inversion for basic chords in these spaces. 

Moreover, since current theories on the fundamental bass and the origin of the minor triad 

diverge when applied to extended just intonation, exploring new spaces can provide a better 

understanding of the space in which current music practice occurs. 

As Thomson (1993) pointed out, empirical studies have yet to confirm the phenomenal 

reality that our percepts confidently describe. This thesis aims to explain these phenomena 

and proposes a model for generating the fundamental chords in any tuning. This model 
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represents the first step towards developing a trans-spatial music theory, which proposes a 

common theoretical framework for different tunings and temperaments. 
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II. Literature review 

The tuning of musical instruments has evolved since antiquity (Rasch, 2002) offering 

different solutions to the existence of commas — the difference resulting from tuning one 

note in two different ways (Grove, 1900). Tuning gradually evolved to temperament in the 

fifteenth century, and after exploring different kinds of unequal temperaments, the twelve-

tone equal temperament became our present tuning system (Barbour, 1951). 

Simpler just intervals are perceived as more consonant (Helmholtz, 1863) because of the 

interference of partials generating roughness (Plomp and Levelt, 1965). That’s why many 

musicians develop their practice using exclusively just intonation. On the other hand, tones 

whose difference is smaller than a minimum detectable percentage depending on pitch and 

sensation level are perceived as the same tone (Shower and Biddulph, 1931), and “there is a 

very strong propensity for the ear to try to fit what it hears into one or a small number of 

harmonic series” (Erlich, 1997). So some of the properties of simple just intervals may be 

transferred to their tempered approximations. 

Just intonation systems are usually defined by specifying a prime limit, indicating the 

greatest prime factor (Erlich, 2004). The standard temperament western music uses is an 

approximation of a 5-limit just tuning, so those systems with limits greater than 5 are known 

as extended just intonation (Fonville, 1991). 

Some theoretical contributions are independent of the prime limit and helpful for the 

analysis and design of just intonation systems. Johnston defined n-dimensional lattices as a 

way to represent tones, intervals and scales in a topological space, and one-dimensional 

projections of those spaces as a way to represent these same structures in the span of a single 

octave (Johnston, 1977). Partch had previously divided these lattices defining otonality and 
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utonality (over-number and under-number tonality) (Partch, 1947), establishing the main 

formalization of harmonic dualism in extended just intonation. 

Harmonic dualism is “a school of theoretical thought which holds that the minor triad 

has a natural origin different from that of the major triad, but of equal validity” (Snyder, 

1980). It pretends to explain the origin of “the minor triad in a reverse sense from the 

explanation of the major triad” (Jorgenson, 1963). While the major triad is an upward 

(positive direction of the lattice) construction, the minor triad would be symmetrically built 

in the downward direction. Zarlino and Riemann have been historically the main advocators 

of harmonic dualism (Zarlino, 1558; Riemann, 1896). Rameau initially proposed his monist1 

theory of the divided fifth as an alternative to Zarlino’s dualism (Rameau, 1722), he later 

moved to a dualist approach (Rameau, 1737) and finally concluded that the generating tone 

in minor triads is not the perceived root (Rameau, 1750). In Levy’s words: “generator and 

fundamental are divorced” (Levy, 1985). 

Despite being a universally perceived phenomenon and even considered by some authors 

essential for the existence of music (Day, 1885), the perceptual origin of the harmonic root 

is still discussed. Dualists have tried to explain why the generating tone is not the one 

perceived as the root in many ways. From a psychoacoustical perspective, Tartini 

anticipated the theory of virtual pitch with his theory of the terzi suoni risultanti (Tartini, 

1754), von Oettingen defended harmonic dualism based on the overtone series (von 

Oettingen, 1866), Indy — and similarly Godley (Godley, 1952) — demonstrated that the 

minor triad is cardinally inverse to the major (Indy, 1912), and Hauptmann even used 

 
1 Monism is the opposite of dualism. Levy would say “polarity theorist” instead of 

dualist and “turbidity theorist” instead of monist. [Levy(1985)] 
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Hegelian metaphysics to defend dualism (Hauptmann, 1853). More recently, Terhardt’s 

virtual pitch (Terhardt, 1984) succeeded Hindemith’s difference tone theory (Hindemith, 

1937) and is the generally accepted one. This establishes a contradiction in music theory 

because while dualism is generally accepted, the most accepted theory for the fundamental 

root is virtual pitch, which is based on the overtone series, therefore it is a monist theory. 

Aware of this contradiction, Ernst Levy proposed the concept of polarity to reconcile 

harmonic dualism and the fundamental root (Levy, 1985), and derived a correlation between 

tones and chords in the “minor side” and the “major side”, describing it in terms of “telluric 

gravity”. This is a dualist idea but with a critical variation: the frontier between the “major” 

and “minor” side is not the root tone, but a middle point between the root and the fifth. 

Levy’s theory of harmony is especially relevant because it offers a solution to the dualist 

problem with the perceived root without resorting to the harmonic series. Steve Coleman 

developed Levy’s ideas under the name of “symmetrical movement” considering “tonal 

centers in terms of spatial geometry” (Coleman, n.d.). In recent days, Jacob Collier has been 

the biggest proponent of this theory, using the term “negative harmony” and simplifying it 

as two different ways to approach the key center: “the fourths-side of the circle of fifths, and 

the fifths side of the circle of fifths”. 

Once new tunings and their respective theory are proposed, new instruments, interfaces 

and algorithms are needed to compose and perform. Kirck defined a two-dimensional pitch-

class space (Kirck 1987) to map Ben Johnston’s notation (Johnston 1978) to just intervals. 

Sabat proposed Micromælodeon as a microtuning algorithm using Tenney’s Harmonic 

Distance and a lookup table with 3997 intervals (Sabat 2008). 
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Stange at al. did a great analysis on previous dynamically adaptive tuning systems which 

used logical operations and proposed instead a mathematical system of linear equations 

(Stange et al. 2017). Trueman et al. studied how a playful interface — bitKlavier — could 

be used to implement composed and adaptive tunings (Trueman et al. 2020). 

  



 

 7 

III. Methods 

A. Harmonic spaces 

Johnston’s n-dimensional lattices can be further developed to connect negative harmony 

with extended just intonation. I am proposing a tuning-agnostic theory of harmonic spaces 

based on Tenney’s pitch-class spaces as a topological framework, Levy’s and Coleman’s 

negative harmony as an extention of harmonic dualism, and Barlow’s number theory 

(Barlow, 1999; Barlow, 2012). 

There are two kinds of harmonic spaces: pitch spaces, and pitch-class spaces. 

1. Pitch spaces 

The relationship between just tones in a pitch set can be represented by defining n-

dimensional non-Euclidean (with taxicab distance2) discrete harmonic spaces assigning each 

lattice to a prime number (Tenney, 1983; Erlich, 2004). Pitch spaces are defined by the 

prime numbers attached to their dimensions in the form [p1, p2, ..., pn]. The value of each 

discrete coordinate (x1, x2, ···, xn) in these spaces is: 

𝐼 = ∏ 𝑝𝑖
𝑥𝑖

𝑛

𝑖=1

 

(1) 

For example, [2, 3] is a pitch space with two dimensions: one for the number 2, and 

another one for the number 3. Every discrete coordinate in this space corresponds to a tone: 

 
2 In taxicab geometry, the usual distance function of Euclidean geometry (d = a2 + b2) is 

replaced by the rectilinear distance: d = a + b. 
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(−1, 1) ∈ [2, 3] = 2−1 · 31 = 3
2⁄   

(2, −1) ∈ [2, 3] = 22 · 3−1 = 4
3⁄   

The same model can be used for pitch spaces with more dimensions, or composed of 

different prime numbers: 

(2,1, −1) ∈ [2, 3, 5] = 22 · 31 · 5−1 = 6
5⁄   

(−2,1) ∈ [7, 11] = 7−2 · 111 = 11
49⁄   

2. Pitch-class spaces 

Pitch-class spaces are lower-dimensional projections of pitch spaces, which only include 

tones contained in the interval of equivalence (equave). Pitch-class spaces are defined by the 

prime numbers attached to their dimensions and by the interval of equivalence in the form 

[p1, p2, ..., pn]→equave. The value of each discrete coordinate (x1, x2, ···, xn) in these spaces 

is: 

𝐼 =
∏ 𝑝𝑖

𝑥𝑖𝑛
𝑖=1

𝐸⌊log(∏ 𝑝𝑖

𝑥𝑖𝑛
𝑖=1 ) log 𝐸⁄ ⌋

 

(2) 

For example, [3,5]→2 is a two-dimensional pitch-class space, a projection of the [2, 3, 

5] pitch space. Every discrete coordinate in this harmonic space corresponds to a tone or 

interval between the unison and the equave: 

(1,0) ∈ [3, 5] → 2 = 31 · 50 2⌊log(31·50·) log(2)⁄ ⌋⁄ = 3
2⁄   

(−1, −1) ∈ [3, 5] → 2 = 3−1 · 5−1 2⌊log(3−1·5−1·) log(2)⁄ ⌋⁄ = 16
15⁄   

The same model can be used for pitch-class spaces with more dimensions, composed of 

different prime numbers, or using different equaves: 
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(1,1, −1) ∈ [3,5,7] → 2 = 31 · 51 · 7−1 2⌊log(31·51·7−1·) log(2)⁄ ⌋⁄ = 15
14⁄   

(1, −1) ∈ [5,7] → 3 = 51 · 7−1 3⌊log(51·7−1·) log(3)⁄ ⌋⁄ = 15
7⁄  

 

Figure 1. Section of the [2, 3] pitch space (left) and its projection in the [3]→2 pitch-class space. The 

double-circled tones represent the root. 

 

Note that when harmonic spaces are defined, the prime numbers are always expressed 

from lowest to highest. Therefore, in a pitch space [p1, p2, ..., pn] or a pitch-class space [p1, 

p2, ..., pn]→equave: 

pi < pi+1 

(3) 

B. Intervals and chords 

Intervals can be otonal or utonal (Partch, 1947), depending on their direction on the 

lattice. Intervals in the positive direction are otonal, and the ones in the negative direction 

are utonal. For example, the space [3, 5]→2 has two fundamental intervals of each kind: 3 2⁄  

and 5 4⁄  are otonal, and 4 3⁄  and 8 5⁄  are utonal. 
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The combination of fundamental intervals of the same kind (otonal or utonal) generates 

fundamental chords. For example, in [3, 5]→2, 3 2⁄  and 5 4⁄  generate the major triad (otonal 

chord), and 4 3⁄  and 8 5⁄  generate the minor triad (utonal chord). Here’s where the 

divergence between the generating tone and perceived root comes into play. While in a C 

minor chord the perceived root is C, actually the generating tone is G, so the generating 

intervals are 4 3⁄  and 8 5⁄  instead of 6 5⁄  and 3 2⁄ . 

Chords can be notated in the form A:B:C where 𝐵 𝐴⁄  and 𝐶 𝐴⁄  are the intervals 

composing the chord. For example, the major triad in [3, 5]→2 is 4:5:6 and the minor 

10:12:15. But in fact, in the case of minor chords, it would be more insightful and simple to 

express them in a downward fashion: C:B:A where 𝐶 𝐴⁄  and 𝐶 𝐵⁄  are the intervals 

composing the chord. This way, the minor triad would be 6:5:4. This notation can be 

extended to chords with more tones, for example: A:B:C:D being 𝐵 𝐴⁄ , 𝐶 𝐴⁄  and 𝐷 𝐴⁄  the 

intervals. 

In the early 70s, Heinz Bohlen used the twelfth (tritave) and a new triad (3:5:7) to design 

a 13-tone 7-limit tuning (Bohlen, 1972; Bohlen, 1978). This same tuning appears in its 

tempered version in van Prooijen’s theory of equal-tempered scales (Prooijen, 1978) and 

was independently discovered by Pierce (Mathews and Roberts, 1984), who together with 

Mathews, proposed a major (3:5:7) and a minor (15:21:35 = 7:5:3) chord3 (Mathews and 

Pierce, 1987). This tuning is known as the Bohlen-Pierce Scale. 

 
3 Influenced by Elaine Walker [Walker(2001)], there’s the wrong belief that the minor 

triad Mathews and Pierce proposed was 5:7:9 because they used this triad in combination 

with the major (3:5:7) to produce their scales: “The scales were described in 1978 (Bohlen) 

and rediscovered by Pierce after he hears the results of listening tests with two 

nontraditional triads in which the frequency ratios of the notes in the triads are 3:5:7 and 
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Mathews and Pierce – like Indy and Godley – realized that the minor triad is a 

downward version of the major triad and applied this same logic when proposing the basic 

chords for the Bohlen-Pierce Scale (Mathews and Pierce, 1987). It was clear to them that the 

equivalent to the major triad in [5,7]→3 should be 3:5:7 (they didn’t justify this choice over 

the other inversions) and then proposed their inverse 7:5:3 (15:21:35) as the equivalent to 

the minor chord. Whether or not this was the right approach hasn’t been proven yet. 

C. Perception study 

41 participants have been asked which chord in a set of chords played by a piano they 

consider “the most harmonic, consonant (less dissonant), stable, fundamental, basic” one. 

All the chords in the set are inversions of the same kind of chord (otonal or utonal), and they 

all share the same root. For example, when asked for the otonal chord in the [3,5]→2 pitch-

class space, the options were: 

• 3:4:5 - C1 F1 A1 C2 

• 4:5:6 - C1 E1 G1 C2 

• 5:6:8 - C1 D#1 G#1 C2 

 

5:7:9”. But actually the minor chord they propose is the negative complement of the major: 

“A given key has ’major’ and ’minor’ chords [..] a major chord is defined as a 6-step 

interval below a 4-step interval. It is the equal-tempered approximation to a 3:5:7 chord. A 

minor chord is a 4-step interval below a 6-step interval.” [Mathews and Pierce(1987)] A 4-

step interval in the Bohlen-Pierce Scale has a 7⁄5 ratio and a 10-step (4-step + 6-step) has a 

7⁄3 ratio, so the resulting chord is 7:5:3 (or 15:21:35). In a later publication this distinction 

becomes more evident: “The BP scale has three special triads, the first being a ‘major’ chord 

[...]. This triad approximates the 3:5:7 chord. The ‘minor’ triad [...] has a lower interval of 

four steps and an upper interval of six steps. The third triad, which approximates the 5:7:9 

chord...”[Mathews et al.(1988)]. 
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The study asked about the otonal and utonal chords of 10 different pitch-class spaces, so 

had 20 questions in total. The chosen spaces are all the two-dimensional spaces up to 11-

limit with an octave or a tritave: [3,5]→2, [3,7]→2, [3,11]→2, [5,7]→2, [5,11]→2, 

[5,7]→3, [5,11]→3 and [7,11]→3; and the higher-dimensional extensions of [3,5]→2: 

[3,5,7]→2 and [3,5,7,11]→2. 

The participants interacted with an application and could play each chord as many times 

as they wished and in the order they wanted. The buttons were randomly sorted for each 

participant, so the chords weren’t initially in any specific order. In addition, they had the 

option not to select any in case they couldn’t choose one. 

The musical ability of the participants has been measured using the Ollen Musical 

Sophistication Index (OMSI) (Ollen, 2006). Results don’t show any significant correlation 

between the musical ability and the randomness/predictability of the participants’ responses. 

 
Figure 2. OMSI Score distribution shows most of the participants have a low musical ability. 
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IV. Results 

Results show that in the 83.33% of the cases, the chords chosen as the most fundamental 

inversions of the otonal or utonal chords have the same structure independently of the pitch-

class space they exist in. Being (01, ..., 0n) the harmonic root in an n-dimensional pitch-class 

space, the structure of the otonal chord is: 

(0, 0, 0, …, 0n)0, (1, 0, 0, …, 0n)1, (0, 1, 0, …, 0n)2, (0, 0, 1, …, 0n)3, …, (0, 0, 0, …, 1n)n 

And the structure of the utonal chord is: 

(0, 0, 0, …, 0n)0, (1, 0, 0, …, 0n)1, (1, -1, 0, …, 0n)2, (1, 0, -1, …, 0n)3, …, (1, 0, 0, …, -1n)n 

For example, in two-dimensional pitch-class spaces, the otonal chord is ((0,0), (1,0), 

(0,1)) while the utonal one is ((0,0), (1,0), (1,-1)). 

 

Figure 3. Otonal chord (left) and utonal chord (right) in a two-dimensional pitch-class space. The black 

dot represents the center of symmetry. Since pi < pi+1, the x axis corresponds to the lowest prime 

number. 

 

The structure of the perceived fundamental inversions of otonal and utonal chords in a 

pitch-class space is symmetric, being (0.5, 0, ..., 0) the center of symmetry. In other words, 

perceptually, pitch-class spaces have a center of symmetry between the tonic and the closest 

tone considering Tenney’s harmonic distance (Tenney, 1983). 
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This model extends the theory of negative harmony to new spaces, formalizing 

Coleman’s idea of “tonal centers in terms of spatial geometry”. 

 

Figure 4. At the left, the symmetric relation between a C major (1⁄1,5⁄4,3⁄2) and a C minor (1⁄1,6⁄5,3⁄2) 

and at the right, the symmetric relation between an F minor (4⁄3,1⁄1,8⁄5) and a G major (3⁄2,15⁄8,9⁄8) in 

the [3,5]→2 pitch-class space. Thicker lines represent the intervals within the chord. Arrows represent 

how tones are reflected over the point of symmetry. 
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V. Evaluation and assessment 

A. Discussion 

To evaluate to what extent the center of symmetry is relevant, and the proposed model is 

accurate, we can compare it with other theories, metrics or models (Appendix A contains the 

value for each chord in each model): 

• Tenney’s harmonic distance: Tenney studied the history of consonance and 

dissonance (Tenney, 1988) and proposed harmonic distance (Tenney, 1983) to 

measure the distance between two points in the harmonic lattice considering that 

they were non-Euclidean spaces. 

Tenney’s harmonic distance formula is normalized so the octave’s distance is 1. 

To extend this property to spaces with other equaves (E), the formula can be 

adapted: 

𝛿 (
𝑎

𝑏
) = 𝑙𝑜𝑔(𝑎 · 𝑏)/ log 2   →   𝛿 (

𝑎

𝑏
) = 𝑙𝑜𝑔(𝑎 · 𝑏)/ log 𝐸   |  𝐸 > 1 

(4) 

The total harmonic distance of a chord is the summation of all the distances of its 

intervals. The fundamental chord would be the one with the smallest harmonic 

distance. 

• Barlow’s harmonicity (Barlow 1987, Barlow 1999, Barlow 2012): Barlow 

defined indigestibility (ξ) as a way to measure the simplicity of numbers, and 

with that, proposed a harmonicity (H) formula for just intervals. 
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𝜉(𝑁) = 2 ∑
𝑛𝑖(𝑝𝑖 − 1)2

𝑝𝑖

∞

𝑖=1

         𝐻(
𝑎

𝑏
) =

𝑠𝑔𝑛(𝜉(𝑎) − 𝜉(𝑏))

𝜉(𝑎) + 𝜉(𝑏)
 

(4) 

The harmonicity of chords is the summation of the module of the mutual 

inharmonicities between every tone. 

• Sethares’ dissonance (Sethares, 1998): Sethares proposed a parametrization of 

the Plomp and Levelt dissonance curves: 

𝑑(𝑓1, 𝑓2, 𝑙1, 𝑙2)  =  𝑙12 · (𝑒−3.51𝑝 − 𝑒−5.75𝑝)       𝑙12 = 𝑚𝑎𝑥(𝑙1, 𝑙2) 

(5) 

𝑝 =
0.24

0.0207 · 𝑓𝑚𝑖𝑛 + 18.96
(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 

(6) 

The dissonance (d) of a chord is the summation of the dissonance between each 

of the partials, including the root tone. In this study, a spectrum with 7 harmonic 

partials over the fundamental tone has been considered. 

 

Figure 5. Considered partials for the calculation of dissonance, being l the loudness of each 

partial. 
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• Erlich’s harmonic entropy (Erlich, 1997): This measure is based on the 

probability that a certain interval will be perceived as a specific rational ratio. If 

one interval can be perceived as many different rational ratios, the entropy will 

be higher, while if the probability it is perceived as a specific ratio is very high, 

then the entropy will be low. There are different ways to measure harmonic 

entropy. In this case, the evaluated interval is compared to all the intervals in J: 

𝐽 = {
𝑎
𝑏

 |1 ≤
𝑎
𝑏

≤ 3|𝑎 < 28|𝑏 < 28|𝑔𝑑𝑐(𝑎, 𝑏) = 1} 

(7) 

Depending on the distance to the evaluated interval, each of the rational intervals 

has a probability to be perceived. A normal distribution is assumed: 

With the distribution, the unnormalized probability can be calculated: 

𝑄𝑗(𝑖) =
𝑆(𝑐𝑒𝑛𝑡𝑠(𝑗) − 𝑐𝑒𝑛𝑡𝑠(𝑖))

√𝑗𝑛 · 𝑗𝑑

        𝑗 =
𝑗𝑛

𝑗𝑑
 

(8) 

And then normalized: 

𝑃𝑗(𝑖) = 𝑄𝑗(𝑖) ∑ 𝑄𝑗(𝑖)

𝑗∈𝐽

⁄  

(9) 

Finally, the harmonic entropy is: 

𝐻𝐸(𝑖) = − ∑ 𝑃𝑗(𝑖) · log(𝑃𝑗(𝑖))

𝑗∈𝐽

 

(10) 
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• Terhardt’s virtual pitch (Terhardt, 1984): Considering the fundamental 

inversion the one that first appears in the harmonic series. For example, 3:4:5 

appears before 4:5:6, and 10:12:15 appears before 12:15:20. 

• Dual virtual pitch: In the case of otonal chords, considering the fundamental 

inversion the one that first appears in the harmonic series, and for utonal chords, 

the one that first appears in the subharmonic series. For example, 3:4:5 appears 

before 4:5:6 (like in the virtual pitch theory), but 5:4:3 (12:15:20) appears before 

6:5:4 (10:12:15). 

• Carmen Parker’s drone: Considering the basic inversion A:B:C or C:B:A 

(otonal or utonal) when A = equaven (n ∈ N). For example, in [5,11]→3, the 

fundamental otonal inversions would be 9:11:15 and the utonal inversion would 

be 15:11:9 (33:45:55) because 9 = 32. 

• Mathew’s et al. dissonance (Tenney, 1983): In their study in chords for the 

Bohlen-Pierce Scale ([5,7]→3), Mathews et al. proposed a dissonance (D) 

formula for triads: 

𝐷(𝑖) = 𝐹(|𝑓1 − 𝑓2|) + 𝐹(|𝑓2 − 𝑓3|) + 𝐹(|𝑓3 − 𝑓1|) 

(11) 

𝐹(𝑥) = {

𝑥, 𝑥 ≤ 𝑞
0, 𝑥 ≥ 𝑠

𝑞 (1 −
𝑥 − 𝑞

𝑠 − 𝑞
) , 𝑥 ≥ 𝑞

                           𝑠 ≥ 𝑞 

(12) 

They proposed different values for s and q depending if the participants were 

trained or untrained, but in any case, as they noted: “only a few 1-step intervals 
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make a nonzero contribution to the sum”. So, for most of the chords, the total 

dissonance is 0. For this reason, this model hasn’t been used in the comparison. 

For a preliminary data analysis, the questions in which most participants responded they 

could not identify a fundamental chord have not been considered. It’s the case of the utonal 

chords in [3,5,7]→2 and [3,5,7,11]→2, for which 31% and 50% of participants could not 

identify a fundamental inversion (See Appendix B). 

The remaining questions have been divided by limit (5-limit, 7-limit or 11-limit), 

tonality (otonal or utonal) and equave (octave or tritave). None of the considered models 

performs better than the proposed model in any of these categories. All the right predictions 

that the next most accurate models (harmonic distance, harmonicity, entropy and virtual 

pitch) do, are also predicted by the proposed model. 

 

Figure 6. Accuracy of the models in different categories. 

 

The difference becomes especially evident for utonal chords, which constitute the 50% 

of all chords. While most of the models’ accuracy falls dramatically, in some cases to levels 

below the randomness threshold, the proposed model maintains the same high accuracy. 
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B. Modelization 

Tenney’s harmonic distance and Barlow’s harmonicity can be adapted to consider the 

center of symmetry and become useful models to predict the perceived fundamental chord in 

a pitch-class space (See Appendix C for the derivations of these formulas). Being X a 

coordinate in a pitch-class space, 

𝑋 = (𝑥1, … , 𝑥𝑖) ∈ [𝑝1, … , 𝑝𝑖] → 𝐸 

(13) 

the fundamental chords would be those whose overall harmonic distance to the center of 

symmetry is lower: 

𝛿𝑐𝑠(𝑋) = log (𝑝1
|2𝑥1−1|

·  ∏ 𝑝𝑖
|2𝑥𝑖|

· 𝐸|⌊log(𝑝1
2𝑥1−1

·∏ 𝑝
𝑖

2𝑥𝑖𝑛
𝑖=2 ) log(𝐸)⁄ ⌋|

𝑛

𝑖=2

) log(𝐸)⁄  

(14) 

Or which harmonicity (considering the center of symmetry the origin) is higher: 

|𝐻𝑐𝑠(𝑋)| = 𝜉 (𝑝1
|2𝑥1−1|

· ∏ {𝑝𝑖
|2𝑥𝑖|

}

𝑛

𝑖=2

· 𝐸|⌊log(𝑝1
2𝑥1−1

·∏ 𝑝
𝑖

2𝑥𝑖𝑛
𝑖=2 ) log 𝐸⁄ ⌋|)

−1

 

(15) 

𝜉(𝑋) = 2 ∑
𝑥𝑖(𝑝𝑖 − 1)2

𝑝𝑖

𝑛

𝑖=1

 

(16) 

Applying these models to the 10 spaces included in the study, their prediction is always 

coincident, having a success rate of 83.33%, while Tenney’s harmonic distance could only 
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predict 72.22% of the chosen fundamental chords (+11.11%), and Barlow’s harmonicity just 

61.11% (+22.22%)4. 

With these new formulas, a secondary data analysis can be done by quantitatively 

comparing the correlation between the metrics and participants’ choices. Only models 

offering a quantitative evaluation of each chord can be used, so just Sethares’ dissonance, 

Erlich’s harmonic entropy, Tenney’s harmonic distance, Barlow’s harmonicity and the new 

two formulas have been studied. The exclusion of the other theories and models can be 

justified by their bad results in the preliminary study. The value assigned to each of the 

chords by these formulas has been normalized with the other chords of the same tonality in 

each space, so for example, the summation of the normalized dissonance of the utonal or 

otonal chords is 1 in each space. 

Using linear regression, the correlation between the metrics and participants’ choices has 

been measured, being the absolute value of the line’s slope indicative of the level of 

correlation. R2 indicates how good the line regression approximates the data; the higher, the 

better. P value indicates how significant the slope is, the lower P, the better, being P < 

0.0001 the optimal value. 

While dissonance shows no significant correlation with the data (Figure 7), harmonic 

entropy does (Figure 8), but it is small compared to other metrics. 

 
4 The fact that the proposed adaptations are useful to predict the perceived fundamental 

inversion does not mean that they are better than the original formulas. The original 

formulas are valuable for the purpose they were originally designed for, and here, they’re 

just being manipulated to show the existence of a perceptual center of symmetry. 
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Figure 7. Correlation between the 

dissonance of a chord and the percentage of 

participants choosing it. The low slope, low 

R2 and high P value mean dissonance is not 

significant.  

 

Figure 8. Correlation between the harmonic 

entropy of a chord and the percentage of 

participants choosing it. Despite P value is high, 

a small significant correlation can be 

considered. 

 

It’s also the case for Tenney’s harmonic distance (Figure 9). Linear regression shows a 

small correlation that’s actually not significantly deviated from horizontal. However, with 

the modified version of the harmonic distance formula considering the center of symmetry, 

the correlation is almost doubled and becomes significant (Figure 10). 
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Figure 9. Correlation between the 

overall harmonic distance of a chord 

and the percentage of participants 

choosing it. The low slope, low R2 and 

high P value indicate harmonic 

distance is not significant.  

Figure 10. Correlation with the overall 

modified harmonic distance of a chord. 

Low P value and notable slope indicate a 

significant correlation with the harmonic 

distance to the center of symmetry. 

 

With Barlow’s harmonicity (Figure 11), the correlation is bigger than with any of the 

previous models, and it is even greater with the modified harmonicity formula relative to the 

perceptual center of symmetry (Figure 12). 
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Figure 11. Correlation between the 

harmonicity of a chord and the 

percentage of participants choosing it. 

Adequate R2 and P value allow to 

stablish a strong correlation with 

Barlow’s indigestibility and 

harmonicity. 

Figure 12. Correlation with the modified 

harmonicity of a chord. Optimal P value, 

high R2 and great slope means there’s a 

very strong correlation with the 

harmonicity relative to the center of 

symmetry. 
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VI. Future work 

A. Temperament, adaptive tunings, scales and interfaces 

Pitch-class spaces define a topological space to work with harmonic structures and a set 

of rules that can be used for algorithmic composition, but not all musicians do or will have 

access to the technical tools and knowledge to design and implement computer programs for 

music composition. For this new theoretical framework to permeate into contemporary 

music composition, more technical and conceptual instruments must be developed. 

There are four key elements that need to be developed also in a tuning-agnostic (trans-

spatial) way to transform contemporary music practice: temperament, adaptive tunings, 

scales and interfaces. 

Temperament bridges the infinity of pitch-class spaces with a finite set, adaptive tunings 

allow us to keep the purity of perfect intervals and the practicality of temperament, and a 

theory of scales will allow for the development of intuitive and expressive trans-spatial 

music interfaces.  

1. Temperament 

Tones in a pitch-class space tend to have an exponential distribution between the unison 

and the equave. That’s why equal temperaments are useful to approximate just intonation 

pitch-class spaces. Every pitch-class space can be approximated by an equal-temperament 

(Balzano 1980).  

Equal temperaments are expressed defining an equave and the number of tones in the 

form 𝐸𝑡
𝑒

, where e is the equave and t the number of tones (van Prooijen 1978). For example, 

the temperament used in western music with 12 equal divisions of the octave would be 
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expressed as 𝐸2
12

, and the Bohlen-Pierce Scale, which divides the tritave in 13 equal steps 

would be expressed as 𝐸3
13

. 

 

Figure 13. Pitch continuum between 𝟏 𝟏⁄  and 𝟑 𝟏⁄  with tones from the [5, 7]→3 pitch class space and the 

notes of the best approximation to this space: 𝑬𝟑
𝟏𝟑, the Bohlen-Pierce Scale. 

 

Cents are irrational intervals that are equivalent to exactly the 1/1.200th part of an 

octave. They’re used to measure the size of an interval. The notion of cents is based on the 

twelve-tone equal temperament and the octave but can be adapted to be relative to any 

equave and temperament. Being 𝑎 𝑏⁄  the interval, e the equave and t the number of tones in 

the temperament:   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑒𝑛𝑡𝑠 = 100 · 𝑡
log(𝑎/𝑏)

log 𝑒
  

(17) 

The distance in relative cents between a pitch-class space and an equal temperament can 

be calculated algorithmically. This way, the best temperaments for a just intonation pitch-

class space can be found. Figure 3 shows how different temperaments approximate different 

pitch-class spaces. Darker cells correspond to approximations with a lower distance, so 
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better approximations. Different temperaments can be good to approximate the same pitch-

class space, for example, 𝐸2
12, 𝐸2

31
 and 𝐸2

34 are all good for [3, 5]→2. 

 

Figure 14. Table with the distance in relative cents between pitch-class spaces (rows) and equal 

temperaments (columns). 

 

Once the best approximation for a pitch-class space has been found, each just tone can 

be assigned to a note in the temperament algorithmically. In Figure 15, tones in [5, 7]→3 

(left) are mapped to notes in E3
13

 (right). 
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Figure 15. Mapping between the tones in the [5, 7]→3 pitch-class space and the notes in 𝑬𝟑
𝟏𝟑. 

 

When working parallelly with just and tempered intervals, it can be useful to define a 

difference between tones and notes. Each of the coordinates in a harmonic space is a tone. 

Their values can be for example 1 1⁄ , 3 2⁄ , or 7 5⁄ . Temperaments are not composed by tones 

but by notes. Their names can be numbers or characters expressing their position in the 

temperament. 

 

2. Adaptive tuning 

Since pitch-class spaces are infinite, there are infinite just tones equivalent to the same 

note in a temperament. Depending on the harmonic context, the same note in a temperament 

may be performed using one or another tone. For example, in the space [5, 7]→3 

approximated with 𝐸3
13, two melodies composed by the same notes are using actually 

different tones (therefore frequencies) depending on the order of the notes: 

 [A, K, D, A] = [(0, 0), (0, 1), (1, 1), (1, 2)] = [
1

1
, 

7

3
, 

35

27
, 

245

243
] 
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 [A, D, K, A] = [(0, 0), (0, -1), (-1, -1), (-1, -2)] = [
1

1
, 

9

7
, 

81

35
, 

729

735
] 

In this adaptive tuning system, the chosen tone is the one closer to the previous one in 

the pitch-class space. In the first melody, K is (0, 1) because the previous note A is (0, 0). 

But in the second melody, K is (-1, -1) because the previous note D is (0, -1) (see Figure 15 

as a reference).  

There are different possible algorithms to create adaptive tunings using pitch-class 

spaces, but all of them are based on the distance from a tonal center. The previous example 

is using the simplest method possible: setting the position of the last tone played as the tonal 

center, but more accurate and complex algorithms may be more convenient when playing 

chords or multiple melodies at the same time.  

The compositions resulting from this method exhibit a high level of consonance. Figure 

16 displays two spectral visualizations of the same just intonation chord progression. The 

first image shows the progression with a static just intonation tuning, while the second 

image displays the same chord progression with an adaptive tuning. The circles indicate the 

points where the most significant differences can be observed. The adaptive version is 

evidently more consonant. 
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Figure 16. Spectrogram of a chord progression with static (left) and adaptive (right) tuning. 

 

3. Scales and interfaces 

Temperaments and adaptive tunings make the development of interfaces or instruments 

much simpler. For example, to compose or perform using a pitch-class space with infinite 

tones per equave like [3, 5, 7]→2, we just would need an interface with as many keys per 

equave as 12, 31 or 53. But we know from our experience in Western music that this is still 

a high number of notes, and that it’s desirable to find a subset which despite stablishing a 

constraint it’s creatively empowering. In the case of the twelve-tone system, the seven notes 

of the major scale (C, D, E, F, G, A, B) have been used to develop more expressive and 

intuitive interfaces, like the piano.  

There are many properties that the major scale has that could explain why it was 

considered the most important subset of 𝐸2
12, and why it has become one of the most 

important building blocks of Western music. But when we try to find these properties in 

structures in other tunings, it will happen what already happened when we tried to find the 
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equivalent to the major and minor triads: each property points to a different structure. So the 

different theories that try to explain the origin of the major scale, diverge when applied to 

new tunings. 

It could seem logic to apply the same methodology applied in this thesis to find the 

fundamental chords in any harmonic space, but scales introduce new challenges that require 

to find a new approach.  

A tuning-agnostic study of scales for extended just intonation could be enough to write 

one and more thesis, so I won’t develop it in depth here, but I’ll point out to the main ideas 

that should be considered in this research: 

• Diatonicity and harmonicity: One of the main characteristics of the major 

scale, is that it is diatonic, which means that it only contains two kinds of steps: 

whole-steps and half-steps. This property has a strong impact in harmony and 

melody. Another important but less noticed property is that its structure in a 

pitch-class space is very compact, which increases its harmonicity. When 

studying scales in new harmonic spaces, an emerging problem is that the diatonic 

scales are not always the most compact, and most of the times they’re not 

compact at all. This raises a friction between the importance of diatonicity and 

the importance of harmonicity that should be addressed.  

• Translation, symmetry, and modes: The major scale is especially powerful 

because of its modes. In a pitch-class space, modes are translations of the 

structure. That means that by translating the major scale in its pitch-class space, 

we can obtain all the other modes: Lydian, Phrygian… Coincidentally or not, the 
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minor scale (the Aeolian mode) is also the symmetrical structure of the major 

scale, considering the perceptual center of symmetry described in this thesis.  

But not all structures can obtain its symmetrical (negative) version by translation, 

and in some spaces the only structures with this property don’t have any of the 

properties mentioned in the previous point. 

The proposed approach for this challenge is using an artificial selection process to 

replicate the cumulative selection process that curated the major scale through history. The 

hope is that new powerful scales will emerge in the span of a study, instead of the span of 

centuries. 

Scales in temperaments with n tones, can be understood as points in n-dimensional 

spaces (not harmonic spaces, a different kind of space). For example, in a temperament with 

4 tones, scales would exist in a 4-dimensional space, and could be expressed by their 

coordinates in this space.  

[1, 0, 1, 0] would be a scale containing the first and the third notes of the temperament. 

With this scale, an interface in the style of a piano could be designed, where the first and the 

third notes of the equave are white, while the second and the fourth ones are black. In a user 

study, participants could be asked to play with this unknown interface using both the white 

and black keys, and their performance could be computationally studied. The result would 

be a distribution showing which notes have been used the most, for example: [34, 1, 33, 32]. 

This result would show that the participant hasn’t been using the scale that generated the 

interface, but another one: [1, 0, 1, 1]. Therefore, their performance could be understood as a 

vector in this space: [0, 0, 0, 1].  
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The interfaces presented to the participants would be stochastically defined by the 

previous participants response. The result of accumulating data would be a field showing the 

direction where the most expressive scales and interfaces are in these spaces.  

This strategy can be useful to find a correlation between the previously mentioned 

properties, and dimensions or sections in these spaces, in a way a tuning-agnostic (trans-

spatial) theory for scales can be proposed. 

 

B. Higher-dimensional prime-spaces 

The second direction proposed for future research is more general and pertains to the 

potential relevance of higher-dimensional prime spaces beyond the domain of music. This 

thesis thoroughly investigates pitch-class spaces, which include all rational numbers within 

an interval of equivalence, and briefly introduces pitch spaces, which comprise all rational 

numbers. 

While these spaces only contain rational numbers because they are discrete, if we allow 

them to be continuous, they will also contain irrational numbers, i.e., all real numbers. Such 

a space could be referred to as a prime space, which would organize all real numbers in a 

manner that could be more meaningful depending on the context. 

In prime spaces, all prime numbers create a hyper-sphere of radius 1, and the 

"primeness" of any real number can be calculated based on its distance from the center. This 

"primeness" is similar to the concept of Indigestibility proposed by Clarence Barlow. 

Another interesting aspect of prime spaces is that, due to their higher dimensions, additional 

operations and metrics can be applied to numbers. For instance, it is possible to calculate the 

angle between numbers in prime spaces. 
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These operations and metrics may be potentially useful in fields where simplicity is 

essential, like physics, biology, mathematics, cryptography, or computer science.  
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VII. Conclusion 

The simplicity of numbers (digestibility) and the center of symmetry are the main factors 

in our perception of fundamental chords. The correlation with Sethares’ dissonance, 

therefore Plomp and Levelt’s roughness, has been proven to be null. 

For centuries, theorists have attempted to explain most harmonic phenomena by basing 

their theories on the overtone series, but they have consciously and recklessly ignored the 

fact that the harmonics 7, 11, and 13 are not typically used in the creation of chords or 

scales. Meanwhile, larger numbers like 32, 45, and even 64 are used despite not being 

audible partials. Had they not ignored this fact, they would have realized that prime numbers 

play a key role in our perception of harmony. The successive progression of integers in the 

harmonic series is just a lower dimensional projection, a shadow like those in the cave, of n-

dimensional spaces formed by primes. 

Therefore, the common assertion that “small intervals are perceived as harmonic” should 

be substituted by “simple intervals are perceived as harmonic”, understanding simplicity in 

the terms Barlow defined (in)digestibility. 

Also the pitch-continuum is a lower-dimensional projection of the spaces where the 

harmonic structures are generated. Since some properties – like symmetry – are preserved in 

the projection, cardinality has been considered relevant in harmony, but actually, the 

cardinal analysis of tones in music theory should be avoided and substituted by the analysis 

in pitch-class spaces. 

The current study supports negative harmony as an extension of harmonic dualism, and 

proves it is a tuning-agnostic (trans-spatial) perceptual phenomenon. It empirically 

demonstrates that there’s a perceptual pattern in the different pitch-class spaces, even in 
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those like [3,5]→2 and [7,11]→3 that don’t have any interval in common; and proposes a 

model for this pattern. This proves that a trans-spatial music theory and practice is possible. 
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Appendix A: Quantitative chord evaluation 

Harm. = Barlow’s harmonicity 

Disson. = Sethares’ dissonance 

Distan. = Tenney’s harmonic distance 

Entro. = Erlich’s harmonic entropy 

Dista.* = Modified harmonic distance considering the center of symmetry 

Harm.* = Modified harmonicity considering the center of symmetry 

Space Chord Harm. Disson. Distan. Entro. Dista.* Harm.* 

[3, 5]→2 

3:4:5 0,4436 0,0852 7,4919 2,1304 23,7386 0,5689 
4:5:6 0,4911 0,0972 6,9069 1,9158 15,3987 0,7670 
5:6:8 0,4200 0,1002 10,2288 3,3928 27,0426 0,5259 
5:4:3 0,4436 0,0885 8,2288 2,5764 23,2125 0,5299 
6:5:4 0,4911 0,0988 7,4919 2,1095 16,3987 0,7642 
8:6:5 0,4200 0,0955 8,9069 2,7532 26,5687 0,5616 

[3, 7]→2 

4:6:7 0,4258 0,0811 7,3923 1,7767 17,3696 0,7300 
6:7:8 0,3612 0,1286 8,9773 3,0854 23,7094 0,5212 

7:8:12 0,4149 0,1021 12,1997 3,8422 30,9843 0,4739 
7:6:4 0,4258 0,0916 10,1997 3,3923 25,1542 0,4666 
8:7:6 0,3612 0,1286 9,3923 3,1802 28,5395 0,5155 

12:8:7 0,4149 0,0904 8,9773 2,1319 18,3696 0,7147 

[3,11]→2 

6:8:11 0,3073 0,0985 9,6294 2,7085 27,0136 0,4777 
8:11:12 0,3637 0,1230 9,0444 2,3786 19,6738 0,6747 

11:12:16 0,3031 0,1376 14,5038 4,1894 35,5926 0,4223 
11:8:6 0,3073 0,0967 12,5038 3,6173 30,7625 0,4235 

12:11:8 0,3637 0,1314 9,6294 2,5974 20,6738 0,6742 
16:12:11 0,3031 0,1306 11,0444 3,0618 30,8437 0,4770 

[5,7]→2 

4:5:7 0,2604 0,0967 9,1293 2,9935 20,5805 0,3817 
5:7:8 0,2416 0,1093 10,4512 3,4080 33,8682 0,2962 

7:8:10 0,2509 0,1310 11,9366 4,0261 33,1952 0,2950 
7:5:4 0,2604 0,0913 9,9366 3,2024 30,8391 0,3015 
8:7:5 0,2416 0,1181 11,1293 3,6926 35,2244 0,3009 

10:8:7 0,2509 0,1273 10,4512 3,5326 21,5805 0,3806 

[5,11]→2 

8:10:11 0,2053 0,1451 10,7814 3,5954 22,8846 0,3456 
10:11:16 0,1906 0,1385 12,1033 3,7881 34,1724 0,2649 
11:16:20 0,2017 0,1014 15,2408 3,5305 38,8035 0,2451 
11:10:8 0,2053 0,1497 13,2408 4,1844 33,4474 0,2442 

16:11:10 0,1906 0,1273 12,7814 3,5743 38,5285 0,2653 
20:16:11 0,2017 0,1090 12,1033 3,1553 23,8846 0,3452 

[5,7]→3 

3:5:7 0,2474 0,0678 8,2992 1,9843 12,9374 0,3343 
5:7:9 0,2092 0,1055 10,6211 3,3226 21,7973 0,2474 

7:9:15 0,2260 0,1002 12,6915 3,5540 22,4799 0,2449 
7:5:3 0,2474 0,0712 9,5216 2,7493 19,4098 0,2476 
9:7:5 0,2092 0,1088 11,4691 3,4879 23,8674 0,2471 

15:9:7 0,2260 0,0931 10,6211 2,6237 13,9374 0,3320 
[5,11]→3 5:9:11 0,1684 0,0939 11,2732 2,9401 22,6201 0,2218 
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9:11:15 0,1895 0,1125 10,5362 3,0903 13,7602 0,3049 
11:15:27 0,1601 0,0877 15,5806 3,5757 24,1256 0,2106 

11:9:5 0,1684 0,1054 12,4107 3,4729 21,0555 0,2118 
15:11:9 0,1895 0,1073 11,2732 3,0824 14,7602 0,3039 

27:15:11 0,1601 0,0839 13,7062 3,0508 24,6902 0,2216 

[7,11]→3 

7:9:11 0,1417 0,1235 12,2441 3,8401 25,7640 0,1686 
9:11:21 0,1519 0,1027 11,0217 3,0544 14,6790 0,2335 

11:21:27 0,1343 0,0911 16,0661 3,4071 26,0444 0,1665 
11:9:7 0,1417 0,1258 12,8961 3,9798 22,5869 0,1706 

21:11:9 0,1519 0,0877 12,2441 2,8778 15,6790 0,2326 
27:21:11 0,1343 0,1030 14,1916 3,4439 28,2215 0,1696 

[3,5,7]→2 

4:5:6:7 0,7041 0,1889 11,7142 3,3430 26,5984 0,9051 
5:6:7:8 0,6269 0,2209 15,3581 5,1680 39,8861 0,6643 

6:7:8:10 0,6471 0,2201 12,8842 4,0955 34,1082 0,7079 
7:8:10:12 0,6898 0,2110 18,3290 5,8085 45,8278 0,6345 

7:6:5:4 0,7041 0,1963 15,3290 5,1674 37,9978 0,6312 
8:7:6:5 0,6269 0,2266 14,7142 4,8130 41,7683 0,6949 

10:8:7:6 0,6471 0,2122 14,3581 4,5427 38,0561 0,6538 
12:10:8:7 0,6898 0,2058 13,8842 3,8919 28,5984 0,9010 

[3,5,7,11]→2 

6:7:8:10:11 0,8143 0,3757 18,9286 5,6836 47,7819 0,8106 
7:8:10:11:12 0,8550 0,4011 24,5957 7,7081 60,9464 0,7328 

8:10:11:12:14 0,8681 0,3901 18,1737 5,3721 40,1022 1,0095 
10:11:12:14:16 0,7888 0,4376 22,1395 7,3233 53,0338 0,7654 
11:12:14:16:20 0,8075 0,3936 29,5520 7,7406 69,8588 0,7001 

11:10:8:7:6 0,8143 0,3782 25,5520 7,6722 59,0288 0,7033 
12:11:10:8:7 0,8550 0,4187 20,9286 6,1398 43,1022 1,0049 

14:12:11:10:8 0,8681 0,4056 22,5957 7,1296 55,1163 0,7294 
16:14:12:11:10 0,7888 0,4251 22,1737 6,7545 59,2722 0,7975 
20:16:14:12:11 0,8075 0,3707 22,1395 6,1317 55,2037 0,7582 
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Appendix B: Distribution of participants’ choices 

* = chord chosen by the proposed model as the most fundamental. 
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Appendix C: Derivation of the modified formulas 

C.1 Harmonic distance to the perceptual center of symmetry 

Tenney’s harmonic distance formula is normalized so the octave’s distance is 1. To 

extend this property to spaces with other equaves (E), the formula has to be adapted: 

𝛿 (
𝑎

𝑏
) = 𝑙𝑜𝑔(𝑎 · 𝑏)/ log 2   →   𝛿 (

𝑎

𝑏
) = 𝑙𝑜𝑔(𝑎 · 𝑏)/ log 𝐸   |  𝐸 > 1 

(4) 

The product of the numerator and denominator of the interval can be expressed 

depending on the coordinates in a pitch-class space: 

1 < 𝐼 < 𝐸     |     𝐼 =
𝑎

𝑏
=

∏ 𝑝𝑖
𝑥𝑖𝑛

𝑖=1

𝐸⌊log(∏ 𝑝𝑖

𝑥𝑖𝑛
𝑖=1 ) log 𝐸⁄ ⌋

     ⇒      𝑎 · 𝑏

= ∏ {𝑝𝑖
|𝑥𝑖|

} · 𝐸
|⌊log(∏ 𝑝

𝑖

𝑥𝑖𝑛
𝑖=1 ) log 𝐸⁄ ⌋|

𝑛

𝑖=1

 

(19) 

Being this the resulting harmonic distance formula for pitch-class spaces: 

𝛿(𝑋) = log (∏ {𝑝𝑖
|𝑥𝑖|

} · 𝐸|⌊log(∏ 𝑝
𝑖

𝑥𝑖𝑛
𝑖=1 ) log 𝐸⁄ ⌋|

𝑛

𝑖=1

) log 𝐸⁄  

(20) 

𝑋 = (𝑥1, … , 𝑥𝑖) ∈ [𝑝1, … , 𝑝𝑖] → 𝐸 

(15) 

Finally, the coordinates can be mapped to make (0.5, 0, ..., 0i) the origin: 
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𝛿𝑐𝑠(𝑋) = log (𝑝1
|2𝑥1−1|

·  ∏ 𝑝𝑖
|2𝑥𝑖|

· 𝐸|⌊log(𝑝1
2𝑥1−1

·∏ 𝑝
𝑖

2𝑥𝑖𝑛
𝑖=2 ) log 𝐸⁄ ⌋|

𝑛

𝑖=2

) log 𝐸⁄  

(18) 

C.2 Harmonicity relative to the perceptual center of symmetry 

The same process can be applied to Barlow’s harmonicity: 

𝜉(𝑁) = 2 ∑
𝑛𝑖(𝑝𝑖 − 1)2

𝑝𝑖

∞

𝑖=1

         𝐻(
𝑎

𝑏
) =

𝑠𝑔𝑛(𝜉(𝑎) − 𝜉(𝑏))

𝜉(𝑎) + 𝜉(𝑏)
 

(4) 

Since the harmonicity of structures such as chords or scales is the summation of the 

module of the mutual inharmonicites between every tone, the indigestibility formula can be 

simplified by removing the numerator, which makes no difference after applying the 

module: 

 |𝐻 (
𝑎

𝑏
)| =

1

𝜉(𝑎)+𝜉(𝑏)
 

(21) 

Applying the property ξ(a · b) = ξ(a) + ξ(b): 

 |𝐻 (
𝑎

𝑏
)| =

1

𝜉(𝑎·𝑏)
 

(22) 

Again, this expression can be transformed to receive coordinates in a pitch-class space 

as an input: 
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|𝐻(𝑋)| = 𝜉 (∏ {𝑝𝑖
|𝑥𝑖|

} · 𝐸|⌊log(∏ 𝑝
𝑖

𝑥𝑖𝑛
𝑖=1 ) log 𝐸⁄ ⌋|

𝑛

𝑖=1

)

−1

 

(23) 

𝜉(𝑋) = 2 ∑
𝑥𝑖(𝑝𝑖 − 1)2

𝑝𝑖

𝑛

𝑖=1

 

(17) 

𝑋 = (𝑥1, … , 𝑥𝑖) ∈ [𝑝1, … , 𝑝𝑖] → 𝐸 

(15) 

And finally, the coordinates can be mapped to make (0.5,0,...,0i) the origin: 

|𝐻𝑐𝑠(𝑋)| = 𝜉 (𝑝1
|2𝑥1−1|

· ∏ {𝑝𝑖
|2𝑥𝑖|

}

𝑛

𝑖=2

· 𝐸|⌊log(𝑝1
2𝑥1−1

·∏ 𝑝
𝑖

2𝑥𝑖𝑛
𝑖=2 ) log 𝐸⁄ ⌋|)

−1

 

(16) 
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