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Abstract 

Recent publications about humans controlling dynamic 

systems have emphasized the role of specific rules or 

exemplar knowledge. Although it has been shown that 

small systems can be controlled with these types of 

knowledge, there is evidence that general knowledge about 

the structure of a system plays an important role, too, 

particularly when dealing with systems of higher com-

plexity. However, teaching structural knowledge has often 

failed the expected positive effect. The present work 

investigates details of acquisition and use of structural 

knowledge. It is hypothesized that guiding subjects to focus 

on dependencies rather than effects supports them in apply-

ing structural knowledge, especially when the application is 

practiced in a strategy training. An experiment with N=95 

subjects supported the hypothesis of the usefulness of the 

dependency perspective, but revealed an adverse effect of 

the strategy training. Differences between subgroups 

studying different majors have been found that give rise to 

questions about the relation between prior knowledge and 

instruction. The results have interesting implications for 

models of how structural knowledge is represented as well 

as for methods of teaching system control efficiently.  

 

Humans have to deal with dynamic systems throughout 

their lives. Especially in industrial environments, people 

are confronted with new systems such as production lines 

frequently. Therefore it is worthwhile to study how 

humans learn to control dynamic systems, and how 

instruction can support the learning process. 

In cognitive psychology, a common paradigm for 

studying the control of dynamic systems can be character-

ized by the following features: The systems simulate 

some fictitious device or environment that most people 

have no specific experience with (e.g. a tank with sea 

animals in a biology lab, used by Vollmeyer, Burns, & 

Holyoak, 1996). This is to ensure an equally low level of 

prior knowledge. Discrete linear additive equations are 

used for simulation, one equation per output variable. 

There is the opportunity to assign values to the input 

variables in each simulation step, which is referred to as 

“trial”. A number of trials, e.g. six simulated hours, make 

up a “round”. The objective for participants is to attain a 

specific goal state either at the end of a round, or as soon 

as possible and to maintain the state. A prominent, yet 

simple example is the “Sugar Factory” (Berry & Broad-

bent, 1984) that has been used to investigate questions 

about implicit vs. explicit knowledge and about rule vs. 

exemplar learning (e.g. Dienes & Fahey, 1995; Fum & 

Stocco, 2003; Lebiere, Wallach, & Taatgen, 1998) 

Research with this paradigm has shown that subjects 

largely prefer acquiring and using exemplar knowledge 

rather than structural knowledge, i.e. subjects memorize 

specific actions taken in specific situations together with 

their outcomes. This strategy can be successful under 

certain conditions: First, when the system has a small 

problem space like, for example, the Sugar Factory (144 

states); second, when the same goal state has to be attain-

ed repeatedly (Vollmeyer et al., 1996), which means that 

only a small fraction of a possibly large problem space is 

relevant. Simulation studies with the Sugar Factory have 

shown that it can be successfully controlled by using 

either declarative representations of specific actions 

(Lebiere et al., 1998), or learned production rules that also 

represent specific interventions (Fum & Stocco, 2003). In 

conditions, however, where subjects have to deal with 

huge problem spaces (e.g. because the system is more 

complex and subjects have to attain a number of different 

goal states), the exemplar strategy is no longer useful1. 

Instead, it is more reasonable to use general knowledge 

about the causal structure of the system to navigate 

through the problem space. I will refer to this type of 

knowledge as “structural knowledge”. 

In principle, complete structural knowledge is suffici-

ent to control a system even without specific experience. 

Although correlations between structural knowledge and 

performance have been reported (Funke, 1993), experi-

ments where structural knowledge was taught, usually 

failed to demonstrate its superiority (Putz-Osterloh, 1993; 

Schoppek, 2002). One reason for this is that deriving 

                                                           
1 The inclination to use exemplar knowledge even when it is 

inappropriate may explain why subjects generally perform at 

very low levels when they are asked to control complex 

dynamic systems that are new to them. 
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specific actions from structural knowledge is a skill that 

has to be practiced in addition to learning the structure. 

This view is corroborated by results from studies where 

the application of structural knowledge has been practiced 

extensively (Preussler, 1998). A second reason for the 

difficulties of applying structural knowledge is that know-

ledge about causal relations is acquired under a different 

perspective than it is applied when controlling a system. 

This issue is elaborated in the following paragraphs. 

Verbal protocols of successful system controllers and 

simulation studies (Schoppek, 2002) have helped identify 

efficient strategies for acquisition and application of 

structural knowledge. A good strategy for exploring the 

causal structure of a system is to vary input variables one 

at a time to identify the immediate effects of the input 

variables and the momentum of the system, which is 

produced by effects of output variables onto each other. 

For example, a subject could put some lime into the 

animal tank to observe the effect onto the oxygen content 

of the water, then set lime input back to zero and observe 

how the oxygen content changes on its own. 

A common application strategy starts with (1) predict-

ing the next state of the system under the assumption of 

no interventions, continues with (2) calculating the differ-

ences between the predicted and the desired state, (3) 

selecting a free input variable, (4) calculating the input 

value, and ends with (5) applying the intervention. In the 

course of this strategy, for each output variable all their 

dependencies are considered in turn. This consideration of 

dependencies is a marked difference compared with the 

focus on effects that is prevalent during acquisition of 

structural knowledge.  

Thus we can distinguish two perspectives on causal 

relations: One looking for effects of a given cause, the 

other looking for possible causes of a given effect. The 

first perspective is prevalent during exploration of a new 

system, the second is more adaptive during system 

control. In the following, I will use the word “effects” to 

characterize constructs related to the first perspective, and 

“dependencies” to characterize the second perspective. 

The distinction of perspectives on causal relations has 

a number of implications. The first has to do with the 

question what given information cues the retrieval of 

what other information. During exploration, when input 

variables are manipulated and effects are observed, 

associations from cause to effect are learned, resulting in 

a structure where representations of input manipulations 

act as cues for representations of changes in output 

variables. When the task is to control a system and the 

dependencies of output variables are considered, output 

variables should be learned as cues for input variables.  

A second implication concerns the mechanism of 

chunking, which plays an important role in successful 

problem solving (Newell, 1990, Gobet & Simon, 1996). 

The effect perspective suggests chunking together single 

effects of a variable (which can be an input or an output 

variable), whereas the dependencies perspective suggests 

chunking together all dependencies of an output variable. 

Again, the second possibility seems to be more adaptive 

in system control, because having all dependencies in one 

chunk relieves the problem solver from extensive memory 

search, a process that consumes much time, poses high 

demands on working memory, and is thus error prone. 

A second issue in the context of helping humans to use 

structural knowledge has to do with strategy instruction. 

Undoubtedly, extensive practice under supervision of 

experienced operators is effective, but also very costly. 

Thus it is important to find ways of leveraging structural 

knowledge efficiently. The way followed here was to base 

a training program on a strategy that has proven success-

ful in a computer simulated cognitive model of controll-

ing a system similar to the present one (Schoppek, 2002). 

To summarize, the aim of the present work is to 

investigate ways of teaching structural knowledge about 

dynamic systems, either indirectly by manipulating the 

perspective on causal relations, or directly by practicing 

the application of structural knowledge. Specifically, I 

tested the hypothesis that guiding subjects to focus on 

dependencies rather than effects enhances performance. 

By measuring access to causal knowledge with a speeded 

judgment task I investigated if the different perspectives 

are also reflected in the representation of structural 

knowledge. The results may show new ways of teaching 

structural knowledge and extend our understanding of the 

use of this type of knowledge. 

Experiment 
The system I used in this experiment is a simulation of the 

influences of three fictitious medicines onto the levels of 

three fictitious peptides in the blood. The medicines are 

called MedA, MedB, and MedC; the peptides are called 

Muron, Fontin, and Sugon. The effects of the substances 

onto each other are simulated with the following discrete 

linear equations: 

 

(1) Muron t = 0.1 Muron t-1 + 2 MedA t 
(2) Fontin t = 

  Fontin t-1 + 0.5 Muron t-1 – 0.2 Sugon t-1 + MedB t
(3) Sugon t = 0.9 Sugon t-1 + MedC t 

In a neutral state with Muron = Sugon = 0 and Fontin = x, 

the system is stable. Once some of the medicines are 

administered, the system gains momentum. Note that the 
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amount of Fontin in the blood can only be reduced 

through Sugon, which depends on MedC. Since Sugon 

decomposes slowly, large time delays of changes in 

medication have to be dealt with. Subjects interacted with 

the system through an interface consisting of two tables 

showing the states of the variables in all trials, and input 

boxes where they could enter values for the medicines. 

One round comprised six trials, introduced to the subjects 

as “simulated hours”. 

Structural knowledge was tested with a speeded causal 

relation judgment task. All names of input and output 

variables were shown on a screen in a spatial arrangement 

that matched that of the simulation interface. This was 

done to assure that variables could be identified by both, 

their names and their locations. Then the name of an 

output variable was highlighted on the right side of the 

screen, followed by the highlighting of another variable 

name on the left side with an ISI of 500 ms. The subject 

was asked to respond with pressing one of two keys as 

quickly and accurately as possible to indicate her judg-

ment if there was a causal relation between the high-

lighted variables or not. All 18 possible input-output and 

output-output relations were shown in one test. Eight of 

these relations had to be answered with yes, 10 with no. 

The procedure was arranged such that knowledge of 

dependencies should result in faster judgments compared 

with pure knowledge of effects. This is expected because 

the variable that was highlighted first (the effect) is 

assumed to act as a prime for the variable highlighted 

second (the cause) only when causal relations have been 

memorized under the perspective of dependencies. 

 

Subjects and Design 
N=95 subjects, studying different majors at the University 

of Bayreuth, participated in the experiment. Subjects were 

paid 10 € for their participation.  

The factor “type of knowledge” with the levels “know-

ledge of effects” (Eff) and “knowledge of dependencies” 

(Dep), and the factor “strategy training” with the levels 

“no training” and “training” were varied between sub-

jects. A third, quasi-experimental factor “field of study” 

with the three levels arts/humanities, law/economy, and 

science was also analyzed. In principle, subjects were 

randomly assigned to one of the four conditions. A few 

exceptions from complete randomization were due to the 

objective to have approximately equal distributions of 

field of study in each condition. 

 

Procedure 
The experiment began with a general instruction about the 

system. All subjects went through a standardized explo-

ration phase guided by the experimenter. The exploration 

was designed to demonstrate all causal relations between 

the variables of the system. Subjects were guided to 

analyze the observed effects and asked to enter them in 

cards provided by the experimenter. The procedure in this 

phase was different for the two knowledge conditions: In 

the Dep condition, the experimenter consistently asked 

for dependencies, and the cards were sorted by the 

“dependent” variables Muron, Fontin, and Sugon. In the 

Eff condition, the experimenter consistently asked for 

effects, and the cards were sorted by the “independent” 

variables MedA, MedB, and MedC. At the end of this 

phase, the experimenter examined the knowledge of the 

subject orally, again consistently asking either for dep-

endencies or for effects. Subjects had to recall all possible 

relations with the respective numeric weights before 

moving on to the next phase (all subjects achieved that).  

Subjects in the “no strategy training” condition could 

then explore the system for one round (six simulated 

hours) on their own. Subjects in the “strategy training” 

condition went through a number of exercises where they 

practiced a method of predicting future states of the 

system. As mentioned above, this was the first part of a 

strategy tested earlier in a cognitive model. Only a part of 

the complete strategy was selected to keep the training 

short. Nevertheless, all effects (condition Eff) or depen-

dencies (condition Dep) were needed and rehearsed in 

these exercises. 

Next, all subjects were given the control problems. All 

problems comprised six simulated hours and were given 

with the objective that the goal states had to be reached as 

soon as possible, and to be maintained. Table 1 shows the 

initial states and the goal states for the four control 

problems. Initially, all variables except Fontin were zero. 

In order for the subjects to familiarize themselves with the 

control task, they were given two rounds for Problem 1. 

Table 1: The four control problems given to the subjects 

Problem 1: Fontin = 50  Muron = 200 , Fontin = 1000 

Problem 2: Fontin = 900  Muron = 100  

Problem 3: Fontin = 2000  Fontin = 1000 

Problem 4: Fontin = 50  Muron = 400 , Fontin = 900 

  

Results 
To measure control performance, the solution error was 

calculated by summing the natural logs of the absolute 

differences between the goal values and the actual values 

for each time step of a round (Müller, 1993). A perfect 

solution is indicated by a solution error of zero. Since the 

results of Problem 2 were close to ceiling, they were 

excluded from the analysis. I analyzed the mean solution 

error of the remaining problems as dependent variable in 
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an ANOVA with the factors “type of knowledge” 

(knowledge about effects, “Eff” vs. knowledge about 

dependencies, “Dep”), “strategy training” (with vs. 

without training), and the quasi-experimental factor “field 

of study” of the participant (arts/humanities, 

law/economy, science). The means aggregated across all 

fields of study are listed in Table 2. 
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DepThe ANOVA yielded significant main effects of all 

three factors, “type of knowledge” (F = 3.94, df = 1, 

MSE = 5.57, p = .05), “strategy training“ (F = 5.97, 

df = 1, MSE = 8.45, p < .05), and “field of study” 

(F = 13.24, df = 2, MSE = 18.75, p < .01). As expected, 

subjects who were guided to acquire knowledge of 

dependencies were more successful in controlling the 

system (mean solution error = 2.1, SD = 1.3) than 

subjects who were guided to acquire knowledge of effects 

(M = 2.6, SD = 1.5). Contrary to expectation, subjects 

who underwent the strategy training performed lower 

(M = 2.6, SD = 1.5) than those without strategy training 

(M = 2.0, SD = 1.3). Subjects studying arts or humanities 

performed worst (M = 3.2, SD = 1.4, n = 33), followed by 

subjects studying law or economy (M = 2.3, SD = 1.2, 

n = 30). Most successful in controlling the system were 

science students (M = 1.6, SD = 1.1, n = 32). 

There is a significant interaction between “field of 

study” and “type of knowledge“ (F = 3.29, df = 2, 

MSE = 4.65, p < .05). Detailed analyses revealed that a 

strong effect of “type of knowledge” was only present in 

the group of subjects who studied arts/humanities (see 

Figure 1). No other effects reached statistical significance 

(all p > .05). 

 

Table 2: Solution error of system control in the various 

conditions of the experiment   

  Eff Dep  

yes 
2.9  (1.5) 

n = 24 
2.4  (1.5) 

n = 26 
2.6  (1.5)

n = 50 
Strategy 
training 

no 
2.4  (1.5) 

n = 22 
1.7  (0.9) 

n = 23 
2.0  (1.3)

n = 45 

  2.6  (1.5) 
n = 46 

2.1  (1.3) 
n = 49 

2.4  (1.4)
n = 95 

 

To test the expectation that knowledge of dependencies 

results in faster response times in the speeded structural 

knowledge test, I calculated an ANOVA with the same 

factors as described above and the mean response times 

for hits in the first test as dependent variable. (Three 

subjects with mean response times of greater than 3800 

ms were excluded from the analysis. Raw values were ln-

transformed for the ANOVA). The expected effect of 

“type of knowledge” was confirmed by the analysis 

(F = 7.83, df = 1, p < .01), (1559 ms vs. 1237 ms, Dep 

faster). However unexpectedly, there was also a main 

effect of “strategy training” (F = 11.24, df = 1, p < .01), 

(1576 ms vs. 1236 ms, with training faster). No other 

effects were significant at the level of α = .05. The results 

of the second structural knowledge test were analogous to 

the first test. 

Figure 1: Means and standard errors of solution 

error of controlling the system (smaller values 

indicating better performance) 

Similar analyses with the discrimination index (an 

index of how well subjects can discriminate between 

relations and no relations, cf. Snodgrass & Corvin, 1988) 

as dependent variable yielded no significant effects. 

Discrimination indices were relatively high in all 

conditions (di = 0.89). 

Discussion 
The experiment has confirmed the hypothesis that guiding 

subjects to focus on dependencies of output variables 

rather than on effects of input variables can enhance per-

formance in controlling a complex dynamic system. 

Although there is an effect in the complete sample, the 

major contribution came from the subjects studying arts/ 

humanities. Presumably, this group has the least experi-

ence with abstract representations of dynamic systems 

and thus learned something new when focusing on 

dependencies instead of effects. If the other groups did 

not benefit from the manipulation because they take the 

dependencies perspective on their own, or because of 

some other strategy cannot be told with the present data.  

The results of the speeded causal judgment task indi-

cate that focusing on dependencies vs. effects affects the 
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mental representation of causal relations. The task was 

arranged to enable priming from output to input variables, 

but not the other way round. Subjects in the Dep con-

dition were significantly faster in judging the relations, 

supporting the assumption that they have established 

stronger associations between output to input variables 

than subjects in the Eff condition. 

The two findings are raising the question about their 

relation. Are these stronger associations a cause for better 

performance or are they just a side effect of the ex-

perimental manipulation? If the relation was causal, there 

should be a substantial (negative) correlation between 

response time in the causal judgment task and solution 

error in the control problems. The respective correlation is 

r=.05 in the whole sample. Hence, the faster reaction 

times in the Dep condition are probably a side effect of 

the manipulation. This, in turn, supports the hypothesis 

that the positive effect of knowledge of dependencies on 

performance is based on the chunking aspect, i.e. the inte-

gration of single effect representations according to 

output variables. It is possible that especially science 

students have built such chunks on their own, even in the 

Eff condition. (Note that subjects in the Eff condition 

were not prevented from gaining knowledge of depen-

dencies). Figure 2 shows a sketch of the hypothetical 

structure of a dependency chunk “Dep01” (the causal 

weights are omitted for clarity). The shaded substructure 

“Eff01” is a chunk that represents the single causal 

relation between MedC and Sripon. The structure, whose 

construction in a learning process appears straightfor-

ward, mirrors the equations defining the behavior of the 

system remarkably. The solid lines indicate slot-value 

relations. Dotted lines indicate the associations between 

the name of the dependent variable and names of 

influencing variables, which may have been learned under 

the Dep condition. These associations can explain the 

effects in the speeded judgment task, but are not neces-

sary for the usefulness of dependency chunks in control 

tasks. This interpretation is in line with the assumption of 

Boucher & Dienes (2003) that there are two ways of 

learning associations, one resulting in activating relations, 

the other resulting in chunks that combine the associated 

information. Baker, Murphy and Vallée-Tourangeau 

(1996) suppose that these two ways may be attributed to 

different modules of the mind. Research on causal reason-

ing has discovered many other cases where concept-

driven symbolic processing must be assumed in addition 

to pure associative learning to explain the phenomena 

(Waldmann, 1996). 

Unexpectedly, the strategy training had an effect on 

answering speed in the causal judgment task (with train-

ing faster). According to the above interpretation subjects 

must have rehearsed relations between each output vari-

able y and the variables affecting y during the training. In 

the Dep condition, this is obvious. Since in the Eff 

condition subjects were asked for all variables that had an 

effect on the output variable in question, they had to 

search memory for names of input variables while the 

name of the output variable was present in working 

memory. Thus, subjects have learned associations from 

output to input in that condition, too. 

The adverse effect of the strategy training was also 

unexpected. The training had been inspired by results 

from cognitive tutoring that subskills can effectively be 

trained based on single production rules (Anderson, 

1993), and thus, practicing only the most difficult part of 

a larger strategy appeared reasonable. However, the suc-

cess of this kind of training depends on the compatibility 

of the practiced subskills with the subjects’ own strate-

gies. This condition seemed to be hurt in the present case. 

Subjects might have applied the practiced method of 

predicting the next state, and after successful completion 

were unclear about what to do next and how to use the 

result. An alternative explanation is that the practiced 

strategy has interfered with the subjects’ own strategies, 

resulting in mixtures of incompatible strategy fragments. 

(see e.g. Vosniadou, 1997 for the difficulties of integrat-

ing new knowledge with prior knowledge). 

In future efforts to train the application of structural 

knowledge it should be assured that subjects have at least 

an idea of the whole strategy. This could be achieved by 

introducing abstract labels for all subgoals and practicing 

the whole strategy at least once before possibly focusing 

on the most difficult part of it (Catrambone, 1998). 

Figure 2: Hypothetical structure of a dependency 

chunk; solid lines indicate slot-value relations, dotted 

lines indicate associations. 
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In general, the results of the experiment show that 

variations of structural knowledge do affect performance 

in the control of dynamic systems. This extends the view 

that mainly exemplar knowledge or very specific rules are 

used for controlling systems (Dienes & Fahey, 1995; Fum 

& Stocco, 2003; Lebiere et al., 1998). It is important to 

note that not knowledge about single causal relations as 

measured by the discrimination index of the causal 

judgment task makes the difference (there were no effects 

of the experimental factors on di), but rather the way of 

using it, obviously depending on prior knowledge, and the 

way of chunking it into larger units.  
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