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Abstract

The Fisher Droplet Model and Physical Clusters at Liquid-Vapor Phase Coexistence with
Implications for the Nuclear Phase Diagram

by

Peter Theodore Lake, Jr.

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Luciano G. Moretto, Chair

The nuclear strong force, which binds the nucleons within an atomic nucleus, is a van der
Waals force. A consequence of this is that the phenomenon of liquid-vapor phase coexistence
occurs in the nuclear system. The experimental means of constructing the nuclear phase
diagrams rely heavily on the thermodynamics of cluster theories, theories that historically
have not served in many practical applications. In this thesis I explore the validity of the
ideal cluster law and the Fisher droplet model in systems where the phase diagrams are
known from traditional means.

For molecular fluids, I show that the phase coexistence of a wide variety of systems can be
described using the Fisher theory. This study is closely related to the study of an extended
principle of corresponding states. These considerations demonstrates the utility of the Fisher
droplet model in describing liquid-vapor phase coexistence of van der Waals fluids.

For model systems, I show that the physical clusters of the Lennard-Jones model at
coexistence can be used to construct the phase diagrams of the fluid. The connection between
the physical clusters and the thermodynamic properties of the vapor are established using
the ideal cluster law. Furthermore, the cluster concentrations are well described by the
Fisher droplet model. These considerations lead to an alternative construction of the phase
diagrams for the Lennard-Jones system.

The success of cluster theories to describe properties of liquid-vapor coexistence that are
already well established demonstrates the validity of applying these concepts to construct
the nuclear phase diagrams.
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I dedicate this thesis to anyone that I have had the privilege to teach something new.
To understand a concept is a personal experience, but to share it is equally important.
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Chapter 1

Introduction

Recent studies of atomic nuclei have focused on describing the phase transition of nuclear
matter, for example [Mor11; Ell13; Gro97; RW01; BR08]. The experiments performed to
deduce the phase diagram of nuclear matter consist of accelerating a projectile nucleus to
collide with a target nucleus. The resulting nuclear collision produces an excited nucleus
that can be described as a hot liquid drop that lowers its energy by evaporating smaller
nuclei. These emitted nuclei are physical clusters of neutrons and protons and are the
primary measurement in studying thermal nuclear decay. This is in direct contrast to the
experimentally accessible observables such as temperature, density, and pressure which are
used to measure the phase diagrams of molecular systems. All the same, the phase diagram
of nuclear matter can be constructed from these cluster yields.

A large amount of theoretical work has previously been done on cluster theories which
not only describe a vapor but also lend insight to liquid-vapor phase coexistence, for example
[MM40; Fis67b; Fis67a; Sat03]. The difference between an ideal gas and a real gas is the
correlations found between the particles. An intuitive approach to account for this difference
is to describe the short range correlations in the real vapor in terms of clusters. These theories
proved not to be very practical to study molecular fluids since clusters in a molecular vapor
are not readily observed but are crucial in studying the nuclear system.

This present work is a theoretical study to understand liquid-vapor phase coexistence in
terms of physical clusters. These considerations demonstrate the validity of using cluster
theories to construct the nuclear phase diagram. The three topics of nuclear systems, phase
coexistence and cluster theories are first presented to give context to my contributions to
the field.
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1.1 Atomic Nuclei, Hot and Cold

1.1.1 Cold nuclei as liquid drops

Atomic nuclei are a dense collection of neutrons and protons in their ground state. The force
holding these nucleons together is the nuclear strong force as opposed to the Coulomb force
that holds molecules together. The structure of nuclei has proven to be relatively simple
despite the complicated nature of the strong force. Ultimately, a nucleus is described as a
charged, quantum, van der Waals liquid drop.

One piece of experimental evidence that nuclei are liquid drops comes from elastic scat-
tering experiments. Elastic scattering of nuclei is well described as the scattering of two
point charges until they come close enough to interact via the short-ranged strong force.
This contact is accompanied with a dramatic decrease in the elastic cross section and gives
a clear measure for the size of a nucleus. These experiments reveal that all stable nuclei are
characterized by the relation

RA = r0A
1/3, (1.1)

where RA is the nuclear radius, A is the mass number of the nucleus, and r0 is a constant
observed to be r0 ' 1.2 fm [RG06]. This relation is consistent with all nuclei having a
constant density and indicates that the strong force acts attractively at short distances
between nucleons but creates an excluded volume at even smaller distances. Forces of this
type are referred to as van der Waals forces and are analogous to the forces in molecular
fluids.

The nuclear binding energies are further experimental evidence that nuclei are liquid
drops. Weizsacker developed a semi-empirical equation to describe the binding energies B
of all nuclei as a function of mass number A and atomic number Z [Wei35],

B(A,Z) = avA− asA2/3 − ac
Z2

A1/3
− aa

(A− 2Z)2

A
± δ√

A
. (1.2)

Each of the five terms represent a different aspect of a nucleus as a finite, charged, quantum
liquid drop. This equation is known as the liquid-drop model of nuclear binding energies.

The first two terms of Eq. 1.2 are part of the leptodermous expansion. The leptodermous
expansion is the series expansion of the binding energy of a finite van der Waals liquid drop
in inverse powers of the drop’s radius,

B(R) = bvR
3+ bsR

2 + brR + . . . (1.3a)

B(A) = avA − asA2/3− arA1/3+ . . . , (1.3b)

where the second relation comes from using Eq. 1.1. The first term is the volume term and
is a property of the bulk liquid. The second term is the surface term and accounts for the
lack of binding at the surface of a drop. The expansion continues onto higher order terms
but historically is stopped at the second term for the nuclear case.



CHAPTER 1. INTRODUCTION 3

The third term in Eq. 1.2 is the named the Coulomb term and is equivalent to the
self-energy Ec of a charged sphere,

Ec = −3

5

Z2e2

R
= −ac

Z2

A1/3
, (1.4)

where e is the fundamental charge. This prediction allows for an independent measure of
the nuclear radius and is consistent with the elastic scattering experiments.

The last two terms of Eq. 1.2 are attributed to quantum effects. The fourth term is the
asymmetry term and describes the tendency for nuclei to be more stable when symmetric in
neutron and proton number. The last term is the pairing energy and accounts for the mass
difference between even-even, odd-odd neutron-proton numbers, and odd-A systems.

Fitting the five coefficients to the experimental binding energies yields an equation that
is accurate to 1%, or 10 MeV, for all nuclear masses [MS69; Kir08; RG06; Mor12]. This
impressive feat emphasizes how a holistic approach to the complicated physics of the strong
force is effective as opposed to starting from first principles. The errors are associated
with shell structure and can be calculated via the Strutinski procedure to yield errors of
0.1% [Str67]. This concise physical picture of nuclei gives rise to a simple equation for the
nuclear masses that has a precision unmatched by more “sophisticated” ab initio calculations
[GCP09; RS04].

The data of nuclear radii and binding energies indicate that nuclear matter is a van der
Waals liquid. Whatever the exact nature of the strong force may be, the net result is an
internucleonic potential with a short-range attraction and a repulsive core.

1.1.2 Hot nuclei and thermal emission

Even though the nuclear radii and binding energies are aspects of nuclei in their ground
states, the liquid drop nature also has implications in the physics of nuclei at high excitation
energies.

Nuclear reactions are the experimental means of studying nuclei in excited states. These
collisions consist of a wide range of energies including low energy direct reactions to higher
energy compound nuclear reactions and multifragmentation. These latter two types of re-
actions are characterized by statistical means as opposed to studying the discrete states
observed in lower energy reactions.

The difference between compound nuclear reactions and multifragmentation is the energy
of the collision. Compound nuclear reactions involve the complete fusion of two nuclei into
a highly excited system which subsequently decays. Multifragmentation occurs at higher
energies and arises when the two nuclei fuse incompletely and then decay. The process
does involve non-equilibrated decay, but the majority of the decay products are produced
thermally.

Both processes emit particles stochastically and thermally despite their differences [Mor97].
The decay is stochastic in that the multiplicity of emitted intermediate mass fragments, frag-
ments with proton number Z > 5, is described by a Poisson distribution. A binomial distri-
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Figure 1.1: The yields of multifragmentation are stochastic and thermal. The plots to the
left show the binomial probabilities of emitting a number of intermediate mass fragments, n.
The plot on the right is an Arrhenius plot of the inverse single event probability of emitting
an intermediate mass fragment as a function of inverse temperature. Adapted from [Mor97].
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bution arises when the probability of an event is uncorrelated to the number of times it has
happened before. The left panel of Fig. 1.1 plots the probability of the different multiplicities
as a function of excitation energy. The lines are the resulting binomial distributions.

The process of particle emission is also thermal. A process is thermal when the probability
p of an event is described by an Arrhenius relation

p ∝ e−E
†/T , (1.5)

where E† is the activation energy and T is the temperature. The temperature of a collision
can be approximated from the Fermi gas prediction that T ∝

√
E∗ for an excitation energy

E∗. The right panel of Fig. 1.1 shows the extracted single particle emission probability as a
function of E−1/2 and shows a clear exponential trend. In this case, the transverse kinetic
energy of the decay is used in lieu of the excitation energy, the two being proportional to
one another in the case of thermal decay.

The following physical picture is invoked to describe these processes. The object created
in a nuclear collision is a hot liquid drop of nucleons. The liquid quickly obtains a well
defined temperature and undergoes evaporative cooling whereby small nuclei are emitted
from the surface of the liquid.

The description of nuclear collisions decaying through evaporative cooling invokes a direct
reference to liquid-vapor phase coexistence. A natural question arises: what is the phase
diagram of nuclear matter? Also, how can it be constructed from experimental data? The
remainder of this chapter addresses the concepts necessary to do this.

1.2 The Thermodynamics of Phase Coexistence

Liquid-vapor phase coexistence is a ubiquitous aspect of molecular systems, with the nature
of the coexistence being similar throughout these systems. The nuclear system is anticipated
to be a specific case of this general phenomenon due to the phenomenological similarity of
the force between constituents.

1.2.1 The Gibbs phase rule and phase diagrams

Phase coexistence is the situation when a system spontaneously separates into two or more
distinct phases and is explained by the Gibbs phase rule.

A generic chemical system can be described as having different components and being
separated into different phases. A component is a chemical species that can be varied in
quantity relative to the other components. For example, a mixture of ethanol and water is
a two component system where the relative amount of the two chemicals can be varied. A
phase is a homogeneous state of matter with distinct properties of other phases. Typical
phases of matter are solid, liquid, and vapor. The symmetry of the solid makes it distinct
from the liquid and vapor and the difference of densities make the liquid and vapor distinct.
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Consider a system of C components in P different phases. Thermodynamic equilibrium
arises when the entire system has a constant temperature T , the phases have an equal
pressure p, and the components have the same chemical potential µi throughout all phases.
This equivalence of the thermodynamic variables represents a system of equations to be
solved simultaneously. The Gibbs phase rule counts the number of degrees of freedom F for
this system of equations as

F = C − P + 2. (1.6)

If F ≥ 0 then the system is physically possible, otherwise the system of equations is over-
specified and there is no solution. Furthermore, F represents the dimensionality of the phase
coexistence within the total thermodynamic phase space of the system.

The top plot in Fig. 1.2 is a phase diagram of a typical single component system with
solid s, liquid `, and vapor v phases projected onto the pressure-temperature plane. The
diagram demonstrates the results of the Gibbs phase rule whereby the lines are the location
of two phase coexistence and the intersection of the three branches is the only point where
the three phases can coexist.

An attribute of the phase diagram that is not predicted by the Gibbs phase rule is the
termination of the liquid-vapor phase coexistence at a critical point. The presence of a
critical point attests to the similarity of the liquid and vapor phases, which are collectively
named a fluid. Whereas the difference between solid and fluid phases is well defined in terms
of symmetry for all temperatures, the distinction between a liquid and vapor disappears
above the critical point. Only below the critical point are the two phases distinguished by
their differing densities.

Another useful projection of a phase diagram is onto the temperature-density plane as
shown in the bottom plot of Fig. 1.2 for a typical system. Coexistence occurs in an area
of the phase diagram in this projection as opposed to the line in the pressure-temperature
projection. This feature arises from the fact that the relative amount of each phase is
not specified in the system of equations dictating equilibrium. The pressure at a given
temperature is constant within the region of coexistence and the amount of each phase varies
continuously. The boundaries of the diagram are the densities of the respective phases in
coexistence. The critical point is where the liquid and vapor densities are equal at coexistence
and the labeling of the phases becomes ambiguous.

The Gibbs phase rule offers a means of understanding how phase coexistence can arise
through the principles of thermodynamics. It also explains how phase coexistence for a one
component system can be mapped in a two dimensional phase diagram. However, it does
not reveal any quantitative measure of the coexistence for a specific system.
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Figure 1.2: Typical phase diagrams of a molecular system which exhibits solid s, liquid `,
and vapor v phases. The top diagram is a pressure-temperature phase diagram and the
bottom diagram is a temperature-density phase diagram.
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1.2.2 The Clausius-Clapeyron relation

Another exact result of phase coexistence is the Clausius-Clapeyron relation. This relation
evaluates the change in the coexistence pressure as the temperature is varied,

dp

dT

∣∣∣∣
coex

=
∆H

T∆v
, (1.7)

where ∆H is the difference in enthalpy per particle between the two phases and ∆v is for
the difference in volume per particle. Notice how dp/dT is a total differential which attests
to the fact that the coexistence is fully specified by one degree of freedom.

The Clausius-Clapeyron equation is applicable to any pair of phases in coexistence but
can be exactly integrated with suitable approximations of the two phases. For example,
liquid-vapor phase coexistence at low temperatures. The vapor can be considered ideal for
sufficiently low densities and the liquid can be approximated as being incompressible and
dense enough such that ∆v ' T/p. It is also a fair approximation that ∆H is a constant
at low temperatures. These approximations lead to an equation for the vapor pressure at
coexistence as

p = p0e
−∆H/T , (1.8)

with p0 being a system dependent constant of integration.
A surprising aspect of experimental phase diagrams is the validity of Eq. 1.8 over the

entire range of liquid-vapor coexistence despite the approximations used to derive this rela-
tion being unphysical near the critical point [Gug45; Gug93]. For example, the difference in
volume per particle and difference in enthalpy per particle are both zero at the critical point.
Regardless, the deviations from the approximations used to derive Eq. 1.8 are empirically
seen to cancel one another to make the equation applicable all the way to the critical point.

Whereas the Gibbs phase rule explains the possibility of phase coexistence, the Clausius-
Clapeyron equation describes the shape of the phase diagram. Making intuitive approxima-
tions for the two phases in coexistence allow for exact integration of the equation to deduce
the nature of the coexistence pressure as a function of temperature. This process leads to a
reliable expression in the case of liquid-vapor coexistence.

1.2.3 Principle of corresponding states

The equation of state is a complete relation for a pure system’s thermodynamic state with
the Gibbs phase rule dictating that it is a function of two variables. The thermodynamic
functions of different systems are alike phenomenologically alike due to the similarity of the
microscopic physics that give rise to the bulk properties. In fact, many equations of state
for molecular systems can be scaled to one another when normalized into appropriate units.
This is known as the principle of corresponding states.

Guggenheim and Pitzer formulated a series of rules which would make the principle of
corresponding states rigorously exact [Pit39; Gug45; Gug93]. These rules suggest that if the
only things that differ between molecular systems are the physical size of the molecules and
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Figure 1.3: Scaling of pressure-temperature phase diagrams in reduced variables and the
Guggenheim scaling.

the magnitude of binding then they can all be scaled to one another. The empirical obser-
vation of corresponding states in molecular systems indicates the accuracy or lack thereof of
these statements.

Phase coexistence represents a subset of the equation of state of a system. Thus, com-
paring phase diagrams of different systems allows for testing for corresponding states. Fur-
thermore, the uniqueness of the critical point of the liquid-vapor coexistence makes it a
good reference point to which different systems can be scaled. The thermodynamic variables
divided by their value at the critical point are referred to as reduced variables.

Guggenheim compared the liquid-vapor phase diagrams of Ne, Ar, Kr, Xe, N2, O2, CO,
and CH4 to demonstrate the principle of corresponding states [Gug45; Gug93]. For example,
Fig. 1.3 displays the reduced pressure-temperature phase diagrams of these eight systems.
The results of the Clausius-Clapeyron equation are immediately seen in the linear trend of
the data sets. Eq. 1.8 predicts the coexistence pressures to be

p

pc
= exp

[
−∆H

Tc

(
Tc
T
− 1

)]
. (1.9)

The fact that all eight data sets fall on the same line suggests that ∆H/Tc is a constant for
all these systems and has the numerical value of ∆H/Tc ' 5.21.
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The temperature-density phase diagram is also used to demonstrate the principle of
corresponding states. Fig. 1.4 shows the phase diagrams in reduced units of density and
temperature of the same eight systems as in Fig. 1.3. The average of the liquid and vapor
densities are also shown and follow a linear trend. Without having a theory that anticipates
the shape of the phase diagram in this representation, Guggenheim suggests the following
empirical equation [Gug45; Gug93]

ρ`,v
ρc

= 1 + b1

(
1− T

Tc

)
± bβ

(
1− T

Tc

)β
. (1.10)

The upper sign describes the liquid density and the bottom is for the vapor. The phase
diagrams of the eight systems considered are well described when the values β = 1/3, b1 =
3/4, and bβ = 7/4 are used.

These eight systems were chosen because they are expected to follow the criteria proposed
for the principle of corresponding states and as a result the scaling between the systems is
good, but many molecular systems are expected to differ from these eight. Fig. 1.5 shows
the phase diagrams in reduced units of 73 different molecular fluids whose data are reported
in the NIST Chemistry WebBook [LMF11]. A list of the molecules considered is found in
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Appendix 1. Even though the deviations are obvious, they are systematic. A goal of this
work is to understand these deviations and find a theory which describes all these systems
simultaneously.

1.3 Cluster Theories

The previous section describes what can be anticipated about some aspects of the nuclear
phase diagram. For example, the shape of the nuclear phase diagram can be predicted
solely on the basis of the Clausius-Clapeyron equation, where the ∆H at low temperatures
for nuclear matter is the volume energy coefficient av. Also, the principle of corresponding
states suggest that the phase diagram is related to those of molecular systems. What these
considerations do not tell is the location of the critical point. An experimental determination
of the critical point is necessary to complete the phase diagram.

The difficulty is that nuclear matter is not studied the same way as molecular systems. A
typical molecular fluid is studied experimentally in the bulk. A phase diagram of a substance
is measured by controlling the temperature of a system and measuring the vapor pressure
and densities of the two phases at coexistence. There is no such thing as bulk nuclear matter,
making a traditional measurement of the phase diagram impossible. Cluster theories provide
a novel approach to extract the nuclear phase diagram from nuclear reaction experiments.

The van der Waals force between molecules give rise to short-range correlations in a vapor.
These correlations can be understood by considering particles in proximity of each other as
being in a cluster. The entire set of particles in a vapor are partitioned thus into clusters.
These clusters are ephemeral and are created and destroyed continuously as the system
evolves. This definition of clusters is also ambiguous in that the concept of “proximity”
is ill-defined. Regardless, the idea is that the observed bulk thermodynamics, including
liquid-vapor phase coexistence, can be described in terms of clusters via the physical cluster
theory. Below is a description of the physical cluster theory and of different ways that cluster
concentrations have been approximated.

1.3.1 Physical clusters

The physical cluster theory considers a vapor to be composed of independent clusters [Sat03].
Clusters may change in size as the system evolves but static equilibrium cluster concentra-
tions are established. A cluster has internal degrees of freedom that are characterized by an
energy and an entropy. A cluster partition function qA is defined for each cluster of size A,

qA =

∫
gA(E)e−E/TdE, (1.11)

where gA(E) is the cluster degeneracy of energy E.
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The following thermodynamics of the physical clusters are found. Clusters of size A have
a chemical potential µA and thermodynamic equilibrium gives rise to

µA = Aµ1 ≡ Aµ. (1.12)

The concentration nA of clusters is

nA = qA e
Aµ/T (1.13)

Furthermore, the independent nature of these clusters gives rise to a pressure and density of

p = T
∑

qA e
Aµ/T = T

∑
nA (1.14a)

ρ =
∑

AqA e
Aµ/T =

∑
AnA. (1.14b)

These equations are named the ideal cluster laws since each cluster size imparts its partial
pressure and density independently to the thermodynamics properties.

The physical cluster theory connects the observed clusters to the thermodynamic prop-
erties of a system. No description of the clusters is actually given in the theory except for
the cluster partition functions qA, which contain all the information about the clusters and
is left as an abstraction. An appropriate approximation of the qA would provide a means of
calculating the equation of state of a vapor in terms of clusters.

1.3.2 The Bilj-Band-Frenkel cluster model

The first theory to approximate the cluster partition function was developed independently
by Bilj, Band, and Frenkel [Bij38; Ban39a; Ban39b; Fre39b; Fre39a]. In this theory it
is proposed that the clusters are limited in possible shapes and are all spherical. This
approximation has two consequences. One is that the entropy of clusters of all sizes is
virtually zero. The other consequence is that the energy of the clusters can be approximated
with the leptodermous expansion,

EA ' −avA+ asA
2/3, (1.15)

where the coefficients av and as are temperature dependent.
The resulting cluster partition functions and concentrations are

qA = exp

[
−EA − T SA

T

]
= exp

[av
T
A− as

T
A2/3

]
, (1.16a)

nA = exp

[
av + µ

T
A− as

T
A2/3

]
. (1.16b)

The equation for cluster concentration explicitly demonstrates how condensation occurs at
some limiting chemical potential. When the chemical potential is below a value of −av then
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the cluster concentrations are asymptotically zero for large clusters. Above the coexistence
chemical potential, the term linear in A causes the cluster concentrations to diverge.

The Bilj, Band, Frenkel model of clusters can in principle be used to generate a phase
diagram. This is done by combining Eq. 1.16b at a chemical potential of µ = −av with
Eq. 1.14. This theory does not predict a critical point nor the temperature dependence of
as and thus a knowledge of as for all temperatures would be needed to construct the phase
diagram.

1.3.3 The Fisher droplet model

An extension in approximating the physical cluster concentrations is to add a term for the
cluster entropy and was first suggested by Fisher [Fis67b; Fis67a]. The approximation he
uses for the entropy is done in such a way to produce an equation consistent with critical
scaling.

Fisher writes the leptodermous expansion as

EA = −avA+ c0A
σ. (1.17)

The term Aσ is proportional to the surface area of a cluster as a function of cluster size and
is expected to be 2/3 but is left unspecified in the theory.

In this theory, the entropy of a drop SA has a similar leptodermous expansion in addition
to a logarithmic term,

SA = bvA+ bsA
σ − τ lnA+ ln q0. (1.18)

The leptodermous expansion is appropriate because the bulk liquid has a constant entropy
per particle bv and the surface adds more entropy due to the many possible configurations
of the surface. The logarithmic term is added to make the theory consistent with known
critical scaling.

From this formulation of the cluster energy and entropy, the cluster concentrations are

nA = q0A
−τ exp

[(
µ+ av
T

+ bv

)
A−

(c0

T
− bs

)
Aσ
]
. (1.19)

This equation exhibits the same phenomenon of condensation as the Bilj, Band, Frenkel
theory when the chemical potential is µ = −av − bvT , but also predicts the critical point.
The cluster concentrations at the coexistence chemical potential are

nA = q0A
−τ exp

[
−
(c0

T
− bs

)
Aσ
]
. (1.20)

When the temperature is larger than c0/bs the cluster concentration diverge and there is no
coexistence. This limiting value of temperature is distinguished as the critical point. The
cluster concentrations are then rewritten in terms of the critical temperature Tc as

nA = q0A
−τ exp

[
−c0A

σ

(
1

T
− 1

Tc

)]
. (1.21)
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The constants σ and τ are critical exponents and relate to the cluster size distribution
at the critical point. The values of these two exponents fully specify the critical scaling
of all other aspects of the system through the concept of hyperscaling. In this way the
Fisher droplet model is consistent with the modern concept of critical phenomenon when
σ = 0.6395(4) and τ = 2.2088(2) [Cam02; PV02].

A different approach to the Fisher droplet model is that it can be used to generate a
phase diagram based on measurements of clusters. The observed cluster concentrations in a
vapor at coexistence can be used to predict Tc of a system. Furthermore, the ideal cluster
law can be used to calculate the pressure and density of the system over the whole range of
coexistence. The possibility that the theory can be used as a predictive theory was previously
not recognized and becomes relevant in reference to the nuclear phase diagram.

1.4 The Nuclear Phase Diagram

The observation of thermal emission in nuclear collisions combined with the Fisher droplet
model gives a means of generating a nuclear phase diagram [MEP05]. The Arrhenius be-
havior of nuclear yields is consistent with thermal emission and the Fisher droplet model.
Furthermore, the Fisher droplet model predicts that the relative magnitude of different mass
fragments are directly related to the critical temperature. Using the ideal cluster law then
allows for calculation of the entire liquid-vapor phase diagram of the nuclear system.

This analysis is not without caveats. First, the system for which we want the phase
diagram must be specified. The system we are interested in is bulk, uncharged, symmetric
nuclear matter. Seeing that nuclei are finite, charged, and not necessarily symmetric, each
of these aspects must be considered in turn.

The current study considers nuclear matter in its most stable composition of equal neu-
tron and proton content. There is no physical restriction making it a necessity to study
only symmetric nuclear material. The problem is simplified by only considering symmetric
nuclear matter because the system can be treated as a single component system. Recalling
the Gibbs phase rule, leaving the proton and neutron numbers free to vary would create a
more complicated phase diagram.

The Coulomb force in nuclei is accounted for in two ways [MEP03]. First, the liquid drop
model accounts for the Coulomb force felt within both the source and the emitted cluster.
Second, the Coulomb force felt between clusters is considered. This term is what makes
describing the thermodynamics of charged particles inherently difficult. The approximation
made here is that only the Coulomb barrier of the cluster at the surface of the hot source
is important and is approximated as the energy of two touching spheres. Once emitted, a
cluster travels in the vacuum and does not influence the system further. In these ways the
Coulomb force is seen to be a perturbation to the strong force in which we are ultimately
interested.

Finite size corrections are due to the need of a larger vapor pressure for a liquid drop to
be in coexistence compared to the bulk coexistence pressure [RW82]. To see this, consider
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the Clausius-Clapeyron equation for the case of a liquid drop of size A0,

dp

dT

∣∣∣∣
coex

=
∆H(A0)

T ∆V
. (1.22)

The ∆H is different from the bulk value since the binding energy of the liquid drop changes
when a particle is emitted. Using the leptodermous expansion and the fact that a monomer
has zero binding energy

∆H(A0) ' ∆E(A0) = −av(A0 − 1) + as(A0 − 1)2/3 + avA0 + asA
2/3
0 , (1.23a)

' av −
2

3
asA

−1/3
0 . (1.23b)

Recall that av is a property of the bulk system and is equivalent to the ∆H of the bulk
system. Integrating the Clausius-Clapeyron equation with this value of ∆H yields

p(A0) = p∞ exp

[
2as(T )

3TA
1/3
0

]
, (1.24)

where p∞ is the coexistence vapor pressure in the bulk. This equation is known as the Kelvin
equation, albeit in terms of A

1/3
0 as opposed to the typical presentation as a function of the

radius R of the drop.
Notice how the derivation of Eq. 1.24 is the approximation for the case that the vapor

is ideal. The complement correction is a consistent way of finding the finite size correction
for clusters of any size [Mor05]. Consider the change in free energy between a liquid drop
and a residual liquid drop with a small cluster. The Fisher droplet model suggests that the
change in energy and entropy are

∆E = c0 [Aσ + (A0 − A)σ − Aσ0 ] , (1.25a)

∆S =
c0

Tc
[Aσ + (A0 − A)σ − Aσ0 ]− τ log

[
A(A0 − A)

A0

]
+ log(q0). (1.25b)

The cluster concentrations for the saturated vapor of a liquid drop is predicted to be

nA = q0

(
A(A0 − A

A0

)−τ
exp

[
−c0 (Aσ + (A0 − A)σ − Aσ0 )

(
1

T
− 1

Tc

)]
, (1.26a)

' nA∞ exp

[
σc0A

A1−σ
0

(
1

T
− 1

Tc

)]
, (1.26b)

where nA∞ is the cluster concentration in bulk coexistence. The second equation is a Taylor
expansion of the first and is in a form analogous to Eq. 1.24.

The exact details of the analysis of the nuclear data are presented elsewhere [Mor11;
Ell13]. The corrections due to the Coulomb force and the finite size effects are just two
examples of how the physical system differs from the bulk properties we are interested in.
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Figure 12. The scaled charge yields for all six reactions. Over 500 points are collapsed onto a
single curve which describes the behavior of bulk nuclear matter. The color of the points shows the
charge of the fragments. The solid line shows the liquid–vapor coexistence curve of bulk nuclear
matter. Here � is an effective chemical potential that depends on the effects of finite size, the
Coulomb force, angular momentum and isospin. See [81] for further details.

and at the critical point

pc = Tc

∑
A

nA(Tc) = Tcq0

∑
A

A−τ . (51)

The density is given by

ρ =
∑
A

AnA(T ) =
∑
A

q0A
1−τ exp

(
−asA

σ ε

T

)
(52)

and at the critical point

ρc =
∑
A

AnA(Tc) = q0

∑
A

A1−τ . (53)

Using the reduced quantities removes the unknown normalization q0. All other quantities in
the above sums are known. The errors associated with Tc, τ and σ are propagated to generate
errors on the reduced quantities.

8.1.2. Reduced density. The empty squares in figure 13 show the vapor branch of the ρ–T
phase diagram of nuclear matter, albeit in reduced form. The empty circles in figure 13 show

25

Figure 1.6: The scaled isotopic yields from nuclear collisions. Adapted from [Ell13].

Fig. 1.6 shows the experimental yields of the different masses scaled together from dif-
ferent experiments. The collapse of the data to a single line shows the validity of the Fisher
droplet model. The extracted critical temperature from the fit to each of the experiments
consistently yields a value of 17.9±0.4 MeV.

The construction of the phase diagram as a function of the reduced variables is accom-
plished by using the fit parameters and the ideal cluster law. The phase diagram in absolute
units requires finding a suitable value of q0 in the Fisher model. The absolute measure of
the coexistence densities are pressures are found through a combination of Guggenheim scal-
ing of the coexistence densities and the known density of ground state nuclei. Guggenheim
scaling suggests that the liquid and vapor coexistence densities are related as

ρ`,v = 1 + b1

(
1− T

Tc

)
± bβ

(
1− T

Tc

)β
, (1.27)

where the upper sign is for the liquid phase and the bottom sign is for the vapor. The
reduced vapor density predicted from the Fisher droplet model can be used to determine b1
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Figure 14. Left: the pressure–temperature coexistence curve for bulk nuclear matter. Right:
the temperature–density coexistence curve for bulk nuclear matter. Errors are shown for selected
points to give an idea of the error on the entire coexistence curve.

via the sums in equations (52) and (53) (open circles in figure 13) to solve for ρl/ρc at low
temperatures by ‘reflecting’ them about the line defined by equation (56). Thus

ρl

ρc

= 2 + 2d1ε − ρv

ρc

. (57)

The results are shown by the empty squares in figure 13. The error bars on ρl/ρc are equal to
the error bars on ρv/ρc.

8.1.3. Density. To obtain a ρl,v–T coexistence curve in a non-reduced form (e.g. temperature
in units of MeV and density in units of nucleons per cubic fermi) we first multiply the
temperature axis by Tc. Errors on the temperature scale are then given by

δT = δTc

(
T

Tc

)
. (58)

To determine the density in units of nucleons per cubic fermi we note that at T = 0 the
density of nuclear matter should be approximately the density observed in unexcited nuclei.
Using the value of r0 = 1.2181 fm the density of nuclear matter at T = 0 is

ρl (T = 0) = 3

4πr3
0

≈ 0.132 A fm−3. (59)

That value sets the scale on the density axis. The results are shown in figure 14 and we obtain
a critical density value of ρc = 0.06 ± 0.02 A fm−3 which agrees well with theoretical efforts
[7, 83–85].

8.1.4. Pressure. To determine the coexistence curve for pressure as a function of temperature
we again start with the reduced quantities and obtain p/pc as a function of T/Tc by performing
the sums in equations (50) and (51). We then determine the value of pc from the compressibility
at the critical point which is defined as

Zc = pc

ρcTc

. (60)
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ρl

ρc

= 2 + 2d1ε − ρv

ρc

. (57)

The results are shown by the empty squares in figure 13. The error bars on ρl/ρc are equal to
the error bars on ρv/ρc.

8.1.3. Density. To obtain a ρl,v–T coexistence curve in a non-reduced form (e.g. temperature
in units of MeV and density in units of nucleons per cubic fermi) we first multiply the
temperature axis by Tc. Errors on the temperature scale are then given by

δT = δTc

(
T

Tc

)
. (58)

To determine the density in units of nucleons per cubic fermi we note that at T = 0 the
density of nuclear matter should be approximately the density observed in unexcited nuclei.
Using the value of r0 = 1.2181 fm the density of nuclear matter at T = 0 is

ρl (T = 0) = 3

4πr3
0

≈ 0.132 A fm−3. (59)

That value sets the scale on the density axis. The results are shown in figure 14 and we obtain
a critical density value of ρc = 0.06 ± 0.02 A fm−3 which agrees well with theoretical efforts
[7, 83–85].

8.1.4. Pressure. To determine the coexistence curve for pressure as a function of temperature
we again start with the reduced quantities and obtain p/pc as a function of T/Tc by performing
the sums in equations (50) and (51). We then determine the value of pc from the compressibility
at the critical point which is defined as

Zc = pc

ρcTc

. (60)

27

Figure 1.7: The experimental phase diagrams of nuclear matter in absolute units. Adapted
from [Ell13].
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and bβ. The liquid density is predicted to be

ρ`/ρc = ρv/ρc + 2bβ

(
1− T

Tc

)β
. (1.28)

The absolute phase diagrams are found by scaling the liquid density at zero temperature to
the known value from ground state nuclei.

The phase diagrams of bulk nuclear matter are shown in Fig. 1.7. These plots are the first
experimental phase diagrams of nuclear matter. Whereas the liquid drop model describes
nuclei in their ground states, these diagrams extend our understanding of nuclei to the regime
of finite temperatures. For example, consider the temperature-density phase diagram. At
zero temperature, the vapor phase is a vacuum of zero density and the liquid phase is the
known saturation density of nuclei. The phase diagram shows the trend of the density as
the temperature is increased. The straight line in the middle of the diagram is the average
of the two densities at a given temperature. It demonstrates the symmetric nature of the
phase diagram relative to other systems such as shown in Fig. 1.4.

Just as the phase diagrams in Fig. 1.7 are constructed from nuclear collision experiments,
they also allow for predicting the results of such experiments. The phase coexistence has
implications in any study of thermal nuclei, such as studies of the symmetry energy as a func-
tion of temperature. Also, to understand the dynamical processes in nuclear collisions, first
the thermal properties need to be established to be able to differentiate the two phenomena.

The combination of a concise physical picture of nuclear collisions combined with the
Fisher droplet model makes the construction of the nuclear phase diagram possible. One
goal of this thesis is to determine the reliability of this novel use of the Fisher droplet model
to demonstrate the accuracy of these predictions for the nuclear system.

1.5 Goals of the Project

The purpose of this work is to study the reliability of using cluster theories to construct
liquid-vapor phase diagrams, driven by the recent developments in creating an experimental
phase diagram of nuclear matter.

To accomplish this goal, first the phase diagrams of molecular systems are considered.
The Fisher droplet model represents an equation of state for a vapor below the critical point.
This equation of state exhibits an extended principle of corresponding states whereby the
systems do not scale solely by their reduced variables. The observation that molecular vapors
can be described via this theory emphasizes the physical relevance of cluster theories.

Second, computer simulations of a Lennard-Jones fluid at coexistence are performed to
study physical clusters. The configurations generated by the simulation are considered with
different cluster definitions. A physically consistent cluster definition leads to ideal clusters
that reflect the thermodynamics of the system.



CHAPTER 1. INTRODUCTION 20

Third, these clusters found in the model system are shown to exhibit Fisher scaling. This
allows for the generation of the phase diagram for the system through only considering the
physical clusters of the vapor.

The combination of these considerations demonstrate the validity of using the Fisher
droplet model to construct a phase diagram of nuclear matter.
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Chapter 2

Evidence of the Fisher Droplet Model
in Molecular Fluids

The purpose of this chapter is to consider the validity of the Fisher droplet model as the
equation of state of a vapor. The goal is to observe the prediction of the Fisher droplet
model in the experimental phase diagrams of molecular fluids. Such an analysis requires no
reference to the physical clusters that are present in the system.

The equation of state that is derived from the Fisher droplet model demonstrates an
extended principle of corresponding states. Phase diagrams of different systems can be
scaled in terms of their reduced variables and the system dependent constant c0 found in
the equation for cluster concentrations. The scaled phase diagrams can then be compared
to the results of the Fisher droplet model to establish the validity of the model to describe
the phase diagrams of real systems.

2.1 Extended Principle of Corresponding States

According to the principle of corresponding states, the equations of state for different molec-
ular systems can be scaled to one another despite having different intermolecular potentials.
In particular, the phase diagrams of different systems are the same when the variables are
scaled to the critical point values. In this way many molecular systems do scale together,
but there is a marked variability between others. The concept of an extended principle of
corresponding states is to find additional scaling parameters that explain these differences.

An early example of an extended principle of corresponding states is from Pitzer, which
relies on dividing different systems based upon the acentric factor ω [Pit55]. The acentric
factor is effectively the slope of the reduced pressure-temperature phase diagram which in
turn is dictated by ∆H/Tc as seen in the Clausius-Clapeyron relation. The acentric factor
is defined such that ω = 0 for the original set of systems considered by Guggenheim [Gug45;
Gug93] and other systems are predominately ω > 0. Pitzer’s interpretation of this variation
in the phase diagrams is that polyatomic systems have a non-zero acentric factor because the
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center of the attractive force does not coincide with the center of the molecule but rather the
center of each atom within the molecule. The theory is that systems with the same acentric
factor exhibit the principle of corresponding states.

A more recent approach to an extended principle of corresponding states is suggested
by Noro and Frenkel [NF00]. Noro and Frenkel suggest using a reduced form of the second
virial coefficient as the third parameter as opposed to Pitzer’s acentric factor. The second
virial coefficient is a measure of the range of interaction relative to the size of a molecule’s
repulsive core and thus relates to a microscopic aspect of the system. Despite the fact that
different reduced second virial coefficients do give rise to different scalings between systems,
this correlation is empirical; there is no theory that predicts the relationship between the
microscopic properties of the system and the phase diagram.

The Fisher droplet model is shown to follow an extended principle of corresponding
states. As with previous studies of the extend principle of corresponding states, different
systems can be divided into different groups which scale by their reduced variables. The
Fisher droplet model goes a step further and suggests that the equation of state of these
different groups can be scaled together.

2.1.1 The Fisher equation of state

The Fisher droplet model was originally developed to study critical phenomena in the vapor
phase in terms of clusters [Fis67b; Fis67a]. The utility of the model has thus historically fo-
cused on the vicinity of the critical point. However, the Fisher droplet model, in conjunction
with the ideal cluster laws, creates an entire equation of state for a vapor. For example, the
pressure p as a function of temperature T and chemical potential µ is

p(T, µ) = T
∞∑
A=1

q0A
−τ exp

[
−c0A

σ

(
1

T
− 1

Tc

)
+
A(µ− µcoex)

T

]
, (2.1)

where µcoex is the chemical potential at coexistence for the respective temperature.
This equation of state is only valid for the vapor phase below the coexistence chemical

potential and below the critical temperature. The term linear in A in the exponential causes
the sum in Eq. 2.1 to diverge when the chemical potential is above the coexistence chemical
potential. This divergence is related to the inability of the theory to explain the nature
of the liquid phase. The argument for why the equation of state is valid only below the
critical point is more phenomenological. The value c0(1/T − 1/Tc) is related to the surface
tension of the liquid. The surface tension is zero above the critical temperature leading
to the conclusion that this equation of state is unphysical above the critical point even for
chemical potentials that produce a convergent sum in Eq. 2.1.

An important aspect the Fisher equation of state is that it exhibits an extended prin-
ciple of corresponding states where the constants q0, c0, and Tc are system dependent and
completely determine the nature of the phase coexistence. The exponents τ and σ have the
same value for every system due to arguments of universality of critical exponents.
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The constant q0 in the Fisher equation of state has units of inverse volume and is directly
related to the critical density of the system. The critical density in the Fisher equation of
state is

ρc = q0

∞∑
A=1

A1−τ = q0ζ(τ − 1), (2.2)

where ζ(x) is the Riemann zeta function.
The two other system dependent constants c0 and Tc both have units of energy. The

Fisher droplet model suggests that these are two independent energy scales within a system
that affect the equation of state.

Consider the coexistence pressure and density as a function of temperature, all in reduced
units, in the Fisher equation of state

p

T

Tc
pc

=
1

ζ(τ)

∞∑
A=1

A−τ exp

[
c0

Tc
Aσ
(
Tc
T
− 1

)]
, (2.3a)

ρ

ρc
=

1

ζ(τ − 1)

∞∑
A=1

A1−τ exp

[
c0

Tc
Aσ
(
Tc
T
− 1

)]
. (2.3b)

The phase diagrams of different systems are expected to all scale in terms of reduced variables
when they have the same value of c0/Tc. Furthermore, the Fisher theory offers insight into
how the equation of state is changed when the ratio of the two energy scales vary, thus going
a step further than previous studies of an extended principle of corresponding states.

The Fisher equation of state suggests that the phase diagram of all systems scale if
plotted as a function of c0(1/T − 1/Tc). This scaled and shifted temperature scale takes
into account the difference between the two energy scales c0 and Tc within a system. Notice
that the pressure itself does not scale with this parametrization but the pressure divided by
the temperature does. For brevity in the remainder of this thesis, phase diagrams including
pressure divided by temperature are referred to solely as the pressure. This scaling can
be directly tested in real fluids by determining the value of c0 for different systems and
comparing them to the results of the Fisher equation of state.

2.2 Scaled Pressure-Density Phase Diagrams

One method to test the Fisher scaling in real fluids is to consider the pressure-density pro-
jection of the phase diagrams. An advantage of using this projection of the phase diagram
is that it avoids needing to define c0 for each system since Eq. 2.3 is a parametric equation
of the variable c0(1/T − 1/Tc).

Fig. 2.1 is a plot of the 73 molecular fluids, listed in Appendix 1, from the NIST Chemistry
WebBook graphed as a function of their reduced variables [LMF11]. Also plotted is the
equation generated from the Fisher equation of state in Eq. 2.3. All of these phase diagrams
scale nicely to each other, indicating the accuracy of the Fisher equation of state.
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Figure 2.1: The reduced pressure-density phase diagrams of molecular fluids. Amongst the
points is a line showing the prediction from the Fisher equation of state.

The scaling at low temperatures is indicative of the critical compressibility Zc being
constant for all the systems, where

Zc =
pc
Tcρc

. (2.4)

At low temperatures, the coexistence vapor is nearly ideal and the compressibility approaches
Z = 1. As a result, the low temperature scaling of the reduced phase diagrams is predicted
to be

p

Tρ
= 1 (2.5a)

=⇒ p

T

Tc
pc

=

(
ρ

ρc

)(
ρcTc
pc

)
. (2.5b)

The Fisher equation of state predicts the slope of the phase diagrams at low temperatures
to be

ρcTc
pc

=
ζ(τ − 1)

ζ(τ)
' 3.607, (2.6)

using the nominal value of τ = 2.2088(2) [Cam02; PV02]. Fig. 2.2 shows the values of Zc
for the molecular fluids. The trend of increasing Zc with Tc is beyond the theory presented
here but is a small perturbation to the constant value.
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Figure 2.2: The inverse of the critical compressibility for molecular fluids. The line is the
value predicted from the Fisher equation of state.

The scaling at high temperature is consistent with critical scaling where the the pressure
and density scale as

1− p

T

Tc
pc
∼
(

1− ρ

ρc

)1/β

, (2.7)

where β is a critical exponent with the value β = 0.3265(3). This scaling is emphasized
in a logarithmic plot showing the asymptotic trend as the system approaches the critical
point, as in Fig. 2.3. Not only is the critical exponent consistent, the prefactor is the same
for all the systems when plotted in this reduced form. Furthermore, the observed scaling is
predicted by the Fisher equation of state.

The pressure-density projection also allows for comparing how the liquid phase scales
using this parametrization. Fig. 2.4 is the phase diagram consisting of both the vapor
and liquid phases. The left part of the curve shows the consistency of the vapor phase as
discussed. To the right are the liquid densities. The pleasing scaling observed in the vapor
phase is not present in the liquid phase. In part, this lack of scaling is not surprising since the
Fisher equation of state only describes the vapor phase. The aspect that is not immediately
clear is how the vapor phase at coexistence can be determined with no information about
the liquid phase.

The pressure-density phase diagram is a convenient projection to test the Fisher equation
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Figure 2.3: The reduced pressure-density phase diagrams of molecular fluids plotted loga-
rithmic scale to show the critical scaling. The line shows the prediction from the Fisher
equation of state.

of state since it avoids defining c0 for a system. The resulting reduced phase diagrams are
all described by the Fisher equation of state and supports the validity of the Fisher theory
throughout the entire range of liquid-vapor phase coexistence.

2.3 A Working Definition of c0

The value of c0 for a system must be defined to test the temperature dependence of the
Fisher equation of state. The correspondence between the Fisher theory and the Clausius-
Clapeyron relation suggests that c0 is related to ∆H of evaporation whereas the derivation
of the Fisher droplet model suggest that c0 is related to the surface tension. This connection
between the volume and surface energies is not necessarily consistent and makes a concrete
definition of c0 elusive.
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Figure 2.4: The reduced pressure-density phase diagrams of molecular fluids including the
liquid branch of the coexistence.

2.3.1 Fisher equation of state and the Clausius-Clapeyron
relation

One interpretation of c0 of the Fisher droplet model comes from comparing the Fisher equa-
tion of state with the Clausius-Clapeyron relation, where the enthalpy of evaporation ∆H
at low temperatures relates directly to c0. The typical assumption used with the Clausius-
Clapeyron relation is that the vapor is ideal and the liquid has a volume per particle that is
negligible compared to that of the vapor. The change in enthalpy between the two phases is
also approximated as being constant. The resulting coexistence pressure is

p = p0e
−∆H/T , (2.8)

where p0 is a system dependent constant.
The low density limit for a real vapor as an ideal gas corresponds to a system of only

monomers in cluster theories. The pressure predicted at low temperatures in the Fisher
equation of state is

p = T q0 exp

[
−c0

(
1

T
− 1

Tc

)]
, (2.9a)

= p′0Te
−c0/T , (2.9b)
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where all the temperature independent constants are collected into p′0.
Comparing Eq. 2.8 and Eq. 2.9b shows that the two approximations yield slightly different

mathematical forms of the coexistence pressure. Namely, there is a factor of T in the Fisher
theory that is not in the equation derived through the Clausius-Clapeyron relation.

A small change in the approximations used in the Clausius-Clapeyron relation yields an
equation for the vapor pressure identical to the Fisher equation of state. Instead of assuming
that ∆H is constant, the change in energy ∆E = ∆H − p∆v is assumed to be constant.
Integrating the Clausius-Clapeyron equation with this approximation yields

p = Tp′0e
−∆E/T , (2.10)

just as in Eq. 2.9b. The Fisher droplet model predicts the numerical value for p′0, which is
not predicted in the Clausius-Clapeyron relation. The accidental agreement of experimental
phase diagrams with Eq. 2.8 has historically motivated the argument that ∆H is constant
whereas the Fisher equation of state is consistent with ∆E being constant. The practical
application of using the enthalpy of evaporation to approximate the phase diagram is not
highly changed since ∆H ' ∆E at low temperatures.

Eq. 2.9b and Eq. 2.10 are equivalent when c0 = ∆E. It is interesting to note that c0 in
the Fisher droplet model is interpreted as a surface energy but ∆E is the volume energy.

2.3.2 The surface and volume energy coefficients

There is a precedent for the correspondence between the surface and volume energy coef-
ficients of the leptodermous expansion. A dense system will have the surface and volume
coefficients be of the same order of magnitude. This phenomenon is a result of the geometric
origin of the two terms of the leptodermous expansion. Furthermore, a system in its ground
state empirically has the two coefficients being exactly the same.

The nuclear system is an example. The liquid drop model in its traditional form predicts
av ' 16 MeV and as ' 18 MeV [MS69; RG06]. These values may not be equivalent but they
are relatively close. A recent study has extended the number of terms in the leptodermous
expansion for the nuclear system to include a curvature term and yields fits with av = as to
within error [Mor12].

A simple model system that also has av = as is a system of sticky cubes. Consider a
set of A cubic particles that do not interact except for when they are in direct contact and
bond together with an energy of −ε. The lowest energy configuration for a collection of these
particles is itself a larger cube with a binding energy BA of

BA = 3εA− 3εA2/3. (2.11)

Thus, the surface and volume energy coefficients are as = av = 3ε.
The equivalence of the surface and volume energy coefficients at low temperatures is also

seen in molecular systems. Since the liquid phase becomes metastable below the triple point
temperature compared to the vapor and solid phases, the properties of the liquid at the
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Figure 2.5: Ratio of the surface tension and the enthalpy of evaporation of molecular fluids
expressed as the coefficients of the leptodermous expansion. The line is the result if the two
terms in the expansion are equivalent.

triple point are used as a low temperature limit. The volume energy at the triple point can
be approximated as the energy of evaporation per particle and the surface energy coefficient
can be approximated as the surface tension γ. Appropriate units of energy per A2/3 are used
for the surface energy coefficient and, presuming the liquid drop is spherical, is related to
the surface tension as

as = γ

[
36π

ρ2
`

]1/3

. (2.12)

Fig. 2.5 shows the ratio of these two values for the 73 molecular systems considered. All of
the systems have the two energies within the same order of magnitude and all but four of
the systems have values within a factor of two. The difference can be explained in that the
triple point may not be a low enough temperature to be considered as a low temperature
limit.

The sticky cube model is considered again to demonstrate that the surface and volume
energy coefficients differ at non-zero temperatures. A collection of sticky cubes at a low,
non-zero temperature will be at a higher energy than the cubic ground state by creating
holes within the volume of the cube. The holes can be approximated as uncorrelated and
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evenly dispersed throughout the volume. The volume energy Ev is

Ev = −3ρεA, (2.13)

where the density ρ is the probability that any given cell is occupied. The surface energy Es
is half the energy required to cut a block of length ` out of a bulk sample,

Es =
1

2
6`2 ρ, (2.14)

where 6`2 is the surface area of the removed section. The density is used to convert Es into
a function of A2/3 and results in a leptodermous expansion of

BA = 3ρεA− 3ρ2/3εA2/3. (2.15)

The differing ρ dependence of the surface and volume energy coefficients makes av = as occur
only at the most dense state.

2.3.3 A low temperature definition of c0

The equivalence of the surface and volume energy coefficients support using the enthalpy of
evaporation at low temperatures as a possible measure of c0. Using this value of c0 generates
the scaled phase diagrams in Fig. 2.6. The scaling does not effectively describe all the systems
simultaneously but does demonstrate this value of c0 is of the right magnitude.

The effect of this scaling is to make the low temperature portion of the phase diagrams
all parallel. In general, the second derivative of the phase diagrams at the triple point are
not zero. This feature suggests that the triple point is too high in temperature to use the
approximation that as = av. Furthermore, using the triple point as a reference temperature
is inconsistent since it occurs at different values of the scaled temperature.

A c0 defined by a low temperature property does not scale the phase diagrams of molecular
systems effectively, despite the predictions of the Fisher theory. Some combination of not
having a sufficiently low temperature for the system and inaccuracies of the Fisher theory
to describe low temperature makes this approach of defining c0 insufficient.

2.3.4 Relation of c0 and the surface tension

The surface tension itself can be used as a measure of c0 in the Fisher droplet model. The
surface tension is the Helmholtz free-energy per unit surface area of a bulk surface. Upon
inspection of the Fisher droplet model, the temperature dependence of the surface free-energy
Fs for large A is

Fs = γSA = c0A
σ

(
1− T

Tc

)
, (2.16)
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Figure 2.6: The reduced pressure-temperature phase diagrams of molecular fluids using the
enthalpy of evaporation at the triple point as the value of c0. The line is the result of the
Fisher equation of state.

where γ is the surface tension and SA is the surface area of a droplet. This relation suggests
a linear relation of the surface tension as a function of temperature as the critical point is
approached. Empirically, the critical scaling of the surface tension is

γ ∼
(

1− T

Tc

)2ν

, (2.17)

where the critical exponent ν describes the limiting behavior of the correlation length and is
ν = 0.63012(16) [Cam02; PV02]. Despite this discrepancy of the critical scaling, the surface
tension is roughly linear over a large temperature range away from the critical point.

An alternative approach to scale the phase diagrams of molecular fluids is to plot the
pressure as a function of the surface tension directly, instead of as a function of c0(1/T−1/Tc).
The conversion of the surface tension into the surface energy coefficient requires the relation
of the surface and volume of a drop as a function of A as in Eq. 2.12 for the case of a spherical
cluster. The expected result for Fisher droplets is unclear since the clusters are distinctively
non-spherical with σ 6= 2/3.

Fig. 2.7 is a plot of the scaled pressure-surface tension phase diagram for the molecular
systems along with the result from the Fisher equation of state. There is a decent amount of



CHAPTER 2. MOLECULAR FLUIDS 32

10
−4

10
−3

10
−2

10
−1

0 2 4 6 8 10 12

1

p

T

Tc

pc

as
T

Figure 2.7: The reduced pressure-surface tension phase diagrams of molecular fluids. The
surface tension is converted into units of the surface energy coefficient from the leptodermous
expansion. The line is the prediction of the Fisher equation of state.

scatter in the scaling of the systems. The largest deviations come from methanol, water and
heavy water, fluids that form hydrogen bonds. The presence of hydrogen bonding gives rise
to anomalous physics for these systems compared to the majority of molecular fluids. The
fourth system with pronounced deviations is 1,1,1-trifluoroethane. This fluid is observed to
have an uncharacteristic maximum in its surface tension above the triple point temperature.

Beyond the scatter between the phase diagrams of molecular systems, the prediction from
the Fisher theory has a much larger slope than the observed trends in the molecular fluids.
These observations call into question the interpretation of the Fisher droplet model being
motivated by an empirical description of the surface tension and eschews finding a physical
interpretation of the constant c0 in the Fisher droplet model.

2.3.5 Consistent scaling at the critical point

Using the physical properties of fluids is seen to be insufficient in consistently scaling the
phase diagrams of molecular fluids. This observation does not imply that the Fisher equation
of state is incorrect. Rather, the approximations and interpretations of the constants in the
Fisher model are not accurate.
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A direct comparison of the Fisher equation of state to the observed phase diagrams
allows for a sufficient scaling of all systems. This goal is accomplished by considering the
Fisher equation of state in the limit of the critical temperature. For example, the slope
of the reduced pressure-temperature phase diagram as a function of inverse temperature is
expected to be finite at the critical point,

lim
T→Tc

d

d 1/T

(
p

T

Tc
pc

)
= −c0

ζ(τ − σ)

ζ(τ)
. (2.18)

The slope at the critical point is proportional to c0 and the proportionality constant is
ζ(τ − σ)/ζ(τ) ' 1.598. Scaling the phase diagrams to this empirical value of c0 scales the
systems at the critical point. What is not trivial is how consistent the scaling is away from
the critical point.

Fig. 2.8 is a plot of the reduced pressure-temperature phase diagrams scaled using a fitted
value of c0 near the critical temperature. Not only do the phase diagrams all scale near the
critical point, they scale together over the entire temperature range.

The notable exceptions are helium, hydrogen, and para-hydrogen. It is curious to note
that despite helium not scaling with the other molecular systems, the Fisher equation of
state does describe its entire phase coexistence. It is difficult to tell if this trend is physically
significant or coincidental without a concept of why real systems are not well described by
the Fisher equation of state.

By definition, the Fisher equation of state describes the scaling at the critical point well
using this definition of c0. However, the Fisher equation of state has different scaling at
low temperatures. The fact that this value of c0 consistently scales all the real fluids over
the whole temperature range indicates that it is physically significant. Unfortunately, the
mathematical form of this scaling is not described by the Fisher equation of state at low
temperatures.

2.4 Scaled Temperature-Density Phase Diagram

In principle, the scaling of the vapor branch temperature-density phase diagram is ensured by
the previously demonstrated scaling of the density-pressure and pressure-temperature phase
diagrams. Nevertheless, the scaling of the phase diagrams in this projection is important
in context of previous studies of phase coexistence. In particular, the Guggenheim scaling
and the law of rectilinear diameter can be discussed in the context of the Fisher equation of
state.

Fig. 2.9 demonstrates the scaling of the vapor branch temperature-density phase diagrams
of molecular fluids using the same definition of c0 as in the previous section. The top plot of
the figure is the density on a logarithmic scale as a function of inverse temperature, analogous
to to the typical representation of the pressure-temperature phase diagram. The bottom plot
shows the consistency of the scaling at the critical point.
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Figure 2.8: The reduced pressure-temperature phase diagrams of molecular fluids using a
value of c0 to consistently scale the systems at the critical point. The line is the result of the
Fisher equation of state.

The observed deviations in the scaling and the Fisher equation of state are analogous to
the deviations found in the pressure-temperature projection. The similarity of the deviations
are anticipated due to the ideal nature of the gas at low temperatures.

What is more impressive is the consistency of the scaling at the critical point. The
critical scaling in the pressure-temperature projection is ensured since the definition of c0

was based upon this scaling. The consistency of the density-temperature phase diagram at
the critical point demonstrates how the Fisher equation of state can simultaneously describe
the pressure and the density as a function of temperature.

2.4.1 The Fisher equation of state and Guggenheim scaling

Guggenheim’s work on the principle of corresponding states produced an approximation for
the reduced coexistence densities as a function of reduced temperature [Gug45; Gug93]. The
coexistence densities are proposed to be

ρ`,v
ρc

= 1 + b1

(
1− T

Tc

)
± bβ

(
1− T

Tc

)β
, (2.19)
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Figure 2.9: The reduced temperature-density phase diagrams of molecular fluids. The line
is the result of the Fisher equation of state. The two plots are different representations of
the same data to emphasize the scaling at low temperatures (top) and temperatures near
the critical point (bottom).
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where b1 and bβ are system dependent constants. The upper sign is for the liquid phase and
the lower sign is for the vapor. The original scaling proposed by Guggenheim has β = 1/3,
b1 = 3/4, and bβ = 7/4. In light of the fact that not all systems follow the principle of
corresponding states, the equation suggested by Guggenheim is generalized to have b1 and
bβ be any value. The exponent β is a critical exponent and is kept constant for all systems
as β = 0.3265(3).

This equation for the Guggenheim scaling should be treated as a form of critical scaling
since the low temperature limit of Eq. 2.19 is unphysical. For example, the original values
of b1 and bβ produce an equation that predicts negative vapor densities. These negative
densities occur below the typical triple point temperatures of molecular fluids and thus this
unphysical prediction is not a major concern in comparing the equation to experimental
data.

An accurate description of the vapor density at low temperatures can be predicted using
its ideal nature and the Clausius-Clapeyron relation. These approximations are consistent
with the low temperature limit of the Fisher equation of state,

lim
T→0

ρv ∼ q0 exp

[
−c0

(
1

T
− 1

Tc

)]
, (2.20a)

∼ ρ0e
−c0/T , (2.20b)

where ρ0 contains the temperature-independent constants. This equation is in contrast to
the less accurate form of the Guggenheim scaling at low temperatures.

The Fisher equation of state can be expanded at the critical point into the same form as
Eq. 2.19. The analytic behavior of the Fisher equation of state is deduced by approximating
the sum over all cluster concentrations by an integral. Care must be taken to convert a sum
into an integral to avoid introducing unnecessary errors to the result.

One example of inappropriately converting a sum into an integral is in calculating the
critical density. Consider the exact value and the respective integrated value of ρc,

ρc = q0

∞∑
A=1

A1−τ = q0ζ(τ − 1), (2.21a)

' q0

∫ ∞
1

A1−τ dA =
q0

τ − 2
. (2.21b)

The nature of the zeta function makes this approximation inappropriate for values of τ close
to 2. For example, there is an 11% difference in the two values for the value τ = 2.2088(2).
To avoid this incongruity, the value ρc − ρ is considered,

ρc − ρv = q0

∑
A1−τ (1− e−cAσ) , (2.22a)

' q0

∫
A1−τ (1− e−cAσ) dA, (2.22b)
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where the temperature dependence is rewritten as c ≡ c0(1/T − 1/Tc) to simplify the ex-
pressions.

The difference between a sum and the corresponding integral is found in the Euler-
Maclaurin relation

b∑
i=a

f(i) =

∫ b

a

f(x) dx− f(a)− f(b)

2
−
∞∑
k=1

B2k

(2k)!

[
f (2k−1)(a)− f (2k−1)(b)

]
+R, (2.23)

where B2k are the Bernoulli numbers and R is a small, function dependent error. This
relation shows that the properties of f at the initial and final values of the sum are the
source of error in approximating a sum as an integral.

The values of the cluster concentration and all derivatives are zero in the limit of large A
and there are no errors associated with the upper limit of the sum in converting the Fisher
sum into an integral. This is not true for A = 1, and the sum can be further modified by
making the first term in the sum equal to zero to lessen this error

ρc − ρv = q0

(
1− e−c

) ∞∑
A=1

A1−τ + q0e
−c0

∞∑
A=1

A1−τ (1− e−c(Aσ−1)
)
, (2.24a)

' q0ζ(τ − 1)
(
1− e−c

)
+ q0e

−c0
∫ ∞

1

A1−τ (1− e−c(Aσ−1)
)
dA. (2.24b)

This integral is analytical and produces the following approximation for the vapor density

ρc − ρv ' q0ζ(τ − 1)(1− e−c) +
cβ

βσ
Γ(1− β, c), (2.25)

where β = (τ − 2)/σ and Γ(s, x) is the incomplete gamma function. This equation of ρc−ρv
is found to be accurate to within less than a percent of the numerical summation over the
entire temperature range. It is less accurate when compared to the density itself due to
differing asymptotic behavior at low temperatures.∗ The study here is concerned with the
critical scaling so this deviation is inconsequential.

The asymptotic behavior of Eq. 2.25 at the critical point is equivalent to the Guggenheim
expression. The constants bβ and b1 can be predicted using the parameters in the Fisher
model

bβ =
Γ(1− β)

βσζ(τ − 1)

(
c0

Tc

)β
' 1.196

(
c0

Tc

)β
, (2.26a)

b1 =

(
1

σβ(1− β)ζ(τ − 1)
− 1

)(
c0

Tc

)
' 0.324

(
c0

Tc

)
. (2.26b)

∗A precise equation can be produced by keeping the first term of the sum separate and taking the integral
starting at A = 2 using the technique already described. This ensures the low temperature asymptotic
behavior is consistent and the density is correct to within one percent over the entire temperature range.
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Figure 2.10: The fit parameters of the Guggenheim scaling for the molecular vapors. The
lines represent the predicted values from the Fisher theory critical scaling.

It should be noted that the value for bβ is exact but the term for b1 is not due to higher
order terms in the Euler-Maclaurin expansion of the sum. Comparison to numerical values
of the sum indicate that the error in b1 is about 2%. The only system dependent variable
that affects the Guggenheim scaling is the ratio c0/Tc, where the constants to the left are
composed solely of critical exponents and are constant for all systems. Furthermore, these
equations predict that bβ and b1 are not independent.

The results of equation Eq. 2.26 can be tested by fitting the Guggenheim scaling relation
in Eq. 2.19 to the molecular phase diagrams. There are several ways that Eq. 2.19 can be fit
to the data. A typical way is to fit the sum and difference of the liquid and vapor densities
and presume that the values of b1 and bβ are the same for the two phases. The focus of the
Fisher equation of state is only the vapor phase and as such only the vapor densities are
used to fit the Guggenheim scaling in this case. The liquid density is considered separately.

Fig. 2.10 is a plot of the fitted values of b1 and bβ as a function of c0/Tc for the molecular
fluids with the lines corresponding to the prediction found in Eq. 2.26. The values of bβ are
well described by this prediction. The value of b1 are less clearly related to the prediction
but are correlated with c0/Tc with a linear dependence.

Equations of the form b1 = α1(c0/Tc) and bβ = αβ(c0/Tc)
β can be fit to the extracted
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Figure 2.11: The predicted phase diagram from the Fisher equation of state as a function of
(1−T/Tc) with c0/Tc = 4.5. The line is a fit of the Guggenheim scaling with b1 = 0.25(c0/Tc)
and bβ = 1.20(c0/Tc)

β.

values of b1 and bβ for the molecular systems. This yields αβ = 1.20, consistent with the
predicted value from the Fisher theory, and α1 = 0.25, which is significantly smaller than
the predicted value.

The difference in slopes is due to fitting Eq. 2.19 to the data versus extracting the critical
scaling directly. The equation for the Guggenheim scaling can be fit to the predicted Fisher
phase diagram to demonstrate that the observed values of b1 are consistent with the Fisher
theory. The relation between (1 − T/Tc) and c0(1/T − 1/Tc) requires a definite value of
c0/Tc and c0/Tc = 4.5 is used to represent a typical value from the molecular fluids. Also,
only values of (1 − T/Tc) < 0.45 are considered to imitate the presence of a triple point.
The result is shown in Fig. 2.11 and the fit parameters are found to be b1 = 0.25(c0/Tc)
and bβ = 1.20(c0/Tc)

β. These values are unchanged upon varying the value of c0/Tc and are
consistent with the values from the molecular systems.

The Fisher equation of state effectively explains the observed Guggenheim scaling of the
vapor densities at coexistence. Furthermore, the two constants b1 and bβ are related to each
other, a result which is empirically observed in molecular fluids. What remains to be seen
is how this scaling relates to the liquid phase.
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2.5 Evidence of the Fisher Equation of State in the

Liquid Phase

The Guggenheim scaling of the temperature-density phase diagram implies a connection
between the nature of the liquid and vapor densities at coexistence. The constants b1 and
bβ are assumed to be equal for the two phases in Eq. 2.19 and the only difference in the
equation is the change of sign for the term proportional to (1 − T/Tc)

β. This connection
between the two phases would allow to evaluate the liquid coexistence densities from the
Fisher equation of state.

The validity of the Guggenheim scaling can be tested by fitting Eq. 2.19 separately to
each phase. The plots in Fig. 2.12 show the correlation found in the fit parameters of the
two phases. The values of bβ are approximately equal between the two phases but the values
of b1 differ.

Consider the agreement of bβ in the two phases. The equivalence of bβ in the two phases
gives rise to the empirical law of rectilinear diameter. If bβ differed in the two phases then
the average of the liquid and vapor densities is

ρ` + ρv
2ρc

= 1 +
1

2
(b`1 + bv1)

(
1− T

Tc

)
+

1

2
(b`β − bvβ)

(
1− T

Tc

)β
. (2.27)

The limiting critical behavior of the diameter would have a critical exponent of β. Even
though the limiting behavior of the diameter is debated [ZM72; SP90], the critical exponent
associated with this phenomenon is indisputably not β. Having the value of bβ equal in the
two phases is consistent with the critical scaling of the temperature-density phase diagram.

There is no analogous arguments for the values of b1 to be the same in the two phases.
The difference in the liquid and vapor densities with differing values of b1 is

ρ` − ρv
ρc

= (b`1 − bv1)

(
1− T

Tc

)
+ (b`β + bvβ)

(
1− T

Tc

)β
. (2.28)

The limiting critical behavior is unchanged by the addition of a linear term in the above
equation. This equation is physically possible and is a reminder that critical scaling typically
does not consider higher order terms.

Unfortunately, the possibility of b1 being different for the two phases makes it more
difficult than suggested by the Guggenheim scaling to determine the liquid density based
only upon the vapor density. There may be some relation between the value for the two
phases, as seen in Fig. 2.12, but it is unclear what it is.

The value 1
2
(b`1 + bv1) is referred to as the asymmetry in the temperature-density phase

diagram. Each system has a different liquid density at low temperatures determined by this
asymmetry. Fig. 2.13 is a plot of the reduced phase diagram including the liquid phases
to show the variety of limiting densities between the different fluids. The differences in the
limiting liquid densities makes scaling the liquid densities in the same fashion as the vapor
densities impossible.
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Instead of trying to scale systems of different c0/Tc simultaneously, consider the weaker
statement of the extended principle of corresponding states that systems with different c0/Tc
do not scale together. The arguments made thus far are consistent with all systems having
the same critical behavior when scaled appropriately. At lower temperatures the scaling is
not consistent for systems of different c0/Tc. The bottom portion of Fig. 2.13 is a plot of the
reduced liquid and vapor densities from a constant value of c0(1/T−1/Tc) = 1.5, as indicated
with the horizontal line in the top plot. The variability of the vapor densities correlating
with the liquid densities suggest that the nature of the liquid phase can be deduced from
knowing the vapor densities, but is beyond the physics of the Fisher equation of state.

2.6 Conclusion

The Fisher droplet model constitutes an equation of state for a vapor that is quantitatively
consistent with the experimental phase diagrams of molecular fluids. Despite cluster analysis
being an impractical way to study real fluids, the physics of clusters is still detectable in
the thermodynamics of phase coexistence. It is necessary that such signals are found in real
fluids for the Fisher droplet model to be a predictive theory.

The Fisher equation of state demonstrates an extended principle of corresponding states.
There are three system dependent parameters that fully specify the nature of the fluid’s
phase coexistence. Two of these parameters account for the variability in size and depth
of the intermolecular potential as in the original principle of corresponding states. The
third parameter accounts for the variability observed in the phase diagrams of the molecular
systems plotted as a function of their reduced variables. Furthermore, the Fisher equation
of state suggests that the phase diagrams can all be consistently scaled as a function of a
reduced and shifted temperature, c0(1/T − 1/Tc).

The validity of the theory is demonstrated in comparing the phase diagrams of 73 different
molecular systems. The variability in these systems makes finding a consistent description
ambitious. The systems included vary from small to large molecules, such as methane versus
dodecane, systems with weak van der Waals forces to strong hydrogen bonding, such as
neon versus water, and highly quantal systems to heavy systems with indisputably classic
behavior, such as helium versus xenon. Different projections of these phase diagrams reveal
different aspects of the liquid-vapor phase coexistence.

The consistency of the scaling in the reduced density-pressure projection shows the va-
lidity of the Fisher theory without a need of defining c0 for each system. The fact that the
critical compressibility is constant for all the systems is immediately demonstrated in this
projection. Furthermore, the critical scaling of the density and pressure are simultaneously
described by the theory.

The reduced pressure-temperature projection allows for studying the physical origin of
the parameter c0. At low temperatures, the Fisher theory is consistent with the Clausius-
Clapeyron relation when c0 is interpreted as a volume energy as opposed to a surface energy.
The correspondence of the surface and volume energy coefficients is a general feature of
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leptodermous systems. At higher temperatures, the relation of c0 as being the surface tension
is unreliable. Ultimately, a consistent definition of c0 is found by describing the critical
scaling of the pressure-temperature phase diagram. The resulting scaling consistently scales
the phase diagrams of molecular fluids, albeit not consistently with the Fisher theory at low
temperatures.

The scaling observed in the temperature-density projection demonstrates the consistency
of defining c0 from the pressure-temperature projection. The Fisher equation of state offers
insight to the Guggenheim scaling of the temperature-density phase diagram. The coefficients
of this scaling, b1 and bβ, are predicted to be directly related to the parameter c0/Tc, which is
observed in the molecular systems. This scaling is reliable in describing the vapor densities
but the ability of predicting the liquid densities using the Guggenheim scaling is less reliable.

The Fisher droplet model offers many insights to the nature of liquid-vapor phase coexis-
tence. Ultimately, the Fisher equation of state does not completely describe all the properties
of coexistence. Nevertheless, it is impressive how the theory leads to a consistent scaling of
the phase diagrams of such a diverse set of molecular fluids. These observations validate the
predictive power of the Fisher droplet model to predict the liquid-vapor phase coexistence
of a fluid.
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Chapter 3

Physical Clusters in the
Lennard-Jones Model

The purpose of this chapter is to consider the clusters found in molecular simulations of
the Lennard-Jones model. Different cluster definitions are considered to find clusters that
are consistent with our perception of what a cluster is. Furthermore, the ideal cluster law
is tested with these physical clusters, establishing their physical relevance. The intentions
of using the Fisher droplet model to build a phase diagram are predicated on these basic
properties of physical clusters.

3.1 Molecular Simulations

3.1.1 General overview

Molecular simulations consider a collection of particles interacting through a model potential.
The number of particles modeled is small compared to most experimental situations, but
large enough such that the thermodynamic limit is sufficiently obtained. Average values of
observables are then related to the thermodynamic properties of a bulk system.

There are two classes of molecular simulations: molecular dynamics and Monte Carlo.
The Newtonian equations of motion are integrated in discrete time steps in molecular dy-
namics simulations whereas small changes of the system are randomly created in the Monte
Carlo simulations. Both type of simulations satisfy detailed balance and generate the same
distribution of microstates.

Ensemble averages of a molecular simulation are performed as follows. An initial configu-
ration of the particles is generated and small changes are sequentially applied to the system.
After one iteration the system is highly correlated with the initial state and the small changes
are applied until the system is sufficiently uncorrelated. Statistics of the system are then
collected at this correlation time scale to determine ensemble averages which are directly
related to the thermodynamics.
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Model systems are used in simulations because they are simple compared to the first
principle physics of real systems but produce analogous phenomena. This study considers
particles interacting via the pairwise Lennard-Jones potential

uLJ(r) = −4ε

[(σ
r

)6

−
(σ
r

)12
]
, (3.1)

where r is the distance between two particles. The system dependent constants ε and σ
define the minimum energy of the potential and the distance of zero binding, respectively.
This potential is analogous to intermolecular potentials, as well as internucleonic potentials,
having a repulsive core and a diffuse attractive force at larger distances. This similarity
on the microscopic level gives rise to similar thermodynamics of real systems including the
presence of liquid-vapor coexistence. Furthermore, extensive work has previously been done
on the thermodynamics of the Lennard-Jones model and the nature of its phase coexistence
is well characterized, for example [JZG93; MP07; Nat12; PP98; Smi92].

3.1.2 Modeling a coexisting vapor

Any vapor can be studied in terms of physical clusters. The ideal cluster theory is predicted
to hold for a vapor at any pressure and is not restricted to the study of coexistence. The
overarching goal of this work is to use the Fisher droplet model to describe a vapor at
coexistence. For this reason, the simulations in this work are restricted to modeling the
Lennard-Jones system at liquid-vapor coexistence.

A technique known as the Gibbs ensemble Monte Carlo method is an efficient algorithm
to study a system in two phase coexistence [Pan87; Pan88]. This algorithm relies upon the
fact that the two phases do not need to be in physical contact to be in coexistence. The only
requirement of coexistence is that the two phases have the same temperature, pressure and
chemical potential.

In this algorithm, two separate volumes are used to contain each phase. The system is
changed by three separate Monte Carlo algorithms: particles are displaced within the same
container, the volume of the containers are changed such that the entire volume of the system
is constant, and particles are moved from one container to the other.

The temperature is an input parameter to the calculation. The pressure of the two
containers is equilibrated by the exchange of volume between the containers and the chemical
potential is equilibrated by the exchange of particles. The Gibbs phase rule explains why
the system will evolve towards a unique pressure and chemical potential whereby a system
in two phase coexistence is fully specified by defining the temperature. An example of a
configuration of particles generated in this simulation is shown in Fig. 3.1.

The purpose of this work is to study the clusters found in the vapor phase, but the Gibbs
ensemble Monte Carlo simulation generates both the vapor and liquid phases. Simulating a
liquid is computationally more difficult than simulating a vapor and is unnecessary in the
present study. As such, the Gibbs ensemble Monte Carlo technique is used as a means to
measure the coexistence vapor density and a more efficient canonical Monte Carlo algorithm
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Figure 3.1: An example configuration generated by the Gibbs ensemble Monte Carlo method
at a temperature of T = 1.15ε. The bonds are to show proximity of particles and have no
physical significance.

Table 3.1: Details of the Gibbs ensemble Monte Carlo calculations. The values on the left
of the line are parameters of the calculation and to the right are derived quantities and
previously reported values.

Simulation details This work Previous work [Nat12]
T (ε) N Vtot (σ3) Nsim ρv (σ−3) ρ` (σ−3) ρv (σ−3) ρ` (σ−3)

1.00 4800 1.317×104 2437 0.02942(5) 0.69951(9) 0.029569(7) 0.70102(10)
1.05 4800 1.350×104 3402 0.04046(5) 0.67071(8) 0.040655(9) 0.67215(11)
1.10 4800 1.381×104 3709 0.05478(6) 0.63911(9) 0.055077(9) 0.64080(12)
1.15 4800 1.419×104 3291 0.07365(9) 0.60364(11) 0.074118(9) 0.60520(9)
1.20 4800 1.454×104 3664 0.09881(11) 0.56120(13) 0.10034(3) 0.56316(5)
1.25 4800 1.514×104 4668 0.13495(14) 0.50586(17) - -
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Table 3.2: Details of the canonical ensemble calculations. The values on the left of the line
are parameters of the calculation and to the right are derived quantities.

Simulation details This work Previous work [Nat12]
T (ε) N V (σ3) Nsim p (ε/σ3) log(z) p (ε/σ3) log(z)

1.00 1885 6.4×104 10000 0.024891(8) -3.8357(2) 0.024958(5) -3.83428(11)
1.05 2590 6.4×104 10000 0.034266(11) -3.5966(2) 0.034360(7) -3.59507(10)
1.10 3507 6.4×104 10000 0.045894(16) -3.3853(2) 0.046020(7) -3.38410(7)
1.15 4715 6.4×104 10000 0.06007(2) -3.1976(2) 0.060211(7) -3.19707(6)
1.20 6326 6.4×104 10000 0.07693(3) -3.0322(2) 0.077225(14) -3.03072(8)
1.25 8617 6.4×104 10000 0.09670(4) -2.8850(2) - -

is then used to model only the vapor phase. This method produces more statistics to better
study the cluster concentrations.

A common practice in molecular simulations is to use a cut-off parameter in the pair
potential. This implementation makes calculations faster by only having to consider the
interactions of nearby pairs of r < 3σ. Studies have shown that using a cut-off parameter
affects the measured coexistence properties, most notably near the critical point [Smi92]. It
is standard practice when using a cut-off potential to apply long range corrections to the
observed averages. The calculations herein do not use a cut-off parameter to ensure that
the observed clusters are a property of the true potential. The size of the container creates
a natural cut-off of interaction giving rise to a distance greater than 10σ, causing minimal
effects to the system.

The temperatures studied are from T = 1.00ε to T = 1.25ε in 0.05ε intervals, compared to
the triple point temperature of Tt ' 0.684ε [MP07] and critical temperature Tc = 1.3120(7)ε
[PP98]. The considered temperatures are large enough to have an appreciable vapor pressure
and low enough to have a clear differentiation between the liquid and vapor phases.

A summary of the Gibbs ensemble Monte Carlo calculations are presented in Tab. 3.1
including the values for the temperatures T , number of particles N , volume V , and number
of uncorrelated realizations Nsim. The measured coexistence densities and values reported in
previous studies are also listed [Nat12]. The values are not within error, but are consistent.
The differences arise from the different techniques used, including the algorithm of finding
coexistence and the corrections for using a cut-off parameter.

The same simulation details as reported for the Gibbs ensemble Monte Carlo simulations
are shown for the canonical simulations in Tab. 3.2. The measured pressures and chemi-
cal potentials are reported and compared to the values of previous studies. The chemical
potential is reported in terms of the fugacity z

z = Λ−3eµ/T . (3.2)



CHAPTER 3. PHYSICAL CLUSTERS 49

The values agree within the same precision as the coexistence densities.
Molecular simulations allow the study of model systems on a microscopic basis. Gibbs

ensemble Monte Carlo simulations are an efficient way to establish coexistence properties.
Given the vapor density, a canonical calculation of the vapor allows for collecting a large
number of statistics to study physical clusters.

3.2 Cluster Definitions

Defining clusters from simulation realizations is distinct from the cluster theories that give
predictions about a system’s thermodynamics. For example, the ideal cluster theory could
be read as “there exists a partition of the system such that the generated clusters are related
to the thermodynamic functions,” but offers no insight into what partition gives rise to this
relation. The partitioning of a system into clusters has no effect on the simulation itself.
Rather, the clustering is only an interpretation of the generated configurations.

The most important aspect of a cluster is the geometric proximity of the particles, and
a simple formulation of clusters is to just consider the proximity of particle pairs. Two
particles are bound together in the same cluster if they are within a certain distance. An
ambiguity arises in this type of cluster definition: How far apart can two particles be to be
considered bound? For the Lennard-Jones model, the force between particles is attractive
for all distances of r > σ and asymptotically goes to zero at large distances. It is obvious
that two particles on opposite sides of a container are uncorrelated, but assigning a value to
the cut-off is ambiguous.

Previous studies of lattice systems give insight into this problem. One choice for a
cluster definition in the Ising model is to have all neighboring particles be of the same
cluster [SG76; Bre05]. This is a logical choice since the only particles which interact in
the model are neighboring particles but it produces unphysical clusters despite its simplicity.
One way that these clusters are unphysical is in the way that the pressure predicted from the
temperature weighted sum of the cluster concentrations is lower than the observed pressure
[Bre05].

For clusters on a lattice to behave as an ideal cluster gas a bond breaking probability is
introduced [CK80]. Each pair of neighboring particles are bonded with the probability

pCK = 1− e−ε/2T . (3.3)

The resulting clusters are named Coniglio-Klein clusters and have the desired properties
of physical clusters. An analogous algorithm of breaking bonds is anticipated in continuous
systems. The goal is to find clusters that are both physically consistent and also demonstrate
the ideal cluster law.
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3.2.1 Hill clusters

One definition of clusters in a continuous system is based on the concept of stable clusters.
Consider two particles at the minimum of their interaction potential. If the relative velocity
between the two particles has a kinetic energy greater than this binding it can be expected
that these two particles are not in the same cluster. This stability is related to whether a
cluster is stable to particle emission for some finite time if left in a vacuum.

Stable clusters are also important in the dynamics of a liquid drop decaying in a vacuum.
Previous studies show that the final clusters found in the decay of a liquid drop in a vacuum
can be identified early in the evolution of the system as the stable clusters [DR93]. This
highlights the importance of stable clusters in the dynamics of the process.

The coupling of the momentum phase space with the geometric phase space has the same
effect as the Coniglio-Klein algorithm in the lattice system. In both cases the partitioning
of the particles is based on considering bonds between all pairs and breaking them with
some probability. This is done stochastically in the Ising model and based on the particles
momenta in the continuous system. Unfortunately, using stability as a criterion for clustering
is still ambiguous.

One example of a cluster definition considers the relative momentum of all pairs of par-
ticles. A pair of particles is considered to be bound if their relative momentum has a kinetic
energy less than the potential energy binding the two. These are named Hill clusters and
constitute a unique partition given the position and momenta of a collection of particles
[Hil55]. Some cutoff distance of pairs is also introduced to remove spurious bonds between
particles greatly removed in physical space with the same momentum. The benefits of such
a partitioning is in that it is unique and efficient to calculate.

Another cluster definition using stable clusters considers the most stable partition [DR93].
The stability of a given partition is calculated as follows. The potential energy between each
pair within a cluster is calculated, but not without. Also, the kinetic energy of the internal
degrees of freedom within the cluster is counted, but not the kinetic energy of the center of
mass velocity. The partition which has the lowest energy calculated this way is considered
to be the most stable. There is no precise prescription to find such a minimum except for
an exhaustive search. There are ways to find a local minimum, but the non-ergodic nature
of the problem makes finding the global minimum non-trivial. These algorithm are time
consuming compared to the pairwise considerations of the Hill clusters.

Ultimately, it is the faster, more simple algorithm which is employed in this work. This
decision is motivated by the philosophy that different partitioning methods should yield
qualitatively the same results as long as the choice is sensible, and both algorithms are
sensible in considering cluster stability.

3.2.2 Probabilistic clusters

A different approach to finding a cluster partition is to disregard the particle momenta. The
Coniglio-Klein algorithm for lattice systems is an example of this type of clusters where the
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property of two particles being in the same cluster is probabilistic.
The definition of the Hill clusters motivates an algorithm whereby the probability of

two particles at a given distance will be bound is equal to the probability that they would
be bound using the Hill algorithm. The equation for the bond probability comes from
integrating the Boltzmann distribution over the momenta that result in a bond and is

pHill(r, T ) =
Γ(3/2,−u(r)/T )

Γ(3/2)
, (3.4)

where Γ(n, x) is the lower incomplete gamma function. A partition of the system is made
by considering a bond between each pair of particles with the above probability.

The difference between this cluster definition and the Coniglio-Klein definition is in the
functional form of the bond probability. The similarity between the two definitions has
been noted before but the physical connection is still unclear [Sat03]. The Coniglio-Klein
definition is a mathematical result completely divorced from the concept of stable clusters.
It is also interesting to note that using the momentum space to define clusters is sensitive
to the dimensionality of the system. Contrarily, the results leading to the Coniglio-Klein
clusters show that the bond breaking probability is the same for systems in any dimensional
space.

3.2.3 Comparing cluster definitions

It is expected as a first order approximation that the cluster concentrations generated by the
Hill and probabilistic algorithms are the same. This similarity is due to the equipartition
theorem. The canonical partition function can be separated into the independent momentum
space and Cartesian space and implies that the probability of finding a set of momenta is
independent of the location of the particles. Assigning random momenta to each particle
weighted by the Boltzmann distribution yields the same cluster distributions as using the
measured momenta. In effect, this is what the probabilistic cluster algorithm does.

Fig. 3.2 shows the difference in cluster concentrations of the two algorithms for clusters
up to size 5. There are statistically significant differences in the two cluster yields originating
from a subtle difference in the two definitions. A random number is drawn for each pair of
particles in the probabilistic algorithm. This is contradictory insofar as the definition of Hill
clusters are concerned because it implies a random momentum is drawn for a given particle
for each bond it can form. For example, a fast moving particle is less likely to be bound
with any other particle using the Hill algorithm, but this correlation is not captured in the
probabilistic algorithm.

The monomer concentrations and the sum of cluster concentrations are important in
establishing the ideal cluster law. These two values vary little between the two cluster
definitions and thus lead to similar predictions of the thermodynamic properties. The trend
for larger clusters is more complicated, where it is temperature dependent which algorithm
produces more clusters of a given size. The discrepancies become more pronounced for larger
clusters.
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Figure 3.2: The difference in cluster concentrations from the two cluster algorithms. The
value ∆nA is the difference between the Hill and probabilistic clusters, nHillA − nprobA .
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There are reasons to prefer the probabilistic clusters despite the fact that they do not
form stable clusters. There are unphysical properties associated with the Hill clusters which
then questions the utility of using stable clusters as the physically relevant partition.

The anomalous behavior of stable clusters can be summarized in the phrase “a hot gas of
cold clusters” [Sat00]. The act of binding pairs of particles with a slow relative momentum
results in clusters not having a kinetic energy characterized by a Boltzmann distribution.
The internal degrees of freedom are colder. If the kinetic energy of the internal degrees
of freedom are relatively cold to the physical temperature, then the kinetic energy of the
cluster’s center of mass momentum will be hotter to conserve the total kinetic energy of the
system. This is in direct contrast to the probabilistic clusters where the kinetic energy of all
the degrees of freedom within a cluster are thermal with the thermodynamic temperature,
by construction.

The total kinetic energy of a cluster can be divided into the energy of the normal modes
to demonstrate this effect in stable clusters. There are 3A normal modes of a cluster of size
A which are divided into three types: translational, rotational, and vibrational. Three of the
degrees of freedom are associated with the center of mass translational momentum. Another
three degrees of freedom, for systems of A > 2, are associated with rotational momentum
and the kinetic energy of this motion is found by diagonalizing the inertia tensor of the
cluster. The remainder of the kinetic energy is associated with the vibrational degrees of
freedom.

A thermal system has an energy distribution in a set of d modes as

P (E)dE =
1

T Γ(d/2)

(
E

T

)d/2−1

e−E/T dE. (3.5)

Plotting the energy distribution as

F (E)dE ≡ T Γ(d/2)

(
T

E

)d/2−1

P (E)dE (3.6)

produces the same exponential trend for all the distributions. Fig. 3.3 demonstrates the
difference of kinetic energy distributions from clusters generated by the two algorithms. The
results show that all the kinetic energies of the probabilistic clusters follow the expected
trend, but the trends found for the Hill clusters do not follow a Boltzmann distribution of
any temperature. For example, the translational motion follows the correct trend at high
energies, but there is a deficiency of clusters at lower energies. The smaller clusters, in effect,
are colder than the larger clusters in their internal degrees of motion. This is opposed to the
probabilistic clusters which follow the physical intuition of thermodynamic equilibrium.

The potential energy of the clusters are also considered. The potential energy is divided
into two parts; one part is the binding energy of the cluster and the other is the potential
energy associated with the residual cluster-cluster interactions. Fig. 3.4 gives an example of
the average potential energies of the clusters showing the qualitative attributes are consistent
between the different cluster types. The residual energy per particle is constant for all cluster
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sizes and equal in the two cluster definitions. The Hill clusters have less binding energy on
average than the probabilistic clusters. This is surprising in that the Hill clusters are colder
in their internal kinetic energy yet have a higher potential energy.

The presence of a system being described with more than one temperature is discomfort-
ing. A system in equilibrium is completely described by a single temperature. This directly
leads to the question of the physical significance of stable clusters, especially in consideration
of the ideal gas properties hoped for these clusters. If the center of mass velocities is what
gives rise to the pressure of the system, then the pressure would be too high from stable
clusters.

The idea of using stable clusters as physical clusters is misleading. It implies that the
clusters are well formed and persist for a measurable time in the system. At low temperatures
this may be true, but the correlations at high temperatures are fleeting. There is nothing
contradictory in considering a fast moving particle as a part of a cluster, even if it has little
spacial correlation to the rest of the cluster a moment later.

The concentrations generated by the two cluster algorithms are similar, which is impor-
tant in the context of a liquid drop decaying in a vacuum. Previous studies indicate that
the clusters found at large times can be identified as the stable clusters at short times of a
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hot liquid drop being placed in a vacuum [DR93]. Even though the physical significance of
these clusters in reference to the system’s thermodynamics is questionable, they correctly
represent the concentrations of the physically consistent probabilistic clusters.

3.3 Clusters as an Ideal Gas

The ideal cluster law suggests that the physical clusters of a system are related to the bulk
properties of the vapor. One way to test the ideal cluster law is to compare the temperature
weighted sums of the concentrations to the mechanical pressure of the system. The ideal
cluster law predicts

p = T
∞∑
A=1

nA. (3.7)

Another way to test the ideality of the clusters is to consider the monomer concentrations
compared to the system’s chemical potential. The monomer concentration is predicted to be

n1 = q1e
µ/T = z, (3.8)

where q1 = Λ−3, since monomers have no internal structure. Both the pressure and the
chemical potential can be measured in the simulations and directly compared to the cluster
concentrations.

The pressure of a simulation is calculated using the virial theorem. The pressure is related
to the average force F felt upon the particles

p = ρT − 1

3V

〈
N∑
i=1

ri · Fi

〉
(3.9a)

= ρT − 1

3V

〈
N−1∑
i=1

N∑
j=i+1

rij
d u(r)

d r

∣∣∣∣
r=rij

〉
. (3.9b)

The virial of each configuration is measured and averaged to determine the pressure.
Fig. 3.5 shows a comparison of the temperature weighted sums of the cluster concentra-

tions versus the pressure of the system. The sum of cluster concentrations are close to the
same for the two cluster definitions and data from only the probabilistic clusters are shown.
Also plotted is the pressure of the system using the ideal gas law, p = ρT , showing the
extent that clustering changes the pressure of the system. A majority of the non-ideality
is accounted for in the clustering, and the resulting temperature weighted sums approxi-
mate the actual pressure within 25% for the highest pressure and is more accurate for lower
temperatures.

The chemical potential of a system is measured via the Widom insertion method [Wid63].
The fugacity is related to the following ensemble average involving the change in energy ∆E
upon the addition of a particle at a random location

z = Λ−3eµ/T = ρ
〈
e−∆E/T

〉−1
. (3.10)
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Figure 3.5: The difference between the thermodynamic pressure and the temperature
weighted sums of cluster concentrations. The filled points represent the pressure of the
system if it were an ideal gas. The unfilled points are the predicted pressures using the ideal
cluster gas.

Fig. 3.6 presents the results of comparing the monomer concentrations to the measured
fugacity. Also shown is the fugacity that would be observed for each system if the vapor
were ideal, Λ−3eµ/T = ρ. This comparison gives a sense of the effect clustering has on the
system. The same general trend is seen in the chemical potential as in the pressure.

These two tests of the ideal cluster theory show the success of the clustering algorithms
used to produce a physically relevant partition. The observed clusters are well described by
the ideal cluster law and account for most of the non-ideality of the vapor. The discrepancies
represent a source of error in predicting the bulk properties of the vapor using clusters.
Perhaps a different cluster algorithm could produce more ideal clusters but the current
algorithm is accurate enough to relate physical clusters to the thermodynamics of a vapor.

3.4 Conclusion

The connection between physical clusters to the bulk properties of a vapor is not trivial.
Molecular simulations allow the study of clusters in the Lennard-Jones model to test the
ideal cluster theory.
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Stable clusters are an intuitive approach to partitioning the system into clusters. These
clusters are seen to have properties contradictory to the concept of thermal equilibrium
despite their simplicity. Probabilistic clusters are physically consistent and are favored for
this reason. The similarity in cluster concentrations found in the two cluster algorithms
makes this choice superficial in the context of testing the ideal cluster theory.

The ideal cluster theory is tested by comparing the cluster concentrations to the bulk
properties of the Lennard-Jones vapor. Namely, the sum of cluster concentrations are related
to the pressure and the monomer concentrations are related to the chemical potential. The
relations are not exact but nevertheless establish the connection between the clusters and
the bulk properties.
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Chapter 4

From Fisher Scaling to Phase
Diagrams

The purpose of this chapter is to demonstrate the predictive power of the Fisher droplet
model in the Lennard-Jones system. Here, the ideas discussed in Chapter 2, the validity of
the Fisher equation of state, and Chapter 3, the relevance of physical clusters, are combined
to generate the phase diagram of the Lennard-Jones model.

An analogous analysis as done with the molecular systems in Chapter 2 is done for the
Lennard-Jones model to establish the relevance of the Fisher equation of state for the system.
Then, Fisher scaling is shown to be observed in the physical cluster concentrations discussed
in Chapter 3. The fitted parameters of this scaling is then used to extrapolate the phase
diagrams for all temperatures.

4.1 The Fisher Equation of State and the

Lennard-Jones Model

As established in Chapter 2, the Fisher equation of state effectively describes molecular
vapors. Given that the Lennard-Jones fluid is phenomenologically similar to molecular fluids,
the Fisher equation of state is anticipated to be a valid representation of the equation of
state for the system.

The Fisher equation of state is parametrized by five constants, τ , σ, q0, c0, and Tc, as
found in the equation that describes the cluster concentrations, nA [Fis67a; Fis67b],

nA(T ) = q0A
−τ exp

[
−c0A

σ

(
1

T
− 1

Tc

)]
. (4.1)

As is done in Chapter 2 for molecular fluids, nominal values of these five parameters can be
established by considering the observed phase coexistence of the fluid.

The constants τ and σ are critical exponents and are the same for all fluids and have
nominal values of 2.2088(2) and 0.6395(4), respectively [PV02; Cam02].
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Figure 4.1: Phase diagrams of the Lennard-Jones fluid. The solid line is the phase coexistence
reported in the literature [Nat12; JZG93], with the points from the measurements made in
this work. The dashed line is the predicted phase coexistence using the nominal values of
the parameters in the Fisher equation of state.
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The values of Tc and q0 are established by the critical point properties of the fluid. The
critical temperature for the Lennard-Jones model is Tc = 1.3120(7)ε [PP98] and the value of
q0 is predicted from either the critical density or the critical pressure,

ρc = q0ζ(τ − 1) (4.2a)
pc
Tc

= q0ζ(τ). (4.2b)

The Lennard-Jones model has a critical density of ρc = 0.316(1)σ−3 and critical pressure of
pc = 0.1279(6)ε/σ3 [PP98]. Two slightly different values for q0 are predicted using the above
equations. These two values are within 10% of each other and the value suggested by the
critical pressure is q0 = 0.0657(3).

As described in Chapter 2, the value of c0 in the Fisher theory has no clear thermodynamic
interpretation. The slope of the pressure-temperature phase diagram at the critical point
produces a consistent value of c0 for molecular fluids, where

lim
T→Tc

d

d 1/T

(
p

T

Tc
pc

)
∼ −ζ(τ − σ)

ζ(τ)
c0. (4.3)

The expected value of c0 for the Lennard-Jones model is c0 ' 4.29ε. Systems with the same
value of c0/Tc demonstrate the principle of corresponding states. The above value of c0

corresponds to c0/Tc ' 3.27 and is comparable to the values associated with the noble gases,
c0/Tc ' 3.1.

In Fig. 4.1, the predicted phase diagrams using these five nominal values in the Fisher
equation of state are compared to the measured phase diagrams of the Lennard-Jones fluid
[Nat12; JZG93]. As with the experimental phase diagrams of molecular fluids, the Fisher
equation of state correctly predicts the phase coexistence near the critical point but is less
reliable in describing the trend at lower temperatures.

These evaluations of the Fisher theory parameters are determined by thermodynamic
properties. Next, the relation of the physical clusters to this form of the equation of state is
established.

4.2 Fisher Scaling of Physical Clusters

Chapter 3 shows how the physical clusters observed in molecular simulations relate to ther-
modynamic properties, independent of the mathematical description of the cluster concen-
trations as a function of size and temperature. Here, the size distribution is studied in light
of the Fisher droplet model.

To give context to the cluster concentrations as a function of inverse temperature, Fig. 4.2
shows the concentrations for clusters of up to size 10. The Arrhenius nature of the concen-
trations is revealed by the linear trends as a function of 1/T . The lines in Fig. 4.2 are the
linear fits done independently for each cluster size and are plotted to guide the eye.
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Figure 4.2: The physical cluster concentrations of the Lennard-Jones model for clusters up
to size A = 10.

An effective way to demonstrate Fisher scaling of the cluster concentrations is to scale
the concentrations and temperature for each cluster size such that all the data falls on a
single trend. Rearranging the Fisher equation for the cluster concentrations yields

nA
q0A−τ

= exp

[
−c0A

σ

(
1

T
− 1

Tc

)]
, (4.4)

showing that all the cluster concentrations collapse onto a single linear trend when the
concentrations scaled by q0A

−τ are plotted as a function of c0A
σ(1/T − 1/Tc).

A first attempt of scaling the cluster concentrations is to use the nominal values of the
five parameters as discussed in the previous section and is shown in the top panel of Fig. 4.3.
The data do collapse relative to the unscaled concentrations but do not completely follow
a single trend. This result is not completely surprising when considering the success of the
Fisher equation of state to reproduce the coexistence in the temperature range considered,
as seen in Fig. 4.1.

A better scaling of the data is obtained by fitting the five parameters to the measured
cluster concentrations. The bottom panel of Fig. 4.3 shows the results and the fitted pa-
rameters are reported in Tab. 4.1. The data collapse is visually pleasing and effectively
described by a single trend. Despite this visual agreement, the reduced chi-squared of the
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Table 4.1: A summary of the five parameters of the Fisher theory. The nominal values
are deduced from thermodynamic properties of the fluid and the fit values are from fitting
Eq. 4.4 to the cluster concentrations.

Parameter Nominal Value Fit Value

τ 2.2088(2) 2.190(4)
σ 0.6395(4) 0.748(2)
Tc (ε) 1.3120(7) 1.3689(14)
q0 (σ−3) 0.0657(3) 0.1100(5)
c0 (ε) '4.29 5.614(7)

fit is χ̃2 = 28.6 indicating that the fit is not statistically accurate. Furthermore, the values
of the fit parameters are also questionable compared to the nominal values.

First, consider the critical exponents. The extracted value of τ is within 1% of the
nominal value. This indicates that the cluster concentrations extrapolate to the anticipated
power law at the critical point. This is in contrast to the extracted value of σ, which is 17%
percent larger than the nominal value. The implication is that the surface of a cluster is not
spherical and compact, but rather are of a smaller fractal dimension.

The extracted critical temperature is within 5% of the nominal value despite the discrep-
ancies of some of the fit parameters. This observation suggests that the critical point can be
sufficiently deduced from cluster concentrations away from the critical point.

The same cannot be said of the critical pressure or density which depends on the constant
q0. The extracted value of q0 is almost double the nominal value and leads to a similar
doubling of the predicted critical density and pressure. Furthermore, the nature of the zeta
function magnifies the error found in τ , especially in calculating the critical density. The
smaller value of τ leads to even larger predictions of the critical density and pressure.

The elusive nature of c0 makes it difficult to compare the extracted value to the nominal
value. The value of c0 is dictated by the monomer concentrations due to the overwhelming
statistics associated with the smaller clusters. Differences between the measured phase dia-
grams and those predicted from the Fisher theory in Fig. 4.1 give rise to the extracted c0 to
be larger than the nominal value. This observation is reflected in the fitted value.

In summary, the Fisher droplet model can be used to effectively describe the concentra-
tions of physical clusters in the Lennard-Jones model. Not all of the fitted parameters match
with the nominal values; some of these differences can be explained at this level of study but
others require a more thorough study of the clusters. Regardless of these incongruences, it is
emphasized that the measure of the critical temperature is accurate and is effectively found
from a fit to the cluster concentrations away from the critical point.



CHAPTER 4. FISHER SCALING 65

4.3 A Further Look Into Fisher Scaling

The Fisher droplet model makes several approximations to arrive at a succinct formulation of
the cluster concentrations. Some of these approximations may differ from the actual cluster
concentrations observed in a simulation. Examples of these approximations are the Arrhenius
nature of the cluster concentrations, the simplification of the cluster surface energy, and the
relation between the surface energy and the surface entropy.

The Arrhenius nature of the cluster concentrations can be exploited to investigate the
cluster energy and entropy independently. The general form of the cluster concentrations in
terms of the surface energy Es and surface entropy Ss is

log nA = −Es(A)

T
+ Ss(A). (4.5)

It is assumed in the derivation of the Fisher droplet model that Es and Ss are temperature
independent. If this is true, Es and Ss for each cluster size can be found by fitting the above
equation to the respective concentrations and can be compared to the predictions of the
Fisher theory.

Another assumption of the Fisher theory is in the definition of the surface energy of the
clusters as Es = c0A

σ. This assumption is predicted to be inaccurate due to the difference
between the fitted and nominal values of σ. The extracted values of Es from the fits to
Eq. 4.5 allow for a direct study of this assumption.

A third assumption of the Fisher model is in the direct relation of the surface entropy
with the surface energy and critical temperature. If the assumed surface energy term is
inaccurate, how does that affect the surface entropy? The relations between Es, Ss, and Tc
are significant aspects of the Fisher theory and need to be better understood.

These three assumptions are considered in turn.

4.3.1 Arrhenius trends of cluster concentrations

Up to this point the Arrhenius trend of the cluster concentrations has been assumed to
be correct. Here the validity of this assumption is considered. The validity of using the
Arrhenius theory is found through considering the reduced chi-squared values when fitting
Eq. 4.5 to the cluster concentrations for different cluster sizes. The fits of the equation for
the first ten cluster sizes are seen in Fig. 4.2. The χ̃2 of the fits as a function of cluster size
are shown in Fig. 4.4. Cluster sizes up to A = 33 are studied, corresponding to clusters that
were observed in at least three of the modeled temperatures. A χ̃2 value near 1 indicates
that the theory is statistically consistent with the data.

It is observed that the large cluster sizes have a χ̃2 value near 1 and the Arrhenius
theory statistically describes the data. On the contrary, the χ̃2 for A < 10 are larger than 5,
indicating that the Arrhenius theory is not exact. This observation is consistent with the idea
that the Arrhenius trend is a first order approximation for the cluster concentrations. The
success of the Arrhenius theory is predicated upon the values of Es and Ss being constant
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Figure 4.4: The χ̃2 of fitting the Arrhenius equation, Eq. 4.5, to the cluster concentrations.

as a function of temperature. The large statistics for the smaller cluster sizes give rise to
measurements with enough precision that higher order terms accounting for the change in
Es and Ss become measurable..

The Arrhenius theory is observed to be accurate in describing the cluster concentrations
at coexistence. The level of accuracy is higher than what is observed in using the Fisher
equations.

4.3.2 Cluster surface energy

The validity of the Arrhenius theory indicates that the cluster surface energy is constant as
a function of temperature. The A dependence of the surface energy is studied by considering
the slopes of the Arrhenius trends as shown in Fig. 4.5. The top plot shows the result of
fitting the whole range of cluster sizes using the surface energy found in the Fisher droplet
model, Es = c0A

σ. The fitted parameters are consistent with those found from fitting all
cluster sizes simultaneously with the Fisher equation, with c0 = 5.614(12) and σ = 0.748(3).
As discussed previously, this value of σ is significantly larger than the nominal value of
0.6395(4). As evidenced by a chi-squared of χ̃2 = 111, this parametrization of the surface
energy is insufficient to describe the cluster concentrations.

The Fisher droplet model was initially derived to describe the concentrations of large
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clusters at the critical point and the validity of using this equation for clusters as small as
A = 1 is not immediately evident. Furthermore, the dominance of the large statistics for
A = 1 heavily weighs the fit to the small clusters. The role of the smallest cluster sizes can
be removed by fitting the equation to only larger cluster sizes. The same fit of Es = c0A

σ for
clusters of A > 5 is shown in the bottom panel of Fig. 4.5. The fit describes the larger cluster
energies well, with χ̃2 = 0.4525. What is surprising is that the fit suggests σ = 0.804(2), a
value even larger than the overpredicted value generated in the previous fit.

An alternative form of the surface energy is also considered in an attempt to improve
the evaluation of the surface energy. The leptodermous expansion can be used to fit the
energies, where the exponent σ is set equal to 2/3 and the curvature term is introduced,

Es = asA
2/3 + arA

1/3. (4.6)

Fig. 4.6 displays the results for fitting both the entire range of cluster sizes and for A > 5, as
was done for the previous fits. The same pathology is observed as for the previous fits; the
fit is only consistent for the larger cluster sizes. The fitted parameters for the larger cluster
sizes are as = 9.98(6) and ar = −6.03(11), resulting in a fit with χ̃2 = 0.5178.

Using the leptodermous expansion for c0 alludes to the thermodynamic property to which
it is supposedly related, the surface tension. The difference between the surface tension γ and
the constant c0 is discussed in Chapter 2, with the conclusion that there are irreconcilable
differences between the two. It is still worth commenting on the relation of the two terms
found in the fit of the leptodermous expansion for the case of the Lennard-Jones model.

As discussed in Chapter 2 in context of molecular fluids, the surface tension, converted
to units of per A2/3, of the Lennard-Jones model is linear with temperature and goes to zero
at the critical point [Nat12]. Interpreting c0 as the slope of this plot yields c0 = 13.58(13).
It is curious to note that the inclusion of a curvature term in the surface energy raises the
value of c0 closer to this value. Unfortunately, this interpretation is unphysical because it
does not explain the scaling at the critical point which suggests a value of c0 ' 4.29. The
critical scaling is unchanged by the presence of a curvature term.

It is also interesting to consider the value of the curvature term and its relation to the
Tolman length [Tol49]. The surface energy is written in terms of a droplet’s radius R as

Es = γ

(
1− 2δ

R

)
R2, (4.7)

where γ is the surface tension and δ is the Tolman length. The curvature term is related to
the Tolman parameter as

δ = − ar
2as

[
3

4πρ`

]1/3

. (4.8)

Using a coexistence liquid density found at T = 1.00ε, the observed curvature coefficient gives
a Tolman length of δ = 0.211(4)σ. There is no general consensus on what the Tolman length
in the Lennard-Jones system should be and is an area of current research [GB09; GB02;
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WF98]. The sign of the Tolman length is even debated. The value found here is consistent
with many published values, being positive and a few tenths of a particle’s diameter. The
questionable connection between the surface tension and these surface energies makes the
significance of this extracted Tolman length unclear.

The surface energy for the small clusters eludes being simply parametrized. Furthermore,
the disconnect between the notions of surface tension and the role of the term c0A

σ in the
Fisher theory makes it difficult to determine what is expected for these values. The use of
c0A

σ in the Fisher theory is found to be the largest source of error in describing the physical
cluster concentrations.

4.3.3 Cluster surface entropy

It is the relation of the surface entropy and the critical temperature that makes the Fisher
theory useful in determining the limits of phase coexistence. Also, the relation of the surface
energy and entropy is an assumption used in developing the Fisher theory. These aspects of
the surface entropy can be studied through considering the Arrhenius trends in the limit of
1/T = 0.

In the Fisher theory, the surface entropy is expected to be

Ss = ln q0 − τ lnA+
c0A

σ

Tc
. (4.9)

The validity of this relation relies on three things. First, the surface entropy includes a term
proportional to the surface energy. Second, the proportionality constant between this term
and the energy is related to the critical temperature. Third, the cluster concentration follows
a power law at the critical point.

The previous section revealed the difficulty of determining a consistent description of the
surface energy and the same difficulty would be expected in defining the surface entropy.
The analysis would be simple if the higher order terms associated with the surface energy
are equivalent to those associated with the surface entropy. The slope and intercept of the
Arrhenius trends can be plotted together to determine if there is a connection between the
two. The expected relation is

Ss = ln q0 − τ lnA+
Es
Tc
. (4.10)

Fig. 4.7 is a plot of these two values along with a fit of the above equation. Not only is the
fit good with a χ̃2 = 2.261, the fit parameters are similar to the expected values. The critical
exponent τ is found to be τ = 2.2935(14) and the critical temperature is Tc = 1.3432(4). This
fit is done for all cluster sizes and correctly relates the slope and intercept of the Arrhenius
trends for all cluster sizes. This result indicates that the higher order terms that describe
the cluster energies are the same in the cluster entropy.

There may be higher order terms associated with τ that affect the cluster concentrations
at the critical point. These terms would explain why the extracted values of τ and Tc from
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Figure 4.7: A plot of the cluster surface entropy versus the cluster surface energy.

the fit are not exactly the nominal values. The accuracy of these two constants indicate that
these higher order terms are not as significant as those associated with the surface energy.

These considerations demonstrate the reliability of using the Fisher droplet model to
extract the critical temperature on the basis of cluster concentrations. Even though the
higher order terms are important in describing a cluster’s surface energy, the same terms are
found in the surface entropy. The relation of the surface energy and entropy is seen to hold
even for the smallest clusters. Furthermore, the higher order terms are not as important for
the cluster concentrations at the critical point and, as a result, the critical temperature is
accurately predicted.

4.4 Constructing Phase Diagrams

4.4.1 The vapor phase and Fisher scaling

As discussed previously, the implication of the Fisher droplet model goes beyond describing
the cluster concentrations and the critical temperature, it also allows for predicting the liquid-
vapor phase diagrams at all temperatures. Using the ideal cluster theory in conjunction with



CHAPTER 4. FISHER SCALING 72

the Fisher droplet model gives the coexistence densities and pressures,

p

T
=
∞∑
A=1

q0A
−τ exp

[
−c0A

σ

(
1

T
− 1

Tc

)]
, (4.11a)

ρ =
∞∑
A=1

q0A
1−τ exp

[
−c0A

σ

(
1

T
− 1

Tc

)]
. (4.11b)

The five parameters found from fitting the cluster concentrations are used to generate the
phase diagrams shown in Fig. 4.8. Also shown are the phase diagrams of the Lennard-Jones
system as reported in the literature [Nat12; JZG93] and the directly measured properties from
the simulations. Notice how the phase coexistence is properly described in the temperature
range of the simulations performed in this study. This agreement is due to the success of the
physical cluster theory, as discussed in Chapter 3. The slight overprediction of the pressure
is a result of the ideal cluster law overpredicting the pressure.

The agreement at low temperatures stems from the Clausius-Clapeyron equation and the
validity of assuming the vapor is ideal. The high statistics of the monomers in the simulation
give rise to an accurate description of the smallest clusters. Furthermore, the monomers
dominate the sums in Eq. 4.11 at low temperatures and create an accurate extrapolation of
the phase diagram in this region.

The extrapolation of the phase diagrams to the critical point is less accurate than for low
temperatures. The Fisher theory predicts higher densities and pressures than are actually
observed beyond the highest temperature studied in the simulations. The highest deviations
occur at the critical temperature itself, where the predicted critical density and pressure
are double the expected value, with ρc = 0.644(12)σ−3 and pc = 0.2254(11)εσ−3. These
discrepancies stem from the inability of the Fisher theory to consistently describe the larger
cluster sizes simultaneously with the small. The critical scaling is also incorrect since the
critical exponent σ differs from the nominal value.

Fig. 4.9 shows the constructed phase diagrams plotted in their reduced units. This
representation is important in the context of the nuclear phase diagram, where the absolute
concentrations are not directly measured. Instead, the relative yields of isotopes are related to
relative concentrations. As discussed in the previous paragraph, the inaccuracy of the critical
density and pressure give rise to the discrepancies found in the reduced phase diagrams.

4.4.2 The liquid phase and Guggenheim scaling

As discussed in Chapter 2, Guggenheim scaling can be used to predict the liquid coexistence
densities when given the vapor densities. Furthermore, a more accurate measure of the
critical density and pressure can be predicted if a liquid density for a single temperature is
known. This method is the only way to construct the absolute phase diagram of nuclear
matter by using the density of nuclei in their ground states.
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The premise of this method uses the scaling result suggested by Guggenheim [Gug45;
Gug93],

ρ`,v
ρc

= 1 + b1

(
1− T

Tc

)
± bβ

(
1− T

Tc

)β
, (4.12)

where the top sign is for the liquid and the bottom is for the vapor. The critical exponent
β is related to the two critical exponents of the Fisher theory by

β =
τ − 2

σ
, (4.13)

and is experimentally measured to be 0.3265(3) [PV02; Cam02]. If the constants b1 and bβ
are the same for the two phases, then the parameters can be fit to the vapor densities to
predict the liquid densities as

ρ`
ρc

=
ρv
ρc

+ 2bβ

(
1− T

Tc

)β
. (4.14)

It should be noted that this method does not predict the triple point for the system since
it does not consider the solid phase. To mock the presence of the triple point, the fit of the
vapor densities is in the temperature range 0.65 < T/Tc < 1.

A fit of Eq. 4.12 to the predicted vapor densities gives b1 = 0.6516(10), bβ = 1.5754(7),
and β = 0.25354(14). These values can also be predicted by considering the critical scaling
of the Fisher theory, as done in Chapter 2, and yields comparable results. The low value of
β is a direct consequence of having a large value of σ in Eq. 4.13. Given these fitted values,
the reduced temperature-density phase diagram is shown in Fig. 4.10.

The construction of the nuclear phase diagram in absolute units requires the use of
Guggenheim scaling. The absolute scale of the cluster concentrations are not known from
experiment, which amounts to not being able to predict q0 in the Fisher theory. This
problem is resolved by taking the known value of the nuclear saturation density and scaling
the predicted phase diagrams to this value. This procedure can be tested in the present case
of the Lennard-Jones system by considering the liquid density at the triple point, T0 ' 0.694ε
and ρ0 ' 0.84σ−3 [MP07]. The critical density is predicted by using Eq. 4.14 to be

ρc = ρ0
1

2bβ

(
1− T0

Tc

)−β
, (4.15)

presuming the vapor density is negligible. The value of the triple point liquid density leads
to predicting a critical density of ρc ' 0.319σ−3, and, upon rescaling the pressures, a critical
pressure of pc ' 0.112εσ−3. These values are significantly more accurate compared to those
measured from the Fisher scaling fit parameters.

The reason for the success of this procedure is due to the robustness of the Guggenheim
scaling and the accuracy of the Fisher scaling at low temperatures. As an analogy, consider
how the critical densities of molecular systems are measured. The direct observation of
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Figure 4.10: The temperature-density phase diagrams of the Lennard-Jones fluid compared
to those generated from the fits to the Fisher equation, including the liquid phase determined
from Guggenheim scaling.

the critical point is nearly impossible due to the fluctuations of the density near criticality.
Instead, the critical temperature is determined and the low temperature behavior of the
coexistence is used to extrapolate to the critical point via Guggenheim scaling. In effect, the
same is done in this procedure, resulting in a measure of the critical density and pressure
within 12% of the literature values.

4.5 Conclusion

The Fisher droplet model offers means of studying phase coexistence via the physical clusters
observed in a vapor at coexistence. The observation of Fisher scaling in the cluster concen-
trations demonstrates the predictive power of the Fisher theory. The precision by which
the critical temperature can be extracted from studying the system well removed from the
critical point is an important result.

Many assumptions made in the Fisher droplet model are directly tested by considering
the physical cluster concentrations. For example, the presumed Arrhenius nature of the
concentrations is demonstrated to describe the data to a high precision. Also, the connection
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between the cluster entropy and critical temperature is confirmed. The one assumption that
appears to be questionable is the assignment of c0A

σ to the surface energy of a cluster.
This one problem explains the discrepancies between the fitted values in the Fisher equation
compared to the nominal values.

The phase diagrams are effectively constructed by extrapolating the resulting fit of the
Fisher equations. The largest deviations in the predicted phase coexistence are found near
the critical point, where both the critical density and pressure are over twice the known
values. Guggenheim scaling can be used to predict the behavior of the liquid phase at
coexistence and also gives a prediction of the critical point properties within 12% of those
in the literature. The considerations reveal the reliability of the reported nuclear phase
diagram.
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Chapter 5

Concluding Remarks

Current studies of the nuclear phase diagram have shown a new application of cluster theories.
This newly found practical use of cluster theories calls for a more thorough study of the
accuracy of these models. This thesis addresses this question using a study of the Fisher
droplet model and the ideal cluster law and how they are observed in molecular fluids and
model systems.

The nuclear system is a specific instance of the general theory of liquid-vapor phase
coexistence. If the Fisher droplet model is to be used to construct the nuclear phase diagram,
then the theory can also be studied in molecular phase diagrams. In this work I first discussed
the Fisher droplet model as an equation of state. This equation of state can be studied in
molecular fluids without any direct reference to the clusters themselves. The equation of
state is consistent with an extended principle of corresponding states and I showed that the
phase diagrams of molecular fluids scale together using the theory. This demonstrates the
physical relevancy of the Fisher droplet model.

The role of physical clusters in describing the bulk thermodynamics of a system is also
important in the construction of the nuclear phase diagram. I next used computer simulations
to directly study the physical clusters of the Lennard-Jones model. The ideal cluster law
is confirmed from these simulations through considering both the relation of the clusters to
the thermodynamics of the bulk and the physical nature of the clusters themselves. Then,
I demonstrate that the cluster concentrations exhibit Fisher scaling. The implication of the
Fisher scaling is that the cluster concentrations are directly related to the critical point.
Furthermore, I show that the phase diagrams of the Lennard-Jones model are effectively
predicted.

The success of the Fisher droplet model to describe and predict the nature of phase coex-
istence of systems that have previously been studied by more traditional means demonstrate
the predictive power of the theory. Experimental observation of Fisher scaling in nuclear
collisions thus lead to an accurate prediction of the nuclear phase diagram. The systematic
errors found in using this theory are the same order of magnitude as the experimental errors,
further supporting the reliability of the reported phase diagram of nuclear matter.

The conclusions are not without their caveats and leave questions unanswered. The errors
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generated in constructing the phase diagrams from physical clusters can be separated into
two categories. One is the Fisher equation of state and the approximations found therein.
An example of an error associated with the Fisher theory is the inconsistent scaling of the
molecular phase diagrams at low temperatures. The second is the definition of physical
clusters and how they relate to the system’s thermodynamics. An example of an error of
this type is how the ideal cluster law is not exact and there is no obvious choice for an
appropriate cluster algorithm.

Future work will focus on differentiating the errors brought on by these two problems.
For example, the surface energy is seen to be improperly defined in the Fisher theory. Is
this a result of an incorrect cluster definition or is it an intrinsic property of the system’s
equation of state? I believe the study of the clusters as independent mathematical entities
will shed light on these types of questions.

The work herein further validates the technique of constructing the experimental nuclear
phase diagram. At the same time, it demonstrates the predictive nature of cluster theories
beyond application to the nuclear system.



80

Bibliography

[Ban39a] W. Band, “Dissociation treatment of condensing systems”, The Journal of Chem-
ical Physics 7, 324–326 (1939).
doi: 10.1063/1.1750444

[Ban39b] W. Band, “Dissociation treatment of condensing systems, II”, The Journal of
Chemical Physics 7, 927–931 (1939).
doi: 10.1063/1.1750346

[Bij38] A. Bijl, “Discontinuities in the energy and specific heat”, Ph.D. Thesis, Univer-
siteit Leiden, 1938.

[BR08] B. Borderie and M.F. Rivet, “Nuclear multifragmentation and phase transition
for hot nuclei”, Progress in Particle and Nuclear Physics 61, 551–601 (2008).
doi: 10.1016/j.ppnp.2008.01.003

[Bre05] D.E. Breus, “I. Excluded volume effects in Ising cluster distributions and nu-
clear fragmentation, II. Multiple-chance effects in α-particle evaporation”, Ph.D.
Thesis, University of California at Berkeley, 2005.

[Cam02] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, “25th-order high tempera-
ture expansion results for three-dimensional Ising-like systems on the simple-cubic
lattice”, Physical Review E 65, 066127 (2002).
doi: 10.1103/PhysRevE.65.066127

[CK80] A. Coniglio and W. Klein, “Clusters and ising critical droplets: a renormalization
group-approach”, Journal of Physics A - Mathematical and General 13, 2775–
2780 (1980).
doi: 10.1088/0305-4470/13/8/025

[DR93] C. Dorso and J. Randrup, “Early recognition of clusters in molecular dynamics”,
Physics Letters B 301, 328–333 (1993).
doi: 10.1016/0370-2693(93)91158-J

[Ell13] J.B. Elliott, P.T. Lake, L.G. Moretto, and L. Phair, “Determination of the coex-
istence curve, critical temperature, density, and pressure of bulk nuclear matter
from fragment emission data”, Physical Review C 87, 054622 (2013).
doi: 10.1103/PhysRevC.87.054622



BIBLIOGRAPHY 81

[Fis67a] M.E. Fisher, “Theory of condensation and critical point”, Physics-New York 3,
255 (1967).

[Fis67b] M.E. Fisher, “Theory of equilibrium critical phenomena”, Reports on Progress in
Physics 30, 615–730 (1967).
doi: 10.1088/0034-4885/30/2/306

[Fre39a] J. Frenkel, “A general theory of heterophase fluctuations and pretransition phe-
nomena”, The Journal of Chemical Physics 7, 538–547 (1939).
doi: 10.1063/1.1750484

[Fre39b] J. Frenkel, “Statistical theory of condensation phenomena”, The Journal of Chem-
ical Physics 7, 200–201 (1939).
doi: 10.1063/1.1750413

[GB02] A.E. van Giessen and E.M. Blokhuis, “Determination of curvature corrections
to the surface tension of a liquidvapor interface through molecular dynamics
simulations”, The Journal of Chemical Physics 116, 302–310 (2002).
doi: 10.1063/1.1423617

[GB09] A.E. van Giessen and E.M. Blokhuis, “Direct determination of the Tolman length
from the bulk pressures of liquid drops via molecular dynamics simulations”,
Journal of Chemical Physics 131, 164705 (2009).
doi: 10.1063/1.3253685

[GCP09] S. Goriely, N. Chamel, and J.M. Pearson, “Skyrme-Hartree-Fock-Bogoliubov nu-
clear mass formulas: Crossing the 0.6 MeV accuracy threshold with microscopi-
cally deduced pairing”, Physical Review Letters 102, 152503 (2009).
doi: 10.1103/PhysRevLett.102.152503

[Gro97] D.H.E. Gross, “Microcanonical thermodynamics and statistical fragmentation
of dissipative systems. The topological structure of the N-body phase space”,
Physics Reports 279, 119–201 (1997).
doi: 10.1016/S0370-1573(96)00024-5

[Gug45] E.A. Guggenheim, “The principle of corresponding states”, The Journal of Chem-
ical Physics 13, 253–261 (1945).
doi: 10.1063/1.1724033

[Gug93] E.A. Guggenheim, Thermodynamics: An Advanced Treatment for Chemists and
Physicists, 4th ed. (North-Holland Pub. Co., Amsterdam, 1993).

[Hil55] T.L. Hill, “Molecular clusters in imperfect gases”, Journal of Chemical Physics
23, 617–622 (1955).
doi: 10.1063/1.1742067

[JZG93] J.K. Johnson, J.A. Zollweg, and K.E. Gubbins, “The Lennard-Jones equation of
state revisited”, Molecular Physics 78, 591–618 (1993).
doi: 10.1080/00268979300100411



BIBLIOGRAPHY 82

[Kir08] M.W. Kirson, “Mutual influence of terms in a semi-empirical mass formula”,
Nuclear Physics A 798, 29–60 (2008).
doi: 10.1016/j.nuclphysa.2007.10.011

[LMF11] E.W. Lemmon, M.O. McLinden, and D.G. Friend, “Thermophysical Properties
of Fluid Systems”, in: NIST Standard Reference Database Number 69, ed. by P.J.
Linstrom and W.G. Mallard, (National Institute of Standards and Technology,
Gaithersburg, 2011).

[MP07] E.A. Mastny and J.J. de Pablo, “Melting line of the Lennard-Jones system, infi-
nite size, and full potential”, Journal of Chemical Physics 127, 104504 (2007).
doi: 10.1063/1.2753149

[MM40] J.E. Mayer and M.G. Mayer, Statistical Mechanics, (W.H. Freeman, New York,
1940).

[MEP03] L.G. Moretto, J.B. Elliott, and L. Phair, “Resistible effects of Coulomb interaction
on nucleus-vapor phase coexistence”, Physical Review C 68, 061602 (2003).
doi: 10.1103/PhysRevC.68.061602

[MEP05] L.G. Moretto, J.B. Elliott, and L. Phair, “Compound nuclear decay and the
liquid-vapor phase transition: A physical picture”, Physical Review C 72, 064605
(2005).
doi: 10.1103/PhysRevC.72.064605

[Mor97] L.G. Moretto, R. Ghetti, L. Phair, K. Tso, and G.J. Wozniak, “Reducibility and
thermal scaling in nuclear multifragmentation”, Physics Reports 287, 249–336
(1997).
doi: 10.1016/S0370-1573(97)00007-0

[Mor05] L.G. Moretto, K.A. Bugaev, J.B. Elliott, R. Ghetti, J. Helgesson, and L. Phair,
“The complement: A solution to liquid drop finite size effects in phase transi-
tions”, Physical Review Letters 94, 202701 (2005).
doi: 10.1103/PhysRevLett.94.202701

[Mor11] L.G. Moretto, J.B. Elliott, L. Phair, and P.T. Lake, “The experimental liquid-
vapor phase diagram of bulk nuclear matter”, Journal of Physics G-Nuclear and
Particle Physics 38, 113101 (2011).
doi: 10.1088/0954-3899/38/11/113101

[Mor12] L.G. Moretto, P.T. Lake, L. Phair, and J.B. Elliott, “Reexamination and exten-
sion of the liquid drop model: Correlation between liquid drop parameters and
curvature term”, Physical Review C 86, 021303 (2012).
doi: 10.1103/PhysRevC.86.021303

[MS69] W.D. Myers and W.J. Swiatecki, “Average nuclear properties”, Annals of Physics
55, 395–505 (1969).
doi: 10.1016/0003-4916(69)90202-4



BIBLIOGRAPHY 83

[Nat12] National Institute of Standards and Technology, Lennard-Jones Fluid Properties,
(2012). url: http://www.nist.gov/mml/csd/informatics_research/lj_
pure.cfm (visited on 08/15/2014).

[NF00] M.G. Noro and D. Frenkel, “Extended corresponding-states behavior for particles
with variable range attractions”, The Journal of Chemical Physics 113, 2941–
2944 (2000).
doi: 10.1063/1.1288684

[Pan87] A.Z. Panagiotopoulos, “Direct determination of phase coexistence properties of
fluids by Monte-Carlo simulation in a new ensemble”, Molecular Physics 61, 813–
826 (1987).
doi: 10.1080/00268978700101491

[Pan88] A.Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D.J. Tildesley, “Phase equi-
libria by simulation in the Gibbs ensemble: alternative derivation, generalization
and application to mixture and membrane equilibria”, Molecular Physics 63,
527–545 (1988).
doi: 10.1080/00268978800100361

[PV02] A. Pelissetto and E. Vicari, “Critical phenomena and renormalization-group the-
ory”, Physics Reports-Review Section of Physics Letters 368, 549–727 (2002).
doi: 10.1016/S0370-1573(02)00219-3

[Pit39] K.S. Pitzer, “Corresponding states for perfect liquids”, The Journal of Chemical
Physics 7, 583–590 (1939).
doi: 10.1063/1.1750496

[Pit55] K.S. Pitzer, D.Z. Lippmann, R.F. Curl, C.M. Huggins, and D.E. Petersen, “The
volumetric and thermodynamic properties of fluids. II. Compressibility factor,
vapor pressure and entropy of vaporization”, Journal of the American Chemical
Society 77, 3433–3440 (1955).
doi: 10.1021/ja01618a002

[PP98] J.J. Potoff and A.Z. Panagiotopoulos, “Critical point and phase behavior of the
pure fluid and a Lennard-Jones mixture”, Journal of Chemical Physics 109,
10914–10920 (1998).
doi: 10.1063/1.477787

[RW01] J. Richert and P. Wagner, “Microscopic model approaches to fragmentation of
nuclei and phase transitions in nuclear matter”, Physics Reports 350, 1–92 (2001).
doi: 10.1016/S0370-1573(00)00120-4

[RS04] P. Ring and P. Schuck, The Nuclear Many-Body Problem, (Springer, Verlag,
2004).

[RW82] J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity, (Clarendon Press,
Oxford, 1982).



BIBLIOGRAPHY 84

[RG06] G. Royer and C. Gautier, “Coefficients and terms of the liquid drop model and
mass formula”, Physical Review C 73, 067302 (2006).
doi: 10.1103/PhysRevC.73.067302

[Sat00] N. Sator, “Lignes de percolation dans un fluide supercritique”, Ph.D. Thesis,
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Appendix A

List of Fluids in the NIST Chemistry
WebBook

Data for the phase coexistence of 73 molecular fluids are reported in [LMF11]. Tab. A.1 is a
list of these chemicals. The same symbols are used in every plot pertaining to these fluids,
and are listed in Fig. A.1.
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Table A.1: List of the 73 chemicals whose phase coexistence data are available in [LMF11].
The ISO designation is a shorthand name for organic refrigerants.

Index Name Chemical Equation ISO designation

1 Water H2O
2 Nitrogen N2

3 Hydrogen H2

4 Parahydrogen pH2

5 Oxygen O2

6 Fluorine F2

7 Carbon monoxide CO
8 Carbon dioxide CO2

9 Nitrous oxide N2O
10 Heavy water D2O
11 Methanol CH3OH
12 Methane CH4

13 Ethane C2H6

14 Ethene C2H4

15 Propane C3H8

16 Propene C3H6

17 Propyne C3H4

18 Cyclopropane C3H4

19 Butane C4H10

20 Isobutane C4H10

21 Pentane C5H12

22 2-Methylbutane C5H12

23 2,2-Dimethylpropane C5H12

24 Hexane C6H14

25 2-Methylpentane C6H14

26 Cyclohexane C6H12

27 Heptane C7H16

28 Octane C8H18

29 Nonane C9H20

30 Decane C10H22

31 Dodecane C12H26

32 Helium He
33 Neon Ne
34 Argon Ar
35 Krypton Kr
36 Xenon Xe

Continued on next page
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Table A.1 – continued from previous page
Index Name Chemical Equation ISO designation

37 Ammonia NH3

38 Nitrogen trifluoride NF3

39 Trichlorofluoromethane CCl3F R11
40 Dichlorodifluoromethane CCl2F2 R12
41 Chlorotrifluoromethane CClF3 R13
42 Tetrafluoromethane CF4 R14
43 Dichlorofluoromethane CHCl2F R21
44 Methane, chlorodifluoro- CHClF2 R22
45 Trifluoromethane CHF3 R23
46 Methane, difluoro- CH2F2 R32
47 Fluoromethane CH3F R41
48 1,1,2-Trichloro-1,2,2-trifluoroethane C2F3Cl3 R113
49 1,2-Dichloro-1,1,2,2-tetrafluoroethane C2F4Cl2 R114
50 Chloropentafluoroethane C2F5Cl R115
51 Hexafluoroethane C2F6 R116
52 Ethane, 2,2-dichloro-1,1,1-trifluoro- C2HF3Cl2 R123
53 Ethane, 1-chloro-1,2,2,2-tetrafluoro- C2HF4Cl R124
54 Ethane, pentafluoro- C2HF5 R125
55 Ethane, 1,1,1,2-tetrafluoro- C2H2F4 R134a
56 1,1-Dichloro-1-fluoroethane C2H3FCl2 R141b
57 1-Chloro-1,1-difluoroethane C2H3F2Cl R142b
58 Ethane, 1,1,1-trifluoro- C2H3F3 R143a
59 Ethane, 1,1-difluoro- C2H4F2 R152a
60 Octafluoropropane C3F8 R218
61 1,1,1,2,3,3,3-Heptafluoropropane C3HF7 R227ea
62 1,1,1,3,3,3-Hexafluoropropane C3H2F6 R236fa
63 1,1,2,2,3-Pentafluoropropane C3H3F5 R245ca
64 1,1,1,3,3-Pentafluoropropane C3H3F5 R245fa
65 Octafluorocyclobutane C4F8 RC318
66 Benzene C6H6

67 Toluene C6H5OH
68 Decafluorobutane C4F10

69 Dodecafluoropentane C5F12

70 Sulfur dioxide SO2

71 Hydrogen sulfide H2S
72 Sulfur hexafluoride SF6

73 Carbonyl sulfide COS
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