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We perform a multimodel detection and attribution study with
climate model simulation output and satellite-based measurements
of tropospheric and stratospheric temperature change. We use
simulation output from 20 climate models participating in phase 5
of the Coupled Model Intercomparison Project. This multimodel
archive provides estimates of the signal pattern in response to
combined anthropogenic and natural external forcing (the finger-
print) and the noise of internally generated variability. Using these
estimates, we calculate signal-to-noise (S/N) ratios to quantify the
strength of thefingerprint in the observations relative tofingerprint
strength in natural climate noise. For changes in lower stratospheric
temperature between 1979 and 2011, S/N ratios vary from 26 to 36,
depending on the choice of observational dataset. In the lower
troposphere, the fingerprint strength in observations is smaller, but
S/N ratios are still significant at the 1% level or better, and range
from three to eight. We find no evidence that these ratios are
spuriously inflated by model variability errors. After removing all
global mean signals, model fingerprints remain identifiable in 70%
of the tests involving tropospheric temperature changes. Despite
such agreement in the large-scale features of model and observed
geographical patterns of atmospheric temperature change, most
models do not replicate the size of the observed changes. On
average, the models analyzed underestimate the observed cooling
of the lower stratosphere and overestimate the warming of the
troposphere. Although the precise causes of such differences are
unclear, model biases in lower stratospheric temperature trends are
likely to be reduced by more realistic treatment of stratospheric
ozone depletion and volcanic aerosol forcing.

climate change detection and attribution | climate modeling |
multimodel analysis

Pattern-based fingerprint studies seek to elucidate the complex
causes of historical climate change (1–9). An initial focus of

fingerprint research was on the vertical structure of atmospheric
temperature changes (3, 5, 7, 10–15). This work indicated that
natural external forcings, such as volcanic eruptions and solar
variability, produce atmospheric temperature fingerprints that
differ from the fingerprints of human-caused changes in green-
house gases or aerosols (3, 11, 16). Fingerprinting with atmospheric
temperature changes has provided strong scientific evidence of
a discernible human influence on global climate (17–19).
Most fingerprint studies involving atmospheric temperature

have relied on individual models, with relatively little consideration

of how results are affected by model and observational uncertainty.
The key model uncertainties are in the anthropogenic and nat-
ural external forcings (20), the climate responses to these forcings,
and the estimates of internal variability (17–19). Uncertainties in
observations of atmospheric temperature change arise because of
the different choices analysts make in adjusting raw measure-
ments for the effects of nonclimatic influences (21–28).
Here, we explore the impact of model and observational

uncertainties on our ability to identify an anthropogenic finger-
print in satellite measurements of stratospheric and tropospheric
temperature change. We also consider whether fingerprint iden-
tification is sensitive to methodological choices, such as the in-
clusion or removal of the global mean component of temperature
change. The fingerprint method that we employ is based on the
method in ref. 1, and it has been successfully used for the identi-
fication of an externally forced fingerprint in a number of different
climate variables (12, 29–32).
Our observational estimates of atmospheric temperature

change are derived from satellites rather than weather balloons.
Measurements made by both observing systems are affected by
a variety of nonclimatic factors (18, 21–24). We focus on satellite-
based estimates of atmospheric temperature change, because they
have continuous near-global coverage, whereas the spatial cover-
age of weather balloon temperaturemeasurements has varied over
time (18, 21, 22).

Observational and Model Temperature Data
We compare simulated and observed changes in the temperature
of the lower stratosphere (TLS), the mid- to upper troposphere
(TMT), and the lower troposphere (TLT). The observations are
measurements of microwave emissions made by microwave
sounding units (MSUs) on polar-orbiting satellites. We used
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MSU-based temperature data from three different observational
groups: Remote Sensing Systems (RSS) in Santa Rosa, California
(26), the University of Alabama at Huntsville (UAH) (27), and the
Center for Satellite Applications and Research (STAR) in Mary-
land (28).
Recently, RSS attempted to quantify the impact of their dataset

construction choices (26). They generated separate 400-member
ensembles of observations for TLS, TMT, and TLT. Each en-
semble member is a gridded, monthly mean temperature dataset
for the period from January 1979 to December 2011. Our finger-
print study relied on a smaller number of RSS observational
realizations. We reduced the full ensemble by ranking individual
members based on the size of their global mean temperature
trends, and then selecting 11 RSS percentiles for each atmospheric
layer (the 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th,
and 95th percentiles of the ranked distributions). Ranking was
performed separately for TLS, TMT, and TLT.
Model estimates of atmospheric temperature change are from

phase 5 of the Coupled Model Intercomparison Project (CMIP-5)
(33). We analyzed results from 20 climate models (SI Appendix,
Tables S1–S5). Model output was from (i) preindustrial control
runs with no changes in external influences on climate (SI Ap-
pendix, Figs. S1 and S2), which provide information on internal
climate variability; (ii) simulations with specified historical
changes in human and natural external forcings; and (iii) simu-
lations with 21st century changes in greenhouse gases and an-
thropogenic aerosols prescribed according to the Representative
Concentration Pathway 8.5 (RCP8.5), which has radiative forcing
of roughly 8.5 W/m2 in 2100 (34), equivalent to an atmospheric
CO2 concentration of ca. 1,360 ppm.
We used local weighting functions to calculate synthetic MSU

temperatures from model simulation output (35). Weighting func-
tions depend on the surface pressure and surface type (land, ocean,
or sea ice) at each grid point. This calculation facilitates direct

comparisons with observational MSU data. Because most CMIP-5
historical simulations end in 2005 (SI Appendix, Table S4), we
spliced together synthetic MSU temperatures from the historical
simulations and RCP8.5 runs. Splicing allows us to compare mod-
eled and observed temperature changes over the full 33-y satellite
record. The impact of splicing on signal-to-noise (S/N) ratios is
discussed in SI Appendix.
In addition to TLS, TMT, and TLT, we also analyzed tem-

perature changes over the total troposphere (TTT). Estimates of
overall tropospheric warming are difficult to obtain from TMT
alone, because TMT receives a substantial contribution from the
cooling of the lower stratosphere (36). Previous work attempted
to remove this stratospheric influence on tropospheric tempera-
ture by forming a linear combination of TLS and TMT (37). We
calculate TTT using the same approach.

Global Mean Temperature Changes in TLS and TLT
Of the 20 CMIP-5 models analyzed here, 18 models explicitly treat
the radiative impact of aerosol particles injected into the strato-
sphere after major volcanic eruptions (Fig. 1). These aerosols ab-
sorb incoming solar radiation and outgoing long-wave radiation,
leading to pronounced short-term (2–3 y) warming of the lower
stratosphere (38). After the eruption of Pinatubo in 1991, the sim-
ulated maximum warming in TLS varies from roughly 1–3 °C. The
twomodels that do not represent the full radiative effects of volcanic
aerosols are IPSL-CM5A-LR and INM-CM4 (see Table S1 in SI
Appendix for explanation of all model acronyms).
Human-caused depletion of stratospheric ozone is the main

driver of lower stratospheric cooling over the satellite era (29, 38,
39). Of the 20 CMIP-5 models analyzed here, 7 are classified as
CHEM models with fully interactive or semioffline calculation of
ozone chemistry, and 13 as NOCHEM models with prescribed
ozone changes (SI Appendix, Table S3).
Our fingerprint analysis involves a number of sensitivity tests

(see below). In the first test, fingerprints were calculated using
multimodel average temperature changes from 12 models with
more reliable estimates of forcing by ozone and volcanic aerosols
(O3+V; see Fig. 1). Because most CHEM models have errors
in their simulations of historical ozone changes, the O3+V
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Fig. 1. Time series of simulated monthly mean anomalies in TLS. Results are
from spliced historical/RCP8.5 simulations performedwith 20 individual CMIP-5
models (panels A–T). Anomalies were averaged over 82.5°N to 82.5°S, and are
defined with respect to climatological monthly means from 1979 to 2011. The
y axis range is identical in each panel. All available realizations of the spliced
historical/RCP8.5 run are plotted; for models with more than one realization,
the ensemble size is given in parentheses. For the CNRM-CM3 model, splicing
was performed with the historicalExt simulation instead of RCP8.5 (SI Appen-
dix). Dashed vertical lines indicate the start dates of the El Chichón and Pina-
tubo eruptions. Models used in estimating the O3+V fingerprint are identified
with asterisks.
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Fig. 2. The same as for Fig. 1, but for monthly mean anomalies in TLT.
Results are from spliced historical/RCP8.5 simulations performed with 20
individual CMIP-5 models (panels A–T). Model anomalies are averaged over
82.5°N to 70°S.
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fingerprint was estimated with NOCHEMmodels only; 1 of the
13 NOCHEM models, INM-CM4, was excluded because of its
incomplete treatment of volcanic aerosol forcing. We compare
the 12-model O3+V results with the baseline (BASE) case, in
which fingerprints were computed with model-average tem-
perature changes from all 20 CMIP-5 models analyzed here (SI
Appendix, Fig. S3).
The lower stratospheric cooling trend is nearly 10% larger in

the more realistically forced O3+V subset than in the BASE
subset, and it is closer to the observational results (SI Appendix,
Table S7). Even in the O3+V case, however, the model-average
cooling of the lower stratosphere from 1979 to 2011 is smaller
than in all three observational TLS datasets, and smaller than in
9 of 11 RSS percentile realizations.
In the lower troposphere (Fig. 2), model TLT trends over the

satellite era vary from 0.121 °C to 0.392 °C per decade (SI Ap-
pendix, Table S6). The BASE and O3+Vmultimodel average TLT
trends are similar (0.262 °C and 0.266 °C per decade) and roughly
1.9 times larger than the RSS and UAH lower tropospheric tem-
perature trends (0.139 °C and 0.140 °C per decade). There is no
overlap between the 5–95 percentile ranges of the RSS trends and
themultimodel average TLT trend results (SI Appendix, Table S7).
Possible reasons for the biases in model TLS and TLT trends are
discussed below.

Zonal Mean Temperature Trends
Fig. 3 shows zonal mean trends in TLS, TMT, and TLT from
1979 to 2011. All model results are for the O3+V case. For both
lower stratospheric cooling and tropospheric warming, patterns
of change at hemispheric scales are similar in models and
observations. There are, however, some noticeable differences in
the zonal mean structure of the modeled and observed temper-
ature trends. Many of these differences are consistent across
observational datasets, latitude, and altitude.
In the lower stratosphere, the O3+V model average cooling

trend is smaller than in two of three observed datasets (UAH and
STAR) over a wide range of latitudes (Fig. 3A). Poleward of
roughly 60°N, the sign of the model TLS trend bias is reversed. In
all tropospheric layers, the O3+V trends are biased warm over the
Southern Hemisphere, tropics, and Northern Hemisphere mid-
latitudes, and are biased cool over theArctic (Fig. 3B andC and SI
Appendix, Fig. S5). The multimodel average tropospheric tem-
perature trends are outside the 5–95 percentile range of RSS
results at most latitudes.
The likely causes of these biases include forcing errors in the

historical simulations (40–42),model response errors (43), remaining
errors in satellite temperature estimates (26, 44), and an unusual
manifestation of internal variability in the observations (35, 45).
These explanations are not mutually exclusive.
Our results suggest that forcing errors are a serious concern.

Consider the example of stratospheric ozone forcing. At least
three of seven CHEM models analyzed here (CCSM4, CNRM-
CM5, and IPSL-CM5A-LR) appear to underestimate observed
global mean ozone decreases over 1980–2000 by more than
50%. All three of these models underestimate the observed
cooling of the lower stratosphere from 1979 to 2011 (compare SI
Appendix, Table S6 with SI Appendix, Table S7).* This finding
highlights the importance of accurate representation of strato-
spheric ozone changes for accurate simulation of TLS trends (3,
11, 39, 46–48).
Errors in ozone forcing are not restricted to CHEM models;

many of the NOCHEM models may have also underestimated
observed ozone loss over the satellite era (42). To date, it
has been difficult to determine the contribution of ozone
forcing errors to model biases in tropospheric temperature
trends.† Reliable quantification of this contribution is ham-
pered by large uncertainties in observational estimates of ozone
changes (42).
Based on analyses of earlier CMIP-3 results, a recent critique of

fingerprint research claims that anthropogenic forcing by tropo-
spheric aerosols could have been “tuned” to improve the corre-
spondence between simulated and observed changes in global
mean surface temperature (49). There are at least two reasons
why such tuning concerns are unlikely to impact our S/N results:
(i) fingerprint studies consider complex spatio-temporal patterns
of climate change, and not global mean changes alone; and (ii)
almost all modeling groups participating in CMIP-5 used the same
prescribed aerosol precursor emissions.

Geographical Patterns of Temperature Trends
Fig. 4 shows geographical patterns of modeled (O3+V) and ob-
served changes in atmospheric temperature from 1979 to 2011.
Because somemodeling groups produced ensembles of the spliced
historical/RCP8.5 runs (SI Appendix, Table S4), temperature

Fig. 3. Zonal mean trends in observed and synthetic (A) TLS, (B) TMT, and
(C) TLT between 1979 and 2011. Observational results are from UAH, STAR,
version 3.3 of the RSS dataset, and the 11 RSS percentile realizations. Model
synthetic MSU temperatures are from the spliced historical/RCP8.5 runs
performed with 20 CMIP-5 models; only the first realization is shown for
each model. The CMIP-5 multimodel averages are for the O3+V case. The 5th
to 95th percentile range of the RSS results was computed as described in SI
Appendix. The close agreement between RSS and UAH global mean TLT
trends (SI Appendix, Table S7) masks large differences in the latitudinal
structure of each group’s TLT changes. The spatial coverage of the obser-
vational datasets differs at high latitudes and over areas of high elevation (SI
Appendix). Note that STAR does not produce a TLT dataset.

*Other CHEM models (such as GISS-E2-R [p2] and GFDL-CM3) substantially overestimate
observed ozone loss in certain regions and at certain times of year. The fact that
some CHEM models underpredict observed ozone loss and others overestimate ob-
served ozone trends helps to explain why we do not find even larger TLS trend differ-
ences between the O3+V case (which excludes CHEM models) and the BASE case (which
includes CHEM results).

†Previous multimodel studies have found either small (45) or large (47) impacts of strato-
spheric ozone changes on tropospheric temperature. The ozone-induced tropospheric
temperature signals inferred from such multimodel analyses can be obscured by inter-
model differences in other applied external forcings and model differences in climate
sensitivity (48).
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changes are first averaged over individual ensemble members
and then averaged over the 12 O3+V models. The first aver-
aging step reduces the noise introduced by internal variability,
which can be large at high latitudes (SI Appendix, Fig. S4). The
second averaging step reduces some of the smaller-scale pattern
differences in the individual model responses to external forcing
(SI Appendix, Figs. S6 and S7). This is why the simulated pat-
terns of temperature change in Fig. 4 are noticeably smoother
than the temperature changes in a single realization of the
observations.
In the lower stratosphere, there is a common signal of global-scale

cooling in models and observations, with the largest cooling at high
latitudes in the Southern Hemisphere. This cooling maximum is
approximately zonally uniform in theO3+Vmultimodel average, but
it is more wave-like in the observations. Satellite TLS trends exhibit
secondary cooling maxima centered at roughly 40°N and 40°S (Fig.
3A). These cooling lobes are not evident in the multimodel average.
In the lower troposphere (Fig. 4), the O3+V models reproduce

both the large-scale observed warming pattern from 1979 to 2011
and its hemispheric asymmetry. This asymmetry is characterized by
maximum warming over the Arctic and minimum warming at high
latitudes in the Southern Hemisphere. In the observations, hemi-
spherically asymmetric warming of the lower troposphere is
physically consistent with ice/albedo feedbacks arising from the
large decrease in Arctic sea ice extent and the smaller increase in
Antarctic sea ice coverage (50, 51).
The muted lower tropospheric warming over the Antarctic

has not been fully explained. There is considerable evidence that
the large human-caused decline in stratospheric ozone over this
region is the primary driver of recent multidecadal changes in
the intensity of the Southern Hemisphere polar vortex (52, 53).
Such externally forced circulation changes can affect Antarctic
sea ice extent (51, 54), although the strength (and even the di-
rection) of this effect is still unclear (55). Model simulations
with combined forcing by well-mixed greenhouse gases and
stratospheric ozone are capable of replicating observed changes
in the intensity of the Antarctic polar vortex (52, 53), implying
that some of the factors driving hemispheric-scale asymmetries
in patterns of tropospheric trends may be similar in models
and observations.
In the mid to upper troposphere and total troposphere, models

and observations also show a common pattern of hemispherically
asymmetric warming (Fig. 4). The O3+V warming pattern, how-
ever, is larger and more coherent than in observations, and it does
not reproduce the Arctic warming maximum evident in satellite

TMT and TTT datasets. The enhanced tropical warming in the
simulated TTT results is due to both the pronounced warm bias in

C/decade

RSS v3.3 (TLS) RSS v3.3 (TMT) RSS v3.3 (TTT) RSS v3.3 (TLT)

UAH v5.4 (TLS) UAH v5.4 (TMT) UAH v5.4 (TTT) UAH v5.4 (TLT)

STAR v2.0 (TLS) STAR v2.0 (TMT) STAR v2.0 (TTT)

MODEL AVERAGE (TLS) MODEL AVERAGE (TMT) MODEL AVERAGE (TTT) MODEL AVERAGE (TLT)

°

Fig. 4. Geographical patterns of observed and
simulated trends (in degrees Celsius per decade) in
TLS, TMT, TTT, and TLT (columns 1–4, respectively).
All trends are from 1979 to 2011. Simulated trends
are the O3+V multimodel averages of synthetic MSU
temperature changes from the spliced historical/
RCP8.5 runs. Gray shading denotes areas where tem-
perature information is not provided (SI Appendix).
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Fig. 5. Comparison of simulated and observed variability of monthly mean
near-global anomalies in (A) TLS, (B) TTT, (C) TMT, and (D) TLT. In each panel,
the monthly to interannual timescale variability of detrended, high pass-
filtered temperature data (sHIGH, x axis) is plotted against the 5- to 20-y
timescale variability of band pass-filtered data (sLOW, y axis). The dashed lines
are centered on the observed values of sHIGH and sLOW for version 3.3 of the
RSS dataset. The multimodel average sHIGH and sLOW values were calculated
by averaging over the ensemble mean sHIGH and sLOW results for each of the
20 individual CMIP-5 models. The same 396 months (January 1979 to De-
cember 2011) were used for the analysis of observations and synthetic MSU
temperatures from the spliced historical/RCP8.5 runs.
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the O3+V tropical TMT trends and the smaller than observed
tropical TLS trends.

Evaluating Model Noise Estimates
Model estimates of internal climate variability are a key compo-
nent of detection and attribution (D&A) studies (5, 35). Here, we
describe how we selected subsets of models with more credible
estimates of the size of atmospheric temperature variability. We
also address the question of whether CMIP-5 models systemati-
cally underestimate observed temperature variability, which would
spuriously inflate the S/N ratios in our D&A analysis.
One strategy in model vs. observed variability comparisons is to

estimate and remove externally forced climate signals from the
observations, and then compare the residual variability with control
run internal variability (4). There are a number of uncertainties in
such signal removal strategies (17). We use a different approach
here, and directly compare estimates of the total variability (arising
from both natural external forcing and processes internal to the
climate system) in the observations and the spliced historical/
RCP8.5 runs.
Our analysis period extends from January 1979 to December

2011. After detrending modeled and observed time series of glob-
ally averaged monthly mean temperature anomalies, we applied
a band-pass filter with half-power points at 5 and 20 y to the
residuals (35). We also used a high-pass filter to extract variability
information on 1- to 2-y timescales (SI Appendix).
Because the decadal variability is more important in D&A

applications, only band pass-filtered results were used in ranking
and selecting the five models closest to observations (TOP-5).
Model ranking was based on sLOW, the temporal standard de-
viation of the band-pass-filtered data, and it relied on RSS v3.3
results as the observational target. Model vs. observed differences
in sLOW are much larger than the observational uncertainties in
this metric, so the choice of observational target has little in-
fluence on the ranking results.
For TLS, the model average and observed sLOW values are

almost identical (Fig. 5A). In the troposphere, the multimodel
average value of sLOW is 55–69% larger than the RSS sLOW
values (Fig. 5 B–D). On 5- to 20-y timescales, therefore, we find
no evidence that CMIP-5 models systematically underestimate
the amplitude of observed atmospheric temperature variability.
In contrast, the CMIP-5 models underestimate variability on 1-
to 2-y timescales by an average of 3–7% in the troposphere and
19% in the stratosphere. This finding may be partly because of

differences in how atmospheric temperature is sampled in
models and observations.‡

Fingerprint Method
Detection and attribution studies require an estimate of the cli-
mate signal in response to external forcing. This signal is the fin-
gerprint. Fingerprints are defined in a number of different ways
(19). Typically, they provide information about the signal’s spatial
properties or combined space–time structure. This information is
valuable in discriminating between two external forcings with
similar global mean signals, but with different patterns or time-
scales of climate response (1, 2).
In most applications, the climate change fingerprint is a geo-

graphical pattern (4, 12), a vertical profile through the atmo-
sphere or ocean (3, 9, 11), or a vector with information on the
combined spatial and temporal properties of the signal (6–8).
Here, the fingerprint FðxÞ is a fixed geographical pattern, cal-
culated with the time-varying atmospheric temperature changes
from 1861 to 2011 in the CMIP-5 historical/RCP8.5 simulations
(SI Appendix). FðxÞ provides an estimate of the century-timescale
climate response to external forcing by a combination of human
and natural factors.
The implicit assumption in this approach is that the spatial

pattern of response does not change markedly over time (56). This
assumption is unlikely to hold, particularly for externally forced
changes in lower stratospheric temperature. We examine the im-
pact of this assumption on S/N results by defining the fingerprint
over different time intervals. Even in the case of TLS changes, the
nonstationarity of FðxÞ does not hamper fingerprint detection in
the observations (SI Appendix).
In the next section, we focus on S/N ratios obtained with the

O3+V fingerprint (calculated over 1861 to 2011) and internal
variability information from the TOP-5 models. SI Appendix pro-
vides S/N results from a number of additional sensitivity tests,
which consider the choice of an alternative period for calculating
FðxÞ (1979–2011), as well as the use of alternative fingerprint and
noise estimates (obtained from the BASE models).

EOF 
loading

TLS fingerprint (88.5%) TMT fingerprint (92.9%) TTT fingerprint (94.2%) TLT fingerprint (90.6%)

TLS control EOF1(29.6%) TMT control EOF1 (22.0%) TTT control EOF1 (21.3%) TLT control EOF1 (12.0%)

TLS control EOF2 (12.6%) TMT control EOF2 (7.3%) TTT control EOF2 (6.4%)

TLS control EOF3 (10.7%) TMT control EOF3 (5.7%) TTT control EOF3 (5.5%) TLT control EOF3 (5.5%)

TLT control EOF2 (6.2%)
Fig. 6. Leading signal and noise modes from the
pattern-based S/N analysis, together with the per-
centage variance explained by each mode. Results
are for TLS, TMT, TTT, and TLT (columns 1–4, re-
spectively). The fingerprint is the leading empirical
orthogonal function (EOF) of multimodel average
atmospheric temperature changes between 1861 and
2011. Fingerprints were calculated with synthetic
MSU temperatures from the spliced historical/RCP8.5
runs, using results from the 12 O3+V models (row 1).
The leading noise modes are EOFs 1, 2, and 3 of the
concatenated preindustrial control runs (rows 2–4,
respectively). Only the TOP-5 CMIP-5 models were
used in noise estimation. Details of fingerprint and
noise mode calculations are in SI Appendix.

‡Model temperature fields are spatially complete and sampled at uniform time intervals,
whereas MSU-based temperature measurements are not spatially complete and not
sampled at uniform time intervals. These sampling differences tend to inflate the
high-frequency variance of the observations. The RSS percentile realizations attempt
to account for this variance inflation (26).
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Fingerprint Results
The O3+V fingerprints (Fig. 6, row 1) have temperature changes
of the same sign at virtually all grid points, and primarily reflect
the global-scale cooling of the lower stratosphere and warming of
the troposphere. The fingerprints preserve the above-described
hemispheric differences in temperature change signals, such as
the enhanced warming of the Arctic relative to the Antarctic in
the lower troposphere. In contrast, the three leading noise modes
estimated from the TOP-5 control runs do not have the same
spatial coherence of temperature changes; they are characterized
by variability at smaller spatial scales (Fig. 6, rows 2–4).
In our D&A analysis, atmospheric temperature changes from

observations and the historical/RCP8.5 simulations are projected
onto FðxÞ, yielding signal time series. We fit trends of increasing
length L to these time series. TLS signal trends are shown in Fig.
7A. AsL increases, the Pinatubo-induced stratospheric warming in
1992 and 1993 damps stratospheric cooling trends, except in the
two models without absorption of solar and outgoing long-wave
radiation by volcanic aerosols (INM-CM4 and IPSL-CM5A-LR).
After recovery from Pinatubo, stratospheric cooling trends show
relatively little change as the trend-fitting period increases.

Our noise time series are obtained by projecting temperature
changes from the concatenated control runs onto FðxÞ. As in the
case of the signals, we fit L year trends to the noise time series.
The noise trends decrease in amplitude as the trend-fitting pe-
riod increases (Fig. 7B), which is a well-known property of many
meteorological and oceanographic time series (35). The decay in
the size of noise trends is the primary driver of the increase in S/
N ratios with longer trend-fitting periods (Fig. 7C).
We discuss two different types of S/N ratio. The first type pro-

vides information on the strength of the fingerprint in observa-
tional temperature data (relative to fingerprint strength in model
internal variability estimates). The second type of S/N ratio
involves no observational data, and quantifies the strength of
FðxÞ in each individual model’s forced atmospheric temperature
changes.We refer to these subsequently as model-observed and
model–model S/N ratios.
For TLS signal trends from 1979 to 2011, model-observed S/N

ratios range from 26 to 36, depending on the observational dataset
used (a S/N ratio greater than 2.33 is significant at the 1% level).
These results indicate that natural internal variability is highly
unlikely to explain the time-increasing similarity between the O3+V
fingerprint and observed patterns of lower stratospheric temper-
ature change. The large range of model–model S/N ratios (from
4 to 29) primarily reflects intermodel differences in the size of the
lower stratospheric cooling signal (SI Appendix, Table S6).
In the lower troposphere, signal trends inmost individualmodels

and observational datasets increase as the trend length L increases,
but trends show little change after 2005 (Fig. 8A). The decline in the
size of TLT signal trends in the early 1990s is caused by the cooling
effect of Pinatubo on tropospheric temperature. As for TLS, the
decrease in the size of noise trends with increasing trend length is
themain cause of the overall increase in S/N ratios (Figs. 8B andC).
Model-observed S/N ratios for 33-y TLT signal trends are

smaller than in the TLS case, but still highly significant (Fig. 8C).
The RSS 5th and 95th percentiles yield the lowest and highest S/N
ratios (3.4 and 7.6). Model–model S/N ratios vary from 4.8 to 15.1
for 33-y TLT trends, and scale with intermodel differences in
global mean tropospheric warming (SI Appendix, Table S6). Only
the INM-CM4 andMRI-CGCM3models have 33-y model–model
S/N ratios contained within the RSS 5th to 95th percentile range.
Fig. 9 summarizes these results, and shows S/N ratios for trends

over the full 33-y satellite era. Results are for each of the four
atmospheric temperature variables, and for cases with and without
the global mean component of temperature change. In the latter,
global mean temperature changes in each year of each model and
observational dataset were removed before calculation of S/N ra-
tios, so that large S/N ratios can only reflect true pattern similarity.
Consider first the results with the global mean included. For

model-observed S/N ratios, there are a total of 55 comparisons.§ In
53 of these comparisons, S/N ratios are significant at the 1% level,
and the model-predicted O3+V fingerprint is identifiable with
high statistical confidence in the observed datasets.
When information on global mean temperature changes is re-

moved, the O3+V fingerprint is still detectable in over 50% of the
model-observed comparisons (29 of 55 cases). In the lower tro-
posphere, the global mean removed fingerprint is identifiable in 11
of 13 observational TLT datasets (Fig. 9D), because the pro-
nounced warming of theArctic relative to theAntarctic is common
to the fingerprint and the observations. The global mean removed
fingerprint is also identifiable in 9 observational TTT records and 9
observational TMT datasets (Fig. 9 B and C).
In the lower stratosphere, however, the global mean removed

fingerprint is not detectable in any of the 14 observational TLS
datasets (Fig. 9A). This null result occurs because the O3+V
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Fig. 7. Results from the D&A analysis of simulated and observed changes in
lower stratospheric temperature. Signal time series provide information on
the similarity between the time-invariant TLS fingerprint pattern and the
time-varying patterns of lower stratospheric temperature change in obser-
vations and individual model simulations of forced climate change. The L
year trends in these signal time series are plotted in A. The noise time series
indicate the level of similarity between the fingerprint and the TOP-5 model
estimates of internal variability. The standard deviation of the distribution
of L year trends in the noise time series, sðLÞ, is plotted in B. The S/N ratio
between L year signal trends (A) and values of sðLÞ (B) is shown in C. The TLS
fingerprint is for the O3+V case, calculated using the multimodel average
TLS changes from 1861 to 2011 (Fig. 6). The model average results in A and C
are the projections of the O3+V multimodel average TLS changes onto the
O3+V fingerprint. The sign of signal trends is stipulated to be negative in A
(because models and observations both show cooling of the lower strato-
sphere), and the absolute value of the S/N ratio is plotted in C. Full details of
the D&A analysis are in SI Appendix.

§For each of the four atmospheric layers except TLT, the O3+V fingerprint is searched
for in 14 individual observational datasets (RSS v3.3, UAH v5.4, STAR v2.0, and 11 RSS
percentile realizations). For TLT, there are only 13 model vs. observed comparisons,
because STAR does not provide TLT information. There are, therefore, a total of (3 ×
14) + 13 comparisons.
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fingerprint does not capture the full subglobal structure of ob-
served TLS trends, particularly the lobes of pronounced cooling
at 40°N and 40°S (Figs. 3A and 4).

Conclusions
Weused amultimodel archive to obtain fingerprints of atmospheric
temperature change. These fingerprints are estimates of the climate
responses to external forcing by the combined effects of anthro-
pogenic factors, volcanoes, and solar irradiance. The primary
components of external forcing over the past century are human-
caused increases in well-mixed greenhouse gases, depletion of
stratospheric ozone, and changes in atmospheric burdens of various
aerosol particles (20, 57). Our fingerprints, therefore, mainly reflect
human influences on climate (7, 19, 29).
When global mean changes were included in our detection

method, we were able to identify the model fingerprints with high
statistical confidence in 53 of 55 model data comparisons. For
changes in TLS from 1979 to 2011, S/N ratios varied from 26 to 36,
depending on the choice of observational dataset. For changes in
TLT, S/N ratios ranged from roughly three to eight. Although the
TLT ratios are lower than for TLS, they are still highly significant.
There is no evidence that these results are spuriously inflated by

model variability errors. In the troposphere, CMIP-5 estimates of
variability on 5- to 20-y timescales are (on average) 55–69% larger
than in observations. In the lower stratosphere, observed and
model average estimates of 5- to 20-y variability are of similar size.
This finding suggests that our S/N ratios for multidecadal trends
are conservative, and that our inferences regarding fingerprint
detection are also likely to be conservative.
We repeated our S/N analysis after removing global mean

temperature change information from all datasets. This analysis
provides a more stringent test of the ability of models to represent
observed temperature change patterns. In the lower troposphere,
the global mean removed fingerprint was detected in 11 of 13 ob-
servational datasets. Positive detection arises because of a common
signal of warming of the Arctic relative to the Antarctic. For lower

stratospheric temperature changes, however, the subglobal fea-
tures of the model TLS fingerprint were not detectable in any
observational dataset.
Our fingerprint results are interpretable in terms of basic

physical mechanisms. The global-scale lower stratospheric cooling
is primarily a direct radiative response to human-caused depletion
of stratospheric ozone (29, 39, 58). Tropospheric warming is
mainly driven by human-caused increases in well-mixed green-
house gases (16, 29). The multidecadal cooling of the stratosphere
and warming of the troposphere, which is evident in all satellite
datasets and simulations of forced climate change examined here,
cannot be explained by solar or volcanic forcing, or by any known
mode of internal variability (3, 11).
Our ability to identify an externally forced fingerprint in satellite

estimates of atmospheric temperature change is robust to current
uncertainties in both models and observations, and to choices
made in the application of our fingerprint method (SI Appendix).
However, important questions still remain. Although we found
a match between modeled and observed geographical patterns
of temperature change, there are still noticeable differences in
the size of these changes. On average, the CMIP-5 models un-
derestimate the observed cooling of the lower stratosphere and
overestimate the warming of the troposphere. Biases are largest
over the tropics and the Southern Hemisphere. Results presented
here and elsewhere (40–42) suggest that forcing errors make an
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Fig. 8. The same as in Fig. 7, but for changes in TLT. Results are for signal
trends (A), noise trends (B), and S/N ratios (C).
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Fig. 9. Summary plot of S/N ratios for (A) TLS, (B) TTT, (C) TMT, and (D) TLT.
Results are for trends over the entire 33-y satellite record (1979–2011). The D&A
analysis was performed in two different ways: with removal of the globalmean
component of temperature change from each model and observational data-
set, andwith the globalmean change included. Results for these twoprocessing
choicesareplottedon the xand yaxes, respectively. The S/Nanalysis relies on the
O3+V fingerprints (estimated using multimodel average temperature changes
from 1861 to 2011) and the TOP-5 model noise estimates. The yellow shading
denotes the regionwhere S/N ratios are significant at the 1% level or better for
both the global mean removed and global mean included cases. In the gray
shaded regions, statistically significant S/N ratios are obtained in only one of
these two cases. See Figs. 7 and 8 and SI Appendix for additional information.
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important contribution to such biases. These results point to the
need for a more systematic exploration of the impact of forcing
uncertainties on simulations of historical climate change.

ACKNOWLEDGMENTS. Helpful comments and advice were provided by Jean-
Louis Dufresne, Veronika Eyring, Piers Forster, Tom Karl, Jerry Meehl, Venka-
tachalam Ramaswamy, David Saint-Martin, David Salas, Gavin Schmidt, Sté-
phane Senesi, Evgeny Volodin, and Zong-ci Zhao. We acknowledge the World

Climate Research Programme’s Working Group on CoupledModelling, which is
responsible for CMIP, and we thank the climate modeling groups (listed in SI
Appendix, Table S1) for producing and making available their model output.
For CMIP, theUSDepartmentof Energy’s ProgramforClimateModelDiagnosis
and Intercomparison provides coordinating support and led development of
software infrastructure in partnership with the Global Organization for Earth
System Science Portals. Work at Lawrence Livermore National Laboratory (by
B.D.S., J.F.P., C.D., P.C., P.J.C.-S., P.J.G., and K.E.T.) was performed under the
auspices of theUSDepartment of Energy under contract DE-AC52-07NA27344.

1. Hasselmann K (1979) On the signal-to-noise problem in atmospheric response studies.
Meteorology of Tropical Oceans, ed Shaw DB (Royal Meteorology Society, London),
pp 251–259.

2. North GR, Kim KY, Shen SSP, Hardin JW (1995) Detection of forced climate signals.
Part 1: Filter theory. J Clim 8:401–408.

3. Santer BD, et al. (1996) A search for human influences on the thermal structure of the
atmosphere. Nature 382:39–46.

4. Hegerl GC, et al. (1996) Detecting greenhouse-gas-induced climate change with an
optimal fingerprint method. J Clim 9:2281–2306.

5. Allen MR, Tett SFB (1999) Checking for model consistency in optimal fingerprinting.
Clim Dyn 15:419–434.

6. Stott PA, et al. (2000) External control of 20th century temperature by natural and
anthropogenic forcings. Science 290(5499):2133–2137.

7. Tett SFB, et al. (2002) Estimation of natural and anthropogenic contributions to
twentieth century temperature change. J Geophys Res, 10.1029/2000JD000028.

8. Gillett NP, et al. (2002) Detecting anthropogenic influence with a multi-model en-
semble. Geophys Res Lett 29:1970.

9. Barnett TP, et al. (2005) Penetration of human-induced warming into the world’s
oceans. Science 309(5732):284–287.

10. Karoly DJ, et al. (1994) An example of fingerprint detection of greenhouse climate
change. Clim Dyn 10:97–105.

11. Tett SFB, Mitchell JFB, Parker DE, Allen MR (1996) Human influence on the atmo-
spheric vertical temperature structure: Detection and observations. Science 274(5290):
1170–1173.

12. Santer BD, et al. (2003a) Influence of satellite data uncertainties on the detection of
externally forced climate change. Science 300(5623):1280–1284.

13. Thorne PW, et al. (2002) Assessing the robustness of zonal mean climate change
detection. Geophys Res Lett, 10.1029/2002GL015717.

14. Sexton DMH, Rowell DP, Folland CK, Karoly DJ (2001) Detection of anthropogenic
climate change using an atmospheric GCM. Clim Dyn 17:669–685.

15. Jones GS, Tett SFB, Stott PA (2003) Causes of atmospheric temperature change 1960-
2000: A combined attribution analysis. Geophys Res Lett, 10.1029/2002GL016377.

16. Hansen JE, et al. (2005) Efficacy of climate forcings. J Geophys Res, 10.1029/2005JD005776.
17. Santer BD, Wigley TML, Barnett TP, Anyamba E (1996) Detection of climate change and

attribution of causes. Climate Change 1995: The Science of Climate Change, Contribu-
tion of Working Group I to the Second Assessment Report of the Intergovernmental
Panel onClimateChange, edsHoughton JT, et al. (CambridgeUniv Press, Cambridge, UK).

18. Karl TR, Hassol SJ, Miller CD, Murray WL, eds (2006) Temperature Trends in the Lower
Atmosphere: Steps for Understanding and Reconciling Differences. A Report by the
U.S. Climate Change Science Program and the Subcommittee on Global Change Re-
search (National Oceanic and Atmospheric Administration, National Climatic Data
Center, Asheville, NC).

19. Hegerl GC, et al. (2007) Understanding and attributing climate change. Climate
Change 2007: The Physical Science Basis, Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds
Solomon S, et al. (Cambridge Univ Press, Cambridge, UK).

20. Forster P, et al. (2007) Changes in atmospheric constitutents and in radiative forcing.
Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
eds Solomon S, et al. (Cambridge Univ Press, Cambridge, UK).

21. Thorne PW, Lanzante JR, Peterson TC, Seidel DJ, Shine KP (2011) Tropospheric tem-
perature trends: History of an ongoing controversy. Wiley Interdisciplinary Reviews 2:
66–88.

22. Seidel DJ, Gillett NP, Lanzante JR, Shine KP, Thorne PW (2011) Stratospheric tem-
perature trends: Our evolving understanding. Wiley Interdisciplinary Reviews 2:
592–616.

23. Wentz FJ, Schabel M (1998) Effects of orbital decay on satellite-derived lower-tro-
pospheric temperature trends. Nature 394:661–664.

24. Mears CA, Schabel MC, Wentz FW (2003) A reanalysis of the MSU channel 2 tropo-
spheric temperature record. J Clim 16:3650–3664.

25. Mears CA, Wentz FJ (2005) The effect of diurnal correction on satellite-derived lower
tropospheric temperature. Science 309(5740):1548–1551.

26. Mears C, Wentz FJ, Thorne P, Bernie D (2011) Assessing uncertainty in estimates of
atmospheric temperature changes from MSU and AMSU using a Monte-Carlo tech-
nique. J Geophys Res, 10.1029/2010JD014954.

27. Christy JR, Norris WB, Spencer RW, Hnilo JJ (2007) Tropospheric temperature change
since 1979 from tropical radiosonde and satellite measurements. J Geophys Res,
10.1029/2005JD006881.

28. Zou CZ, et al. (2006) Recalibration of microwave sounding unit for climate studies
using simultaneous nadir overpasses. J Geophys Res, 10.1029/2005JD006798.

29. Santer BD, et al. (2003b) Contributions of anthropogenic and natural forcing to re-
cent tropopause height changes. Science 301(5632):479–483.

30. Bonfils C, et al. (2008) Detection and attribution of temperature changes in the
mountainous western United States. J Clim 21:6404–6424.

31. Santer BD, et al. (2009) Incorporating model quality information in climate change
detection and attribution studies. Proc Natl Acad Sci USA 106(35):14778–14783.

32. Gleckler PJ, et al. (2012) Human-induced global ocean warming on multi-decadal time
scales. Nat Clim Change 2:524–529.

33. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment
design. Bull Am Meteor Soc 93(4):485–498.

34. Meinshausen M, et al. (2011) The RCP greenhouse gas concentrations and their ex-
tensions from 1765 to 2300. Clim Change 109(1–2):213–241.

35. Santer BD, et al. (2011) Separating signal and noise in atmospheric temperature
changes: The importance of timescale. J Geophys Res, 10.1029/2011JD016263.

36. Fu Q, Johanson CM, Warren SG, Seidel DJ (2004) Contribution of stratospheric cooling
to satellite-inferred tropospheric temperature trends. Nature 429(6987):55–58.

37. Fu Q, Johanson CM (2005) Satellite-derived vertical dependence of tropical temper-
ature trends. Geophys Res Lett, 10.1029/2004GL22266.

38. Ramaswamy V, et al. (2001) Stratospheric temperature trends: Observations and
model simulations. Rev Geophys 39:71–122.

39. Ramaswamy V, et al. (2006) Anthropogenic and natural influences in the evolution of
lower stratospheric cooling. Science 311(5764):1138–1141.

40. Solomon S, et al. (2010) Contributions of stratospheric water vapor to decadal
changes in the rate of global warming. Science 327(5970):1219–1223.

41. Solomon S, et al. (2011) The persistently variable “background” stratospheric aerosol
layer and global climate change. Science 333(6044):866–870.

42. Solomon S, Young PJ, Hassler B (2012) Uncertainties in the evolution of stratospheric
ozone and implications for recent temperature changes in the tropical lower
stratosphere. Geophys Res Lett, 10.1029/2012GL052723.

43. Trenberth KE, Fasullo JT (2010) Simulation of present-day and twenty-first-century
energy budgets of the Southern Oceans. J Clim, 10.1175/2009JCL3152.1.

44. Po-Chedley S, Fu Q (2012) A bias in the mid-tropospheric channel warm target factor
on the NOAA-9 microwave sounding unit. J Atmos Ocean Technol 29:646–652.

45. Fu Q, Manabe S, Johanson CM (2011) On the warming in the tropical upper tropo-
sphere: Models versus observations. Geophys Res Lett, 10.1029/2011GL048101.

46. Lanzante JR (2007) Diagnosis of radiosonde vertical temperature trend profiles: Com-
paring the influence of data homogenization versus model forcings. J Clim 20:5356–5364.

47. Hu Y, Xia Y, Fu Q (2011) Tropospheric temperature response to stratospheric ozone
recovery in the 21st century. Atmos Chem Phys 11:7687–7699.

48. McLandress C, Perlwitz J, Shepherd TG (2012) Comment on “Tropospheric tempera-
ture response to stratospheric ozone recovery in the 21st century” by Hu et al. (2011).
Atmos Chem Phys 12:2533–2540.

49. Curry JA, Webster PJ (2011) Climate science and the uncertainty monster. Bull Am
Meteor Soc 92(12):1667–1682.

50. Stroeve J, Holland MM, Meier W, Scambos T, Serreze MC (2007) Arctic sea ice decline:
Faster than forecast. Geophys Res Lett 34:L09501.

51. Turner J, et al. (2009) Non-annular atmospheric circulation change induced by
stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice
extent. Geophys Res Lett 36:L08502.

52. Arblaster JM, Meehl GA (2006) Contributions of external forcings to Southern An-
nular Mode trends. J Clim 19:2896–2905.

53. Karpechko AY, Gillett NP, Marshall GJ, Scaife AA (2008) Stratospheric influence on
circulation changes in the Southern Hemisphere troposphere in coupled climate
models. Geophys Res Lett 35:L20806.

54. Goosse H, Lefebvre W, Montety A, Crespin E, Orsi AH (2009) Consistent past half-
century trends in the atmosphere, the sea ice and the ocean at high southern lat-
itudes. Clim Dyn 33:999–1016.

55. Sigmond M, Fyfe JC (2010) Has the ozone hole contributed to increased Antarctic sea
ice extent? Geophys Res Lett 37:L18502.

56. Wigley TML, Jaumann PJ, Santer BD, Taylor KE (1998) Relative detectability of
greenhouse-gas and aerosol climate change signals. Clim Dyn 14:781–790.

57. Wigley TML, Santer BD (2012) A probabilistic quantification of the anthropogenic
component of 20th century global warming. Clim Dyn, 10.1007/s00382-012-1585-8.

58. Gillett NP, et al. (2011) Attribution of observed changes in stratospheric ozone and
temperature. Atmos Chem Phys 11:599–609.

8 of 8 | www.pnas.org/cgi/doi/10.1073/pnas.1210514109 Santer et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210514109/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210514109/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1210514109



