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ABSTRACT
There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal
importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis
to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically
realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here
we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria
Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale
flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and
high light conditions. Additionally, by constraining photon uptake fluxes, we characterize the metabolic cost of
excess excitation energy. The predicted energy fluxes are consistent with known light-adapted phenotypes in
cyanobacteria. Finally, we leverage the modeling framework to characterize existing photoautotrophic and
photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology,
applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance
analysis in the engineering of light-driven metabolism.
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1. INTRODUCTION2

There is significant interest in engineering light-driven metabolism3

towards the production of fuels and chemicals. Cyanobacteria rep-4

resent the simplest phototrophs and have been employed to pro-5

duce a variety of products [38]. Synechococcus elongatus PCC 79426

(hereafter, S. elongatus), a genetically tractable obligate phototroph,7

has been engineered for the production of a wide variety of chem-8

icals to include 3-hydroxypropinoate [24], succinate [25], and9

1,3-propanediol [13]. Despite its classification as an obligate pho-10

totroph, this organism has also been engineered for mixotrophic11

metabolism, using carbon sources such as glycerol [16] and glu-12

cose [17] to generate bioproducts of interest. While experimental13

and computational fluxomics have been central to effective engi-14

neering of heterotrophic organisms [2, 19], their application to the15

engineering of phototrophic metabolism has been limited.16

Fluxomics contributes to metabolic engineering by identifying17

the resource partitioning through a metabolic network. Reaction18
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fluxes are determined experimentally via 13C metabolic flux analy-19

sis (MFA), or computationally using methods such as flux balance20

analysis (FBA) [39]. Recent developments in 13C MFA have re-21

sulted in characterization of photoautotrophic metabolic fluxes [51]22

and the engineering of cyanobacteria such as S. elongatus [15]. Flux23

balance analysis coupled with genome-scale modeling (GEM) has24

a long history of facilitating bioprocess design [18], and has the po-25

tential to advance the engineering of phototrophic metabolism [27].26

Still, despite the availability of several phototrophic GEMs [11],27

there are few examples of GEMs being employed in the design of28

light-driven metabolic processes [7].29

The potential of a GEM to engineer a metabolic network for bio-30

production depends on its ability to accurately predict flux through31

the network. Simple constraints such as the glucose and oxygen32

uptake rate result in accurate assessments of heterotrophic reaction33

fluxes [29]. The ability to define the metabolic flux state with as34

few parameters as possible requires a mechanistic understanding35

of the governing constraints on the system. Recent modeling in36

S. elongatus resulted in accurate prediction of photoautotrophic37

growth through photophysiology constraints [6]. In this study, a38

mechanistic description of photon uptake coupled with constraints39

on oxygen evolution resulted in accurate predictions of photoau-40

totrophic growth to include the transition to a linear growth curve41

as a result of self-shading. With the recent publication of 13C MFA42
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reaction fluxes for S. elongatus [15, 1], it is possible to assess the43

ability of photophysiology constraints to characterize photoau-44

totrophic metabolism.45

GEMs can also quantify alternative electron transport (AET)46

within the metabolic network. Photosynthetic organisms absorb47

light in excess of basic biomass and maintenance requirements. A48

fraction of this excitation energy is dissipated upstream of the pho-49

tosystem as fluorescence, heat or other non-radiative dissipation50

mechanisms [45]. The remaining fraction is directed to through51

the photosynthetic apparatus and generates the reductant and52

chemical energy necessary for growth. Excitation energy in excess53

of growth requirements is quenched via various alternative elec-54

tron transport pathways [26]. AET has been shown to constitute55

up to 40% of the total linear electron flux through the photosys-56

tems in cyanobacteria [12]. Characterizing and quantifying AET57

can facilitate engineering strategies that divert these electrons to58

bioproducts.59

In this study we show constraining a GEM of S. elongatus with60

the photon uptake rate derived from whole-cell absorbance and61

the net oxygen evolution rate results in accurate predictions of62

metabolic fluxes. First, we generate the necessary constraints from63

the photophysiology of S. elongatus acclimated to two light intensi-64

ties differing by an order of magnitude. Next, we incorporate these65

constraints with the GEM to predict growth rates at the two cul-66

ture conditions. The resulting metabolic reaction fluxes predicted67

by the model showed good agreement with the experimental 13C68

MFA results. We then use the GEM to assess alternate energy flows69

in S. elongatus, quantifying excess light energy captured by the70

system. Finally, we use the modeling framework to characterize71

existing engineering strategies for 2,3-butanediol production in S.72

elongatus. Overall we present the governing constraints of pho-73

toautotrophic metabolism, obtained by experimentally accessible74

protocols, that result in accurate prediction of photoautotrophic75

metabolic reaction fluxes. This methodology, applicable to genome-76

scale modeling of all phototrophic microorganisms, can facilitate77

the use of flux balance analysis in the engineering of light-driven78

metabolism.79

2. MATERIALS AND METHODS80

2.1 Culture conditions.81

Synechococcus elongatus PCC 7942 wild type, stored in our labora-82

tory;s culture collection as AMC06, was cultured at 30�C in 40083

mL BG-11 medium in 1 L Roux flasks. Flasks were bubbled with84

air under continuous illumination in a temperature controlled in-85

cubator. Cultures were light acclimated (low light (n=3) at 60 µmol86

photons m-2 s-1, high light (n=4) at 600 µmol photons m-2 s-1) for87

72 hours, diluted and grown until mid-exponential phase before88

being harvested.89

2.2 Cell physiology measurements.90

Cell densities were manually determined using an improved91

Neubauer hemocytometer. Growth rates were determined based92

on the change in cell counts from inoculation to harvest. Cell dry93

weight was determined by taking 50 mL of culture (n=3) and fil-94

tering it onto a GF/C glass microfiber filter (diameter: 47mm).95

Filters containing cellular biomass and media controls (n=3) were96

dried at 95�C overnight. Cellular dry weight was determined by97

subtracting the post-filtration mass from the pre-filtration mass,98

after normalizing to the media control.99

2.3 Determination of cell dimensions.100

For imaging, thin pads of 1% (wt/vol) agarose were prepared101

using Mini-PROTEAN® Tetra Cell Casting Module. From this102

gel, 1-2 cm square pads were cut and placed onto a microscope103

slide and 2-5 ul cell culture liquid was added to the pad and let104

dry. Then a microscope slide cover was gently placed onto of the105

agarose pad and cells were imaged using a DeltaVision inverted106

epifluorescence microscope (Applied Precision, Issaquah, WA). Im-107

ages were captured using a CoolSnap HD charge-coupled device108

(CCD) camera (Photometrics, Tucson, AZ). Cell length and width109

were determined using the straight line tool in ImageJ [44]. For110

high light (n=210) and low light (n=238) acclimated cells the mean111

and standard deviation were determined and the mean ± 2 stan-112

dard deviations was used to determine cell volume by modeling113

the cell shape as a core cylinder capped with two hemispheres114

according to the following equation:115

Vol = p
⇣w

2

⌘2
(l � w

2
) +

4
3

p
⇣w

2

⌘3
(1)

Where l is the cell length and w is the cell width.116

2.4 Pigment extraction.117

Cells (4 mL culture) were collected by centrifugation at 10,000 x118

g at 5�C for 15 minutes. The supernatant was discarded and the119

cell pellet was frozen at -80�C until processed. Chlorophyll was120

extracted with 50 µL DMSO and 1950 µL of methanol, incubated in121

the dark for 30 minutes, and centrifuged at 10,000 x g at 5�C for 15122

minutes. The pigment containing supernatant was transferred to a123

1 cm path length cuvette. Absorbance spectra were collected used124

a Cary 60 UV-Vis Agilent spectrophotometer in scan mode (350-125

800 nm, scan interval of 1 nm). Chlorophyll concentrations were126

determined using the equations for the appropriate solvent [42].127

Phycobilisomes were extracted from the thawed cell pellets by128

resuspension in 2 mL PBS (10 mM phosphate, 150mM NaCl, pH129

7.0) with a protease inhibitor (cOmpleteTM, Sigma-Aldrich). Cells130

were lysed by sonication (Fischer Scientific Sonic Dismembrator131

500, 50% power, 8 seconds on, 30 seconds off for 5 cycles) with the132

tube chilled in an ice bath during lysis to prevent overheating. Mi-133

croscopic observation of post-sonicated samples indicated a lysis134

efficiency of over 90%. Lysed samples were centrifuged at 45,000 x135

g at 5�C for 60 minutes. 200 µL of the phycobilisome containing136

supernatant was transferred to a 96 well plate. Absorbance spectra137

were collected using an Infinite 200 PRO Multiplate Reader (Tecan)138

spectrophotometer in scan mode (400-750 nm, scan interval of 1139

nm). Phycocyanobilin and apophycocyanobilin concentrations140

were determined using published extinction coefficients [4] after141

correcting the well plate path length to a 1 cm equivalent.142

2.5 Cellular absorption coefficients.143

Cellular absorption coefficients were determined based on pub-144

lished protocols [32]. 1 mL of culture volume was added to 9 mL145

of BG-11 media and cells were collected by vacuum filtration onto146

a GF/C glass microfiber filter (47 mm diameter). The filter was147

placed on top of a 96-well plate with a plate cover along with a neg-148

ative control consisting of a filter through which 10 mL of BG-11149

media had passed. Absorbance spectra were collected using a Infi-150

nite 200 PRO Multiplate Reader (Tecan) in scan mode (400-750 nm).151

Spectra from a total of 6 wells per filter were collected, averaged,152

blank subtracted and normalized to an OD750 value of 0. The153

wavelength specific absorption coefficient was determined, along154

with correcting for filter amplification using the coefficients for155

Synechococcus WH103 in [32], according to the following equation:156
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al = 2.303
⇣

0.301 (Al) + 0.45
⇣

A2
l

⌘⌘
(2)

where Al is the absorbance at a given wavelength. The cell nor-157

malized absorption coefficient (a*cell, units: cm2 cell-1) and the158

pigment normalized coefficient (a*pigm, units: cm2 µg-1 pigments)159

were determined by dividing al by either the total number of cells160

deposited on the filter or the total pigment mass, respectively, and161

then multiplying the resulting value by the filter area onto which162

the cells were deposited (12.7 cm2 for the 47 mm diameter GF/C163

filter).164

2.6 Simultaneous oxygen evolution and chlorophyll fluores-165

cence parameters.166

Rapid light curves (RLCs) were performed as outlined in [14]. A167

Walz Dual PAM 100 fluorometer in a temperature controlled cus-168

tom cuvette holder and a FireSting Optical Oxygen Meter were169

used for the simultaneous measurement of chlorophyll fluores-170

cence and oxygen evolution. Approximately 30 mL of culture was171

removed and cells were pelleted by centrifugation (3000 x g, 10172

minutes at 30�C). Cell pellets were resuspended in fresh media173

to the target cell density (HL: 5x108 cells mL-1, LL: 2.5x108 cells174

mL-1) and kept in the dark for 10 minutes prior to analysis. Dark175

respiration rates were collected for approximately 10 minutes prior176

to running RLCs. A red actinic light (635 nm) was used to provide177

a saturating pulse (600 ms, 10,000 µmol photons m-2 s-1) for fluo-178

rescence measurements. Cells were illuminated for 1 min steps at179

the following increasing intensities (µmol photons m-2 s-1):180

HL: 0, 8, 24, 43, 75, 109, 146, 195, 259, 339, 435, 547, 674, 844, 1033,181

1565, 2386, 2924182

LL: 0, 8, 24, 43, 75, 109, 146, 195, 259, 339, 435, 547, 844, 1565, 2386183

The chlorophyll fluorescence parameters Fv/Fm, Y(II), qP and184

NPQ were determined as described [45, 23]. Net oxygen evolution185

rates were normalized to cell count. Shading in the round cuvette186

was accounted for by calculating the attenuation across the cuvette187

path length according the following equation:188

QFIo = 2
Z l=700

l=400

Z y=r

y=0
Iol (l)� Iol (l) e�a⇤cell(l)·c·2(r2�y2)

1
2

dy dl

(3)
where QFIo is the quantum flux in µmol photons m-2 s-1 at a given189

PAR value (Io), l is the wavelength, Iol (l) is the fraction of the190

PAR at a given wavelength l, r is the radius of the cuvette (0.56191

cm), a⇤cell is the wavelength-specific absorption coefficient in cm2
192

cell-1, and c is the cell density in cells cm-3. QF was converted193

to µmol photons cell-1 s-1 by multiplying QFIo by the rectangular194

surface area of the cuvette (width = 0.56 cm, height = 1.15 cm),195

converted to m2 and dividing by the total number of cells in the196

cuvette. This QF value was used as the independent variable in197

plots of oxygen-based photosynthesis (Po) versus QF.198

2.7 Genome-scale metabolic modeling.199

The S. elongatus genome-scale model (GEM) iJB785 [6] was updated200

to include additional content (Table S1).201

Simulations were performed in a similar manner to [6]. The202

biomass objective function was updated to account for differences203

in pigments between the low and high light conditions (Table 1).204

Demand reactions to allow dissipation of excitation energy at PSII205

and PSI were added to assess the minimum quantum requirement206

of biomass production:207

DM_chla_qy2_c: chla_qy2*_c ! cholphya_c208

DM_chla_qy1_c: chla_qy1*_c ! cholphya_c209

Photoautotrophic growth was simulated for a 12 hour time period210

broken into 20 minute psuedo-steady-state segments. Light was211

modeled coming from the side of the flask. The Roux flasks had212

approximately 375 mL of culture at the time of the experiments213

which resulted in a light-facing surface area of 80 cm2 and a path214

length of 4.7 cm. At the beginning of each simulation, the appro-215

priate constraints were updated. First, the total biomass in the216

culture was divided by the cell dry weight to determine the total217

cells in the culture. Next, the photon uptake rate was determined218

by dividing the culture into 50 slices along the 4.7 cm path length.219

These slices were considered thin enough that cell shading was220

assumed to be negligible. Thus, we used the spectral distribution221

of photon flux for the given light source at the experimental irra-222

diance (I0(l)), the cell specific spectral absorption coefficient (a⇤l),223

and the cell count, to determine the photon uptake flux (Ia) in units224

of µmol photons (time interval)-1 using the following equation:225

Ia =
cell
SA

Z 700

400
I0(l)a⇤cell(l)dl (4)

where cell is the total number of cells in the slice and SA is the226

light-facing surface area of the slice. Light attenuated in one slice227

was removed from I0(l) for the subsequent slices, accounting228

for shading along the culture path length. A running total of the229

absorbed light was used to set the reaction bounds of the photon230

exchange reactions in the GEM.231

The PO vs. QF curves were fit to a Platt [41] equation for photo-232

synthesis prediction (P), using quantum flux as the independent233

variable.234

P = Pmax(1 � e�
a⇥QF
Pmax )e�

b⇥QF
Pmax (5)

Pmax is the maximum photosynthetic rate, a and b are the pa-235

rameters that describe the initial slope of the curve, and the pho-236

toinhibition (if present), respectively. These curves were used to237

determined the oxygen evolution rate at each slice. The total oxy-238

gen evolution across the culture path length was used to set the239

bounds of the oxygen exchange reaction in the GEM (reaction ID:240

EX_o2_e).241

Non-growth associated maintenance (NGAM) was calculated242

from the experimental dark respiration rate. This value was set as243

the lower bound for an fictional plastoquinone oxidase (reaction244

ID: NGAM), which forces a minimal amount of reductant mediated245

oxygen consumption consistent with the observed dark respiration246

rate.247

The simulation was performed by maximizing the BOF reaction248

using the parsimonious FBA function [28] as implemented in CO-249

BRApy [8]. The flux through this reaction is equal to the biomass250

accumulation in milligrams over the 20 minute time interval. This251

biomass was added to a running total of the total culture biomass252

and used to parameterize the next 20 minute simulation interval.253

All calculations and simulations were performed using in-house254

scripts developed in IPython [40].255

2.8 Comparison with 13C isotopically-nonstationary metabolic256

flux analysis.257

For low light simulations, the predicted flux vector from the model258

simulation was divided by the flux through the RPBCcx model259

reaction (RubisCO carboxylase) and multiplied by 100. The experi-260

mental data was normalized to 100 units of flux through the RUBP261

+ CO2 ! 3PGA + 3PGA reaction in Supplemental Table A2 for262

wild type S. elongatus PCC 7942 in [15]. For high light simulations,263

the same process was applied, except fluxes were normalized to264

the sum of the CO2 and bicarbonate exchange fluxes, multiplied265

by 100, and compared with the experimental fluxes reported in266

Supplemental Table 5 in [1].267
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3. RESULTS268

In this study we set out to assess the ability of genome-scale model-269

ing coupled with photophysiology constraints to predict metabolic270

capabilities in S. elongatus. To this end, we first collected the neces-271

sary physiology data necessary to parameterize the models. This272

resulted in a comprehensive comparison of low versus high light273

acclimated cultures. Next, we integrated these data as constraints274

on the model simulations, comparing model simulations with in275

vivo growth rates and fluxes. Finally, we assess the alternate en-276

ergy flows through the photosystems as a result of the absorption277

of excess excitation energy.278

3.1 Photoacclimation of S. elongatus PCC 7942..279

S. elongatus was acclimated and cultured at a high light condition280

of 600 µmol photons m-2 s-1 (HL, n=4) and a low light condition of281

60 µmol photons m-2 s-1 (LL, n=3). Specific growth rates were 0.081282

± 0.015 and 0.047 ± 0.004 hr-1 respectively for HL and LL cultures.283

While cells grown at both light levels had approximately the same284

cell width (1.2 ± 0.1 and 1.1 ± 0.1 µm at HL and LL respectively),285

LL cells were significantly longer resulting in a 20% increase in cell286

volume at LL (Table 1).287

n Table 1 Physiology parameters of S. elongatus acclimated to
low and high light.

Growth rate (h-1) Cell volume (µm3) pgDW cell-1

Low Light 0.047 ± 0.004 3.4 ± 0.6 1.3 ± 0.2

High Light 0.081 ± 0.015 2.8 ± 0.3 1.0 ± 0.2

There were significant differences in light harvesting pigments288

as a result of photoacclimation. Total pigments (phycocyanin (PC),289

allophycocyanin (APC) and chlorophyll a (chla) at LL were 4.9 fold290

higher than at HL (Table 2). Chla and APC increased at a similar291

rate (3.4 and 3.8 fold respectively). Almost all chla in S. elongatus292

is contained within the photosystems [48] and APC is a linker293

pigment-protein complex physically and energetically connecting294

the light harvesting PC with the photosystems. Thus, this increase295

in chla and APC is likely attributed to an increase in the num-296

ber of PSI and PSII complexes present at LL. The light harvesting297

pigment-protein complex PC increased 5.7 fold at LL compared to298

HL. The larger -fold increase in PC versus APC suggests not only299

did the number of phycobilisomes increase but the rod length of300

each phycobilisome increased at LL compared to HL. The phyco-301

bilisomes constituted 28% of the cellular biomass at LL compared302

to 7% at HL.303

The pigment content and composition of the cell dictates its304

light harvesting capacity. This cell-specific absorption coefficient305

is an important modeling parameter as it determines the photon306

uptake rate and the extent of self-shading that occurs in the culture.307

We compared the cell normalized absorption coefficient (a*cell) and308

the pigment normalized coefficient (a*pigm) at both light levels (Fig.309

1). LL acclimation resulted in 2.3 times more light absorbed per cell310

than the HL cells, despite the 4.9 fold increase in total pigments.311

This decrease in light capture efficiency on a per-pigment basis is312

illustrated in the LL to HL a*pigm ratio of approximately 0.5 (Fig.313

1B, area under the curve: HL: 7.4 vs LL: 3.6 cm2 µg-1 nm-1). Thus,314

while low light acclimation allowed S. elongatus to absorb more315

light per cell, there were diminishing returns with respect to the316

resources needed to harvest the light energy.317

3.2 Photophysiology of S. elongatus at low and high light.318

As the GEM requires quantitative incorporation of photophysi-319

ology constraints, we converted both the photon uptake and the320

photosynthesis versus irradiance (P vs. I) curve into a model-321

compatible format. The photon uptake rate is derived from the322

PAR spectrum and the a*cell values. The PAR spectrum is a wave-323

length density function describing the relative distribution of pho-324

tons. For example, a red LED exclusively delivers photons in the325

600-700 nm range while a white LED distributes the photons over a326

broader range of wavelengths. The a*cell describes the wavelength-327

specific attenuation of light. For example, the cyanobacterial light328

harvesting pigment phycocyanin preferentially captures orange329

and red photons and is responsible for the absorption maximum at330

620 nm in Fig. 1. Therefore, the intersection of the PAR spectrum331

and the a*cell describes the cell-specific attenuation of light, which332

is the photon uptake rate.333

We simultaneously measured chlorophyll fluorescence param-334

eters and oxygen evolution using a rapid light curve (RLC) pro-335

tocol [14]. In an improvement over previous photoautotrophic336

modeling of S. elongatus [6], we converted the incident light (pho-337

tosynthetically available radiation, PAR) to the quanta of light338

absorbed by the cells (quantum flux, QF). This representation is339

necessary to convert between light sources of different spectral340

quality. In the previous study [6], the P vs. I curve was determined341

with a white LED and the culture light source was a fluorescent342

lamp. For S. elongatus, these light sources result in similar QF343

rates. In this study, the oxygen evolution and fluorescence were344

collected using a red actinic light, while the cells were cultured345

under fluorescent light. These light sources have dramatically346

different spectral qualities; thus, necessitating a conversion.347

Upon conversion the P vs. I curve becomes a P vs. QF curve348

and describes the maximum photosynthesis rate as a function of349

photon uptake. In this study we used oxygen evolution as a proxy350

for photosynthesis (PO). While a culture under full diurnal, solar351

irradiance may experience a wide variety of QF values, constant352

light cultures only experience a small section of the PO vs. QF353

curve. Thus, the only relevant section of the curve is the maximum354

QF (QFmax), representative of photon capture rates of cells closest355

to the light source, and the minimum QF (QFmin), representative of356

the photon capture rate at the point farthest from the light source,357

attenuated by cell shading. Thus, we report both the maximum358

QF (QFmax), representative of photon capture rates of cells closest359

to the light source, and the mean QF (QFmean), representative of360

the average photon capture rate across the full path length.361

To induce sufficient fluorescence signal, PAM measurements362

often require high cell densities. The resulting increase in cell363

shading decreases the quanta of light absorbed across the path364

length of the sample cuvette. In an improvement over the previous365

modeling effort [6], we calculated the photon uptake accounting366

for cuvette shape, path length, cell density and cellular pigmenta-367

tion [50]. This transformation dramatically affected the calculated368

oxygen evolution rate at a given photon absorption rate (PO vs.369

QF) (Fig. S1).370

PO versus QF curves showed the LL acclimated cells had a371

significantly steeper light limited slope of photosynthesis, a , and372

a higher maximum photosynthetic rate, Pmax, compared to HL373

cultures (Fig 2A). This resulted in similar cell-specific maximum374

oxygen evolution rates at the experimental QF for the two light375

levels with the HL PO at QFmax approximately 20% higher than376

the LL condition (Table 3). Comparing the mean oxygen evolution377

rates, this difference increases to almost 40%, quantifying the im-378

pact of cell shading on culture productivity. When the PO versus379
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n Table 2 Comparison of pigments in S. elongatus acclimated to low and high light.

Ratios (LL:HL)

Chl a (pg/cell) PC (pg/cell) APC (pg/cell) PC:Chl a APC:Chl a PC:APC Total pigments Chl a PC APC

Low light 0.037 ± 0.002 0.29 ± 0.05 0.08 ± 0.02 7.8 2.2 3.6 4.9 3.4 5.7 3.8

High light 0.011 ± 0.000 0.05 ± 0.01 0.02 ± 0.00 4.6 1.9 2.4
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Figure 1 Cell- and pigment-specific absorption coefficients for S. elongatus acclimated to low and high light. (A) Cell-specific absorption
coefficient. (B) Pigment-specific absorption coefficient. The pigment mass includes phycocyanin, allophycocyanin and chlorophyll a.
Shaded areas represent one standard deviation from the mean (HL n=4, LL n=3).

QF curves were normalized to gram dry cell weight, the difference380

in mean oxygen evolution rate increased to 75% (Fig. 2B), which is381

similar to the difference in specific growth rate (72%, Table 1).382

Interpretation of chlorophyll fluorescence measurements in383

cyanobacteria differs from that in algae and higher plants [46, 35].384

As such, we report the maximum quantum yield of PSII (Fv/Fm),385

the effective quantum yield of PSII as a function of QF (Y(II)),386

and the fraction of open reaction centers (qL) (Table 3 and Fig.387

S2). However, the values were not quantitatively integrated with388

our model simulations. S. elongatus PCC 7942 lacks the orange389

carotenoid protein that confers the blue light activated phycobil-390

isome fluorescence quenching mechanism in cyanobacteria [20]391

and we did not observe non-photochemical quenching (NPQ) in-392

duced fluorescence in either acclimation condition. The effective393

quantum yield was approximately two-fold higher for the LL accli-394

mated cells (0.33 ± 0.01 vs. 0.15 ± 0.01 at LL and HL respectively),395

suggesting an increase in excitation energy diverted to PSI, consis-396

tent with previous observations in cyanobacteria [35].397

3.3 Genome-scale modeling of S. elongatus at low and high398

light.399

The photophysiology results were translated into modeling con-400

straints to simulate photoautotrophic growth of S. elongatus. The401

a*cell coupled with the experimental PAR intensity and spectral402

quality of the fluorescent light was used to determine the photon403

uptake constraint for the simulations. This uptake value, equiv-404

alent to QF, was used to determine the oxygen evolution rate of405

the culture. This value constrained the oxygen exchange flux for406

the simulations. The biomass objective function (BOF) [9] defines407

which metabolites and in what ratio must be synthesized to gener-408

ate the macromolecular cellular components necessary for growth.409

We updated the BOF to reflect the differences in pigment mass be-410

tween the two growth conditions prior to performing simulations.411

The quality of the model simulations depends on the accuracy412

of the experimental photophysiology parameters. Thus, we not413

only simulated growth using the mean values, but also the upper414

bound (UB) and lower bounds (LB) of the Po vs. QF curves, a*cell415

and dry cell weight (pg cell-1). As the experimental growth curves416

are based on cell counts, the dry cell weight converts the biomass417

accumulation predicted by the model to cell counts; thus, having418

an impact on the accuracy of the model growth rate predictions.419

The model predicted a LL mean growth rate of 0.033 h-1(UB:420

0.044, LB: 0.025) compared to an experimental value of 0.047 ±421

0.004 h-1 representing a 30% underestimation by the model (Fig.422

3). For the HL condition the model predicted a mean growth rate423

of 0.051 h-1 (UB: 0.067, LB: 0.039) compared to an experimental424

value of 0.081 ± 0.015 h-1 representing a 38% underestimation by425

the model (Fig. 3). While the upper bound of the simulations426

values approached the range of the experimental observations, the427

model tended to underestimate the growth rate at both high and428

low light.429

We explored whether or not maintenance energy requirements430

forced upon the model could explain the growth rate discrepan-431

cies. Maintenance energies in phototrophs differs from that of432

heterotrophs as the energy source, light, is uncoupled from the433

carbon source, inorganic carbon. Thus, as long as the culture is not434

light-limited, maintenance energy costs will not affect growth rate.435

Growth-associated maintenance (GAM), represented as growth-436

dependent ATP consumption, has been inconsistently applied to437

phototrophic GEMs. Genome-scale models of the cyanobacterium438

Synechocystis sp. PCC 6803 include GAM values ranging from 53439

to 1.3 mmol ATP gDW-1 h-1 [34, 21]. GAM requirements in our440
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Figure 2 Oxygen evolution versus quantum flux for S. elongatus acclimated to low and high light. (A) Cell-specific Po versus QF curves.
(B) Dry cell weight-specific Po versus QF curves. Vertical dashed lines represent the maximum quantum flux received by the cultures at
the experimental irradiance. Abbreviations. LL: low light, HL: high light, QF: quantum flux.

n Table 3 Comparison of photosynthetic rates in S. elongatus acclimated to low and high light. The chlorophyll fluorescence parameter
qL is reported for QFmean.

Ratios (HL:LL)

QFmax* QFmean* Pomax
† Pomean

† Fv/Fm qL Pomax Pomean

Low Light 2.5x10-11 1.6x10-11 6.6 ± 0.8 x10-13 4.6 ± 0.5 x10-13 0.30 0.93 1.2 1.4

High Light 1.1x10-10 6.0x10-11 8.1 ± 0.7 x10-13 6.3 ± 0.4 x10-13 0.20 0.71

* µmol photons cell-1 s-1

† µmol O2 cell-1 s-1

S. elongatus GEM include a growth associated maintenance cost441

of 30 mmol ATP gDW-1 h-1; however, this is a largely arbitrary442

value. Our GEM sets the non-growth associated maintenance443

(NGAM) to the dark respiration rate. This value represents the444

residual reductant-mediated oxygen consumption that is necessary445

to maintain viability in the absence of light. This value varies with446

the incident irradiance. We observed dark respiration rates of447

0.41 and 0.15 mmol O2 gDW-1 h-1 for S. elongatus at HL and LL448

respectively; with a corresponding reductant consumption rate of449

4 mmol electrons per 1 mmol O2. Finally, there is an NGAM cost450

associated with the repair of the photosystem II (PSII) D1 subunit.451

This subunit is damaged at a rate proportional to PSII flux [3], is452

independent of growth rate, and incurs an ATP and GTP cost at453

the ribosome to biosynthesize a replacement subunit.454

Upon removing all GAM and NGAM requirements, the growth455

rate was unchanged at LL and HL. Additionally, we quantified the456

energy in excess of growth and maintenance requirements by fixing457

the growth rate at the maximum value and optimizing for either458

an ATP hydrolysis reaction or a plastoquinone-mediated oxygen459

consumption reaction. At LL, an ATP hydrolysis flux of 19 mmol460

ATP gDW-1 h-1 and a respiratory flux of 0.7 mmol electrons gDW-1
461

h-1 could be sustained above and beyond growth and maintenance462

requirements. At HL, these values increased to 122 mmol ATP and463

2.0 mmol electrons gDW-1 h-1, suggesting the cultures are not light464

limited at either irradiance. Thus, the growth rate discrepancy465

between our simulations and the observed experimental values466

was not due to excessive maintenance energy requirements forced467

on the model.468

3.4 Comparison of GEM predicted reaction fluxes with 13C MFA.469

While growth rate can be inferred from empirical models, genome-470

scale models have the advantage of predicting the flux for all471

biochemical reactions in the metabolic network. In the case of472

S. elongatus, constraining the oxygen evolution rate with net PO,473

the photon uptake rate with QF and the biomass objective func-474

tion with the light-condition-specific cellular composition, reaction475

fluxes are predicted for 861 intracellular reactions. Recent studies476

have used 13C metabolic flux analysis (MFA) to experimentally477

determine the reaction flux for central metabolism in S. elonga-478

tus [15, 1]. We compared our LL condition predicted reaction479

fluxes with those published for S. elongatus at a similar growth480

rate [15], normalized to 100 units of RubisCO carboxylase flux to481

account for the slight difference in growth rate. The predicted482

reaction fluxes, determined using parsimonious FBA (pFBA) [28],483

showed remarkable similarity to the experimental values (Fig. 4484

and Fig. 5A, B). The primary difference was in metabolic fluxes485
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surrounding the malate dehydrogenase (MDH); a reaction that486

was inferred from the 13C MFA data, but to date the gene responsi-487

ble for catalyzing this reaction is unidentified in S. elongatus PCC488

7942.489

We compared our HL predicted reaction fluxes with those pub-490

lished for S. elongatus PCC 7942 at near optimal growth rates [1].491

Again, pFBA flux predictions showed good agreement with the492

experimental values (Fig. 6 and Fig. 5C, D). The primary discrep-493

ancies were in the phosphatase reactions in the Calvin-Benson494

cycle. However, the net flux into and out of these reactions were495

in agreement. Overall, the GEM flux predictions constrained by496

photophysiology constraints were consistent with 13C MFA results497

across the range of observed growth rates.498

Using flux variability analysis (FVA), we explored whether or499

not alternate optimal solutions existed for the LL and HL models.500

For both LL and HL conditions, FVA ranges were narrow for all501

reactions except those connected to an ATP or reductant consum-502

ing reaction (Fig. 5a,c). As discussed above, both conditions have503

ATP and reductant pools in excess of growth and maintenance504

requirements. As a result, the FVA ranges for these reactions are505

wide as the available energy pools can drive flux through these506

energy consuming reactions. Therefore, the discrepancy in flux507

predictions are likely a result of the minimization of total flux508

performed by pFBA.509

3.5 Predicted excitation energy routes in S. elongatus.510

The GEM’s biomass objective function defines the energetic re-511

quirements for growth down to the metabolite level. Compar-512

ing constrained versus unconstrained photon uptake enabled an513

assessment of excitation energy absorbed in excess of biosynthe-514

sis and maintenance needs. We simulated growth using the up-515

per bound constraints as they more closely recapitulated in vivo516

growth rates and thus, realistic energy needs.517

At low light, with a QF of 2.0x10-11 µmol photon cell-1 s-1,518

the model where all excess excitation energy can be dissipated519

upstream of the photosystems (unconstrained) predicted only 33%520

of the excitation energy was necessary to satisfy the electron needs521

for biomass production and maintenance. We then constrained the522

photon uptake to account for the entire quanta of absorbed photons.523

The GEM includes experimentally determined wavelength-specific524

energy transfer efficiencies [48]. Based on these values and the525

emission spectra of the growth light, approximately 30% of the526

QF is lost before reaching the reaction centers. This quanta, along527

with the biomass and maintenance requirements accounted for528

63% of the absorbed photons. The remaining 37% was consumed529

by alternative electron transport (AET). At high light, with a QF of530

7.5x10-11 µmol photon cell-1 s-1, the unconstrained model predicted531

only 11% of the excitation energy was necessary to satisfy the532

electron needs for biomass production and maintenance. After533

accounting for wavelength-specific energy transfer efficiencies,534

58% of the absorbed QF was consumed by AET.535

The AET predicted by the model depends on their relative536

metabolic cost. The simulations predicted relatively high flux537

through PSI, even at low light. The model includes a basal PSI su-538

peroxide generation rate of 1% [49], while PSII includes a D1 repair539

cost proportional to flux. The model flux predictions preferentially540

routed excitation energy through PSI since the combined action541

of superoxide dismutase and catalase detoxifies the ROS to water542

with no energy input required. Compared to the unconstrained543

simulation, the constrained simulation predicted an increase in544

charge recombination at PSII which increases damage to the PSII545

D1 protein. This damage is mitigated by de novo synthesis of a546

new protein at a significant ATP/GTP cost at the ribosome. The547

model predicted increased cyclic electron flow around PSI is re-548

quired to generate the chemical energy necessary for D1 protein549

biosynthesis (Table 4). Thus, the D1 repair cost determines both550

the predicted bifurcation of excitation energy between PSII and551

PSI and the cyclic electron flow rate, balancing ATP and reduc-552

tant ratios necessary to satisfy photodamage mitigation and repair553

mechanisms. A summary of predicted excitation energy routing,554

D1 repair costs and quantum yields of carbon fixation and oxygen555

evolution are shown in Table 4.556

3.6 Model-driven engineering of 2,3-butanediol production in S.557

elongatus.558

The chemical precursor (R,R)-2,3-butanediol (23BD) has been sc-559

cussfully produced in S. elongatus via both phototrophic [37] and560

photomixotrophic strategies [31, 17]. We explored the ability of561

the photophysiology constrained GEM to optimize 23BD produc-562

tion in S. elongatus. We added the 23BD biosynthsis pathway to563

the GEM (Dataset S1) and removed the non-network constraints.564

These constraints are restrictions on pathway usage and magni-565

tude that were necessary to recapitulate published in vivo gene566

essentiality data [43, 6]; however, the organism can be engineered567

to overcome these constraints. The model suggested an optimal568

solution that uses the phosphoketolase (PKT) pathway to bypass569

lower glycolysis (Fig. 7b). Previous modeling in S. elongatus also570

suggested this pathway was optimal; however, based on the essen-571

tiality of lower glycolytic enzymes, it was concluded this bypass572

was not active during photoautotrophic conditions [6]. PKT uses573

the Calvin-Benson-Bassham (CBB) cycle intermediates frucose-6-574

phosphate (F6P) or xyulose-5-phosphate as substrates. It has been575

hypothesized the lack of available substrates, due to high CBB576

flux, may explain the lack of PKT flux. S. elongatus engineered577

to consume exogenous glucose was shown to have an elevated578

F6P pool [17]. Thus, hypothesizing an overexpresed PKT pathway579

could tap into this F6P pool, we performed an in silico comparison580
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Figure 4 Simulated versus experimental metabolic reaction fluxes for S. elongatus at low growth rates. (A) Predicted fluxes at low light
by the S. elongatus genome-scale model iJB792. (B) Experimental reaction fluxes for S. elongatus as reported in [15]. Metabolic reactions
and metabolites are indicated by their BiGG identifier (bigg.ucsd.edu). Flux values normalized to 100 units of RubisCO carboxylase flux
are shown below the reaction abbreviations.

n Table 4 Predicted excitation energy flow in S. elongatus acclimated to low and high light. FCO2 : quantum yield of net carbon fixation,
FO2 : quantum yield of net oxygen evolution. Abbreviations: ET: energy transfer, PSII: photosystem II, PSI: photosystem I, CEF: cyclic
electron flow, CR: charge recombination.

Fraction of absorbed quanta State Transition

ET loss PSII PSI CEF PSII CR PSI/PSII D1 repair cost1 FCO2
2 FO2

2 PSI:PSII3 Y(II)4

High light 0.31 0.09 0.60 0.54 0.04 6.7 3.2x10-10 0.009 0.010 2.1 2.1

Low light 0.29 0.17 0.54 0.36 0.03 3.2 0.6x10-10 0.028 0.031

1 µmol ATP cell-1 s-1

2 µmol x µmol-1 photon
3 (High light PSI/PSII)x(Low light PSI/PSII)-1

4 (Low light Y(II))x(High light Y(II))-1
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Figure 5 Correlation between simulated and experimental metabolic reaction fluxes for S. elongatus. (A) Comparison of low light pre-
dicted fluxes (gray bars) and experimental fluxes (white bars) reported in [15]. Flux ranges determined by flux variability analysis
are shown for the predicted fluxes. Upper bounds that exceed the Y-axis scale are indicated by an arrow and the upper bound flux
value. (B) Correlation between low light predicted fluxes and experimental fluxes reported in [15]. (C) Comparison of high light pre-
dicted fluxes (gray bars) and experimental fluxes (white bars) reported in [1]. Flux ranges determined by flux variability analysis are
shown for the predicted fluxes. Upper bounds that exceed the Y-axis scale are indicated by an arrow and the upper bound flux value.
(D) Correlation between high light predicted fluxes and experimental fluxes reported in [1]. Metabolic reactions and metabolites are
indicated by their BiGG identifier (bigg.ucsd.edu). For (A) and (B), flux values are normalized to 100 units of RubisCO carboxylase flux.
For (C) and (D) flux values are normalized to 100 units of inorganic carbon uptake. Abbreviations: ACONT: aconitase, CS: citrate syn-
thase, ENO: enolase, FBA: fructose-bisphosphate aldolase, FBA3: sedoheptulose 1,7-bisphosphate D-glyceraldehyde-3-phosphate-lyase,
FBP: fructose-bisphosphatase, FUM: fumarase, PGK: phosphoglycerate kinase, ICDH: isocitrate dehydrogenase, MDH: malate dehy-
drogenase, ME: malic enzyme, PDH: pyruvate dehydrogenase, PEPC: phosphoenolpyruvate carboxylase, PGI: glucose-6-phosphate
isomerase, PGM: phosphoglycerate mutase, PGMT: phosphoglucomutase, PRUK: phosphoribulokinase, PYK: pyruvate kinase, RPE:
ribulose-5-phosphate 3-epimerase, RPI: ribose-5-phosphate isomerase, SBP: sedoheptulose-bisphosphatase, SUCD: succinate dehy-
drogenase, TKT1: transketolase (S7P ! R5P + X5P), TKT2: Transketolase (F6P ! E4P + X5P), TPI: triosephosphate isomerase, ACLS:
acetolactate synthase, ALAD: L-alanine-dehydrogenase, PGLYCP: phosphoglycolate phosphatase.

of the PKT pathway to the published oxidative pentose phosphate581

(OPP) engineered pathway [17] for converting exogenous glucose582

into 23BD (Fig. 7a,b).583

First, using the model as a framework, we characterized the584

OPP engineered pathway results to derive the necessary parame-585

ters for comparison. Based on the published culture conditions, the586

feedstock was likely low light acclimated (30 µmol photon m-2 s-1);587

thus, we used the photophysiology values (a*cell, PO v. QF, pig-588

ment composition, etc.) from our LL acclimated culture as simula-589

tion parameters. Using the published results from Kanno et.al. [17],590

we determined the glucose uptake rate of the optimized strain was591

approximately 0.29±0.1 mmol glucose gDW-1 h-1 during the first592

3 days of culturing. Using a value of 0.27 mmol glucose gDW-1
593

h-1 and the biomass production rate set to 20% of the maximum,594

the experimental results were accurately recapitulated (Fig. S3a-c).595

Thus, these values were used for simulating photomixotrophic596

production of 23BD.597

Using the derived glucose uptake and biomass partitioning598

values, we compared flux simulations from the OPP engineered599

pathway and the PKT designed pathway. Both designs resulted in600

identical titers and specific productivities at the published experi-601

mental conditions in Kanno et. al. (30 µmol photon m-2 s-1, 1 g/L602
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inoculation density) and were consistent with the experimental603

results (Fig. 8a). Parsimonious FBA flux predictions between the604

OPP and PKT designs suggested that while both designs resulted605

in the same 23BD titer, the PKT design required 40% less flux606

through the CBB cycle (Fig. 7a,b). Additionally, the PKT design607

avoids carbon loss as CO2 at both the OPP reaction phosphoglu-608

conate dehydrogenase and at the pyruvate dehydrogenase (PDH)609

reaction. The OPP pathway does generate 2 equivalents of NADPH610

per glucose; however, these reactions would have to compete with611

photosynthesis for the oxidized NADP+ pool, which may limit612

the flux through the OPP pathway. The phosphoketolase enzyme613

cleaves F6P into acetyl phosphate, which is converted to acetyl-614

CoA and used to generate biomass, and erythrose 4-phosphate, a615

CBB intermediate. Thus, the PKT pathway coupled with a PDH616

knockout would result in a maximum biomass partitioning of 33%617

(2 out of 6 carbons from glucose) and effectively uncouple the CBB618

from biomass production and towards 23BD biosynthesis. The flux619

distributions suggest the PKT design could provide advantages620

over the OPP pathway, especially at high irradiances when the621

redox state of the NADPH pool may inhibit OPP flux.622

Next, we assessed the impact of cell shading on 23BD produc-623

tion. Using an inoculation density of 1 g/L, simulations suggested624

increases in titer and specific productivity could be achieved for625

both photoautotrophic and photomixotrophic conditions (Fig. 8b).626

Holding the light intensity constant at 30 µmol photon m-2 s-1 and627

varying the inoculation density indicated the photoautotrophic628

condition was more sensitive to the cell density compared to the629

photomixotrophic condition (Fig. 8c). We assessed the full pro-630

duction envelope from an inoculation density of 0.1 to 1 g/L and631

irradiance values from 30 to 900 µmol photon m-2 s-1. The simu-632

lations suggested dramatic improvements in both 23BD titer and633

specific productivity could be achieved by increasing the avail-634

able light (Fig. 8d). Additionally, the impact to production yields635

caused by high inoculation densities was dramatically attenuated636

at high irradiances. While it is important to mention these re-637

sults are based on the photoautotrophic PO vs. QF curves, even638

the photoautotrophic condition achieved theoretical titers 2-fold639

higher than the published photomixotrophic values with increased640

specific productivity.641
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Figure 7 Comparison of the phosphoketolase engineered path-
way with oxidative pentose phosphate pathway. (A) Engineered
pathway as described in [17] that routes extracellular glucose
through the oxidative pentose phosphate toward 2,3-butanediol
production. (B) Engineered pathway as described in this study
that routes includes a phosphoketolase bypass toward 2,3-
butanediol production. Metabolic reactions and metabolites are
indicated by their BiGG identifier (bigg.ucsd.edu). Flux values
are in units mmol gram-1 glucose uptake.

4. DISCUSSION642

In this study we combined photophysiology constraints with a643

genome-scale model of S. elongatus PCC 7942 to predict metabolic644

differences between low and high light acclimated cultures. Over-645

all, the model underestimated the growth rate at both high and646

low light but flux predictions were in good agreement with experi-647

mentally determined values. The genome-scale model predictions648

allowed for an assessment of excitation energy routing through649

the photosystem as a result of excess light absorption. Finally, we650

employed this modeling construct to assess and improve current651

S. elongatus production strategies for 2,3-butanediol.652

The photophysiology constraints resulted in accurate predic-653

tions of photoautotrophic growth. Whole cell absorption spectrum,654

cell dry weight and oxygen evolution are widely accessible experi-655

mental techniques that are often used to characterize photophysi-656

ology [50]. When coupled to genome-scale modeling, these inputs657

provided a detailed assessment of cellular metabolism to include658

growth rate and reaction fluxes. Such inputs could be used for real-659

time monitoring and/or process control parameters of large-scale,660

light-driven bioprocesses engineering.661

While the upper bound of the simulations values approached662

the range of the experimental observations, the model tended to663

underestimate the growth rate at both high and low light. When664

determining the oxygen evolution rate, we did not supplement665

the sample with exogenous bicarbonate as it has been reported to666

affect photophysiology [47]. However, based on the cell densities667

used and photosythetic rates observed, it is likely the samples668

became carbon limited during the oxygen evolution experiment.669

This likely would have reduced Pmax of the PO vs. QF curve used670

to parameterize the model resulting in a underestimation of the671

growth rate.672

Parsimonious FBA reaction fluxes predicted by the genome-673

scale model were consistent with experimental 13C metabolic flux674

analysis [15, 1]. The observed accuracy is partially due to the non-675

redundant nature of the S. elongatus metabolic network. This lack676

of redundancy decreases the number of feasible flux states at the677

network level; evident by the similarity in experimental reaction678

fluxes in both 13C MFA studies. The agreement between the model679

predictions and MFA data suggests the photophysiology param-680

eters are dominant constraints on photoautotrophy and the FBA681

assumption of optimality is appropriate. These factors coupled682

with emerging methods for combining constraint-based modeling683

with quantitative -omics data [52] brings a wide variety of pheno-684

types of interest to the phototrophic community into scope for in685

silico modeling.686

While there were discrepancies in the simulation flux predic-687

tions and experimental data, the experimental values fell within688

the flux range of equally optimal solutions. For the high light/fast689

growth rate comparison (Fig. 6), the primary differences were in690

the Calvin-Benson cycle phosphatase reactions. The experimental691

values for these reactions did fall within the flux ranges deter-692

mined by flux variability analysis (FVA) (Fig. 5c). The wide flux693

ranges reported by FVA are due to the fact these phosphatases are694

coupled to ATP-consuming kinases. As the GAM/NGAM assess-695

ment indicated, there was an excess of ATP at both LL and HL.696

Thus, when FVA is maximizing flux through the phosphatase, the697

corresponding kinase reaction has a large pool of ATP to drive the698

reaction pair resulting in a wide flux range. Despite these discrep-699

ancies, the overall flux into and out of the Calvin-Benson cycle was700

accurately predicted by the model. For the low light/slow growth701

rate comparison (Fig. 4), the primary differences were around the702

hypothesized malate dehydrogenase reaction. This MDH bypass703

of pyruvate kinase is hypothesized to be necessary due to regula-704

tory inhibition of pyruvate kinase [22]. The MDH reaction, which705

has yet to be ascribed to a gene in S. elongatus, was added to our706

GEM based on biochemical evidence from MFA [15]. Regulatory707

mechanisms are not included in the genome-scale model; thus, the708

default prediction is for the bypass to not carry flux. While the709

pFBA solution predicted the MDH reaction carried no flux, the710

FVA flux ranges for this reaction were quite wide. Like the HL/fast711

growth rate comparison above, this was due to an ATP-coupled712

reaction (phosphoenolpyruvate synthase) driving flux through a713

loop that included MDH. Data-dependent incorporation of the714

PYK regulatory mechanism into a GEM could more accurately715
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Figure 8 Engineering photoautotrophic and photomixotrophic production of 2,3-butanediol in S. elongatus. (A) Specific productivity
versus titer comparison of phosphoketolase (PKT) design (this study) with the oxidative pentose phosphate (OPP) engineered pathway
as described in [17]. Solid and open markers represent OPP and PKT values respectively. Control marker: no carbon fixation (Rubisco
bounds = 0). Validation marker: in silico simulation of the experimental conditions reported in [17] (inoculation density: 1 g/L, light: 30
µmol photon m-2 s-1). (B) Specific productivity versus titer as a function of increasing light intensity. Select PAR values, in units of µmol
photon m-2 s-1, are indicated. (C) Specific productivity versus titer as a function of increasing inoculation density. (D) Specific produc-
tivity versus titer production envelope as a function of inoculation density and light intensity. Yellow shaded region: photoautotrophy.
Blue shaded region: photomixotrophy. For all panels the experimental value as reported in [17] is shown and the total culture duration
was 3 days.

constrain the flux through this bypass. Of note, despite the bio-716

chemical evidence from MFA showing an MDH-mediated bypass717

of PYK, PYK is essential in vivo [43]. Therefore, in S. elongatus, the718

in vivo MDH-mediated PYK bypass cannot carry sufficient flux to719

maintain cell viability in the absence of PYK.720

An advantage of genome-scale modeling over 13C MFA is the721

ability to predict reaction fluxes beyond central metabolism. We722

used this capability to assess alternate energy flows in S. elonga-723

tus. Our simulations predicted approximately 37% and 58% of724

the absorbed photons at low and high light respectively, were in725

excess of growth requirements and energy transfer losses. These726

numbers are likely overestimates since the energy transfer losses727

included in the model are based on measurements in S. elongatus728

permeaplasts [48] using chemical electron donor and acceptors;729

thus, they represent the most efficient energy transfer rates. Lever-730

aging recent developments in cyanobacterial PAM fluorometry731

techniques [35] may help constrain the physiological values. Still,732

up to 40% of photosynthetic flux was reportedly directed to the733

Mehler AET reaction in the cyanobacterium Synechocystis [12], sug-734

gesting our simulated values are in a biologically realistic range.735

The model predicts an increase in excitation energy directed to736

PSI with an increase in QF (Table 4), consistent with known state737

transitions in cyanobacteria [33]. Additionally, our prediction of738

increased cyclic electron flow at high light, evident by increased739

flux through the NDH-1 complex, is in agreement with the known740

role of this complex in cyanobacteria [36][5]. The absolute fluxes741

through PSII versus PSI depends on accurate accounting of the742

metabolic cost of ROS detoxification at both reaction centers. Cur-743

rently, the metabolic cost to repair the D1 protein, as represented744

in the model, drives the predicted excitation energy routing. Addi-745

tionally, the GEM assigns a ROS generation rate that scales linearly746

with reaction flux. The kinetics of ROS generation are likely not747

linear in vivo and properly constraining the flux-dependent ROS748

generation rates stands as an area of improvement for the GEM.749

Still, the fold change in predicted PSI versus PSII flux predicted750

by the model was in close agreement in the change in Y(II) at the751

experimental QF (Table 4). This suggests coupling photon uptake752

constraints with the GEM assumption of optimality results in accu-753

rate qualitative assessments of excitation energy routing between754

low and high light.755

It should be emphasized that FBA and MFA are comple-756

mentary methods. Often GEM simulations result in multiple757
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mathematically-equivalent flux states for a given set of constraints.758

MFA results restrict these alternate, equivalent optima to a nar-759

rower, biologically realistic subset. MFA results also validate or760

refute assumptions in the GEM. For example, in S. elongatus a phos-761

phoketolase bypass of glycolysis is feasible based on the genome762

annotation [6]. The GEM uses a hypothesized constraint that limits763

this bypass flux. The agreement between the model predictions764

and MFA data validates this constraint on phosphoketolase flux.765

GEMs also support and extend discovery and engineering in MFA766

experiments. Metabolic reconstructions define the core metabolism767

of the organism, assisting in the development of the isotopomer768

models needed for MFA. Additionally, 13C MFA experiments in769

phototrophs are resource intensive. A validated GEM can explore770

phenotypes and engineering strategies in silico prior to committing771

resources on experimental validation of the predictions. Finally,772

genome-scale models extend MFA flux measurement outside of773

central metabolism either through direct constraints [30] or by774

analyzing the full flux distribution from a simulation that was775

validated against MFA central carbon flux, as we have done in this776

study.777

The framework presented in this study provided insights into778

an existing 23BD production strain. Computational analysis of779

the published data [17] established the glucose uptake rate of the780

photomixotrophic strain as well as constrained the fraction of car-781

bon allocated to biomass. This analysis included the culture vessel782

geometry, total culture volume, light intensity, inoculation density783

and photophysiology; all parameters that can be optimized dur-784

ing bioprocess design. Characterization of the engineered strain785

enabled an assessment of the theoretical yield, suggesting that786

an increase in irradiance would result in higher production titers.787

While our assessment assumed photophysiology parameters from788

our study, replacing the PO vs. QF curve with an experimentally789

derived curve from the photomixotrophic strain would enable790

a more accurate characterization of the production culture. The791

phosphoketolase design suggested by our flux simulations may792

provide unique S. elongatus bioengineering solutions. In particular,793

growth-coupled engineering strategies could be developed for bio-794

products that are synthesized from the acetyl-CoA pool, such as795

isoprene [10].796

5. CONCLUSIONS797

Engineering of cyanobacteria shows promise for generating energy-798

dense products with minimal input requirements. In this study we799

presented an in silico methodology for accurately characterizing800

photoautotrphic metabolism. These experimentally accessible con-801

straints enable phototrophic genome-scale engineering equivalent802

to classical heterotrophic in silico design. Additionally, by incorpo-803

rating photophysiology constraints with engineering design, we804

were able to assess an existing photomixotrophic engineering strat-805

egy and revealed the current design was light limited. Coupling806

genome-scale modeling-driven in silico design with experimental807

validation, to include 13C metabolic flux analysis, is a promising808

strategy to accelerate the iterative bioprocess design of light-driven809

metabolic engineering strategies.810
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Table S1. Content edits to iJB785 in the construction of iJB792.

Reaction ID Reaction name Notes

MPTSS Molybdopterin synthase sulfurylase Added. Molybdopterin cofactor biosynthesis.
MOADSUx MoaD sulfuration (nadh, assumed) Added. Molybdopterin cofactor biosynthesis.
GTPC GTP 3,8-cyclase Added. Molybdopterin cofactor biosynthesis.
CPMPS Cyclic pyranopterin monophosphate synthase Added. Molybdopterin cofactor biosynthesis.
MPTS Molybdopterin synthase Added. Molybdopterin cofactor biosynthesis.
MPTAT Molybdopterin adenylyltransferase Added. Molybdopterin cofactor biosynthesis.
MOCOS Molybdenum cofactor synthase Added. Molybdopterin cofactor biosynthesis.
MDH Malate dehydrogenase Added. Based on fluxomics data (2). Gene reaction rule unknown.
ORNTA Ornithine transaminase Deleted. Gene model results in a truncated protein that appears to be inactive in vivo (3)

1. Kanno M, Carroll AL, Atsumi S (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nature Communications 8:14724.6

2. Jazmin LJ, et al. (2017) Isotopically nonstationary 13C flux analysis of cyanobacterial isobutyraldehyde production. Metabolic engineering 42:9–18.7

3. Broddrick JT, et al. (2016) Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis. Proceedings of the National Academy8

of Sciences 113(51):E8344–E8353.9
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