
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Learning from Games for Generative Purposes

Permalink
https://escholarship.org/uc/item/2023v40h

Author
Summerville, Adam

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at
https://creativecommons.org/licenses/by-nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2023v40h
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

LEARNING FROM GAMES FOR GENERATIVE PURPOSES
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Adam J. Summerville

June 2018

The Dissertation of Adam J. Summerville
is approved:

Professor Michael Mateas, Chair

Professor Noah Wardrip-Fruin

Professor Santiago Ontañón

Dean Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright © by

Adam J. Summerville

2018

Table of Contents

List of Figures vi

List of Tables xiv

Abstract xvi

Dedication xvii

Acknowledgments xviii

1 Introduction 1
1.1 Research Contributions . 5

I Learning From Game 7

2 How Humans Understand Games 8
2.1 Human Annotation Tasks . 17
2.2 Entity Persistence . 17
2.3 Camera Motion . 18
2.4 Room Detection . 21

2.4.1 Teleportation . 23
2.4.2 Traversal . 25

2.5 Animation Cycles . 32
2.6 Mode Dynamics . 34
2.7 Conclusion . 36

3 Mappy – A System for Map Extraction and Annotation via Observa-
tion 37
3.1 NES Architecture and Emulation . 41
3.2 Operationalizing Entity Persistence . 43
3.3 Inferring Camera Motion . 49

iii

3.4 Determining Room Transitions . 59
3.4.1 Automatic Mapping . 61

3.5 The Detection of Animation Cycles . 61
3.6 The Extraction of Dynamics Modes . 67

3.6.1 Proximate Cause Learning . 80
3.7 Mappy Annotation Synthesis . 92
3.8 Conclusion . 94

4 Case Study – A Comparison of Human and Machine Annotations for
Super Mario Bros. 96
4.1 Machine Annotation . 103
4.2 Case Study – Other Mappy Output . 110
4.3 Discussion . 115

II The Generation of Game Maps 122

5 Procedural Generation of Two Dimensional Rooms via Machine Learn-
ing 123
5.1 Two Dimensional Room Generation . 127
5.2 Required Properties of A General Machine Learned Room Generator . . 130
5.3 Existing PCGML Systems and their Generality 136

5.3.1 Markov Methods . 136
5.3.2 Neural Methods . 138
5.3.3 Matrix Factorization Methods . 139

5.4 Graphical Methods . 140
5.5 PCGML Generality Comparison . 141

6 Kamek – A Machine-Learned Two Dimensional Room Generator 143
6.1 Data Formulation . 149

6.1.1 Sampling Methodology . 152
6.1.2 Choice of Space-Filling Curve . 154
6.1.3 Evaluation of Linearization Traversals 159

6.2 The Impact of Meta-Information on Quality 160
6.3 Model Capacity . 166
6.4 On the Importance of Following the Flow of Play 171
6.5 A Comparison of Human and Machine Annotation 172
6.6 Combining Machine-Learned and Search-Based Content Generation . . 173

7 Map Generation 180
7.1 Digression on Euclidean Vs Non-Euclidean Topology 187
7.2 Data Requirements . 188

iv

8 Case Study – Agahnim 191
8.1 Generation Process . 197
8.2 Results . 198
8.3 Discussion . 202

III The Evaluation of Generative Methods 205

9 Existing Methods for Generative Evaluation 206

10 Aside – A Discussion of Metrics for Platformers 215
10.1 Previous Computational Metrics . 217
10.2 Novel Computational Metrics . 219
10.3 Empirical Results . 226

10.3.1 Metrics Selection with LASSO 226
10.3.2 LASSO Prediction Results . 228
10.3.3 Previous Neural Network Model 229
10.3.4 Metrics Selected by LASSO . 230
10.3.5 Discussion . 234
10.3.6 Case Studies . 242

10.4 Conclusion . 244

11 Analyses of Generative Space 246
11.1 Kernel Density Estimation and Visual Inspection 248

11.1.1 Comparison to the Original Corpus 250
11.2 Expressive Volume . 259

11.2.1 Case Study – Expressive Volume as Function of Training Corpus 260
11.3 Joint Distribution Testing of Generative Spaces 264

12 Analysis of Individual Pieces of Content 272
12.1 Avoiding Cherry-Picking . 273
12.2 Plagiarism As Selection Criterion . 276
12.3 Metric Distance as Selection Criterion 281

12.3.1 Case Study – Kamek . 283
12.4 Discussion . 288

13 Conclusions And Future Work 291
13.1 Future Work . 293

Bibliography 295

v

List of Figures

2.1 A scene from Super Mario Bros. where semantic representation knowl-
edge would classify entities that are animate in color and the inanimate
entities as gray-scale. The human is obviously animate, and the anthro-
pomorphic mushroom with eyes and feet would reasonably be intuited to
be mobile. Note that this intuition is incorrect as the mushroom above
the ?-block has the same movement profile as the Goomba. 20

2.2 Two rooms in Adventure that are traversed between. The player exits
through the bottom of the first room and winds up in the top of the
second. 23

2.3 The interstitial shown in Super Mario Bros. before the player starts a
“world” (a set of rooms). 24

2.4 Three frames from the interstitial sequence in The Legend of Zelda that
occurs when the player enters a dungeon. 24

2.5 Three frames from the traversal interstitial sequence in The Legend of
Zelda that occurs when the player traverses between rooms connected in
a Euclidean manner. 26

2.6 Three frames from the traversal interstitial sequence in Metroid. 26
2.7 The original frame is shown on the top, and the results of each input on

the resultant frame are shown on the bottom. 29
2.8 The three images that make up Mario’s run cycle in Super Mario Bros. 30
2.9 The eight images that make up Batman’s run cycle in Batman: The

Return of the Joker . 30
2.10 A phénakistiscope with a man pumping water from Mclean’s Optical

Illusions [122]. Reprinted with permission[151]. 30
2.11 The two halves of a thaumatrope from 1825 which would display a vase

full of flowers when used. Reprinted with permission [63]. 31
2.12 A reproduction of a Victorian zoetrope. Reprinted with permission [54]. 32
2.13 One thousand frames of Mario’s animations in Super Mario. Each frame

of animation is assigned a unique identifier, and the progression of these
is shown in the top image. The current frame, sampled periodically, is
shown on the bottom. 34

vi

3.1 The architecture for Mappy. Mappy takes in a game and a set of input
traces. These are passed to an instrumented emulator that provides entity
locations which are used for determining overall camera behavior and
entity tracks. The camera behavior is used to determine when a room
begins or ends. The entity tracks are used to determine what animations
occur at given points in time, and finally, along with said animation
information, are used to learn an automata describing the properties and
dynamics for each of the types of entities found. All of this information
combined is used in the resultant map graph. 39

3.2 The controller for the Nintendo Entertainment System. 40
3.3 An exaggerated example of differences in two frames from Super Mario

Bros.. The initial frame is slightly reduced in opacity for this illustration.
This would lead to the apparent motion of the mushroom moving to the
right and the lower Goomba moving to the left. 44

3.4 An exaggerated example of differences in three frames from Mega Man.
The initial frame is slightly reduced in opacity for this illustration. In the
left image, Mega Man starts at one position (frame 1) and moves right to
(frame 2). On the right Mega Man abruptly changes direction and moves
left from (frame 2) to (frame 3) . 45

3.5 Two frames of Super Mario Bros., the optical flow between them (as
achieved via the technique described in ”Two-Frame Motion Estimation
Based on Polynomial Expansion” by Gunner Farneback in 2003” [91]),
and the desired optical flow. Mario, the mushroom, and the camera
move slightly to the right, while the Goomba moves to the left. Black
in the optical flow images denotes no motion, while a higher intensity
denotes more motion. The desired flow field should have all background
elements with a slight (6 pixels) amount of motion, the Goomba with
higher (9 pixels), Mario with slight (1 pixel), and the mushroom with no
apparent motion; however, sky presents a large field in which no flow can
be discerned. 51

3.6 An example of template matching of two different template patterns
(the normal, dark, and light mushrooms) on a single source image from
Super Mario Bros. for the four different template matching metrics,
𝑆𝑆𝐷, 𝑆𝑆𝐷𝑛, 𝐶𝐶𝑜𝑟𝑟, 𝐶𝐶𝑜𝑟𝑟𝑛. Darkness indicates low similarity and light-
ness indicates high similarity. The sum of square distance metrics do well
with the normal, light colored mushroom, but do poorly with the dark-
ened mushroom (as its intensity is closer to that of the dark green bush
near Mario) and the light (as its intensity is closer to the cloud). The
non-normalized cross correlation method does poorly on all images, as
the pure white cloud has a high cross-correlation with any image; how-
ever, the normalized version (which normalizes the expected return from
the pure white cloud) finds identical peaks for both the normal, dark,
and light mushrooms at the correct location. 54

vii

3.7 The four most common PPU mirroring modes. 55
3.8 The process of template matching the screen (a) to the source image of

the nametable (b) and finding the optimal matching (c). Note that there
are two optimal translations, one for upper and lower mirrorings. To
account for this, only the first translation (top-to-bottom, left-to-right)
is kept). 57

3.9 A demonstration of incorporating camera motion and screen space posi-
tion to acquire world space position. Note that the camera has no motion
in the vertical axis, so there is no difference between the screen and world
𝑦’s (hence the occlusion of the screen 𝑦). 58

3.10 The result of extracting Mario’s path via the camera motion. 58
3.11 One thousand frames of Mario’s animations in Super Mario. Each frame

of animation is assigned a unique identifier, and each region of color is a
different animation . 66

3.12 One thousand frames of Mario’s 𝑦-velocity in Super Mario Bros.. The
color blocks indicate the regions in which Mappy believes a mode occurs,
with 10 modes being found in total. 79

3.13 The process for segmenting and merging the automata dynamics modes . 79
3.14 The full process for Mappy. 93

4.1 A visualization of the mechanical annotation comparison. On the left
is the ground truth, and on the right are the annotations of Shaker &
Abou-Zleikha and Guzdial & Riedl. Entities that are mislabeled are
highlighted in various shades of red, with the darkness of the shade rep-
resenting the severity of the penalty for the annotation. For Shaker &
Abou-Zleikha, the different ?-blocks and breakable bricks are annotated
as being the same. This leads to a light penalty for the majority class
(the breakable bricks), a moderate penalty for the next most common
(the plain ?-blocks), and a large penalty for the rarest class (the ?-block
with a mushroom). For Guzdial & Riedl, there is no distinction between
the ?-blocks, so there is a light penalty for the majority class (the plain
?-blocks), and a large penalty for the rarest class (the ?-block with a
mushroom). 102

4.2 Example of the difference between a Categorical and Binomial annotation
schemes for a subset of entities in Super Mario Bros.. The properties
are listed on the left, and whether an entity has those properties (4)
or not (absence of 4) , i.e.,a Binomial annotation. Alternatively, all
columns that share the same properties could be given the same class in
a Categorical scheme (or each entity could be its own class). 103

4.3 The rooms that make up Flash Man’s stage in Mega Man 2. 110
4.4 The first four rooms encountered in Metroid. 111

viii

4.5 Six rooms encountered in The Legend of Zelda. The play trace actually
sees 9 rooms, but Mappy detects that some of these are likely duplicates
([0,2,6], [5,7], and [6,8]). 112

4.6 Mega Man’s track through a section Magnet Man’s stage in Mega Man
3. The red sections represent places where Mega Man was lifted by
“magnetic” enemies. 112

4.7 12The true HA for Mario’s jump in Super Mario Bros. ∶= represents the setting of a value on transition into the given mode, while = represents a flow rate while within that mode. 114
4.8 12Modeled behavior using MDL criterion (Blue X) and BIC (Green +) vs true behavior (Black Line). MDL’s largest error source is resetting to an specific value when the true behavior involves clamping to that value, whereas since BIC learns to transition at the 0 crossing it has a more accurate reset velocity. BIC does not learn the transition from Falling to Terminal Velocity. MDL has a Mean Absolute Error (MAE) of 0.522 while BIC has an MAE of 0.716. 115
4.9 12Learned Mario HAs. Parameters as 95% confidence intervals. 116
4.10 The Legend of Zelda through the completion of Dungeon 1. The player,

myself, made numerous mistakes resulting in deaths (the cluster of black
screens in the middle) which teleport the player to the beginning of the
dungeon. 117

4.11 The Legend of Zelda up to Dungeon 3, showing a map which is true but
not reasonable. 117

5.1 The diversity of room size ratios found in Metroid. 128
5.2 The irregular “auto-scroller” room found in Super Mario Bros. 3. The

camera scrolls at a constant rate diagonally up and to the right, taking
the bounds of the room with it. i.e., the room is not a square, as the
player will die upon leaving the screen, even if the y-position is higher
than a previous location. 129

5.3 The horizontal strips of breakable bricks found in Super Mario Bros. The
spot for a strip 10 bricks wide is left conspicuously empty. 130

5.4 A uniformly random Super Mario Bros. room. 133
5.5 A snippet of a room from Super Mario Maker. that plays music as the

player runs from left to right. Figure from [210] with permission. 133

6.1 A graphical depiction of an LSTM cell. 147
6.2 An example of the 1-dimensional input stream, and its interpretation

when rasterized. Note that the origin is not necessarily the lower-left
corner (as it is here), but could be any location as the bounds of the
generated room depend only on the places the turtle moves to during the
sequence. 152

6.3 The “most likely” room from Super Mario Bros. according to an LSTM
(three layers, each of 512 units, with 80% dropout between layers). The
room is sampled with temperature 𝑡 = 0, i.e., it selects the most likely
content piece, greedily. The resultant room is made of the most common
column, the ground and empty sky, although the room itself is extremely
boring (and funnily enough, highly unlikely). 154

6.4 All orderings considered for this study. 155

ix

6.5 World 7-1 from Super Mario Bros. and the relative intensity found through-
out it. The room starts (on the left) in a region of calm and then quickly
progresses into a challenging section with a lot of cannons for the player
to dodge. This is broken up by a small, very difficult section where the
player must defeat two “hammer bros.” This goes back to the challenging
cannon section, which is also followed by another hammer bros. section.
The room ends in a relatively relaxed “cool-down” of two pyramids to
climb. 161

6.6 An example of two possible player paths through a region of a room in
Super Mario Bros. 163

6.7 Examples of two instance of faulty player paths generated by Kamek in
the Super Mario Bros. domain. The left figure is caused by the sampling
process. While it is highly unlikely for Kamek to have a large number
of timesteps go by without sampling a player traversal symbol, ,, it is
a possible random outcome. The right figure demonstrates an incorrect
learned physics model, as the purely diagonal fall is not possible within
Super Mario Bros. 165

6.8 Screenshots of two generated rooms being played in Infinite Mario . . . 177

7.1 Four common graphical structures of maps found in games. The blue
diamond nodes represent the player’s starting point in the game. In
figure 7.1b there are digressions, small yellow squares, which lead back
to the main, light red rectangles, and warps (from the first light red
rectangle to the third. Figure 7.1c shows a structure going from the
hub, the light blue diamond, to a “level” and then back. The dotted
line represents a game where a given “level” can only be selected once
(e.g. Mega Man). In the Open World example (Figure 7.1d) the “over
world” is designated by the yellow nodes, and the “dungeon entrances”
are the light blue rectangles. 181

7.2 An illustration of the graphical structure underpinning a portion of the
map of The Legend of Zelda – the “first” dungeon, aka The Eagle. The
dungeon is laid out in a continuous space, but the edges between rooms –
doors – operate in a different manner than the contiguous space inside of
a room. i.e., the player can move freely within a room, but upon entering
a door, they lose the ability to move freely until they have fully entered
the next room. 184

7.3 An example of a non-Euclidean connection in The Legend of Zelda: A
Link to the Past that defies the standard understanding of doors in the
game – i.e., if a player exits from the north side of a room, they expect
to enter from the south side. 185

x

8.1 The graphical encoding of conditional probability in Agahnim’s BN. The
diamond nodes are either set by a user or sampled in order of dependency
and then fixed for the duration of generation. The circular nodes are
deterministically set based on the generation so far. The rectangular
nodes are those that are sampled at each step of the generation. 192

8.2 An illustration of the backtracking required in The Legend of Zelda. The
gold line represents the optimal path (without using bombs) required for
the player to find all of the important items and complete the map –
which requires the player to backtrack through some rooms up to three
times. If the player diverges from this optimal path, then the backtrack-
ing increases even more. 195

8.3 Negative log-likelihood per room versus rooms per map for both the gen-
erated maps and all of the original maps (training and test set). The
dark red line is the median for Agahnim, and the spread represents the
25𝑡ℎ and 75𝑡ℎ percentiles. 200

8.4 Representative sample of three generated maps from Agahnim. 201
8.5 A highlighting of the connectivity for a map generated by Agahnim. The

lack of cycles is a problem with the generality of Agahnim. 203

9.1 An example expressive range plot from Smith’s dissertation [179]. Brighter
regions represent a higher probability density for the generator’s sampling
distribution. 207

9.2 Danesh in situ. Danesh is a plugin for the Unity engine. Reproduced
from [42]. Pictured is a map generated by an algorithm, the parameters
for the generator (top right), the metrics of the map (top left), tools for
targeting metrics (bottom left), and tools for generating expressive range
analyses (bottom right). 208

9.3 Anscombe’s Quartet showing four distributions with very different visual
qualities but (nearly) identical summary statistics. Reproduced from [3]. 210

9.4 The Datasuarus Dozen [120] with nearly identical summary statistics.
Reproduced from [120]. 211

10.1 Example of a symmetrical image. 220
10.2 Confusion matrices for the multinomial LASSO predictor, normalized by

the number of ratings per category. Perfect prediction would be yellow
along the diagonal. Difficulty is the easiest to predict with most of the
errors coming from incorrectly predicting 2 and 7 too often. For both
Aesthetics and Enjoyment the most common error source is predicting a
5. This comes from the fact that 5’s are the most prevalent rating, being
roughly 50% more common than the next most common rating, and over
twice as common as most of the other ratings 231

10.3 Sample density contours for the given metrics vs. the rated feature. The
clearest trend can be seen in Difficulty-Enemy Frequency. 234

xi

10.4 Two rooms with high misclassification error for the Difficulty rating. Both
were classified as 1 by LASSO, but both have ratings of 7. Given that
the players who rated them as 7’s had no difficulty completing the room,
we believe that it comes from a misunderstanding of the rating scale. . . 240

10.5 Two rooms with high misclassification error for the Difficulty rating.
Room (a) was classified as a 1 by LASSO but was given a rating of 6
by a player, while Room (b) was classified as a 7 by LASSO but was
given a rating of 2 by a human. 241

11.1 Comparison of three different scalings of the bandwidth matrix as cal-
culated via the multivariate plug-in bandwidth selection with uncon-
strainted pilot bandwidth matrices approach of Chacón and Duong [35].
The left figure shows a bandwidth that is too small, leading to an coarse
estimation. The figure on the right is beginning to lose the shape along
the 𝑥 axis. 249

11.2 Expressive range plot of the above and below ground rooms of Super
Mario Bros. Note that only one cell has more than one data point (the
white data cell). 251

11.3 Density estimate for Super Mario Bros. The contours represent the
25𝑡ℎ, 50𝑡ℎ, and 75𝑡ℎ percentiles of the estimate. The KDE makes it
much easier to see the pear shaped relationship between linearity and
leniency in Super Mario Bros. 252

11.4 Density estimates for Super Mario Bros. (Red) and the 512 unit, 80%
dropout Snaking with depth and path information generator (Blue). . . 253

11.5 Density estimates for Super Mario Bros. (Red), the 512 unit, 80%
dropout Snaking with depth and path information generator (Blue), and
the 64 unit, no dropout Snaking with depth and path information gener-
ator (Teal). 255

11.6 Corner plot for Super Mario Bros. (Red) and the 512 unit, 80% dropout
Snaking with depth and path information generator (Blue) 257

11.7 The expressive volume of Kamek as a function of the training data. . . . 262
11.8 An example of the fallibility of the Mann-Whitney 𝑈 -test. Shown are

two samples, one from a unit Gaussian Normal distribution (𝒩(0, 1))
and one from a uniform distribution (𝒰(−5,−5)) (note: x-axis used only
for visual separation). While these distributions are obviously different
– even to visual inspection – the Mann-Whitney test is unable to reject
the null hypothesis of both distributions being equal (𝑈 = 380, 𝑝 = 0.15) 265

11.9 Visual inspection of the expressive range of the original rooms from Super
Mario Bros. (Red), the Playability Constrained MdMC (Orange), and
the Kamek 512 unit generator (Blue). 270

xii

12.1 The two rooms from Super Mario Bros. with the highest amount of
plagiarism. While, at first glance, they appear identical, the lower room
has additional enemies. 278

12.2 The room generated by the Kamek 512 generator with the highest amount
of plagiarism from the original rooms (top) and the room it takes from
(bottom). While the portion is of decent size (45% of the original room),
the generated room is very different, using the copied piece as a minor
segment of the total room. 278

12.3 The two rooms generated by the Kamek 512 generator with the highest
amount of self plagiarism. The two rooms start off identically (the first
20% of the rooms are identical), but they quickly diverge. This amount
of plagiarism is not too terribly different than that found between the
original rooms. 279

12.4 World 1-1 and the Kamek 512 generated room closest to it in the metrics
of negative space, linearity, leniency, and jumps. The generated room has
a few more gaps but is a relatively straight forward experience, like 1-1. 284

12.5 World 5-3 and the Kamek 512 generated room closest to it in the metrics
of negative space, linearity, leniency, and jumps. The generated room is
not solely like 5-3 (it has segments with ground) but is generally very
similar to the mostly sky and floating platform filled 5-3. 285

12.6 The room generated by Kamek 512 (bottom), closer to any of the original
content than any other piece of generated content, and its closest touch-
stone, World 4-2 (top)in the metrics of negative space, linearity, leniency,
and jumps. 286

12.7 The room generated by Kamek 512 (bottom), further away from the
original content than any other, and its closest touchstone, World 6-3
(top)in the metrics of negative space, linearity, leniency, and jumps. The
generated room has large gaps and progresses from a relatively straight
forward ground based room to a floating platform based room at the final
third, as in World 6-3. 287

xiii

List of Tables

3.1 The npmi values associated with pairs of factors and transitions in Super
Mario Bros. The true causal pairs are bolded. 87

4.1 The MDL cost for annotating Super Mario Bros. world 1-1 given the
various annotation schemes. 102

4.2 The MDL cost for Super Mario Bros. World 1-1 for annotations produced
by Mappy under a variety of different traces and extraction criteria. The
modified annotations are reduced to the set of content only found within
World 1-1. Mappy is close to the the MDL of the annotation with no loss
of information. 109

5.1 An overview of existing two dimensional machine learned room generators
and their generality. 142

6.1 The percentage of the rooms for each linearization that were completable
and unique. 159

6.2 The percentage of the rooms for each combination of linearization, depth
meta-information, and path meta-information that were completable and
unique. 164

6.3 The number of trainable parameters in an LSTM network with categorical
dimensionality, 𝑚 = 18, and # of layers, 𝑘 = 3, as a function of network
size. 167

6.4 Perplexity and room quality as it relates to model size and amount of
dropout. 168

6.5 room quality as it relates to the direction of generation. 172
6.6 Room quality comparison between the author’s annotation and that of

Mappy. 173

8.1 Modeled Distributions for Parent-Child Combinations 193
8.2 MSE of Inferred Room Count . 199
8.3 Perplexity for the three models. 200

xiv

10.1 Percentage of correctly classified rooms (accuracy) as well as the Mean
Absolute Error (MAE) for the different metrics from the multinomial
LASSO regressions. A more detailed analysis can be seen in Figure 10.2. 230

10.2 MAE results of the linear regression using the metrics selected by the
LASSO multinomial regression as input features (LASSO MAE) com-
pared to the MAE results of Guzdial et al.’s [71] convolutional neural
networks. 230

10.3 The metrics selected by the Difficulty LASSO regression. The weights
listed are scaled such that the maximum absolute value is 1.00. For each
of the metrics, the Spearman rank coefficient is listed. 231

10.4 The metrics selected by the Aesthetics LASSO regression. The weights
listed are scaled such that the maximum absolute value is 1.00. For each
of the metrics, the Spearman rank coefficient is listed. 232

10.5 The metrics selected by the Enjoyment LASSO regression. The weights
listed are scaled such that the maximum absolute value is 1.00. For each
of the metrics, the Spearman rank coefficient is listed. 233

11.1 Comparison using 𝑒-distance for a linearity, leniency, number of jumps,
and negative space. Lower 𝑒-distance represents a smaller distance be-
tween the distributions, leading to a higher probability that null hypoth-
esis of equal distributions is not rejected. 269

xv

Abstract

Learning from Games for Generative Purposes

by

Adam J. Summerville

Procedural Content Generation has been a part of videogames for most of

their existence. One goal has been the generation of content matching a particular

design style, and most of the research has been focused on classic AI methods – such

as search and constraint satisfaction – to produce content optimizing for some set of

constraints and metrics that a researcher sets forth. Recently, there has been a focus

on using machine learning to learn the design latent within the content itself, so that a

researcher does not need to encode that design knowledge them self; however, this work

still includes a large amount of human annotation and guidance.

This dissertation focuses on two systems, Mappy and Kamek, which work to-

gether to learn from a game, so as to be able to generate similar content. Mappy is

an AI system that uses a wide range of techniques to emulate the process that a hu-

man undertakes when they play, observe, and learn from a game. Kamek is a machine

learning system that learns from game levels and generates new levels of high quality.

This dissertation also covers a suite of methodologies for the analysis and presentation

of procedurally generated content – with a specific focus on machine learned generators.

xvi

I dedicate this to my Mallorie, Clark, and Campbell, who gave me the time,

encouragement, and grounding I needed to accomplish this.

xvii

Acknowledgments

There are so many people who have helped me get to this point, and I am probably going

to leave someone out. I would first like to thank all of the collaborators I’ve had over

these 4 years, who have made my research output seem more impressive than it actually

is. I would like to thank Joe Osborn for being my research companion for these last two

years, without whom, I would not have the document here. I would like to thank James

Ryan and Ben Samuel for including me on the weird journey that is Bad News, without

which I would never had the chance to talk to 1200 people 1-on-1 in one day. I would

like to thank all of the wonderful people in the Game AI community, particularly Mike

Cook, Matthew Guzdial, Sam Snodgrass, Julian Togelius, and Santiago Ontañón who

have been collaborators, sources of inspiration, and sparring partners at points. I would

like to thank my cubicle triangle cohort, Jacob Garbe and Melanie Dickinson, who have

put up with my shit for far too long (hopefully, you will no longer think of this as “a hot

mess”, Melanie). And while we have yet to actually work together yet (cute-vs-good

bears not withstanding), I would like to thank Gillian Smith whose research inspired

me to come to grad school.

I would like to thank my advisors, Michael Mateas and Noah Wardrip-Fruin.

Michael, who always has some tidbit or tangent to go off on about every single AI

topic, has helped me hone in on the things that are actually interesting and surprising

about my work by saying “Oh, that’s interesting, I didn’t expect that,” which given his

breadth of knowledge is usually a sign that you are on to something worthwhile. Noah,

xviii

who is usually operating on a couple steps of yomi beyond anyone else, who knows how

to ask the question that will make you realize your own misunderstandings or unstated

assumptions, has helped me so much in finding how to communicate what I actually

want.

I would like to thank my parents, who have always encouraged me to do what

I want, even though I didn’t always have the courage to actually follow through on that.

I would like to thank my children, Clark and Campbell, who, while not often being the

best thing for my productivity, have given me the grounding, sanity, and drive to get

through these very full four years. You guys light up my day, and I hope one day you

will read this and be embarrassed about the words I just wrote, but, hopefully, not the

words that are to follow.

Finally, I would like to thank my wife, Mallorie. I know that it was my turn to

go to grad school, but I still can never thank you enough for giving me this opportunity.

Not only would I not have been able to make it through these years without you, I

would never have even taken the chance. You are the one who pushes me to be better,

and I hope to one day live up to who you think I am.

xix

Chapter 1

Introduction

Procedural Content Generation (PCG) has been a part of video games for the

majority of their existence. Beneath Apple Manor [136], the first known game with

PCG, was released in 1978, approximately two decades after the first game designed

for a computer, Tennis for Two [81], and roughly a decade after the first commercial

video game, Periscope [130]. The proceduralized generation of content for games has

largely focused on the creation of “levels” for video games, with the earliest modes

allowing for games to contain more levels than would have been possible to store in

media at the time. E.g., Elite [30] had 256 galaxies of 8 planets each, but was originally

intended to have 248 galaxies [6] which given 20 bytes per planet (location, political

properties, and name) and 6 bytes per galaxy (location, and orientation) would account

for approximately 46.72 petabytes of information, well beyond the 800 kilobyte storage

possible on the floppy disks of the time, (or certainly any commonly used physical media

used currently). Proceduralizing the generation process allows the galaxies and planets

1

to be generated at run-time as necessary. PCG as compression of a static experience is

one mode of use, but the more common form has been in that of the “infinite” experience.

Beneath Apple Manor has the player progress through a series of levels, with the goal of

a golden apple. The levels are generated anew every time, presenting the player with a

seemingly endless set of levels (of course, it is not without as the pseudo-random nature

of the generation process will repeat eventually, but this is likely to be beyond a scale

that a player will reasonably notice).

In the last decade, PCG has become a focus area for research [174, 175, 213,

167, 75], with a goal being the understanding of different techniques, the properties

they afford, and the ability to generate levels with certain properties or style. These

approaches typically require the creator of the PCG system to have not only have

knowledge of the design space of the artifacts that are being generated, but also a way

to elucidate and proceduralize this design knowledge. This is a difficult endeavor for a

number of reasons:

1. For a designer in process, design decisions are rarely accurately accessible via

introspection [137, 229]

2. Performing a critical deep dive into a piece of work to access the design deci-

sions is not something done lightly, making up entire fields of study (e.g. Digital

Humanities)

3. Formalizing all design decisions is difficult, as humans often have hidden biases /

foreseeing all possible outcomes of an algorithm is impossible in general (see decid-

2

ability) and is difficult in specific cases (see the fields of automated testing/code

verification)

More recently, PCG research has focused on using machine learning to learn

directly from creative artifacts [45, 183, 75, 166], so as to be able to generate content

with similar properties. These processes aim to reduce the ability to quantize the design

knowledge; however, these processes generally require a fair amount of human intuition,

hand-holding produce worthwhile artifacts. So, a research question that needs to be

answered is:

Can the process of observation and annotation be proceduralized?

When a human plays a game, they develop theories for how the world of the

game works – how things interact, how things move, etc. When a human annotates

the level content of a game, they utilize these theories (e.g., “These things are solid” or

“That thing hurts the player”) to produce an annotation that captures the important

mechanical distinctions, while abstracting away things that are not important mechan-

ically. The system presented in Chapter 3 is capable of taking a game and an player

control trace as input and producing an annotation of the content found in the game.

This requires understanding the processes a human uses during the observation of a

game (Chapter 2), so as to operationalize them in a working system.

Given an annotation, the goal becomes the training of a generator that is

capable of producing a wide range – and ideally, any possible piece – of content of

high quality. Numerous techniques have been applied toward this goal, but it is first

3

important to understand:

What Theoretical Properties Should a Generator Have?

For a generator to be capable of producing any piece of content, what must it

be capable of? Which generation techniques hold these properties, and which fall short?

These questions are addressed in Chapter 5.

Given a generator with these theoretical properties, an example system, Kamek,

capable of generating high quality content is detailed in Chapter 6. The algorithm and

data representation are detailed, and a number of experiments are conducted to show

how differences in algorithm and data representation affect the resultant generated con-

tent.

Given a generator, one wants to understand the properties of the generator.

Leading to the question:

What are the properties of the generated content?

Is the generator biased towards some content and away from others? Fur-

thermore, in the domain of machine learned PCG, there is the ultimate question of

“Did the generator learn to generate content like the supplied input content?” A set of

methodologies for assessing the generative space of a generator are shown in Chapter

11. While it is important to understand the generative space of a generator, it is the

actual individual pieces of content that are the ultimate test of a generator. Chapter

12 details methodologies for presenting content in a way that eliminates cherry picking,

4

while also furthering the understanding of the capabilities of a generator.

1.1 Research Contributions

The primary motivation of this work is the development of systems that are

capable of learning from content with minimal human supervision, so as to generate

content that has the same qualitative properties. The specific contributions of this

work are:

1. An examination the low-level processes that human undertake when they observe

and interact with games

2. An operationalization of the processes described in (1) in the form of Mappy, a

system that is capable of observing a game and producing an annotated map for

that game

3. A theoretical understanding of the properties that a machine learned procedural

content generator must have to be capable of producing any piece of content

4. A general two-dimensional room generator, Kamek, and an examination of how

different choices in data representation and model parameters affect its generative

capabilities

5. A suite of methodologies for the assessment of a procedural content generator for

the large-scale analysis of generators, the comparison of multiple generators, and

the selection of content

5

(1) and (2) address the motivation of how to learn with minimal human

supervision, while (3) and (4) address the realities of generating content, finally (5)

addresses how to assess whether a generator (such as the one discussed in (4)) has

achieved the stated goal.

6

Part I

Learning From Game

7

Chapter 2

How Humans Understand Games

Given the goal of learning to generate content with no human annotation, we

must first address the problem of human annotation. What is a human doing when they

annotate a game level? What gain do we believe is had via this annotation process?

And, the core of this work, how can we reasonably proceduralize these processes? 1

Certainly, at some level, all machine-learned room generators must draw a line

in the sand as to how a room will be represented and what portions are annotate and

which come from the data (the choice of representation itself being a form of inductive

bias). It would be possible to apply image generation techniques [103, 66] to the pixel

data of an image representation of a room, and this might produce believable looking

images, but it is also possible that these images might have blurry patches, or malformed

regions. Moreover, a non-trivial translation process would be required to encode the
1Portions of this chapter originally appeared in “Automatic Mapping of NES Games with Mappy”

[138], “Charda: Causal hybrid Automata Recovery via Dynamic Analysis” [199], “Automated Game
Design Learning” [141], and “What Does That ?-Block Do? Learning Latent Causal Affordances from
Mario Play Traces” [193]

8

image in a way to make it playable. At the other end, it could be possible to directly take

the byte array of data stored in the original game that represents a room and learn from

that. This would have the nice property of directly learning from the raw representation,

but is extremely susceptible to errors in the generation process. Conceivably, being off

by a single bit could ruin the entire generation process, whereas something like the image

generation process is much less susceptible to a single bit being off (at most changing

one pixel of the resultant image).

While both of the aforementioned approaches are conceivable, the vast ma-

jority (if not all) of machine learned PCG approaches have had some form of human

annotation. Looking at the Super Mario Bros. domain, we can compare a number of

different approaches. Super Mario Bros. contains 122 different “background” tiles (e.g.,

ground, bushes, pipes, etc.). Some of these background tiles are the same image with

a different palette. Some are different images but have identical in-game mechanical

properties (e.g., sky and bushes, or the ground and inert bricks). Furthermore, some

of these tiles might appear to be identical, but actually contain hidden properties (e.g.,

a brick might do nothing upon being hit, might produce a single coin, might produce

a stream of coins, might produce a mushroom power up, might produce an invinci-

bility star, or might produce a 1-up) (note: these account for an additional 30 tiles).

There are also 29 different enemies. Again, some of these are the same image with

different palettes, although these different palettes can convey important mechanical

distinctions (e.g., green Koopa Troopas will walk off edges, while red Koopa Troopas

will turn around upon reaching an edge). This means that a generator that is going to

9

losslessly encode the information of a Super Mario Bros. room will need to be able to

produce 181 different tiles. However, a system that operates at this level of fidelity is

likely to lose a fair amount of generality. While a ground piece and an inert block are

indeed different tiles, they also have identical mechanical function, so it makes sense for

generation purposes to encode these properties. The most aggressive annotations come

from Shaker and Abou-Zleikha [166] who considered five different types of tile (ground,

above ground inert solid, empty, enemy, and other). Snodgrass and Ontañón [182, 183]

considered seven different tile types (solid, breakable brick, ?-block, enemy, coin, pipe,

and empty). Since Dahlskog et al. [45] used vertical slices of the rooms, their vocabu-

lary when generating was actually composed of up to 73 different slices; however, the

slices were composed of 17 different tiles (ground, inert block, breakable brick, ?-block,

?-block containing a powerup, Goomba, Koopa Troopa, winged Koopa-Troopa, Bullet

Bill cannon, cannon support, Buzzy Beetle, upper-left pipe, lower-left pipe, upper-right

pipe, lower-right pipe, coin, and empty). The least annotated work is that of Guzdial

and Riedl [75] who used 102 images as their pattern-matching templates, with the key

differences between the 102 and 181 being the ignoring of tiles with hidden information

(as this information is not available from video observation) and a coalescing of color

information (as their pattern matching occurs in gray scale).

What remains unexamined is why these annotations have been made. We

can conject that the work of Guzdial and Riedl is trying to impose a minimal amount

of human knowledge, although even the presence of which images show up in their

template library and which do not is adding in domain knowledge. As for the others, it

10

is unexamined as to why the choices in annotation were made, but the fact remains that

these annotations were made. All of the approaches intend to learn the design of the

original rooms, so as to be able to generate new, playable rooms that are perceptually

similar to the originals while not merely regurgitating the original set. At some level,

these annotations exist because it is how the authors view the rooms. They have

implicitly compressed the rooms, abstracting away information (e.g., sky is the same as

a bush is the same as fence, etc.) and compressing the level in a way that is intuitive

to them.

This is the process that must be operationalized and proceduralized, if a gen-

eral learned level generator is to be feasible. However, this raises a number of questions:

• Why is this process important?

• By what guiding principle can we draw a line in the sand as to what needs to be

annotated?

• What information needs to be learned and abstracted?

Luckily, the answer to each of these questions stems from one concept, Oper-

ational Logics (OLs). Operational logics are a framework put forth by Wardrip-Fruin

[221], defined by Mateas and Wardrip-Fruin [119], and refined by Osborn, Mateas, and

Wardrip-Fruin [142] which relate some process on game state with a communicative

strategy. OLs are the atomic pieces that a game is composed of, and while they can be

implemented in different manners, they are the smallest unit at which it is important

to distinguish.

11

For instance, the collision, physics, and state logics all multiplex across the

same communication channel: an image presented on the screen communicating that

an entity is at some location in the world (of a 2 dimensional graphical game). The state

portion is composed of the location (typically two coordinates in either ℝ2 or 𝕀2) and

information about the type and state of the entity. This is then communicated to the

player as an image at a location on the screen. The specific technical implementation

does not matter much, as a textured quad rendered via a 3D renderer or a bitmap

image blitted onto the screen buffer both communicate to the player in the same way.

This is not to say that technical implementation does not matter, as a given technical

implementation will privilege some operations at the expense of others (e.g., rotation

and scaling are essentially free for a 3D renderer, while hard to accomplish with bitmap

blitting; conversely, pixel perfect alignment are difficult for a 3D renderer but are trivial

for a blitting approach); however, for two systems communicating the same information

to a player, the underlying technical details are unimportant. Similarly, the coordinate

systems could be in ℝ2 or 𝕀2 or polar coordinates or literally anything. Movement of

the entity could be governed by a series of if statements, a Runge-Kutta numerically

integrated physics simulation, or a series of look-up tables, so long as the actual state

holds the same information that is able to be conveyed to the player in the same way.

Given OLs as a framework, how do they address the aforementioned questions:

12

Why is this process important?

OLs are bundled together pieces of state-process and communication strategy.

The act of annotation is a process of converting visual information and game domain

knowledge (gathered from play experience) into some bit of what that means. E.g., via

play experience a player learns that Mario is able to freely traverse through the sky,

bushes, fences in the exact same manner (the Mario image is able to obscure the other

images with no apparent change in momentum), and that Mario is unable to freely

traverse through the ground, pipes, bricks, and ?-blocks. The player learns that there is

a “collision” or “solidity” OL at work for some pairs of game entities and not for others.

Given that OLs are the fundamental, atomic grouping of communication and behavior,

they are important since they are the entire way the game is understood by the player.

The annotation process is important since it is the OL-ification of the game level – the

conversion of game fabula (a bunch of pixels presented to the player) into what the

games is (a plumber teleporting through pipes to fight turtles). To adequately capture

what the game is, we must determine the operational logics at play, which is simply a

different lens for the annotation process.

By what guiding principle can we draw a line in the sand as to what needs

to be annotated?

As previously mentioned, OLs do not care about the actual underlying techni-

cal implementation. As such, we know that we can safely draw a line in the sand that

the learned annotations need not learn the actual technical implementation, but rather

13

can learn a representation that surfaces to the player in the same way. Also, given that

an OL is a bundling of communication and state-process, the annotation should only

cover things that are both communication and state-process. Given that the goal of an

OL is communication to a player, we can reasonably ignore phenomena that are unable

to be distinguished by a player, mainly an acceptance of some noise in the process (e.g.,

whether Mario remains in a state for 14 frames of 15 frames is indistinguishable to a

reasonable human player [although, there are, of course, unreasonable human players

[4]]). Finally, there exists a catalog of OLs [139], that can act as a guide for which

types of state-process/communication bundles are commonly found, guiding us towards

a general understanding of the types of OLs we should learn.

What information needs to be learned and abstracted?

The aforementioned catalog provides an outline of the types of OLs one might

commonly expect to find (as derived from 47 games [140]) which covers camera logics,

chance logics, character-state logics, collision logics, control logics, game-mode logics,

linking logics, persistence logics, physics logics, progression logics, recombinatory logics,

resource logics, selection logics, spatial pattern-matching logics, and temporal pattern-

matching logics.

While any of these could possibly be at play, for the types of games this work

is intended to cover, a subset of these will be relevant. To determine which logics will

be learned, I will now define the problem space.

For the rest of this work we are going to refer to a map as the entirety of the

14

space that the player will interact within for the game. Maps are made up of a graph

of linked rooms, with the rooms being the direct space that players actually traverse.

These rooms contain entities, which are governed by dynamical processes (the null,

static process is a possible, and indeed common, dynamical process). These entities can

interact with each other, through what would commonly be thought of as “collision,”

and can exhibit different behavior depending on their state. Given observation of a

game, we wish to learn which entities are of the same type, the properties of those types

(the possible states, the transitions between those states, and the effects of interaction

with other entities), their initial locations within a room, and the linking structure

between rooms.

To ascertain this information, the relevant logics are:

• Camera Logics – the game typically presents a viewport into the simulated world

space. We must deconvolve the camera’s position to determine where things are

located in the simulation world space.

• Character-State Logics – game entities can have multiple states that govern their

properties. We must determine these states, and more importantly the changes

between states to determine causal effects of interactions, covered in the next logic.

• Collision Logics – game entities can collide, leading to changes in their state. By

frequency, the most common annotations deal with collision logics (i.e.,when entity

𝐴 and entity 𝐵 collide, what change is affected to their respective states)

• Control Logics – some game entities can be controlled via some method of input.

15

Determining which entity is controlled by the player, and when the player retains

control, is an important factor for understanding

• Linking Logics – some spaces in a game might be linked together in a way that is

not traversable in the same way as the individual spaces are (e.g., two rooms that

are linked by a door). We need to determine when the player stops being in one

room and traverses to another

• Physics Logics – some game entities’ positions are governed by dynamical pro-

cesses. We need to determine these dynamics to accurately capture the fidelity of

a game

In an ideal setting, this process would also incorporate human cultural knowl-

edge, but this work eschews that as beyond scope. Admittedly, this does hinder the

communication aspect of the learned OLs as the semiotics can convey mechanical knowl-

edge (e.g., a health granting entity will often contain a red [or green, if the developer

understands trademarks [90]] cross on a white rectangle, a reference to the Red Cross

organization’s mission), but the incorporation of an exhaustive set of human under-

standing would be well on the way towards the construction of strong AI, which I will

leave for future work.

Mappy is a system designed to perform this automatic annotation/OL-ification

of a game’s map. I will now discuss the sub-problems that Mappy faces. In the following

chapter, I will discuss Mappy in detail, first providing a general overview of Mappy, then

discussing the input as it is received by Mappy, then discussing how Mappy addresses

16

the sub-problems, and finally will discuss future work intended for Mappy.

2.1 Human Annotation Tasks

As mentioned before, the goal of Mappy is to provide a level that is compressed

in a manner compatible with human understanding, as losslessly as possible. This is

not to say that Mappy annotates as a human would but rather to say that Mappy’s

annotation is human understandable and parseable. Looking to the human annota-

tion efforts, we see concepts like “solidity” and “inert.” Mappy should be capable of

learning the mechanical properties underpinning these, and while these are relatively

simple concepts, a large number of elided human processes are required to get to such

concepts. While we do not have to perform object detection and image segmentation,

a whole host of low-level perceptual concerns need to be covered for Mappy to have a

chance of learning useful properties. The following sections 2.2,2.3,2.4,2.5, and 2.6 will

discuss these problems. The approaches taken in Mappy to resolve them are discussed

in Chapter 3.

2.2 Entity Persistence

When a human views a screen, a number of phenomena are occurring. The

screen is updating at some rate (8̃9 Hz for a cathode ray tube, 60 Hz for most liquid-

crystal displays, 144 Hz for modern organic light-emitting diode screens), displaying

frames that persist for fractions of a second. While these images persist for mere frac-

17

tions of second, they appear continuous via the psychophysical process of flicker-fusion

[43]. Furthermore, when these static images have objects translate to nearby positions,

humans perceive that these objects are moving via the psychophysical process of appar-

ent motion [222]. Figure 3.3 on 44 shows an example of this apparent motion in Super

Mario Bros.. As mentioned this relies on the common OL communication channel of

an image on the screen denoting an entity existing in the game world.

2.3 Camera Motion

What is meant by camera motion? What is a camera, in the context of a two-

dimensional graphical game? Early games were single-screen, meaning they presented

a single, static screen that showed the totality of the space that a player would traverse

through. For some games (e.g., Pong or Asteroids) this screen would encompass all of

the space in the game, and while entities could enter or exit the screen, that one screen

is all the player would ever encounter. Later games would introduce “levels” (which are

referred to as rooms in this work) [131] wherein the space presented to the player would

change, while still keeping the player confined to one screen at a time (e.g., Pac-Man,

Galaxian, Donkey Kong). It was not until 1974 that Speed Race [207] would introduce

a room that scrolled, allowing a player to traverse, in a seamless, continuous manner,

a larger space than could be represented on a single screen. This scrolling was often

limited to a single axis at a time, with top-scrolling being popular for games involving

the piloting of an air or space craft (e.g., Xevious or 1942) and side-scrolling being

18

popular for similar games (e.g., Bomber or Defender) and platformer games (e.g., Super

Mario Bros. or Jump Bug) as well. While the cameras present in these games do not

reproduce the actual mechanics of a camera (whereas modern three dimensional games

do capture some given their handling of field of view [15]), we, as humans, are able

to intuit their mechanics as being representative of an actual camera. The question

now being, how do we as humans understand that the motion being presented on the

screen is not caused by the entire scene moving (no matter if that is what is actually

happening in the game’s code) but rather that there is some static scenery that the

camera is panning over?

A number of different factors are crucial to understanding and proceduraliz-

ing this phenomenon. In part, semantic representation knowledge is a large enabler.

Properties of entities such as whether they are animate or inanimate allows us to rea-

sonably infer which entities in a scene should be moving (e.g., a human, an animal,

or an anthropomorphic object) and which should not (e.g., a tree, a bush, a rock, a

brick). This semantic representation knowledge might be noisy (e.g., should a cloud be

stationary? On a still day, yes. On a windy day, no) or might lead us astray (e.g., the

normally inanimate mushroom is locomotive in Super Mario Bros.). Figure 2.1 shows

a scene from Super Mario Bros. with typically inanimate entities in gray while entities

deemed mobile via intuition are in color. Techniques built off this semantic representa-

tion knowledge is beyond the scope of this work, and Mappy treats all images as unique

identifiers, with no understanding of what the images represent.

19

Figure 2.1: A scene from Super Mario Bros. where semantic representation knowledge
would classify entities that are animate in color and the inanimate entities as gray-scale.
The human is obviously animate, and the anthropomorphic mushroom with eyes and
feet would reasonably be intuited to be mobile. Note that this intuition is incorrect as
the mushroom above the ?-block has the same movement profile as the Goomba.

20

2.4 Room Detection

As mentioned in section 2.3 motion, games have long had a history of being

segmented in a way where the player can freely traverse through a space before discretely

transitioning in a manner to a different space. The earliest games with this structure

allowed the player to only traverse this larger structure, from here on referred to as the

map, in one direction, with the method for traversing between rooms being tied to some

criterion of “beating” the current room (e.g., reaching Donkey Kong in Donkey Kong

or consuming all of the pellets in Pac-Man). Later games would allow for the player to

traverse the map in a non-linear manner (e.g., Adventure or The Legend of Zelda) or

quasi-linear manner (e.g., Super Mario Bros. does not allow the player to back-track but

can choose a number of different paths). These rooms might be connected in a way that

honors standard Euclidean geometry (e.g., Metroid) or might not (e.g., in Adventure it

is possible to traverse ⇒,⇑ from a location and wind up in a different location than

if you traversed ⇑,⇒). It is very common for media written about games to refer to

specific rooms [22, 227] and it is common for authored maps of games to divide the map

into rooms or collections of rooms [16, 10].

Smith and Whitehead refer to cells, non-overlapping regions of space that the

player can continuously traverse through, and portals, the means by which the player

can move between different cells, [178] which are analogous to rooms and doors, the

term which will be used from here on to refer to the connection between rooms. They

make this distinction as “Knowing where the cells and portals are in a level helps us

21

analyze their structure and catalog the many paths through a level.” Unsaid in this

is that the mega-structure of a game consists of separate rooms (what they refer to as

levels) and knowing that structure is important. Without knowing this structure

• The wrong information might be extracted (e.g., in Adventure recording the map

as one single room would necessitate overwriting information due to the non-

Euclidean nature)

• Transitions that do not contain spatial information would be hard to reconcile

(e.g., when going down stairs or in to a cave in The Legend of Zelda, where is that

space located in relation to the previous, Euclidean space)

• Important semantic distinctions between rooms would be lost (e.g., in Super Mario

Bros. an above ground room is different from a water room is different from a

dungeon room, etc.)

Operational Logics provides the framework of a Linking Logic, the method

and communication of the player traversing between connected but distinct spaces.

To determine how to ascertain the super-structure of a level vis- ‘a-vis the topology of

rooms, it is necessary to discuss how the distinction between rooms and their connections

are communicated to players.

There are a number of ways of communicating the movement between two

connected spaces in a game, but there are two that are most common, teleporation and

traversal.

22

2.4.1 Teleportation

Teleportation refers to placing the player in an environment that is noticeably

different in an instant and represents the most common form of room traversal. There

are multiple variants of how this is presented to the player.

(a) (b)

Figure 2.2: Two rooms in Adventure that are traversed between. The player exits
through the bottom of the first room and winds up in the top of the second.

The simplest is changing between the two rooms in the course of a single frame.

Figure 2.2 shows an example of this in the game Adventure. When the player moves

between rooms, they are in one room on one frame and in the next on the subsequent

frame.

However, it is common for games to include some manner of interstitial denot-

ing the traversal. For instance, Super Mario Bros. has a number of different interstitials

depending on the types of rooms being traversed. Figure 2.3 shows the interstitial pre-

sented to players at the start of a world (a set of rooms). This interstitial is presented to

the player for a number of seconds, operating as a sort of palate cleanser, allowing the

player to see their progress through the game and their current status (number of lives

left, amount of points and coins collected, etc.). Within a world, when the player tra-

23

Figure 2.3: The interstitial shown in Super Mario Bros. before the player starts a
“world” (a set of rooms).

Figure 2.4: Three frames from the interstitial sequence in The Legend of Zelda that
occurs when the player enters a dungeon.

24

verses a door between rooms three screens of solid color are shown, first the background

color of the previous room is shown for 2 frames (e.g., solid blue if the background

color was previously the sky), followed by a black screen for 7 frames, followed by the

background color of the new room for 2 frames. This process lasts barely over a tenth

of a second, but the brief flash primes the player that a transition between rooms is

occurring. When the player enters a “dungeon” in The Legend of Zelda a somewhat

complex interstitial scene occurs, shown in figure 2.4. First, a solid black screen is

shown for 12 frames (15 of a second), then the UI elements appear, but the screen is

still predominantly solid black. Then the black recedes to the left and right sides, as if

curtains are being drawn. Once the black has fully receded, the player regains control.

While these all represent different interstitial techniques, ranging from the non-

existent instantaneous interstitial to scene setting animations, they all involve drastic

changes in what is presented to the player. This allows the intuition that drastic changes

in scenery, typically accompanied by loss of player control, and discontinuous movement

of the player entity represent a teleportation transition between rooms. However, there

are transitions between rooms that do not have such abrupt, drastic changes in what is

shown to the player, so it is important to determine the communication strategies for

traversal doors.

2.4.2 Traversal

While teleportation transitions are very common, it is also very common for

transitions to occur in which the direct geometric relationship between two rooms can

25

Figure 2.5: Three frames from the traversal interstitial sequence in The Legend of Zelda
that occurs when the player traverses between rooms connected in a Euclidean manner.

Figure 2.6: Three frames from the traversal interstitial sequence in Metroid.

26

be understood, which here are termed traversal doors. For instance, the vast majority

of transitions in The Legend of Zelda occur between two rooms which are understood to

be next to each other in a cardinal direction. Figure 2.5 shows three frames from such a

transition. When the player collides with the outer border of a room, a brief interstitial

scene is shown where the screen scrolls in the direction that the player appears to be

moving (i.e., it scrolls up if the player collided with the top of the screen) while the

player’s walking animation plays. After fully scrolling in to the new room, the player

regains control and continue to move freely. A very similar scene occurs in Metroid

when the player opens a door, walks through the threshold, the screen scrolls along the

direction of the door, and finally the player regains control in the new room, shown in

figure 2.6.

From a purely visual standpoint, there is no way to discern that the player is

traversing between rooms, as opposed to within a room. Certainly, this could be seen

as an eccentric form of the position locking camera behavior as defined by Itay Keren

[101], e.g. the player is given a window that they can move freely in, but when coming

to the edge of the camera’s field, the camera scrolls to a new position. This would be

plausible, with no knowledge about what the player is doing, but a player certainly has

some degree to which they understand their actions and interactions with the game, so

this would be unsatisfactory.

A key aspect of these transitions is the loss of player control. If a room is a

place in which the player can freely move about, a key aspect of communicating that

something different is occurring during the transition to a new room is the removal of

27

that control. By removing control, while still keeping motion, the player infers that they

are moving to a new place, in a way that is distinct from their previous movements.

This motion can be of a different modality than their previous motion (e.g., in Super

Mario Bros. the key way a player transitions to a new room is via the entering of warp

pipes, a very different action than their previous running and jumping) or be similar

(e.g., in The Legend of Zelda the player’s standard walking animation occurs during

the transition, although the player’s character remains still until it is “pushed” by the

edge of the screen at the end of the transition), but the key aspect is the loss of control

whereby the player is informally informed that they are now in an interstitial space

between the rooms.

This raises the question, ”How do we know when the player does or does not

have control?” From observation of a video, there would be no way to discern when the

player has control, as there is no information about the control input to discern what the

player is controlling; however, given the instrumented emulator, it is simple to discern

player control. To wit, player control is determined when a change in input results in a

change in state. Now, it is possible that a change in input results in a change in state

that is not communicated to the player (e.g., the initial random seed in Final Fantasy

is determined via the time since console power on when the player first presses start –

potentially leading to a large change in a player’s experience); however, given that the

goal is to determine when a reasonable player could be expected to notice a difference

in their control, it is relatively safe to ignore these “invisible” state changes.

To determine whether the player has control, on each frame all possible inputs

28

B A B A B AB A B A B A B A

Figure 2.7: The original frame is shown on the top, and the results of each input on the
resultant frame are shown on the bottom.

are tried (pressing up, down, left, right on the direction pad, the A button, and the

B button). Then progress the emulator through the next 𝑛 frames with the input as

specified by the input play trace. If the any of these inputs results in a difference in

what is presented to the player, then it is deemed that the player has control. The lag of

𝑛 frames is a concession to the fact that not all games have instantaneously observable

control (or might not at all points in time). Figure 2.7 shows an example in Metroid for

determining that the player has control.

To summarize the two types of transitions, they can either be the result of a

drastic change in the scene presented to the player, or indicated via the loss of control

during a period where the background is still moving (as there are other reasons why

the player might lose control).

29

Figure 2.8: The three images that make up Mario’s run cycle in Super Mario Bros.

Figure 2.9: The eight images that make up Batman’s run cycle in Batman: The Return
of the Joker

Figure 2.10: A phénakistiscope with a man pumping water from Mclean’s Optical Illu-
sions [122]. Reprinted with permission[151].

30

Figure 2.11: The two halves of a thaumatrope from 1825 which would display a vase
full of flowers when used. Reprinted with permission [63].

31

Figure 2.12: A reproduction of a Victorian zoetrope. Reprinted with permission [54].

2.5 Animation Cycles

Animation, as an artistic practice, has a storied history of roughly two cen-

turies at this point [109]. Starting from the thaumatrope, a toy disc with two images

on alternate sides that could be rapidly swapped between (see figure 2.11), (relying on

properties of vision similar to those mentioned in section 2.2), through the phénakistis-

cope, a disc with a sequence of images proceeding around the outer perimeter that would

be rotated to create the appearance of motion (see figure 2.10), to the zoetrope, similar

to the phénakistiscope except with the images arranged in a cylinder (see figure 2.12),

the earliest animations were composed of a small number of images (between two and

sixteen), a trait held by most of the games present on the NES. For instance, Mario’s

run animation in Super Mario Bros. has three frames of animation (see figure 2.8) and

Batman’s run animation in Batman:Return of the Joker has eight frames (see figure

32

2.9) . While these animations are easy to discern given common sense knowledge about

typical actions and what they look like, this common sense knowledge is beyond the

scope of this work. Pose recognition and estimation [230] is a subset of research in the

machine vision community focused on detecting human forms from video or, in some

cases [171], a single image. However, these approaches expect a standard, realistic hu-

man morphology, a luxury not afforded by the cartoonish, abstract forms found in NES

games. Given this, the concept of a “run cycle” is beyond the capabilities of Mappy;

however, there is other information encoded in the animation, for which it is essential

to break down what exactly an animation is.

At the highest level, an animation is the communication of an activity. This

activity is often representative of an ongoing state that an entity is in, e.g., running,

jumping, standing still, etc. Some of these states are durative (e.g., running in Super

Mario Bros. can continue for a long period of time) and their respective animations will

loop many times. Some are “one-shot” animations, that play once (e.g., Kirby performs

a flip at the apex of his jump in Kirby’s Adventure) and these one-shot animations are

often very simple (e.g, the jump animation in both Super Mario Bros. and Mega Man

consist of a single static). These animations can be parameterized based on pertinent

variables in the state that they are representing (e.g., the cycling of images in Mario’s run

in Super Mario Bros. speeds up as his 𝑥 velocity increases). The key to extracting these

animations, without reasoning about what they are actually conveying, is noticing the

patterns, and how they repeat. If the communicative goal of an animation is to inform

the player that an entity is in a specific state, when the player observes a pattern that

33

they have previously observed they infer that they are in the same – or at least similar –

state. When the player observes a pattern that loops, they recognize it as one continuous

state (e.g., the same 3 frames of animation looping in 2.13 reads as “running”).

Figure 2.13: One thousand frames of Mario’s animations in Super Mario. Each frame
of animation is assigned a unique identifier, and the progression of these is shown in the
top image. The current frame, sampled periodically, is shown on the bottom.

2.6 Mode Dynamics

There are modes of communication by which the states of entities are commu-

nicated to the player other than by “What animation is playing,” namely the “physical”

state of the entities, such as the position, velocity, and acceleration. Returning to the

Mario run cycle shown in figure 2.8, when Mario is running, his position is updating

in time. His speed is also updating in time, depending on whether he has reached his

maximum velocity and whether the B button is pressed (which increases both the accel-

eration and the maximum 𝑥 velocity). What would be detected as a single run state via

the animation detection process in 2.5 is really four states – B button terminal velocity,

no B button terminal velocity, B button acceleration, and no B button acceleration. By

detecting the changes in acceleration and velocity, it should be possible to find these

states.

34

These distinctions can be more subtle than can reasonably be surfaced by

a player. For instance, one of the defining characteristics of Super Mario Bros. is

its introduction of jump control, i.e.,the process of allowing the player to affect the

duration of Mario’s jump. This process is intuitive and player’s discover it by holding

the A button for different durations. However, while this process is intuitive to control,

it is not instantly obvious as to what the actual underlying dynamics are. Does Mario’s

jump ascent stop the instant the button is released? Does releasing the button increase

gravity? Does releasing the button add a sudden downward velocity to Mario? Does

releasing button set Mario’s velocity to a fixed value? All of these are possibilities,

but a player is not assessing them as they are playing. They are instead developing an

understanding of the “feel” [206].

Swink [206] takes a designer’s look at what is meant when a person describes a

game’s controls as “floaty” or “sticky.” Swink delves deep into a few example games to

develop an intuition – albeit one guided by a very precise assessment of the mechanics

– for the controls and physics in the game. Sudnow [192] takes a phenomenological

approach to Breakout andMissile Command stating “as you watch the cursor move, your

look appreciates the sight with thumbs in mind, and the joystick-button box feels like a

genuine implement of action.” [192] From this view point, the synaesthesia binding the

control and visuals come together in one cohesive unit that we as humans understand.

While a player may not have a perfect mental map of the internal states of the game,

those states do exist, and seeing as they can be crucial for determining “game feel” it

is important to extract them, as their communication of state is important.

35

2.7 Conclusion

As evidenced in the previous sections, there are a number of human processes

that must be addressed for a computational system to make headway into the problem

of annotating a game map via observation. Mappy is a system designed to address these

issues, with a specific focus on action games for the Nintendo Entertainment System.

The following chapter will discuss Mappy in detail, addressing each of these problems

in turn.

36

Chapter 3

Mappy – A System for Map Extraction

and Annotation via Observation

1

Mappy is a system designed to take in a game and a set of input traces for

that game, producing an annotated map graph for that game. The game takes the form

of a Read-Only Memory (ROM) file for the Nintendo Entertainment System (NES).

The NES was chosen as the platform as it has a number of desirable properties – a

large corpus of games, well understood hardware architecture, and a number of fast

open-source emulators available. It is this last property that is particularly appealing,

as an instrumented emulator allows for an important sidestepping of a fundamental

problem, vision. Object detection approaches in computer vision systems have typically
1Portions of this chapter originally appeared in “Automatic Mapping of NES Games with Mappy”

[138], “Charda: Causal hybrid Automata Recovery via Dynamic Analysis” [199], “Automated Game
Design Learning” [141], and “What Does That ?-Block Do? Learning Latent Causal Affordances from
Mario Play Traces” [193]

37

focused on the segmentation and detection of large, naturalistic images with orders of

magnitude more pixel fidelity than that found in games. Where a few pixel margin of

error in detection is acceptable when an object might be thousands of pixels, it becomes

a more severe problem for an object made up of a few dozen pixels. Furthermore, these

systems require supervised training, whereas Mappy runs in a unsupervised manner.

By using an instrumented emulator, Mappy has perfect access to entity locations and

object segmentation; however, as will be discussed in section 2.1 there are still a host of

aspects of the annotation task that require careful consideration and technical handling.

The architecture for Mappy can be seen in figure 3.1. The input consists of:

• Game – a game ROM for the NES

• Input Traces – a set of input traces for the NES. An input trace is a list of

frame-by-frame input commands for all controllers. For the NES, the possible

inputs are the Start, Select, A, and B buttons and the direction(s) pressed on the

directional pad – see figure 3.2. Note: an input trace can conceivably describe an

input configuration not possible on the original controller hardware (e.g., the NES

controller directional pad can only support a single directional input per frame

as a product of the rigid plastic cross used, but it is possible to provide an input

trace where any combination of directional inputs is provided in a given frame).

and the sub-processes of Mappy are:

• Instrumented Emulator – an emulator for the NES. Mappy currently uses

FCEUX [47], but any emulator that provides access to the screen buffer, state

38

Mappy

Game
Input Trace

Input Trace
Input Trace

Instrumented Emulator

Entity Tracking Screen Motion
Detection

Room DetectionAnimation
Detection

Entity Automata
Learning

Annotated Level

Figure 3.1: The architecture for Mappy. Mappy takes in a game and a set of input
traces. These are passed to an instrumented emulator that provides entity locations
which are used for determining overall camera behavior and entity tracks. The camera
behavior is used to determine when a room begins or ends. The entity tracks are used
to determine what animations occur at given points in time, and finally, along with said
animation information, are used to learn an automata describing the properties and
dynamics for each of the types of entities found. All of this information combined is
used in the resultant map graph.

39

Directional Pad

Select

Start

B

A

Figure 3.2: The controller for the Nintendo Entertainment System.

saving/reloading, and access to the Picture Processing Unit (PPU) (described in

section 3.1) would suffice. The rest of Mappy is not specific to the NES and

should generalize to two-dimensional games found on other systems – assuming

engineering to extract out the relevant information.

• Entity Tracking – a suite of algorithms that take in the raw image locations per

frame and provides a set of tracks for entities. This is described in more detail in

section 3.2.

• Camera Motion Detection – An algorithm that takes in the screen buffer and

PPU state and determines how the camera logic is being engaged at any point in

time. This is described in more detail in section 3.3.

• Room Detection – An algorithm that take in the screen buffer, processed camera

40

motion, and information about player control and determines when the player has

entered and exited a room. This is described in more detail in section 3.4.

• Animation Detection – An algorithm that take in the per frame image infor-

mation on a per-track basis and determines the animation loops present for that

entity. This is described in more detail in section 3.5.

• Entity Automata Learning – An algorithm that take in the per frame image

information on a per-track basis and animations and determines what states are

present for an entity, the dynamics of those states, and the transitions between

states. This is described in more detail in section 3.6.

3.1 NES Architecture and Emulation

The NES is a nice platform as its hardware explicitly defines and supports

the rendering of grid-aligned tiled maps (drawn at an offset by hardware scrolling fea-

tures) and pixel-positioned sprites. The NES implements this with a separate graphics

processor (the Picture Processing Unit or PPU) that has its own dedicated memory

defining tilemaps, sprite positions (and other data), color palettes, and the 8 × 8 pat-

terns which are eventually rasterized on-screen. During emulation, Mappy can directly

read the PPU memory to access all these different types of data; we briefly describe the

technical details below (referring the interested reader to [132]).

Although the PPU has the memory space to track 64 hardware sprites at once,

there are two important limitations that games had to contend with: first, each sprite

41

is 8×8 pixels whereas game entities are often larger; and second, the PPU cannot draw

more than eight hardware sprites on the same scanline (screen Y position). This means

that sprites are generally used only on objects that must be positioned at arbitrary

locations on the screen.

Static geometry, including background and foreground tiles, are not built of

sprites but are instead defined in the nametables, four rectangular 32 × 30 grids of tile

indices; these four nametables are themselves conceptually laid out in a square. Since

the PPU only has enough RAM for two nametables, individual games define ways to

mirror the two real nametables onto the four virtual nametables (some even provide

extra RAM to populate all four nametables with distinct tiles). On each frame, one

nametable is selected as a reference point; when a tile to be drawn is outside of this

nametable (due to scrolling) the addressing wraps around to the appropriate adjacent

nametable. Note that many rooms are much wider than 64 tiles—the room as a whole

never exists in its player-visible form in memory, but is decompressed on the fly and

loaded in slices into the off-screen parts of the nametables as the player moves around

the stage.

Mappy remembers all the tiles that are drawn on the visible part of the screen,

filling out a larger map with the observed tiles and updating that map as the tiles

change. A Mappy room at this stage is a dictionary whose keys are a tuple of spatial

coordinates (with the origin initially placed at the top-left of the first screen of the

map) and the time points at which those coordinates were observed, and whose values

are tile keys. A tile key combines the internal index used by the game to reference the

42

tile with the specific palette and other data necessary to render it properly (from the

attribute table and other regions of NES memory). After Mappy has determined that

the player has left the room (see Sec. 2.4), the map is offset so that the top-left corner

of its bounding rectangle is the origin and all coordinates within the map are positive.

3.2 Operationalizing Entity Persistence

Given that the inductive bias of Operational Logics provide a good governing

structure for abstraction, we see that Physics Logics cover the notion that presented

game objects will be governed by a set of physical dynamics. This means that while

the true information presented by the game, a series of flickering frames, has no notion

of entity persistence, any useful abstraction must account for the fact that presented

entities are not merely disjoint images in time, but rather represent the same entities

across time with physical processes governing their motion. However, this presents the

problem of “How do we infer the persistence of animating entities across time, given

disjoint frames of data?”

Broadly, this is a target tracking [24] problem. Target tracking as a field has

existed since the adoption of radio-based detection and tracking (i.e., RAdio Detection

And Ranging [RADAR]). RADAR presents an operator with plots (representing high

returns from a radio beam) that are disjoint in time (a problem similar to ours), and

the early days of RADAR used humans to track aircraft. Kálmán [96] developed what

is now commonly referred to as the Kalman filter to solve the problem of tracking an

43

Figure 3.3: An exaggerated example of differences in two frames from Super Mario
Bros.. The initial frame is slightly reduced in opacity for this illustration. This would
lead to the apparent motion of the mushroom moving to the right and the lower Goomba
moving to the left.

44

object given noisy measurements of what is believed to be a linear dynamical system.

Extensions have been made for targets that might have multiple different modes of

movement [172] and for tracking multiple targets [157].

11 12 1213

Figure 3.4: An exaggerated example of differences in three frames from Mega Man. The
initial frame is slightly reduced in opacity for this illustration. In the left image, Mega
Man starts at one position (frame 1) and moves right to (frame 2). On the right Mega
Man abruptly changes direction and moves left from (frame 2) to (frame 3)

While the invocation of Physics Logics leads us to believe that the entities

on screen follow a model of physical dynamics, the non-physical realm of video games

can have drastically non-physical physics. While many game entities have momentum

(e.g., all static entities, Mario in Super Mario Bros. etc.), there are many that do

not. These are mostly due to abrupt state changes, be it player input (e.g., Mega

Man), internal behavior logic (e.g., a boss in Mega Man “deciding” to start jumping

or dashing), or game “physics” logic (e.g., spring board in Super Mario Bros.). Figure

3.4 demonstrates the instantaneous nature of Mega Man’s ground motion. Even in

games without instantaneous non-physical accelerations, their physics models might be

45

poorly captured by the homogenous physical equations assumed by a Kalman-family

tracker. A model of aircraft dynamics will typically consider three modes of dynamics,

straight-level flight, a fast high acceleration turn, and a slow, low acceleration turn.

Mario’s standing jump in Super Mario Bros. contains four distinct modes (stationary,

button hold, button release, terminal velocity) and the full jump dynamics contains 22

different modes. In general, we do not want to assume any physical model, so a Kalman

filter would be a poor fit. Furthermore, this tracking problem consists of hundreds

of entities being tracked at any point in time, while standard multiple target tracking

problems assume a relatively low density of targets (while air traffic control often needs

to track hundreds of aircraft at any point in time, these are generally cooperative targets,

broadcasting their own position and identity at each point in time, a luxury we do not

share).

The instrumented NES emulator gives access to the nametable, which is an

array of tiles commonly used as background, and the Object Attribute Memory (OAM),

an array where each entry is the raw 3-tone image, the palette for coloring, whether the

image is flipped horizontally, whether the image is flipped vertically, and the screen-

space 𝑥 and 𝑦 coordinates. Order in the array need not hold any information about the

identity of an entry (e.g., due to limitations in the number of sprites available per scan-

line, some games will re-order the OAM such that any given sprite will not be invisible

on 2 subsequent frames). These are updated on a per-frame basis. A given entity can

have its image changed in an arbitrary manner per-frame (e.g., when Mario collects a

star his colors constantly change, when Mario collects a mushroom he oscillates between

46

the normal and super Mario images for a brief period of time, and his images change as

a normal part of animation frames).

The problem statement is thus:

There is a list of frames, 𝐹 , where each 𝑓 ∈ 𝐹 is a list of object tuples ⟨𝑥, 𝑦, 𝑖⟩,

where 𝑥, 𝑦 are the screen-space positions and 𝑖 is the image presented to the player. The

goal is to construct a set of tracks, 𝑇 , where each 𝑡 ∈ 𝑇 is a list of tuples ⟨𝑛, 𝑜⟩, where

𝑛 is the index of the frame in 𝐹 and 𝑜 is the index to the object tuple in that frame 𝑓 .

The underlying guiding principles governing the solution are:

• We want a minimal set of constraints on the underlying dynamics governing the

“motion”

• We believe that it is more likely for an entity to move a small distance from its

previous location, than a larger distance

• We want to make minimal assumptions about continuity of images, as images can

change greatly in size or color

The solution in Mappy is as follows:

Initialize a list for active tracks, 𝑇𝑎, a list for inactive tracks, 𝑇 . Iterate over

each frame 𝑓 ∈ 𝐹 . For each frame, construct a bipartite graph, 𝑊 , where each entity

from the current frame, 𝑒 ∈ 𝑓 is found on the left hand side, and each currently active

track, 𝑡𝑎 ∈ 𝑇𝑎 is found on the right hand side. The edges between all pairs of members

of the left hand side and right hand side are formed with weight

𝑤 = 1
𝜎
√
2𝜋𝑒−(𝑑)2/2𝜎2

47

where 𝑑 is the distance between the entity on the left hand side and the last seen point

in the track on the right hand side. 𝜎 is a hyper-parameter determining the scaling

of this weight (higher 𝜎 being a flatter scaling, while a low 𝜎 being closer to a spike

and slab weighting). This weight function is the probability distribution function of

the Gaussian normal distribution of mean 0 and standard deviation 𝜎. This has the

interpretation that it is expected that each track will move in a Gaussian cloud around

the previous position. Furthermore, for each point on the left hand side, a special track

start node is constructed on the right hand side, with edge weight equal to 𝑤𝑠, a hyper-

parameter determining the likelihood of starting a new track (a lower 𝑤𝑠 means a lower

likelihood of starting a new track, while a sufficiently high 𝑤𝑠 will lead to a new track

being formed each frame for each entity).

Given the bipartite graph, the goal is to assign each currently seen entity to

a track, with the global maximum likelihood for the assignment, given the Gaussian

prior on the entity movement. The maximum weight matching of Edmonds [57] is used,

finding the optimal, maximal weight in 𝑂(𝑛3) time.

After assigning each entity to a track (which could possibly be a new, previously

empty track), a timeout parameter, 𝑜𝑡, is incremented for each track that did not receive

an update. If a track’s 𝑜𝑡 is greater than 𝑜, a hyperparameter governing how long a

track can coast, it is moved to from 𝑇𝑎 to 𝑇 . While it is relatively unlikely for a sprite

to disappear, many games use a blinking effect where a sprite will disappear for a few

frames (e.g., when Mega Man takes damage he blinks in a 4 frame cycle – 4 frames on,

4 frames off), so 𝑜 can be relatively small in practice.

48

After all frames in 𝐹 have been iterated over, any remaining tracks are moved

from 𝑇𝑎 to 𝑇 , and a full accounting of entity persistence and motion across time is

achieved. It should be noted that the motion at this point in time is only in screen-

space, i.e.,what is presented via the screen, not world-space, i.e.,the ground truth as

used by the simulation. To go from screen-space to world-space, we must disentangle

the actual positions of entities from what is presented via the camera.

3.3 Inferring Camera Motion

Given that camera motion exists in games, the question becomes, “How can

this understanding be operationalized?” As discussed, common-sense reasoning plays a

huge part in how humans interpret the the motion of the camera, but that is beyond the

scope of this dissertation. Instead, the motion of game entities will have to be analyzed

to determine camera motion. There are a wide range of different behaviors for game

cameras. As discussed by Itay Keren [101] there are a variety of factors that a camera

must balance:

• What is the focus? – Is there a specific entity/set of entities that the camera is

following? Is there a location that is pulling the camera’s focus?

• How closely is the camera tracking? Is it locked to the focus entity’s position?

Is there a window that entity can move freely in before engaging the camera’s

motion?

• How quickly does the camera track? Is it always some fixed offset from the focus

49

entity or does it smoothly interpolate to that position?

• Are there different modalities for vertical and horizontal motion? Do these engage

based on specific game world criterion?

and while these are all important questions when designing camera behavior, they are

irrelevant for the more low-level question of “How do we detect camera motion?” The

camera is moving, and this motion must be extracted, but the underlying logic of “Why

is the camera moving?” or “How is the camera moving?” are not pertinent to the

extraction of motion, while from a design stand point they might be relevant – i.e., if

one were generating camera behaviors.

A common way of detecting camera motion in real-world scenes is via optical

flow [19, 53]. Optical flow operates by finding the differences between two frames of

video and tries to account for these differences given the construction of a flow field.

This flow field represents how the pixels in the first frame would need to be translated

to achieve what is seen in the subsequent frame. Optical flow works well in dense real-

world scenes where there is a lot of texture provided to allow the algorithms to find

and discern motion; however, the abstract, simplified scenes presented in NES games

represent something of a unique challenge to standard optical flow techniques. Figure

3.5 shows an example of how a standard optical flow techniques fails in the face of

Super Mario Bros. in discerning camera motion. The intuition in using optical flow to

discern camera motion, is that the expectation is that most of the scene is stationary

(i.e.,background) and that a small number of animate entities will be present on the

50

Figure 3.5: Two frames of Super Mario Bros., the optical flow between them (as achieved
via the technique described in ”Two-Frame Motion Estimation Based on Polynomial
Expansion” by Gunner Farneback in 2003” [91]), and the desired optical flow. Mario,
the mushroom, and the camera move slightly to the right, while the Goomba moves to
the left. Black in the optical flow images denotes no motion, while a higher intensity
denotes more motion. The desired flow field should have all background elements with
a slight (6 pixels) amount of motion, the Goomba with higher (9 pixels), Mario with
slight (1 pixel), and the mushroom with no apparent motion; however, sky presents a
large field in which no flow can be discerned.

51

screen. Therefore, the modal value of the optical flow should represent the opposite

motion of the camera (e.g., if the most common motion in the scene is motion to the

left, then the camera is panning right across the background). However, the sparse

nature of NES game scenes mean that often the true nature of the motion is lost in

a vast monotone swath. For instance, the solid color of the sky in Super Mario Bros.

has no optical flow between frames, and since it makes up nearly three quarters of the

screen real estate, an optical flow based technique will never discern any camera motion.

However, while this simplified nature presents a drawback, a different simplified nature

presents an opportunity.

Optical flow is useful for real world camera motion detection, due to the fact

that a real world camera is traversing a three dimensional space, meaning the entire

scene can change in scale and rotation. However, in a two dimensional game, the motion

of the camera appears to be a sliding aperture over the scene. This means that per-

pixel flow would, in the best case, determine the vector by which the first frame should

be translated to achieve the second. This is in fact a problem solved via a different

methodology in computer vision, template matching. Template matching is a method

designed to solve the problem of: Given a source image, 𝑆, and a template image,

𝑇 , find the position such that if you placed the template at that location within the

source, it would maximize some measure of similarity. A number of similarity metrics

are possible, including:

• Sum of Square Distance – 𝑆𝑆𝐷(𝑥, 𝑦) = −∑𝑥′,𝑦′(𝑆[𝑥′, 𝑦′] − 𝑇 [𝑥 + 𝑥′, 𝑦 + 𝑦′])2

52

For all pixels find the square difference in intensity and sum

• Sum of Square Distance, Normalized – 𝑆𝑆𝐷𝑛(𝑥,𝑦) =− ∑𝑥′,𝑦′ (𝑆[𝑥′,𝑦′]−𝑇[𝑥+𝑥′,𝑦+𝑦′])2

√∑𝑥′,𝑦′ 𝑆[𝑥′,𝑦′]2⋅∑𝑥′,𝑦′ 𝑇[𝑥+𝑥′,𝑦+𝑦′])2

Find the sum of squared distance between the two images, and then normalize by

the root square intensities of the two images

• Cross Correlation – 𝐶𝐶𝑜𝑟𝑟(𝑥, 𝑦) = ∑𝑥′,𝑦′(𝑆[𝑥′, 𝑦′] ⋅ 𝑇 [𝑥 + 𝑥′, 𝑦 + 𝑦′])2

For all pixels find the product of the two intensities and sum For all pixels,

• Cross Correlation, Normalized – 𝐶𝐶𝑜𝑟𝑟𝑛(𝑥,𝑦) =
∑𝑥′,𝑦′ (𝑆[𝑥′,𝑦′]⋅𝑇[𝑥+𝑥′,𝑦+𝑦′])2

√∑𝑥′,𝑦′ 𝑆[𝑥′,𝑦′]2⋅∑𝑥′,𝑦′ 𝑇[𝑥+𝑥′,𝑦+𝑦′])2

Find the cross correlation of the two images, and then normalize by the root square

intensities of the two images

Considering the case of two identical images, all of these metrics will have

a global peak (perhaps non-unique given the structure of the images) of goodness (a

global maxima for the cross correlations, and a global minima for the square distances)

when they are perfectly aligned, however, they will differ in their handling of non-

identical images. Figure 3.6 shows an example template matching problem of finding a

mushroom within a Super Mario Bros. scene, displaying the effects of the four different

similarity metrics. Given template images that only differ in intensity, the sum of squares

methods find matches at places most closely aligned to the average intensity (leading

to poor results for darkened and lightened images). The standard cross correlation

finds matches at places with high intensity (e.g., the clouds), but the normalized cross

correlation metric has a match at the correct location no matter if the image is darkened

or lightened. It is due to this behavior that the normalized cross correlation is the

53

*

SSD

SSDn

CCorr

CCorrn

Figure 3.6: An example of template matching of two different template patterns (the
normal, dark, and light mushrooms) on a single source image from Super Mario Bros.
for the four different template matching metrics, 𝑆𝑆𝐷,𝑆𝑆𝐷𝑛, 𝐶𝐶𝑜𝑟𝑟, 𝐶𝐶𝑜𝑟𝑟𝑛. Dark-
ness indicates low similarity and lightness indicates high similarity. The sum of square
distance metrics do well with the normal, light colored mushroom, but do poorly with
the darkened mushroom (as its intensity is closer to that of the dark green bush near
Mario) and the light (as its intensity is closer to the cloud). The non-normalized cross
correlation method does poorly on all images, as the pure white cloud has a high cross-
correlation with any image; however, the normalized version (which normalizes the
expected return from the pure white cloud) finds identical peaks for both the normal,
dark, and light mushrooms at the correct location.

54

similarity metric used going forward.

Template matching finds the optimal offset to place a template image in a

larger source image but two frames of an NES game are identical in size. How then

can template matching find the translation between two frames? It would be possible

to embed the source image in some larger image with some sort of padding. This

is relatively common in image based convolution techniques [13, 7], and is typically

handled via zero padding (extending the image with pure black), reflection (mirroring

the image on the borders), or periodic wrapping (e.g., moving past the border on the

right wraps to the left, etc.); however, the nature of the nametables in the PPU gives a

clean method for extension.

(a) Vertical mirroring
(reproduced with per-
mission from [12])

(b) Horizontal mirror-
ing (reproduced with
permission from [12])

(c) Single screen mir-
roring (reproduced
with permission from
[12])

(d) Four screen mir-
roring (reproduced
with permission from
[12])

Figure 3.7: The four most common PPU mirroring modes.

The nametables in the PPU hold the background tile information. They hold

not just the information for what is presented on the screen, but actually contain infor-

mation for a large surrounding area, depending on the mirroring mode. A number of

different mirroring modes are possible, given the memory mapper present in the hard-

ware, but the most common are horizontal mirroring, vertical mirroring, single screen

55

mirroring, and four screen mirroring. The PPU can map four screens at once: upper

left, upper right, lower left, and lower right. Horizontal mirroring means that the upper

left is identical to upper right and lower left is identical to lower right. Vertical mirror-

ing means that the upper left is identical to lower left and upper right is identical to

lower right. Single screen mirroring is fully mirrored with all four quadrants being iden-

tical. Four screen mirroring is the absence of any mirroring with each quadrant being

unique. These mirroring modes can be seen in figure 3.7. Horizontal mirroring is found,

perhaps unintuitively, in games featuring vertical scrolling, while vertical mirroring is

found, similarly unintuitively, in games with horizontal scrolling. While unintuitive,

this makes a great deal of sense when one considers that two screens arranged left-to-

right (i.e.,vertical mirroring) can be smoothly scrolled across from left-to-right. The

nametable provides a larger image, extended from the original, with no need to guess at

the border behavior (which would almost certainly be lossy due to the fact that zeros,

reflecting, and wrapping are unlikely to capture the true border behavior), within which

the template, in this case the screen as it is presented to the player, can be found. An

example from Super Mario Bros. can be seen in figure 3.8.

Given the location of the screen within the nametable, it is trivial to record

the difference between translations on a frame-to-frame basis. E.g., if the optimal offset

is found to be (148, 0) pixels on frame 1 and (150, 0) pixels on frame 2, we can conclude

that the camera moved two pixels to the right. With these frame-to-frame camera

movements, it is then trivial to deconvolve world-space coordinates, 𝑝𝑤, for entities via

the camera positions, 𝑝𝑐, and the screen-space coordinates, 𝑝𝑠, as

56

(a) The screen as presented to the player. (b) The nametable (with mirroring mode over-
lay) as found in the PPU’s memory. The red
box indicates the true position of the screen
as embedded within the nametable.

(c) The result of template matching the screen
on the nametable.

Figure 3.8: The process of template matching the screen (a) to the source image of the
nametable (b) and finding the optimal matching (c). Note that there are two optimal
translations, one for upper and lower mirrorings. To account for this, only the first
translation (top-to-bottom, left-to-right) is kept).

57

𝑝𝑤 = 𝑝𝑐 + 𝑝𝑠

Camera x

Camera y

Screen x

Screen y

World x

World y

Figure 3.9: A demonstration of incorporating camera motion and screen space position
to acquire world space position. Note that the camera has no motion in the vertical
axis, so there is no difference between the screen and world 𝑦’s (hence the occlusion of
the screen 𝑦).

Figure 3.10: The result of extracting Mario’s path via the camera motion.

Figure 3.9 shows the results of applying camera positions to the screen space coordinates

for an example track of Mario in Super Mario Bros., for which the resultant track

overlaid on the room can be seen in figure 3.10.

58

Given the ability to find the world-space coordinates for all entities, it is now

possible to discern the global structure of the simulated world to extract the rooms from

the game.

3.4 Determining Room Transitions

The algorithm for determining when the player starts transitioning, when the

player is transitioning, and when the player has completed transitioning is as follows.

Initialize the time since player last had control, 𝑡𝑝𝑐, the accumulated motion since the

player last had control, 𝑥𝑎&𝑦𝑎, to 0.

If the player does not have control, then increment 𝑡𝑝𝑐 and add the current

detected camera motion 𝑥𝑐, 𝑦𝑐 to 𝑥𝑎, 𝑦𝑎; however, if the player has regained control,

set 𝑡𝑝𝑐, 𝑥𝑎, 𝑦𝑎 to 0.

If 𝑡𝑝𝑐 > 𝑡𝑔 and either 𝑥𝑎 > 𝑥𝑠, 𝑦𝑎 > 𝑦𝑠 then set a flag indicating that the

player is in an interstitial state and a flag indicating the possibility of an interstitial state

is unset. 𝑡𝑔 is a parameter acting as a threshold on determining whether the player is

possibly in an interstitial state, 𝑥𝑠 and 𝑦𝑠 are thresholds determining how much motion

must occur for it to be believed that the player has entered a traversal interstitial. The

checks on the 𝑥 and 𝑦 accumulators are meant to determine if the screen has seen a large

amount of motion (indicative of scrolling into a new room) as opposed to no motion

(as occurs during the loss of control when the player collects a power-up in Metroid)

or a stochastic “screen-shake” (as occurs in The Young Indiana Jones Chronicles). If

59

𝑡𝑝𝑐 > 𝑡𝑔 but all of the other checks fail, then a flag indicating potential interstitial is

set. If the potential interstitial flag is set and 𝑡𝑝𝑐 < 𝑡𝑔 then the flag is unset.

Algorithm 1 The algorithm for determining room transitions.
1: procedure Room Transitions
2: 𝑡𝑝𝑐 ← 0
3: 𝑥𝑎 ← 0
4: 𝐼 ← 𝑓𝑎𝑙𝑠𝑒
5: for Frame do
6: if Player Has Control then
7: 𝑡𝑝𝑐 ← 0
8: 𝑥𝑎 ← 0
9: 𝑦𝑎 ← 0

10: else
11: 𝑡𝑝𝑐 ← 𝑡𝑝𝑐 + 𝛿𝑡
12: 𝑥𝑎 ← 𝑥𝑎 + 𝑥𝑐
13: 𝑦𝑎 ← 𝑦𝑎 + 𝑦𝑐
14: end if
15: if 𝑡𝑝𝑐 > 𝑡𝑔 ∧ (𝑥𝑎 > 𝑥𝑠 ∨ 𝑦𝑎 > 𝑦𝑠) then
16: 𝐼 ← 𝑡𝑟𝑢𝑒
17: end if
18: if Player Has Control ∧(𝐼 ∨ 𝑑 > 𝑑𝑡 ∨ 𝑐𝑐𝑜𝑟𝑟𝑓−1→𝑓 < 𝑐𝑐𝑜𝑟𝑟𝑡) then
19: 𝐼 ← 𝑓𝑎𝑙𝑠𝑒
20: Record the previously seen room
21: end if
22: end for
23: end procedure

If the player has regained control and the interstitial flag was set, or 𝑑 > 𝑑𝑡, or

the cross correlation between pixels in the current screen and the previous seen is less

than 𝑐𝑐𝑜𝑟𝑟𝑡 then it is believed that a new room has been entered. 𝑑 is the number of

background tiles that have changed between the previous and current frames and 𝑑𝑡 is

a threshold for the difference. All recorded frames are stepped through in this manner,

leading to a segmentation of which room the player is in at each point in time in the

play trace.

60

For some games, there are continuous transitions, which Mappy would make

treat as one room – it remains future work to see how this would affect generation.

3.4.1 Automatic Mapping

Given the flow from raw frame-by-frame positions → screen-space entity tracks

throughout time → world-space entity tracks throughout time → entity tracks seg-

mented by which room they fall in, it is now possible to extract room maps from games.

Given the nature of maps on the NES, a grid of tiles is the most reasonable format as

the bulk of the entities are the tiles found in the nametable. To construct the map,

a dictionary, ℳ𝑟, is formed for each room, 𝑟. On each frame, all of the tracks have

their current positions, 𝑥, 𝑦, embedded within the grid (8×8 pixel fidelity for the NES)

and the image displayed, 𝐼 , is appended to an array (initialized for each grid loca-

tion in the dictionary if this is the first time that location has been encountered), i.e.,

ℳ𝑟[⌊𝑥/8⌋, ⌊𝑦/8⌋]⌢⟨𝐼⟩. After this process is completed, a map is constructed with each

element of the map being a sequence of images seen over the duration of that entity’s

visibility, i.e., its animation. This leads to the next distinction, ”What is an animation,

and how do people recognize animation?”

3.5 The Detection of Animation Cycles

As discussed in section 2.5, when the player observes a pattern that loops, they

recognize it as one continuous state (e.g., the same 3 frames of animation looping in

2.13 reads as “running”). The goal, therefore, is to find the repetitions and loops that

61

best cover the observed image frames.

Globally, this is an compression problem, with the goal being the compression

of a sequence of images into a sequence of animations, with the goal being the minimiza-

tion of the space required to describe the sequence and the space required to describe

the unique animations. Given a sequence of length 𝑛 with the set of unique frames, 𝐹 ,

segmenting it into 1 animation of length 𝑛, will take up 𝑛 log |𝐹 |+1 bits of information

(1 for the id of the 1 animation, 𝑛 log |𝐹 | bits [there are 𝑛 frames in the animation, each

of which requires 𝑙𝑜𝑔|𝐹 | bits to encode] to describe that one animation). Conversely,

segmenting it into 𝑛 animations of length 1 will take 𝑛 log 𝑛 + 𝑛 log |𝐹 | bits (there are

|𝐴| different animations, so the sequence of animations takes 𝑛 log 𝑛 bits and each of the

𝑛 animations takes log |𝐹 | bits to encode). These degenerate cases are far from what

is to be expected, as these animations are intended to convey information, so they are

unlikely to be purely, stochastically information dense. Figure 3.11 shows the ground

truth for the animation states over the 1000 frames of play in Super Mario Bros.. There

are eight different animations used over this duration, and the ideal goal would be to

segment this sequence to extract these eight animations.

Given the global nature of this problem, all tracks that are thought to reason-

ably be the same type of entity are used to find the animations. This is achieved by

finding the categorical distributions of the displayed images for each track. Those tracks

that are found to be similar are merged. The similarity metric used is the Bhattacharyya

distance,

𝐷𝐵(𝑝, 𝑞) = − ln (∑𝑥∈𝑋 √𝑝(𝑥)𝑞(𝑥))

62

a distance metric for discrete probability distributions (0 when two distributions are

identical, ∞ when two distributions share no support). In practice, a 𝐷𝐵 threshold of

0.1 was found to properly group together entities, correctly avoiding grouping tracks

those that shared support but were dissimilar (e.g., in Super Mario Bros. the animation

of a brick that is hit involves turning into a sky tile, but it is unreasonable to say that

a brick is the same as the sky even though they share the same image for a duration of

time).

Furthermore, to reduce the size of the problem space, and to smooth over

irregularities in displayed animations, a preprocessing Run Length Encoding (RLE) step

is performed. The RLE takes a series of data and encodes it as pairs of identifiers and the

duration associated with that identifier. E.g., the sequence (𝐴,𝐴,𝐴,𝐵,𝐵,𝐵,𝐶,𝐶,𝐶)

would be encoded as (< 𝐴, 3 >,< 𝐵, 3 >,< 𝐶, 3 >). As mentioned, part of the goal

of this is to reduce the noise found from irregularities in the animations. E.g., in Super

Mario Bros. the animations of the ?-blocks is normally (8-frames of image 1, 8-frames

of image 2, 16-frames of image 3), but, occasionally, this slips to (8-frames of image 1,

7-frames of image 2, 17-frames of image 3). Reasonably, one would assume that this is a

slight irregularity in the clock-timing of the CPU and not indicative of some important

change in animation, especially since it will quickly revert to the standard (8,8,16) cycle

after the faulty cycle.

The problem definition is:

Given a sequence of unique identifiers, 𝑆, find a set of animations, 𝒜, where

each animation is a sequence of unique identifiers and a sequence of these animations,

63

𝐴, such that each element of 𝑆 is covered by an animation, minimizing

𝑂 = |RLE(𝐴)| +∑𝑎∈𝒜 |𝑎|

At first blush, this would appear similar to classic segmentation problems that

seek to minimize some cost related to the number of segments, |RLE(𝐴)|, and the cost of

those segments, ∑𝑎∈𝒜 |𝑎|; however, the presence of ∑𝑎∈𝒜 |𝑎| precludes such techniques,

as the global cost for the animation can not be considered for each segment separately

(consider two identical modes of lengths 𝑛1, 𝑛2 respectively – treating them separately

would have a cost proportional to log 𝑛1+log 𝑛2 which is greater than treating them as

one mode log 𝑛1+𝑛2). Exhaustively, this problem would need to consider all 2𝑛 possible

segmentations. However, in practice, genetic search is capable of finding optimal, or near

optimal, segmentations in reasonable time frames.

• Genotype – A sequence of integers, s.t. the sum of the sequence is equal

to the length of 𝑆, i.e.,the grouping together of segments. E.g., given 𝑆 =

(0, 1, 2, 0, 1, 2, 3, 3, 3) a few valid genotypes would be (3, 3, 3), (9), (2, 1, 2, 2, 2)

• Mutation – Segments can either be split, producing two segments such that their

sum is equal to the original segment, or merged (two segments are replaced with

a single segment such that the sum of the original segments is equal to the new

segment.

E.g.,

– split – (3, 3, 3) → (1, 2, 3, 3)

– merge – (3, 3, 3) → (6, 3)

64

• Crossover – Given two segmentations, 𝐴,𝐵, randomly choose a cross over sum,

𝑠, in between 1 and 𝑛. Find the segments in 𝐴,𝐵 corresponding to that index,

𝑎, 𝑏. If that 𝑠 is not equal to the sum of all segments up to and including 𝑎, then

split 𝑎 to 𝑎𝑙, 𝑎𝑟 s.t. 𝑎 = 𝑎𝑙+𝑎𝑟 and the sum of all segments up to including 𝑎𝑙 = 𝑠

– the index of which is 𝑖𝑎. Do the same for 𝑏, which will have a corresponding

index 𝑖𝑏. The two children are then 𝐴𝐵 = 𝐴[0...𝑖𝑎] + 𝑎𝑙 + 𝑏𝑟 + 𝐵[𝑖𝑏 + 1...𝑘] and

𝐵𝐴 = 𝐵[0...𝑖𝑏] + 𝑏𝑙 + 𝑎𝑟 +𝐴[𝑖𝑎 + 1...𝑘].

E.g., If 𝐴 = (1, 1, 1, 2, 1, 3), 𝐵 = (3, 3, 3) and 𝑖 is chosen to be 5 then 𝐴𝐵 =

[1, 1, 1, 2, 1, 3] (with (1, 1, 1, 2) coming from 𝐴, 1 being the split portion of a 3

from 𝐵 and 3 coming from 𝐵) and 𝐵𝐴 = [3, 2, 1, 3] (with the first 3 coming from

𝐵, 2 being split from a 3 in 𝐵, and (1, 3) coming from 𝐴), with 𝑎𝑙 = {}, 𝑎𝑟 =

{}, 𝑏𝑙 = {2}, 𝑏𝑟 = {1}

Unlike a standard genetic search, the structure of the genome provides a heuris-

tic for the search – given the desire for the segmentation to use repeated animations,

rare animations are more likely to be the incorrectly segmented animations. To wit

while it is certainly possible that an animation might only play once, if an animation

shows up only one time, it is more likely that it should be split or merged with one of

its neighbors than an animation that is seen many times. This allows the biasing of the

mutation operation in the choosing of which id to mutate. For each index, 𝑖, count the

number of times its animation is seen, 𝑐𝑖. Select an index with probability:

𝑃(𝑖) = 𝑒𝜆𝑐𝑖
∑𝑒𝜆𝑐𝑗

65

Where 𝜆 is a negative real number, that determines how close to uniform this

distribution is – the closer 𝜆 is to 0, the more uniform, and closer 𝜆 is to − inf the closer

it is to deterministically choosing the index with the least seen animation.

The genetic search uses tournament selection whereby the population is ranked

according to their score. For each selection, the ranked members are traversed in as-

cending order where each is selected with probability 𝑝𝑠. i.e., The most fit member of

the population will be selected with probability 𝑝𝑠, the second most with probability

𝑝𝑠(1−𝑝𝑠), the third with probability 𝑝𝑠(1−𝑝𝑠)2, etc. This process is repeated 𝑘 times.

After selection, the remaining 𝑛 − 𝑘 members of the subsequent population

are generated via the mutation and crossover processes, each with their respective rates

𝑝𝑚, 𝑝𝑐. This process is repeated for 𝐾 generations, with the most fit member of the

final population being the resultant answer.

Figure 3.11: One thousand frames of Mario’s animations in Super Mario. Each frame of
animation is assigned a unique identifier, and each region of color is a different animation

For the 1000 frames of Mario animation shown in figure 2.13 the genetic search

found the optimal segmentation in 70.4 generations on average, over the course of 10

trials, with 𝑛 = 1000, 𝑘 = 150, 𝑝𝑠 = 0.15, 𝑝𝑚 = 0.25, 𝑝𝑐 = 0.15. The resultant segmen-

tation can be seen in figure 3.11. With Mappy capable of determining what animations

are occurring (and reoccurring), it is capable of detecting when an animation occurs.

This is a critical step for the final, most important fact to be gathered, the causal reason

66

for why a state change occurs.

3.6 The Extraction of Dynamics Modes

Before discussing the extraction process, it is important to find a structure that

is capable of capturing the complex dynamics in a general enough manner. A common

structure found in games are Finite State Machines (FSMs). FSMs are defined as a set

of states, the edges between the states, and the conditions required to traverse those

edges. FSMs are an intuitive representation, popping up in many different game design

tools [89, 1]. While these systems are often thought of and referred to as FSMs [8], they

are not classical FSMs as their states have behaviors and themselves hold state (e.g.,

time in state, position, etc.). In general, these systems are Turing complete, which,

while useful for expressiveness, is problematic for other concerns such as decidability.

Hybrid Automata (HA) are a class of automata that represent a natural ex-

tension to classical FSMs, namely that the states have a set of continuous variables that

update via per-state systems of Ordinary Differential Equations (ODEs). While, obvi-

ously, not as expressive as Turing machines, the vast majority of game entity dynamics

can be represented as Hybrid Automata, without loss of generality (and those that can-

not can often be approximated with minimal loss of accuracy). HAs have a number

of desirable properties, not the least of which is their intuitive nature and the relative

ease of interpretation. Beyond interpretability, despite the general undecidability of

many HA properties, it is possible to constrain models or carefully choose semantics

67

to obtain different analysis characteristics: discretizing time or variable values evades

undecidability by approximating the true dynamics [95]; keeping these continuous but

constraining the allowed flow and guard conditions admits geometric analysis [62]; and

one can always merge states together to yield an over-approximation, producing smaller

and simpler models. There are also composable variations of hybrid automata that

admit compositional analysis [20] as well as a logical axiomatization [148], not to men-

tion the body of tools and research that already exist for synthesizing control policies,

ensuring safety, characterizing reachable areas, et cetera.

Extracting automata from observation is a common goal for which there exist

a number of approaches. Ersen and Sariel-Talay [59] extract FSMs via observation of

the interactions of entities in The Incredible Machine; however, their approach does

not learn the dynamics that occur within different states. HyBUTLA [135] aims to

learn a complete automaton from observational data. HyBUTLA seems able to learn

only acyclic hybrid automata, since it works by constructing a prefix acceptor tree of

the modes for each observation episode and then merges compatible modes from the

bottom up. Moreover, HyBUTLA assumes that the segmentation is given in advance

and that all transitions happen due to individual discrete events, presumably from a

relatively small set. Santana et al. [159] learned Probabilistic Hybrid Automata (PHA)

from observation using Expectation-Maximization. At each stage of the EM algorithm

a Support Vector Machine was trained to predict the probability of transitioning to a

new mode. However, their approach required a priori knowledge about the number of

modes, a strong requirement in the very open ended realm of arbitrary entity behavior.

68

The closest work to that presented below is that of Ly and Lipson[115] which used

Evolutionary Computation to perform clustered symbolic regression to find common

modes with the Akaike Information Criterion uses to penalize model complexity. How-

ever, unlike Mappy their work assumes a priori knowledge about the number of modes.

Moreover, since their work assigns individual datapoints, not intervals, to a mode, their

approach can only model stationary processes.

The “game engine” learning of Guzdial et al.[72] sought to learn a set of rules

– i.e.,an “engine” – to predict the next frame of a video for a game. In many ways, the

underlying goal is the same, but the approach is completely different. Their approach

seeks to learn all rules at once, which results in the need for a lot of rule pruning. The

orthogonality brought about by considering entities persistence across time, animations,

physical dynamics, and the rules governing their change as separate is instead put into

one giant soup that the system must disentangle, learning (and later revising) rules

such as “an initial rule that moves Mario right might include the condition that he has

a cloud above him, a bush to his left, etc.”[72] Furthermore, their approach only handles

videos of games, and as such the “control rules” learned are instead probabilistic rules

of the form that “leads to a branch of two possible frames for each control rule (the

player chooses ... or doesn’t),”[72], whereas Mappy, due to its direct connection with

actual live play, learns the exact input that leads to changes in dynamics.

Given that HAs are an attractive target format for representing entity dynam-

ics and states, Mappy must

69

• Detect when a given state is active

• Detect the dynamics of a given state

• Detect the causes for entrance to or exit from a state

subject to

• No prior knowledge about the number of possible states

• No prior knowledge about the dynamical equations of a state

• No prior knowledge about when a state begins or ends

with the goal being the optimal extraction of the true Hybrid Automaton

governing the dynamics of the entity. As interpretability is a key consideration in

the choice of Hybrid Automata, the notion of optimality has to consider some notion

interpretation. For instance, accuracy as an optimization criterion is a poor fit, as the

most accurate model would encode every data point as its own state with constant

behavior equivalent to that point, which is highly unlikely to be a representative model

for that entity. Instead, Mappy turns to two different model selection techniques to

find an optimal configuration of states, the Bayesian Information Criterion (BIC) [164]

and the Minimum Description Length (MDL) [190]. BIC represents the problem of

determining which model should be selected from a Bayesian viewpoint. Given a fixed

penalty for selecting the wrong model, as the number of data points, 𝑛, approaches

infinity, the optimal model will be the one that minimizes the penalty of:

−log(ℒ(𝑚|𝑑))+ dim(𝑚) log(𝑛)
2

70

where ℒ(𝑚|𝑑) is the likelihood of the the model, 𝑚, given the observed data

𝑑. Asymptotically, if the true model is under consideration in the set of models, then

BIC will select the correct model with probability approaching 1 [223].

MDL is a similar measure in form, although it comes from an information

theoretic grounding. The governing principle of MDL is to find a way to encode the

information found in the original dataset such that the encoding requires the minimal

amount of information. This is broadly done by finding a model, 𝑚, such that the

amount of information required to encode the model in addition to the amount of

information required to encode the differences between model predictions and actual

data are minimized. This results in a penalty of:

− log(ℒ(𝑚|𝑑)) + dim(𝑚)(1 + log(𝑛)
2)

i.e.,the amount of information required to encode the differences (the log-

likelihood of the model given the data) and the amount of information required to

encode the model. The difference between MDL and BIC comes from their handling

of model complexity. BIC scales the dimensionality of the model by log(𝑛)
2 as the

asymptotic penalty for a more complex model, whereas MDL encodes the model via the

following scheme. For each parameter, 𝜃𝑖, define a base parameter, 𝜃0 (commonly 0).

If 𝜃𝑖 = 𝜃0, use 1 bit to encode this. If not, use the location in a grid spaced at
√𝑛 to

encode the position of 𝜃𝑖, requiring log(𝑛)
2 bits of information.

A quick digression is necessary to discuss what exactly is meant by the number

of parameters found in a model. Generally, this would be the number of trainable

variables to be found in a model, i.e.,the number of weights in a neural network or linear

71

regression. However, in the combined context of a linear regression and the presence

of models with zero trainable variables, this interpretation falls apart. Consider the

case where there are zero trainable parameters, most commonly due to the presence of

a null model that predicts a constant (most likely 0) value. In this case, due to the

fact that there are zero parameters, both BIC and MDL are reduce to just the negative

log-likelihood term, − log(ℒ(𝑚|𝑑)). Thus, there is no penalty for the addition of a

segment, so long as the likelihoods of the two segments is the same as if there was one

segment, which violates the assumption that parsimony should be valued. However,

from an information theoretic viewpoint, it is not the case that the null model has

no parameters, because at some level, it must be encoded that that model was the one

selected for a given segment. Thus, if there are 𝑘 different models to be selected between,

it takes log2(𝑘) bits to encode this model selection. Consider the case when there are

two potential models, 𝑦 = 0, 𝑦 = 1. In this case it would take 1 bit to determine which

model is chosen for a given segment, so each model should be considered to have 1

parameter.

Broadly, the goal of Mappy is to find the HA, 𝑚, that best meets one of these

criteria, given an input trace of entity positions, such that the model has the optimal

balance between description of the true dynamics (− log(ℒ(𝑚|𝑑))) while maintaining

interpretability (𝜆dim(𝑚)). The first step in this process will be determining which

data points of the trace should be grouped together as being generated by one state and

determining the system of equations governing the dynamics of that state.

While the goal is to have the minimal amount of fore-knowledge about the

72

types of models that can be found, in practice it is infeasible to search from the set

of all possible mathematical expressions. Given this, Mappy considers a set of model

templates, ℳ, from which the dynamic models can be pulled from. For instance, in

the case of learning the jump dynamics of Mario from Super Mario Bros. the following

model templates are considered:

• ̇𝑦 = 0 – the null model where in the 𝑦-velocity is 0

• ̇𝑦 = 𝑐 – the model of constant 𝑦 − 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

• ̇𝑦 = 𝑎 ⋅ 𝑡 – the model of constant 𝑦 − 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 with an initial 𝑦-velocity of 0

• ̇𝑦 = 𝑎 ⋅ 𝑡 + 𝑐 – the model of constant 𝑦 − 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 with an initial constant

𝑦-velocity

Given a data trace, 𝑑 = {𝑝0, 𝑝1, ..., 𝑝𝑛}, the goal is to find the switchpoints,

𝑆 ⊂ ℕ, 𝑠 ≤ 𝑛, ∀𝑠 ∈ 𝑆, that signify when a new mode has been entered, such that one

of the penalty criteria described above is minimized. To reduce the size of the search,

only a specific subset of the full data trace are allowed to be considered as potential

switchpoints. Operational Logics provide a guideline for reasons why a change in state

might occur, and these allow the reduction in the search space. The simplest are those

related to player control. Given the previous discussion of player control in section 2.4,

it is obvious that changes in a player’s input can result in the state communicated to

players. As such, it is stands to reason that the times associated with the change in the

player’s input should be important times, as these are likely to be causally associated

73

with changes in dynamics. Now, there are certainly plenty of inputs that might not

result in a change in state (e.g., if Mario is in the middle of a jump in Super Mario

Bros. then pressing up or down will have no effect on the jump), so it is important to

note that these are only potential switchpoints. More significantly, there are heuristics

for when a change in dynamics are likely to have occurred:

• Constant Endpoints – Periods of constant velocity that then abruptly change

are very likely to be caused by a major shift in dynamics

• Zero Crossings – It is common that a change in velocity that crosses zero, i.e.,

it goes from positive to negative or vice-versa – is the result of a change in the

dynamics (e.g., Link walking left and then right) or might be associated with

the change in the dynamics (e.g., the gravity value for Mario changes when his

𝑦-velocity goes from upward motion to downward).

While the number of switchpoints considered with these reductions is still 𝒪(𝑛),

in practice this results in a reduction of the search space by a large constant factor (e.g.,

in the consideration of 1000 frames of Super Mario Bros. this results in the reduction

of potential switch points from 1000 to 203 – resulting in a 2426% speedup).

Let 𝑇 be a table of model parameters with one entry for each interval 𝑖, 𝑗 and

model template 𝑚. Then we define 𝑇 ’s entries as:

𝑇 [𝑖, 𝑗,𝑚] = train(𝑚, 𝑑[𝑖 ∶ 𝑗]) s.t.

1 < 𝑖 < 𝑗 < 𝑛,𝑚 ∈ ℳ

74

where train(𝑚, 𝑑[𝑖 ∶ 𝑗]) is the method for training the model template 𝑚 on

the data found in the segment 𝑑[𝑖 ∶ 𝑗], 𝑛 is the number of potential switchpoints, ℳ is

the set of model templates, 𝑑 is the dataset, and 𝑇 [𝑖, 𝑗,𝑚] is the model of template 𝑚

trained on data from the interval of 𝑖 to 𝑗. i.e., fill the table 𝑇 with all possible sub-

models for all possible sub-intervals of the data. For this work, all model templates are

multivariate regressions, but the approach is general enough to work with any approach

that supports a likelihood function ℒ(𝑚|𝑑).

The cost for a given model 𝑚 for sub-interval 𝑖 to 𝑗 is therefore:

𝐶[𝑖, 𝑗,𝑚] = − log(ℒ(𝑇 [𝑖, 𝑗,𝑚]|𝑑[𝑖 ∶ 𝑗])) + pen(𝑚, 𝑑[𝑖 ∶ 𝑗])

given the penalty criterion pen. Given the aforementioned criteria, the possible

penalty functions are

penBIC = dim(𝑚) log(𝑛)/2

and

penMDL = dim(𝑚)(1 + log(𝑛)/2)

For all segments that end at point 𝑗, find the optimal model and segmentation

that leads to that point. 𝑂[𝑗] is the optimal cumulative cost of models across segments

75

up to datapoint 𝑗.

𝑂[𝑗] =
⎧{{
⎨{{⎩

0 if 𝑗 = 0

argmin0≤𝑖≤𝑗,𝑚 𝐶(𝑖, 𝑗,𝑚) + 𝑂[𝑖 − 1] if 𝑗 > 0

Following the classic dynamic programming algorithm for segmented regres-

sion [27], the optimal segmentation, 𝑆, is then found by working backwards through

𝑂. Starting with 𝑗 = 𝑛, find the optimal segmentation ending at 𝑗, find the starting

index of that segmentation, 𝑖, and repeat this process until 𝑖 = 0. Thus, the optimal

segmentation is found.

However, a key issue at this point is that while this is the optimal segmentation,

it is still not the optimal description of the states. E.g., consider the toy data trace of

[0, 0, 0, 1, 1, 1, 0, 0, 0]. An optimal segmentation would be 𝑖 = 0, 𝑗 = 2 ∶ 𝑦 = 0, 𝑖 = 3, 𝑗 =

5 ∶ 𝑦 = 1, 𝑖 = 6, 𝑗 = 8 ∶ 𝑦 = 0. However, the optimal configuration would consider this

an automaton with 3 parameters, one with two states that set 𝑦 = 0 and one state that

sets 𝑦 = 1. This feels unlikely, as the intuition is that the first and last states are one and

the same. This means the global structure must be considered that best describes the

data. This is very close to the structure of the problem described in section 3.5, so again

genetic search is used to find the optimal configuration, however with the optimization

score being − log(ℒ(𝐴|𝑑)) + pen(𝐴, 𝑑), where 𝐴 is the automaton.

While this search could be applied globally over the entire data trace 𝑑, by

restricting the search space to the segments as determined by the segmented regression,

it is possible to search over a much smaller search space. The goal at this point is to find

76

an automaton with a number of states less than or equal to the number of segments, such

that any segment will be covered by one of these states. The dynamic programming of

section 3.6 provides an initial segmentation, which is further optimized via this genetic

optimization. The key operations of this genetic search are:

• Genotype – A sequence of integers of length |𝑆|, s.t. each member of this sequence

is ≤ |𝑆|, i.e., for each segment, the index of the state to which it belongs. For

all segments that share the same index, 𝐷, the dynamics of their shared state is

determined via train(𝑚,𝐷)

• Mutation – There are two mutation operators, unify and reassign:

– Unify – Two unique indices are chosen 𝐴,𝐵 ,and all segments with index 𝐴

are changed to index 𝐵. E.g., (1, 1, 2, 3), 𝐴 = 1,𝐵 = 2 → (2, 2, 2, 3)

– Reassign – The index assigned to a segment can be changed to any other

valid index. E.g., (1, 1, 2, 3) → (1, 4, 2, 3)

• Crossover – Given two index assignments, 𝐴,𝐵, randomly choose a cross over

index, 𝑖, and create children equal to the left half of 𝐴 concatenated with the right

half of 𝐵 and vice-versa.

E.g., If 𝐴 = (1, 1, 2, 3), 𝐵 = (1, 4, 4, 4) and 𝑖 is chosen to be 2 then 𝐴𝐵 = (1, 1, 4, 4)

and 𝐵𝐴 = (1, 4, 2, 3)

The Unify mutation operator represents an inductive bias acting as a heuristic

for the genetic search. The entire purpose of this global merging step is to merge

77

different segments if their merging results in a more parsimonious model, as such it is

likely that merging a large number of segments will speed the search, if their merging

is fruitful. For instance, say there are 4 segments representing the same mode, with the

Unify operator, these will be merged after 3 operations (e.g., (1, 2, 3, 4) → (1, 1, 3, 4) →

(1, 1, 3, 3) → (1, 1, 1, 1)), with no possibility of backtracking. However, the Reassign

operator can back track and can easily go back and forth with no fruitful search (e.g.,

(1, 2, 3, 4) → (1, 1, 3, 4) → (1, 4, 3, 4) → (1, 4, 3, 3)) given that each configuration (after

the first) will have the same score. As a way of reducing the search time, an initial

greedy search is first applied. For all pairs of segments in the optimal segmentation,

they are merged if

• They share the same underlying type of dynamics

• The sum of the square distance between their parameters is less than 𝜖 (𝜖 = 1𝑒−6

for this work)

• The merging of the two segments results in a lower penalty

The flow of this process can be seen in figure 3.13. The module takes in an

entity track, uses dynamic programing to find an optimal segmentation, and then merges

modes, first with a greedy merging of the trivially same modes, and then with a global

genetic optimization. For instance, in the learning of the 𝑦 dynamics of the same 1000

frames of Super Mario Bros. the initial segmentation has 55 segments. After this initial

merging there are 37 segments, with the vast majority of this reduction coming from

the merging of the periods where Mario is on the ground, 16 of the 18 merged segments

78

Figure 3.12: One thousand frames of Mario’s 𝑦-velocity in Super Mario Bros.. The
color blocks indicate the regions in which Mappy believes a mode occurs, with 10 modes
being found in total.

Automata Dynamic Mode Learning

Entity Track

Dynamic
Programming
Segmentation

Genetic
Optimization

Merging

Entity Dynamics
Modes

Greedy
Filtering

Merge

Figure 3.13: The process for segmenting and merging the automata dynamics modes .

79

88.88%. A model with ten distinct modes is found after 36 and 91 generations with a

population size of 100 for MDL and BIC, respectively, the results of which can be seen

in figure 3.12. Given the ability to determine that a given state is occurring at a given

point in time (via the active dynamics or animation), it is now possible to determine

why a given state was entered or exited. This will provide a crucial step in bringing

the automatic annotation up to the standards of the human annotations, if two distinct

entities have the same causal effect on a third, it is likely because those two share some

similar property, and a reasonable annotation will likely identify those two as being the

same in some way (e.g., people annotating the ground and inert bricks as being the

same, because they share the same property of “solidity”).

3.6.1 Proximate Cause Learning

Given the learned dynamics states from the previous section, a crucial aspect

of the automaton remains missing, the causes for transitions between modes. Without

this information, Mappy would only have a set of dynamics equations, but would lack

a functioning automaton. To learn these transitions, first it is necessary to determine

what transitions exist in games. Broadly, these transitions can be caused by exogenous

and endogenous factors, i.e.,caused by interactions and sources outside of the state or

those from within.

The set of exogenous factors considered are:

• Collisions – If the bounding box of an entity’s image overlaps with the bounding

box of another entity’s image, then Collision Logics state that it is reasonable

80

to infer that they are colliding. It is important to note that the direction of a

collision can potentially be very important (e.g., Mario colliding with a Goomba

from the top will cause the Goomba to die, while colliding from the side will cause

Mario to die). A potential source of error in this inference is that it is common

for games to have hit boxes that are not the same size as the image presented to

the player.

• Player Input – Given that interactivity is a hallmark aspect of games (with-

out any response to a player, games are just oddly rebranded movies), player

input – specifically, changes in player input – is a crucial source to consider when

determining changes in state.

While the exogenous factors are the most obvious causes for a transition, there

are a number of endogenous factors to consider:

• Time in State – It is common in games for a state to last some specific duration.

Most one-shot animations in games are this way, as the entity will enter into a

state (e.g., Simon Belmont whipping in Castlevania) and that state will exit when

the animation has finished. It is important to note that many of these states

can be interrupted via the exogenous factors above (e.g., Simon Belmont can be

knocked out of the whipping animation if an enemy collides with him). As such,

it is important to consider the duration of a state only if no exogenous factors can

be linked to the transition.

• Variable Threshold Crossings – Similar to the duration of a state, it is possible

81

for a transition to occur when a given state variable crosses a specific threshold.

E.g., when Mario reaches the apex of his jump in Super Mario Bros. the gravity

value will change, or when Mario’s 𝑦 velocity goes too low then his 𝑦 velocity is

set to a terminal value.

While the endogenous factors are real, it is important to consider them in a

secondary manner to the exogenous factors as there can be something of a chicken-

or-egg problem. Consider the state change from Mario in terminal velocity to landing

on the ground: Mario’s 𝑦 − 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is −4 while in the terminal velocity fall and then

is set to 0. The Variable Threshold Crossing endogenous factor would state the

purported reason for this transition as “Mario’s 𝑦-velocity went above 𝑥,−4 < 𝑥 ≤ 4,

causing his 𝑦-velocity to change to 0.” The condition is true, but is not the causal

reason for the transition. In this case, the collision with a solid entity, i.e.,the ground,

caused the transition to the standing on ground state. Of course, as mentioned above,

this reasoning can be correct, as in the case of the terminal velocity – “Mario’s velocity

went below −4, causing his 𝑦-velocity to be set to −4,” which, while seeming like

circular logic, is actually true causation. Given these classes of events as potential

causes for transitions, the goal is to develop machinery for determining which events are

the causes. A common measure used in learning causal transitions is that of Pointwise

Mutual Information (PMI) [36, 37]. Pointwise Mutual Information is an information

theoretic measure that seeks to answer how related two events are. Given two events 𝑥, 𝑦

that come from random variables 𝑋,𝑌 respectively, the pointwise mutual information

82

measures how much their joint distribution differs from their individual distributions.

Mathematically:

pmi(𝑥; 𝑦) ≡ log 𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦) = log 𝑝(𝑥|𝑦)

𝑝(𝑥) = log 𝑝(𝑦|𝑥)
𝑝(𝑦) .

Given the identity of independent random variables: 𝑝(𝑥, 𝑦) = 𝑝(𝑥)𝑝(𝑦) iff

𝑋 ⊧𝑌 , it is trivial to see that pmi is 0 when two events are independent, is high when two

events are perfectly correlated, and is low when two events are perfectly anti-correlated.

The high and low ends depend on the probability of the different events, so Normalized

Pointwise Mutual Information (NPMI) was introduced to normalize to a fixed scale.

npmi(𝑥; 𝑦) = pmi(𝑥; 𝑦)
log 𝑝(𝑥, 𝑦)

Whereby npmi is again 0 when two events are independent, but is 1 when two

events are perfectly correlated and −1 when perfectly anti-correlated. Now, npmi is

only a measure of correlation, and, as has been pointed out since the introduction of

correlation [143], correlation does not imply causation. However, if the model meets the

Causal Markov Assumption [78] certain causal properties will be upheld. The Causal

Markov Assumption is:

A variable X is independent of every other variable (except X’s effects) con-
ditional on all of its direct causes. [162]

A model need not capture all possible causes for an event, but all random

variables considered in the model must have their causal links fully captured for the

model to fit the Causal Markov Assumption. In the case of Mappy the model is defined

as:

collision ⇒ change, input ⇒ change, timer ⇒ change, threshold ⇒ change

83

which, to first order, upholds the Causal Markov Assumption (collision, input, and

change – meaning change in mode – are all events). Conditioned on the state change,

it is reasonable to believe that any of the factors listed above are independent of each

other. Considering those factors:

• Collisions → Player Input – Perhaps the trickiest to disentangle. At first order,

a collision in the game is obviously not a causation of the player’s input; however,

a collision in the game might be closely linked to a change in the player’s input

(e.g., to use the spring board in Super Mario Bros. the player must press A upon

landing on the spring board, or a novice player might press jump instantly upon

a Goomba, in the mistaken belief that they can affect a change in the game).

Certainly, at some colloquial level, the collision “causes” the player to make that

change, but there is nothing in the game that necessitates this reaction on the

player’s part. The player, being an individual with agency, can choose not to

press the button. It might be suboptimal, but, nonetheless, remains a choice

available to the player.

• Collisions → Time in State – Trivial to determine that the collision of two

entities will have no effect on the time in the current state passing a threshold.

• Collisions → Variable Threshold Crossings – Pertaining to the above discus-

sion of handling endogenous factors as a secondary consideration, the perceived

threshold crossing occurs as a result of the transition into a new state via the

collision. Hence, a variable threshold crossing can not be impacted by a collision,

84

as the threshold crossing occurs while in a state, and while the collision can affect

whether that state is active, it can not affect the actual threshold crossing. (e.g.,

going from the terminal velocity state in Super Mario Bros. to landing on the

ground causes a change in the velocity, which naïvely could be seen as a simul-

taneous threshold crossing, but the velocity change comes as a result of the state

change).

• Player Input → Collisions – While the player’s input will certainly have an

effect on the occurrence of collisions, the actual events are independent. Pressing

input does not magically force a collision between two entities. In some game

states, it might result in a collision, but in others, it might not, and as such, the

two should be sufficiently independent.

• Player Input → Time in State – Trivial to determine that the player pressing

a button will have no effect on the time in the current state passing a threshold.

• Player Input → Variable Threshold Crossings – Pertaining to the above

discussion of handling endogenous factors as a secondary consideration, the per-

ceived threshold crossing occurs as a result of the transition into a new state via

the button press. Hence, a variable threshold crossing can not be impacted by

the button press, as the threshold crossing occurs while in a state, and while the

button press can affect whether that state is active, it can not affect the actual

threshold crossing. (e.g., pressing the A button while standing on the ground in

Super Mario Bros. results in a change in the velocity, but the change in velocity

85

is a result of the state transition, not a cause of it).

• Time in State → Collisions – Trivial to determine that the time in the state

passing a threshold will not result in the presence of a collision.

• Time in State → Player Input – Trivial to determine that the time in the state

passing a threshold will not result in a change in player input.

• Time in State → Variable Threshold Crossings – Trivial to determine that

the time in the state passing a threshold will not result in the presence of a different

variable crossing a threshold.

• Variable Threshold Crossings → Collisions – Trivial to determine that a

variable crossing a threshold will not result in the presence of a collision.

• Variable Threshold Crossings → Player Input – Trivial to determine that a

variable crossing a threshold will not result in a change in player input.

• Variable Threshold Crossings→ Time in State – Trivial to determine that

a variable crossing a threshold will not result in the time in the state passing a

threshold.

Given the acceptance that these factors meet the Causal Markov Assumption,

then any learned transitions should capture the true causal relationships and not merely

correlative associations. The transitions are determined thusly.

For all time points that are segmented to be in the same mode during the

approach in section 3.6, capture all potentially causal events that occur, and count

86

Factor Transition NPMI
Collision with sky Ground → Jump 0.044
Collision with ground Ground → Jump 0.14
Pressing A Button Ground → Jump 0.73
Collision with ground Fall → Ground 0.45
Collision with pipe Fall → Ground 0.45
Pressing A Button Fall → Ground 0.35

Table 3.1: The npmi values associated with pairs of factors and transitions in Super
Mario Bros. The true causal pairs are bolded.

their occurrences, 𝑐𝑥. The probability of a given event, 𝑥, occurring is then 𝑝(𝑥) = 𝑐𝑥𝑛

where 𝑛 is the total number of time points during those segments. For each transition,

𝑦, out of a given mode, 𝐴, into another mode, 𝐵, count the number of times that a

given event, 𝑥, is found at the same time 𝑐𝑥𝑦, and count the number of times that

transition occurs, 𝑐𝑦. The marginal probability of that transition occurring is then

𝑝(𝑦) = 𝑐𝑦
𝑛 , and the joint probability distribution for an event, 𝑥, and a transition, 𝑦, is

𝑝(𝑥,𝑦) = 𝑐𝑥𝑦
𝑛 . The npmi of a given event and a transition can then be calculated via the

above equations.

Given the calculation of the npmi for all pairs of events and transitions, a

threshold value must be chosen to decide whether the factor causes the transition. Ob-

viously, only positive values need be considered, as there is no reasonable reconciliation

of a probabilistically independent event causing a transition. At the other end, while it

would be overly stringent to state an npmi of 1, as that would permit no noise in the

gathering of events. A threshold value of 0.4 was chosen empirically on examination of

a training set. A table of example pairs of transitions and events and their associated

npmi values is shown in table 3.1. It is important to note the differences between dif-

87

ferent types of factors and their associated npmi values. Pressing the A button causing

the transition of Ground →Jump has a very high associated npmi, 0.73, while colliding

with the ground or pipe has much lower npmi even though they are both true causes for

the transition of Fall → Ground. In large part, this is due to the variety found in the

causes. Both pipe and ground (and other solid entities) cause the transition of Fall →

Ground, so even though every time they occur it leads to the transition, those collisions

are not present during every transition, leading to the lower npmi.

It is possible for multiple transitions to be linked to the same causal factor.

This can be due to additional state being required to determine which transition should

occur (e.g., Mario’s jump in Super Mario Bros. can be one of three different jumps

depending the magnitude of his 𝑥-velocity at the time of the jump) or can be stochastic

in nature (e.g., walking on the overworld in Dragon Quest or Final Fantasy will have a

random chance of enemy battle). Furthermore, it is possible that no factor has an npmi

above threshold. To determine what to do in these cases, a decision tree is constructed.

Decision trees are another white-box machine learning method that allows the

training of intuitive if-else control flow logic. The C4.5 algorithm [150] is a training

method that chooses which variables to condition on to create the most information

theoretically pure children. If at any point a maximum depth is reached or a node in

the tree is completely pure, it is set to be a leaf node. Mappy utilizes the standard C4.5

algorithm, with the major consideration being the data that is considered for a decision.

Only points that are not able to be deterministically labeled are considered.

In the case of multiple transitions occurring during a specific factor (e.g., Mario’s jump

88

to the A button press), the only points considered are those points where that factor

are active; however, in the case where no transition could be determined, all points

in that state are considered. This is the point in which the endogenous factors are

considered, but it is possible that only a subset will be considered. Only endogenous

factors that could have changed under the from-state of the transition can be used in the

decision making process, e.g., if the from-state had a constant 𝑦-velocity, then 𝑦-velocity

is excluded from the decision making process as there is no way it could have passed a

threshold.

While the standard C4.5 process is used, the goal ofMappy is still parsimonious

models, so the process is augmented with an external criterion. Mappy trains multiple

decision trees, of varying depths, and chooses the best one, using the afore described

BIC and MDL. The likelihood value used for a categorical decision tree is the categorical

cross entropy:

ℒ𝑐𝑐𝑒 = Σ𝑥∈𝑋𝑙(𝑥) log(𝑝(𝑥))

i.e., for each data point, 𝑥, the probability of the labeled value for 𝑥, 𝑙(𝑥) (1

if that label is the true label, 0 if not), is multiplied by the log of the probability that

classifier chose that label, 𝑝(𝑥). Due to the limiting of the trees to a maximum depth,

it is possible for the trees to be probabilistic, i.e., if they reach an impure leaf node,

they will choose a label based on the frequencies of the labels seen in that impure leaf

node. The dimensionality of a decision tree is the number of decision points in the tree,

i.e.,the number of non-leaf nodes in the tree.

With the learning of a full automaton, the annotation process occurs by looking

89

at all collisions. While it is possible for entities to exert influence on one another without

collision (e.g., an entity might follow another), collisions are the key mode of influence for

the collision logic heavy class of games that Mappy is designed to work on. All entities

that are capable of inducing the same mode transition in an automata are assigned

the same property. Similarly, all entities that do not induce any change on a state are

assigned the same property. These properties do not have any labels associated with

them, other than the fact that they are uniquely identified.

Induction of a change to the dynamical state of an entity is only one possible

result of the interaction of two entities. Two other major results of entity interaction

are the instantiation of a new entity (or entities) or the deletion of an entity. As above,

all entity collisions are considered as possible causes for one of these effects, and the

resulting effects are the instantiation and termination points for all entity tracks found

during the course of a trace. Certainly, instantiation and deletion can have other causes

(e.g., instantiation due to an entities placement in a room, or spawning when the player

presses a button, deleting when it goes off screen, deleting on a fixed timer, etc.), but

given that Mappy only needs to capture what happens when two entities collide, these

can be safely ignored, as these events should be independent from the considered factors.

For all times when an entity track is started or deleted Mappy looks for all

collisions and thresholds based on npmi to find the causal factors. It is important to

note that when Mappy considers collisions, it does so at varying levels of granularity.

To determine the state that an entity is in, it first finds all entities that seemingly

share states, as evidenced by them having the same dynamics states and animation

90

sequences. These merged entities are treated as a generic stateless entity, (e.g., two

Goombas in Super Mario Bros. would be treated as a stateless entity). Similarly, even

within one track, an entity might have different So, when two entities collide, it tracks

four separate types of collisions: 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠 × 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠, 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠 ×

𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙, 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙 × 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑙𝑒𝑠𝑠, and 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙 × 𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑎𝑡𝑒𝑓𝑢𝑙.

Of course considering collisions between classes of entities is more generic, and given the

same predictive power, more appealing (e.g., ?-blocks in Mario will change state when

Mario collides with them, no matter if Mario is in regular, super, or fire state), but if

the consideration as the generic entity harms the predictive power, then the collisions

that incorporate knowledge of state will be used (e.g., a brick in Mario will bump when

regular Mario hits it from below, but will break when super or fire Mario collide, an

important distinction that should not be ignored).

3.6.1.1 The Distinction Between Dynamics and Behavior

The section so far has discussed learning the dynamics and has ignored the

(some-times blurry) distinction between dynamics, by which I mean the set of rules

governing the motion of an entity, and behavior, the processes governing when an entity

would “choose” to enter a mode. For many entities, the distinction between behavior

and dynamics (e.g., the Goomba in Super Mario Bros. walks in a direction until it

bumps into a solid entity and then reverses direction), as the causal reasons for mode

changes can be directly linked back to the physics simulation of world – just as they

would for things that would very commonly be considered dynamics (e.g., the Goomba

91

colliding with the ground while falling).

In general, the difference between dynamics and behavior comes to the question

“Is there reasoning about the state of the world beyond direct collision with an entity?”

Mappy currently makes no distinction between dynamics and behavior, but a set of

predicates that could be added to Mappy that would enable Mappy to learn distinctions

between behavior and dynamics would be:

• Distance to Nearest Entity of a Type is Above or Below a Threshold

• Distance to Nearest Entity of a Type Along an Axis is Above or Below a Threshold

• A Global Resource is Above or Below a Threshold

The distance predicates would be able to added to Mappy with very little

additional machinery, but Mappy currently has no mechanism for capturing or dealing

with resource values.

Upon successful detection of which collisions cause which effects (entity cre-

ation, deletion, and state change), Mappy has enough information to provide an anno-

tation of the rooms it observes. In the following section, I will detail how all of the

previous sections come together to complete the annotation process.

3.7 Mappy Annotation Synthesis

As detailed over the last few sections, Mappy tackles a large number of sub-

tasks via a set of different modules. Figure 3.14 shows the full architecture for Mappy.

92

Mappy

Game

Input Trace
Input TraceInput Trace

Instrumented Emulator

Entity Tracking

Camera Motion
Detection

Room Detection

Animation Detection

Entity Automata Learning

Annotated
Level

Dynamic
Programming
Segmentation

Genetic
Optimization

Merging

Greedy
Filtering

Merge

Dynamics
Modes

Proximate
Cause

Learning

Frames

Bipartite
Graph

Matching

Entity
Tracks

Frame-to-Frame
Registration

Camera
Position

Interstitial
Detection

Room
Segmentation

Greedy
Bhattacharyya
Distance Union

Genetic
Optimization

Merging

Entity
Animations

Annotator

Causal
Interactions

Static
Geometry

Annotation

Entity
Merging

Figure 3.14: The full process for Mappy.

Each module relies on a set of inputs that are either provided by a human operator or

result from other modules within Mappy. The modules are:

• Instrumented Emulator – Input: Game Rom, Input Traces – Output – Per

frame data on all entities (screen position and image displayed) and presence of

player control, i.e. Frames

• Camera Motion Detection – Input: Frames – Output – Per frame informa-

tion about the camera world position, i.e. Camera Position

• Entity Tracking – Input: Frames, Camera Position – Output – Entity Tracks,

each with per frame world positions and the image information

• Room Detection – Input: Frames, Camera Position – Output – Room Seg-

mentation of which room is active during which frames, and all entities tracks

that begin while in a room have their spawn locations noted

93

• Animation Detection – Input: Entity Tracks – Output – Entity Animations

describing the animation cycles active for each entity at each point in time

• Entity Automata Learning – Input: Entity Tracks, Entity Animations – Out-

put – Causal Interactions that cluster entities together based on their shared

mechanical properties

• Annotator – Input: Room Segmentation, Entity Tracks,Causal Interactions,

Entity Animations – Output – Annotated Level with a graph of rooms, with each

entity contained in a room annotated by the set of causal interactions clusters it

is present in.

The Annotator is simply the collation of all information observed and inferred

by Mappy. For each room (as determined in the Room Detection process described in

section 3.4) the observed entities are annotated by causal interaction clusters they are

a part of (e.g. a breakable brick in Super Mario Bros. is observed to cause a transition

in Mario’s movement dynamics, as well as its own change in animation when bumped

into by Mario). Entities that share animation states and dynamics modes are merged

to be considered as one class of entity (i.e. all Goombas are part of the Goomba entity

class).

3.8 Conclusion

As detailed, Mappy, is a system that seeks to account for the tasks that a

human undertakes when observing a game. When a human plays or observes a game, a

94

number of phenomena occur, and while Mappy does not perform these in the same way

that a human does, it does attempt to achieve similar outcomes. E.g., while Mappy does

not have flicker-fusion of rapidly changing images, it does perform tracking that results

in a similar outcome – individual images are merged into entities with continuity.

However, there are two major tasks that humans do that are left untouched by

Mappy – interactive experimentation and common sense reasoning. Mappy, as currently

designed, utilizes human provided input traces, but when a human plays a game they

are interacting with the game in-the-loop. In the future, it would be ideal for Mappy

to not rely on human input and instead play the game on its own; however, general

video game playing is its own field of study [9] that is nowhere near solved. The other

capability of humans not met by Mappy is that of background knowledge and common

sense reasoning. Mappy does no reasoning about the symbols it observes – it treats

an image as an incomprehensible identifier with no semantics. Obviously, this is not

how humans operate. When a human makes a game, they can instantly infer what

is background, what is sky, what is ground, what is dangerous, etc. just from the

knowledge of the world and game conventions. Just as general game playing is its own

field of study, so too is common sense reasoning [46], and, as such, beyond the scope of

Mappy at this time.

The following chapter will examine existing human annotations for Super

Mario Bros. and compare them to the annotation produced by Mappy.

95

Chapter 4

Case Study – A Comparison of Human

and Machine Annotations for Super

Mario Bros.

As mentioned in the last chapter, the goal of annotation is to encode, with

as little loss as possible, the map of a game, such that salient mechanical informa-

tion is retained. This is balanced by the goal of reducing the dimensionality of the

map-description space, so as to assist a machine-learned generator in the training and

generation process. However, there exists no clear way to determine what the optimal

encoding is. To determine whether Mappy has achieved its task, it is first important

to assess human annotations and determine what gaps exist within their coverage of

the maps. Given that Super Mario Bros. remains the focus of most procedural content

generation, it has the widest range of existing annotations. To determine the efficacy of

96

an annotation, Minimum Description Length will be used. If the mechanical properties

of an entity in a room can be uniquely identified, it will have a log-loss of 0 (e.g., the

ground and the side of a pipe are both mechanically identical and as such the classifica-

tion of “Solid” would work for both). If an entity can not be uniquely identified, then it

will have a loss equivalent to log(𝑝(𝑥|𝐴)), i.e.,the probability of it being selected, given

the annotation (e.g., a Goomba and Koopa are mechanically distinct, so an annotation

with “Enemy” would incur a penalty). The dimensionality of the annotation is equal

to the number of annotation classes, 𝐴. This leads to:

Encoding Penalty = 𝐴(1 + log(𝑛)
2)

Where 𝑛 is the number of individual points being annotated, i.e. the number of tiles

present in the levels. Leading to a to:

Mechanical MDL = − log(𝑝(𝑥|𝐴))+ Encoding Penalty

The annotation of Shaker and Abou-Zleikha [166] had the smallest annotation

set, consisting of:

• Ground – the ground tiles that Mario traverses over

• Above Ground Solid Inert – “hills” that are above the level of the ground that

Mario needs to jump over

• Empty – any empty tile (sky, bushes, etc.) that Mario can freely pass through

• Enemy – the presence of any, non-specific enemy

• Other – any “special” tile, such as a coin, a breakable brick, or a ?-block

97

The Ground and Above Ground Solid Inert are identical mechanically,

differing only in the image presented to the player. The Other tiles are similar in that

they have an effect when Mario collides with them, but no other mechanical binding

between them. It is important to note that some tiles are not covered by this annotation,

e.g., pipes are not considered under any of the classes. For the analysis, I will consider

pipes under the class of Other.

Snodgrass and Ontañón’s annotation set consists of:

• Solid Inert – the ground and hill tiles that Mario traverses over

• Empty – any empty tile (sky, bushes, etc.) that Mario can freely pass through

• Enemy – the presence of any, non-specific enemy

• Breakable brick – any breakable brick tile, regardless of what happens when

Mario hits it

• ?-Block – any ?-Block tile, regardless of what happens when Mario hits it

• Coin – a coin that Mario can collect

• Pipe – One of the 4 different pipe images

Ignoring the fact that some pipes are mechanically distinct due to the fact that

the player can enter them (which no annotation addresses), the Pipe and Solid Inert

annotation classes are mechanically identical. This annotation makes no distinction

between the hidden information of what a Breakable brick or ?-Block contain.

Dahlskog et al.’s annotation set consists of:

98

• Ground– the ground tiles that Mario traverses over

• Solid Inert – the hill tiles that Mario traverses over

• Empty – any empty tile (sky, bushes, etc.) that Mario can freely pass through

• Goomba – a Goomba

• Koopa-Troopa – a Koopa-Troopa

• Winged Koopa-Troopa – a winged Koopa-Troopa

• Bullet Bill cannon – the cannon that fires Bullet Bills

• Bullet Bill support – the support structure for a Bullet Bill Cannon

• Breakable brick – any breakable brick tile, regardless of what happens when

Mario hits it

• ?-Block with coin – a ?-Block tile containing a coin

• ?-Block with power-up – a ?-Block tile, containing a power-up

• Coin – a coin that Mario can collect

• Pipe, Upper-Right – The upper-right pipe image

• Pipe, Upper-Left – The upper-left pipe image that cluster entities together

based on their shared mechanical properties

• Pipe, Lower-Right – The lower-right pipe image

99

• Pipe, Lower-Left – The lower-left pipe image

A much more distinct set, with most enemy types being disambiguated, it also

disambiguates between the types of entities instantiated.

The human annotation scheme used in my earlier work is:

• Ground– the ground tiles that Mario traverses over

• Solid Inert – the hill tiles that Mario traverses over

• Empty – any empty tile (sky, bushes, etc.) that Mario can freely pass through

• Enemy – any enemy

• Bullet Bill cannon – the cannon that fires Bullet Bills

• Bullet Bill support – the support structure for a Bullet Bill Cannon

• Breakable brick – any breakable brick tile, regardless of what happens when

Mario hits it

• ?-Block with coin – a ?-Block tile, containing a coin

• ?-Block with power-up – a ?-Block tile, containing a power-up

• Coin – a coin that Mario can collect

• Pipe, Upper-Right – The upper-right pipe image

• Pipe, Upper-Left – The upper-left pipe image

100

• Pipe, Lower-Right – The lower-right pipe image

• Pipe, Lower-Left – The lower-left pipe image

This scheme differs from that of Dahlskog et al. only in the fact that all enemy

types are coalesced into a single category.

I will not detail the annotation scheme of Guzdial and Riedl, but the largest

differences come from a much more exhaustive Empty set, and from no disambiguation

between the types of ?-Blocks. The cost of annotating Super Mario Bros. world 1-1

can be seen in table 4.1. Guzdial and Riedl’s minimal annotation scheme has the least

gap between MDL and encoding penalty, as the vast bulk of the score comes from the

shear size of their annotation set. However, this attention to visual fidelity comes at the

cost of having the worst annotation score for mechanical properties, by a large margin

For the mechanically focused annotated schemes, the more granular annotation schemes

perform better than the more loose schemes.

Figure 4.1 visualizes how the annotation schemes are compared. For each

entity that is ambiguously annotated, it is penalized with increasing severity for how

rare the correct classification is. E.g., if all ?-blocks are annotated as being the same,

then the rarer ?-blocks that contain power-ups have a stronger penalty applied than the

more common coin-filled ?-blocks.

There is no one optimal method for annotation, as there will almost always

be a tradeoff between mechanical and visual granularity (so long as there is visual

variation between mechanically identical entities); however, two major takeaways are

101

Ground Truth Shaker & Abou-Zleikha Guzdial & Riedl

Figure 4.1: A visualization of the mechanical annotation comparison. On the left is
the ground truth, and on the right are the annotations of Shaker & Abou-Zleikha and
Guzdial & Riedl. Entities that are mislabeled are highlighted in various shades of
red, with the darkness of the shade representing the severity of the penalty for the
annotation. For Shaker & Abou-Zleikha, the different ?-blocks and breakable bricks are
annotated as being the same. This leads to a light penalty for the majority class (the
breakable bricks), a moderate penalty for the next most common (the plain ?-blocks),
and a large penalty for the rarest class (the ?-block with a mushroom). For Guzdial &
Riedl, there is no distinction between the ?-blocks, so there is a light penalty for the
majority class (the plain ?-blocks), and a large penalty for the rarest class (the ?-block
with a mushroom).

Annotation Encoding Penalty Mechanical MDL
Shaker and Abou-Zleikha 32 820
Snodgrass and Ontañón 39 123
Summerville (Human) 84 122
Dahlskog et al. 103 107
Guzdial and Riedl 791 827

Table 4.1: The MDL cost for annotating Super Mario Bros. world 1-1 given the various
annotation schemes.

102

obvious (1) more granularity leads to better visual faithfulness, and (2) it is unknown

where the inflection point lies for mechanical granularity. The increase in granularity

from Shaker and Abou-Zleikha to Snodgrass and Ontañón to Summerville to Dahlskog

et al. leads to a better MDL but with Guzdial, the granularity leads to an increased

dimensionality with no additional annotation accuracy. While the annotation of Guzdial

and Riedl incurs most of the cost in the encoding penalty, there is a slight penalty due

to making no distinctions between mechanically distinct ?-blocks and power-ups hidden

in breakable bricks.

4.1 Machine Annotation

Solid

Breakable

Soft Head Bounce

Hard Head Bounce

Immaterial

Shoots Bullet Bills

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ ✔

✔

Harms Player ✔

Player Can Go Down ✔ ✔

Produces Power-Ups ✔

Figure 4.2: Example of the difference between a Categorical and Binomial annotation
schemes for a subset of entities in Super Mario Bros.. The properties are listed on
the left, and whether an entity has those properties (4) or not (absence of 4) , i.e.,a
Binomial annotation. Alternatively, all columns that share the same properties could
be given the same class in a Categorical scheme (or each entity could be its own class).

103

Before assessing Mappy and earlier machine annotation methods, it is impor-

tant to note two distinct methodologies for annotation. All of the human annotations

have assumed that the annotations are strictly categorical, i.e.,an entity can have one –

and only one – assigned annotation. However, often these individual annotation classes

share many similar properties (e.g., in Super Mario Bros. the breakable bricks, ground,

pipes, and ?-blocks all halt Mario’s downward velocity upon contact). An alternative

to the Categorical lens of annotation is the Binomial view – i.e., instead of treating an

entity as having one, unique class, it instead has a set of binary indicators for which

properties it has. Figure 4.2 shows an example of this distinction. Columns with a

unique set of indicators are colored, such that each color would be associated with a sin-

gle class in a Categorical annotation scheme. Alternatively, an entity could be treated

as a nonuple of binary indicators in a Binomial annotation scheme. Both types of anno-

tation have advantages – in a Binomial scheme, the entities can share properties which

leads to better generalization; however, entities might be more than the sum of their

properties and treating two entities with identical properties as the same might be in-

correct (although, this would perhaps indicate that a finer granularity in the properties

is necessary).

An early version of this work used an open source clone of Super Mario World

[146] to gather the data used for the annotation process. This approach utilized the

same normalized PMI approach to determine which interactions were most likely to

be the causes of effects, as described above, but operated with perfect knowledge of

when an interaction occurred and did not need to determine whether a change had even

104

occurred and if so, what change, as it had full event logs for all state transitions. The

approach used a Binomial scheme that declared two entities to share a property if they

induced the same outcome upon collision with another entity (e.g., the ground and a

pipe both halt Mario’s y-velocity when he collides with them, so they share a property

that might be labeled as “Solidity”).

The properties learned by the perfect knowledge method were:

• Solid – All solid entities were observed to set Mario’s velocity to 0 upon initial

contact.

• Destroyed By Mario Contact From Above – Coins and Enemies were ob-

served to be destroyed when Mario hit them from above

• Destroyed By Mario Contact – Coins were observed to be destroyed upon any

contact with Mario

• Breakable – Breakable bricks were observed to be destroyed by super Mario upon

contact from below

• Changes To A Spent Inert Block – The ?-blocks and breakable bricks were

observed to be change into a spent inert block when Mario collided with them

from below

• Things That Harm Mario From Above – The Piranha plants were observed

to change Super and Fire Mario’s state when collided with from above

105

In addition, Mappy as the end-to-end system described in the last chapter

produced two annotations. These two annotations come from two different playthroughs

of Super Mario Bros.. One of them, Minimal Interaction, was run on a trace by a player

well-versed in Super Mario Bros.. As such, the player knows the mechanics well and

ignores most interaction in the room. Entities that act only as diversions, such as the

Goombas, are completely bypassed by this player. The second annotation comes from

play intended to mimic how a Novice would play. The player interacts with nearly of

the entities they encounter, and has a nervous, halting style of play (see [202] for a

discussion of the types of play shown by novice and familiar players).

The annotation learned from the Minimal Interaction trace is:

• Solid – Mario transitioned from the jumping animation to the on the ground

animation – as well as returned to the on the ground state from one of the jump

states – when colliding with the pipes, ground, rocks, ?-blocks, and bricks.

• Enemies – The enemies were observed to be the same Hybrid Automaton, an

entity that moves at constant velocity to the left (since that is all that was observed

in the playthrough)

• Mario – An automaton for Mario was learned that covers the three different kinds

of jump (standing still, walking, and running), releasing the A button while in one

of the jumps leads to an increase in gravity, as does reaching the apex of the jump,

and collision with the aforementioned tiles leads to being in the “on the ground”

state.

106

This annotation is, quite obviously, very minimal. Given that very few unique

interactions are observed, the only things that Mappy is able to extract are that some

things move (one, Mario, in a singular way, the rest in a different way) and that some

things halt motion.

The annotation learned from the Novice trace is:

• Solid – Mario transitioned from the jumping animation to the on the ground

animation – as well as returned to the on the ground state from one of the jump

states – when colliding with the pipes, ground, rocks, ?-blocks, and bricks.

• Goomba – The Goombas were observed to be the same Hybrid Automaton, an

entity that moves at constant velocity horizontally and changes direction upon

collision with other Goombas, Koopas, and solid entities

• Koopa – The one observed Koopa was observed to go into a stationary state when

Mario collided with it from above and then transition into a very fast movement

when collided with in that state (i.e.,when Mario “kicks” the shell)

• Mario – An automaton for Mario was learned that covers the three different kinds

of jump (standing still, walking, and running), releasing the A button while in one

of the jumps leads to an increase in gravity, as does reaching the apex of the jump,

and collision with the aforementioned tiles leads to being in the “on the ground”

state.

• ?-Blocks – These were observed to produce coins, mushrooms, or stars when

107

Mario collides with them from below.

• Bricks – These were observed to produce 4 pieces when Mario collides with them

from below.

This annotation covers all of the mechanically distinct facets found in the first

room of Super Mario Bros. (i.e.,World 1-1); however, it is important to note that the

automata extracted are not a one-to-one mapping with the reality of Super Mario Bros.,

to wit, the system never observes Mario in fire Mario state, so it learns no information

related to that. This just emphasizes how important a trace (or set of traces) that

fully cover all mechanics is to the quality of information extracted by Mappy. It is also

important to note that while Mappy is able to infer that ?-blocks can produce coins,

mushrooms, or stars, it does not currently distinguish those blocks that do and those

that do not, instead it says there is some probability that a ?-block will produce these.

The ability to learn deterministic and stochastic effects is discussed in section 4.3.

The results of Mappy on the two discussed play traces and the perfect knowl-

edge approach can be seen in table 4.2. Also shown are the results if Mappy took the

approach of Guzdial and Riedl – ignoring mechanical similarities and only going off

of similar visual representations. The difference between Mappy and the relatively ex-

haustive approach of Guzdial and Riedl is the recognition of animation. Where Guzdial

and Riedl include multiple frames of animation that map to separate entities, Mappy’s

tracking capabilities allow it to utilize a smaller set of annotations (e.g., a Goomba has 2

frames of animation, which allows Mappy to devote half the annotation space of Guzdial

108

Annotation Encoding Penalty Mechanical MDL
Perfect Knowledge 71 71
Mappy – Minimal Interaction 12 682
Mappy – Novice 38 75
Mappy – Visual Representation 188 214
Shaker and Abou-Zleikha 32 820
Snodgrass and Ontañón 39 123
Summerville (Human) (MODIFIED) 71 109
Dahlskog et al. (MODIFIED) 84 88
Guzdial and Riedl (MODIFIED) 214 250

Table 4.2: The MDL cost for Super Mario Bros. World 1-1 for annotations produced
by Mappy under a variety of different traces and extraction criteria. The modified
annotations are reduced to the set of content only found within World 1-1. Mappy is
close to the the MDL of the annotation with no loss of information.

and Riedl’s approach).

It is important to note that the cost of the annotation is for a single room,

World 1-1, which does unfairly penalize the annotations that cover entities not found in

the World 1-1. The human annotations with all content not found in World 1-1 excised

can be seen in table 4.2. Dahlskog et al. still have the best annotation score for a human

with very similar scores to Mappy – Novice, with the key distinction being an increased

encoding penalty due to encoding visual distinctions between the ground, pipes, and

inert blocks. Mappy – Visual Representation and the annotation of Guzdial and Riedl

are also very similar, with the key distinction being that Mappy – Visual Representation

uses 7 fewer distinctions due to its utilization of animations; however, if Guzdial and

Riedl were to incorporate Mario’s images into their annotation, their annotation space

would nearly double – leading to an increase in penalty by 700, whereas Mappy would

only utilize 1 additional annotation (≈ 6.5 increase to its penalty).

109

4.2 Case Study – Other Mappy Output

0

1
2

3
4

5
6

7

8 9
Figure 4.3: The rooms that make up Flash Man’s stage in Mega Man 2.

Of course, Mappy is not just a system for understanding Super Mario Bros.

and can be applied to other games, with similar results. Figures 4.3, 4.4, and 4.5 show

rooms extracted from Mega Man 2, Metroid, and The Legend of Zelda, respectively. All

of these demonstrate the tracking, camera motion, and room detection capabilities of

Mappy, and figure 4.5 demonstrates the room merging capabilities of Mappy, whereby

rooms that Mappy detects as having the same static geometry are clustered together.

And, of course, Mappy is not simply a system for extracting the visual for rooms, but

rather for extracting annotated rooms.

Figure 4.6 shows a play trace through Magnet Man’s stage in Mega Man 3.

Magnet Man’s stage has special “magnetic” enemies that pull Mega Man upwards when

110

0

1

2 3

Figure 4.4: The first four rooms encountered in Metroid.

111

Figure 4.5: Six rooms encountered in The Legend of Zelda. The play trace actually sees
9 rooms, but Mappy detects that some of these are likely duplicates ([0,2,6], [5,7], and
[6,8]).

Figure 4.6: Mega Man’s track through a section Magnet Man’s stage in Mega Man 3.
The red sections represent places where Mega Man was lifted by “magnetic” enemies.

112

they pass over him. Mappy recognizes that this behavior is not like that of normal

jumps, since it is not associated with a sudden impulse, but rather a change in gravity;

however, since Mappy only considers collisions, player input, and state variables, it is

unable to determine a cause for these as it does not consider collisions projected on

to a single axis. But beyond that unexplained transition, Mappy is able to learn all

other dynamics for Mega Man, the enemies, and static geometry, learning that the wire

covered ground pieces, and the corner ground pieces all have the same effect upon Mega

Man – i.e. they are solid.

Considering the automata learned for Super Mario Bros. I compare the results

to a manually-defined automaton based on human reverse-engineering of the game’s

program code [93] (see Fig. 4.7). The HAs learned by Mappy can be seen in Figure 4.9.

The Mario trace used for this work was 3772 frames in length, 63 seconds. The learned

HAs are over-approximations of the true HA. Whereas the true HA has 3 separate jump

modes based on the state of ̇𝑥 at the time of transition, the learned HAs have only one

such jump whose parameters are averages of the parameters of the true modes. Following

from learning just one jump, Mappy learns only a single falling mode. MDL does learn

that releasing the A button while ascending leads to a different set of dynamics, but it

considers this a change in gravity as opposed to a reset in velocity.

MDL produces the more faithful model of the true behavior, but is overzealous

in its merging of the distinct jump mode chains into a single jump mode chain. As such,

it only recovers 7 of the 22 modes; however, abstracting away the differences between

the jump chains it learns 7 of 8 modes, only missing the distinction between hard bump

113

On Ground ̇𝑦 = 0 — Caused by Mario colliding with something solid from above

Jump(1,2,3) Three jumps with parameters:

• ̇𝑦 ∶= 4, ̈𝑦 =−1
8

• ̇𝑦 ∶= 4, ̈𝑦 =− 31
256

• ̇𝑦 ∶= 5, ̈𝑦 =− 5
32

Entered from On Ground when the A button is pressed and | ̇𝑥| < 1, 1 ≤ | ̇𝑥| <
2.5, or 2.5 < | ̇𝑥|, respectively

Release(1,2,3) ̇𝑦 ∶= 𝑚𝑖𝑛(̇𝑦, 3) — Entered from the respective Jump when the A
button is released; ̈𝑦 same as respective Jump.

Fall(1,2,3) Falling at one of three rates: ̈𝑦 = − 7
16 , −3

8 , or − 9
16 ; entered from the

respective Jump or Release mode when the apex is reached (̇𝑦 ≤ 0)

Terminal Velocity(1,2,3) ̇𝑦 = −4 - Entered from Fall when ̇𝑦 ≤ −4. The initial
timestep in the Terminal Velocity state is actually ̇𝑦 = −4 + ̇𝑦 − ⌊ ̇𝑦⌋ before
being set to −4.

Bump(1,2,3) ̇𝑦 ∶= 0 — Entered from a Jump or Release when Mario collides with
something hard and solid from below; ̈𝑦 same as respective Jump or Release

SoftBump(1,2,3) ̇𝑦 ∶= 1 + ̇𝑦 − ⌊ ̇𝑦⌋ — Entered from a Jump or Release when Mario
collides with something soft and solid from below; ̈𝑦 same as respective Jump or
Release

Bounce(1,2,3) ̇𝑦 ∶= 4, ̈𝑦 ∶= 𝑎 — Entered when Mario collides with an enemy from
above; 𝑎 is given by the respective Jump, Release, Fall, or Terminal Velocity
state

Figure 4.7: The true HA for Mario’s jump in Super Mario Bros. ∶= represents the setting of a
value on transition into the given mode, while = represents a flow rate while within that mode.

and soft bump. A comparison of the modeled behaviors and the truth can be seen in

figure 4.8.

114

Figure 4.8: Modeled behavior using MDL criterion (Blue X) and BIC (Green +) vs true
behavior (Black Line). MDL’s largest error source is resetting to an specific value when the
true behavior involves clamping to that value, whereas since BIC learns to transition at the 0
crossing it has a more accurate reset velocity. BIC does not learn the transition from Falling
to Terminal Velocity. MDL has a Mean Absolute Error (MAE) of 0.522 while BIC has an
MAE of 0.716.

4.3 Discussion

Mappy makes several structuring assumptions about games and play, and it

is informative to explore where and how these break down. I have already discussed

limitations in scrolling detection and room merging, but there is another important as-

sumption which has not been addressed yet: Mappy implicitly assumes it is observing

natural play where a human explores the game in the way intended by designers and

programmers. Here it is useful to distinguish true maps from reasonable ones. I call

maps that accurately reflect game code true, even if they are inconsistent with play-

ers’ expectations of the game’s design. A reasonable map is one that matches these

expectations but might be unfaithful to the source code (e.g. the maps from Zelda El-

115

On Ground ̇𝑦 = 0 — Caused by Mario
colliding with something solid from
above

Jump ̇𝑦 ∶= [3.97, 4.10], ̈𝑦 =
[−0.140,−0.131] — Entered from
On Ground when the A button is
pressed

Release ̇𝑦 ∶= [2.10, 2.54], ̈𝑦 =
[−0.430,−0.384] — Entered from
Jump when the A button is
released

Fall ̇𝑦 ∶= 0, ̈𝑦 = [−0.373,−0.359] — En-
tered from Jump or Release when
the apex is reached

Bump ̇𝑦 ∶= [−1.85,−1.27], ̈𝑦 =
[−0.324,−0.238] — Entered from
Jump when something solid is
collided with from below

Bounce ̇𝑦 ∶= [3.51, 3.82], ̈𝑦 =
[−0.410,−0.378] — Entered from
Jump when an enemy is collided
with from above

Terminal Velocity ̇𝑦 = [−4.15,−4.06] —
Entered from Jump or Fall

(a) HA with MDL as the penalty.

On Ground ̇𝑦 = 0 — Caused by Mario
colliding with something solid from
above

Jump ̇𝑦 ∶= [4.19, 4.42], ̈𝑦 =
[−0.195,−0.181] — Entered from
On Ground when the A button is
pressed

Fall ̇𝑦 ∶= 0, ̈𝑦 = [−0.356,−0.338] — En-
tered from Jump when the apex is
reached

Bump ̇𝑦 ∶= [−2.37,−1.67], ̈𝑦 =
[−0.289,−0.188] — Entered from
Jump when something solid is
collided with from below

Bounce ̇𝑦 ∶= [3.52, 3.88], ̈𝑦 =
[−0.424,−0.391] — Entered from
Jump when an enemy is collided
with from above

Terminal Velocity ̇𝑦 = [−4.16,−4.05] —
Entered from Jump when the thresh-
old of −4 is reached.

(b) HA with BIC used as the penalty

Figure 4.9: Learned Mario HAs. Parameters as 95% confidence intervals.

ements mentioned above). Comparing Figs. 4.10 and 4.11 showcases this distinction.

The former is a natural play of the game; but in the latter, a tool-assisted speedrunner

utilizes multiple glitches to take an optimal (not at all natural) path. The first is the

so-called “Up+A” trick, which causes a soft reset of the game when the player enters

116

2
3

1

4

0

5 6 7 8 9 10 11 12 13 14 15

16

17
18

19

105

20
21

22 23

24

40

41

25

26

27

28

59

60

42

29

30
31

32

33

34 35

36

37

98

99

39

76

7788

89

58

43 44

61 62
45

63

46

47

48 49 50 51

52 53

54

55
56 57

96 97

74 75

38

86 87

64

65

66 67

68

69

70 71 72

73

91

92
101

102
79

80
81 82 83

84

85
93 94

95
103

104

90

100

78

Figure 4.10: The Legend of Zelda through the completion of Dungeon 1. The player,
myself, made numerous mistakes resulting in deaths (the cluster of black screens in the
middle) which teleport the player to the beginning of the dungeon.

1 2 3 4
0

5 6 7 8

Figure 4.11: The Legend of Zelda up to Dungeon 3, showing a map which is true but
not reasonable.

117

the eponymous command on the second controller. This covers the transitions from 2

(picking up the sword) to 3 (the soft-reset screen) to 4 (the player’s initial location at

game start). The second trick is “Screen Scrolling,” which lets the player leave a screen

and re-enter that same screen from the other side. This is how the player warps over

the river in 6 and (due to collision detection failing when inside an object) passes back

through the same wall to room 7.

All this is allowed by the code of the game, and the true map collected captures

the full behavior of that code; of course, this would be inappropriate for many of the

use-cases. A user feeding this map to a machine learning algorithm for design knowledge

extraction would likewise want a map that conveys the intended (if not actual) progres-

sions in the game. It is also interesting to consider that an optimal AI will find such

“secret passages” while an AI that does semantic hierarchical planning (e.g. planning

sequences of platforms or rooms to traverse) will probably not. That said, true maps

can be valuable to a game creator—particularly for highlighting areas where it differs

from a reasonable map e.g. for detecting bugs or sequence breaks.

As for learning map data proper, one important aspect of links which is cur-

rently ignored is that links are embedded in space. In other words, the player usually

travels between rooms because the character stepped on a staircase or crossed between

rooms. Right now we do not learn the embedding of the network of links into the

tilemaps, but this is important future work. Notably, the same doorway might take

the player to multiple different rooms (if, for example, certain game progress flags have

been set) or the same room might be entered on the same side from multiple doorways

118

(as in the Lost Woods in The Legend of Zelda).

Another consideration that remains future work is the incorporation of multiple

play traces. Currently, Mappy only operates on a single play trace at a time, but some

facts of a game’s map can only be inferred through multiple plays. E.g., in Super Mario

Bros. the act of going through a warp pipe is destructive – the player will necessarily

miss some content, while seeing content not accessible if the player did not go through

the pipe – leading to diverging maps that would need to be reconciled through multiple

plays. While this is not an intractable problem, image registration and reconstruction

is a field of study [31], it remains as future work. Furthermore, multiple play traces

would shed light on which effects are stochastic and which are deterministic. E.g., in

Super Mario Bros. some ?-blocks produce coins when Mario hits them, some produce

mushrooms or fire flowers (depending on Mario’s state), some produce invincibility stars,

and some produce 1-ups. A single play trace of Super Mario Bros. does not provide

enough information to determine whether these effects are deterministic (hitting the

same block will always produce the same effect) or stochastic (there is a 𝑚𝑛 chance that

any block will produce a given effect). Certainly, there are games where the effects

are stochastic, e.g., the power-ups that result from the destruction of an enemy is a

pseudo-random effect in Mega Man. It is important to note that it is pseudo-random

as it depends on a random seed based on the number of frames that the game has been

active and the number of visible entities on the screen, meaning that if Mappy were to

incorporate this information it could feasibly deterministically compute the exact state

required to produce a given effect. However, in general this is unlikely to be tractable, as

119

there are always additional sources of entropy that can be incorporated into the pseudo-

random process (e.g., player input, entity positions [including unobserved fractional

positions], and non-determinism in memory latency are used in Final Fantasy, Mega

Man 2, and Legend of Kage, respectively); instead, Mappy will consider stochastic effects

as the designers intended, random processes that are beyond the player’s manipulation

(despite that not being the case).

Another caveat on Mappy is that while it handles information from the OAM

(i.e.,moving entities or “sprites”) and from the nametables (i.e.,static entities or “tiles”)

in the exact same manner, it does not consider crossover between the two. E.g., in Super

Mario Bros. a ?-block begins existence as a tile, but when Mario bumps into it, the

animation that plays changes the nametable entry to the background color, creates a

sprite that moves up and then down (a small bump animation), and finally removes the

sprite and changes the nametable to an inert ?-block. To a human, the tile ⇒ sprite ⇒

tile plays out as continuity of one entity, but to Mappy this appears to be two separate –

albeit tightly interrelated – entities. It is a goal for future Mappy to be able to recognize

an entity as crossing between tile and sprite, perhaps by noticing that a sprite and tile

have (nearly) identical positions and visual representation and both change states at

the same time.

Its important to discuss why only World 1-1 was shown, which stems from

the relative difficulty in finding good play traces. While there exist many data sources

of opportunity [14], these traces typically operate in a way unlike standard human

play, stringing together “frame-perfect” tricks (i.e., tricks that require input to come on

120

exactly the correct 1
60 of a second) in a way beyond most, if not all, human players.

Instead the traces came from a human player, namely myself. It was relatively easy

to gather traces for the first room of Super Mario Bros., but it was beyond the scope

of the author to produce a trace that fully explores the game and all of its mechanical

interactions. Ideally, future versions of Mappy would incorporate lessons from General

Video Game playing AI (GVG-AI). Instead of taking a game and a play trace, Mappy

could take a game and learn to explore it [9]. Or, given a game and a trace, use the

supplied trace as a starting point for imitation learning [161]. However, this is beyond

the scope of Mappy at this time.

121

Part II

The Generation of Game Maps

122

Chapter 5

Procedural Generation of Two

Dimensional Rooms via Machine

Learning

Procedural content generation (PCG), the creation of game content through

algorithmic means, has become increasingly prominent within both game development

and technical games research. It is employed to increase replay value, reduce production

cost and effort, to save storage space, or simply as an aesthetic in itself. Academic PCG

research addresses these challenges, but also explores how PCG can enable new types

of game experiences, including games that can adapt to the player. Researchers also

address challenges in computational creativity and ways of increasing our understanding

of game design through building formal models [169]. 1

1Portions of this chapter originally appeared in “Procedural Content Generation via Machine Learn-
ing (PCGML)” [200]

123

In the games industry, many applications of PCG are what could be called

“constructive” methods, using grammars or noise-based algorithms to create content

in a pipeline without evaluation. Many other techniques use either search-based meth-

ods [214] (for example using evolutionary algorithms) or solver-based methods [174] to

generate content in settings that maximize objectives and/or preserve constraints. What

these methods have in common is that the algorithms, parameters, constraints, and ob-

jectives that create the content are in general hand-crafted by designers or researchers.

While it is common to examine existing game content for inspiration, machine learning

methods have far less commonly been used to extract data from existing game content

in order to create more content.

Concurrently, there has been an explosion in the use of machine learning to

train models based on datasets [128]. In particular, the resurgence of neural networks

under the name deep learning has precipitated a massive increase in the capabilities and

application of methods for learning models from big data [163, 65]. Deep learning has

been used for a variety of tasks in machine learning, including the generation of content.

For example, generative adversarial networks have been applied to generating artifacts

such as images, music, and speech [66]. But many other machine learning methods

can also be utilized in a generative role, including Markov models, autoencoders, and

others [29, 60, 67]. The basic idea is to train a model on instances sampled from some

distribution, and then use this model to produce new samples.

Procedural Content Generation via Machine Learning (abbreviated PCGML)

is the generation of game content by models that have been trained on existing game

124

content. The difference from search-based [214] and solver-based [174, 175] PCG is that

while the latter approaches might use machine-learned models (e.g. trained neural net-

works) for content evaluation, the content generation happens through search in content

space; in PCGML, the content is generated directly from the model. i.e., the output of

a machine-learned model (given inputs that are either drawn from a random distribu-

tion or that represent partial or previous game content) is itself interpreted as content,

which is not the case in search-based PCG. PCGML can be further differentiated from

experience-driven PCG [224] through noting that the learned models are models of game

content, not models of player experience, behavior or preference. Similarly, learning-

based PCG [154] uses machine learning in several roles, but not for modeling content

per se.

PCGML is well-suited for autonomous generation because the input to the

system can be examples of representative content specified in the content domain. With

search-based PCG using a generate-and-test framework, a programmer must specify an

algorithm for generating the content and an evaluation function that can validate the

fitness of the new artifact [213]. However, designers must use a different domain (code)

from the output they wish to generate. With PCGML, a designer can create a set of

representative artifacts in the target domain as a model for the generator, and then the

algorithm can generate new content in this style. PCGML avoids the complicated step

of experts having to codify their design knowledge and intentions.

Another compelling use case for PCGML is AI-assisted design, where a human

designer and an algorithm work together to create content. This approach has previ-

125

ously been explored with other methods such as constraint satisfaction algorithms and

evolutionary algorithms [168, 111, 175].

Again, because the designer can train the machine-learning algorithm by pro-

viding examples in the target domain, the designer is “speaking the same language” the

algorithm requires for input and output. This has the potential to reduce frustration,

user error, user training time, and lower the barrier to entry because a programming

language is not required to specify generation or acceptance criteria. If this required a

large amount of training data, this could be a terrible task, but in practice a relatively

small amount of data is required.

PCGML algorithms are provided with example data, and thus are suited to

auto-complete game content that is partially specified by the designer. Within the image

domain, there has been work on image inpainting, where a neural network is trained

to complete images where parts are missing [69]. Similarly, machine learning methods

could be trained to complete partial game content.

It is important to note a key difference between game content generation and

procedural generation in many other domains: most game content has strict structural

constraints to ensure playability. These constraints differ from the structural constraints

of text or music because of the need to play games in order to experience them. Where

images, sounds, and in many ways also text can be consumed statically, games are

dynamic and must be evaluated through interaction that requires non-trivial effort—in

Aarseth’s terminology, games are ergodic media [18].

A map that structurally prevents players from finishing it is not a map level,

126

even if it’s visually attractive; a strategy game map with a strategy-breaking shortcut

will not be played even if it has interesting features; a game-breaking card in a collectible

card game is merely a curiosity; and so on. Thus, the domain of game content generation

poses different challenges from that of other generative domains. Of course, there are

many other types of content in other domains which pose different, and in some sense

more difficult challenges, such as lifelike and beautiful images or evocative musical pieces;

however, I will focus on the challenges posed by game content by virtue of its necessity

for interaction.

A number of different approaches have been taken in PCGML, and I will now

discuss what is required to generate maps for games in a general sense and the constraints

that these requirements place on the representation of a map and the properties of a

generator.

5.1 Two Dimensional Room Generation

As mentioned in 3, the focus of this work is on 2D graphical logic based games

found on the NES. Within this somewhat restrictive framework, a host of morphologies

can be found within the rooms of these games. Some games have a constant room size

(e.g., The Legend of Zelda or Donkey Kong), others have a consistent orientation despite

irregular sizes (e.g., all rooms in Super Mario Bros. are wider than they are tall), others

have irregular orientations (e.g., the rooms in Metroid can be much taller than they are

wide – ≈ 14 ∶ 1 –, much wider than they are tall – 16 ∶ 1 –, or roughly equal – 16 ∶ 15 –

127

Figure 5.1: The diversity of room size ratios found in Metroid.

see figure 5.1), and yet still others have completely irregularly shaped rooms (e.g., the

diagonal “auto-scroller” room of Super Mario Bros. 3 5-9, see figure 5.2).

Due to the wide diversity in room shapes across games (and within), a general

map generator needs to be capable of supporting arbitrary room sizes and shapes.

Furthermore, these room sizes and shapes can vary from room-to-room within a map,

so no assumptions should be baked into a generator about the size or shape to generate.

To account for the wide variety of room morphologies, a very broad definition

of room is required. I define a room as a mapping from a location (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝕀 to

the granular pieces of content {𝑐0, 𝑐1, ...}, 𝑐 ∈ ℕ found at that location (if nothing is

128

Figure 5.2: The irregular “auto-scroller” room found in Super Mario Bros. 3. The
camera scrolls at a constant rate diagonally up and to the right, taking the bounds of
the room with it. i.e., the room is not a square, as the player will die upon leaving the
screen, even if the y-position is higher than a previous location.

at the location then the mapping is to the empty set, ∅). In practice, most rooms

can be represented as rectangular matrices where the entries of the dataset are unique

identifiers, as has been done in a large portion of the work [166, 74, 74, 196, 202, 182,

184, 181], but, in general, this is not sufficient to capture the breadth of room content

found in games.

129

This definition allows for a wide variety of different techniques, although some

will be better suited to the task than others. Next, I will define qualities that a general

room generator must have to achieve the property of generality.

5.2 Required Properties of A General Machine Learned

Room Generator

As discussed above, a key tenet driving the use of PCGML is that the generator

should learn from the input data, so as to produce content that has the same perceptual

and ludic properties as the original dataset. The assessment of how to assess whether a

generator has properly learned the design latent within the input, and is able to produce

it in its output, is discussed in Chapter 11, but there are other properties that a PCGML

room generator must have for it to be capable of generality.

Figure 5.3: The horizontal strips of breakable bricks found in Super Mario Bros. The
spot for a strip 10 bricks wide is left conspicuously empty.

130

To examine what is meant by generality, consider the breakable brick in Super

Mario Bros. Breakable bricks often come in horizontal strips, with sizes of one, two,

three, four, five, six, seven, eight, nine, eleven, and thirty-three tiles wide found in the

game (see figure 5.3 for a visual); while these are the sizes found in the game, it seems

unreasonable to operate under the assumption that it is impossible for a horizontal

segment of bricks of length ten to exist. If nine and eleven (and thirty-three for that

matter) exist, why not ten? Did Shigeru Miyamoto and Takashi Tezuka intentionally

not have a strip ten wide? Or, more likely, was it not a consideration and just did not

happen to turn up in the 32 rooms of Super Mario Bros.? The goal would be a PCGML

system that is capable of generalizing from the input dataset, and capable of producing

novel unseen configurations.

To formally define the type of generality considered, we must formally define

what a PCGML generator actually is. Namely, a PCGML generator is a probability

distribution over the possibility space of content. The possibility space contains all

possible configurations of the atomic entities making up the content, and a PCGML

generator is primarily a system that samples from this space, biasing some regions of

more heavily than the others. The areas that the PCGML system is capable of sampling

from are the support of the generator. Support is a mathematical concept where the

support of a function 𝑓() is the subset of the domain containing those elements which

are not mapped to zero. E.g., a Uniform distribution has equal probability density

for all 𝑥 ∈ {𝑎, 𝑏} and is 0 elsewhere, meaning it has support of {𝑎, 𝑏}, whereas the

Gaussian distribution has some non-zero probability density for all 𝑥 ∈ ℝ (even though

131

it approaches 0 as 𝑥 → ±∞). Given this lens, one might define a general PCGML

system as:

A general PCGML system has infinite support.

Imagine a hypothetical Copy generator which takes in rooms from a game map,

and when tasked to generate a room, simply randomly selects one of the rooms and

returns it. Using this definition of generality, it is easy to see that the Copy generator

fails miserably, as it will have support of size equivalent to the number of artifacts in

its training set.

However, while infinite support is necessary for generality, it is an insufficient

criterion. Imagine a hypothetical variant of the CopyAndFill generator which takes in

rooms from a game map, and when tasked to generate a room, simply randomly selects

one of the rooms and returns it after concatenating a random number (𝑛 ∈ ℕ) of some

piece of content (say empty background tiles) to the end of the room. This generator

has infinite support, but the vast amount of the information is still just being copied

from the original input dataset. Infinity is not enough, as generalization to unseen

configurations is also necessary for genuine generality.

As such, generality is strengthened to:

The support of a general PCGML system covers all possible
configurations of content in the possibility space of its content domain.

Thus, any content that could theoretically exist within the possibility space

of game should be possible to be sampled. This is not to say that all possible pieces

of content are likely to be sampled, as some pieces of content should be astronomically

132

Figure 5.4: A uniformly random Super Mario Bros. room.

Figure 5.5: A snippet of a room from Super Mario Maker. that plays music as the player
runs from left to right. Figure from [210] with permission.

unlikely to exist, given the design latent within the original dataset. E.g., a purely

uniformly random room (see figure 5.4) should not be particularly likely, but should

still be a possibility. Similarly, other types of rooms, such as music playing auto-

133

scrollers (see figure 5.5) are possible within the realm of Super Mario Maker (a game

that allows players to design Super Mario Bros. style rooms), and while it is unlikely

that a PCGML system trained on the original rooms would ever create such a room in

a monkeys-at-typewriter style setting, it should not be a theoretical impossibility.

Of course, there are many novel configurations that are undesirable (e.g., rooms

that aren’t completable, rooms that are solidly one type, rooms that are uniformly

random). So, while a PCGML should be capable of producing any potential output,

it should also produce rooms that match the target distribution. i.e., on any given

metric (and combination of metrics) the generator should have a similar distribution as

the original dataset. However, unlike many search-based PCG [213] approaches, these

metrics are unlikely to be targeted via the training process, but rather a good PCGML

system should achieve similar distributions as a byproduct of producing high quality

content. Determining whether a system has achieved this will be discussed in greater

depth in chapter 11. To achieve guarantees of playability (and not just getting by on

the luck of sampling well) it is necessary to add on additional constraints (see section

6.6 for more discussion).

In the field of computational creativity, there has been an ongoing discussion

about how to evaluate whether a system is creative (and what creativity is for that

matter). A large part of this debate is whether process or product is more important for

determining the creativity of a system. Colton [41] and Pease [144] argue that both the

product and process are important, while Ritchie [153] argues that most evaluations of

human creative practice considers only the product, as the inner working of a human

134

mind is a black box. Colton has responded to Ritchie by citing conceptual art [41],

where the concepts and motivations of the artistic process are a key aspect of the art

(although this would seem to be an act of converting process into product). Similarly,

there is a discussion on P-creativity (the author generates an artifact novel to them)

and H-creativity (the author generates an artifact novel to the history of humanity).

Conflated with these measures of creativity are that of quality and typicality of the

produced artifacts.

Given the larger discussion of computational creativity, why is generality im-

portant? This discussion of generality is not meant to decide whether a system is

creative or not. Rather, generality is meant to provide an a priori way of determining

whether the content space supported by one machine learning approach is a strict subset

of another approach. If one approach is limited in its expressive range where another is

unconstrained, then all else being equal, the latter is preferable to the former. Of course,

while an approach might be capable of supporting all possible content in the theoretical

limit, it is easily possible that in the practical limit, this is not the case. Generality is

not meant to answer that question, but rather to place theoretical limits on the range

of content that could possibly be expressed. The evaluation of the content actually

expressed – and discussion of what is desired from the expressed range of content – is

covered in Chapter 11.

135

5.3 Existing PCGML Systems and their Generality

5.3.1 Markov Methods

In the context of 2D Room PCGML there have been a number of different

approaches. Dahlskog et al. trained 𝑛-gram models on the rooms of the original Super

Mario Bros. game, and used these models to generate new rooms [45]. As 𝑛-gram models

are fundamentally one-dimensional, these rooms needed to be converted to strings in

order for 𝑛-grams to be applicable. This was done through dividing the rooms into

vertical “slices,” where most slices recur many times throughout the room [44]. This

representational trick is dependent on there being a large amount of redundancy in the

room design, something that is true in many games. Models were trained using various

values of 𝑛, and it was observed that while 𝑛 = 0 creates essentially random structures

and 𝑛 = 1 creates barely playable levels, 𝑛 = 2 and 𝑛 = 3 create rather well-shaped

levels. Given that the most granular piece of content that can be placed is limited to

vertical slices, if a vertical slice is not found in the original dataset then it simply can

not be generated. Similarly, if a pair of tiles do not exist next to each other horizontally,

then they can never be generated. Thus, the 𝑛-gram approach is not general, unless all

possible configurations are found within it.

An extension to the one dimensional Markov chains are Multi-dimensional

Markov Chains (MdMCs) [38], wherein the state represents a surrounding neighborhood

and not just a single linear dimension. Snodgrass and Ontañón [183] present an approach

to room generation using MdMCs. An MdMC differs from a standard Markov chain in

136

that it allows for dependencies in multiple directions and from multiple states, whereas

a standard Markov chain only allows for dependence on the previous state alone. In

their work, Snodgrass and Ontañón represent video game rooms as 2-D arrays of tiles

representing features in the levels. For example, in Super Mario Bros. they use tiles

representing the ground, enemies, and ?-blocks, etc. These tile types are used as the

states in the MdMC. That is, the type of the next tile is dependent upon the types of

surrounding tiles, given the network structure of the MdMC (i.e., the states that the

current state’s value depends on). They train an MdMC by building a probability table

according to the frequency of the tiles in training data, given the network structure

of the MdMC, the set of training rooms, and the set of tile types. A new room is

then sampled one tile at a time by probabilistically choosing the next tile based upon

the types of the previous tiles and the learned probability table. While the general

MdMC approach is more general than the one dimensional approach, it is still limited

to whatever is found in the original dataset. However, the approach of Snodgrass and

Ontañón falls back to lower-order Markov chains, eventually falling back to strict single

entity frequencies, if an unseen configuration is found, which means that the approach

has generality.

In addition to their MdMC approach, Snodgrass and Ontañón have explored

hierarchical [184] and constrained [185] extensions to MdMCs in order to capture higher

level structures and ensure usability of the sampled rooms, respectively. They have also

developed a Markov random field approach (MRF) [181] that performed better than the

standard MdMC model in Kid Icarus, a domain where platform placement is pivotal to

137

playability; however, unlike the MdMC approach there is no fallback, so a configuration

unseen in the input will always be rejected during the sampling process.

Wave-Function Collapse (WFC) by Gumin [70] uses a metaphor borrowed

from quantum mechanics wherein there is a “superposition” of tiles used to generate

images and rooms from a representative example tile set. This approach is a variant of

MRF, except instead of solely sampling, samples are chosen via “collapsing of the wave

function” (i.e., probabilistically choosing a tile and propagating constraints that that

choice enforces). This in turn can propagate other changes and either deterministically

chooses tiles that no longer have any other possible choices or reduces the possible set of

other tiles. The probabilities and configurations are determined by finding each 𝑁 ×𝑁

window in the input, and the number of times that window occurs. Given that WFC

explicitly precludes the generation of content with a configuration not found in the

original dataset, the method itself carries no guarantees about generality.

5.3.2 Neural Methods

Hoover et al. [84] generate rooms for Super Mario Bros. by extending a repre-

sentation called functional scaffolding for musical composition (FSMC) that was orig-

inally developed to compose music. The original FSMC evolves musical voices to be

played simultaneously with an original human-composed voice [83] via NeuroEvolution

of Augmenting Topologies (NEAT) [188]. To extend this musical metaphor and repre-

sent Super Mario Bros. rooms as functions of time, each room is broken down into a

sequence of tile-width columns. Additional voices or types of tiles are then evolved with

138

ANNs trained on two-thirds of the existing human-authored rooms to predict whether a

tile exists within a column, and if it does, at what height. However, this presumes that

only one tile of a given a type can be found in each column, meaning that the system

is not a general 2D room generator.

In [92] Jain et al. show how autoencoders [218] may be trained to reproduce

rooms from the original Super Mario Bros. game. The autoencoders are multi-layer

perceptrons trained on series of vertical room windows and compress the typical features

of Mario rooms into a more general representation. They experimented with the width

of the room windows and found that four tiles seems to work best for Mario rooms.

5.3.3 Matrix Factorization Methods

Some approaches to room generation find latent level features in high-dimensional

data through matrix factorization, which infers features by compressing existing data

into a series of smaller matrices. While often generators create rooms with a limited

expressive range [86], Shaker and Abou-Zleikha [166] create Super Mario Bros. rooms by

first generating thousands with five known, non-ML-based generators (i.e. Notch, Pa-

rameterized, Grammatical Evolution, Launchpad, and Hopper). These rooms are then

compressed into vectors indicating the content type at each column and transformed

into 𝑇 matrices for each type of content: Platforms, Hills, Gaps, Items, and Enemies.

Through a multiplicative update algorithm [108] for non-negative matrix factorization

(NNMF), these rooms are factored into 𝑇 approximate “part matrices” which represent

room patterns and 𝑇 coefficient matrices corresponding to weights for each pattern.

139

While the “part matrices” can be multiplied by weights to generally generate rooms,

the size of the generated rooms is fixed by the dimensions of the part matrices (e.g., in

their work, all rooms were 200 tiles wide).

5.4 Graphical Methods

K-means is a clustering method where an a priori defined number of clusters

are computed based on the means of the data. Each E step determines which data points

belong to which cluster, resulting in new means being calculated for each cluster in the

M step. Guzdial and Riedl [73] used a hierarchical clustering approach using K-means

clustering with automatic K estimation to train their model. They utilized gameplay

video of individuals playing through Super Mario Bros. to generate new rooms. They

accomplished this by parsing each Super Mario Bros. gameplay video frame-by-frame

with OpenCV [149] and a fan-authored spritesheet, a collection of each image that

appears in the game. Individual parsed frames could then combine to form chunks of

room geometry, which served as the input to the model construction process. In total

Guzdial and Riedl made use of nine gameplay videos for their work with Super Mario

Bros., roughly 4 hours of gameplay in total.

Guzdial and Riedl’s model structure was adapted from [97], a graph structure

meant to encode styles of shapes and their probabilistic relationships. The shapes in this

case refer to collections of identical sprites tiled over space in different configurations.

It can be understood as a learned shape grammar, identifying individual shapes and

140

probabilistic rules on how to combine them. First the chunks of room geometry were

clustered to derive styles of room chunks, then the shapes within that chunk were

clustered again to derive styles of shapes, and lastly the styles of shapes were clustered

to determine how they could be combined to form novel chunks of room. The generation

process samples from the style clusters and then samples the cluster to get a specific

piece of room geometry (room geometry chunks being contiguous pieces of a given type

of game content) and then places those geometry pieces one by one in a scene. However,

given that these geometry pieces are taken whole cloth, there is no possibility of the

construction of a geometry piece not seen in the original set (precluding something like

the 10-wide strip of breakable bricks discussed in Section 5.2).

5.5 PCGML Generality Comparison

In the discussion of generality, there are three classes within which a generator

can fall: general, not general, and dataset dependent. General and not general are self-

explanatory, but dataset dependent requires context. Consider the generation task of

producing a sequence of tokens, A and B. If the only observed sequence is AAABBB,

then a Markov chain of order 1 can only produce sequences that have some number of

A’s followed by some number of B’s – meaning that the generator would not be capable

of generating any sequence. However, if the observed sequence was AABBAB, then the

aforementioned Markov chain would be capable of producing any sequence (assuming

the initial token is randomly chosen). This is what is meant by dataset dependent – the

141

Implementation Technique Generality
Dahlskog et al. Markov Chain dataset dependent
Snodgrass and Ontañón Markov Chain yes
Snodgrass and Ontañón Markov Random Field dataset dependent
Gumin Wave Function Collapse dataset dependent
Hoover et al. Neural Network no
Jain et al. Multi-Layer Perceptron yes
Shaker and Abou-Zleikha Non-Negative Matrix Factorization no
Guzdial and Riedl Probabilistic Graphical Model dataset dependent

Table 5.1: An overview of existing two dimensional machine learned room generators
and their generality.

generator is capable of having generality, but only if the dataset contains all possible

configurations.

When choosing a PCGML approach to room generation, the theoretical bounds

of the generator are merely a starting point, as the actual content produced by the gen-

erator is more important for an end user than whether a system could theoretically

produce the equivalent of the Shakespeare-from-Monkey’s-typewriter with enough sam-

pling, but given the same perceptual quality of output, it is hard to argue for the

generator with fewer theoretical capabilities. In the next chapter, I will discuss Kamek,

a general two-dimensional room generator that utilizes a Long Short-Term Memory

Recurrent Neural Network.

142

Chapter 6

Kamek – A Machine-Learned Two

Dimensional Room Generator

As discussed in the previous chapter, there are a number of considerations at

play when choosing a technique for training a generator for two-dimensional room gen-

eration. The foremost is whether the generator is able to achieve generation of desirable

content. This notion of desirability is similar to notions of evaluating computational

creativity systems on the value and typicality of their produced content [153], with the

additional caveat that the “creativity” is constrained such that it should produce con-

tent similar to that of the original dataset (but not too similar, for what that means – a

discussion for Chapter 12). Given the production of high quality content, the generator

should have generality (as discussed in the previous chapter). 1

Given this, the considerations needed by a technique are:
1Portions of this chapter originally appeared in “MCMCTS PCG 4 SMB: Monte Carlo Tree Search

to Guide Platformer Level Generation”[202] and “Super Mario as a String: Platformer Level Generation
via LSTMs” [197]

143

1. Able to produce any arbitrary local configuration in the room content space

2. Able to produce any arbitrary size and shape of room

3. Capable of capturing long scale dependencies in the content

The technique underpinning Kamek is an auto-regressive Long Short-Term

Memory Recurrent Neural Network (LSTM RNN). The specific architecture underpin-

ning Kamek utilizes a SoftMax output, producing a probability distribution over the

atomic entities, allowing it to generate any arbitrary local configuration (1). LSTMs

operate on arbitrary sized sequences, allowing Kamek to produce output of unbounded

size (2). And LSTMs represent the current state of the art for sequence modeling [123],

as their ability to hold state in memory allows for long distance sequence modeling [82]

(3). Recurrent Neural Networks (RNNs) [85] are a variant of Artificial Neural Net-

work (ANN) that hold state. Where a standard ANN is Markovian (i.e., its output is

dependent only on the current input), RNNs can produce different results when given

the same input, depending on their state. This non-Markovian behavior is achieved

via recurrent edges that reach backwards in time. The mathematical formulation for a

“vanilla” ANN (in this case, a Multi-Layer Perceptron with 𝑡𝑎𝑛ℎ activations) is given

as:

ℎ = 𝑡𝑎𝑛ℎ(𝑖 · ̂𝑥)

̂𝑦 = 𝑜 · ℎ

144

Where ̂𝑥 is the input, ̂𝑦 is the predicted output, 𝑖 are the weights for the

input-to-hidden layer, and 𝑜 are the weights for the hidden-to-output layer. A similarly

structured RNN is defined as:

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑖 · ̂𝑥𝑡 + 𝑟 ∗ ℎ𝑡−1)

̂𝑦𝑡 = 𝑜 · ℎ𝑡

ℎ0 = 0

Where 𝑟 is the recurrent weight connecting the result of the previous hidden

step with the current. The key difference between the Multi-Layer Perceptron and the

RNN being the hidden activation from the previous timestep found in the RNN, i.e.,

instead of the input being a single vector, the input is a sequence of vectors. This

statefulness allows the Recurrent Neural Network to learn functions that are reliant on

their position in a sequence, an important step for capturing longer dependencies.

However, a drawback of the RNN formulation comes from the multiplicative

recurrent weight. During training, the error gradient is updated multiplicatively. If

𝑟 < 0, then the error gradient trends towards 0 at an exponential rate during the back-

propagation through time (e.g., the error gradient from ℎ4 → ℎ1 is reduced by 𝑟3).

This exponential decay in error gradient is known “the vanishing gradient problem.”

Conversely, for 𝑟 > 1 this gradient exponentially trends to positive infinity, leading

to “the exploding gradient problem.” Thus, while an RNN is theoretically capable of

145

learning arbitrary sequence behaviors, in practice the back-propagation through time is

truncated to a few timesteps at most, given these problems.

LSTMs are a neural network topology first proposed by Hochreither and

Shmidhuber [82] for the purposes of eliminating the vanishing gradient problem. LSTMs

work to solve that problem by introducing additional nodes that act as a memory mech-

anism, telling the network when to remember and when to forget. The, now-standard,

formulation of an LSTM is:

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1)

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1)

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1)

ℎ𝑡 = 𝑜𝑡 ∘ 𝜎(𝑐𝑡)

Where 𝜎 is the sigmoid function, ∘ is the element-wise multiplication, 𝑓𝑡 is

the result of the forget gate, 𝑖𝑡 is the result of the input gate, 𝑜𝑡 is the result of the

output gate, 𝑐𝑡 is the LSTM cell’s state, and ℎ𝑡 is the output of LSTM cell (the 𝑊,𝑈

matrices are the respective gate’s trainable parameters). A graphical depiction of this

architecture can be seen in figure 6.1. By disentangling the state of the hidden cell

from the output of the cell (the difference between having 𝑐𝑡, ℎ𝑡 in the LSTM and just

ℎ𝑡) allows the LSTM to hold something in memory for a long amount of time without

146

Figure 6.1: A graphical depiction of an LSTM cell.

emitting any external output, leading to the ability to learn behaviors with large time

dependencies. Furthermore, the introduction of the forget gate, 𝑓𝑡, [64] allows the LSTM

to learn when to decay the gradient through time, meaning that the error gradient need

not be propagated past where it is past useful.

While LSTMs are a relatively venerable piece of neural network machinery,

they are still the most reliable machine learning approach for sequence modeling. De-

spite a large number of add-ons to LSTMs [124, 125], and new approaches such as the

Recurrent Highway Network [231] and networks found via Neural Achitecture Search

[232], the standard vanilla LSTM remains the best neural architecture for sequence

147

modeling (given a fixed budget for number of trainable parameters) [123].

The LSTMs used in Kamek are trained via the Adam stochastic gradient op-

timizer and back-propagation. Back-propagation is a method for optimization, most

commonly employed in neural networks, wherein a differentiable loss function, in this

case Categorical Cross-Entropy:

𝐻(𝑝, 𝑞) = −∑𝑥 𝑝(𝑥) log 𝑞(𝑥).

where 𝑝(𝑥) is a binary 1/0 (1 if that categorical discrete variable was present, else 0) and

𝑞(𝑥) is the predicted probability from the LSTM, is minimized via credit assignment to

the trainable parameters in the network. The credit assignment process works by taking

the partial derivative of the loss, 𝐻, with respect to a particular trainable parameter,

𝑤.

𝜕𝐻
𝜕𝑤 = 𝜕𝐻

𝜕𝑜
𝜕𝑜
𝜕𝑖

𝜕𝑖
𝜕𝑤

where 𝑜 is the output of the neuron that 𝑤 is a part of, after non-linear activation 𝜙,

and 𝑖 is the activation of the neuron before the application of the non-linear activation

(i.e., 𝑜 = 𝜙(𝑖)). Given the partial derivative of the loss with respect to a given weight,

the weight is then updated along the direction specified by the partial derivative to

minimize the error with respect to itself:

𝑤=𝑤− 𝜕𝐻
𝜕𝑤

Although, in practice, this update is attenuated by a learning rate, 𝜂, as otherwise

the gradient tends to oscillate, leading to slow convergence. This learning rate can be

adaptive, with a host of different techniques used [52, 212, 102] to accelerate the speed of

training. In this work, the RMSProp [212] momentum approach is used. In experiments

148

[114] it seemed to make little difference which exact momentum approach is used (out

of ADAGRAD, Adam, or RMSProp), so it is expected that this is not a particularly

impactful choice.

LSTMs are are general neural network mechanism that can be thought to map

a sequence, {𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑛}, to an output, ̂𝑦. In the case of Kamek, the LSTM is

an auto-regressive model. i.e., it maps from a sequence , {𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑛}, to the

next element of the sequence, ̂𝑥𝑛+1. At the next generation timestep, the predicted

element is concatenated onto the sequence, and fed in as the input, resulting in the next

prediction ̂𝑥𝑛+2. This process continues until generation ends.

While LSTMs are the state-of-the art for sequence modeling, the content in

question is not a one dimensional sequence. This leads to one of the key contributions

of Kamek – the handling of two-dimensional rooms as a one-dimensional sequence.

6.1 Data Formulation

As discussed in section 5.1, a room is a mapping of location (𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝕀 to

the granular pieces of content {𝑐0, 𝑐1, ...}, 𝑐 ∈ ℕ. The choice of granular piece of content

can be viewed as a Categorical probability distribution. Given that formulation, the goal

of Kamek is to find the best conditional distribution given the context at a generation

point, i.e., Kamek is finding 𝑃𝑟(𝑐𝑥,𝑦|𝑐𝑎,𝑏, 𝑐𝑑,𝑒, ...). Best is perhaps overloaded here,

but the ideal behavior is such that Kamek should produce high quality, novel content

that is of the same style as the original input content.

149

A key question in constructing Kamek is

How should a room be linearized, such that the resultant trained
generator produces the best content?

Furthermore, Kamek must be capable of handling arbitrary room sizes and

shapes. While recurrent architectures are almost trivially capable of handling arbitrary

lengths of sequences, the addition of grid location requires the generator to keep track

of its current location – and also have a way of changing its current location. A key

aspect of Kamek is the notion of a turtle, a la Logo [11]. Kamek models a sequence of

turtle commands, the result of which construct a reified game room. As such, Kamek’s

architecture is trying to find the optimal distribution for

𝑃𝑟(𝑐𝑡|𝑐𝑡−1, 𝑐𝑡−2, ...)

where 𝑐 ∈ 𝕋, the set of all commands for the turtle for a possible content space.

For instance, in the hand annotated Super Mario Bros. content space, the commands

available to Kamek are:

• ⋆ – Start the generation process

• – Stop the generation process

• → – Move the turtle to the right

• ← – Move the turtle to the left

• ↑ – Move the turtle up

• ↓ – Move the turtle down

150

• ↥ – Move the turtle to the highest seen 𝑦 position

• ↧ – Move the turtle to the lowest seen 𝑦 position

• ↤ – Move the turtle to the lowest seen 𝑥 position

• ↦ – Move the turtle to the highest seen 𝑥 position

• – Place an empty tile

• – Place a solid tile

• – Place a breakable brick tile

• – Place a coin tile

• – Place an enemy entity

• – Place a ?-block that produces a coin upon being hit

• – Place a ?-block that produces a power-up upon being hit

• – Place the upper left tile of a pipe

• – Place the upper right tile of a pipe

• – Place the lower left tile of a pipe

• – Place the lower right tile of a pipe

• – Place the Bullet Bill shooting cannon tile

• – Place support for a Bullet Bill shooting cannon tile

151

↑ ↑ ↧ → ↑ ↑

=
Figure 6.2: An example of the 1-dimensional input stream, and its interpretation when
rasterized. Note that the origin is not necessarily the lower-left corner (as it is here),
but could be any location as the bounds of the generated room depend only on the
places the turtle moves to during the sequence.

An example of a command sequence and the corresponding rasterization can

be seen in figure 6.2. The turtle moves during the special commands and then places

entities of the given class at generation. In practice, while the turtle can be thought to

be controlled via these commands, there are standard patterns that are merged, for the

sake of simplifying the generation sequence. These patterns are specific to their specific

linearization process and will be discussed in turn for each linearization method.

6.1.1 Sampling Methodology

Given a linearization (the specifics of which do not matter too greatly at this

point), Kamek generates a sequence, which can the be decoded via the turtle and gen-

eration commands into a reified room. Remember, the training of Kamek is trying to

optimize the function 𝑃𝑟(𝑐𝑡|𝑐𝑡−1, 𝑐𝑡−2, ...) such that it minimizes the function:

152

𝐻(𝑡) = −∑𝑥(𝑐𝑡 = 𝑥) log(𝑃𝑟(𝑐𝑡 = 𝑥|𝑐𝑡−1, 𝑐𝑡−2, ...))

The result of the training process is an auto-regressive LSTM that produces a

probability distribution over the different commands in the generation sequence, which

can be sampled from. Starting from an initial input of the start command, ⋆, the LSTM

produces a conditional probability distribution, 𝑃𝑟(𝑐|⋆). This probability distribution

(as with all Categorical distributions), is a vector, 𝑝, of real numbers with dimension

equal to the dimensionality of the number of possible commands, 𝑛, i.e., 𝑝 ∈ ℝ𝕟, such

that the sum of the elements is equal to one. Borrowing from simulated annealing [104],

this distribution can be sampled at different temperatures, 𝑡 ∈ ℝ, s.t. 𝑡 ≥ 0, changing

the shape of the probability distribution. This is achieved by sampling from a new

distribution, 𝑝′, where:

𝑝′ = 𝑒log(𝑝)𝑡

Three critical values of 𝑡 to consider are:

• 𝑡 = 0 – Instead of sampling from 𝑝′ this is equivalent to selecting argmax 𝑝, i.e.,

taking the index of the largest element of 𝑝. This means that the sampling process

greedily selects the most likely category from the distribution.

• 𝑡 = 1 – This is sampling from the learned distribution

• 𝑡 = ∞ – This is equivalent to sampling from an uninformative – i.e., uniformly

flat – distribution.

The two ranges defined by these critical points are:

153

• 𝑡 ∈ [0, 1) – The sampling will be biased towards more likely results, more deter-

ministic results (being fully deterministic at 𝑡 = 0)

• 𝑡 ∈ (1,∞) – The sampling will be more “random,” and further away from the

learned distribution

Figure 6.3: The “most likely” room from Super Mario Bros. according to an LSTM
(three layers, each of 512 units, with 80% dropout between layers). The room is sam-
pled with temperature 𝑡 = 0, i.e., it selects the most likely content piece, greedily.
The resultant room is made of the most common column, the ground and empty sky,
although the room itself is extremely boring (and funnily enough, highly unlikely).

While it might seem that the sampling should be biased towards the most likely,

“most correct” values (i.e., a low temperature), in practice this leads to poor results.

First, if the temperature were 0, then the sampling process is deterministic, leading to

the same content being generated at every step. Second, even if the temperature is

non-zero, the most likely results are not actually the best. For an example of why lower

temperature does not result in high quality generated content, see figure 6.3.

6.1.2 Choice of Space-Filling Curve

There are limitless possible traversals through the two dimensional rooms, so

it is important to understand the properties of the traversals, and how these affect the

154

(a) With Grain ordering. (b) Against Grain ordering.

(c) Snaking ordering. (d) Hilbert curve ordering.

(e) Lebesgue curve ordering.

Figure 6.4: All orderings considered for this study.

155

generation process. As a first limitation on the traversals, all curves should have a

high degree of locality, i.e., at most points in the traversal, the previous point in the

sequence should be near (in a Euclidean location-space sense) the current point. In

part this is inspired from observations found in statistical machine translation [203],

where translation was optimized by reversing the input sequence and then generating

an output sequence. The hypothesized reason for reversing the input sequence working

better than the forward sequence being that the increased locality (e.g., the first word

in the input sentence is very close to the first word in the output sequence) helps the

neural network by reducing the duration that it needs to remember.

The simplest, most naïve orderings are that of the With Grain (see figure 6.4a)

and Against Grain ordering (see figure 6.4b) that progresses from either horizontally,

then vertically (or vice versa). Given that most game rooms tend to have a specific

aspect ratio (e.g. tend to be wider than tall or vice versa), these naïve orderings seem

decent. However, as will be discussed, the most naïve assumption – wide room ⟹

With Grain and tall room ⟹ Against Grain is unlikely to be correct. Consider a

room in Super Mario Bros. which can be up to 400 tiles in length, meaning that a tile

might be 400 steps away from the tiles above or below it. Furthermore, even if one of

these is correct for a given aspect ratio, a game with inconsistent aspect ratios (e.g.,

Metroid) is going to be forced to use the “incorrect” (or less good at the least) option

some not insignificant portion of them time.

The movement patterns found for the naïve orderings are of the kind:

⋆, 𝕔,→, 𝕔,→, 𝕔,→, 𝕔,→, ↓, 𝕔,→, 𝕔,→, 𝕔,→, 𝕔,↤, ↓, ...,

156

demonstrating the With Grain method (i.e., start, generate, move to the right, generate,

move to the right, ..., move down, move all the way back to the left, ...). Given that

all generation steps can be safely bundled with a move to the right, these symbols

are merged into one during the generation process. Similarly, all instances of moving

down can be merged with the left reset, so these symbols are merged without loss of

generality. The same are true (albeit with different direction mergings) for the Against

Grain ordering.

Snaking is a less intuitive manner of progressing through the room (see figure

6.4c). This, unlike the aforementioned curves, has the benefit that the distance in the

sequence between a tile and two of its 2D neighbors is always 1 (e.g., consider a Against

Grain curve on a room 10 tiles high – the top tile is one away from the tile below it and

10 away from its neighbors to the right and left).

The movement pattern for Snaking are of the kind:

⋆, 𝕔, ↓, 𝕔, ↓, 𝕔, ↓, 𝕔,→, 𝕔, ↑, 𝕔, ↑, 𝕔, ↑, 𝕔,→, 𝕔, ↓ ...,

Similar to the naïve orderings, each generation command has a paired movement com-

mand; however, unlike the naïve orderings, the Snaking traversal changes directions

with each secondary (in this case horizontal) movement. Thus, the merged commands

are “Generate and then move in the current direction” and “Move to the right and ro-

tate the current direction by 180 degrees” (the “move to the right” being dependent on

the direction of traversal). Unfortunately, this leaves the initial direction unspecified,

so an additional symbol must be added to the sequence:

⋆, ⇩, 𝕔, ↓, 𝕔, ...

157

i.e., set the original direction of the turtle to down.

Also considered are two more complex space-filling curves, the Hilbert curve

(see figure 6.4d) and the Lebesgue curve (see figure 6.4e). Both are fractal curves that

fill 2-D space. For this work we used a curve with fractal dimension of 4 (i.e., 16 × 16).

For the Hilbert curve, when a curve ends (if the origin at bottom-left is < 0, 0 > the

end point is < 15, 0 >) it progresses into another curve (it begins at < 16, 0 >). The

Lebesgue curve, however, does not tile smoothly left-to-right and instead must be flipped

between consecutive curves. For example, if the curve starts in the upper left corner

< 0, 15 > it will end in the lower right corner < 15, 0 >; a flipped version of the

curve then starts at the lower left corner < 16, 0 > and ends in the upper right corner

< 31, 15 >). Both of these have variable distances between tiles with distances up to

172 (Hilbert curve) and 340 (Lebesgue curve) which, like the With Grain, seem to induce

long term-dependencies for minimal payoff. However, unlike the With Grain each point

in these curves is guaranteed to be within 1 or 2 steps of points in the same columns

and rows, as opposed to just the same row. This guarantees that some local structure

in the columns and rows should be easily remembered (e.g. that the ground or ceiling

is nearby). The large variability in distances also means that Kamek must learn the

structure of the curve, in addition to the actually pertinent room geometry information.

E.g. in the Against Grain ordering, the tile 3 away from the top of room meta-character

is always 3rd from the top, but in these orderings it could be in nearly any position.

These ordering have no common movement patterns, at least, not to the degree that

incorporating them reduces the resultant command sequence, and as such, they do not

158

use them. All of the discussed orderings can be seen in figure 6.4.

6.1.3 Evaluation of Linearization Traversals

Before increasing the parametric search space (network topology, orderings,

vocabulary choice), it is important to determine which traversals work well, and under

which conditions. The full parametric search space is beyond the scope of this work,

taking time and resources beyond what was available, so the search will be performed

piece-wise, finding the optimal configuration for specific facets.

Linearization Completable % Unique %
With Grain 100% 34.25%

Against Grain 67.60% 99.95%
Snaking 38.95% 100%
Hilbert 100% 49.80%
Lebesgue 100% 5.40%

Table 6.1: The percentage of the rooms for each linearization that were completable
and unique.

To test this, a generator was trained for each linearization approach in the

Super Mario Bros. domain. The trained networks each consisted of three layers of

512 LSTM cells, with 80% dropout applied between each layer, and were trained us-

ing RMSProp [212] until two consecutive epochs found no additional improvement on

evaluation of a held out training set. For each approach, the network with the best

evaluation score for the held out evaluation set was used for generation.

Each generator produced 2000 rooms and at this stage of evaluation, two prox-

ies for value and novelty are considered, completability and uniqueness. Completability

159

is the percentage of generated rooms that are able to be completed by an 𝐴∗ room

playing agent. This approximates the value of the generated rooms, as non-completable

rooms are not valuable at all (although a completable room might still fail at other

measures of value). Uniqueness approximates P-novelty, i.e., how often a generator pro-

duces the same output. The results can be seen in table 6.1. While the With Grain,

Hilbert, and Lebesgue approaches each had flawless scores for being completable, this

is due to the networks overfitting and memorizing a small subset of rooms, with the

worst being the Lebesgue approach having only 5.4% of its generated rooms be unique.

While, ideally, the generators should produce playable rooms, it is imperative that the

generators actually generate unique rooms, else they are complexly trained Copy gen-

erators (as discussed in section 5.2). Thus, the only linearization approaches kept for

further examination are that of the Against Grain (with good completability scores, but

a slight hit to the number of unique rooms generated) and the Snaking (with the worst

completability, but producing only unique rooms).

6.2 The Impact of Meta-Information on Quality

While the topological structure of the linearization and the atomic content

comprising the room geometry are the only required input and output to Kamek, it

is possible to imagine a host of meta-information that can help guide the generation

process.

For instance, for games where most rooms are large, involved affairs (e.g.,

160

Figure 6.5: World 7-1 from Super Mario Bros. and the relative intensity found through-
out it. The room starts (on the left) in a region of calm and then quickly progresses into
a challenging section with a lot of cannons for the player to dodge. This is broken up
by a small, very difficult section where the player must defeat two “hammer bros.” This
goes back to the challenging cannon section, which is also followed by another hammer
bros. section. The room ends in a relatively relaxed “cool-down” of two pyramids to
climb.

Super Mario Bros.), it might be important to consider how “deep” the generator is

in the process of generating the room. Figure 6.5 shows how the intensity of a room

in Super Mario Bros. changes as the player progresses through it. While the LSTM

is capable of capturing long-term dependencies, these are long-term relative to other,

simpler sequence modeling approaches. i.e., where a Markovian model captures only

local dependencies, and an RNN is able to capture dependencies on the scale of 3-6

timesteps, an LSTM can capture dependencies on the scale of hundreds of timesteps;

however, in the view of the Against Grain or Snaking linearizations, 200 timesteps is

roughly equivalent to 12 columns of a Super Mario Bros. room – not a terribly large

amount of real estate. Thus, if it is believed that the progression through a room is

important to capture, it stands to reason that the generator might be given a boost to

aid this process. To this end, Depth meta-information is considered for the generation

process.

The Depth meta-information is utilized by the LSTM as an additional meta-

symbol in the generation vocabulary. For both the Against Grain and Snaking ap-

proaches, there are relatively simple points by which to measure the depth into the

161

generation process, namely the “Move and rotate the current direction by 180 degrees”

merged symbol for the Snaking and the “Move with grain and reset against grain”

merged symbol for the Against Grain approach. Given that it is commonly accepted

[98] that LSTMs are capable of capturing temporal dependencies on the scale of 200

timesteps, the depth meta-symbol is incremented every 200 timesteps in the sequence.

To give a minimal example of this, assume that the depth meta-symbol, denoted as •,

is incremented on every “Move with grain and reset against grain” symbol, ↴, so what

was previously:

⋆, 𝕔, 𝕔, 𝕔, 𝕔,↴, 𝕔, 𝕔, 𝕔, 𝕔,↴, ...,

would instead be:

⋆, 𝕔, 𝕔, 𝕔, 𝕔,↴,•, 𝕔, 𝕔, 𝕔, 𝕔,↴,•,•, ...,

Furthermore, while the geometry of the room is what Kamek is intended to

learn, as described by Byrne, rooms are a “a container for gameplay” [33]. As such,

the actions and paths of a player are as paramount as the gross geometry that induce

those actions. Toward that end, the path of the player can be incorporated into the

generation sequence, via the inclusion of a “Player traversed here” meta-symbol, , .

This player path can be found via one of two – or a combination of both –

methods, (1) given a forward model for the control of a player (either human defined or

automatically extracted via a process like Mappy as in chapter 3.6), a goal state (most

likely human defined), and some sort of search approach (𝐴∗ if a heuristic is defined,

Dijkstra’s [49] if not) – a simulated set of player’s paths can be found or (2) actual player

paths can be incorporated, if player paths are easily acquired (for instance, acquired

162

via determining which entity the player controls and utilizing the track information as

found by Mappy in chapter 3.2). These paths can be incorporated into the generation

sequence, such that Kamek is forced to generate not just the configuration of game

entities that make up a room, but also an exemplar path for a player to traverse that

room.

Figure 6.6: An example of two possible player paths through a region of a room in Super
Mario Bros.

Of course, given either of these methods for getting – perhaps simulated –

player paths, there is a question as to which paths should be included. The 𝐴∗ and

Dijkstra’s will provide optimal paths, but these optimal paths are not necessarily unique.

Furthermore, it is possible to find suboptimal paths and incorporate them. Similarly,

given actual human created paths, there can be a wide variety of paths available, which

might subtly bias the generation process.

An experiment similar to the one in section 6.1.3 was conducted to determine

the effect that this meta-information has on the generation process. As before, the

trained networks each consisted of three layers of 512 LSTM cells, with 80% dropout

applied between each layer, and were trained using RMSProp [212] until two consecutive

163

epochs found no additional improvement on evaluation of a held out training set. For

each approach, the network with the best evaluation score for the held out evaluation

set was used for generation.

Linearization? Depth? Path? Completable % Unique %
Against Grain N N 67.60% 99.95%
Against Grain Y N 50.65% 100%
Against Grain N Y 95.5% 100%
Against Grain Y Y 93.25% 100%

Snaking N N 38.95% 100%
Snaking Y N 39.20% 100%
Snaking N Y 92.85% 100%
Snaking Y Y 97.30% 100%

Table 6.2: The percentage of the rooms for each combination of linearization, depth
meta-information, and path meta-information that were completable and unique.

Each generator produced 2000 rooms and at this stage of evaluation, the same

two proxies, as used above, for value and novelty are considered, completability and

uniqueness. The path meta-symbol comes from the 𝐴∗ search used to verify completabil-

ity; however, instead of taking only the optimal path, all paths within 10 “moves” (i.e.,

moving one tile space in the room grid) were accepted. While these paths are still very

nearly optimal, they do account for multiple paths through the rooms. An example

of two such paths can be seen in figure 6.6. This “within 10 of optimal” produces, on

average, ≈ 25 paths per room.

The results of the experiment can be seen in table 6.2. The Depth meta-

information offers very little advantage in completability, minutely increasing the re-

sults for the Snaking linearization and hurting the completability for the Against Grain

164

(a) A portion where Kamek became “con-
fused” and dropped the player’s path.

(b) A portion demonstrating an incorrect
learned physics “model.”

Figure 6.7: Examples of two instance of faulty player paths generated by Kamek in the
Super Mario Bros. domain. The left figure is caused by the sampling process. While
it is highly unlikely for Kamek to have a large number of timesteps go by without
sampling a player traversal symbol, ,, it is a possible random outcome. The right
figure demonstrates an incorrect learned physics model, as the purely diagonal fall is
not possible within Super Mario Bros.

linearization; however, the proposed reason for incorporation of Depth information is to

better match the style (this will be examined further in Chapter 11). Perhaps unsurpris-

ingly, the incorporation of player paths greatly increases the completability as Kamek is

forced to generate an exemplar player path at generation time. While this path can be

faulty (see figure 6.7 for two examples), even as an approximation it helps guide Kamek

to feasible rooms as its generated contented must contain (or given the probabilistic

nature of the sampling – will contain at high probability) a path that allows the player

to traverse it. Note that the generated paths make no use of a forward model. All

“physics” utilized in the generation of these paths are approximations learned by the

auto-regressive LSTM.

165

6.3 Model Capacity

All models generated so far have used a standard architecture of three hidden

layers of 512 LSTM units per layer with 80% dropout between layers. However, it is

important to assess what size (and dropout) produces the highest quality generated

content. Collins et al. [40] found that all common recurrent neural networks (RNN,

Gated Recurrent Units, LSTM) have a capacity of approximately 5 bits per trainable

parameter. For example, the Super Mario Bros. dataset is 2, 247, 120 bits of infor-

mation, for the room geometry. With the incorporation of multiple player paths (the

aforementioned ≈ 25 per room), the dataset is 88, 364, 096 bits of information. This

would seem to indicate that the networks used on this dataset should have somewhere

between ≈ 450, 000 and ≈ 18, 000, 000 trainable parameters. The number of trainable

parameters in an auto-regressive categorical LSTM is given by the equation:

of parameters = 4(𝑛𝑚+ 𝑛2 +𝑛) + (𝑛 + 1) ∗𝑚+ (𝑘 − 1) ∗ 4(𝑛 ∗ 𝑛 + 𝑛2 +𝑛)

Where 𝑛 is the number of hidden units, 𝑚 is the dimensionality of the cate-

gorical distribution, and 𝑘 is the number of hidden LSTM layers. For the Super Mario

Bros. dataset where there are 18 unique elements in the categorical distribution and

the assumption of a fixed number of 3 LSTM layers, table 6.3 shows the number of

trainable parameters for varying numbers of hidden units per layer.

On the lower end, a network with 128 hidden units per layer is slightly below

capacity for the ≈ 450, 000 parameters and on the upper end 1024 hidden units is slightly

over capacity for the ≈ 18, 000, 000 parameters. This is, quite obviously, a very large

166

Hidden Units Trainable Parameters
32 23, 762
64 88, 466
128 340, 754
256 1, 336, 850
512 5, 301, 266
1024 21, 075, 986

Table 6.3: The number of trainable parameters in an LSTM network with categorical
dimensionality, 𝑚 = 18, and # of layers, 𝑘 = 3, as a function of network size.

range, and as such it is worth experimenting to find a network size that is well suited

to the task. Furthermore, while it is important to find a network that has sufficient

capacity to learn adequately from the dataset, it is important to fight the network’s

tendency to overfit and memorize. Memorization has already been seen in section 6.1.3

where the networks for theWith Grain, Hilbert Curve, and Lebesgue Curve linearizations

memorized rooms during training. Overfitting is a more general problem, wherein the

loss for the training set and hidden validation sets diverge during training – the training

loss continues to decrease, while the validation loss hits an inflection point and stops

decreasing (and in some instances starts increasing) as training continues. Zaremba et

al. [228] found that the application of dropout to LSTMs allowed for the training of

larger networks that were better able to generalize to unseen data, than if networks

of equivalent size to the dropout were trained. i.e., if dropout of 50% was applied, it

performed much better than a network of half the size.

For this experiment, the perplexity of the network on the validation data is

used as a proxy for the network to generalize to unseen data. Perplexity, 𝑃 , is defined

as:

167

𝑃 = 2−∑𝑥 𝑝(𝑥) log𝑞(𝑥)

i.e., two raised to the power of the Categorical Cross-Entropy defined in section

6. The intuition behind perplexity is that the perplexity of a fair 𝑘−sided die has

perplexity 𝑘. E.g., a fair coin-toss has perplexity 2, and a fair 6-sided die has perplexity

6. Thus, a perplexity of 2 can be interpreted as being a decision where two options are

equally likely. However, it is possible for a random variable to have a perplexity of 2

with more than 2 potential outcomes. In that case, the fact that the perplexity is less

than the dimensionality means that in some sense, it is an “easier” decision than the

uninformative random coin toss. i.e., some outcomes must be more likely and others

less, allowing an optimal decision maker some ability to correctly decide the outcome

of the random variable.

Holding the decision making task equal – in this case, predicting the next

generation command in the sequence – a model with lower perplexity does a better

job of correctly capturing the true underlying model – as evidenced by its ability to

correctly model unseen data – than one with higher perplexity.

Hidden Units Dropout |128|× Train 𝑃 Test 𝑃 Completable % Unique %
64 0 ≈ 0.3 1.01 1.035 77% 99%
128 0 1 1.003 1.02 98.0 95.5%
256 0 ≈ 3.9 1.003 1.011 96.8% 98.7%
256 60% ≈ 1.6 1.003 1.036 94.2% 100%
256 80% ≈ 0.8 1.003 1.038 94.1% 100%
512 0% ≈ 15.5 1.00002 1.005 99.3 18.5%
512 80% ≈ 3.1 1.003 1.012 96.6% 100%

Table 6.4: Perplexity and room quality as it relates to model size and amount of dropout.

The results of the parametric study of network size and dropout can be seen in

168

table 6.4. To give a point of reference, state of the art perplexity scores on the WikiText-

2 corpora (a word level corpus of over 100 million words from Wikipedia)[125]) are

≈ 65.9 which indicates that the prediction of tokens in the Super Mario Bros. domain

is a much easier problem. This is not surprising, as the most likely room produced

by the model (shown in figure 6.3), has just sky and ground. To further frame this

problem, a model that predicts this “most likely” room (i.e., sky at the top, ground

on the bottom) has a perplexity of 1.11. So, while a model might do a very good job

of predicting (due to the abundance of the majority class) it can still do a poor job of

generating. Furthermore, while a good test perplexity is important, a large gap between

train and test perplexity indicates the model is over-fitting, leading to poor generation

performance. As expected, the LSTM with 64 hidden units per layer does not have

enough capacity and produces rooms that are not as completable as the other models.

While the number of units used at training time is similar between the 128 units with

no dropout and the 512 units with 80% dropout, the lack of dropout leads the network

to generalize more poorly – leading to non-unique generated content (Using Fisher’s

exact test they have a statistically significant difference in the amount of unique rooms

generated with 𝑝 < 0.0001).

The Birthday Paradox [219, 23] provides a framework for estimating the size

of the support of an unknown distribution. The Birthday Paradox is stated generally

as “Given a set of 𝑛 potential outcomes, if we draw 𝑘 independent and identically

distributed outcomes, how many draws do we expect to result in a 50% probability of

finding two identical outcomes”, or stated in the specific instance “How many people do

169

you need to gather for a 50% probability that two of them share the same birthday?”

This problem is computationally intractable to solve for large sample sizes, but the

Taylor approximation for it is :

𝑃𝑟(Collision) ≈ 1 − 𝑒−𝑛(𝑛−1)
2𝑘

To find an empirical estimate for 𝑃𝑟(Collision) and 𝑘, I ran of Monte Carlo

trials. For each trial, the output of a generator is randomly selected, without replace-

ment, 𝑘 times and assessed for whether it contains two rooms that are identical. The

estimated 𝑃𝑟(Collision) is then Number of Trials with a Collision
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑇𝑟𝑖𝑎𝑙𝑠 . For this, I ran 10,000 trials,

and found that the 128 unit generator had a 𝑘 of 67 to reach ≈ 50% – which leads to

an estimated size of support of ≈ 3, 238, i.e. it is estimated that the 128 unit generator

can produce 3,238 distinct rooms. For the 512 unit generator with 80% dropout, it is

impossible to calculate this in the same way, given that no collisions were found. In

fact, the generator was ran for 10,000 rooms without producing a repeat. However, a

very conservative estimate can be made, if we assume that the 10,001th generated room

is identical to one of the previous rooms. This leads to a 𝑘 of ≈ 7,258 to reach ≈ 50%

– meaning the support is at least ≈ 35 million unique generatable rooms.

We see that increasing dropout is the key factor in this reduction of overfitting

– the networks with 256 units see an increase in unique rooms as dropout is introduced,

at the cost of reducing the number of completable rooms. In general, we see that

increasing network size increases the percentage of valuable – i.e., completable – rooms

generated with increased dropout being necessary to combat the tendency to overfit.

As such, the general guideline for auto-regressive LSTMs is to use the largest network

170

possible, with the highest amount of dropout that (1) still has large enough capacity

for learning the dataset and (2) is able to converge during training.

A further delve into the evaluation of a room generator, and determining

whether it has successfully captured the desired properties of the original dataset and

learned to generalize is discussed in Chapters 11 and 12.

6.4 On the Importance of Following the Flow of Play

In most of the PCGML work in platformers, generation progresses from left-

to-right, an artifact of how most platformers progress – and certainly, for approaches

centered on Super Mario Bros. all rooms progress from left-to-right. However, there is

no reason that generation need progress in that order. Some approaches have operated

in a global manner [166, 181], but most have operated in a linear manner progressing

from left-to-right [182, 180, 75, 73, 84, 45], including all of the work shown so far. While

the global approaches are robust to directional dependence, a question remains as to

whether sequence dependent methods depend heavily on the order of generation. The

only testing of this came from Snodgrass and Ontañón [183] who tested their system

generating from top-to-bottom vs bottom-to-top, finding that for Markov chains, that

generation from the bottom was much more preferable, mostly due to the top-to-bottom

chains’ failure to place the ground in the correct location. LSTMs do not hold that same

problem, as the best functioning approach utilizes both top-to-bottom and bottom-to-

top generation, but it is necessary to test if the left-to-right dependence is or is not

171

important. Using the 512 unit, 3 layer, 80% dropout architecture, a generator was

trained but with the room being represented from right-to-left, i.e., “backwards.” The

results can be seen in table 6.5.

Direction Completable % Unique %
Left-to-Right 96.6% 100%
Right-to-Left 97% 99%

Table 6.5: room quality as it relates to the direction of generation.

Slightly surprisingly, the right-to-left generation has an impact on the unique-

ness, leading to a small amount of duplication in the generative set. Furthermore, the

“backwards” direction not only does not hurt the playability of the rooms and in fact

produces more playable rooms than the presupposed correct direction (although not

statistically different 𝑝 = 0.7034 with Fisher’s exact test). This leads to the conclusion

that for Kamek, the generation order does not matter, an important aspect for extension

into games where there is no determinate direction to the flow of play.

6.5 A Comparison of Human and Machine Annotation

Mappy, as detailed in Chapter 3, is a system capable of producing annotations,

but the impact of these annotations on Kamek’s ability to learn and generate needs to

be assessed. The annotation detailed in Chapter 4 is used and the resultant generated

rooms are compared with the human annotation. Each generator generated 1000 rooms

with the same initial seeding.

The Mappy annotation definitely fares worse than the human annotation (with

172

Annotation Completable % Unique %
Human 96.6% 100%
Mappy 94.0% 100%

Table 6.6: Room quality comparison between the author’s annotation and that of
Mappy.

𝑝 < 0.0157 using Fisher’s exact test) for room completability as seen in table 6.6. Oddly,

the difference seems to come from the Mappy based generator learning an incorrect

internal model of the game’s physics (e.g., in generation it often generates rooms that

require Mario to be able to jump further than he is capable of – and it generates an

exemplar path demonstrating this). This internal model should not be affected by the

annotation, and in future work, I would like to explore this in more detail. However, the

vast majority of rooms generated are of sufficient quality, which is promising for future

work in fully removing the human-in-the-loop for this annotate and generate process.

6.6 Combining Machine-Learned and Search-Based Con-

tent Generation

While the local-sampling approach underpinning Kamek is able to, with regu-

larity, generate rooms that are playable, this process comes with no guarantees. How-

ever, if the process of sampling the LSTM (or other probability distribution) is viewed

as a random – if heavily biased – generation state transition process, it is possible to

supplement this with search-based approaches, of which many exist [213].

However, while there has been research into using search algorithms for content

173

generation, the determination of what the space that is actually being searched is been

the critical problem. These approaches have relied on hand authored genetic phenotypes

[186], fitting together content chunks [121], or hand-tuned transitions [170] – leading

to the searching of a space that has some valid rooms, but the totality of the search

space might not be capable of creating all rooms desired, i.e., might lack generality. If

the search-space is directly related to the desired content space – and comes from a

PCGML system with generality, this searching can combine the strengths of both PCG

approaches – the generality and relative ease of defining the search space inherent to

ML based approaches and the ability to easily tune global parameters and constraints

that come from a search-based approach.

While many search approaches exist, perhaps the easiest pairing for a sampling

based ML approach is that of Monte Carlo Tree Search (MCTS). MCTS operates in

four steps:

• Selection - Starting from the root node, the child with the most potential is chosen

successively until a leaf node is found.

• Expansion - While that node has untried moves, a move is chosen, at random, and

applied

• Rollout - Moves are applied randomly until a terminal condition is met

• Backpropagation - A score is calculated for the rollout and applied successively to

all parent nodes

174

As mentioned, the sampling based PCGML systems (such as Markov Chains

or the auto-regressive LSTM of Kamek) start from a seed state and randomly transition

to successor states. This process repeats until a terminal condition is reached, be it a

terminal state or some desired condition of the chain is met (e.g. length ≥ some thresh-

old). From this description, it is easy to see that standard Markov chain generation

is directly analogous to a single rollout in MCTS. While MCTS is typically considered

in the style of an adversarial game playing AI, hence the parlance of “moves,” for our

purposes the “moves” that can be made are the states that can be transitioned into

from a parent state.

In an early experiment, this work was trained using a Markov Chain similar

to that of Dahlskog et. al [45]. Trained on the rooms from Super Mario Bros. the

state space utilized columns. The successor states are chosen with the probabilities

learned from via local transition probabilities given the last known column, i.e., a true

Markovian process. These single-column transitions were used for both the Expansion

and Rollout steps.

The most common Selection strategy for MCTS is Upper Confidence bound 1

applied to Trees (UCT) introduced by Kocsis and Szepesvári [105]. The UCT formula

for node 𝑖 is:

𝑈𝐶𝑇𝑖 = 𝑤𝑖𝑛𝑖
+𝑐 ∗√ ln𝑡𝑛𝑖

Where

• 𝑤𝑖 - The total score of node i - in game playing applications this is commonly the

number of wins

175

• 𝑛𝑖 - The number of simulations considering node i

• 𝑐 - The exploration parameter.
√
2 theoretically, but used to tune exploration vs.

exploitation in practice

• 𝑡 - The total number of simulations

The main choices for a user of MC-MCTS are how the score is calculated,

the exploration parameter, and the number of rollouts performed. A higher number of

rollouts will better sample the space and produce a better end result, but this comes

at the cost of time. In order to keep the room generation time under 30 seconds per

room we limited the system to 200 rollouts per “move.” We generated 320 vertical

slices per room, so we could sample up to 64,000 rooms per every generated room. The

exploration parameter value matters most in its relative scaling compared to the score

value, so we set it to the theoretically correct
√
2 and focused our attentions on the

score.

The score function that we used was:

𝑠𝑐𝑜𝑟𝑒 = 𝑆 + 𝑔 + 𝑒 + 𝑟

where

• 𝑆 - Whether the room is completable or not. If it is completable then it was set

to 0, otherwise it was set to a large negative number, −100, 000 in this study.

• 𝑔(𝐿) = −(𝑑𝑔−(16−2𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦))2 - The desirability of the room as a function of

the number of gaps. 𝑑𝑔 is the average distance of a column to a gap. The function

176

is maximized when the average distance is 16 (on easy), 12 (on medium), and 10

(on hard).

• 𝑒(𝐿) = −(𝑑𝑒 − (20 − 2𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦))2 - The desirability of the room as a function

of the number of enemies. 𝑑𝑒 is the average distance of a column to the nearest

enemy. The function is maximized when the average distance is 20 (on easy), 16

(on medium), and 14 (on hard).

• 𝑟(𝐿) = −(2𝑑𝑟 − 𝑑𝑒)2 - The desirability of the room as a function of the number

of rewards (coins or power-ups). Where 𝑑𝑟 is the average distance is a reward.

The function is maximized when 2𝑑𝑒 = 𝑑𝑟, i.e. the distance to an enemy is twice

that of the distance to a reward, biasing the generator towards rewards instead of

enemies but with a semblance of balance.

(a) An easy room with no gaps and a low density of enemies.

(b) A hard room with a high density of enemies.

Figure 6.8: Screenshots of two generated rooms being played in Infinite Mario

In theory, these functions could be anything or could be learned via player

testing. For the purposes of this work the desirability functions were quadratics that

captured our hypotheses about how desired difficulty of the room would affect the

desirability of the components. In general as difficulty increased so did the desirability

177

of gaps and enemies, but due to the quadratic nature there was a point at which too

many enemies and gaps would be undesirable to anyone. The opposite was true for

the rewards, as they would decrease as difficulty increased. This score was then passed

through a logistic function to produce a result in the range of 0-1.

𝑤𝑑 = 1
1+𝑒−𝑠𝑐𝑜𝑟𝑒𝑑

Solvability was determined at a low level of fidelity for the purposes of speeding

the MCTS search. Snodgrass used Robin Baumgarten’s 𝐴∗ controller [170] to determine

whether a room can be completed or not, but it runs a full simulation of the Mario

physics making it too slow for a sampling process that wants to be run thousands of

times in a short period of time. We created a simplistic A* Mario controller that operates

on the tile level with discretized physics extracted in a preprocessing step from the actual

Mario simulation. This simulation captures running and jumping physics at fine enough

fidelity to ensure that all jumps that the controller determines completable will in fact

be completable in the full-fledged simulation. However, the low level controller does

not consider enemies at all, so it is possible for a section of enemies to be too dense for

playability. In practice, this is of not much concern as the learned probabilities make

such a section exceedingly unlikely and the score function makes this unlikely as well.

A sample of three rooms generated by our system can be seen in figure 6.8. Room 6.8a

has a low difficulty, leading to a room with no gaps and a relative paucity of enemies.

Room 6.8b is a harder difficulty which results in a higher quantity of enemies and the

presence of gaps.

While the MCTS generation process makes no guarantees about global com-

178

pletability, it guides the sampling process in a way so as to nearly guarantee solvability,

for all practical purposes. For a room to be generated that is not completable, there

must be 𝑛 unsuccessul “moves” chosen by the MCTS, where 𝑛 is a content dependent

parameter representing the smallest number of generation moves that can place a room

into an unplayable state. This is an absolute lower bound, so it is not representative of

any given state, but rather the worst possible state. E.g., in a tile-based Super Mario

Bros. sampling process the shortest possible 𝑛 is 6 if the current generation is the bottom

tile of a row, and then a 5 tall tower is placed in the next column – making it impossible

to jump over). If the sampling process produces playable rooms with probability 𝑃𝑟(𝐶)

and the MCTS makes 𝑘 rollouts per generation step, the global lower bound for the

probability of producing an uncompletable room is:

(1 − 𝑃𝑟(𝐶))𝑘𝑛

i.e., the probability of producing no completable rooms for 𝑛 generation steps, each of

which is made up of 𝑘 rollouts. For instance, the baseline 512 hidden unit, 80% dropout

produces playable rooms 96.7% of the time – given a similar setup as the Markov Chain

approach described, 𝑘 = 200, 𝑛 = 6 then the probability of producing an unplayable go

from 3.3% to 1.6 × 10−1778, an astronomically unlikely event. Even for a sampler that

has poor guarantees on playability (e.g. the Markov Chain approach), a sampler with

only 50% playability generation only produces an unplayable room with probability

equal to 5.8 × 10−320.

179

Chapter 7

Map Generation

The discussion of content generation has, to this point, been focused on room

generation. However, as discussed in chapter 3, the map of a game is a graph of

rooms, and as such, the graph structure (the level) is another possible consideration

for generation. Every game has some graphical structure underpinning it, although in

some cases the graph is almost too minimal to discuss (e.g., Asteroids has but a single

room – but a graph with one node and no edges is still a graph).Linking Logics are

the Operational Logic governing these structures, and many other links exist in these

games in ways not governing the map (e.g. there are links between the main menu or

sub-menus and the rest of the game). Those links are meta-links beyond those that

would be desired to be constructed.

A wide variety of graphical structures exist in games, but broadly they can be

thought of in a few categories (visualized in figure 7.1) :

• Linear Progression – The player starts at the first node, and then progresses

180

(a) The Linear Progression structure.
(b) The Linear Progression with Em-
bellishment structure.

(c) The Spoke and Hub structure.

(d) The Open World structure.

Figure 7.1: Four common graphical structures of maps found in games. The blue
diamond nodes represent the player’s starting point in the game. In figure 7.1b there
are digressions, small yellow squares, which lead back to the main, light red rectangles,
and warps (from the first light red rectangle to the third. Figure 7.1c shows a structure
going from the hub, the light blue diamond, to a “level” and then back. The dotted line
represents a game where a given “level” can only be selected once (e.g. Mega Man). In
the Open World example (Figure 7.1d) the “over world” is designated by the yellow
nodes, and the “dungeon entrances” are the light blue rectangles.

181

from one room to another. This is the most common structure for early room

based games (e.g., Pac Man, Donkey Kong, Contra, etc.). See figure 7.1a for a

small illustration.

• Linear Progression with Embellishment – The player starts at the first node,

and then progresses from one room to another. However, unlike the vanilla Linear

Progression there are a small number of embellishments (for example, the player

might exit a room go to another room and then return to the first – as in Super

Mario Bros. when the player finds a warp-pipe to a coin room. This is the structure

of many “linear” games – games commonly thought of as linear, but not strictly

so (e.g., Super Mario Bros., Kid Icarus, Battle Toads, etc., See figure 7.1b for a

simple illustration).

• Spoke and Hub – A map structure that has become very common over time,

the spoke and hub structure has a “hub world” to which all of the other content is

connected. The content that the hub connects to is typically some other, simpler,

structure, i.e., if the content were severed from the hub world, it would most likely

be a Linear Progression or Linear Progression With Embellishment (e.g.,

Mega Man, Super Mario 64, Spyro The Dragon). See figure 7.1c for a simple

illustration.

• Open World – A map structure with very high connectivity. The player has

nearly full control over how they explore this structure, being able to reach a

piece of content in many different ways. However, often a number of choke-points

182

will exist where the only way to reach one section of content must pass through

a specific point (e.g. to explore a “dungeon” in The Legend of Zelda the player

must enter the dungeon from the “over world”). In some cases, the distinction

betewen Spoke and Hub and Open World can be blurry (e.g. in Final Fantasy

pieces of land are segmented from each other during most of the game, but upon

acquiring an airship the player can access any room from it, essentially converting

a Open World structure into a Spoke and Hub structure). See figure 7.1d .

While all of these classes of structure exist in games, procedural generation of

graphical structure has been largely focused on the Open World structure. For games

with other structures, the generation has mostly focused on individual room structure

(e.g., the generation of rooms in Super Mario Bros. has ignored the overall graphical

structure). From a research interest perspective, this makes sense. Generally in games

with less interesting graphical topology, the core variety and play space is found within

the rooms. However, for games with more rich topological structures, the individual

rooms have much less import, and the overall journey through the topology is where

the main interest lies (e.g., in The Legend of Zelda, of the 236 rooms that comprise the

rooms of all dungeons, there are only 99 distinct rooms – 41.9%), hence the research

focus. However, this is not to say that the other structures have been ignored – Butler

et al. [32] generated puzzle progressions for a fraction-teaching puzzle game, Refraction,

i.e., the generation of a Linear Progression structure.

Most of the work looking at the procedural generation of Open World maps

183

Figure 7.2: An illustration of the graphical structure underpinning a portion of the map
of The Legend of Zelda – the “first” dungeon, aka The Eagle. The dungeon is laid out
in a continuous space, but the edges between rooms – doors – operate in a different
manner than the contiguous space inside of a room. i.e., the player can move freely
within a room, but upon entering a door, they lose the ability to move freely until they
have fully entered the next room.

184

Figure 7.3: An example of a non-Euclidean connection in The Legend of Zelda: A Link
to the Past that defies the standard understanding of doors in the game – i.e., if a player
exits from the north side of a room, they expect to enter from the south side.

has relied heavily on human authored rules and heuristics. Broadly, the existing work

can be viewed as variants of searching for maps that meet the designer’s beliefs about

what a proper map should look like. These fall under the domains of classical search,

genetic algorithms, and constraint based methods.

Classical search based methods treat the possibility space for generated arti-

facts as a tree and perform some search on that space to find viable maps. The system

proposed by Valls-Vargas, et al. [216] performs an exhaustive breadth-first search to

find all possible mission spaces for an input set of plot points. Once all possible missions

have been constructed, they are evaluated for fitness based on how closely the mission

matches the desired properties set forth by the designer. This approach will find the

best solution, as defined by the evaluation criteria, but can only handle missions of a

limited size due to the exhaustive nature of the search.

185

Grammar based methods are not guaranteed to find an optimal solution, but

their limited expansion rules direct the search to more desirable regions of the possibility

space much more efficiently than an breadth first search. Joris Dormans’s system [51]

uses grammars for both the mission and map spaces. The mission space is constructed

by a graph grammar where nodes in the graph make up player actions such as ”Defeat

Boss” or ”Unlock Door”. From a starting seed, production rules are applied pseudo-

randomly until all non-terminal nodes have been converted to terminal nodes. Once

the mission space of the map has been constructed, a shape grammar is applied on the

mission graph. The first node of the mission graph is taken and the system looks for a

shape grammar rule that satisfies the mission node symbol, finds a location where the

rule could be applied and applies it. A similar grammar based system was developed by

van der Linden, et al. [112] that uses grammars for both mission and map generation as

well. The advantage to van der Linden’s work is that multiple mission actions can occur

at the same location, e.g. kill a dragon and get dragon’s treasure could both occur at

the same location.

Genetic algorithm solutions have the advantage of being able to find a wide

range of optimal solutions. However, they come with no guarantees that the optima

found are global or that they will terminate in any amount of time. The key factors that

determine the type of map created by a genetic system are the genotype and phenotype

representations and the evaluation metric. The system developed by Sorenson and

Pasquier [186] has direct genotype to phenotype mapping as elements in the phenotype

equate to the placement of elements in the map. Their evaluation metric seeks to

186

keep interactions along the optimal path varied. To keep genetic diversity while also

ensuring the validity of produced maps, they used a Feasible-Infeasible Two-Population

split. By considering only the positioning of game elements, their system considers the

mission space tangentially, by assuming that a good map space will lead to a good

mission space. Valtchanov and Brown [217] created a system that uses a tree based

genotype to handle room to room placement. Their fitness evaluation rewards novelty

and room interconnectedness, but only considers player experience by guaranteeing the

maximum optimal path length. Hartsook, et al. used a similar tree based genome, but

their fitness function considers the distance between critical nodes, length of sidepaths,

average number of sidepaths per non-critical node, total number of sidepaths, total

number of nodes, and environmental transitional probabilities.

Horswill and Foged [87] developed a constraint solver that uses constraint

propagation to place items within a map to meet a desired player experience, but it

does not generate a graphical structure, instead placing items within a fixed graphical

structure.

7.1 Digression on Euclidean Vs Non-Euclidean Topology

Within a room, the player moves through continuous space, but the room-

to-room structure is not necessarily a Euclidean space. In some cases the graphical

structure might be mostly Euclidean: e.g., in a dungeon in The Legend of Zelda the

rooms of the dungeon are linked in Euclidean space – if the player traverses up, then

187

left, then down, then right, they will return to the same location (see figure 7.2 for an

example). Typically, in these games, if the player leaves a room via a doorway at the

edge of the room, they will enter a room at the opposite edge (e.g. leaving via the

northern edge of a room and entering from the southern edge) – indicative of moving

in Euclidean space – and if the player leaves the room via some other conveyance (e.g.

stairs, portals, etc.), the movement is non-Euclidean; however, this is not necessarily

true for all circumstances, as there are games where leaving via edges is non-Euclidean

(e.g. the player might exit a room via the northern “stairs” in The Legend of Zelda:

A Link to the Past and wind up in another room on the northern edge in a space not

connected in a Euclidean manner – figure 7.3 shows this).

While many games have these non-Euclidean connections, all prior work has

operated in the regime where all edges must represent a Euclidean geometry. This

is more difficult, and at the least, places the constraint that all generated topologies

must have a planar embedding (an NP-hard problem [209]). Furthermore, given that

the individual rooms are typically of fixed size and dimension, even a planar graph

might not be suitable, if a given graph can not be embedded with two connected rooms

adjacent to each other.

7.2 Data Requirements

While the requirements for a room are somewhat stringent (see section 5.2),

the data representation for a map is somewhat loose – in part due to the stringent

188

requirements on room generation. While room generation has been focused on the

generation of content directly facing a player, map generation has typically operated at

a level of remove, often utilizing another generation process for the individual rooms.

Instead of generating the graphical structure and the room content at once, the map

generation produces the structure, where each node is the input for a room generation

process (e.g., generate a room that contains a key for a locked door), but the specifics of

the room generation implementation (and the required input) are application specific.

For a map generator to achieve generality, the generator must be capable of

generating any possible graph topology, and the downstream room generator must also

be general.

For a graph generator to have generality, it must be capable of introducing new

edges between arbitrary nodes. To prove this, consider a generator that only introduces

new edges in conjunction with new nodes. Consider the generation move that has the

highest ratio of number of edges added, 𝑒, to the number of nodes added, 𝑛. Thus,

the most edges that can exist in the graph are |𝐸| = 𝑘𝑒 with a corresponding number

of nodes |𝑁| = 𝑘𝑛, where 𝑘 is the number of times the generation move is applied.

However, this means that it is not possible for |𝐸| = |𝑁|2 as:

189

|𝑁|2 = 𝑘2𝑛2

𝑘2𝑛2 = 𝑘𝑒

⟹ 𝑘𝑛2 = 𝑒

However, since 𝑒 is a fixed ratio of 𝑛, it is not possible for it to be equal to the

number of times the generation move is applied, 𝑘.

However, while it is theoretically easy to allow a generator to add arbitrary

edges, in practice this is beyond the scope of any generation system to date. This is due

to the practical considerations inherent in the generation process, namely producing

high quality content that matches the design goals. For instance, it is often the case

that there will be a desired main path that the player must traverse (although there will

often be content that the player can traverse if they see fit but is not essential for them

to traverse) – a system that can add arbitrary edges has to ensure that the addition of

an edge does not alter the graph such that this path is no longer required. In practice,

all of the approaches have either limited the size of generation to make this tractable or

have heavily constrained the generation space such that it is not a concern.

190

Chapter 8

Case Study – Agahnim

Given the problem of generating a map graph via machine learning there are

a number of considerations for choice of approach: 1

• The generator must consider long scale structures of the graph – e.g., is there

sufficient distance between the start of the map and the end?

• The generator must consider global properties of the graph – e.g., does the map

have a “good” number of nodes, edges, degree, etc.?

• The generator should be capable of supporting information about the player’s

traversal – e.g. backtracking is common and the degree to which it occurs is

important.

The architecture used in Agahnim is a Bayesian Network (BN). BNs are Di-

rected Acyclic Graphs (DAGs) representing conditional probability distributions. The
1Portions of this chapter originally appeared in “The Learning of Zelda: Data-Driven Learning

of Level Topology”[201] and “Sampling Hyrule: Sampling Probabilistic Machine Learning for Level
Generation” [196]

191

Depth

Distance to
Path

Room Type

Per Room

Per Level

Next Door

of
Rooms

Previous
Room

of
Doors

Path
Length

of
Enemy
Rooms

Number of
Neighbors

Figure 8.1: The graphical encoding of conditional probability in Agahnim’s BN. The
diamond nodes are either set by a user or sampled in order of dependency and then
fixed for the duration of generation. The circular nodes are deterministically set based
on the generation so far. The rectangular nodes are those that are sampled at each step
of the generation.

192

probabilistic nature allows for easy sampling of unobserved variables – the content that

is to be produced – while incorporating observed variables – high level information and

deterministic data (such as player traversal information). The nature of a BN allows

it to freely incorporate as many observed variables as a designer might wish, allowing

for high level control of “knobs” – things such as the size of the map, the amount of

backtracking, the relative frequencies of different types of rooms, etc. The BN used in

Agahnim can be seen in figure 8.1.

Child Distribution
Parent Distribution Categorical Numerical
No Parent Dir(𝛼) 𝒩(𝜇, 𝜎2)
Categorical Dir𝑖(𝛼𝑖) 𝒩𝑖(𝜇𝑖, 𝜎2

𝑖)
Continuous 𝜎(𝑥,𝒩𝑖(𝜇𝑖, 𝜎2

𝑖)) 𝑥 ⋅ 𝒩𝑖(𝜇𝑖, 𝜎2
𝑖)

Mixed 𝜎(𝑥𝑗,𝒩𝑖(𝜇𝑖, 𝜎2
𝑖)) 𝑥𝑗 ⋅ 𝒩𝑖(𝜇𝑖, 𝜎2

𝑖)

Table 8.1: Modeled Distributions for Parent-Child Combinations

where

• Dir(𝛼) – is the Dirichlet distribution with concentration 𝛼

• 𝒩(𝜇, 𝜎2) – is the Normal distribution with mean 𝜇 and variance 𝜎2

• 𝜎(𝑎, 𝑏) is the Softmax function, such that 𝜎(𝑎,𝑏)𝑗 = 𝑒𝑎𝑗⋅𝑏𝑗

∑𝐾
𝑘=1 𝑒𝑎𝑘⋅𝑏𝑘

, i.e., the probability

that the child variable has category 𝑗

For child variables with numerical parents, the child is a regression – either a Softmax

regression (for a categorical child) or a Bayesian linear regression (for a continuous).

For child variables with categorical parents, the child variable is always a lookup table,

but that lookup table might contain Dirichlet distributions (child distribution is cat-

193

egorical), Normal distributions (child distribution is continuous), Softmax regressions

(child distribution is categorical and also has continuous parents), or a Bayesian linear

regression (child distribution is continuous and also has continuous parents).

Agahnim handles both continuous, 𝑥 ∈ ℝ, and categorical, 𝑥 ∈ ℕ, data. The

exact handling of a variable depends on the type of a random variable and the “parent”

variables – the variables that the dependent variable is conditioned on. The exact

handling is shown in table 8.1.

The variables considered by Agahnim are:

• # of Rooms ∈ ℝ
• # of Doors ∈ ℝ
• Path Length ∈ ℝ
• # of Enemy Rooms ∈ ℝ
• Room Depth ∈ ℝ
• Number of Neighbors ∈ ℝ
• Distance to Path ∈ ℝ
• Previous Room Type ∈ { Start,Enemy,Puzzle,Item,Boss,Boss Key,Important Item,End}
• Room Type ∈ {Start,Enemy,Puzzle,Item,Boss,Boss Key,Important Item,End}
• Next Door Type ∈

{Regular, Bombable, Key Locked, Puzzle Locked, Item Locked, Boss Key Locked}

Note, due to the nature of the handling of numerical values, all variables that

are numerical are treated as real valued numbers. Of course, all of the considered

variables are best represented as natural numbers (i.e., one can not have an irrational

number of doors or rooms in a map); however, in practice, rounding to the nearest

natural number has no ill effect on the generation process of Agahnim.

The BN underlying Agahnim is constructed and trained using the Infer.NET

probabilistic programming framework from Microsoft Research [126] which uses the

194

Figure 8.2: An illustration of the backtracking required in The Legend of Zelda. The
gold line represents the optimal path (without using bombs) required for the player
to find all of the important items and complete the map – which requires the player
to backtrack through some rooms up to three times. If the player diverges from this
optimal path, then the backtracking increases even more.

Variational Message Passing (VMP) protocol to infer the underlying distributions given

a graphical model and observed data. To train, the network is constructed, the training

data is “observed,” and then the posterior distributions are inferred. All variables in

the network are set up with uninformative priors – Uniform concentration for Dirichlet

variables, 𝒩(0, 100) (0 mean, 100 variance Normal distribution) for the mean of the

Normal distributions, and Γ(1, 1) (Gamma distribution with 𝛼, 𝛽 = 1) for the variance

of the Normal distributions.

195

While the incorporation of player traversal is critical for Open World map

structures, it is beyond the scope of any pure-machine learned approach to date. While

a generator can operate under the faulty assumption that its internal player model

is correct, it is certainly not guaranteed to have a correct model (e.g., even with the

incorporation of player paths, Kamek is still only able to produce playable paths 96.7%

of the time). And unlike a game such as Super Mario Bros. there are no heuristics for a

general graph traversal game – i.e., unlike in Super Mario Bros. where the generator can

reasonably predict that the next player path will be to the right of the current position

this is not true for a game like The Legend of Zelda with its high degree of backtracking

(see figure 8.2 for an illustration).

To show the difficulty of this problem in a general domain, consider deep

reinforcement learning. It is is capable of producing super-human game players in many

games [127], but does horribly on the game included in the test set most in line with

the Open World map structure, Montezuma’s Revenge. Deep reinforcement learning

is capable of achieving scores over 13 times higher than that of a practiced human on

reaction based games (e.g., Breakout or Video Pinball), but on Montezuma’s Revenge,

where the traversal of the space is just as important as the twitch reaction, it achieves a

score that is 0% of a practiced human [127]. While Montezuma’s Revenge is a relatively

complex game, the scope of its structure – 99 rooms – is well below that of a game such

as The Legend of Zelda – 382 rooms. As general game playing progresses, this should

become more tractable with time, but Agahnim uses a domain specific search (Dijkstra’s

search with a pruning of the state space such that no unnecessary backtracking occurs)

196

to perform its completability checks and determine the optimal path.

8.1 Generation Process

The generation process of Agahnim has four main phases:

1. Observe Global Parameters – The user either sets a high level parameter such

as # of rooms, # of doors, path length, # of enemy rooms, or #total backtracks.

For any variables left unset by the user, Agahnim samples the rest in order of

dependency (i.e., # of Rooms has no predecessors, so it would be sampled first).

2. Observe Deterministic Variables – The deterministic variables are then set,

based on the current context. The initial context has a depth of 0 and a distance

to path of 0, and a previous room of Start (a meta room type).

3. Sample – The room type is then sampled and fixed. The number of neighbors

is then sampled, and then for each neighbor (minus the neighbor that this room

came from) the type of the door to that room is sampled and this room is then

used as the context and the process goes back to step (2).

4. Resolve Inconsistencies – After sampling until the desired number of rooms is

met, Agahnim resolves any inconsistencies in the map, namely, if there is a locked

door with no key reachable by the player. This is resolved by finding a room that

is reachable by the player that is most likely to have a key (as determined by the

conditional probability distribution of the BN) and setting it to have a key. This

197

process is repeated until such a point as there are no unresolved inconsistencies.

The purely machine learned portion comes from determining the conditional

probability distribution for the sampled variables – whichever global parameters that

remain unobserved by the user and the per-room variables that make up the bulk of

the generation process. Some of the deterministic data is trivial to determine (e.g., the

depth of a room is just one plus its predecessors depth), while some relies on the bespoke

domain-specific Legend of Zelda solver.

8.2 Results

Given the nature of the BN as a conditional probability distribution – it can

also be used to infer information about a map in a predictive manner. The BN used in

Agahnim was compared with two other models, a more complex model that incorporated

a host of other information:

• Number of puzzle rooms in the map
• Number of item rooms in the map
• Number of locked doors in the map
• Number of special locked doors in the map
• Number of doors locked by puzzles in the map
• Number of doors with soft-locks in the map
• Number of enemy rooms on optimal path
• Number of puzzle rooms on optimal path
• Number of doors on optimal path
• Number of locked doors on optimal path
• Number of special locked doors on optimal path
• Number of doors locked by puzzles on optimal path
• Number of doors with soft-locks on optimal path
• Maximum number of times a room is traversed during the optimal path
• Length from start to dungeon key
• Length from start to special item
• Neighbor types
• Door types from neighbors

198

As well as a much simpler model, a Naïve Bayes model, designed specifically for this

experiment – predicting the number of rooms in map, given all other information. Given

Bayes rule, if one wishes to determine the probability of 𝑟 given the variables, this can

be factorized as:

𝑝(𝑟 ∣ 𝑣) = 𝑝(𝑟) 𝑝(𝑣∣𝑟)
𝑝(𝑣)

So, Naïve Bayes is a simple model BN where the predicted variable, in this

case the number of rooms in a map 𝑟, is used as the conditioning variable for all other

variables, 𝑣. Since 𝑝(𝑣), the probability of the observed independent data, does not

change – this can be safely dropped, and the problem becomes finding the value of 𝑟

that maximizes 𝑝(𝑟) 𝑝(𝑣 ∣ 𝑟).

Learning Method Training MSE MSE MSE – no outliers
Naïve Bayes 7.74 12.06 8.65
Complex 2.89 6.40 3.41
Agahnim 2.74 6.24 3.42

Table 8.2: MSE of Inferred Room Count

The Mean Square Error (MSE) for predicting the number of rooms via the

three models on a held out test set of four maps can be seen in table 8.2. The baseline

Naïve Bayes approach does worse than the models that attempt to capture the depen-

dencies – both the Complex model and the model used in Agahnim have roughly similar

performance, with Agahnim having better training and test performance, although per-

forming worse when an outlier map is removed from the test set. The outlier is the

largest map from The Legend of Zelda: A Link to the Past, being nearly twice the size

of any map in the training set, i.e., not a representative map.

199

Learning Method Negative Log-Likelihood
Naïve Bayes 3655.5
Complex 187.8
Agahnim 17.9

Table 8.3: Perplexity for the three models.
N

eg
at

iv
e

Lo
g-

Li
ke

ho
od

 P
er

 R
oo

m

Rooms Per Level

Original Levels

Agahnim Levels

Figure 8.3: Negative log-likelihood per room versus rooms per map for both the gener-
ated maps and all of the original maps (training and test set). The dark red line is the
median for Agahnim, and the spread represents the 25𝑡ℎ and 75𝑡ℎ percentiles.

The overall negative log-likelihood of the models on the held out set can be

seen in table 8.3 (smaller negative log-likelihood represents a more likely model given the

data). Agahnim out-performs the others by at least an order of magnitude indicating

that, of the considered distributions, it is the best at the predictive task for all considered

variables.

Unlike Kamek, which is able to produce rooms quickly (≈ 6 seconds per room

on a GTX 980M), Agahnim is a slow generation process, taking ≈ 1.5 minutes per

room which means that the generation of a full map takes between 15 minutes and

an hour. As such, the results are of much smaller scope than Kamek, with 20 maps

200

(a) (b)

(c)

Figure 8.4: Representative sample of three generated maps from Agahnim.

201

generated for each of three different settings for number of generated rooms: 12 (the

minimal found in the training set), 35 (the median found in the training set), and 47

(the maximal found in the training set). The negative log-likelihood per room can be

seen in figure 8.3. While, as discussed in section 6.1.1, maximizing the likelihood of

generated results is not a guarantee for high quality results, it is a good proxy, with an

increase in likelihood generally being correlated with an increase in quality (as shown

in table 6.4). The negative log-likelihood per room versus the number of rooms per

map for both the generated maps and all of the original maps (training and test set) is

shown. In general, maps around the median size are the most likely, which is expected,

as that size is generally more likely than the other sizes. The human generated maps

are more likely than the generated, but not to an unreasonable degree (e.g. the 25𝑡ℎ

percentile of likelihood for the maps with 35 rooms are more likely than the human

produced map of size 25). A sampling of maps generated by Agahnim can be see in

figure 8.4.

8.3 Discussion

Agahnim represents an early experiment with map generation, and, as such,

a number of refinements are possible. The largest issue with Agahnim is its lack of

generality. Agahnim generates maps room-to-room connections, but is never able to

produce edges between rooms more than one step away in the generation process. This

leads to Agahnim producing a tree-like maze with no cycles, a structure that is rather

202

Figure 8.5: A highlighting of the connectivity for a map generated by Agahnim. The
lack of cycles is a problem with the generality of Agahnim.

unlike that of the input set of maps from The Legend of Zelda Series – an illustration

highlighting this lack of cycles can be seen in figure 8.5.

Further harming the generality of Agahnim is a lack of orthogonality in its

representation of room type. The annotation scheme used in the training set for Agah-

nim is orthogonal in its covering of room type; i.e., a room is a set of binary flags

indicating whether a room has a given type (e.g., a room type might be {𝐸𝑛𝑒𝑚𝑦},

{𝐸𝑛𝑒𝑚𝑦, 𝐼𝑡𝑒𝑚}, {𝐼𝑡𝑒𝑚,𝑃𝑢𝑧𝑧𝑙𝑒}, etc.). However, Agahnim collapses these orthogonal

Binomial variables into one Categorical variable (a la the discussion of entity anno-

tations in section 3). E.g., while a room can have the types Important Item or Key,

the combined category of Important Item-Key does not exist in the original dataset, so

it is impossible for Agahnim to generate a room with that type (although Important

Item-Key-Puzzle-Enemy does exist in the original dataset).

203

On the practical side, the slow generation process hinders large-scale evaluation

of the generative space of Agahnim. Unlike Kamek, producing a large volume of maps

is beyond the practical scope of what is feasible (e.g., producing 1000 maps would take

Agahnim ≈ 36.5 days). As such, the evaluation of Agahnim will not be considered in

further detail in Chapters 11 and 12.

204

Part III

The Evaluation of Generative

Methods

205

Chapter 9

Existing Methods for Generative

Evaluation

While the foremost goal of any procedural generation system is that of produc-

ing high quality, novel content there is still no agreed upon methodology for assessing

whether a generator has achieved that goal. The computational creativity [5] commu-

nity has focused on not just the content generated, but also the underlying processes

of the generators. These processes were discussed somewhat in section 5.2, but are not

the subject of the following chapters. What follows is an assessment of the existing

methodologies researchers use to understand the capabilities of a generator, by visual-

izing the generative space, by comparing and contrasting generators, and by presenting

pieces of content. While these practices are useful stepping stones, there are gaps in

what they present and what questions they can fundamentally answer. In the following

chapters I will discuss new methodologies for assessing the capabilities of generators –

206

with a specific eye towards PCGML generators – both in the large scale assessment of

the generative space (Chapter 11) and in small scale selection of individual pieces of

content (Chapter 12.1) .

Figure 9.1: An example expressive range plot from Smith’s dissertation [179]. Brighter
regions represent a higher probability density for the generator’s sampling distribution.

In the domain of procedural generation of game level content, expressive range

has been the dominant qualitative exploration tool. Expressive range is an idea put

forth by Smith and Whitehead [177, 178] whereby two metrics are chosen (e.g., for

platformers Smith and Whitehead settled on linearity, a measure of how closely the

ground of a level follows a line, and leniency, a proxy for how difficult a level is) as the

axes for a density plot, showing which areas of the generative space a generator tends to

explore. While the metrics that make up the expressive range are usually quantitative

in nature, the act of the analysis is qualitative, in that it relies on the subjective analysis

of the reader.

Danesh, a tool from Cook et al. [42], is designed to help bridge the gap

207

Figure 9.2: Danesh in situ. Danesh is a plugin for the Unity engine. Reproduced from
[42]. Pictured is a map generated by an algorithm, the parameters for the generator
(top right), the metrics of the map (top left), tools for targeting metrics (bottom left),
and tools for generating expressive range analyses (bottom right).

between a generator and its expressive range. For many generators, it can be difficult

to determine which set of parameters will achieve the desired outcome. Danesh displays

the expressive range of a generator and allows users to target areas of the expressive

range they find desirable, and then tries to find parameterizations that target that region

of the expressive range. Figure 9.2 shows an example of Danesh in action.

In Smith’s thesis [179] she discusses the expressive range of Launchpad [178],

stating “There is good coverage of the generative space for both linearity and leniency.”

However, this claim goes unexplored. Why is the coverage (as shown in figure 9.1)

“good?” This question is tangentially addressed by Teng [208]. Exploring the expressive

range of his generator, he finds a region of the expressive range of two metrics (the

connectivity and density of road networks) goes uncovered by his generator (e.g., the

208

generator can not produce road networks of high density and low connectivity, as these

properties are entangled); however, this is not a failure of the generator, but rather a sign

that the generator is producing plausible road networks – a victory for the approach. As

such, it is incorrect to say that a large expressive range is unequivocally a good quality

for a generator.

Of course, this perhaps feels at odds with the earlier discussions of general-

ity. If it is an unequivocal good that a generator have generality, why is it not an

unequivocal good for a generator to have a large expressive range? Remember, it is an

unequivocal good for a generator to be able to generate all possible content (i.e., be

capable of supporting a large expressive range), not to actually have a large expressive

range. Generality is important only for preferring a more general generator to another

assuming they produce content of equivalent quality. One major aspect of the quality

of a generators ’content – for machine learned approaches, certainly – is matching the

distributions of the training data.

The goal of a machine learned approach is for the generator to learn the style

latent within the training data, so as to produce content that could conceivably pass

the test of “Was this content plausibly in the training data?” As such, it is important

to understand the expressive range of not just the generator, but of the training corpus.

If the expressive range of a generator differs from that of the training set, then it speaks

to a fault of the generator that is “flavoring” the generated content.

A practice that is common in the field of procedural content generation is to

pick some subset of metrics (since most research is in the platformer domain, most pick

209

the linearity and leniency metrics put forth by Smith and Whitehead [177]), and, instead

of displaying the expressive range density plots, list summary statistics for the generator

[45, 129, 165, 189, 118, 117]. However, while the pragmatics are understandable, as

authors have limited space to report results and large scale comparisons require a table

to report all combinations; however, for generator evaluation, this is an unsatisfactory

approach. The shape and density of the sampling distributions is important, and simple

measures such as mean and standard deviation (and by extension, tests such as Student’s

t-test [191] which rely on said measures) tell a very incomplete story.

Figure 9.3: Anscombe’s Quartet showing four distributions with very different visual
qualities but (nearly) identical summary statistics. Reproduced from [3].

Anscombe’s Quartet [21] is quartet of datasets, each demonstrating pairs of

< 𝑥, 𝑦 > coordinates that all have the same mean, variance, correlation coefficient,

maximum likelihood linear regression, and coefficient of determination for the linear

210

Figure 9.4: The Datasuarus Dozen [120] with nearly identical summary statistics. Re-
produced from [120].

regression. However, upon visual inspection, it is quite easy to see that the the data-

generating distribution for the four examples is quite different (as shown in figure 9.3).

This has been taken further with work by Matejka and Fitzmaurice [120] who produced

a method whereby a distribution of data can be perturbed to match another image,

while keeping the same summary statistics. The so-called Datausaurs Dozen (as they

were all generated from the source dinosaur distribution) can be seen in figure 9.4.

This speaks to the danger of only reporting statistical properties, showcasing the need

for the visual inspection of the sampling distributions (discussed in section 11.1) and

qualitative evaluation of both generated artifacts (discussed in section 12.1). However,

while summary statistics are not sufficient, it is desirable to have statistics that allow

for the comparison of generators’ distributions, but these statistics must be holistic, so

as to actually capture the shape and density of the distributions and can not just be

211

univariate measures (discussed in section 11.3).

As generative models have become more popular in the image generation do-

main, the desire to find metrics that determine whether a generator is achieving its goal

have begun to be researched by that community. One such measure that has become

the de facto standard for Generative Adversarial Network based approaches is that of

Inception Score (IS) [158], which has seen widespread adoption [99, 226, 88]. IS utilizes

a pre-existing image classification model, the Inception v3 Network [204] pre-trained on

the ImageNet corpus [48], which has been trained to determine the class of the object

found in the image (e.g., Does the image contain a dog, a cat, a flower, a car, an air-

plane, etc.?). Given this model, and its ability to produce a probability distribution

over the categories, 𝑝(𝑦), the IS of a generative model, 𝐺, is defined as:

IS(𝐺) = exp(𝔼𝑥∼𝐺𝐷𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦)))

Where 𝑥 ∼ 𝐺means that image 𝑥 was sampled from generator 𝐺 and𝐷𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))

is the Kullback-Leibler divergence between 𝑝(𝑦|𝑥) and 𝑝(𝑦). Kullback-Leibler divergence

[107] is measure of the relative entropy between two distributions, i.e., how much they

diverge from each other. Intuitively, the IS tries to balance two measures, 𝑝(𝑦|𝑥) and

𝑝(𝑦). It tries to achieve high 𝑝(𝑦|𝑥), i.e., it wants to be able to produce images that

are capable of being easily classified by the supplementary classification model. It also

tries to achieve high entropy in 𝑝(𝑦), i.e., produces a wide range of images that cover

all possible categories.

However, while the approach is appealing (and has been shown to correlate well

with human perceptual ratings [158]), it has two limitations that make it unappealing for

212

procedural game content generators. First, it relies on a pre-existing vetted classification

system. While image classification has been an area of research for decades, there is no

such community (or even an analogue for a similar problem domain) in the field of games.

Any such classifier would, almost by necessity, have to be trained in a bespoke manner for

every new game, and would lack the external validation that a state-of-the-art network

like the Inception v3 comes ready with. However, while this practical consideration

likely precludes using a measure such as the Inception Score (or similar Inception based

measures such as the Fréchet Inception Distance [80]), there are fundamental flaws in

the Inception Score as discussed by Baratt and Sharma [25], namely that it is easy to

find pathological cases where horrible generation distributions produce a higher IS than

the true underlying distributions – meaning that the score can be easily gamed and

does not measure how well a generator is matching the true generative distribution, the

ultimate goal for a machine learned generator.

In a rambling (her words, not mine) [176], Smith discusses pitfalls (i.e., deadly

sins) that procedural content generation research falls into. The cardinal sin is that of

cherry-picking a handful of generated artifacts and showing them in lieu of actual results.

This approach is problematic in its selection criterion. Why is this content being shown?

Is it actually representative? Is it the best result that the generator produced? This is

especially important to determine for generators wheremode-collapse is a concern. Mode

collapse refers to the phenomenon where a generative system (typically a Generative

Adversarial Network) repeatedly samples similar portions of the generative space, even

with different parameterization and random seeding. This is obviously an undesirable

213

property for a generator, as one wants different random seeding to produce varied results,

but this is an insidious problem that can go undetected by the cherry-picked display

of results. A shown image (or set of 5, 10, etc.) will not display the problem of mode

collapse and any random selection of 𝑛 images might still not display the problem.

When a generator is supposed to be able to generate an unbounded (or, as is common,

4,294,967,295 possible outcomes – the size of an unsigned 32-bit integer) even showing

something like 500 or 1,000 pieces of generated content is a paltry sampling (showing

only 0.00001 − 0.00002% of the supposed generative space). It is critical to have a

principled way of showcasing the generative content, such that cherry-picking for the

best results or to avoid showing mode-collapse is not possible. This is discussed in more

depth in section 12.1.

214

Chapter 10

Aside – A Discussion of Metrics for

Platformers

Before discussing methodologies based on evaluation metrics for PCG systems

(Chapters 11 and 12), it is important to gain an understanding of the metrics themselves.

The generation of platformer rooms has been the largest area of research within the

domain of PCG, and the amount of work on computational metrics to evaluate platform

game rooms [177, 34] significantly lags behind the amount of work concerning room

generation [175, 181, 198, 45, 166, 75, 160, 152, 117], to name a few examples of PCG

systems for generating rooms of platform games. Furthermore, while a large number

of metrics have been proposed and a smaller number actually used, what these metrics

actually mean is mostly unexplored.1

To try to find out how metrics actually correlate with human understandings
1Portions of this chapter originally appeared in “Understanding Mario: An Evaluation of Design

Metrics for Platformers”[195]

215

of platformer rooms, I use the dataset described by Reis et al. [152].2 Reis et al. used

the Notch Level Generator (NLG),3 to generate a library of 2,000 rooms of size 20× 15

(a typical Super Mario Bros. room is approximately 10 times longer than Reis et al.’s

small rooms).

NLG receives as input a difficulty value 𝑑 for stochastically determining the

number of enemies to be included in the room. Reis et al. used NLG to generate rooms

with different values of 𝑑 to ensure diversity in the dataset produced. These rooms were

made available online for evaluation, and volunteers played 1,437 distinct small rooms

and then provided 2,715 evaluations. The small rooms were evaluated according to the

volunteers’ perceived visual aesthetics, enjoyment, and difficulty on a 7-point Likert-

like scale. The evaluations were obtained in 125 different sessions of play. A session

of play is defined by a volunteer entering the system, annotating a collection of small

rooms, and exiting the system. Since Reis et al. wanted to maximize the number of

annotated small rooms, in order to simplify the annotation process, they did not ask

for the volunteer’s identity nor their demographic information. The number of sessions

of play offers a reasonable approximation of the number of volunteers who participated

in their data collection.

Two independent volunteers agreed to contribute non-anonymously to Reis et

al.’s data collection. The ratings provided by these two volunteers allow us to perform

an inter-rater study (the two volunteers evaluated 453 rooms in common). This subset

of 453 evaluated rooms is used to verify how well a volunteer is able predict the ratings
2Available at http://www.dpi.ufv.br/~lelis/downloads/Mario-Dataset.zip
3The system is named after Markus “Notch” Persson.

216

http://www.dpi.ufv.br/~lelis/downloads/Mario-Dataset.zip

of another independent volunteer. Also, one of these two volunteers evaluated 38 rooms

twice. These ratings are used to evaluate how the evaluations of a single person correlate

with this person’s own evaluations.

Applying metrics to generated rooms has been a common practice since Smith

and Whitehead [177] introduced linearity and leniency. Horn et al. [86] extended these

metrics with density [165] and pattern density [44] (the number of times certain meso-

patterns appear in the room). Canossa and Smith [34] extended these metrics with

a proposal for many more that attempt to address the complexities of properties of

interest, such as aesthetics and difficulty.

There has been less work on mapping these metrics back to actual human

affective responses. Pedersen et al. [145] predicted human responses using mostly

features of the players’ playtraces in addition to metrics related to the gaps in the

rooms (number of, width of, etc.). Summerville et al. [202] used playtrace metrics in

addition to metrics related to the frequency of gaps, enemies, and rewards to predict

players’ responses. The most similar work is that of Mariño et al. [118] who used some

of the metrics used by Horn et al. [86] to predict the perceived difficulty, enjoyment,

and visual aesthetics of generated rooms.

10.1 Previous Computational Metrics

As mentioned, a number of metrics have been previously used, and as such it

is important to see how these metrics actually map back to human affective response.

217

Following are a number of metrics that have been previously defined, which will be

utilized in the analysis in section 10.3.

Linearity: The linearity of a room is computed by performing a linear regression on

the center points of the platforms and mountains contained in the room [177]. The

linearity is the average distance between the center point of platforms and mountains

in each column of 𝑀 and the linear regression’s line. The linearity values are first

multiplied by −1 (so higher values indicate more linear rooms) and then normalized

into the range of [0, 1].

Leniency: Leniency approximates how much challenge the player experiences while

playing a room [177]. The leniency of a room is the sum of the lenience value 𝑤(𝑜) of

all objects 𝑜 in 𝐺: ∑𝑜∈𝐺 𝑤(𝑜), normalized by the width of 𝑀 . This uses the lenience

values specified in previous works [165, 118]. That is, power-up items have a weight of 1,

cannons, flower tubes, and gaps of −0.5, and enemies of −1. The average gape width of

the room is subtraced from the the resulting sum as defined by Shaker et al [165]. The

leniency values are first multiplied by −1 (confusingly, larger leniency values indicate

more challenging rooms) and then normalized into the range of [0, 1].

Density: Some objects can occupy the same 𝑥-coordinate in 𝑀 (e.g., mountains in

SMB can be ‘stacked-up” together). The density of a room is the average number

of “mountains” (sections of solid terrain above ground room) occupying the same 𝑥-

coordinate in 𝑀 [165]. Density values are also normalized into the range of [0, 1],

218

where values closer to one indicate denser rooms.

Negative Space: Negative Space is the percentage of the empty space that is reach-

able by the player [34]. Jumping in platform games such as SMB is the core way for

players to navigate the vertical space. A higher Negative Space metric often means more

“floating” platforms and mountains which tend to be more enjoyable and aesthetically

pleasing than simply progressing along the ground.

Other Metrics: In addition to negative space, Canossa and Smith [34] introduced

19 other metrics, which are not used in this study. Their metrics are categorized into:

aesthetic, difficulty, topology, and strategic metrics. Aesthetic metrics cover aspects such

as music and the visual palette. Difficulty metrics expand on leniency by categorizing

the room’s source of difficulty. Topology metrics look at the physical space of the room

and measure relevant features. Strategy metrics focus on how a player will/must react

in a room.

10.2 Novel Computational Metrics

In addition to the previously defined metrics, a number of other metrics (in-

cluding some base-line metrics) are considered for evaluating game rooms.

Symmetry (S) The notion of symmetry has been empirically shown to correlate with

the visual aesthetics of graphical user interfaces [133] and images [26]. The model of

symmetry is based on the work of Ngo et al. [134] and Mariño and Lelis [117].

219

Figure 10.1: Example of a symmetrical image.

The symmetry of a room is computed by dividing 𝑀 into four equal regions

by a vertical and a horizontal separation line. The resulting regions are named Upper

Left (UL), Upper Right (UR), Lower Left (LL), and Lower Right (LR). Let 𝑋(𝐿𝐿) be

the sum of the distances between the center of all objects in region LL and the vertical

line; 𝑌 (𝐿𝐿) be the sum of the distances between the center of all objects in LL and the

horizontal line; and 𝐴(𝐿𝐿) be the sum of the areas of all objects in LL. The symmetry

value 𝑆 of a room 𝑀 is defined in terms of functions 𝑋(𝑀), 𝑌 (𝑀) and 𝐴(𝑀), defined

below:

𝑋(𝑀) = |𝑋(𝑈𝐿) − 𝑋(𝑈𝑅)| + |𝑋(𝐿𝐿) − 𝑋(𝐿𝑅)|

+ |𝑋(𝑈𝐿) − 𝑋(𝐿𝐿)| + |𝑋(𝑈𝑅) −𝑋(𝐿𝑅)|

+ |𝑋(𝑈𝐿) − 𝑋(𝐿𝑅)| + |𝑋(𝑈𝑅) −𝑋(𝐿𝐿)| .

The value of 𝑋(𝑀) accounts for the “symmetrical” distance across the vertical line,

across the horizontal line, and across the vertical and horizontal lines. The values of

𝑌 (𝑀) and 𝐴(𝑀) are defined analogously by using 𝑌 and 𝐴-values instead of 𝑋-values.

220

The 𝑆-value of a room is defined as as follows:

𝑆(𝑀) = 𝑋(𝑀) + 𝑌 (𝑀) + 𝐴(𝑀) . (10.1)

𝑆 captures the intuitive notion of symmetry illustrated in Figure 10.1, where the yellow

rectangles represent objects in the room. The room shown in Figure 10.1 has an 𝑆-

value of zero, which means that the room is perfectly symmetrical according to 𝑆. The

𝑆-value of the room is zero because there are objects with exactly the same area in

each region. Also, the objects in regions UL and LL are at the same distance from the

vertical separation line as the objects in regions UR and LR; and the objects in regions

LL and LR are at the same distance from the horizontal separation line as the objects

in regions UL and UR.

Balance (B) According to Ngo et al. [133], the metric of balance measures whether the

objects the player might find interesting, and thus attract their eyes, are well distributed

in 𝑀 . The assumption is that the “attractiveness” of an object is proportional to the

object’s distance to the horizontal separation line as well as the object’s area.

Balance is computed by dividing 𝑀 into two regions, Top (T) and Bottom

(B), of equal size. In Figure 10.1 T is defined by the union of regions UL and UR, and

bottom by the union of regions LL and LR. 𝐺𝑇 and 𝐺𝐵 are the set of objects in T

and B, respectively. The Balance value of a room is computed in terms of function 𝑊 ,

221

which is defined for the objects in region 𝑇 as follows:

𝑊(𝐺𝑇) = ∑
𝑜∈𝐺𝑇

𝑑𝑦(𝑜)𝐴(𝑜)

where 𝑑𝑦(𝑜) is the distance between the center of the object 𝑜 and the horizontal sepa-

ration line, and 𝐴(𝑜) is the area of 𝑜. 𝑊(𝐺𝐵) is defined analogously. The balance value

of a room 𝑀 is then defined as the absolute difference between 𝑊(𝐺T) and 𝑊(𝐺B):

Balance(𝑀) = |𝑊(𝐺T) −𝑊(𝐺B)|

Reachability Reachability measures the proportion of elements placed in 𝑀 that

are reachable by a player, i.e., that the player can directly interact with. The hypothesis

is that players rate poorly the visual aesthetics of rooms that have fundamental flaws

such as unreachable objects. The reachability is calculated as follows:

𝑅(𝑀) = 𝑛𝑅𝐶
𝑛

where 𝑛𝑅𝐶 is the number of unreachable elements, and 𝑛 is the total number of objects

in 𝑀 . The value of 𝑛𝑅𝐶 can be computed by applying domain-specific rules (e.g., in

SMB Mario is unable to jump more than a given number of tiles).

Decoration Frequency. Rooms are composed of many different objects, and the grid

𝑀 tends to be sparse, with most of the grid cells being empty. Some objects, such as

222

the question-mark blocks, pipes, or enemies bring more visual variety to the room (i.e.,

they “decorate” the room), and as such the decoration frequency metric is the number

of decoration tiles divided by the size of the room:

𝐷𝑃(𝑀) =
∑𝑤

𝑥=1 ∑ℎ
𝑦=1 pretty(𝑀[𝑥][𝑦])

𝑤 × ℎ

where pretty(𝑡) is defined as being equal to 1 when 𝑡 is any of the following tile types:

Pipe, Enemy, Destructible Block, Question Mark Block, or Bullet Bill Shooter Column

and 0 otherwise.

Tile Frequencies This metric is simply defined as the number of tiles of that type

divided by the size of the room,

𝐸𝑃(𝑀) =
∑𝑤

𝑥=1 ∑ℎ
𝑦=1 Type(𝑀[𝑥][𝑦])
𝑤 × ℎ ,

for each of 13 different types: Solid, Enemy, Destructible Block, Question Mark Block

With Coin, Question Mark Block With Power-up, Coin, Bullet Bill Shooter Top, Bullet

Bill Shooter Column, Left Pipe, Right Pipe, Top Left Pipe, Top Right Pipe, and Empty.

These are included as they represent a base-line. More complex metrics tend to use

these in different combinations and scalings (e.g., Leniency incorporates the number of

enemies), but it is important to see if they hold more power than the simplest possible

metrics.

223

Tile Position Summary Statistics. The distribution of object types in a room

contains important information about the experience the player will encounter. For

example, rooms with more variance in the height of ground tiles will likely require the

player to jump more. Rooms with low variance on the 𝑥-coordinate where the enemies

are placed will likely have a closely packed group of enemies. For each of the 13 tile

types:

• 𝜇𝑥 and 𝜎𝑥 – The mean and standard deviation 𝑥 position of that tile type.

• 𝜇𝑦 and 𝜎𝑦- The mean and standard deviation 𝑦 position of that tile type.

Enemy Sparsity (ES) This metric is a measurement of whether the enemies are

grouped together or spread in the room. The enemy sparsity of room 𝑀 is computed

as follows.

𝐸𝑆(𝑀) =
∑𝑒∈E |𝑥(𝑒) − ̄𝑥|

|E| .

Where E is the set of enemies in 𝑀 , 𝑥(𝑒) is the 𝑥-position of enemy 𝑒 in 𝑀 , ̄𝑥 is the

average 𝑥-position of all enemies in E, and |E| is the total number of enemies in 𝑀 .

Enemy Sparsity is similar to the metric 𝜇𝑥 for enemy tiles as they both measure

the horizontal spread of enemies in the room. The difference between the two metrics

is subtle: while the former computes the spread with the standard deviation formula,

the latter uses the absolute differences between enemies and ̄𝑥. This subtle difference is

discussed further in Section 10.3.5.3.

224

Tile Indicator. Some of the above metrics only make sense if a given tile type is

present in a room. For each tile type, this metric is defined as 1 if the tile type is

present in the room and 0 if it is not.

Path Length Percentage (Path %). This metric is the proportion of the room

that is taken up by a path from beginning to end (i.e., a sequence of grid cells from

Mario’s initial grid position to a grid position after the finish line of the room) found by

an 𝐴∗ search [77]. The expectation is that the more obstacles that are in the room, the

longer the required path. This is because the player will need to move around the grid

to avoid the obstacles. The Path % metric of 𝑀 is computed by dividing the number

of grid cells in the path found by 𝐴∗ for 𝑀 divided by the total number of tiles in 𝑀

(𝑤 × ℎ).

Jump Count. Using the same 𝐴∗, this is simply the count of the number of jumps

required to complete the room. If all actions a player can issue (e.g., move, jump, etc.)

have cost of one, an 𝐴∗ search will minimize the number of actions required to finish the

room (i.e., for 𝐴∗ all actions are equally costly). This metric shows only the number of

jumps required to finish the room, not the number of possible jumps, which can be very

large. In fact, an 𝐴∗ search minimizing the number of actions could return a sequence of

actions that includes jumps that are easily replaced by runs. In order to find a sequence

of actions that includes jumps only when necessary, the jump action costs more than all

other actions. In the 𝐴∗ implementation a jump action costs 2 while all other actions

cost 1. This means that the sequence of actions encountered by 𝐴∗ to finish the room

225

will run/walk if possible, and only jump when a gap/enemy/hill requires it.

10.3 Empirical Results

The problem of predicting human ratings is a classification task which I tackle

with a multinomial LASSO regression [211]. As a byproduct of its regression, LASSO

also selects a subset of discriminative metrics for the multinomial regression task. Then,

each metric selected by the LASSO regression is correlated with the human ratings.

I chose to use a multinomial regression instead of the more standard linear

regression due to the nature of the ratings. While the ratings are Likert-like (i.e., they

have a number associated with them and are not purely categorical responses such as

“Poor” or “Great”), it is likely incorrect to make any assumptions about the scaling

(i.e., the difference between 1 and 4 might not be the same as the difference between 4

and 7).

10.3.1 Metrics Selection with LASSO

In this first experiment I perform a 10-fold cross-validation multinomial LASSO

regression for each criterion: difficulty, visual aesthetics, and enjoyment utilizing the

full dataset with all raters. I chose multinomial LASSO for two reason (1) I believe

the Likert style data should not be treated as interval (multinomial) (2) I wanted

a regularization technique that encouraged sparsity for variable selection (LASSO as

opposed to ridge or elastic net regression). In addition to linearity, leniency, density,

and negative space, I use all 85 metrics described in this experiment.

226

A multinomial LASSO regression minimizes the categorical cross entropy while

limiting the absolute sum of the regression coefficients scaled by an input parameter 𝜆.

Many of the regression coefficients are set to zero due to the 𝜆 limitation—LASSO

performs feature selection during its regression procedure. A multinomial regression

predicts a class, 𝑘, from a set of 𝐾 classes for each data point, 𝑥, by taking the class

with the highest probability.

Pr(𝑘|𝑥) = 𝑒𝛽𝑘𝑥

∑𝐾
𝑙=1 𝑒𝛽𝑙𝑥

.

The multinomial LASSO regression effectively predicts, for a given room 𝑀 , which of

the 7 “Likert classes” 𝑀 belongs to. Note that due to the fact that there is disagreement

among the human raters it is impossible for the regression to achieve no error (e.g., Rater

A gave a room a 3 while Rater B gave it a 5 means that the regression can get at most

one of those correct).

Many of the metrics introduced in this paper encode similar information. For

example, the percentages for tile types Left Pipe and Right Pipe are expected to provide

similar information. The goal of this experiment is to select a subset of discriminative

metrics for the task of predicting each of the evaluation criteria.

One LASSO regression is performed for each of the three criteria where the 𝜆

is chosen to be the the maximal 𝜆 parameter that was within one standard error of the

minimal training error; the minimal training error is achieved by including all metrics.

LASSO reduced from 89 metrics to only 12 metrics for difficulty, 16 metrics for visual

227

aesthetics, and 14 metrics for enjoyment.

10.3.2 LASSO Prediction Results

The performance of the multinomial regressions can be seen in Table 10.1 in

terms of accuracy and mean absolute error (MAE). The accuracy is computed as the

percentage of rooms classified correctly (assuming the ground truth for room 𝑀 is the

median rated value for 𝑀), and MAE is the mean absolute difference between the

predicted values and the ground truth values. The LASSO model achieves an accuracy

of 37.6% in difficulty, 33.1% in visual aesthetics, and 35.2% in enjoyment. A random

classifier is expected to achieve an accuracy of ≈14.3% as the problem has 7 distinct

classes.

The MAE values of the multinomial regression predictions vary from 1.16 (diffi-

culty) to 1.29 (visual aesthetics), which means that the prediction model errs on average

slightly more than one point in the 7-Likert scale. The 7-Likert scale is defined by the

following points: 1 (strongly disagree), 2 (mostly disagree), 3 (somewhat disagree), 4

(neither agree nor disagree), 5 (somewhat agree), 6 (mostly agree), and 7 (strongly

agree). By erring by slightly more than one point, it means that on average the pre-

diction model could, for example, mostly agree that a given room is difficult while the

human rater strongly agrees that the room is difficult.

More details about the classification results are provided in the confusion ma-

trices shown in Figure 10.2. If the predictions were perfect, the squares in Figure 10.2

would be yellow across the diagonal. By observing the light-colored squares across the

228

diagonal, one notices that difficulty is the easiest criterion to predict, followed by enjoy-

ment, and then visual aesthetics. Most of the prediction errors for both visual aesthetics

and enjoyment come from predicting a score of 5 when the actual rating is a 3, 4, 6, or 7

(see the row for score 5 in Figure 10.2 (a) and (c)). This is because the score of 5 is the

most common score in the dataset, being approximately 50% more common than the

next most common rating. As for difficulty, the most common prediction error comes

from predicting a score of 7 when the actual rating is a 4, 5 or 6, and from predicting

a score of 2 when the actual score is a 1, 3, and 4.

10.3.3 Previous Neural Network Model

The problem of predicting the player’s affective response was previously ap-

proached by Guzdial et al. [71]. They used a convolutional neural network to predict

the responses based on direct observation of the rooms. However, the results shown

in Table 10.1 and Figure 10.2 are not directly comparable to the results of Guzdial et

al. This is because, even if the original data set is the same, they are comparing to

averaged ratings whereas I am comparing to the non-averaged ratings (e.g., Rater A

rates a room with 1, Rater B rates it with a 3—the multinomial compares to both those

points, while they merge it to a single rating of 2). As a point of comparison, I ran a

linear regression with the metrics selected by the multinomial LASSO regression, the

results of which can be see in Table 10.2.

We see that a small number of high quality metrics can substantially outper-

form more advanced neural network approaches like those of Guzdial et al. by 50%.

229

Criterion Accuracy MAE
Difficulty 37.6% 1.16
Visual Aesthetics 33.1% 1.29
Enjoyment 35.2% 1.18

Table 10.1: Percentage of correctly classified rooms (accuracy) as well as the Mean Ab-
solute Error (MAE) for the different metrics from the multinomial LASSO regressions.
A more detailed analysis can be seen in Figure 10.2.

Criterion LASSO MAE Convolutional NN MAE
Difficulty 0.66 0.92
Aesthetics 0.71 1.13
Enjoyment 0.68 1.04

Table 10.2: MAE results of the linear regression using the metrics selected by the LASSO
multinomial regression as input features (LASSO MAE) compared to the MAE results
of Guzdial et al.’s [71] convolutional neural networks.

For example, when predicting difficulty, the LASSO linear regression has a MAE of 0.66

(which means that the predicted value is, in average 0.66 points off the average score

provided by humans in a 7-point Likert scale), while the error reported by Guzdial et

al.’s approach was 0.92.

10.3.4 Metrics Selected by LASSO

The metrics selected for each regression can be seen in tables 10.3, 10.4, and

10.5. Many of the metrics discussed do not appear in the table because they either do

not provide relevant information for the task of predicting human ratings in LASSO’s

model, or because the information they provide is made redundant by a more informative

metric. However, it is possible that metrics not selected by the LASSO could be relevant

to more complex models. Prior to the regression all metrics are scaled to have a mean

of 0 and variance of 1, so as to guarantee that the weights are on a similar scale. The

230

(a) Aesthetics (b) Difficulty (c) Enjoyment

Figure 10.2: Confusion matrices for the multinomial LASSO predictor, normalized by
the number of ratings per category. Perfect prediction would be yellow along the diag-
onal. Difficulty is the easiest to predict with most of the errors coming from incorrectly
predicting 2 and 7 too often. For both Aesthetics and Enjoyment the most common
error source is predicting a 5. This comes from the fact that 5’s are the most prevalent
rating, being roughly 50% more common than the next most common rating, and over
twice as common as most of the other ratings

Difficulty
Metric Weight 𝜌
Number of Enemies 1.00 0.72
Enemy 𝜎𝑥 −0.07 0.50
Enemy Indicator −0.02 0.38
Enemy 𝜎𝑦 0.02 0.48
Jump Count −0.02 −0.20
Pipe Top 𝜇𝑦 −0.01 −0.20
Enemy Sparsity −0.01 0.27
Bullet Bill 𝜎𝑦 < 0.01 0.01
Path % < 0.01 −0.12
Pipe 𝜎𝑥 < 0.01 −0.20
Pipe Top % < 0.01 −0.22
Bullet % < 0.01 −0.02
Human Rater 𝜌
Same User 0.75
Independent Users 0.80

Table 10.3: The metrics selected by the Difficulty LASSO regression. The weights listed
are scaled such that the maximum absolute value is 1.00. For each of the metrics, the
Spearman rank coefficient is listed.

231

Aesthetics
Metric Weight 𝜌
Power up 𝜇𝑥 1.00 0.23
Reachability −0.58 −0.20
Number of Enemies 0.54 0.22
Negative Space 0.29 0.20
Balance 0.28 0.20
Enemy 𝜇𝑥 0.27 0.17
Enemy Sparsity 0.22 0.16
Power up 𝜇𝑦 0.13 0.23
Enemy Indicator 0.09 0.18
Symmetry 0.07 0.19
Bullet Bill Column % 0.05 0.06
Pipe 𝜇𝑥 0.04 −0.04
Enemy 𝜎𝑦 0.02 0.17
Power up Indicator 0.02 0.23
Decoration % 0.02 0.16
Density 0.01 0.13
Human Rater 𝜌
Same User 0.55
Independent Users 0.38

Table 10.4: The metrics selected by the Aesthetics LASSO regression. The weights
listed are scaled such that the maximum absolute value is 1.00. For each of the metrics,
the Spearman rank coefficient is listed.

weights listed in the table are scaled such that the weight with the highest absolute value

is scaled to 1. Also listed are the non-parametric Spearman correlation coefficients, 𝜌,

of each metric selected as relevant by LASSO’s multinomial regression.

In addition to the correlation between the selected metrics and the human

ratings, tables 10.3, 10.4, and 10.5 show the correlation of two independent volunteers

(“Independent Users”), and the correlation between the ratings of a given volunteer

(“Same User”). The correlations of Independent Users can be seen as an empirical

upper bound on the expected correlation. Admittedly, the inter-rater correlation is

only for two users, but even this limited subset helps set expectations on how well a

232

Enjoyment
Metric Weight 𝜌
Number of Enemies 1.00 0.42
Enemy Sparsity 0.24 0.27
Power up Indicator 0.22 0.25
Power up 𝜇𝑦 0.20 0.25
Power up 𝜇𝑥 0.16 0.25
Negative Space 0.15 0.26
Symmetry 0.12 0.27
Enemy Indicator 0.06 0.29
Reachability −0.05 −0.12
Enemy 𝜇𝑦 0.04 0.13
Enemy 𝜎𝑦 0.04 0.32
Enemy 𝜇𝑥 0.03 0.24
Coin 𝜇𝑥 0.03 0.16
Bullet Column 𝜎𝑦 0.01 0.06
Human Rater 𝜌
Same User 0.64
Independent Users 0.45

Table 10.5: The metrics selected by the Enjoyment LASSO regression. The weights
listed are scaled such that the maximum absolute value is 1.00. For each of the metrics,
the Spearman rank coefficient is listed.

computer can achieve this task.

Figure 10.3 shows a closer look at the correlations between some of the indi-

vidual metrics and the rated feature. Each plot in Figure 10.3 shows the human ratings

in the x-axis and the metric values in the y-axis. Should a metric have a perfect positive

correlation (𝜌 = 1) with one of the evaluated criterion, we would observe dark squares

across the secondary diagonal. Similarly, should a metric have a perfect negative corre-

lation (𝜌 = −1) with one of the criterion, we would observe dark squares across the main

diagonal. The clearest trends can be seen between difficulty and Number of Enemies,

where a clear linear trend can be seen. Clear trends can also be seen between enjoyment

and Number of Enemies and between difficulty and Enemy 𝜎𝑥.

233

Figure 10.3: Sample density contours for the given metrics vs. the rated feature. The
clearest trend can be seen in Difficulty-Enemy Frequency.

10.3.5 Discussion

The inter-rater correlations defined by the correlations between the ratings of

two independent volunteers (“Independent Users”) suggest that it is easier to predict

difficulty, than enjoyment and visual aesthetics: the correlation between the ratings of

independent users is 0.80 for difficulty, 0.45 for enjoyment, and 0.38 for visual aesthetics.

234

This means that different people tend to agree more in terms of difficulty, than for

enjoyment or visual aesthetics. A similar trend is observed in the correlation values

obtained by the best performing metrics in each criterion: the best performing metric

for both difficulty and enjoyment is Number of Enemies, with correlation values 0.72

and 0.42, respectively, and for visual aesthetics it is a set of metrics related to power

ups: Power up 𝜇𝑥, 𝜇𝑦, and Indicator all with correlation values of 0.23.

Overall, the best performing metrics in each criterion are near the inter-rater

correlation given by the correlation of independent volunteers. Namely, Number of

Enemies yields a correlation value nearly equal to the correlation value of the two

independent users for enjoyment (0.42 for the former and 0.45 for the latter). The

same Number of Enemies yields correlation value of 0.72 for difficulty, which is near the

correlation value of 0.80 presented by the two independent users. Visual aesthetics is

the only criterion for which the difference between the correlation of the best performing

metrics and the correlation of the two independent users is larger; the best performing

metrics yield a correlation value of 0.23, while the ratings of the two independent users

have a correlation of 0.38.

I conjecture that the correlation values for visual aesthetics tend to be smaller

because visual aesthetics is perhaps the most subjective of the three criteria. This

conjecture is supported by the correlation value of only 0.55 for the visual aesthetics

evaluations provided by the same person (see Same User in tables 10.3, 10.4, and 10.5).

It is interesting to note that, in contrast with the other criteria, the correlation

of the ratings of two independent volunteers is slightly higher than the correlation of

235

the ratings given by same volunteer for difficulty—0.80 for the former and 0.75 for the

latter. A possible explanation is that multiple scores given by the same volunteer for

a fixed room are subject to ordering effects. That is, a room will likely be easier the

second time a person plays that room.

10.3.5.1 Difficulty.

The metric that obtained the highest correlation was Number Enemies, which

simply counts the number of enemies in the room. The metric of leniency (not shown in

tables 10.3, 10.4, and 10.5 because it was not selected by LASSO) obtained a correlation

of 0.53, which is much lower than the correlation obtained by the simpler Number of

Enemies. Thus Number of Enemies is the current state-of-the-art single metric for

predicting human-perceived difficulty in the dataset used in the experiments. However,

this might just indicate that difficulty in rooms generated by the Notch Level Generator

used in the experiments comes primarily from adding enemies, and not by other factors

such as gaps or platform configurations.

The number of enemies is the most important metric by over a factor of 10

when considering the regression weight but is not the only important metric. Moreover,

notice that when interpreting the results presented in tables 10.3, 10.4, and 10.5, have

in mind that the correlation coefficient 𝜌 is calculated for each metric individually, but

the regression weight results from applying LASSO to all metrics at the same time. So,

a low regression weight might not mean that a metric is not relevant, but could also

mean that LASSO found other metrics that represent similar information, and thus did

236

not have to assign a higher weight to a given metric.

We see that the horizontal spread of the enemies (Enemy 𝜎𝑥) has a negative

impact on the difficulty (negative LASSO regression weight), meaning that humans

tend to find rooms with a larger spread of enemies to be easier than rooms with a

smaller spread of enemies. This is interesting because the horizontal spread has a

positive correlation with difficulty. It is possible that this sign discrepancy between

LASSO’s weight and correlation value for Enemy 𝜎𝑥 happens because the metric acts

as a proxy for number of enemies when analyzed individually (correlation value). By

contrast, when analyzed altogether with metrics that already account for the number

of enemies (e.g., LASSO regression also accounting for Number of Enemies), Enemy 𝜎𝑥

shows that humans tend to find easier to play rooms in which the enemies are spread

out. Intuitively, it makes sense that a larger spread is easier since the enemies will be

spaced out, while a dense cluster will present a more difficult obstacle. Conversely, the

enemy vertical spread (metric Enemy 𝜎𝑦) has a positive effect on the difficulty. Again,

this makes sense as a large vertical spread of enemies tightly clustered horizontally will

present a wall of enemies that is hard to navigate, whereas a tight cluster vertically can

be avoided.

10.3.5.2 Visual Aesthetics.

The metric of Symmetry is amongst the best performing metrics for visual

aesthetics with respect to correlation values (𝜌 = 0.19). Note, however, that one might

have expected a negative correlation between 𝑆-values and visual aesthetics. That

237

is, symmetrical rooms (small 𝑆-values) to be rated as visually pleasing by humans.

However, the opposite is indicated here: the positive correlation for Symmetry and

visual aesthetics means that rooms with larger 𝑆-values (less symmetrical rooms) are

rated as more visually pleasing.

The explanation for this discrepancy is rooted at the number of objects in the

rooms: Symmetry might be working as a proxy for Negative Space. Intuitively, rooms

with fewer objects tend to have much smaller 𝑆-values than rooms with a large number

of objects. This is because with more objects the values of 𝑋𝑀, 𝑌𝑀, and 𝐴𝑀 tend to

be larger (see Equation 10.1 and the definitions of 𝑋𝑀, 𝑌𝑀, and 𝐴𝑀). As an example,

the 𝑆-value of an empty map is trivially zero. The positive correlation for Symmetry is

explained by the fact that human subjects tend to attribute low visual aesthetics scores

to rooms with very few objects, and high scores to rooms with more objects—in this

study the symmetry metric is essentially measuring how much of the grid is filled with

objects. Therefore, it is not surprising that Negative Space and Symmetry yield similar

correlation values: 0.20 for the former and 0.19 for the latter.

Other metrics that show very strong correlations are related to the presence

of power ups (e.g., Power Up 𝑋𝜇 and Power Up 𝑌 𝜇), perhaps because power ups are

usually scarce and could appear amongst other more elaborate decorative tiles. The

somewhat strong correlations between Negative Space and Reachability with visual

aesthetics suggest that reachable vertical variety tends to be appreciated by the player.

Interestingly, LASSO attributed small weights to both Power up Indicator (weight 0.02)

and Power up Frequency (weight of 0.00, as the metric does not appear in tables 10.3,

238

10.4, and 10.5) and much larger weights to Power up 𝜇𝑥 and Power up 𝜇𝑦. This differ-

ence in the weight values suggest that it is not the mere presence of power ups (Power

up indicator) or the amount of power ups (Power up Frequency), but the positioning of

the power ups that is most important for the aesthetics. The further to the right and

higher the power ups (i.e., large values of both Power up 𝜇𝑥 and Power up 𝜇𝑦), the

more aesthetically pleasing it was to the players. Perhaps players find it aesthetically

pleasing to have a reward towards the end of the room that requires maneuvering to

reach and dislike being handed a power up at the beginning.

We also see Number of Enemies appears as a well performing metric speaking

to the fact that players enjoy the variety that enemies bring. Interestingly, enemies are

the only such type that have this effect. As discussed above, players find the presence

of power ups pleasing, but the amount has a minimal effect. The amount of Bullet Bill

Columns has an effect, but perhaps interestingly, not the amount of Bullet Bill cannons.

This means that the larger the column, the more visually pleasing, but that adding more

cannons does not necessarily improve the human-perceived visual aesthetics.

10.3.5.3 Enjoyment.

The metrics that correlated the most with enjoyment tend to be metrics related

to elements in the game that the player can interact with (enemies, power ups, and

coins). This is related to the Yerkes-Dodson law [225] demonstrated by Piselli et al. [147]

in the context of video games. According to the Yerkes-Dodson law, enjoyment will be

maximum for the right amount of challenge. The strong correlation between Number

239

(a)

(b)

Figure 10.4: Two rooms with high misclassification error for the Difficulty rating. Both
were classified as 1 by LASSO, but both have ratings of 7. Given that the players who
rated them as 7’s had no difficulty completing the room, we believe that it comes from
a misunderstanding of the rating scale.

of Enemies and enjoyment (𝜌 = 0.42) suggests that the right amount of challenge for

Reis et al.’s volunteers included a large number of enemies. As mentioned above, a wide

spread of enemies vertically indicates more challenge for the player and the fact that it

was one of the highest correlations (𝜌 = 0.32) reinforces that this challenge is enjoyable

for players.

Interestingly, while the counting-based metric Number of Enemies is the most

important factor for enjoyment (LASSO weight of 1.00 and 𝜌 of 0.42), positioning-based

240

(a)

(b)

Figure 10.5: Two rooms with high misclassification error for the Difficulty rating. Room
(a) was classified as a 1 by LASSO but was given a rating of 6 by a player, while Room
(b) was classified as a 7 by LASSO but was given a rating of 2 by a human.

metrics also seem to be important. The mean horizontal position for enemies (Enemy

𝜇𝑥), power ups (Power up 𝜇𝑥), and coins (Coin 𝜇𝑥) all have a positive impact on the

players’ enjoyment. This seems to indicate that players enjoy a brief amount of respite

at the beginning and appreciate higher complexity towards the end of the room, which

is a common room design tactic [215].

Additionally, metrics concerning the distribution of platforms such as Symme-

try and Negative Space also had a high correlation. These metrics reflect the type of

movement that players can execute through rooms, again reinforcing that enjoyment

241

is linked to how the player interacts with the room. Furthermore, Reachability has

negative weight and 𝜌 values, suggesting that the player finds rooms containing objects

that they cannot interact with less enjoyable.

The metric with largest LASSO weight after Number of Enemies is Enemy

Sparsity (weight of 0.24). Similar to Enemy 𝜎𝑥, Enemy Sparsity also computes the

spread of enemies in the room. The positive weight and 𝜌 values for Enemy Sparsity in

enjoyment indicate that people tend to find rooms in which the enemies are spread out

to be more enjoyable. Although the difference between Enemy 𝜎𝑥 and Enemy Sparsity

is subtle (the former returns larger values than the latter for rooms with enemies too

far from the average enemy position), the results suggest that this subtle difference

is important. That is, if Enemy Sparsity is removed from the pool of metrics, LASSO

selects 24 instead of the 14 metrics shown in tables 10.3, 10.4, and 10.5. This increase in

the number of selected metrics suggests that one needs approximately 10 other metrics

to make up for the lack of Enemy Sparsity.

10.3.6 Case Studies

To further address some inconsistencies, consider a few of the room snippets

that had the highest misclassification error for Difficulty. Difficulty is chosen since (1)

it has the highest inter-rater reliability so we are more likely to able to make valid

judgments and (2) the metrics and regressions both have the best predictive power for

difficulty so disagreements are probably fundamental, and not a factor of noise.

In Figure 10.4 shows two rooms that showcase the difficulty of the prediction

242

task. Both of these rooms were predicted to be a 1 in difficulty by LASSO, i.e., the

easiest rooms possible. However, human raters attributed a difficulty score of 7 to both

of them, i.e., the hardest rooms possible. At a glance, one can tell that these rooms are

indeed easy, with either a single, easily dodged enemy (a) or no possibility for death (b).

In this case, it is likely that there was a misunderstanding of the rating scale, i.e., the

volunteers thought that 7 was easy and 1 was most difficult, or that the raters were not

performing the task faithfully. In both cases, other raters rated the rooms as extremely

easy, giving them 1’s or a 2, in the case of (a).

Figure 10.5 shows two rooms that were incorrectly classified for legitimate,

interesting reasons. The room shown in Figure 10.5.(a) has two piranha plants in the

middle of the screen. A patient player can bide their time, wait for the plants to return

to the pipes and continue on their way. However, a novice player who is unaware of how

the piranha plants behave could easily be in mid-jump over a pipe when the piranha

plant emerges, catching them by surprise and killing them. In fact, the player who

rated the room as a 6 in difficulty died on the room, so it is likely that they were

caught by surprise. While from a purely count based view, the room is easy, hence

why it was classified to be a 1, it offers enough surprise that a novice player could find

some difficulty with it. The LASSO regression incorporates no knowledge about player

familiarity or skill, which may not be representative.

The room shown in Figure 10.5.(b), has a dense cluster of enemies. At first

glance, this appears to be an intimidating, skill intensive block for players. However,

the goomba is about to fall off of the higher platform, leaving a clear path for a patient

243

player who hops up to the bullet bill cannon and jumps over to the now clear path over

the enemies. While one of the raters did die on this room, rating it a 5 instead of the

6 that we classified it as, the other passed it with no trouble bypassing the enemies

altogether. Again, a novice or intermediate player is likely to have difficulty either

through nervousness or a desire to kill all of the enemies (the player who died killed 7

enemies in total) that gets them in trouble, while the advanced player just ignores the

enemies. Thus, a count-based metric can only find that a tight cluster of enemies is

correlated with difficulty, even if there are clear paths through the room.

10.4 Conclusion

Perhaps disappointingly, most of the proposed interesting metrics (i.e., those

that are not simple baselines) hold no explanatory power over the simplest of metrics

(simple counting and shear existence of entity types). However, I believe this speaks

more to the fact that much more research is required to find accurate, important metrics

than to the fact that counting the number of enemies in a level is a good metric. But, it

also indicates that ad hoc construction of metrics is unlikely to bring about the desired

result in the qualitative analysis of the expressive range of a generator (i.e., what does

it mean to “Have good coverage of a metric space,” if that metric is a poor indicator

of any human affective response). However, even seemingly inconsequential metrics can

be important for quantitative comparison of a machine learned generator and its input

corpus – as a good machine learned generator should be similar to its input corpus in

244

all metrics, even if those metrics carry no other weight. The next chapter describes

techniques for the comparison of generators’ generative space to that of their training

corpus, both qualitatively and quantitatively.

245

Chapter 11

Analyses of Generative Space

While the choice of metric can be difficult, as discussed in the previous chapter,

the analysis of a generator in metric space is still valuable. While the actual content

generated is the single most important factor, it is nigh impossible to assess the quality

of every piece of content (or even a large number) generated. Thus, metrics are a

necessary evil, and while any single metric (or set combination of metrics) is possible to

be hacked by a given generator, by comparing generators across a wide range of metrics,

this is diminished. For classical PCG approaches based on search [213] that are guided

by the optimization of a specific criterion (or weighted sum of criteria), selecting or

creating the correct metrics can be a difficult task. If the chosen criterion is a poor

metric, then the resultant content is unlikely to meet the expectations of a designer. 1

In this way, machine learned approaches have it easy. They do not need to
1Portions of this chapter originally appeared in “Super Mario as a String: Platformer Level Genera-

tion via LSTM”[197] and “Studying the Effects of Training Data on Machine Learning-Based Procedural
Content Generation” [?]

246

optimize for a given metric, or, rather, their metric is to produce the model that is best

capable of generating a piece of content like the content from the input corpus. Similarly,

they have a more clearly defined version of success than a classical PCG system. Instead

of optimizing an ad hoc metric, a PCGML system’s goal is to produce a generative

distribution within which the input corpus could likely be found. As such, on any given

metric, the generator should produce a similar distribution to that of the training corpus.

Moreover, it is not enough to find a generator that is similar to that of the input corpus

on the marginalized distributions, as it is the joint distribution of all metrics that needs

to be matched. Given the fallibility of humans in selecting good metrics (as evidenced

in the previous chapter where the simplistic), the goal should not be to target any

one or two metrics, but instead to consider the generative space holistically, with every

imaginable (of course limited due to time and feasibility constraints) metric considered

at once.

In the following sections, I will discuss methods for analyzing generators holis-

tically, first qualitatively in an extension of expressive range analysis, then discussing

ways to detect plagiarism in a generator, then on how to quantitatively analyze how

close a generator is to the target distribution, and finally a discussion of how to best

showcase results of a generator.

247

11.1 Kernel Density Estimation and Visual Inspection

Kernel Density Estimation (KDE) [155] is a statistical method for estimating

the probability density function of a distribution from a set of sampled data. In the

generation process of a PCG system, the individual pieces of content are independent

(i.e., the sampling of the third piece of content is not dependent on the first or second)

and identically distributed (i.e., they come from the same generative process) from an

unknown distribution, even if a generator has perfect knowledge about some metrics of

distribution, there can always be a new metric for which it does not know the underlying

distribution. The heat density plots of Smith and Whitehead were an attempt to analyze

these distributions; however, KDE seeks to find analytic functions that best describe

the sampled results. The result is a cleaner system to determine the actual generative

space of a PCG system, and a way to more accurately compare two generators.

Given (𝑥1, 𝑥2, ..., 𝑥𝑛) samples, then the kernel density estimator of the true

probability density function, 𝑓 , is:

̂𝑓𝐻(𝑥) = 1𝑛 ∑𝑛
𝑖=1 𝐾𝐻(𝑥 − 𝑥𝑖)

where 𝐻 is a positive definite symmetric bandwidth matrix of the KDE, and 𝐾 is

the multi-variate kernel. The bandwidth is a hyper-parameter of the KDE that acts to

smooth the supplied data points. As 𝐻 → ∞ the KDE become smoother and smoother,

loosing all shape. Conversely, as 𝐻 → 0 the KDE becomes closer and closer to the

supplied data. The selection of the bandwidth is an open area of research [55, 56]. In

this work, I use the multivariate plug-in bandwidth selection with unconstrained pilot

248

bandwidth matrices approach of Chacón and Duong [35] to find a suitable bandwidth.

The approach seeks to find the bandwidth matrix 𝐻 that minimizes

𝔼∫ℝ𝕕(̂𝑓𝐻(𝑥) − 𝑓(𝑥))2𝑑𝑥

the mean integrated square error of the smoothed density and the true density. However,

since the true density is unknown, in general this is approximated by the asymptotic

mean integrated square error

AMISE(ℎ) = 𝑅(𝐾)
𝑛 |𝐻|−1/2 + 1

4𝑚2(𝐾)2𝐻4𝑅(𝑓″)

where 𝑅(𝐾) = ∫𝐾(𝑥)2 𝑑𝑥 and 𝑚2(𝐾) = ∫𝑥2𝐾(𝑥)𝑑𝑥.

(a) Scaled by 1
10 . (b) Unscaled (c) Scaled by 2.

Figure 11.1: Comparison of three different scalings of the bandwidth matrix as calcu-
lated via the multivariate plug-in bandwidth selection with unconstrainted pilot band-
width matrices approach of Chacón and Duong [35]. The left figure shows a bandwidth
that is too small, leading to an coarse estimation. The figure on the right is beginning
to lose the shape along the 𝑥 axis.

A visualization of how the bandwidth affects the estimation can be seen in

figure 11.1. In general, while most of the downstream processes are not particularly

sensitive to the choice of bandwidth – most notably the calculation of expressive volume

discussed in section 11.2 – the approach of Chacón and Duong bandwidth will be used

for all following density estimates.

249

11.1.1 Comparison to the Original Corpus

Expressive range analysis is a qualitative visual assessment of metric space of

a generator. While this is a good practice in general, it is especially important for a

machine learned generator, but only in so far as a comparison tool between the metric

space of the generator and that of the original corpus. The goal of a PCGML system is

to match the metric properties of the original corpus – the design latent within. While

this qualitative analysis is insufficient for rigorous comparisons between generators, it

allows for exploratory understanding of the type of content producible by a generator

– and ways in which the generator is biased away from the type of content found in the

original corpus.

The classic two dimensional histogram used by Smith andWhitehead (as shown

in figure 9.1) is poorly suited to the evaluation of the metric space of the rooms of most

games. Smith and Whitehead focused on the analysis of generators that could easily

create thousands of pieces of content, for which the histogram acted as a good estimate

of density. However, most games tend to have a relatively small number of rooms –

on the order of a few dozen – (although a few reach into the thousands, e.g. N++),

which leads to extremely sparse histograms, hence the need for density estimation. The

histogram for the above and below ground rooms from Super Mario Bros. with the

same number of bins as figure 9.1 can be seen in figure 11.2. Note that only one cell

has more than one data point.

This is why kernel density estimation is such an important tool for PCGML

250

Figure 11.2: Expressive range plot of the above and below ground rooms of Super Mario
Bros. Note that only one cell has more than one data point (the white data cell).

251

linearity

le
ni

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 11.3: Density estimate for Super Mario Bros. The contours represent the
25𝑡ℎ, 50𝑡ℎ, and 75𝑡ℎ percentiles of the estimate. The KDE makes it much easier to
see the pear shaped relationship between linearity and leniency in Super Mario Bros.

252

linearity

le
ni

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 11.4: Density estimates for Super Mario Bros. (Red) and the 512 unit, 80%
dropout Snaking with depth and path information generator (Blue).

253

based generators. As humans, it is difficult to estimate a density function from visual

inspect of a sparse histogram. For comparison, the calculated density for the linearity

and leniency of the input corpus from Super Mario Bros. can be seen in figure 11.3.

While a useful visualization tool in and of itself, it is in comparison that it shines.

Figure 11.4 shows a comparison between the 512 unit, 80% dropout Snaking with depth

and path information generator and the original rooms. The regions of highest density

(between 0 and 0.2 for both linearity and leniency) for both have a high degree of overlap,

but the original levels have some rooms with higher leniency than Kamek seems capable

of supporting. Conversely, Kamek produces levels that are much more linear than those

of Super Mario Bros.. While Kamek is putting too much support in the highly linear

region, it speaks to its generalization that it is capable of producing rooms outside

the scope of the original set. The lower edge of the fan shape of Kamek has a similar

trajectory to the pear shape, speaking perhaps to an inherent relationship between

linearity and leniency – holding all other factors constant, a more linear level is going

to be more lenient (i.e., it has fewer jumps required to complete it).

To further this comparison, figure 11.5 adds in Kamek generator with 64 hidden

units. We see that this generator places more support in the middle to high leniency

values. Furthermore, it generalizes much more poorly in linearity than the larger Kamek

model. Perhaps the largest indicator for its poor capturing of the original rooms’ design

is the lack of nearly any support in the region of highest density in the originals (between

0 and 0.2 for both linearity and leniency).

While this two dimensional comparison is useful, as shown in the previous

254

linearity

le
ni

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 11.5: Density estimates for Super Mario Bros. (Red), the 512 unit, 80% dropout
Snaking with depth and path information generator (Blue), and the 64 unit, no dropout
Snaking with depth and path information generator (Teal).

255

chapter, there are a large number of metrics that one might wish to explore. While

Danesh allows for the switching of what metrics are viewed, this interaction pattern

makes it difficult to discern higher dimensional structure in the generative space. While

a three dimensional plot can be navigable in an interactive setting [156], it is difficult

to discern the the structure via a static image. Corner plots [61] are a visualization

technique that allows for an arbitrary number of dimensions to be viewed holistically.

Figure 11.6 shows a comparison of the same sets as in 11.4, but across a much larger

set of metrics. The metrics shown here are:

• 𝑒 – The frequency of the room taken up by empty space

• 𝑛 – The negative space of the room, i.e., the percentage of empty space that is

actually reachable by the player

• 𝑑 – The frequency of the room taken up by “interesting” tiles, i.e., tiles that are

not simply solid or empty

• 𝑝 – The frequency of the room taken up by the optimal path through the room

• 𝑙 – The leniency of the room, which is defined as the number of enemies plus the

number of gaps minus the number of rewards

• 𝑅2 – The linearity of the room, i.e., how close the room can be fit to a line

• 𝑗 – The number of jumps in the room, i.e., the number of times the optimal path

jumped

256

• 𝑗𝑖 – The number of meaningful jumps in the room. A meaningful jump is a jump

that was induced either via the presence of an enemy or the presence of a gap.

Figure 11.6: Corner plot for Super Mario Bros. (Red) and the 512 unit, 80% dropout
Snaking with depth and path information generator (Blue)

Looking closely at figure 11.6, we can tease apart where Kamek does a good

or bad job of capturing the metric space of the original rooms.

On the uni-dimensional analysis (i.e., the histograms that make up the diagonal

of the corner plot):

257

• 𝑒 - Kamek and the originals have the same peak, but the originals have a lower

amounts. This is due to Kamek undersampling from the below ground generative

space.

• 𝑛 - Kamek produces rooms with noticeably lower amounts of negative space. The

below ground undersampling accounts for a portion of this, but even accounting

for that, Kamek still has a very different peak (0.65 for Kamek vs 0.8 for the

originals.

• 𝑑 - A relatively uninteresting metric as most rooms are around 0.05 – due to the

extremely high peak, Kamek does a poor job of emulating the rooms with higher

frequencies of “decoration”.

• 𝑝 - Kamek has a similar peak, but a less wide distribution of path length.

• 𝑙 - Kamek matches the peak of the originals, but in general (as discussed above)

under samples the more lenient rooms.

• 𝑅2 - The major case where Kamek has a wider distribution than that of originals.

• 𝑗 - The metric by which Kamek does the worst job of matching the target distri-

bution, producing rooms with a much higher number of jumps.

• 𝑗𝑖 - Despite Kamek producing rooms with more jumps, the distribution of mean-

ingful jumps is very close to that of the origina rooms.

Looking at the multi-dimensional cases, ignoring the uni-dimensional discrepen-

cies, Kamek does a good job of capturing the relationships between the metrics. The

258

most notable relationships are those of the meaningful jumps, 𝑗𝑖, cross empty space,

𝑒, negative space, 𝑛, and leniency 𝑙. All of those have a discernible trend where the

rooms with more meaningful jumps have more empty space, more negative space, and

are more lenient. This relationship is also captured by Kamek which would seem to

indicate that Kamek is in fact learning some of the latent design choices.

While a broader expansion of expressive range is useful as a design paradigm,

it is only one way in which the generative space of a generator can be analyzed. The

following section will discussion expressive volume, a single numerical value that can

help in understanding the qualities of a generator.

11.2 Expressive Volume

In the literature it is common to refer to the “width” of the expressive range,

but this has yet to be done in anything beyond a qualitative visual assessment [178].

However, width is problematic as it is a linear dimension. For instance, a generator

that always produced perfectly linear levels that hhave a very wide range in leniency

would still be unlikely to be thought of as very expressive, given that it is completely

lacking in 1 dimension. To this end, the expressive volume is the measure that is actually

desired for the understanding of a generative space. Volume is the term that will be

used from here on out, which can be taken to mean the 𝑛−dimensional volume (e.g.,

area in 2D, standard volume in 3D, etc.) of the generated metric space to be the size

of the expressive range.

259

Similar to expressive range, the absolute size of the expressive volume is essen-

tially meaningless in the abstract (i.e., is it necessarily good to have a large expressive

volume?), but in comparing a PCGML generator and the original data, one would ex-

pect similar volumes for a generator that is correctly learning the target distribution.

Of course, volume is problematic in its own right, as two generators could sample very

different portions of the generative space and have identical volumes, which is why ex-

pressive volume is insufficient as the sole technique and should be used in conjunction

with other techniques.

To calculate this volume, the KDE of the generative space is used. The KDE

is found via the afore mentioned method, and is then thresholded for points greater

than 0, which is take to be the boundaries of the expressive range. One then forms

an 𝑛−dimensional grid, and counts the number of bins that lie within the expressive

𝑛−volume, multiplying the count with the volume of a single bin. Via experimentation

this volume was found to be relatively robust to the choice of grid size. A range of

50, 100, and 200 bins per dimension were used with less than 5% variation found in

the relative ratio of volumes for two different density estimates (the Kamek 512 unit

generator and the original levels).

11.2.1 Case Study – Expressive Volume as Function of Training Cor-

pus

While PCGML systems are always going to be starved for data, an important

question to answer is to what degree does the amount and quality of data affect the

260

generative properties. Expressive volume is used as a proxy for how well a generator

captures the desired properties of the original corpus. For this experiment the expres-

sive volume is computed using linearity, leniency, and enemy sparsity for the density

estimation.

In addition to evaluating the performance of a PCGML method when using

increasing amounts of training data, this experiment also evaluates using training data

of varying “quality.”

“Quality” is a subjective term, but as discussed in section ?? the most likely

level is one that is very uniform and boring. Thus, a proxy for “quality” can be to

consider levels that are more uniform to be of “lesser quality” than levels with move

variety. We thus approximate quality by computing the entropy of the training levels

through their high-level structures. That is, we split the training levels into 4 × 4 tile

sections. We then perform 𝑘-medoids on those sections with 𝑘 = 30 [100]. For the

𝑘-medoids distance metric, we find the positioning of two sections that yields the most

overlap in tile types between the sections, and weight that by the area of the overlapping

sections. The idea is that this metric provides us with a measure of how structurally

similar two sections are. Once the clusters are computed, we represent each level as

a histogram containing the number of 4 × 4 level sections belonging to each cluster.

Finally, we compute the entropy of those histograms [220], and assume that a higher

entropy corresponds to more information in that level, and thus a higher quality training

level.

261

11.2.1.1 Training Sets

In order to evaluate the effects of both the quality and quantity of training

data on the chosen models, several sets of training data are considered. We first order

the training levels from most to least entropic. We then train separate models using the

first 16 columns of the most entropic level, using the first 32 columns, using the first 64

columns, using the first 128 columns, using the most entropic level in its entirety, using

the two most entropic levels, etc. We then repeat this process using the least to most

entropic ordering of the levels. In total, 66 models are trained. Figure 11.7 shows the

Figure 11.7: The expressive volume of Kamek as a function of the training data.

expressive volume of Kamek as a function of the amount of data for both the most-to-

least and least-to-most entropic training sets. Also shown is the expressive volume of the

original levels. Notice, what we care about here are the ratios between the expressive

volumes of the models, as the actual volume scales will vary for different domains.

In general, we see that a small amount of data (< 3 levels) results in a very small

expressive volume, which is as we would expect given that there isn’t much variation in

the supplied data. Surprisingly, additional data does not increase the expressive volume

262

of any of the models after about 5 training levels. All generators have a much smaller

expressive volume than that of the original levels, which is 50% larger than the next

closest generator (Most-to-least 8 levels). This larger volume is present in all of the

individual metrics, meaning it is not just a failing in any one particular aspect. Note

that after reaching 5 levels worth of data, the information density of those levels does

not effect the expressive volume of the models. Perhaps, this is due to the fact that

the variety found in multiple levels, even those of relatively low information content,

exceeds that of any one level. Of course, there are certainly degenerate counter-examples

(e.g., 5 empty levels would provide no worthwhile information), but in any reasonable

practical application it is more important to acquire a sufficient amount of data than

to cherry-pick the highest quality data.

Expressive volume represents a natural, quantitative follow on to the, now

standard, expressive range analysis of procedural generators. In particular, it allows one

to understand the “width” of the generative space via a metric that is relatively robust.

However, as discussed, it is insufficient as the sole evaluative criterion, as a desirable

criterion should assess not just the relative sizes of the metric spaces of generators, but

also the location and shapes of these metric spaces. In the following section, I will

discuss a robust multi-dimensional method for the comparison of generative spaces.

263

11.3 Joint Distribution Testing of Generative Spaces

Where expressive volume has failings in terms of not capturing the locality of

the density function, many traditional one-dimensional tests succeed. There are a num-

ber of uni-dimensional tests for whether two samples came from the same distribution.

In the case of evaluation for a PCGML, we know a priori that the samples came from

different distributions, but the goal is still the same. If two samples (e.g., a sample of

levels from a generator and the original levels) are believed to have come from the same

distribution, then the generator has achieved its goal.

The most common of these tests is that of Student’s 𝑡-test [191], a common test

for whether two samples came from the same distribution. However, a key assumption of

the 𝑡-test is that the underlying distributions are Gaussian Normal distributions. From

visual inspection, it is easy to see that most of the metrics considered are not normally

distributed. Of the metrics considered in figure 11.6 only path length, 𝑝, and number

of jumps, 𝑗, might plausibly be normally distributed. Thus, the 𝑡-test is unsuitable for

the general case of comparing two distributions.

While the 𝑡-test is not suited for this, there are non-parametric tests that

accomplish similar comparisons when the distributions can not be assumed to be nor-

mally distributed, most notably the Mann-Whitney 𝑈 -test [116]. The Mann-Whitney

test compares the ranked values for two samples – i.e., all observations from two samples

are ranked, and then the ranks for each sample are summed (𝑅1, 𝑅2). The test statistic

264

is then calculated as:

𝑈1 = 𝑅1 − 𝑛1(𝑛1 + 1)
2 (11.1)

𝑈2 = 𝑅2 − 𝑛2(𝑛2 + 1)
2 (11.2)

Figure 11.8: An example of the fallibility of the Mann-Whitney 𝑈 -test. Shown are two
samples, one from a unit Gaussian Normal distribution (𝒩(0, 1)) and one from a uniform
distribution (𝒰(−5,−5)) (note: x-axis used only for visual separation). While these
distributions are obviously different – even to visual inspection – the Mann-Whitney
test is unable to reject the null hypothesis of both distributions being equal (𝑈 =
380, 𝑝 = 0.15)

.

where 𝑛1 is the number of observations in sample 1, and 𝑛2 is the number of observa-

tions in sample 2. To calculate the 𝑝-value for the test, the smaller of the two is used as

the test statistic. However, since it only compares ranks, the test relies on the assump-

tion that the two distributions will both have identical shape and scale for the test to

be valid. Figure 11.8 shows the flaw of the Mann-Whitney test for two distributions

265

that are obviously different, but have relatively similar ranks. Again, in general, the

assumption that the two distributions being compared will have identical shape and

scaling is unlikely to be satisfied, meaning the Mann-Whitney test is a poor choice for

the comparison of the generative spaces. (Notwithstanding earlier work of mine that

utilized this test [194]). The failings of the Mann-Whitney test also hold true for the

Kruskal–Wallis one-way analysis of variance [106], an extension of the Mann-Whitney

test that allows for the comparison of multiple groups at once, as it is based on the

same ranking and summing as the Mann-Whitney test.

Given the density estimates via KDE, it would seem desirable to compare them

directly. One such method is that of the Wasserstein distance [50] (sometimes referred

to as the Earth Movers Distance). The Wasserstein distance can intuitively be thought

of as the minimal amount of effort required to transport density from one probability

density function so as to make it equivalent to another probability density function (the

earth moving metaphor being that it is similar to the amount of effort needed to make

one pile of earth look like another). However, for the Wasserstein distance to hold, the

density space must have a valid distance measure. For some distributions this makes

sense (e.g., in many spaces the Euclidean distance is valid), but this does not hold true

for the expressive ranges considered here. What does it mean to move 0.5 units in

linearity space and 0.5 units in leniency space?

𝑒-distance by Székely and Rizzo [205] is a statistical comparison meant to

alleviate these concerns. 𝑒-distance (𝑒 for energy, as the metric takes inspiration from

Newton’s gravitation potential energy) is rotationally invariant in a multidimensional

266

space, meaning that it is not subject to the distance scaling concerns of the Wasserstein

distance. For two 𝑑-dimensional random variables, 𝑋,𝑌 , the 𝑒-distance is defined as:

ℰ(𝑋, 𝑌) = 𝐸|𝑋 − 𝑌 |𝑑 −𝐸|𝑋 −𝑋′|𝑑 −𝐸|𝑌 − 𝑌 ′|𝑑

Where 𝑋′, 𝑌 ′ are independent identically distributed copies of 𝑋,𝑌 , respectively.

Using this notion of 𝑒-distance, a non-parametric statistical test for the equiv-

alence of multi-variate distributions can be constructed as:

𝑒(𝑋, 𝑌) = 2𝑛𝑖𝑛𝑗
∑𝑛1

𝑖=1 ∑𝑛2
𝑗=1 |𝑋𝑖−𝑌𝑗|− 1

𝑛2
1
∑𝑛1

𝑖=1 ∑𝑛1
𝑗=1 |𝑋𝑖−𝑋𝑗|− 1

𝑛2
2
∑𝑛2

𝑖=1 ∑𝑛2
𝑗=1 |𝑌𝑖−

𝑌𝑗|

which produces a 𝑇 statistic

𝑇𝑛1𝑛2
= 𝑛1𝑛2𝑒(𝑋,𝑌)

𝑛1+𝑛2

and the null hypothesis of equal distributions is rejected for large 𝑇𝑛1𝑛2
. 𝑝-

values are given via a bootstrap [58] procedure where the populations are repeatedly

resampled 𝐵 times, the 𝑇𝑛1𝑛2,0<𝑏<𝐵 is calculated for each resampling, and the hypoth-

esis is rejected if the observed 𝑇𝑛1𝑛2
is greater than 100(1−𝛼)% of the resampled values

(for confidence level 𝛼).

This statistic is exactly what is desired for the comparison of two generative

spaces.

• It makes no assumptions about the shape or scale of the distributions

• It allows for a multi-dimensional comparison of metric spaces

• It is rotation invariant and scale equivariant

• It provides a distance metric in addition to a statistical test, allowing for the

267

comparison of how close a generative space is to another even if a statistically

significant difference is found.

Table 11.1 shows the results of an experiment comparing multiple generators’

multivariate expressive range distributions against that of the original rooms from Super

Mario Bros.. The experiment compares the distributions using 𝑒-distance for a linearity,

leniency, number of jumps, and negative space. Lower 𝑒-distance represents a smaller

distance between the distributions, leading to a higher probability that null hypothesis of

equal distributions is not rejected. Included for comparison is a 10-fold bootstrapping

whereby the original levels are repeatedly split into different groups and compared

against each other – shown is the average 𝑒-distance and associated 𝑝-value.

Included in this experiment are two Kamek generators – the 512 Unit, 80%

dropout, Snaking, Depth, Path and the 64 Unit, no dropout, Snaking, Depth, Path. The

512 is included as it was the generator of highest quality found in the early experiments

shown in section 6.3, and the 64 unit is included as a baseline, since it was previously

perceived to be of worse quality, it should be expected to have worse results than that of

the 512 unit Kamek generator. Also included are two MdMC generators by Snodgrass

and Ontañón – a baseline MdMC generator discussed in [184] and a MdMC generator

with playability constraints as discussed in [185] – and the generator of Riedl and Guzdial

[75].

We see that both of the two MdMC methods are found to be statistically

different from the original rooms, as is the 64 unit Kamek generator, and the generator

268

of Guzdial and Riedl. However, we see that the 512 unit Kamek generator is not found

to be statistically significantly different from the original levels. In fact, it is closer

to the distribution of original rooms than a repeated sampling of the original rooms

against themselves. This is in part due to the wide variability in the original rooms

and, certainly, some subsets of the original rooms are much closer (e.g., 𝑒-distance

3.5136, 𝑝-value 0.9302) than others (e.g., 𝑒-distance 18.015, 𝑝-value 0.04651).

Data Set 𝑒-distance 𝑝-value
Kamek 512 Unit, 80% dropout, Snaking, Depth, Path 8.2941 0.4419
Kamek 64 Unit, no dropout, Snaking, Depth, Path 366.21 0.0233
MdMC 14 Row Splits, Look Ahead 3 560.85 0.0233
MdMC 14 Row Splits, Look Ahead 3, Playability Constrained 44.592 0.04651
Guzdial 497.15 0.0233
Original Levels 10-fold Bootstrapping 12.039 0.1395

Table 11.1: Comparison using 𝑒-distance for a linearity, leniency, number of jumps, and
negative space. Lower 𝑒-distance represents a smaller distance between the distributions,
leading to a higher probability that null hypothesis of equal distributions is not rejected.

As discussed in section 11.1, visual inspection of the expressive range of a gen-

erator is a useful practice that, while unable to provide a rigorous statistically sound

comparison, can help supplement a test such as the one just performed. Figure 11.9

shows the expressive range for the the original rooms, and the two best performing gen-

erators from the experiment, the Playability Constrained MdMC, and 512 unit Kamek

512 unit generator and the original rooms. Note that this visual inspection is only of

two of the dimensions covered in the multidimensional equal distribution test, linear-

ity and leniency. However, even with this subset, we see that the MdMC generator,

while sampling heavily in the region of highest density from the original rooms has poor

support for the full expressive range found in the originals. The Kamek generator, on

269

linearity

le
ni

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 11.9: Visual inspection of the expressive range of the original rooms from Super
Mario Bros. (Red), the Playability Constrained MdMC (Orange), and the Kamek 512
unit generator (Blue).

.

270

the other hand, while not sampling as densely in the highly lenient region, nonetheless

has closer support to that found by the originals. It is certainly a victory for Kamek

to produce expressive distributions that are statistically indistinguishable from those of

the training corpus. However, while the analysis and understanding of the expressive

range of a generator is necessary for the understanding of a generator, it is insufficient.

It is still necessary to examine the generated content itself. In the following chapter,

I will discuss methodologies for choosing content in a way that helps to bolster the

understanding of the capabilities of a generator.

271

Chapter 12

Analysis of Individual Pieces of Content

The previous chapter discussed methods for the large-scale analysis and com-

parison of the generative space covered by a generator. While this is certainly a useful

practice for PCG researchers and practitioners, at some level, all that matters is the

actual individual pieces of content themselves. However, the practice of showing con-

tent for a generator is a fraught one, as so far there has been little principle in actually

assessing the quality of a generator via the individual content.

Typically, researchers will present a handful of pieces of content, of unknown

provenance. Where did they come from? Are they representative of the content that

the generator actually produces? In the following section, I will discuss methods for

avoiding cherry-picking in the presentation of content, in the hopes of advancing the

research methodology of the field.

272

12.1 Avoiding Cherry-Picking

At its core, the problem of avoiding cherry-picking is one of trustworthiness.

While we all hope that everyone is acting in a trustworthy manner, it is certainly possible

for this trust to be abused. The simplest, and most likely best, manner for combating

the problem of cherry-picking content to be shown in a paper, is to make the generator

available. The nascent practice of artifact evaluation is becoming more standard [2],

whereby researchers open the actual artifact to examination, not just the research paper

describing the artifact. For instance, the Artificial Intelligence for Interactive and Digital

Entertainment Conference says of artifact evaluation:

The purposes of the artifact evaluation are:
• To promote reproducibility of our research results by reviewing the

claims made in the paper and how well they are supported by the
corresponding software;

• To promote reuse by encouraging authors to release software that is
well-documented and easy to use by peers;

• To recognize software artifacts as important scholarly contributions in
addition to the paper itself.

[2]

of which the first is the foremost reason considered here: to help review the

claims made in the paper, in a way that is not possible with a small set of at worst

cherry-picked pieces of content.

Given this, in an ideal situation researchers would make their generators avail-

able for others to use, allowing others to explore the generative space of the generator,

one piece of content at a time. Unfortunately, this is a difficult ask, in practice. Re-

searchers might not wish to make their code available, perhaps due to its non-production

273

ready nature, a desire to keep some sort of “competitive advantage,” or a legal prohibi-

tion on making the code public.

While the act of making the software or code available might be beyond the

scope, some have proposed content generation as a service [110, 173] – which, while not

making the code publicly available, allows users to explore the generative space, one

generation act at a time. However, while this is a wonderful idea, the additional time

and monetary demands of turning a generator into an on demand service and hosting

it might not be achievable by all researchers.

For researchers unwilling or unable to make their generators available, the op-

tion still remains to make a large range of generated content available. Most generators

are able to generate content at a very reasonable rate (somewhere between seconds and

minutes per piece of content) – allowing for a “large” (large in the sense of what a human

would care to sift through, not large in the scale of enterprise data storage) number of

pieces to be available for the perusal of others.

While readers are free to peruse the content to assess whether the featured

content is representative, it puts the onus on them to dig through a large amount of

content. In other fields, the registration of studies is a nascent method for removing self-

censorship and observation bias [113]. In these fields, one registers one’s study design

and hypotheses ahead of time, and then all data and conclusions are made available once

the study has been performed. The goal is to reduce practices such as 𝑝-hacking [79]

wherein studies are run without a firm hypothesis and then the data is manipulated to

find statistically significant effects (usually not using multiple testing corrections such

274

as the Bonferroni correction [28]).

Similarly, it might be the case that PCG researchers could make a set of content

available, and then state that the shown content will be based on some predefined

random seeding – like SHA-256 [76] hashing on the name of the paper – and then

showing some not insignificant number of random pieces of content. However, while the

manipulation of this is unlikely in practice, it is possible that researchers could reorder

their presented content, so as to still cherry-pick the best content.

The PCGML community as a whole has not adopted any methodology to-

wards addressing these concerns and up to now have taken an ad-hoc approach toward

choosing content. Snodgrass and Ontañón [180, 184, 181] show content based on pa-

rameterizations of their models. Similarly, Spitaels [187] also showed example rooms

based on model parameterization. Hoover et al. chose a famous piece of content to

build off of [84]. Guzdial and Riedl choose “representative” content [71, 75], but make

no distinction as to what that means. While Lee et al. [200] are not generating con-

tent whole cloth – rather adding on to existing content – they choose to show the best

and worst results of their method (but since their goal is prediction, they have a clear

methodology for best and worst).

Given this, the question still remains, “How can content be selected for in-

clusion in a research document, such as to allay fears of cherry picking?” While the

approach of Lee et al. seems like a good one, for open-ended content generation, it is

hard to know what is the “best” and what is the “worst” content to select. The fol-

lowing sections will discuss two ways of selecting from a pool of content, such that the

275

worst possible selections are presented (for various definitions of worst). These methods

provide a lower-bound on the capabilities of a generator.

12.2 Plagiarism As Selection Criterion

For machine learned PCG systems plagiarism (or memorization) is a very real

problem. As discussed in the earlier chapters, a major goal for PCGML systems is to

generalize from a – usually small – pool of input, so as to be able to generate new

content that is similar, but not identical (i.e., it could conceivably have come from the

same designer). While it is undesirable for a PCGML system to copy wholesale from

the input corpus, it is something of a philosophical question as to what the dividing line

is that delineates between a piece of content that is copying from the input corpus and

that which has learned from and generalized.

The worst possible case of plagiarism would be the Copy generator discussed

in chapter 5.2. This generator keeps a copy of the input corpus and selects a member

of the corpus and produces it as content. It is trivial to declare this as plagiarism.

Alternatively, consider this dissertation. Certainly, all of the individual words found in

this document can be found in other documents. The same is most likely true for a

large percentage of the pairs of words. So on for triplets of words. While these base

atoms of content (words) are found in other documents, it would be absurd to claim

this as plagiarism. That being said, there is certainly some point at which a certain

string of words being found together would be plagiarism. 10? Maybe, if it were a very

276

important 10 words. 100? It would have to be a very extenuating set of circumstances

for this to not read as plagiarism. 1000? Most certainly.

While an interesting philosophical question, the exact specifics of the dividing

line between what is or is not plagiarism do not matter too greatly here, as the goal is

not to make a test for whether a piece of content has been plagiarized or not. Instead,

the idea is to present the piece of content that is most plagiarized (along with its source

of plagiarism), and instead allow the reader to determine whether a piece has been

plagiarized or not.

For a PCGML system, this process is relatively straight-forward. The author

selects an original piece of content, according to some criterion, and then shows it

alongside the generated content that has the most amount of plagiarism from that piece

of content.

Potential criteria for selecting the exemplar content:

• The pair that has the most plagiarism – For each piece of content in the input

corpus, find the piece of generated content with the most plagiarism. Present

the pair with the highest amount of plagiarism (absolute or as percentage of the

content pieces – for variable sized content)

• Pick a particularly important piece of original content – Perhaps there is a partic-

ularly iconic piece of content (e.g., Super Mario Bros. World 1-1). Find the piece

of generated content that has the highest amount of plagiarism from the iconic

content.

277

• The most self-plagiarized original content – For all pairs of content from the input

corpus, find the pair that plagiarize the most from each other. Find the piece of

generated content that has the highest amount of plagiarism from one of (or both)

of the pieces of highly self-plagiarized content.

(a) World 2-3 from Super Mario Bros.

(b) World 7-3 from Super Mario Bros.

Figure 12.1: The two rooms from Super Mario Bros. with the highest amount of
plagiarism. While, at first glance, they appear identical, the lower room has additional
enemies.

(a) Random seed 692 from Kamek 512.

(b) World 1-3 from Super Mario Bros. 2 (JP).

Figure 12.2: The room generated by the Kamek 512 generator with the highest amount
of plagiarism from the original rooms (top) and the room it takes from (bottom). While
the portion is of decent size (45% of the original room), the generated room is very
different, using the copied piece as a minor segment of the total room.

This last criterion gives us insight into providing a guiding principle for when

plagiarism is an issue. By assessing the amount of plagiarism found in the original

dataset, we can determine how much plagiarism might be expected from a similar piece

of content. While, in a vacuum, it might seem bad for a room to copy 25% of its

geometry from a piece of the original content, if the average amount of self-plagiarism

278

(a) Random seed 100 from Kamek 512.

(b) Random seed 478 from Kamek 512.

Figure 12.3: The two rooms generated by the Kamek 512 generator with the highest
amount of self plagiarism. The two rooms start off identically (the first 20% of the
rooms are identical), but they quickly diverge. This amount of plagiarism is not too
terribly different than that found between the original rooms.

is 35%, then this is to be expected. Figure 12.1 shows the two rooms from Super Mario

Bros. with the highest amount of self-plagiarism (570 tiles in total, or 16% of the level).

By presenting the piece of generated content that takes the most amount of content,

a reader can inspect the content to determine the degree to which the generator is

memorizing from the original dataset. Figure 12.2 shows the room generated by the

512 unit Kamek generator and the room from the original Super Mario Bros. with the

highest amount of plagiarism.

Of course, this detection of self-plagiarism is not limited to the original dataset,

and another possible method for presenting content is to present the two pieces of gener-

ated content that are the most highly self-plagiarized. Where comparing the generated

content to the originals helps assess the degree of memorization, comparing within a

generated set helps assess the degree of mode collapse occurring within the generator.

Consider the hypothetical Super Mario Bros. generator that predicts the most com-

mon room – all sky and ground. The amount of plagiarism in this generated content

is unlikely to be particularly high, but all of the generated content will be 100% self-

plagiarized. By showing the content that contains the largest amount of copying within

279

a generated set, readers can come to understand the support and generality of the gen-

erator. Figure 12.3 shows the rooms generated by the 512 unit Kamek generator with

the highest amount of self plagiarism.

There are many possible ways to assess plagiarism, but a general method

suitable for two-dimensional grid based room (of the sort that Mappy and Kamek are

designed to work with) is as follows:
𝑠 ← (1, 1)
𝑏 ← ∅
for 𝑟1, 𝑟2 ∈ 𝑅1 ×𝑅2 do

𝑠0 ← 𝑠
𝑙 ← all regions of dimension 𝑠 in 𝑟1 that have are found in 𝑟2
while |𝑙| > 0 do

𝑠𝑝 ← 𝑠
expand 𝑠 along the smaller dimension, unless that expands it beyond the

bounds of either 𝑟1, 𝑟2
𝑙 ← all regions of dimension 𝑠 in 𝑟1 that have are found in 𝑟2

end while
𝑠 ← 𝑠𝑝
if 𝑠 ≠ 𝑠0 then 𝑏 ← (𝑟1, 𝑟2)
end if

end for

Simply, for all rooms, 𝑟1, 𝑟2, in the two considered sets of rooms, 𝑅1, 𝑅2,

expand a window 𝑠 until no more overlaps are found. If 𝑠 grew during the consideration

of 𝑟1, 𝑟2, then a new pair of rooms have been found with more overlap than the previous

pair with the most overlap.

While determining the amount of plagiarism between a generator and its input

corpus is important – as is determining the amount of repetition in the generative space

– it is a measure that tends to focus on small sub-pieces of content (as seen in figures

12.2 and 12.3). But there exist other methodologies for the selection and presentation

280

of content – given the focus on metrics for large scale analysis (both qualitatively and

quantitatively), tying them into the individual pieces of content is important.

12.3 Metric Distance as Selection Criterion

Given the importance placed on metrics as evaluative criteria for understanding

the generative space of a generator, it seems important to map this understanding

back to the individual pieces of content. While acting as a principled methodology for

selecting which content to showcase, it also acts as a check on the metrics themselves.

The Exemplar methodology is quite simply:

1. Choose an exemplar piece of content – say a particularly important piece of content

from the input corpus

2. Using the metrics used elsewhere in the analysis of the generator, find the gener-

ated content that is closest to that piece of content or furthest to that piece of

content

The Closest methodology, to find the piece of content most like any of the

original content:

1. For all pieces of original content find the generated content that is closest to that

piece of content

Or the Furthest methodolgy to find the generated content furthest from the

all of the pieces of original content:

281

1. For all pieces of generated content find the original content with which it is closest.

2. Find the generated content that is further from its closest content than any other

piece of generated content

These three methods each answer different questions about the generative

space of the generator.

• Exemplar – The most subjective of the methodologies, but it can help to showcase

particular strengths and weaknesses of the generator by choosing exemplars that

have certain unique properties (e.g. choosing a room in the original corpus that is

singular and showing how the generator either did or did not learn to match the

properties of that content.)

• Closest – This acts as both a check on plagiarism (although at a more global

scale) and on the metrics themselves. If two pieces are found to be very similar

in metric space but do not seem so in visual inspection, then, obviously, there is

some aspect of the metrics that is poorly related to the actual qualities that are

being attempted to be measured.

• Furthest – This acts as both a check on the generalization of the generator and

as a sanity check on the generator. If the furthest piece of generated content

still appears very similar to all of the original content, then the generator is not

learning to generalize beyond the bounds of the original content. On the other

hand, if the furthest piece of content is incomprehensible, then the generator is

not doing a sufficient job of learning the latent design

282

The distance calculation between the metrics for one piece of content, 𝑚𝑎, and

another, 𝑚𝑏, is

𝑉 = 𝑣𝑎𝑟(𝑀)

𝑑 = ||(𝑚𝑎 −𝑚𝑏)𝑉 −1||2

Where 𝑀 is the set of metrics for all pieces of content. This is the Euclidean

distance (|| ||2, or L2 norm) of the whitened metric vectors. The whitening process

(multiplying the difference by the inverse of the covariance matrix) means that all of

the metric dimensions will be of the same scale (having variance one), meaning that

the original scaling of metrics is unimportant and the distances will not be affected by

different scales (some metrics that would normally be positive, like number of jumps

could now be negative). Whitening is a common practice in machine learning techniques

that rely on distance (e.g. 𝑘-means [39], 𝑘 nearest neighbors [68], etc.)

The following section will use these criteria to show content from Kamek and

the related pieces of original content.

12.3.1 Case Study – Kamek

The single most famous piece of content in the context of platformer games, is

that of Super Mario Bros.’s World 1-1 [22, 227]. The iconic first set of question mark

blocks, bricks, goomba, and mushroom act as gradual introduction for the player to the

283

(a) World 1-1 from Super Mario Bros.

(b) Random seed 447 from Kamek 512.

Figure 12.4: World 1-1 and the Kamek 512 generated room closest to it in the metrics
of negative space, linearity, leniency, and jumps. The generated room has a few more
gaps but is a relatively straight forward experience, like 1-1.

world of Super Mario Bros. Given its iconic nature, it makes sense to include it as an

exemplar piece of content for comparison. Figure 12.4 shows 1-1 and the closest piece of

content generated by Kamek 512 along the metrics of linearity, leniency, negative space,

and number of jumps, with a distance of 0.28. Many of the same structures exist in

both and the generated room has a small amount of jumps and enemies, as in 1-1. For

the whitened metric vector of:

< 𝑗, 𝑛,𝑅2, 𝑙 >

World 1-1 has a metric vector of:

< −0.97, 1.0,−0.40,−0.97 >

and the closest Kamek 512 room has a metric vector of:

< 0.81, 0.82,−0.36,−0.84 >

leading to a distance of 0.28. The generated room is less extreme in all of the

metrics, except linearity, where it is slightly more linear. But it is less lenient, has less

negative space, and has fewer jumps than in World 1-1.

While picking a famous piece of content can establish a good baseline, it can

284

(a) World 5-3 from Super Mario Bros.

(b) Random seed 901 from Kamek 512.

Figure 12.5: World 5-3 and the Kamek 512 generated room closest to it in the metrics
of negative space, linearity, leniency, and jumps. The generated room is not solely like
5-3 (it has segments with ground) but is generally very similar to the mostly sky and
floating platform filled 5-3.

also be important to show the breadth of content that a generator is capable of creating.

For instance, Super Mario Bros. has a set of different room motifs (e.g., “normal,”

underwater, below ground, tree top, dungeon, etc.), and it is important to check to see

if a generator is capable of achieving similar styles or content. Figure 12.5 shows an

example of a “treetop” room from Super Mario Bros and the closest generated byKamek.

The second half of the generated room is very similar to the floating platform filled

structure of the original room, but there are definitely more portions of the generated

room that have ground than found in the original. In part, this is because the chosen

metrics do not directly account for the empty space – negative space looks at what

proportion of the empty space is reachable.

The metric vectors for World 1-3 and Kamek 512 seed 901 are:

< −0.43, 1.7,−0.64, 1.6 >

and

< 0.033, 1.7,−0.43, 1.8 >

respectively, which is identical for less negative space and very similar linearity and

285

leniency, but with fewer total jumps, leading to a distance of 0.54.

(a) World 4-2 from Super Mario Bros. 2 (JP)

(b) Random seed 186 from Kamek 512.

Figure 12.6: The room generated by Kamek 512 (bottom), closer to any of the original
content than any other piece of generated content, and its closest touchstone, World 4-2
(top)in the metrics of negative space, linearity, leniency, and jumps.

Using the Closest methodology, we find the generated room that is closer to

any of the original content than any other piece of generated content, seen in figure

12.6.

The metric vectors for World 4-2 and Kamek 512 seed 186 are:

< −0.092,−0.11,−0.67,−0.47 >

and

< −0.13,−0.22,−0.76,−0.57 >

respectively. We see that 186 and 4-2 are very close on all of the metrics, with a

total of 0.176. The rooms have similar amounts of gaps and enemies, are both heavily

ground based, and differ most in the amount of negative space (with world 4-2 having

slightly more negative space). Interestingly, the rooms are not particularly similar

visually, which can be seen as a merit for the metrics (two seemingly disparate rooms

are nonetheless similar in their play) or as distinct failing (the metrics fail to distinguish

between two rooms that should obviously be far apart). Again, it remains future work

in determining valuable metrics to disentangle this problem.

286

(a) World 6-3 from Super Mario Bros. 2 (JP)

(b) Random seed 177 from Kamek 512.

Figure 12.7: The room generated byKamek 512 (bottom), further away from the original
content than any other, and its closest touchstone, World 6-3 (top)in the metrics of
negative space, linearity, leniency, and jumps. The generated room has large gaps and
progresses from a relatively straight forward ground based room to a floating platform
based room at the final third, as in World 6-3.

Using the Furthest methodology, we find the generated room that is further

away from any of the original content than any other piece of generated content. The

piece of Kamek 512 content whose closest touchstone in the original corpus is further

than all other generated contents’, and its closest relative can be seen in figure 12.7.

The metric vectors for World 6-3 and Kamek 512 seed 177 are:

< 0.37, 0.29, 1.9, 4.5 >

and

< −0.47,−0.15, 4.2, 1.8 >

respectively, and we can see in part why seed 177 is so far away from all of the originals,

as it is extremely more linear and much more lenient than most other rooms. The closest

room to it is much less linear, while still being more linear than most other rooms, while

having much higher leniency than most other rooms. The total distance between the

rooms is 3.6, which is much, much higher than any of the discussed differences.

Of course, the choice of metrics – and even weighting of the metrics – is at

the discretion of the authors. As discussed in chapter 10, it remains very much an

287

open question as to what the best metrics are for analyzing generated content, and

I would hope that this methodology would be incorporated in the discussion of new

metrics. When constructing a new metric, it would be beneficial if authors showed

how this new metric is reified in the content, allowing readers to develop intuition, in

addition to more rigorous quantitative analyses. To provide an example for metrics that

are marginally well understood, consider the example of the Furthest rooms shown in

figure 12.7. Both the generated room and the exemplar room are outliers in terms of

linearity and leniency – by showing these examples, a user begins to understand how

these metrics are reified in the extreme – long, sloping rooms that are unlike any other

rooms found in the dataset (normally filled with flat stretches that have sporadic bursts

of complexity). In developing new metrics, showing this type of extreme output helps

a user gain intuition into what qualia the metric is trying to capture.

12.4 Discussion

This last chapter and chapter 11.3 present a suite of techniques for evaluating

and analyzing the capabilities of procedural content generators, with a specific focus on

techniques for machine learning based generators. A key takeaway from these chapters

is that no one technique suffices for the evaluation of PCG(ML) system. Viewing in-

dividual pieces of content, no matter how meaningfully chosen, provides a minuscule

keyhole to attempt to begin the full range of a generative system. Large scale expressive

range style analyses provide a high level overview, but misses the trees from the forest,

288

providing insight into the shape of a generative space but not into individual pieces of

content. A successful analysis of a PCGML system should:

ML1 Address the extent of memorization of the system

ML2 Assess the generator’s ability to generalize

ML3 Provide an overview of how well the generator has learned the latent design

Similarly, a successful analysis of a classical PCG system should:

C1 Address the repetition of the system

C2 Assess the generator’s ability to generate novel content

C3 Provide an overview of the generator’s style

With clear analogues between ML1 and C1, ML2 and C2, and ML3 and

C3. For PCGML systems, ML1 is best addressed by showing the piece of content with

the most plagiarism, as that is how the memorization is reified in the generated artifact.

ML2 is best addressed by showing the piece of content furthest from any of the original

content, as that shows how well the generator is able to generate content outside of

the bounds of the training corpus. While ML3 does not require both qualitative and

quantitative analyses, it is best served by both a visualization of the generative space

and the training space – hopefully, in a number of meaningful metrics – via a corner

plot and a quantitative measure via the 𝑒-distance.

For classical PCG systems, C1 is best addressed by showing the pieces of

content with the most self-plagiarism, allowing users to assess how much the system

289

repeats itself. C2 is best addressed in conjunction with C3 – C3 should be visualized

via a corner plot of the generative spaces – and locations in that generative space

should be chosen as exemplars via the metric distance methodology discussed in the

last chapter, showing the range of generatable content. It should be noted that the only

major changes here compared to the work of Smith and Whitehead is the extension in

to higher dimensionality and the assessment of self-plagiarism.

290

Chapter 13

Conclusions And Future Work

This dissertation has aimed to address the broad question of:

Can a machine learn to generate game map content from observation without

human intervention?

Now, obviously, this is a lofty goal not entirely answered by the work presented here.

However, this dissertation marks a number of advances towards achieving this goal:

• – A contribution to game studies, a theoretical framework for the phenomenology

for how humans perceive and understand game maps (Chapter 2)

• A contribution to the field of Artificial Intelligence, presenting a proceduralization

of said processes in the first system that can take in a game and input trace and

produce human understandable annotations of the content encountered, Mappy

(Chapter 3)

• A contribution to the field of procedural content, a theoretical understanding

291

of what is required for a machine learned two-dimensional room generator (the

most common class of PCGML system found) to achieve generality, i.e., have no

theoretical limitations on its generative capabilities (Chapter 5)

• A contribution to the field of procedural content genreation, a general two-dimensional

room generator, Kamek, that is capable of generating high quality content, along

with a thorough experimentation of how different parameter and data represen-

tation choices affect the abilities of the generator (Chapter 6)

• A contribution to the field of procedural content generation, a theoretical under-

standing of what is required for a machine learned map (the graphical structure

composed of rooms and linkages) generator to achieve generality (Chapter 7)

• A contribution to the field of procedural content generation, the first machine

learned map generator, Agahnim, that is capable of producing maps in the style

of dungeons from The Legend of Zelda (Chapter 8)

• A contribution to the field of procedural content generation, the development of

methodologies for understanding the generative properties of a generator. These

methodologies encompass understanding the expressive range of a generator in a

more concrete and quantitative way than has previously been possible. In partic-

ular, the introduction of machinery for determining how close a PCGML system is

to the input corpus – i.e., a measure for how well a PCGML system has achieved

its task of learning the design latent within the input corpus (Chapter 11).

292

• A contribution to the field of procedural content generation, methodologies for the

display of individual pieces of content, designed to be robust to cherry-picking,

that have properties that better enable people to understand the generators that

produced that content. (Chapter 12)

These contributions provide theoretical and design contributions that further

the understanding of games and procedural content generation therein – along with

systems that reify these understandings.

13.1 Future Work

Of course, these contributions do not represent the end point for this field of

study, and in fact point to new, exciting potential work. On the topic of game observa-

tion and understanding, there are two particularly important avenues: (1) automatic

experimentation and play and (2) understanding of semantics. As mentioned in Chap-

ter 3, general video game playing is a field of study typically devoted towards playing

a heretofore unseen game well. While the playing of a game well is a worthwhile topic

of research, Mappy points towards other ways this research can be utilized, e.g. playing

a game to learn as much about it as possible. This can allow for computer and human

alike to better understand games, enabling further capabilities for automatic systems

like Mappy. Mappy, like all GVG-AI players, understands games in a syntactic sense –

they understand the structure, but not the meaning. This meaning comes from knowl-

edge of the world and culture, two things AI has generally struggled at understanding.

293

However, the potential gains from incorporating these pieces are huge, as they can

enable a system to understand a game in a way much closer to how a human does.

On the topic of PCGML systems, there is still much work to address how

decorative content changes the generative landscape of the different generation systems,

Kamek included. Agahnim represents an initial foray into entire map generation – but

lacks generality – and future work should focus less on individual rooms and on maps

as a cohesive whole, with generation of maps and the individual rooms found in those

maps as one holistic generation process.

Finally, I would like to see the adoption of the evaluation methodologies pre-

sented in this work. Just as expressive range visualization was a step forward for the

PCG research field, I hope the approaches detailed here will present another step for-

ward. And just as expressive range visualizations have been built upon here, I believe

that the techniques in this dissertation will be built upon as our understanding of the

PCG field deepens, and we identify gaps in that understanding that we weren’t able to

previously voice.

294

Bibliography

[1] 4.9 Blueprints Visual Scripting, (accessed April 30, 2018). https://docs.

unrealengine.com/en-us/Engine/Blueprints.

[2] AIIDE 2018 Artifact Evaluation, (accessed April 30, 2018). https://sites.

google.com/ncsu.edu/aiide-2018/home/artifact-evaluation?authuser=0.

[3] Anscombe’s quartet, (accessed April 30, 2018). https://en.wikipedia.org/

wiki/Anscombe%27s_quartet.

[4] Any tips for practicing a frame perfect trick?, (accessed April 30, 2018). https:

//www.speedrun.com/Speedrunning/thread/uys35/1#fdo5l.

[5] Association for Computational Creativity, (accessed April 30, 2018). http://www.

computationalcreativity.net.

[6] Backroom Boys: Masters of their universe, (accessed April 30, 2018). https:

//www.theguardian.com/books/2003/oct/18/features.weekend.

[7] Border Effects, (accessed April 30, 2018). https://www.mathworks.com/help/

wavelet/ug/dealing-with-border-distortion.html.

295

https://docs.unrealengine.com/en-us/Engine/Blueprints
https://docs.unrealengine.com/en-us/Engine/Blueprints
https://sites.google.com/ncsu.edu/aiide-2018/home/artifact-evaluation?authuser=0
https://sites.google.com/ncsu.edu/aiide-2018/home/artifact-evaluation?authuser=0
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.speedrun.com/Speedrunning/thread/uys35/1#fdo5l
https://www.speedrun.com/Speedrunning/thread/uys35/1#fdo5l
http://www.computationalcreativity.net
http://www.computationalcreativity.net
https://www.theguardian.com/books/2003/oct/18/features.weekend
https://www.theguardian.com/books/2003/oct/18/features.weekend
https://www.mathworks.com/help/wavelet/ug/dealing-with-border-distortion.html
https://www.mathworks.com/help/wavelet/ug/dealing-with-border-distortion.html

[8] Fsm:This class defines a Finite State Machine (FSM), (accessed April 30, 2018).

https://hutonggames.fogbugz.com/default.asp?W1098.

[9] GVGAI:The General Video Game AI Competition, (accessed April 30, 2018).

http://www.gvgai.net/.

[10] IAN-ALBERT.COM, (accessed April 30, 2018). http://ian-albert.com/

games/.

[11] Logo Programming, (accessed April 30, 2018). http://el.media.mit.edu/

logo-foundation/what_is_logo/logo_programming.html.

[12] Nes Dev: Mirroring, (accessed April 30, 2018). https://wiki.nesdev.com/w/

index.php/Mirroring.

[13] scipy.ndimage.filters.convolve, (accessed April 30, 2018). https://docs.scipy.

org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.filters.

convolve.html.

[14] TASVideos:Tool-assisted game movies, (accessed April 30, 2018). http://

tasvideos.org/.

[15] Unity Documentation Camera, (accessed April 30, 2018). https://docs.

unity3d.com/Manual/class-Camera.html.

[16] VGMAPS.com: THE VIDEO GAME ATLAS, (accessed April 30, 2018). http:

//vgmaps.com/.

296

https://hutonggames.fogbugz.com/default.asp?W1098
http://www.gvgai.net/
http://ian-albert.com/games/
http://ian-albert.com/games/
http://el.media.mit.edu/logo-foundation/what_is_logo/logo_programming.html
http://el.media.mit.edu/logo-foundation/what_is_logo/logo_programming.html
https://wiki.nesdev.com/w/index.php/Mirroring
https://wiki.nesdev.com/w/index.php/Mirroring
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.filters.convolve.html
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.filters.convolve.html
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.filters.convolve.html
http://tasvideos.org/
http://tasvideos.org/
https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html
http://vgmaps.com/
http://vgmaps.com/

[17] Metanet Software. N++, 2015.

[18] Espen J Aarseth. Cybertext: Perspectives on ergodic literature. JHU Press, 1997.

[19] Jurandy Almeida, Rodrigo Minetto, Tiago A Almeida, Ricardo da S Torres, and

Neucimar J Leite. Robust estimation of camera motion using optical flow models.

In International Symposium on Visual Computing, pages 435–446. Springer, 2009.

[20] Rajeev Alur, Thao Dang, Joel Esposito, Yerang Hur, Franjo Ivancic, Vijay Kumar,

P Mishra, GJ Pappas, and Oleg Sokolsky. Hierarchical modeling and analysis of

embedded systems. Proceedings of the IEEE, 2003.

[21] FJ Anscombe. Graphs in statistical analysis. The American Statistician, 27(1):17–

21, 1973.

[22] Anna Anthropy. level design lesson: to the right, hold on tight, (accessed

April 30, 2018). https://web.archive.org/web/20090911102829/http://www.

auntiepixelante.com/?p=465.

[23] Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical

study. arXiv preprint arXiv:1706.08224, 2017.

[24] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with

applications to tracking and navigation: theory algorithms and software. John

Wiley & Sons, 2004.

[25] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint

arXiv:1801.01973, 2018.

297

https://web.archive.org/web/20090911102829/http://www.auntiepixelante.com/?p=465
https://web.archive.org/web/20090911102829/http://www.auntiepixelante.com/?p=465

[26] M. Bauerly and Y. Liu. Computational modeling and experimental investigation of

effects of compositional elements on interface and design aesthetics. International

Journal of Human-Computer Studies, 64(8):670–682, 2006.

[27] Richard Bellman and Robert Roth. Curve fitting by segmented straight lines.

Journal of the American Statistical Association, 1969.

[28] C. E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilità. Pubbli-

cazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze,

8:3–62, 1936.

[29] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling

temporal dependencies in high-dimensional sequences: Application to polyphonic

music generation and transcription. preprint arXiv:1206.6392, 2012.

[30] David Braben and Ian Bell. Elite, 1984.

[31] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM Comput.

Surv., 24(4):325–376, December 1992.

[32] Eric Butler, Erik Andersen, Adam M Smith, Sumit Gulwani, and Zoran Popović.

Automatic game progression design through analysis of solution features. In Pro-

ceedings of the 33rd Annual ACM Conference on Human Factors in Computing

Systems, pages 2407–2416. ACM, 2015.

[33] Edward Byrne. Game level design, volume 6.

298

[34] Alessandro Canossa and Gillian Smith. Towards a procedural evaluation tech-

nique: Metrics for level design. Proceedings of FDG, 2015.

[35] José E Chacón and T Duong. Multivariate plug-in bandwidth selection with

unconstrained pilot bandwidth matrices. Test, 19(2):375–398, 2010.

[36] Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative event

chains. Proceedings of ACL-08: HLT, pages 789–797, 2008.

[37] Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative

schemas and their participants. In Proceedings of the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 602–610.

Association for Computational Linguistics, 2009.

[38] W Ching, S Zhang, and M Ng. On multi-dimensional markov chain models. Pacific

Journal of Optimization, 3(2), 2007.

[39] Adam Coates and Andrew Y Ng. Learning feature representations with k-means.

In Neural networks: Tricks of the trade, pages 561–580. Springer, 2012.

[40] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and train-

ability in recurrent neural networks. arXiv preprint arXiv:1611.09913, 2016.

[41] Simon Colton. Creativity versus the perception of creativity in computational

systems. pages 14–20, 01 2008.

299

[42] Michael Cook, Jeremy Gow, and Simon Colton. Danesh: Helping bridge the gap

between procedural generators and their output. 2016.

[43] WJ Crozier and AH Holway. Theory and measurement of visual mechanisms: Iii.

𝛿i as a function of area, intensity, and wave-length, for monocular and binocular

stimulation. The Journal of general physiology, 23(1):101–141, 1939.

[44] Steve Dahlskog and Julian Togelius. Patterns as objectives for level generation.

In EvoApplications, 2013.

[45] Steve Dahlskog, Julian Togelius, and Mark J. Nelson. Linear levels through n-

grams. In Proceedings of the 18th International Academic MindTrek Conference,

2014.

[46] Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowl-

edge in artificial intelligence. Communications of the ACM, 58(9):92–103, 2015.

[47] Andres Delikat, zeromus, feos, and Lukas Sabota. FCEUX, 2008.

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[49] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[50] Roland L Dobrushin. Prescribing a system of random variables by conditional

distributions. Theory of Probability & Its Applications, 15(3):458–486, 1970.

300

[51] Joris Dormans. Adventures in level design: Generating missions and spaces for

action adventure games. In Proceedings of the 2010 Workshop on Procedural

Content Generation in Games, PCGames ’10, pages 1:1–1:8, New York, NY,

USA, 2010. ACM.

[52] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Re-

search, 12(Jul):2121–2159, 2011.

[53] Frederic Dufaux and Janusz Konrad. Efficient, robust, and fast global motion

estimation for video coding. IEEE transactions on image processing, 9(3):497–

501, 2000.

[54] Andrew Dunn. Zoetrope, (accessed April 30, 2018). https://commons.

wikimedia.org/wiki/File:Zoetrope.jpg.

[55] Tarn Duong and Martin Hazelton. Plug-in bandwidth matrices for bivariate kernel

density estimation. Journal of Nonparametric Statistics, 15(1):17–30, 2003.

[56] Tarn Duong and Martin L Hazelton. Convergence rates for unconstrained band-

width matrix selectors in multivariate kernel density estimation. Journal of Mul-

tivariate Analysis, 93(2):417–433, 2005.

[57] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices.

[58] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC

press, 1994.

301

https://commons.wikimedia.org/wiki/File:Zoetrope.jpg
https://commons.wikimedia.org/wiki/File:Zoetrope.jpg

[59] Mustafa Ersen and Sanem Sariel-Talay. Learning interactions among objects

through spatio-temporal reasoning. In Signal Processing and Communications

Applications Conference (SIU), 2012 20th, pages 1–4. IEEE, 2012.

[60] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden markov

model: Analysis and applications. Machine learning, 32(1):41–62, 1998.

[61] Daniel Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal

of Open Source Software, 24, 2016.

[62] Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech.

In International workshop on hybrid systems: computation and control. Springer,

2005.

[63] Michael Frey. Taumatropio fiori e vaso, 1825 Frame 1 & 2, (accessed April 30,

2018). https://en.wikipedia.org/wiki/File:Taumatropio_fiori_e_vaso,

_1825_Frame_1.png.

[64] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-

tinual prediction with lstm. 1999.

[65] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in

preparation for MIT Press, 2016.

[66] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014.

302

https://en.wikipedia.org/wiki/File:Taumatropio_fiori_e_vaso,_1825_Frame_1.png
https://en.wikipedia.org/wiki/File:Taumatropio_fiori_e_vaso,_1825_Frame_1.png

[67] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan

Wierstra. Draw: A recurrent neural network for image generation. preprint

arXiv:1502.04623, 2015.

[68] Patrick J Grother, Gerald T Candela, and James L Blue. Fast implementations

of nearest neighbor classifiers. Pattern Recognition, 30(3):459–465, 1997.

[69] Christine Guillemot and Olivier Le Meur. Image inpainting: Overview and recent

advances. IEEE signal processing magazine, 31(1):127–144, 2014.

[70] Maxim Gumin. WaveFunctionCollapse. GitHub repository, 2016. https:

//github.com/mxgmn/WaveFunctionCollapse.

[71] M. Guzdial, N. Sturtevant, and B. Li. Deep static and dynamic level analysis:

A study on infinite mario. In Proceedings of the 3rd Experimental AI in Games

Workshop, page 8, 2016.

[72] Matthew Guzdial, Boyang Li, and Mark O Riedl. Game engine learning from

video. In 26th International Joint Conference on Artificial Intelligence, 2017.

[73] Matthew Guzdial and Mark Riedl. Game level generation from gameplay videos.

In AIIDE, 2016.

[74] Matthew Guzdial and Mark Riedl. Learning to blend computer game levels. 2016.

[75] Matthew Guzdial and Mark O. Riedl. Toward game level generation from game-

play videos. In Proceedings of the FDG workshop on Procedural Content Gener-

ation in Games, 2015.

303

https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse

[76] Helena Handschuh. Sha-0, sha-1, sha-2 (secure hash algorithm). In Henk C. A. van

Tilborg and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security

(2nd Ed.), pages 1190–1193. Springer, 2011.

[77] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-

termination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, SSC-4(2):100–107, 1968.

[78] Daniel M Hausman and James Woodward. Independence, invariance and the

causal markov condition. The British journal for the philosophy of science,

50(4):521–583, 1999.

[79] Megan L Head, Luke Holman, Rob Lanfear, Andrew T Kahn, and Michael D

Jennions. The extent and consequences of p-hacking in science. PLoS biology,

13(3):e1002106, 2015.

[80] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter

Klambauer, and Sepp Hochreiter. Gans trained by a two time-scale update rule

converge to a nash equilibrium. arXiv preprint arXiv:1706.08500, 2017.

[81] William Higinbotham. Tennis for Two. [Analog Computer], 1958.

[82] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computing, 1997.

[83] Amy K. Hoover, Paul A. Szerlip, and Kenneth O. Stanley. Functional scaffolding

304

for composing additional musical voices. Computer Music Journal, 38(4):80–99,

2014.

[84] Amy K Hoover, Julian Togelius, and Georgios N. Yannakis. Composing video

game levels with music metaphors through functional scaffolding. Comp. Creativ-

ity & Games at ICCC, 2015.

[85] John J Hopfield. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings of the national academy of sciences,

79(8):2554–2558, 1982.

[86] Britton Horn, Steve Dahlskog, Noor Shaker, Gillian Smith, and Julian Togelius. A

comparative evaluation of procedural level generators in the Mario AI framework.

FDG, 2014.

[87] Ian D. Horswill and Leif Foged. Fast procedural level population with playability

constraints. In Mark Riedl and Gita Sukthankar, editors, AIIDE. The AAAI

Press, 2012.

[88] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie.

Stacked generative adversarial networks.

[89] hutong games. playMaker, 1993.

[90] id Software. Doom, 1993.

[91] Itseez. Open source computer vision library. https://github.com/itseez/

opencv, 2015.

305

https://github.com/itseez/opencv
https://github.com/itseez/opencv

[92] Rishabh Jain, Aaron Isaksen, Christoffer Holmgård, and Julian Togelius. Autoen-

coders for Level Generation, Repair, and Recognition. In ICCC, 2016.

[93] jdaster64. SMB physics spec. http://forums.mfgg.net/viewtopic.php?p=346301,

2012. Accessed: 2017-02-13.

[94] Jeff Tunnell Productions. The Incredible Machine, 1993.

[95] Susmit Jha, Bryan A Brady, and Sanjit A Seshia. Symbolic reachability analysis

of lazy linear hybrid automata. In International Conference on Formal Modeling

and Analysis of Timed Systems. Springer, 2007.

[96] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-

lems. Journal of basic Engineering, 82(1):35–45, 1960.

[97] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen

Koltun. A probabilistic model for component-based shape synthesis. ACM Trans-

actions on Graphics, 31(4), 2014.

[98] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding

recurrent networks. CoRR, abs/1506.02078, 2015.

[99] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive

growing of gans for improved quality, stability, and variation. arXiv preprint

arXiv:1710.10196, 2017.

[100] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. North-

Holland, 1987.

306

[101] Itay Keren. Scroll Back: The Theory and Practice of Cameras in Side-Scrollers,

(accessed April 30, 2018). https://www.gamasutra.com/blogs/ItayKeren/

20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_

SideScrollers.php#h.nc2c2clexluw.

[102] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[103] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[104] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated An-

nealing. Science, 220(4598):671–680, May 1983.

[105] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In

Proceedings of the 17th European Conference on Machine Learning, ECML’06,

pages 282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[106] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance

analysis. Journal of the American statistical Association, 47(260):583–621, 1952.

[107] Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

[108] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-

negative matrix factorization. Nature, 401(6755):788–791, 1999.

307

https://www.gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php#h.nc2c2clexluw
https://www.gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php#h.nc2c2clexluw
https://www.gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_Cameras_in_SideScrollers.php#h.nc2c2clexluw

[109] Richard J Leskosky. Phenakiscope: 19th century science turned to animation.

Film History, 5(2):176–189, 1993.

[110] Antonios Liapis. Map sketch generation as a service. 2015.

[111] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. Sentient sketch-

book: Computer-aided game level authoring. In FDG, pages 213–220, 2013.

[112] Roland van der Linden, Ricardo Lopes, and Rafael Bidarra. Designing procedu-

rally generated levels. In Proceedings of IDPv2 2013 - Workshop on Artificial

Intelligence in the Game Design Process, co-located with the Ninth AAAI Confer-

ence on Artificial Intelligence in Interactive Digital Entertainment, pages 41–47,

AAAI Press, Palo Alto, CA, oct 2013. AAAI, AAAI Press. ISBN 978-1-57735-

635-6.

[113] Elizabeth Loder. Registration of observational studies. BMJ, 340(2):c950, 2010.

[114] Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better gen-

eralization and longer horizons. arXiv preprint arXiv:1703.03633, 2017.

[115] Daniel L Ly and Hod Lipson. Learning symbolic representations of hybrid dynam-

ical systems. Journal of Machine Learning Research, 13(Dec):3585–3618, 2012.

[116] Henry B Mann and Donald R Whitney. On a test of whether one of two random

variables is stochastically larger than the other. The annals of mathematical

statistics, pages 50–60, 1947.

308

[117] Julian RH Mariño and Levi HS Lelis. A computational model based on symmetry

for generating visually pleasing maps of platform games. 2016.

[118] Julian RH Mariño, Willian MP Reis, and Levi HS Lelis. An empirical evaluation of

evaluation metrics of procedurally generated mario levels. The AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment, 2015.

[119] Michael Mateas and Noah Wardrip-Fruin. Defining operational logics. 2009.

[120] Justin Matejka and George Fitzmaurice. Same stats, different graphs: generating

datasets with varied appearance and identical statistics through simulated anneal-

ing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing

Systems, pages 1290–1294. ACM, 2017.

[121] Peter Mawhorter and Michael Mateas. Procedural level generation using

occupancy-regulated extension. In Computational Intelligence and Games (CIG),

2010 IEEE Symposium on, pages 351–358. IEEE, 2010.

[122] Thomas McClean. McClean’s Optical Illusions, 1833.

[123] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evalua-

tion in neural language models. The Sixth International Conference on Learning

Representations, 2018.

[124] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and

optimizing lstm language models. arXiv preprint arXiv:1708.02182, 2017.

309

[125] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer

sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

[126] T. Minka, J.M. Winn, J.P. Guiver, and D.A. Knowles. Infer.NET 2.5, 2012.

Microsoft Research Cambridge. http://research.microsoft.com/infernet.

[127] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

[128] Jessica Montgomery. Machine learning in 2016: what does nips2016

tell us about the field today?, 2016. https://blogs.royalsociety.org/in-

verba/2016/12/22/machine-learning-in-2016-what-does-nips2016-tell-us-about-

the-field-today/.

[129] Fausto Mourato, Manuel Próspero dos Santos, and Fernando Birra. Automatic

level generation for platform videogames using genetic algorithms. In Proceedings

of the 8th International Conference on Advances in Computer Entertainment

Technology, page 8. ACM, 2011.

[130] Namco. Periscope. [Arcade] Namco, 1965.

[131] Namco. Galaxian, 1993.

[132] NESDev. Nesdev wiki: Nes reference guide, 2017.

310

[133] D. C. L. Ngo, A. Samsudin, and R. Abdullah. Aesthetic measures for assessing

graphic screens. J. Inf. Sci. Eng, 16(1):97–116, 2000.

[134] David Chek Ling Ngo, Lian Seng Teo, and John G Byrne. Modelling interface

aesthetics. Information Sciences, 152:25–46, 2003.

[135] Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier, and

Hans Kleine Büning. Learning behavior models for hybrid timed systems. In

AAAI, 2012.

[136] Nintendo RD1. Beneath Apple Manor, 1986.

[137] Richard E Nisbett and Timothy DWilson. Telling more than we can know: Verbal

reports on mental processes. Psychological review, 84(3):231, 1977.

[138] Joseph Osborn, Adam Summerville, and Michael Mateas. Automatic mapping of

nes games with mappy. In Proceedings of the 12th International Conference on

the Foundations of Digital Games, page 78. ACM, 2017.

[139] Joseph C. Osborn. OL-Catalog, (accessed April 30, 2018). https://github.com/

JoeOsborn/ol-catalog.

[140] Joseph C. Osborn. OL-Catalog/notes/games, (accessed April 30, 2018). https:

//github.com/JoeOsborn/ol-catalog/blob/master/notes/games.md.

[141] Joseph C Osborn, Adam Summerville, and Michael Mateas. Automated game

design learning. In Computational Intelligence and Games (CIG), 2017 IEEE

Conference on, pages 240–247. IEEE, 2017.

311

https://github.com/JoeOsborn/ol-catalog
https://github.com/JoeOsborn/ol-catalog
https://github.com/JoeOsborn/ol-catalog/blob/master/notes/games.md
https://github.com/JoeOsborn/ol-catalog/blob/master/notes/games.md

[142] Joseph C. Osborn, NoahWardrip-Fruin, and Michael Mateas. Refining operational

logics. In FDG, 2017.

[143] Karl Pearson. Note on regression and inheritance in the case of two parents.

Proceedings of the Royal Society of London, 58:240–242, 1895.

[144] Alison Pease, Daniel Winterstein, and Simon Colton. Evaluating machine creativ-

ity. 2001.

[145] Christopher Pedersen, Julian Togelius, and Georgios N Yannakakis. Modeling

player experience for content creation. IEEE Transactions on Computational

Intelligence and AI in Games, 2(1):54–67, 2010.

[146] Markus Persson. Infinite Mario, 2006.

[147] Paolo Piselli, Mark Claypool, and James Doyle. Relating cognitive models of

computer games to user evaluations of entertainment. In Jim Whitehead and

R. Michael Young, editors, FDG, pages 153–160. ACM, 2009.

[148] André Platzer. Differential dynamic logic for hybrid systems. Journal of Auto-

mated Reasoning, 2008.

[149] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-time

computer vision with opencv. Commun. ACM, 55(6):61–69, June 2012.

[150] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[151] Racconish. Optical illusion disc with man pumping water, (accessed April

312

30, 2018). https://commons.wikimedia.org/wiki/File:Optical_illusion_

disc_with_man_pumping_water.gif.

[152] W. M. P. Reis, L. H. S. Lelis, and Y. Gal. Human computation for procedural

content generation in platform games. In Conference of Computational Intelligence

and Games, pages 99–106. IEEE, 2015.

[153] Graeme Ritchie. Assessing creativity. Citeseer, 2001.

[154] Jonathan Roberts and Ke Chen. Learning-based procedural content generation.

IEEE Transactions on Computational Intelligence and AI in Games, 7(1):88–101,

2015.

[155] Murray Rosenblatt. Remarks on some nonparametric estimates of a density func-

tion. The Annals of Mathematical Statistics, pages 832–837, 1956.

[156] James Ryan, Eric Kaltman, Andrew Max Fisher, Taylor Owen-Milner, Michael

Mateas, and Noah Wardrip-Fruin. Gamespace: An explorable visualization of the

videogame medium.

[157] S S. Blackman. Multiple target tracking with radar applications. -1, 01 1986.

[158] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in Neural

Information Processing Systems, pages 2234–2242, 2016.

[159] Pedro Santana, Spencer Lane, Eric Timmons, Brian Williams, and Carlos Forster.

Learning hybrid models with guarded transitions. 2015.

313

https://commons.wikimedia.org/wiki/File:Optical_illusion_disc_with_man_pumping_water.gif
https://commons.wikimedia.org/wiki/File:Optical_illusion_disc_with_man_pumping_water.gif

[160] Santiago Londoño and Olana Missura. Graph grammars for super mario bros

levels. In Proceedings of the Procedural Content Generation Workshop, 2015.

[161] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in

cognitive sciences, 3(6):233–242, 1999.

[162] Richard Scheines. An introduction to causal inference. 1997.

[163] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural

Networks, 61:85–117, 2015.

[164] Gideon Schwarz et al. Estimating the dimension of a model. The annals of

statistics, 1978.

[165] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’Neill. Evolving

levels for super mario bros using grammatical evolution. In 2012 IEEE Conference

on Computational Intelligence and Games (CIG), pages 304–311, Sept 2012.

[166] Noor Shaker and Mohamed Abou-Zleikha. Alone we can do so little, together we

can do so much: A combinatorial approach for generating game content. In Tenth

Artificial Intelligence and Interactive Digital Entertainment Conference, 2014.

[167] Noor Shaker, Mohammad Shaker, and Julian Togelius. Evolving playable content

for cut the rope through a simulation-based approach. In AIIDE, 2013.

[168] Noor Shaker, Mohammad Shaker, and Julian Togelius. Ropossum: An authoring

tool for designing, optimizing and solving cut the rope levels. 2013.

314

[169] Noor Shaker, Julian Togelius, and Mark J. Nelson. Procedural Content Generation

in Games: A Textbook and an Overview of Current Research. Springer, 2016.

[170] Noor Shaker, Julian Togelius, Georgios N Yannakakis, Ben Weber, Tomoyuki

Shimizu, Tomonori Hashiyama, Nathan Sorenson, Philippe Pasquier, Peter

Mawhorter, Glen Takahashi, et al. The 2010 mario ai championship: Level gen-

eration track. Computational Intelligence and AI in Games, IEEE Transactions

on, 3(4):332–347, 2011.

[171] Edgar Simo-Serra, Arnau Ramisa, Guillem Alenyà, Carme Torras, and Francesc

Moreno-Noguer. Single image 3d human pose estimation from noisy observations.

In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pages 2673–2680. IEEE, 2012.

[172] Robert A Singer. Estimating optimal tracking filter performance for manned

maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems,

(4):473–483, 1970.

[173] Adam M. Smith. Answer set programming in proofdoku. 2017.

[174] Adam M Smith and Michael Mateas. Answer set programming for procedural

content generation: A design space approach. Computational Intelligence and AI

in Games, IEEE Transactions on, 3(3):187–200, 2011.

[175] G. Smith, J. Whitehead, and M. Mateas. Tanagra: Reactive planning and con-

315

straint solving for mixed-initiative level design. IEEE Transactions on Computa-

tional Intelligence and AI in Games, (99), 2011.

[176] Gillian Smith. The Seven Deadly Sins of PCG Research, (ac-

cessed April 30, 2018). http://sokath.com/main/blog/2013/05/23/

the-seven-deadly-sins-of-pcg-papers-questionable-claims-edition/.

[177] Gillian Smith and Jim Whitehead. Analyzing the expressive range of a level

generator. In Proceedings of the 2010 Workshop on Procedural Content Generation

in Games, page 4. ACM, 2010.

[178] Gillian Smith, Jim Whitehead, Michael Mateas, Mike Treanor, Jameka March,

and Mee Cha. Launchpad: A rhythm-based level generator for 2-d platformers.

IEEE Transactions on computational intelligence and AI in games, 3(1):1–16,

2011.

[179] Gillian Margaret Smith. Expressive design tools: Procedural content generation

for game designers. PhD thesis, University of California, Santa Cruz, 2012.

[180] Sam Snodgrass and Santiago Ontañón. A hierarchical approach to generating

maps using markov chains. In Tenth Artificial Intelligence and Interactive Digital

Entertainment Conference, 2014.

[181] Sam Snodgrass and Santiago Ontañón. Learning to generate video game maps

using Markov models. TCIAIG, 2016.

316

http://sokath.com/main/blog/2013/05/23/the-seven-deadly-sins-of-pcg-papers-questionable-claims-edition/
http://sokath.com/main/blog/2013/05/23/the-seven-deadly-sins-of-pcg-papers-questionable-claims-edition/

[182] Sam Snodgrass and Santiago Ontañón. Generating maps using markov chains. In

AIIDE 2013 workshop on AI for Game Aesthetics, pages 25–28. AAAI, 2013.

[183] Sam Snodgrass and Santiago Ontañón. Experiments in map generation using

Markov chains. In FDG, volume 14, 2014.

[184] Sam Snodgrass and Santiago Ontañón. A hierarchical MdMC approach to 2D

video game map generation. AIIDE, 2015.

[185] Sam Snodgrass and Santiago Ontañón. Controllable procedural content generation

via constrained multi-dimensional Markov chain sampling. In 25th International

Joint Conference on Artificial Intelligence, 2016.

[186] Nathan Sorenson and Philippe Pasquier. Towards a generic framework for auto-

mated video game level creation. In Applications of Evolutionary Computation,

pages 131–140. Springer, 2010.

[187] Jens Spitaels. Marionet: generating realistic game levels through deep. 2017.

[188] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evolutionary Computation, 10:99–127, 2002.

[189] Matthew Stephenson and Jochen Renz. Procedural generation of levels for angry

birds style physics games. 2016.

[190] Robert A Stine. Model selection using information theory and the mdl principle.

Sociological Methods & Research, 2004.

317

[191] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

[192] David Sudnow. Pilgrim in the microworld. Heinemann, London, 1983.

[193] Adam Summerville, Morteza Behrooz, Michael Mateas, and Arnav Jhala. What

does that ?-block do? learning latent causal affordances from mario play traces. In

Proceedings of the first What’s Next for AI in Games Workshop at AAAI, volume

2017, 2017.

[194] Adam Summerville, Matthew Guzdial, Michael Mateas, and Mark O Riedl. Learn-

ing player tailored content from observation: Platformer level generation from

video traces using LSTMs. In Twelfth Artificial Intelligence and Interactive Digi-

tal Entertainment Conference, 2016.

[195] Adam Summerville, Julian RH Mariño, Sam Snodgrass, Santiago Ontañón, and

Levi HS Lelis. Understanding Mario: an evaluation of design metrics for plat-

formers. In Proceedings of the 12th International Conference on the Foundations

of Digital Games, page 8. ACM, 2017.

[196] Adam Summerville and Michael Mateas. Sampling hyrule: Sampling probabilistic

machine learning for level generation. AIIDE, 2015.

[197] Adam Summerville and Michael Mateas. Super Mario as a string: Platformer

level generation via LSTMs. DiGRA/FDG, 2016.

[198] Adam Summerville and Michael Mateas. Super mario as a string: Platformer

318

level generation via lstms. In To Appear In Proceedings of the First International

Conference of DiGRA and FDG, 2016.

[199] Adam Summerville, Joseph Osborn, and Michael Mateas. Charda: Causal hybrid

automata recovery via dynamic analysis. IJCAI, 2017.

[200] Adam Summerville, Sam Snodgrass, Matthew Guzdial, Christoffer Holmgård,

Amy K Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius. Procedural con-

tent generation via machine learning (pcgml). arXiv preprint arXiv:1702.00539,

2017.

[201] Adam J Summerville, Morteza Behrooz, Michael Mateas, and Arnav Jhala. The

learning of Zelda: Data-driven learning of level topology. PCG Workshop at FDG,

2015.

[202] Adam James Summerville, Shweta Philip, and Michael Mateas. MCMCTS PCG

4 SMB: Monte Carlo tree search to guide platformer level generation. In Eleventh

Artificial Intelligence and Interactive Digital Entertainment Conference, 2015.

[203] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning

with neural networks. In CoRR, 2014.

[204] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going

deeper with convolutions.

319

[205] Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based

on distances. Journal of statistical planning and inference, 143(8):1249–1272, 2013.

[206] Game feel. In Steve Swink, editor, Game Feel, pages i – iii. Morgan Kaufmann,

Boston, 2009.

[207] Taito. Speed Race, 1974.

[208] Edward Teng and Rafael Bidarra. A semantic approach to patch-based procedu-

ral generation of urban road networks. In Proceedings of the 12th International

Conference on the Foundations of Digital Games, page 71. ACM, 2017.

[209] Carsten Thomassen. The graph genus problem is np-complete. Journal of Algo-

rithms, 10(4):568–576, 1989.

[210] Tommy Thompson. “what is a super mario level anyway?”an argument for non-

formalist level generation in super mario bros. 2016.

[211] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society, Series B, 58:267–288, 1994.

[212] T. Tieleman and G. Hinton. RMSprop Gradient Optimization.

[213] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron

Browne. Search-Based Procedural Content Generation. In Applications of Evolu-

tionary Computation, pages 141–150. Springer, 2010.

[214] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron

320

Browne. Search-based procedural content generation: A taxonomy and survey.

Computational Intelligence and AI in Games, IEEE Transactions on, 3(3):172–

186, 2011.

[215] Christopher W Totten. An architectural approach to level design. CRC Press,

2014.

[216] J. Valls-Vargas, S. Ontañón, and Jichen Zhu. Towards story-based content gener-

ation: From plot-points to maps. In Computational Intelligence in Games (CIG),

2013 IEEE Conference on, pages 1–8, Aug 2013.

[217] Valtchan Valtchanov and Joseph Alexander Brown. Evolving dungeon crawler

levels with relative placement. In Proceedings of the Fifth International C* Con-

ference on Computer Science and Software Engineering, C3S2E ’12, pages 27–35,

New York, NY, USA, 2012. ACM.

[218] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In Intl.

Conf. on Machine Learning, pages 1096–1103. ACM, 2008.

[219] David Wagner. A generalized birthday problem. In Annual International Cryp-

tology Conference, pages 288–304. Springer, 2002.

[220] Kenneth Wallis. A note on the calculation of entropy from histograms.

http://mpra.ub.uni-muenchen.de/52856/, 2006.

[221] Noah Wardrip-Fruin. Playable media and textual instruments. The Aesthetics

321

of Net Literature: Writing, Reading and Playing in Programmable Media, pages

211–388.

[222] Max Wertheimer. Experimental studies on seeing motion. On perceived motion

and figural organization, pages 1–92, 2012.

[223] Yuhong Yang. Can the strengths of aic and bic be shared? a conflict between

model indentification and regression estimation. Biometrika, 92(4):937–950, 2005.

[224] Georgios N. Yannakakis and Julian Togelius. Experience-Driven Procedural Con-

tent Generation. IEEE Transactions on Affective Computing, 2(3):147–161, 2011.

[225] R. M. Yerkes and J. D. Dodson. The relation of strength of stimulus to rapidity of

habit formation. Journal of Comparative Neurology and Psychology, 18:459–482,

1908.

[226] Weidong Yin, Yanwei Fu, Leonid Sigal, and Xiangyang Xue. Semi-latent gan:

Learning to generate and modify facial images from attributes. arXiv preprint

arXiv:1704.02166, 2017.

[227] Andrew Yoder. Methods of Analysis and Mario, (accessed April

30, 2018). https://mclogeblog.wordpress.com/2013/02/24/

methods-of-analysis-and-mario/.

[228] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329, 2014.

322

https://mclogeblog.wordpress.com/2013/02/24/methods-of-analysis-and-mario/
https://mclogeblog.wordpress.com/2013/02/24/methods-of-analysis-and-mario/

[229] Tasos Zembylas. Artistic Practices: Social Interactions and Cultural Dynamics.

Routledge, 2014.

[230] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and landmark

localization in the wild. In Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, pages 2879–2886. IEEE, 2012.

[231] Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutník, and Jürgen Schmid-

huber. Recurrent highway networks. arXiv preprint arXiv:1607.03474, 2016.

[232] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learn-

ing. arXiv preprint arXiv:1611.01578, 2016.

323

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Research Contributions

	I Learning From Game
	How Humans Understand Games
	Human Annotation Tasks
	Entity Persistence
	Camera Motion
	Room Detection
	Teleportation
	Traversal

	Animation Cycles
	Mode Dynamics
	Conclusion

	Mappy – A System for Map Extraction and Annotation via Observation
	NES Architecture and Emulation
	Operationalizing Entity Persistence
	Inferring Camera Motion
	Determining Room Transitions
	Automatic Mapping

	The Detection of Animation Cycles
	The Extraction of Dynamics Modes
	Proximate Cause Learning

	Mappy Annotation Synthesis
	Conclusion

	Case Study – A Comparison of Human and Machine Annotations for Super Mario Bros.
	Machine Annotation
	Case Study – Other Mappy Output
	Discussion

	II The Generation of Game Maps
	Procedural Generation of Two Dimensional Rooms via Machine Learning
	Two Dimensional Room Generation
	Required Properties of A General Machine Learned Room Generator
	Existing PCGML Systems and their Generality
	Markov Methods
	Neural Methods
	Matrix Factorization Methods

	Graphical Methods
	PCGML Generality Comparison

	Kamek – A Machine-Learned Two Dimensional Room Generator
	Data Formulation
	Sampling Methodology
	Choice of Space-Filling Curve
	Evaluation of Linearization Traversals

	The Impact of Meta-Information on Quality
	Model Capacity
	On the Importance of Following the Flow of Play
	A Comparison of Human and Machine Annotation
	Combining Machine-Learned and Search-Based Content Generation

	Map Generation
	Digression on Euclidean Vs Non-Euclidean Topology
	Data Requirements

	Case Study – Agahnim
	Generation Process
	Results
	Discussion

	III The Evaluation of Generative Methods
	Existing Methods for Generative Evaluation
	Aside – A Discussion of Metrics for Platformers
	Previous Computational Metrics
	Novel Computational Metrics
	Empirical Results
	Metrics Selection with LASSO
	LASSO Prediction Results
	Previous Neural Network Model
	Metrics Selected by LASSO
	Discussion
	Case Studies

	Conclusion

	Analyses of Generative Space
	Kernel Density Estimation and Visual Inspection
	Comparison to the Original Corpus

	Expressive Volume
	Case Study – Expressive Volume as Function of Training Corpus

	Joint Distribution Testing of Generative Spaces

	Analysis of Individual Pieces of Content
	Avoiding Cherry-Picking
	Plagiarism As Selection Criterion
	Metric Distance as Selection Criterion
	Case Study – Kamek

	Discussion

	Conclusions And Future Work
	Future Work

	Bibliography

