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Abstract 

Genome	sequencing	projects	have	resulted	in	a	rapid	increase	in	the	number	of	

known	protein	sequences.	In	contrast,	only	about	one-hundredth	of	these	sequences	

have	been	characterized	at	atomic	resolution	using	experimental	structure	

determination	methods.	Computational	protein	structure	modeling	techniques	have	

the	potential	to	bridge	this	sequence-structure	gap.	In	the	following	chapter,	we	

present	an	example	that	illustrates	the	use	of	MODELLER	to	construct	a	comparative	

model	for	a	protein	with	unknown	structure.	Automation	of	a	similar	protocol	has	

resulted	in	models	of	useful	accuracy	for	domains	in	more	than	half	of	all	known	

protein	sequences.	

	

Key	Words:	Comparative	modeling,	fold	assignment,	sequence-structure	alignment,	

model	assessment,	multiple	templates.	

1. Introduction 

The	function	of	a	protein	is	determined	by	its	sequence	and	its	three-dimensional	

(3D)	structure.	Large-scale	genome	sequencing	projects	are	providing	researchers	

with	millions	of	protein	sequences,	from	various	organisms,	at	an	unprecedented	

pace(1).	However,	the	rate	of	experimental	structural	characterization	of	these	

sequences	is	limited	by	the	cost,	time,	and	experimental	challenges	inherent	in	the	



structural	determination	by	X-ray	crystallography	and	nuclear	magnetic	resonance	

(NMR)	spectroscopy(2).	

	

In	the	absence	of	experimentally	determined	structures,	computationally	derived	

protein	structure	models	are	often	valuable	for	generating	testable	hypotheses(3,4).	

Such	models	are	generally	produced	using	either	comparative	modeling	methods,	or	

free	modeling	techniques	(also	referred	to	as	ab	initio	or	de	novo	modeling)(5).	

Comparative	modeling	relies	on	structural	information	from	related	proteins	to	

guide	the	modeling	procedure(6-8).	Free	modeling	does	not	require	a	related	

protein,	but	instead	uses	a	variety	of	methods	to	combine	physics	with	the	known	

behaviors	of	protein	structures	(for	example	by	combining	multiple	short	structural	

fragments	extracted	from	known	proteins)(9-11);	it	is,	however,	extremely	

computationally	expensive(5).	Comparative	protein	structure	modeling,	which	this	

text	focuses	on,	has	been	used	to	produce	reliable	structure	models	for	at	least	one	

domain	in	more	than	half	of	all	known	sequences(12).	Hence,	computational	

approaches	can	provide	structural	information	for	two	orders	of	magnitude	more	

sequences	than	experimental	methods,	and	are	expected	to	be	increasingly	relied	

upon	as	the	gap	between	the	number	of	known	sequences	and	the	number	of	

experimentally	determined	structures	continues	to	widen.	

	

Comparative	modeling	consists	of	four	main	steps(6)	(Fig.	1):	(i)	fold	assignment	

that	identifies	overall	similarity	between	the	target	sequence	and	at	least	one	

known	structure	(template);	(ii)	alignment	of	the	target	sequence	and	the	



template(s);	(iii)	building	a	model	based	on	the	alignment	with	the	chosen	

template(s);	and	(iv)	predicting	the	accuracy	of	the	model.	

	

MODELLER	is	a	computer	program	for	comparative	protein	structure	

modeling(13,14).	In	the	simplest	case,	the	input	is	an	alignment	of	a	sequence	to	be	

modeled	with	the	template	structure(s),	the	atomic	coordinates	of	the	template(s),	

and	a	simple	script	file.	MODELLER	then	automatically	calculates	a	model	containing	

all	non-hydrogen	atoms,	without	any	user	intervention	and	within	seconds	or	

minutes	on	a	desktop	computer.	Apart	from	model	building,	MODELLER	can	

perform	auxiliary	tasks	such	as	fold	assignment,	alignment	of	two	protein	sequences	

or	their	profiles(15),	multiple	alignment	of	protein	sequences	and/or	

structures(16,17),	clustering	of	sequences	and/or	structures,	and	ab	initio	modeling	

of	loops	in	protein	structures(13).	

	

MODELLER	implements	comparative	protein	structure	modeling	by	satisfaction	of	

spatial	restraints	that	include	(i)	homology-derived	restraints	on	the	distances	and	

dihedral	angles	in	the	target	sequence,	extracted	from	its	alignment	with	the	

template	structures(14),	(ii)	stereochemical	restraints	such	as	bond	length	and	

bond	angle	preferences,	obtained	from	the	CHARMM-22	molecular	mechanics	force-

field(18),	(iii)	statistical	preferences	for	dihedral	angles	and	non-bonded	inter-

atomic	distances,	obtained	from	a	representative	set	of	known	protein	

structures(19,20),	and	(iv)	optional	manually	curated	restraints,	such	as	those	from	

NMR	spectroscopy,	rules	of	secondary	structure	packing,	cross-linking	experiments,	



fluorescence	spectroscopy,	image	reconstruction	from	electron	microscopy,	site-

directed	mutagenesis,	and	intuition	(Fig.	1).	The	spatial	restraints,	expressed	as	

probability	density	functions,	are	combined	into	an	objective	function	that	is	

optimized	by	a	combination	of	conjugate	gradients	and	molecular	dynamics	with	

simulated	annealing.	This	model	building	procedure	is	similar	to	structure	

determination	by	NMR	spectroscopy.	

	

In	this	chapter,	we	use	a	sequence	with	unknown	structure	to	illustrate	the	use	of	

various	modules	in	MODELLER	to	perform	the	four	steps	of	comparative	modeling.	

2. Materials 

To	follow	the	examples	in	this	discussion,	both	the	MODELLER	software	and	a	set	of	

suitable	input	files	are	needed.	The	MODELLER	software	is	free	for	academic	use;	it	

can	be	downloaded	from	https://salilab.org/modeller/	and	is	available	in	binary	

form	for	most	common	machine	types	and	operating	systems	(see	Note	1).	This	text	

uses	MODELLER	9.21,	the	most	recent	version	at	the	time	of	writing,	but	the	

examples	should	also	work	with	any	newer	version.	The	example	input	files	can	be	

downloaded	from	https://salilab.org/modeller/tutorial/MMB19.zip.	

	

All	MODELLER	scripts	are	Python	scripts.	Python	is	pre-installed	on	most	Linux	and	

Mac	machines;	Windows	users	can	obtain	it	from	https://www.python.org/.	It	is	not	

necessary	to	install	Python,	or	to	have	a	detailed	knowledge	of	its	use,	to	use	



MODELLER,	but	it	is	helpful	for	creating	and	understanding	the	more	advanced	

MODELLER	scripts.	

	

Note	that monospaced text	is	used	below	for	computer	file	and	

folder/directory	names,	command	lines,	file	contents,	and	variable	and	class	names.	

3. Methods 

The	procedure	for	calculating	a	3D	model	for	a	sequence	with	unknown	structure	

will	be	illustrated	using	the	following	example:	a	novel	gene	for	lactate	

dehydrogenase	(LDH)	was	identified	from	the	genomic	sequence	of	Trichomonas	

vaginalis	(TvLDH).	The	corresponding	protein	had	higher	sequence	similarity	to	the	

malate	dehydrogenase	of	the	same	species	(TvMDH)	than	to	any	other	LDH(21).	

Comparative	models	were	constructed	for	TvLDH	and	TvMDH	to	study	the	

sequences	in	a	structural	context	and	to	suggest	site-directed	mutagenesis	

experiments	to	elucidate	changes	in	enzymatic	specificity	in	this	apparent	case	of	

convergent	evolution.	The	native	and	mutated	enzymes	were	subsequently	

expressed	and	their	activities	compared(21).	

3.1. Fold assignment 

The	first	step	in	comparative	modeling	is	to	identify	one	or	more	templates	

(sequences	with	known	3D	structure)	for	the	modeling	procedure.	One	way	to	do	

this	is	to	search	a	database	of	experimentally	determined	structures	extracted	from	

the	Protein	Data	Bank	(PDB)(22)	to	find	sequences	that	have	detectable	similarity	



to	the	target	(see	Note	2).	To	prepare	this	database	(see	Note	3),	run	the	following	

command	from	the	command	line	(see	Note	4):	

	

python make_pdb_95.py > make_pdb_95.log 

	

This	generates	a	file	called	pdb_95.bin,	which	is	a	binary	representation	of	the	

search	database	(see	Note	5)	and	a	log	file,	make_pdb_95.log.	Next,	MODELLER’s	

profile.build()	command	is	used;	this	uses	the	local	dynamic	programming	

algorithm	to	identify	sequences	related	to	TvLDH(23).	In	the	simplest	case,	

profile.build()	takes	as	input	the	target	sequence,	in	file	TvLDH.ali	(see	

Note	6),	and	the	binary	database	and	returns	a	set	of	statistically	significant	

alignments	(file	build_profile.prf)	and	a	MODELLER	log	file	

(build_profile.log).	Run	this	step	by	typing	

	

python build_profile.py > build_profile.log 

	

The	first	few	lines	of	the	resulting	build_profile.prf	will	look	similar	to	(see	

Note	7)	the	following	(note	that	the	rightmost	column,	containing	the	primary	

sequence,	has	been	omitted	here	for	clarity):	

	

# Number of sequences:     76 

# Length of profile  :    335 

# N_PROF_ITERATIONS  :      1 



# GAP_PENALTIES_1D   :   -500.0   -50.0 

# MATRIX_OFFSET      : -450.0 

# RR_FILE            : ${LIB}/blosum62.sim.mat 

 1 TvLDH   S  0  335   1   335   0    0     0   0.  0.0 

 2 1a5zA   X  1  312  75   242  63  229   164  28. 0.58E-07 

 3 2a92A   X  1  316   8   191   6  186   174  26. 0.11E-03 

 4 4aj2A   X  1  327  85   301  89  300   207  25. 0.24E-04     

 5 1b8pA   X  1  327   7   331   6  325   316  42.  0.0 

	

The	first	six	lines	of	this	file	contain	the	input	parameters	used	to	create	the	

alignments.	Subsequent	lines	contain	several	columns	of	data;	for	the	purposes	of	

this	example,	the	most	important	columns	are	(i)	the	second	column,	containing	the	

PDB	code	of	the	related	template	sequences;	(ii)	the	eleventh	column,	containing	the	

percentage	sequence	identity	between	the	TvLDH	and	template	sequences;	and	(iii)	

the	twelfth	column,	containing	the	E-values	for	the	statistical	significance	of	the	

alignments.	These	columns	are	shown	in	bold	above.	

	

The	extent	of	similarity	between	the	target-template	pairs	is	usually	quantified	

using	sequence	identity	or	a	statistical	measure	such	as	E-value	(see	Note	8).	

Inspection	of	column	11	shows	that	a	template	with	a	high	sequence	identity	with	

the	target	is	the	1y7tA	structure	(45%	sequence	identity).	Further	inspection	of	

column	12	shows	that	there	are	15	PDB	sequences,	all	but	one	corresponding	to	

malate	dehydrogenases	(1b8pA,	1bdmA,	1civA,	3d5tA,	4h7pA,	4h7pB,	5mdhA,	



7mdhA,	5nueA,	4tvoA,	4tvoB,	4uulA,	4uuoA,	4uupA,	1y7tA)	that	show	significant	

similarities	to	TvLDH	with	E-values	of	zero.	

3.2. Sequence-structure alignment 

The	next	step	is	to	align	the	target	TvLDH	sequence	with	the	chosen	template	(see	

Note	9).	Here,	the	1y7tA	template	is	used.	This	alignment	is	created	using	

MODELLER’s	align2d()	function	(see	Note	10).	Although	align2d()	is	based	

on	a	global	dynamic	programming	algorithm(24),	it	is	different	from	standard	

sequence-sequence	alignment	methods	because	it	takes	into	account	structural	

information	from	the	template	when	constructing	an	alignment.	This	task	is	

achieved	through	a	variable	gap	penalty	function	that	tends	to	place	gaps	in	solvent	

exposed	and	curved	regions,	outside	secondary	structure	segments,	and	not	

between	two	positions	that	are	close	in	space(16).	In	the	current	example,	the	

target-template	similarity	is	so	high	that	almost	any	method	with	reasonable	

parameters	will	result	in	the	correct	alignment	(see	Note	11).	

	

This	step	is	carried	out	by	running:	

	

python align2d.py > align2d.log 

	

This	script	reads	in	the	PDB	structure	of	the	template,	and	the	sequence	of	the	target	

(TvLDH)	and	calls	the	align2d()	function	to	perform	the	alignment.	The	resulting	

alignment	is	written	out	in	two	formats.	TvLDH-1y7tA.ali	in	the	PIR	format	is	



subsequently	used	by	MODELLER	for	modeling;	TvLDH-1y7tA.pap	in	the	PAP	

format	is	easier	to	read,	for	example	to	see	which	residues	are	aligned	with	each	

other.	

3.3. Model building 

Models	of	TvLDH	can	now	be	built	by	running:	

	

python model.py > model.log 

	

The	script	uses	MODELLER’s	automodel	class,	specifying	the	name	of	the	

alignment	file	to	use	and	the	identifiers	of	the	target	(TvLDH)	and	template	(1y7tA)	

sequences.	It	then	asks	automodel	to	generate	five	models	(see	Note	12).	Each	is	

assessed	with	the	normalized	DOPE	assessment	method(20).	The	five	models	are	

written	out	as	PDB	files	with	names	TvLDH.B9999[0001-0005].pdb.	

3.4. Model evaluation 

The	log	file	produced	by	the	model	building	procedure	(model.log)	contains	a	

summary	of	each	calculation	at	the	bottom	of	the	file.	This	summary	includes,	for	

each	of	the	5	models,	the	MODELLER	objective	function	(see	Note	13)	(14)	and	the	

normalized	DOPE	score	(see	Note	14).	These	scores	can	be	used	to	identify	which	of	

the	5	models	produced	is	likely	to	be	the	most	accurate	model	(see	Note	15).		

	

Since	the	DOPE	potential	is	simply	a	sum	of	interactions	between	pairs	of	atoms,	it	

can	be	decomposed	into	a	score	per	residue,	which	is	termed	in	MODELLER	an	



‘energy	profile’.	This	energy	profile	can	be	generated	for	the	model	with	the	best	

DOPE	score	by	running	the	make_energy_profile.py	script.	The	script	outputs	

the	profile,	TvLDH.profile,	in	a	simple	format	that	is	easily	displayed	in	any	

graphing	package.	Such	a	profile	is	useful	to	detect	local	regions	of	high	pseudo-

energy	that	usually	correspond	to	errors	in	the	model	(see	Notes	16	and	17).	

3.5 Use of multiple templates 

One	way	to	potentially	improve	the	accuracy	of	generated	models	is	to	use	multiple	

template	structures.	When	there	are	multiple	templates,	different	template	

structures	may	be	of	higher	local	sequence	identity	to	the	target	(or	higher	quality)	

than	others	in	different	regions,	allowing	MODELLER	to	build	a	model	based	on	the	

most	useful	structural	information	for	each	region	in	the	protein.	The	procedure	is	

demonstrated	here	using	five	templates	that	have	high	sequence	identity	to	the	

target	(1b8pA,	4h7pA,	4h7pB,	5mdhA,	1y7tA).	Input	files	can	be	found	in	the	

‘multiple’	subdirectory	of	the	zipfile.	The	first	step	is	to	align	all	of	the	templates	

with	each	other,	which	can	be	done	by	running:	

	

python salign.py > salign.log 

	

This	script	uses	MODELLER’s	salign()	function(17)	to	read	in	all	of	the	template	

structures	and	then	generate	their	best	structural	alignment	(see	Note	18),	written	

out	as templates.ali.	

	



Next,	just	as	for	single	template	modeling,	the	target	is	aligned	with	the	templates	

using	the	align2d()	function.	The	function’s	align_block	parameter	is	set	to	5	

to	align	the	target	sequence	with	the	pre-aligned	block	of	5	templates,	and	not	to	

change	the	existing	alignment	between	individual	templates:	

	

python align2d.py > align2d.log 

	

Finally,	model	generation	proceeds	just	as	for	the	single	template	case	(the	only	

difference	is	that	automodel	is	now	given	a	list	of	all	five	templates):	

	

python model.py > model.log 

	

Comparison	of	the	normalized	DOPE	scores	from	the	end	of	this	logfile	with	those	

from	the	single	template	case	shows	an	improvement	in	the	DOPE	score	of	the	best	

model	from	-0.92	to	-1.19.	Fig.	2	shows	the	energy	profiles	of	the	best	scoring	

models	from	each	procedure	(generated	using	the	plot_profiles.py	script).	It	

can	be	seen	that	some	of	the	predicted	errors	in	the	single-template	model	(peaks	in	

the	graph)	have	been	resolved	in	the	model	calculated	using	multiple	templates.	

3.6. External assessment 

Models	generated	by	MODELLER	are	stored	in	PDB	files,	and	so	can	be	evaluated	for	

accuracy	with	other	methods	if	desired.	One	such	method	is	the	ModEval	web	server	

at	https://salilab.org/evaluation/.	This	server	takes	as	input	the	PDB	file	and	the	

MODELLER	PIR	alignment	used	to	generate	it.	It	returns	not	only	the	normalized	



DOPE	score	and	the	energy	profile,	but	also	the	GA341	assessment	score(25,26)	and	

an	estimate	of	the	Cα		RMSD	and	native	overlap	between	the	model	and	its	

hypothetical	native	structure,	using	the	TSVMod	method(27);	native	overlap	is	

defined	as	the	fraction	of	Cα	atoms	in	the	model	that	are	within	3.5	Å	of	the	same	Cα	

atom	in	the	native	structure	after	least	squares	superposition.	

3.7. Structures of complexes 

The	example	shown	here	generates	a	model	of	a	single	protein.	However,	

MODELLER	can	also	generate	models	of	complexes	of	multiple	proteins	if	templates	

for	the	entire	complex	are	available;	examples	can	be	found	in	the	MODELLER	

manual.	In	the	case	where	only	templates	for	the	individual	subunits	in	the	complex	

can	be	found,	comparative	models	can	be	docked	in	a	pairwise	fashion	by	molecular	

docking(28,29)	or	assembled	based	on	various	experimental	data	to	generate	

approximate	models	of	the	complex	using	a	wide	variety	of	integrative	modeling	

methods(30-33).	For	example,	if	a	cryo-electron	microscopy	density	map	of	the	

complex	is	available,	a	model	of	the	whole	complex	can	be	constructed	by	

simultaneously	fitting	comparative	models	of	the	subunits	into	the	density	map	

using	the	MultiFit	method(34)	or	its	associated	web	server	at	

https://salilab.org/multifit/(35).	Alternatively,	if	a	small	angle	X-ray	(SAXS)	profile	

of	a	dimer	is	available,	models	of	the	dimer	can	be	generated	by	docking	the	two	

subunits,	constrained	by	the	SAXS	data,	using	the	FoXSDock	web	server	at	

https://salilab.org/foxsdock/(36,37).	Both	of	these	methods	are	part	of	the	open	

source	Integrative	Modeling	Platform	(IMP)	package(31).	



4. Notes 

1.	The	MODELLER	website	also	contains	a	full	manual,	a	mailing	list,	and	more	

example	MODELLER	scripts.	A	license	key	is	required	to	use	MODELLER,	but	this	

can	also	be	obtained	from	the	website.	

	

2.	The	sequence	identity	is	a	useful	predictor	of	the	accuracy	of	the	final	model	when	

its	value	is	>30%.	It	has	been	shown	that	models	based	on	such	alignments	usually	

have,	on	average,	more	than	~60%	of	the	backbone	atoms	correctly	modeled	with	a	

root-mean-squared-deviation	(RMSD)	for	Cα	atoms	of	less	than	3.5	Å	(Fig.	3).	

Sequence-structure	relationships	in	the	“twilight	zone”(38)	(corresponding	to	

relationships	with	statistically	significant	sequence	similarity	with	identities	

generally	in	the	10-30%	range),	or	the	“midnight	zone”(38)	(corresponding	to	

statistically	insignificant	sequence	similarity),	typically	result	in	less	accurate	

models.	

	

3.	The	database	contains	sequences	of	the	structures	from	PDB.	To	increase	the	

search	speed,	redundancy	is	removed	from	the	database;	the	PDB	sequences	are	

clustered	with	other	sequences	that	are	at	least	95%	identical,	and	only	the	

representative	of	each	cluster	is	stored	in	the	database.	This	database	is	termed	

‘pdb_95’.	A	copy	of	this	database	is	included	in	the	downloaded	zipfile	as	

pdb_95.pir.	Newer	versions	of	this	database,	updated	as	new	structures	are	

deposited	in	PDB,	can	be	downloaded	from	the	MODELLER	website	at	

https://salilab.org/modeller/supplemental.html.	



	

4.	MODELLER	is	a	command	line	tool,	so	all	commands	must	be	run	by	typing	at	the	

command	line.	All	of	the	necessary	input	files	for	this	demonstration	are	in	the	

downloaded	zipfile;	simply	download	and	extract	the	zipfile	and	change	into	the	

newly-created	directory	(using	the	‘cd’	command	at	the	command	line).	After	this,	

MODELLER	scripts	can	be	run	as	shown	in	the	text.	All	MODELLER	scripts	are	

Python	scripts,	compatible	with	both	Python	2	and	Python3,	and	so	should	be	run	

with	the	‘python’	or	‘python3’	commands.	(On	some	systems	the	full	path	to	the	

Python	interpreter	may	be	necessary,	such	as	/usr/bin/python	on	a	Linux	or	

Mac	machine	or	C:\python27\python.exe	on	a	Windows	system.)	MODELLER	

scripts	can	also	be	run	from	other	Python	frontends,	such	as	IDLE,	if	desired.	On	a	

Windows	system,	it	is	generally	not	a	good	idea	to	simply	‘double	click’	on	a	

MODELLER	Python	script,	since	any	output	from	the	script	will	disappear	as	soon	as	

it	finishes.	Finally,	if	Python	is	not	installed,	MODELLER	includes	a	basic	Python	2.3	

interpreter	as	‘mod<version>’.	For	example,	to	run	the	first	script	using	

MODELLER	version	9.21’s	own	interpreter,	run	‘mod9.21 make_pdb_95.py’.	

Note	that	mod9.21	automatically	creates	a	‘make_pdb_95.log’	logfile.	

	

5.	The	binary	database	is	much	faster	to	use	than	the	original	text	format	database, 

pdb_95.pir.	Note,	however,	that	it	is	not	necessarily	smaller.	This	script	does	not	

need	to	be	run	again	unless	pdb_95.pir	is	updated.	

	



6.	TvLDH.ali	simply	contains	the	primary	sequence	of	the	target,	in	MODELLER’s	

variant	of	the	PIR	format	(which	is	documented	in	more	detail	in	the	MODELLER	

manual).	This	file	is	included	in	the	zipfile.	

	

7.	Although	MODELLER’s	algorithms	are	deterministic,	exactly	the	same	job	run	on	

different	machines	(e.g.	a	Linux	box	versus	a	Windows	or	Mac	machine)	may	give	

different	results.	This	difference	may	arise	because	different	machines	handle	

rounding	of	floating	point	numbers	and	ordering	of	floating	point	operations	

differently,	and	the	minor	differences	introduced	can	be	compounded	and	end	up	

giving	very	different	outputs.	This	variation	is	normal	and	to	be	expected,	and	so	the	

results	shown	in	this	text	may	differ	from	those	obtained	by	running	MODELLER	

elsewhere.	

	

8.	The	sequence	identity	is	not	a	statistically	reliable	measure	of	alignment	

significance	and	corresponding	model	accuracy	for	values	lower	than	30%(38,39).	

During	a	scan	of	a	large	database,	for	instance,	it	is	possible	that	low	values	occur	

purely	by	chance.	In	such	cases,	it	is	useful	to	quantify	the	sequence-structure	

relationship	using	more	robust	measures	of	statistical	significance,	such	as	E-

values(40),	that	compare	the	score	obtained	for	an	alignment	with	an	established	

background	distribution	of	such	scores.	

	

One	other	problem	of	using	sequence	identity	as	a	measure	to	select	templates	is	

that,	in	practice,	there	is	no	single	generally	used	way	to	normalize	it(39).	For	



instance,	local	alignment	methods	usually	normalize	the	number	of	identically	

aligned	residues	by	the	length	of	the	alignment,	while	global	alignment	methods	

normalize	it	by	either	the	length	of	the	target	sequence	or	the	length	of	the	shorter	

of	the	two	sequences.	Therefore,	it	is	possible	that	alignments	of	short	fragments	

produce	a	high	sequence	identity	but	do	not	result	in	an	accurate	model.	Measures	

of	statistical	significance	do	not	suffer	from	this	normalization	problem	because	the	

alignment	scores	are	corrected	for	the	length	of	the	aligned	segment	before	the	

significance	is	computed(40,41).		

	

9.	After	a	list	of	all	related	protein	structures	and	their	alignments	with	the	target	

sequence	has	been	obtained,	template	structures	are	usually	prioritized	depending	

on	the	purpose	of	the	comparative	model.	Template	structures	may	be	chosen		

based	purely	on	the	target-template	sequence	identity	or	a	combination	of	several	

other	criteria,	such	as	the	experimental	accuracy	of	the	structures	(resolution	of	X-

ray	structures,	number	of	restraints	per	residue	for	NMR	structures),	conservation	

of	active-site	residues,	holo-structures	that	have	bound	ligands	of	interest,	and	prior	

biological	information	that	pertains	to	the	solvent,	pH,	and	quaternary	contacts.	In	

this	case	an	MDH	template	with	a	moderately	high	sequence	identity	was	chosen.	

(In	practice,	since	the	modeling	is	generally	inexpensive,	it	can	be	simply	repeated	

with	a	different	template	or	set	of	templates	and	the	resulting	models	compared	for	

utility.)	One	of	the	detected	templates	,	4uulA,	is	TvLDH	itself,	the	structure	of	which	

was	recently	determined	in	a	study	of	convergent	evolution	of	LDH	and	MDH(42);	



this	template	was	excluded	from	selection	in	order	to	demonstrate	the	comparative	

modeling	method.	

	

10.	Although	fold	assignment	and	sequence-structure	alignment	are	logically	two	

distinct	steps	in	the	process	of	comparative	modeling,	in	practice	almost	all	fold	

assignment	methods	also	provide	sequence-structure	alignments.	In	the	past,	fold	

assignment	methods	were	optimized	for	better	sensitivity	in	detecting	remotely	

related	homologs,	often	at	the	cost	of	alignment	accuracy.	However,	recent	methods	

simultaneously	optimize	both	the	sensitivity	and	alignment	accuracy.	For	the	sake	of	

clarity,	however,	they	are	still	considered	as	separate	steps	in	the	current	chapter.	

	

11.	Most	alignment	methods	use	either	the	local	or	global	dynamic	programming	

algorithms	to	derive	the	optimal	alignment	between	two	or	more	sequences	and/or	

structures.	The	methods,	however,	vary	in	terms	of	the	scoring	function	that	is	being	

optimized.	The	differences	are	usually	in	the	form	of	the	gap-penalty	function	

(linear,	affine,	or	variable)(16),	the	substitution	matrix	used	to	score	the	aligned	

residues	(20x20	matrices	derived	from	alignments	with	a	given	sequence	identity,	

those	derived	from	structural	alignments,	and	those	incorporating	the	structural	

environment	of	the	residues)(43),	or	combinations	of	both(44-47).	There	doesn’t	

yet	exist	a	single	universal	scoring	function	that	guarantees	the	most	accurate	

alignment	for	all	situations.	Above	30-40%	sequence	identity,	alignments	produced	

by	almost	all	methods	are	similar.	However,	in	the	twilight	and	midnight	zones	of	

sequence	identity,	models	based	on	the	alignments	of	different	methods	tend	to	



have	significant	variations	in	accuracy.	Improving	the	performance	and	accuracy	of	

methods	in	this	regime	remains	one	of	the	main	tasks	of	comparative	

modeling(48,49).		

	

12.	To	generate	each	model,	MODELLER	takes	a	starting	structure,	which	is	simply	

the	target	sequence	threaded	onto	the	template	backbone,	adds	some	

randomization	to	the	coordinates,	and	then	optimizes	it	by	searching	for	the	

minimum	of	its	scoring	function.	Since	finding	the	global	minimum	of	the	scoring	

function	is	not	guaranteed,	it	is	usually	recommended	to	repeat	the	procedure	

multiple	times	to	generate	an	ensemble	of	models;	the	randomization	is	necessary	

otherwise	the	same	model	would	be	generated	each	time.	Computing	multiple	

models	is	particularly	important	when	the	sequence-structure	alignment	contains	

different	templates	with	many	insertions	and/or	deletions.	Calculating	multiple	

models	allows	for	better	sampling	of	the	different	template	segments	and	the	

conformations	of	the	unaligned	regions.	The	best	scoring	model	among	these	

multiple	models	is	generally	more	accurate	than	the	first	model	produced.		

	

13.	The	MODELLER	objective	function	is	a	measure	of	how	well	the	model	satisfies	

the	input	spatial	restraints.	Lower	values	of	the	objective	function	indicate	a	better	

fit	with	the	input	data	and,	thus,	models	that	are	likely	to	be	more	accurate(14).	

	

14.	The	Discrete	Optimized	Protein	Energy	(DOPE)(20)	is	an	atomic	distance-

dependent	statistical	potential	based	on	a	physical	reference	state	that	accounts	for	



the	finite	size	and	spherical	shape	of	proteins.	The	reference	state	assumes	that	a	

protein	chain	consists	of	non-interacting	atoms	in	a	homogeneous	sphere	of	

equivalent	radius	to	that	of	the	corresponding	protein.	The	DOPE	potential	was	

derived	by	comparing	the	distance	statistics	from	a	non-redundant	PDB	subset	of	

1,472	high-resolution	protein	structures	with	the	distance	distribution	function	of	

the	reference	state.	By	default,	the	DOPE	score	is	not	included	in	the	model	building	

routine,	and	thus	can	be	used	as	an	independent	assessment	of	the	accuracy	of	the	

output	models.	The	DOPE	method	assigns	a	score	for	a	model	by	considering	the	

positions	of	all	non-hydrogen	atoms,	with	lower	scores	predicting	more	accurate	

models.	Since	DOPE	is	a	pseudo-energy	dependent	on	the	composition	and	size	of	

the	system,	DOPE	scores	are	only	directly	comparable	for	models	with	the	same	set	

of	atoms	(so	can,	for	example,	be	used	to	rank	multiple	models	of	the	same	protein,	

but	cannot	be	used	without	additional	approximations	to	compare	models	of	a	

protein	and	its	mutant).	The	normalized	DOPE	(or	z-DOPE)	score,	however,	is	a	z	

score	that	relates	the	DOPE	score	of	the	model	to	the	average	observed	DOPE	score	

for	“reference”	protein	structures	of	similar	size(27).	Negative	normalized	DOPE	

scores	of	-1	or	below	are	likely	to	correspond	to	models	with	the	correct	fold.	

	

15.	Different	measures	to	predict	errors	in	a	protein	structure	perform	best	at	

different	levels	of	resolution.	For	instance,	physics-based	force-fields	may	be	helpful	

at	identifying	the	best	model	when	all	models	are	very	close	to	the	native	state	(<	

1.5	Å	RMSD,	corresponding	to	~85%	target-template	sequence	identity).	In	contrast,	

coarse-grained	scores	such	as	atomic	distance	statistical	potentials	have	been	



shown	to	have	the	greatest	ability	to	differentiate	models	in	the	~3	Å	Cα	RMSD	

range.	Tests	show	that	such	scores	are	often	able	to	identify	a	model	within	0.5	Å	Cα	

RMSD	of	the	most	accurate	model	produced(50).	When	multiple	models	are	built,	

the	DOPE	score	generally	selects	a	more	accurate	model	than	the	MODELLER	

objective	function.	

	

16.	Segments	of	the	target	sequence	that	have	no	equivalent	region	in	the	template	

structure	(i.e.,	insertions	or	loops)	are	among	the	most	difficult	regions	to	

model(13,51-53).	This	difficulty	is	compounded	when	the	target	and	template	are	

distantly	related,	with	errors	in	the	alignment	leading	to	incorrect	positions	of	the	

insertions	and	distortions	in	the	loop	environment.	Using	alignment	methods	that	

incorporate	structural	information	can	often	correct	such	errors(16).	Once	a	

reliable	alignment	is	obtained,	various	modeling	protocols	can	predict	the	loop	

conformation,	for	insertions	of	up	to	approximately	15	residues	long(13,51,54-57).	

	

17.	As	a	consequence	of	sequence	divergence,	the	mainchain	conformation	of	a	

protein	can	change,	even	if	the	overall	fold	remains	the	same.	Therefore,	it	is	

possible	that	in	some	correctly	aligned	segments	of	a	model,	the	template	is	locally	

different	(<	3	Å)	from	the	target,	resulting	in	errors	in	that	region.	The	structural	

differences	are	sometimes	not	due	to	differences	in	sequence,	but	are	a	consequence	

of	artifacts	in	structure	determination	or	structure	determination	in	different	

environments	(e.g.,	packing	of	subunits	in	a	crystal	and	ligands).	The	simultaneous	

use	of	several	templates	can	minimize	this	kind	of	error(58,59).	



	

18.	It	is	particularly	important	to	generate	the	best	alignment	of	the	structures	to	

minimize	conflicting	information	(e.g.,	one	template	suggesting	that	two	Cα	atoms	in	

the	target	are	close,	and	another	suggesting	they	are	widely	separated).	SALIGN(17)	

uses	both	sequence-	and	structure-dependent	features	to	align	multiple	structures.	

It	employs	an	iterative	procedure	to	determine	the	input	parameters	that	maximize	

the	structural	overlap	of	the	generated	alignment.	
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Figures 

	

Figure	1.	Comparative	protein	structure	modeling.	(a)	A	flowchart	illustrating	the	steps	in	the	

construction	of	a	comparative	model(6).	(b)	Description	of	comparative	modeling	by	extraction	of	

spatial	restraints	as	implemented	in	MODELLER(14).	By	default,	spatial	restraints	in	MODELLER	involve	

(i)	homology-derived	restraints	from	the	aligned	template	structures,	(ii)	statistical	restraints	derived	

from	all	known	protein	structures,	and	(iii)	stereochemical	restraints	from	the	CHARMM-22	molecular	

mechanics	force	field.	These	restraints	are	combined	into	an	objective	function	that	is	then	optimized	to	

calculate	the	final	3D	model	of	the	target	sequence.	



	

Figure	2.	The	DOPE(20)	energy	profiles	for	the	best-assessed	model	generated	by	modeling	with	a	single	

template	(solid	line)	and	multiple	templates	(dotted	line).	Peaks	(local	regions	of	high,	unfavorable	

score)	tend	to	correspond	to	errors	in	the	models.	



	

Figure	3.	Average	model	accuracy	as	a	function	of	sequence	identity(62).	As	the	sequence	identity	

between	the	target	sequence	and	the	template	structure	decreases,	the	average	structural	similarity	

between	the	template	and	the	target	also	decreases	(dark	grey	area,	squares)(63).	Structural	overlap	is	

defined	as	the	fraction	of	equivalent	Cα	atoms.	For	the	comparison	of	the	model	with	the	actual	structure	

(circles),	two	Cα	atoms	were	considered	equivalent	if	they	belonged	to	the	same	residue	and	were	within	

3.5	Å	of	each	other	after	least	squares	superposition.	For	comparisons	between	the	template	structure	

and	the	actual	target	structure	(squares),	two	Cα	atoms	were	considered	equivalent	if	they	were	within	

3.5	Å	of	each	other	after	alignment	and	rigid-body	superposition.	The	difference	between	the	model	and	

the	actual	target	structure	is	a	combination	of	the	target-template	differences	(dark	grey	area)	and	the	

alignment	errors	(light	grey	area).	The	figure	was	constructed	by	calculating	~1	million	comparative	

models	based	on	single	template	of	varying	similarity	to	the	targets.	All	targets	had	known	

(experimentally	determined)	structures.	




