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Abstract

This work details the development effort of the in-house, high-fidelity, fully coupled, fluid-

thermal-structure interaction finite volume code, MBFLO3. A three-dimensional finite vol-

ume based structural solver capable of simulating arbitrarily large strains has been integrated

into the existing fluid-thermal interaction code to develop a monolithic, fully coupled, fluid-

thermal-structure interaction technique. The structural solver presented is verified through

two test cases using theory, two-dimensional simulations reported in literature, and commer-

cially available software. The fully coupled, monolithic, fluid-structure interaction method is

capable of simulating large structural displacements while maintaining mesh quality through

the use of a Poisson smoothing technique. The FSI method is verified using Turek and Hron’s

[63] cylinder-flag configuration. Finally, the MBFLO3 solution procedure has been extended

to handle overlaid grids and the conjugate heat transfer modeling of multiple solids using

spatial second-order accurate treatments. A three-dimensional, steady, conjugate simulation

of a film cooled vane with thermal barrier coating is compared with experimental data from

a vane-alone experiment at the Air Force Turbine Research Facility. The numerical tech-

niques used in the conjugate solution procedure are described and the procedure is validated

against the vane-alone experimental data.
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Chapter 1

Introduction

In typical design cycles of complex aerodynamic bodies in volatile environments, the aerody-

namic, aeroelastic, and aerothermal analysis and design are considered as separate analyses

and disciplines. The assumption that these analyses may be treated separately can require

additional design iterations to converge on a system that meets all design requirements. Con-

tinued advancements in High Performance Computing (HPC) have enabled the development

of increasingly complex simulations, enabling the development fluid-thermal-structure inter-

action (FTSI) simulation techniques presented in this work. With continued development,

the methods presented can reduce the number of design iterations needed to meet design

requirements.
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1.1 Multi-disciplinary Challenges of a Turbomachinery

Simulation

The primary function of the turbine in a gas turbine engine is to extract energy from the flow

exiting the combustor. In aviation gas turbine engines, the turbine need only extract enough

power from the combustion exhaust to power the compressor and bypass fans or propellers

and on-board systems while minimizing the turbine weight. In power generation applications,

the turbine can be sized to extract as much power from the combustor exhaust possible. In

either application, the thermodynamic efficiency of the turbine is to be maximized. The

parameter that has the largest impact on the thermal efficiency of the engine is the turbine

rotor inlet total temperature (TRIT). For aviation gas turbines, turbine weight is a function

of the size and number of airfoils around each turbine blade-row as well as the axial gap size

between blade-rows.

From a thermodynamic analysis of a Brayton engine cycle, it becomes clear that the perfor-

mance of a gas turbine is directly correlated with the temperature at the inlet of the turbine.

Modern gas turbines operate at inlet temperatures of 1800-2200 K which are far beyond the

allowable metal temperatures. Thus to maintain acceptable fatigue life, reduce creep and

maintain safety standards, the structural elements of the blades must be protected against

the severe thermal environment [5]. To address these difficulties, technologies such as ther-

mal barrier coatings (TBC) and film cooling holes have been developed. TBC is a thin, often

metal plasma coating that is applied to the surface of turbine stator and rotor blades. High

pressure turbine airfoils are cooled internally by bleeding cooler air from the high pressure

compressor and passing that cooler air into the interior of the turbine airfoils. The internal

cooling air helps to keep the interior of the airfoil at an acceptable limit through conduction

2



and convection. The internal cooling air is then passed to the exterior of the airfoil using

holes that are distributed over the airfoil surface. The cooling air exiting the holes lays down

a thin film adjacent to the surface that then acts to cool the external surface of the turbine

airfoil from convection. An additional benefit of film cooling holes is added wall transpira-

tion, which enhances the stability of the boundary layer if the holes are thoughtfully placed.

Some disadvantages of film cooling holes are increased stress concentration in the vicinity of

the holes and an increased complexity in manufacturing and design. A schematic of a film

cooled turbine blade is shown in figure 1.1.

In addition to the complex thermal and aerodynamic environment, gas turbine engines run at

thousands of revolutions per minute and experience unsteady fluid dynamic and aerothermal

loads, all of which must be taken into consideration when conducting the structural analysis.

To reduce turbine weight, the number of airfoils around the wheel of each blade-row and

the axial gap between blade-rows are reduced. This reduction leads to increased loading on

the airfoils and increased unsteady interaction between the blade-rows. It is common for the

structural analysis of turbine components to consist of a part or system level modal analysis.

Then, the components are tuned to avoid resonant frequencies related to the rotational rate

of the engine or the aerodynamic loading. The structural analysis and aerothermal analysis

are used to predict the High Cycle Fatigue (HCF) life of engine components. The HCF life

of a turbine blade determines how frequently these engine components need to be replaced

or serviced. Thus, predicting the HCF life of the blades accurately has a major impact on

the safety and reliability of the engines.

The turbine aerodynamic team, aerothermal teams, and structures teams must balance com-

peting interests to converge on turbine design that meets system level engine requirements.

By allowing each team to conduct their own analysis, more design iterations may be neces-

3



Figure 1.1: Film cooled turbine schematic. Adapted from Dixon and Hall [15]

sary before the design is finalized. Increasing the level of coupling for each of these disciplines

would likely improve the design process.

In addition, the need to reduce engine weight (and cost) results in increased turbine airfoil

loads and unsteady interaction between airfoil rows that increases airfoil vibration. Aeroe-

lastic analysis is required to minimize the risk of resonance that can lead to fatigue and

failure. Fully-coupled, multi-disciplinary aeroelastic analysis is needed to account for com-

plex, non-linear effects at off-design (non-cruise) flight conditions.
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1.2 Need for high fidelity turbomachinery simulations

Gas turbine engine designers seek to increase thermodynamic efficiency by raising the inlet

temperature of the turbine component flow to levels beyond the material melting point of

the turbine airfoils. Three dimensional conjugate heat transfer modeling of the flow and

heat transfer in the turbine requires enormous computational processing power and was

not considered a viable option a few decades ago. However, in recent years, computational

technology has grown exponentially such that the processing power of a typical central

processing unit combined with accelerators today far exceeds the capabilities of a few decades

ago. Three dimensional models can provide an accurate representation of the flow and

thermal fields of real turbine blades while also quantifying taking into consideration the

pitch and twist of each turbine airfoil with centripetal and Coriolis forces.

1.3 Past efforts

This section will provide an overview of past efforts related to the development of the mono-

lithic fully coupled fluid-thermal-structure interaction code specialized for turbomachinery

presented.

1.3.1 Fluid-structure interaction methods

During the design and analysis cycle of an aerodynamic system, engineers must develop

an adequate understanding of the aeroelastic response of the body to properly estimate

the fatigue life of the system components. This involves performing analyses over an array

of aerodynamic conditions that encompass all likely aerodynamic disturbances to obtain

a measure of the structural response, this process can be described as a fluid-structure
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interaction (FSI) analysis.

An accurate FSI simulation approach is one which will most closely model the physical

aeroelastic response without the use of simplifying assumptions. In generic FSI problems,

any change in the fluid domain will effect the response of the structural domain and vice versa.

There are two key decisions an analyst must make when conducting an FSI simulation. First,

the extent of the coupling between the fluid and solid continua. This will determine how

frequently the fluid domain and the structural domain will exchange boundary condition

information. Second, the selection of which numerical methods will be used to solve the

governing equations of the fluid and solid continua (e.g. finite volume method). This decision

will dictate if FSI analysis will be monolithic or partitioned. Monolithic solvers use the same

numerical method to solve the governing equations of fluid and solid continua.

Partitioned approaches may range from fully coupled to loosely coupled. In these approaches,

the fluid and solid domain governing equations are solved using different numerical schemes.

Many partitioned approaches model the fluid domain using a finite volume solver, and sim-

ulate the solid response by solving the modal equations using finite elements. Examples

of fully coupled partitioned methods that use a finite volume fluid solver and simulate the

structural response by solving the modal dynamic equations using finite elements include:

Im et. al. [31], Patel and Zha [55], Zhang et. al., [70], Doi and Alonso [16], Johnston et. al.

[38], Chen et. al. [6], and Sadeghi and Liu [58]. Examples of loosely coupled or uncoupled

FSI approaches include Dettmer and Peric [14], Moffat and He [49], McMullen et. al. [47],

and Liu et. al. [43]. Some important advantages of partitioned approaches are the relative

speed of computation, and the ease of implementation. Solving the modal dynamic equations

to model the structural response allows for the structural mesh to be coarser than the fluid

mesh, and for a larger solid time-step thereby reducing the numerical stiffness and computa-
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tional time of the FSI method. However, high frequency behavior, modal coupling, and other

non-linear behaviour will go unnoticed by the structural solver. Without a point-matched

grid, a method of interpolating and communicating fluid forces to the solid nodes must be

implemented. Special consideration must be given to the interpolation method to ensure

the traction load is conserved across the fluid-solid boundary. Additionally, differences in

numerical schemes, particularly in time-steping, can lead to an acceleration miss-match at

the fluid-solid interface even if the velocity and displacements are matched [13].

Monolithic FSI methods are necessarily fully coupled and use point-matched grids. The

fluid and the structural continuum governing equations are solved using the same numerical

methods and are marched in time together. Examples of monolithic approaches include

Zorn and Davis [72], who used the finite volume method, Turek and Hron [63], Ramkrishnan

et. al. [56], Gottfried and Fleeter [22], Han et. al. [27], and Teixeira and Awurch [61],

who used the finite element method. One additional complexity of a monolithic approach

is the governing equations for the fluid and solid domains are derived using Eularian and

Lagrangian reference frames respectively. As a result, an Arbitrary Lagrangian Eulerian

(ALE) method must be implemented to solve the governing equations of the two continua

simultaneously. Another additional complexity of the monolithic approach is the maximum

stable time step in the solid domain is typically much smaller than the maximum allowable

fluid time step. The use of point-matched grids may make the solid domain arbitrarily

more refined to meet the mesh sizing requirements of the fluid solver. This will increase the

numerical stiffness and computational time of the FSI method for explicit or semi-implicit

time-stepping methods. This challenge is more difficult to overcome and generally causes

monolithic FSI approaches to be numerically stiffer more costly than partitioned approaches

[13] [30]. Due to the algorithmic complexity and computational requirements of monolithic
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solvers, many are two-dimensional.

1.3.2 Conjugate heat transfer and modeling of film cooling holes

Various turbomachinery conjugate heat transfer solution procedures have been developed

over the last decade. A review of the various techniques commonly used in conjugate heat

transfer analyses from highest fidelity to lowest can be found in He and Fadl [28]. The focus

of current research is on high-fidelity conjugate heat transfer methods that are applicable

to realistic, film-cooled turbine configurations for steady or unsteady predictions. Tightly-

coupled fluid and solid solvers that use the same discretization scheme and where surface

heat-fluxes from both are used to determine a unique and shared surface temperature at

each time-step have become more popular recently. These procedures can be time-accurate

but are computationally expensive due to the large differences in time-scales between the

fluid (short) and solid (long) domains. The current procedure falls into this category and is

demonstrated for “steady” conditions in which local time-steps are used.

Recent high-fidelity, conjugate heat transfer approaches for realistic, film-cooled turbine air-

foils fall into one of several computational meshing categories; point-matched unstructured,

point-matched structured, and Chimera/ embedded/overset (overlaid). Many of the com-

putational investigations of heat transfer of realistic film-cooled turbines have been used to

determine the computational grid requirements for grid-independence as well as to validate

the conjugate solvers against experimental data.

Unstructured-grid approaches, in which combinations of point-matched tetrahedral, quadri-

lateral, and hexahedral grid cells are utilized to discretize the fluid and solid domains are

often used due to their ability to mesh the complex interfaces between cooling-holes and
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mainstream flow. An advantage of this approach is its ability to mesh complex, multi-

featured geometry but often with labor and time intensive costs. In addition, inaccuracies

in high-gradient regions, such as boundary layers, can occur when stretched prismatic or

tetrahedral cells are used. One recent example of this type of approach was demonstrated

by Wang, et. al [66] who used ANSYS ICEM CFD to generate a point-matched, unstruc-

tured grid with approximately 51 million grid points over the fluid and solid domains. The

ANSYS CFX code was used to solve the governing equations including the Menter [48] SST

k-ω turbulence model with the Langtry and Menter [41] γ − θ transition model. The focus

of the investigation was to demonstrate the optimization of the film-cooling hole distribu-

tion to increase cooling effectiveness and reduce airfoil surface temperature. Kim, et. al

[39] used a point-matched unstructured grid consisting of 31.5 million elements in conjunc-

tion with the ANSYS CFX multi-disciplinary solver using the Wilcox[68] k-ω turbulence

model. The Hierarchical Kriging [26] method was used in conjunction with the conjugate

heat transfer computations to optimize the film-cooling hole distribution. Liu, et. al [45]

used a point-matched unstructured grid of 7.4 million tetrahedral elements in conjunction

with the ANSYS CFX solver using the Menter[48] SST k-ω turbulence model to investigate

the heat transfer of a turbine vane. Liu, et. al [44] used the STAR-CCM+ package to gener-

ate a grid of 11.7 million polyhedral cells to investigate the steady heat transfer in a turbine

stator-rotor stage. Griffini, et. al [25] used the Centaur package to generate a point-matched

unstructured grid of 14.2 million prismatic and tetrahedral elements with the ANSYS Flu-

ent solver and the Walters and Cokljat [64] kT − kL − ω turbulence/ transition model. The

change in the airfoil surface heat transfer and temperature distribution due to the clocking

of combustor inlet profiles was investigated. Johnson et. al [35],[36], [37] and Ni, et. al [52],

[51] used the ANSYS ICEM CFD grid package to generate a point-matched unstructured
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grid of 24.2 million cells in conjunction with the ADS CFD solver and the Wilcox [68] k-ω

turbulence model. Their investigations focused on heat transfer prediction with film-cooling

and optimization of film-cooling hole distribution.

Recent examples of point-matched multi-block structured grid approaches to conjugate heat

transfer prediction of realistic, film-cooled turbines have also been performed. The pri-

mary advantage to this approach is the use of body-fitted grid blocks that usually provide

superior accuracy, especially in high gradient, viscous flow regions. The disadvantage of

this approach is the difficulty of point-matching grid blocks at the intersection of differing

topological features and the grid-stripping that often results. Wang and Yan [65] [66] used

a point-matched multi-block structured grid using 46 million points generated with their

automated Background-Based Mapping code for the flow regions and a point-matched un-

structured grid for the solid regions. The ANSYS CFX multi-disciplinary solver was used to

predict the flow and heat transfer with the Menter and Langtry[41] [48] turbulence/transition

model. Dong and Amano [17] compared point-matched, multi-block structured grid predic-

tions of conjugate heat transfer with point-matched unstructured grid predictions. Both

computational grids were generated with the ICEM CFD package. Their multi-block struc-

tured grid consisted of 15.1 million grid points whereas the unstructured mesh used 19.3

million grid elements. The ANSYS CFX code was used with the Menter [48] SST k-w turbu-

lence model to predict the Reynolds-Averaged Navier-Stokes (RANS) temperature and heat

transfer on the film-cooled turbine vane. Large-eddy and Detached-eddy simulations were

also investigated. Mangani et. al [46] used the GridPro package to generate a point-matched

multi-block structured grid of 10,987 blocks with 6.7 million hexahedral cells. The Open-

Foam multi-disciplinary solver was used to investigate the heat transfer and temperature

distribution of a film-cooled vane using a variety of turbulence models. Goormans-Francke
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et. al [21] used their own point-matched, multi-block, structured grid procedure to generate

a mesh for a realistic film-cooled turbine vane/blade stage including 1000 cooling holes, 150

pin fins, 250 turbulators, impingement jets, and recessed blade tip with 154 million grid

points and 12,316 blocks. The FINETM/Turbo code with the k-ϵ turbulence model with

wall functions was used to predict the heat transfer on a coarse-grid model of 21.8 million

points and 12,000 blocks in an initial simulation.

The third approach to modeling film-cooling flows in realistic turbine configurations consists

of Chimera, overset/overlaid, and/or embedded multi-block structured grids. The advantage

of this approach is the ability to create complex geometrical models automatically and/or

fairly quickly that can be easily used in optimization processes. A disadvantage of this

approach is the non-conservative interpolation between overset grids that can cause error.

Castillon et. al [4] used a Chimera, overset grid package they developed that interfaces

directly with their elsA multidisciplinary solver. The mesh to predict the conjugate heat

transfer for a film-cooled turbine vane consisted of 38.7 million grid points. Lad and He [40]

used an Immersed Mesh Block overset grid method to investigate the cooling flows for a

film-cooled nozzle guide vane in which each row of cooling hole was independently meshed

with its own airfoil internal plenum and associated boundary conditions, cooling hole, and

mainstream interface grid blocks. The internal plenum(s) of the guide vane were not meshed

and conjugate heat transfer was not investigated. However, this work does demonstrate the

use of embedded/overset grids and the highlights the related numerical issues.
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Figure 1.2: 11
2
stage high pressure turbine computational grid example.

1.4 Dissertation research objectives

The primary goal of this research is to continue development of in-house high fidelity CFD

code MBFLO3 [2],[3], [9], [8],[1],[42] to create a monolithic fluid-thermal-structural interac-

tion method capable of simulating extremely complex turbomachine geometry. At previous

stages of development, improvements to MBFLO3 have been validated with a 11
2
stage film

cooled turbine with thermal barrier coating [42]. The goal of this research is to add the

capabilities needed to consider a fluid-thermal-structure simulation of the 11
2
stage turbine

with film cooling holes and thermal barrier coatings, and other complex geometries. An

example computational grid of the 11
2
stage turbine is shown in figure 1.2. This example

computational grid has over 3000 computational blocks and over 150 million grid points.

To achieve this goal, four major code development efforts must be undertaken. First, the

development of a method for modeling film cooling holes as overlaid/over-set grids. Second,

improve generality and accuracy of the conjugate heat transfer solver to support complex

turbomachine geometry. Third, the creation of a finite volume based structural solver that
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uses the same numerical methods to solve the solid continuum governing equations as the

fluid solver. Fourth, the development of a fully coupled fluid-structure interaction method.

Due to the turbomachine geometries to be analysed, each of these code development efforts

must be efficient and general.

The following chapters will discuss the governing equations for the fluid and solid continua,

and the numerical methods and techniques implemented to solve them. Then, the simulation

results which verify or validate each of the four stated research goals will be presented.

Finally, the current development state of MBFLO3 will be discussed and the next steps

to complete the goal of simulating a fluid-thermal-structure interaction on a 11
2
stage high

pressure turbine with film cooling holes and thermal barrier coatings will be addressed.
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Chapter 2

Governing Equations

The equations of conservation of mass, momentum, and energy for fluid and solid domains

are derived with the assumption that the domains may be treated as a continuum. A

continuum can be established if the variation in properties within a volume is so smooth

that differential calculus can be applied to quantify the changes of properties within the

domain. A continuum body can be continually sub-divided into infinitesimal elements with

each element having the same properties as the bulk of the material.

2.1 Fluid Continuum

The conservation of mass, momentum, and energy integral equations are derived in this

section. Physical changes to conserved variables are tracked through the fluid continuum

through the use of control volumes and Reynolds transport theorem. Through the use of

Reynolds transport theorem the changes in extensive and intensive properties. An exten-

sive propriety is dependent on the mass of a given system, while an intensive propriety is
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independent of the system mass.

2.1.1 Reynolds Transport Theory

Before the derivation of the fluid continuum conservation equations, it is useful to consider a

tool capable of tracking changes in conserved quantities as a system of fluid passes through a

control volume. Consider the control volume and system shown in figure 2.1. In this system,

an arbitrary control volume is subject to an arbitrary flow field. Let B be any property of

the fluid, and define the intensive value of property B as β = dB/dm. At time t0 the control

volume boundary and system boundary are coincident.

Bsys(t) = Bcv(t) =

∫
CV

βdm =

∫
CV

βρdV (2.1)

At time ti = t0 + ∆t the fluid system has moved to occupy region II and III, while the

control volume remains fixed in space. Changes in the fluid property can be tracked by

Bsys = Bcv(t+∆t) +BII(t+∆t)−BI(t+∆t). Then, changes to the extensive property as

the limit ∆t → 0, resulting in equation 2.2.

∂BCV

∂t
=

∂

∂t

∫
CV

βρdV (2.2)

Next, consider the intensive property flux through the control surfaces of the control volume.

Ḃ =

∫
CS

βρVinidA (2.3)

Finally, the total time rate of change of the fluid is given by the Reynolds Transport Theorem
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Figure 2.1: Control volume and system changes with time.

in equation 2.4.

DBsys

Dt
=

∂

∂t

∫
CV

βρdV +

∫
CS

βρuidA (2.4)

The objective of Reynolds Transport Theorem is to relate the rate of change of an extensive

fluid property to the time variations of the fluid property within a given control volume.

2.1.2 Conservation of Mass

The Reynolds transport theorem given in equation 2.4 defines a relationship between the

rate of change of an extensive property in a system and control volume and control surface

integrals. To evaluate the rate of change of mass in a system, the dummy variable B will be

replaced with system mass, m.

(dm
dt

)
syst

=
∂

∂t

∫
CV

ρdV +

∫
CS

ρuidA (2.5)

The physical axiom that mass cannot be created or destroyed sets any time rates of change
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of system mass to be 0. The result is the integral form of the conservation of mass equation

2.6.

0 =
∂

∂t

∫
CV

ρdV +

∫
CS

ρuidA (2.6)

The conservation of mass equation may also be considered in differential form by considering

an infinitesimal control volume with dimensions dx× dy × dz. The result is equation 2.7

∂ρ

∂t
+

∂ρui

∂xi

= 0 (2.7)

2.1.3 Conservation of Momentum

The conservation of linear momentum equation is Newton’s second law, Fi = mai, applied

to a fluid in a control volume. The forces acting on a control volume are due to pressure,

gravitational loads, and shear stress. The integral form of the conservation of momentum

equations can be obtained by defining the dummy variable in equation 2.4 as Bi = mui

and β = dBi/dm = ui. In the current work, the densities of the fluids considered are

small, therefore gravitational loads are neglected, but it is left in equation 2.8 for the sake

of completeness.

∑
Fi =

∫
CS

ρ
∂τij
∂xj

dA−
∫
CS

PdA+

∫
CV

ρgidV =
∂

∂t

(∫
CV

ρuidV
)
+

∫
CS

ρujuidA (2.8)

To obtain the differential form of the conservation of momentum equation, consider Newton’s

Second Law but replace the acceleration vector with the total acceleration of a given particle,
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given in equation 2.9.

ai =
∂ui

∂t
+

∂ujui

∂xi

(2.9)

The forces acting on a differential control volume fluid particle remain the same, pressure,

gravitational and shear loads. The resulting equation is the Navier-Stokes equation 2.10.

The viscous stress tensor τij is discussed at length in section 2.1.5.

∂ρui

∂t
+

∂ρujui

∂xj

= −∂P

∂xi

+
∂τij
∂xj

(2.10)

2.1.4 Conservation of Energy

The conservation of energy equation is the first law of thermodynamics, shown in equation

2.11, applied to a fluid control volume. Where D
Dt

is the material derivative, E is the total

system energy, Q̇ is the rate of heat transfer into the system, and Ẇ is the work being done

by the system.

DE

Dt
= Q̇− Ẇ (2.11)

Reynolds transport theorem may again be applied here to obtain the integral form of the

energy equation. In this case, the dummy variable B may be replaced with energy E, and

β = dE
dm

= e. The left hand side of equation 2.11 The total energy change within a control

volume an be captured by integrating the time rate of change of energy within a control

volume plus the energy flux through control surfaces.

DE

Dt
=

∂

∂t

(∫
CV

ρEdV
)
+

∫
CS

ρujuidA =

∫
CS

ρuiτijdA−
∫
CS

ρqjdA (2.12)

The differential form of the conservation of energy equation can be obtained by considering

18



an infinitesimal volume. Let Q̇ be defined by Fourier’s Law in equation 2.13, where qj is the

vector of heat flow per unit area, k is the coefficient of thermal conductivity.

qj = −k
∂T

∂xj

(2.13)

The thermal conductivity of a fluid is defined in equation 2.14.

k =
µCp

Pr
(2.14)

Combining equations 2.13 and 2.14, the heat transfer rate into the volume is described in

equation 2.15.

Q̇ = − ∂qj
∂xj

=
∂

∂xj

( µ

Pr

∂h

∂xj

)
(2.15)

The rate of work done on the fluid volume is dependent on the velocity, shear stresses and

pressure, per equation 2.16.

Ẇ = −∂wj

∂xj

= −ui(τij − p)

∂xj

(2.16)

Combining equations 2.11, 2.15, and 2.16, expanding the material derivative on the left hand

side of 2.11, and including the definition of enthalpy from equation 2.17, the differential form

of the energy equation is shown in equation 2.18.

H =
E + P

ρ
(2.17)
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∂E

∂t
+

∂(ujE)

∂xj

=
∂

∂xj

[
(ui(τij − p) +

( µ

Pr

∂h

∂xj

)]
(2.18)

2.1.5 Viscous Stress Tensors

The viscous stress tensor τij is included in the differential and integral forms of the momentum

and energy equations, 2.8, 2.10, 2.12, 2.18, but has not been discussed in detail yet. All fluids

considered in this analysis are Newtonian, therefore stress in the fluid is dependent only on

the viscosity and velocity gradient. The general shear stress of a Newtonian fluid is shown

in equation 2.19, where λ is the result of Stoke’s hypothesis, λ = −2
3
µ [67].

τij = µ
(∂ui

∂xj

+
∂uj

∂xi

)
+ λ

∂uk

∂xk

δij (2.19)

The viscosity of a fluid is dependent on the temperature per Sutherland’s Law, equation

2.20. Where µref = 1.716× 10−5 kg
ms

and Tref = 273.15K are gas dependent user inputs, and

S = 110.4K

µ = µref

( T

Tref

)3/2Tref + S

T + S
(2.20)

2.1.6 The Navier Stokes Equations

Substituting terms from equations 2.19 into 2.10, the Navier Stokes equations are formed

in equation 2.21. The Navier-Stokes equations are non-linear partial differential equations
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with no general solution.

∂ρui

∂t
+

∂ρujui

∂xj

= −∂P

∂xi

+
∂

∂xj

[
µ
(∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
µ
∂uk

∂xk

δij

]
(2.21)

The Navier Stokes 2.21 equations, the conservation of mass equation 2.7, and the conservation

of energy equation 2.18 can be written in conservative form, as shown in equations 2.22

through 2.25, where ρ is the fluid density, u, v, and w are the x, y, and z velocity components.

Ho is the total enthalpy, Eo is the total energy, and p is the static pressure. The Fv, Gv, and

Hv arrays contain values of shear stresses that can be found by expanding equations 2.21 and

2.18 with shear stress tensor definition from equation 2.19. The conservative formulation can

be interpreted as the time rate of change of conserved quantities U is equal to the inviscid flux

in primary variables for a coordinate direction, Fi, Gi, Hi minus the viscous flux Fv, Gv, Hv.

The Conservative formulation of the governing equations is convenient to demonstrate the

relationship between conserved quantities.

∂U

∂t
= −∂(Fi + Fv)

∂x
− ∂(Gi +Gv)

∂y
− ∂(Hi +Hv)

∂z
(2.22)

U =



ρ

ρu

ρv

ρw

Eo


Fi =



ρu

ρu2 + p

ρuv

ρuw

ρuHo


Fv = −



0

τxx

τxy

τxz

τhx


(2.23)
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Gi =



ρv

ρuv

ρv2 + p

ρvw

ρvHo


Gv = −



0

τxy

τyy

τyz

τhy


(2.24)

Hi =



ρw

ρuw

ρvw

ρw2 + p

ρwHo


Hv = −



0

τxz

τyz

τzz

τhz


(2.25)

2.1.7 Turbulence

A beautiful demonstration of turbulence can be seen in the clouds of Jupiter, figure 2.2. The

clouds show a spatially varying flow with superimposed three-dimensional random circula-

tions and fluctuations that are self sustaining and enhance mixing, diffusion, entrainment

and dissipation [67]. Large and small vortical structures can be also observed. This is the

so called ”turbulence energy cascade” which asserts that turbulence exists at various length

scale and large vortical structures contain more fluid energy and momentum than smaller

vorticies.

White [67] lists five characteristics of turbulence:
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(a) Hubble Space Telescope Portrait of Jupiter
(b) Jupiter’s north pole from NASA’s Juno Mis-
sion

Figure 2.2: Turbulence examples in Jupiter’s clouds.

1. Fluctuations in pressure, velocity, and temperature (when heat transfer is present).

Velocity fluctuates in all three coordinate directions. Fluctuations of each property are

superimposed on the mean value of each property.

2. Eddies or fluid packets of many sizes that intermingle and fill the shear layer.

3. Random variations in fluid properties which have a particular form. Each property has

a specific continuous energy spectrum that drops off to zero in the smallest eddies.

4. Self-sustaining motion. Once triggered, turbulent flow can maintain itself by producing

new eddies to replace those lost by viscous dissipation.

5. Mixing that is much stronger than that due to laminar (molecular) action. Turbulent

eddies actively move about in three dimensions and cause rapid diffusion of mass,

momentum, and energy.
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The first characteristic of turbulence is the foundation for turbulence modeling. The assertion

that fluctuations of pressure, velocity, and temperature can be super-imposed on the mean

values of fluid flow allow the mean value and the fluctuations to be decoupled from one-

another, as demonstrated in figure 2.3.

Figure 2.3: Example of turbulent flow variation form mean flow.

The perturbations of properties in the fluid flow can be separated from the mean flow as

shown in equation 2.26. Where U is the time averaged mean flow property, and u′(xi, t) are

the fluid fluctuations.

u(xi, t) = U(xi) + u′(xi, t) (2.26)

where,

U(xi, t) =
1

T

∫ T

t

u(xi, t)dt for T1 << T << T2 (2.27)

It is important to understand what turbulent length scales can be safely ignored when

decoupling the mean flow properties from the perturbations. One could imagine choosing a
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value of T2 that is so large the mean flow path in figure 2.3 becomes the perturbation and

the mean flow path becomes a flat line.

Reynolds Averaged Navier Stokes (RANS) Equations

The Navier-Stokes equations, equation 2.21, are non-linear partial differential equations for

which only a handful of analytical solutions exist. As such, it is important to consider

some simplifications to these equations to make it possible to obtain meaningful results.

One simplification is to decouple the mean flow parameters from the fluctuations, as done in

equation 2.26. For incompressible flows, equation 2.26 may be substituted into the differential

forms of the conservation of mass equation 2.7, and conservation of momentum equation 2.21.

Before that process is discussed, correlations for the multiplication of two time averaged

quantities must be discussed.

Consider the multiplication of multiple time averaged quantities AB, that can be separated

into fluctuating and mean properties, per equation 2.26. The result is shown in equation

2.28. The product of a mean flow parameter and a perturbation is zero, however the product

of two perturbations is non-zero if A and B are correlated. Two properties are correlated if

a change in A could cause a change in B and vice versa.

AB = (A+ A′)(B +B′) = AB + AB′ + A′B + A′B′ = AB + A′B′ (2.28)

A similar process may be conducted for a triple product, shown in equation 2.29.

ABC = ABC +B′C ′A+ A′C ′B + A′B′C + A′B′C ′ (2.29)
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Equation 2.26 may now be substituted into the incompressible form of the conservation of

mass and momentum equations, resulting in the Reynolds Averaged Navier Stokes (RANS)

equations, 2.30, 2.31, and 2.32.

∂Ui

∂xi

= 0 (2.30)

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
τji − τRji

)
(2.31)

where, τRji is the Reynolds Stress tensor.

τRji = −ρu′ju
′
i (2.32)

The Reynolds stress tensor is symmetric. Therefore it has been traditionally thought that an

additional six unknowns have been introduced through the averaging process [18] [67] [68].

However, recent mathematical analyses challenge this assertion. Sun [60] has concluded

that only three independent unknowns, u′i, are introduced due to the Reynolds stress term.

Whether the number of unknowns introduced is three or, new equations need to be developed

to close the RANS equations. The closure of the RANS equations has been a topic of intense

research for decades [41] [48] [68] [67]. One method of closure is discussed in 2.1.7.

Farve Averaging

When considering the compressible form of the Navier-Stokes equations, the fluid temper-

ature and density may also fluctuate with time. As a result, a slightly more sophisticated

version of Reynolds averaging must be conducted. The method of density-weighted averag-

ing proposed by Farve [18] is shown in equation 2.33. With this formulation, the momentum
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per unit volume, ρui, becomes the dependent variable, rather than the velocity.

ui =
1

ρ
lim
T←∞

1

T

∫ t+∞

t0

ρ(xi, τ)u(xi, τ)dτ (2.33)

Applying Reynolds averaging to equation 2.33 results in equation 2.34.

ρũi = ρUi + ρ′u′i (2.34)

Taking equation 2.34 and substituting it into the conservation of mass, equation 2.7, con-

servation of momentum, equation 2.21, and conservation of energy 2.18, results in the Farve

averaged conservation of mass, equation 2.35, conservation of momentum, equation 2.36,

and conservation of energy, equation 2.37. Full details of the Farve averaging process can be

found in [18] and [68].

∂ρ

∂t
+

∂

∂xi

(ρũi) = 0 (2.35)

∂(ρũi)

∂t
+

∂(ρũjũi)

∂xj

= − ∂p

∂xi

+
∂

∂xj

(
τji + τRji

)
(2.36)

∂ρE

∂t
+

∂(ρũjH)

∂xj

=
∂

∂xj

[
ũiτ̂ji +

( µ

Pr
+

µT

PrT

) ∂h̃

∂xj

]
(2.37)

where Pr and PrT are the laminar and turbulent Prandtl numbers, cpµT

kf
, kf is the thermal

conductivity of the fluid, and τ̂ji is defined in equation 2.38.

τ̂ji = τji + τRji = (µ+ µT )
[1
2

(∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

∂uk

∂xk

δji

]
(2.38)

As seen with the incompressible RANS equations in section 2.1.7, preforming mass averaging
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introduces additional unknowns related to the Reynolds stress tensor into the system of fluid

governing equations. Additionally, some method of correlating the mean total energy E with

the temperature must be established. If the simulated fluid is considered an ideal gas, the

equation of state can be used to correlate E with T , shown in equation 2.39.

P = ρRT̃ (2.39)

Wilcox’s Two Equation k-ω model

One method of closing the mass averaged RANS equations is Wilcox’s [68] k-ω turbulence

model. k is the turbulent kinetic energy and ω is the specific dissipation rate. This turbulence

model is well posed to capture highly vortical flows and the k-ω model can be applied to

a boundary layer without modification. This, along with high grid density near a no slip

boundary, allows for an accurate simulation of flow physics in the boundary layer without the

use of wall functions. Equations 2.40 and 2.41 are the two equations of the k-ω turbulence

model, with constants α = 0.52, β = 0.075, β∗ = 0.09, σ = σ∗ = 0.5, and σd = 0.125. The

turbulent viscosity, µT is defined in equation 2.43.

∂(ρk)

∂t
+

∂(ρwjk)

∂xj

=
(
τij −

2

3
ρkδij

)∂ui

∂xj

− β∗ρkω +
∂

∂xj

((
µ+

ρk

ω

) ∂k

∂xj

)
(2.40)

∂(ρω)

∂t
+

∂(ρwjω)

∂xj

= α
ω

k

(
τij −

2

3
ρkδij

)∂ui

∂xj

− β∗ρkω2 + σd
ρ

ω

∂k

∂xj

∂ω

∂xj

+
∂

∂xj

((
µ+

ρk

ω

) ∂ω

∂xj

)
(2.41)

lle =

√
k

ω
(2.42)

µt = ρlle
√
k (2.43)
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2.1.8 Coriolis and Centripetal forces

The developed computational fluid dynamics code is intended to be used for turbomachin-

ery. The conservation equations are solved in the airfoil-relative frame of reference frame.

In rotor blade passages of turbomachinery the grid is rotating per MBFLO3 sliding grid

algorithm developed by Lee [42]. The rotation of the blades will impart additional coriolis

and centripetal forces that must be considered in when solving the fluid conservation of mo-

mentum equations. The coriolis and centripetal effects of a rotating grid can be calculated

using 2.44, where Ω is the rotational rate, R is fluid cell radius, εijk is the alternating tensor,

êk and êj are unit vectors in the k and j direction respectively.

Smi = 2ρεijkΩiuj êk + ρΩi Ωj Riêj − ρΩi
2
Rk êk (2.44)

Equation 2.44 is added to the right hand side of the conservation of momentum equations

2.30.

2.1.9 Effect of a Moving Control Volume

The fluid domain governing equations are derived in a stationary Eulerian reference frame.

If a fluid control volume or control volume boundary move with some non-zero velocity vi,

the governing equations will need to be slightly modified to facilitate this movement. A

relative velocity term wi is defined in equation 2.45. Note that the fluid velocity ui can be

the Reynolds averaged velocity, the control volume velocity, vi, could be caused by some

deformation such as aeroelastic movement of the fluid boundary. The simple equation 2.45

is the basis for connecting the fluid domain Eulerian reference frame with the solid domain

Lagrangian reference frame, and the Arbitrary Eulerian-Lagrangian (ALE) method used in
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the fluid-structure interaction procedure presented in this work.

wi = ui − vi (2.45)

2.1.10 Rotating Reference Frames

When conducting a turbomachinery analysis, it is advantageous to consider two frames of

reference, an absolute non-rotating frame, and a relative frame that rotates with the blade.

As previously mentioned, the relative frame is used to quantify the flow properties the rotor

blade is experiencing. This formulation gives rise to several new terms such as relative total

pressure, total temperature, total enthalpy and relative Mach number. All of these quantities

differ from the absolute total pressure, total temperature, total enthalpy and absolute Mach

number by the subtraction of terms related to the rotational speed of the rotor blades.

The relative Mach number is calculated by taking the relative velocity and dividing it by

the speed of sound. The relative total enthalpy is often referred to as rothalpy, which is a

contraction of its formal name, is defined in equation 2.46. Rothalpy is constant throughout

adiabatic rotating machinery at a fixed radius, which is analogous to total enthalpy being

constant across non-rotating machinery [15].

I = H − 1

2
(ΩR)2 =

E + P

ρ
(2.46)
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2.1.11 The Implemented Fluid Governing Equations

The Unsteady Reynolds Averaged Navier Stokes Equations (URANS) solved using numerical

methods discussed in chapter 3 are as follows.

∂ρ

∂t
+

∂(ρwi)

∂xi

= 0 (2.47)

∂(ρui)

∂t
+

∂ρ(wjui)

∂xj

+
∂p

∂xi

=
∂τij
∂xj

− Smi (2.48)

∂E

∂t
+

∂(ρwjI)

∂xj

=
∂

∂xj

(
uiτij +

( µ

Pr
+

µt

PrT

) ∂h

∂xj

− ∂(pvj)

∂xj

)
(2.49)

∂(ρk)

∂t
+

∂(ρwjk)

∂xj

=
(
τij −

2

3
ρkδij

)∂ui

∂xj

− β∗ρkω +
∂

∂xj

((
µ+

ρk

ω

) ∂k

∂xj

)
(2.50)

∂(ρω)

∂t
+

∂(ρwjω)

∂xj

= α
ω

k

(
τij −

2

3
ρkδij

)∂ui

∂xj

− β∗ρkω2 + σd
ρ

ω

∂k

∂xj

∂ω

∂xj

+
∂

∂xj

((
µ+

ρk

ω

) ∂ω

∂xj

)
(2.51)

lle =

√
k

ω
(2.52)

µT = ρlle
√
k (2.53)

Smi = 2ρεijkΩiuj êk + ρΩi Ωj Riêj − ρΩi
2
Rk êk (2.54)

PrT =
cpµT

k
(2.55)

2.2 Solid Continuum

When developing a fluid-structure interaction technique, one typically has freedom deciding

which governing equations will be utilized for the solid continuum. Many researchers [6] [16]

[31] [38] [55] [70] [58] choose to use the modal equations as solid governing equations. This
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decision removes the possibility of the developed solver to be monolithic and may reduce ca-

pability of the structural solver to resolve high frequency behavior, modal coupling and other

non-linear behavior. Furthermore, the intent of this work is to develop a fully coupled, mono-

lithic, fluid-thermal-structural simulation technique. In the present work, The momentum

conservation equations are written in terms of the Piola-Kirchhoff stresses. The stress tensor

is related to the Lagrangian strain tensor through the St. Venant-Kirchhoff constitutive rela-

tionship. The governing equations for the solid continuum come from elasticity, where there

are three fundamental components of elasticity: mathematical relationships linking stresses

and forces without consideration of the continuum displacement, mathematical relationships

describing the continuum deformations without consideration of the forces that caused these

displacements, and a constitutive relationship relating the loads to the displacements.

2.2.1 Equilibrium Relationships

Consider a three dimensional solid continuum of any shape as shown in figure 2.4, subject

to an arbitrary body force acting on the domain, Γ, and an external load acting on the

boundary, ∂Γ in static equilibrium. Let the continuum be cut at an arbitrary plane into

two pieces Γ1 and Γ2. To preserve equilibrium, a force must be imposed on Γ1 prescribing

a displacement x⃗ acting on an infinitesimal area |S| with a unit normal n̂. This force F

represents the contact forces domain Γ2 imparts upon Γ1. It is convenient to represent this

force vector as a traction vector, the boundary which it acts on can be tracked instead of

the area which is acted upon. This can be achieved if the force vector is divided by the

infinitesimal area, which will result in the traction vector, t⃗, which is dependent only on the
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Figure 2.4: Three dimensional Solid Continuum subject to external loads

position and the unit normal.

t⃗ = lim
|S|→0

F (x⃗, n̂, |S|)
|S|

= t⃗(x⃗, n̂) (2.56)

The traction vector can be defined in the current coordinate system by considering an in-

finitesimal tetrahedron in equilibrium, shown in figure 2.5. For a traction acting on the face

of the outward normal, a resisting traction can be applied along each coordinate direction,

resulting in equation 2.57.

t⃗(x⃗, n̂1) + t⃗(x⃗, n̂2) + t⃗(x⃗, n̂3) = t⃗(x⃗, n̂) (2.57)

To obtain the desired result, let us define a tensor σji, such that t⃗n = ti = σji ·ni. Note that

from this definition the traction is understood to act in the i direction on an infinitesimal

area S which has an area normal in the j direction. Now consider that the continuum domain

presented in figure 2.4 is subject to a body force per unit mass ρbi and traction forces and is
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Figure 2.5: Infinitesimal in equilibrium tetrahedron subject to normal traction loads

in equilibrium. Applying Newton’s Second Law, F⃗ = ma⃗ the equilibrium equation becomes:

∫
∂Γ

σji · njdA+

∫
Γ

ρbidVol = 0 (2.58)

To obtain a partial differential equation instead of an integral equation for the equilibrium

equation, the Gauss’ Divergence theorem will be applied. Note that Gauss’ divergence

theorem states that for any sufficiently smooth vector field f⃗(x⃗) with components fi(x⃗) the

following applies: ∫
Γ

∂f

∂xi

dVol =

∫
∂Γ

finidA (2.59)

Applying Gauss’ theorem to equation 2.58 will result in the following:

∫
Γ

(
∂σji

∂xj

+ ρbi)dVol = 0 (2.60)

For the above statement to be true, the intagrand must be equal to zero which will result

in the desired relationship between forces and stresses completing the first pillar of solid
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Figure 2.6: Planar 2D element

mechanics and elasticity theory.

∂σji

∂xj

+ ρbi = 0 (2.61)

Before moving forward to the second pillar of solid mechanics it is necessary to further char-

acterize the stress tensor σji. Consider a two dimensional infinitesimal area in equilibrium

with tractions applied as shown in figure 2.6. For this object to be in static equilibrium the

stress tensor σji is symmetric. Even if the planar element is not in static equilibrium, the

Cauchy stress is always symmetric.

If the solid continuum shown in figure 2.4 is not in static equilibrium and has an outside force

acting upon it, the above analysis is still valid. The force acting on a continuum element

can be added to the right hand side of equation 2.61 as an acceleration ai, to create the solid

momentum equation 2.62.

∂σji

∂xj

+ ρbi = ρai (2.62)
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2.2.2 Displacement Relationships

The particle P in the continuum domain from figure 2.4 can be subjected to some displace-

ment field described by u⃗(x⃗) = P (x⃗new)− P (x⃗0), where x⃗0 represents the initial positions of

the particle P . Assume the displacement of the particle P is due entirely to local stretching

and shearing, and no rigid body movement is occurring. Imagine a two dimensional element

who’s initial geometry looks similar to that of figure 2.6. As the stress components σji are

increased, the square will begin to deform into a rhombus. It is reasonable to expect that the

material strain will also be a rank two tensor to enable some future direct mapping between

stress and strain. Let εij be a symmetric rank two tensor, which will quantify the local

stretching and shearing of material. Without limiting this analysis to small deformations

the strain is defined in equation 2.63. In this definition of strain, Di is the displacement of

a material element and Xi is the undeformed reference coordinate. Strain due to thermal

expansion/contraction of a material may also be considered by adding δkkβx(TS −TR) to the

right hand side of equation eqn : strain, where βx is the coefficient of thermal expansion Ts

is the solid continuum temperature and TR is the reference/initial temperature of the solid.

Eij =
1

2

(∂Di

∂Xj

+
∂Dj

∂Xi

+
∂Dk∂Dk

∂Xi∂Xj

)
(2.63)

Looking at equation 2.63, the strain of any given point within a continuum can be calculated

given a displacement field. But it is not clear how to find a displacement field given the

strain field, since there are six partial deferential equations that define the strain and only

three unknowns in the displacement field. Restrictions must be placed on the strain field so

meaningful displacements can be determined from the strain field. Consider a known small

strain strain field is imposed on the body, so the higher order terms in equation 2.63 can be
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discarded. In this strain field the displacement of point b may be written as:

ub
i = ua

i +

∫
β

∂ui

∂xj

lj ds (2.64)

Given that any rank two tensor, such as the displacement gradient, may be represented as

the sum of the symmetric and anti-symmetric parts the following relation will be used to

simplify equation 2.64 εij and the anti-symmetric part ωij.

∂ui

∂xj

=
1

2
(
∂ui

∂xj

+
∂uj

∂xi

) +
1

2
(
∂ui

∂xj

− ∂uj

∂xi

) = εij + ωij (2.65)

Let ξ(s) be the function which defines the curve of interest, then the tangent vector l⃗ = ∂ξ(s)
∂s

,

then equation 2.64 becomes:

ub
i = ua

i +

∫
β

(εij + ωij)
∂ξj(s)

∂s
ds (2.66)

Now let ξj = ξj + xa, this substitution will allow us to relate the strain vector with the

position of point a. Once this substitution is made, equation 2.64 can be further expanded

using integration by parts which will yield the following:

ub
i = ua

i + ωa
ij(x

b
j − xa

j ) +

∫
β

(εijlj +
∂ωij

∂xk

(xb
j − ξj)lk)ds (2.67)

It would be more convenient to represent the anti-symmetric part of the spatial gradient of

the displacement ωij in terms of the strain, so we use the following substitution:

∂ωij

∂xk

=
∂εik
∂xj

− ∂εjk
∂xi

(2.68)
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Substitution of equation 2.68 into equation 2.67 gives the following:

ub
i = ua

i + ωa
ij(x

b
j − xa

j ) +

∫
β

(εijlj + (
∂εik
∂xj

− ∂εjk
∂xi

)(xb
j − ξj)lk)ds (2.69)

Equation 2.69 quantifies the displacement of an arbitrary point b given the rotation and

displacement of a point a. This result is only physically meaningful if and only if the line

integral over β is path independent.

This observation is rooted in physics because the displacement field should depend only on

the imposed strain field and should not change depending on the path which is used to

calculate the displacements. It is important to note that this restriction requires that the

strain field be continuous and that the domain must be simply connected, therefore special

care must be taken near material discontinuities such as cracks. This observation will impose

some restrictions on the intagrand in equation 2.69 as follows:

∂

∂xl

(εij + (
∂εik
∂xj

− ∂εjk
∂xi

)) =
∂

∂xk

(εil + (
∂εil
∂xj

− ∂εjl
∂xi

)) (2.70)

Expanding equation 2.70 will result in the so called Compatibility equations:

∂εij
∂xk∂xl

+
∂εkl

∂xi∂xj

− ∂εik
∂xj∂xl

− ∂εjl
∂xi∂xk

= 0 (2.71)

These equations are restrictions on the strain field to ensure that any strain field is unique

and will therefore result in a single value of displacement. Equation 2.71 has four free indices

which result in a total of 81 possible values. However, many of these are identically zero.

There are actually only six distinct equations which result from different combinations of

ijkl = 1123 and ijkl = 1122.
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2.2.3 Constitutive Relationships

Now we will derive a relationship between stress and strain. It is conceptually helpful to

think of a material element as a linear spring analogous to Hooke’s Law for a spring F⃗ = kx⃗,

where k is the spring constant, F⃗ is the force required to displace the spring by x⃗, so the

work done by displacing a spring is W = 1
2
kx2. A similar definition of work can be made

to impose an arbitrary strain field on a material element. First, consider the principle of

the conservation on energy and take the time rate of work done by the stress on a material

element to be equal to the time rate of a function of strain only, which is mathematically

represented in equation 2.72. This equation is valid for any elastic material because it is

founded on the principle of the conservation of energy.

σji ∗ ε̇ij =
∂W

∂t
(εij) ⇒ (σji ∗ −

∂W

∂εij
)ε̇ij = 0 ⇒ σij =

∂W

∂εij
(2.72)

Where the work is defined analogously to the work done displacing a spring following Hooke’s

Law and Cijkl is a rank four modulus tensor with the symmetries Cijkl = Cjikl = Cijlk = Cklij

which result in 21 distinct moduli.

W =
1

2
Cijklεijεkl (2.73)

Many materials of interest, such as metals, are isotropic so they have no preferred loading

direction, so the 21 moduli can be reduced to two moduli. We will define the modulus tensor

as follows:

Cijkl = λδijδkl ++µ(δikδjl + δilδjk) (2.74)
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Where λ is the Lame′ constant, µ is the shear modulus which can be defined in terms of the

elastic modulus E and Poisson’s ratio ν.

λ =
νE

(1 + ν)(1− 2ν)
(2.75)

µ =
E

2(1 + ν)
(2.76)

Limiting the analysis to isotropic linear elasticity two distinct moduli exist resulting in the

following constitutive relationship.

σij = λ
∂uk

∂xk

δij + 2µ(
∂ui

∂xj

+
∂uj

∂xi

) (2.77)

2.2.4 Solid Heat Conduction Equation

Consider a small finite cube shown in figure 2.7. For simplicity, let the top, bottom, back

and front surfaces be adiabatic so that there is no heat flux at those boundaries. Q̇ is the

heat flux, Ġ is the heat generation in side the small finite cube.

Conducting an energy balance of the finite cube from figure 2.7 results in the following

formulation: [
Q̇x+∆x

]
−

[
Q̇x

]
+
[
Ġ
]
=

∆E

∆t
(2.78)

Take the limit as ∆x → 0 and ∆t → 0. Then, substitute the definition of heat conduction

to be Q̇ = k dT
dx
, where k is the thermal conductivity, and T is temperature. The energy

stored within the finite cube can be reformulated to be dE = cpρdT , where cp is the specific
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Figure 2.7: Finite cube with one dimensional heat transfer.

heat capacity and ρ is the material density, resulting in equation 2.79, where g is the heat

generation.

d

dx

[
k
dT

dx

]
+ g = ρcp

dT

dt
(2.79)

This equation 2.79 can be readily expanded into three dimensions by considering removing

the simplifying assumption that the back, front, top and bottom faces of the finite block in

figure 2.7. This results in the general heat conduction equation for an isotropic material in

equation 2.80.

∂T

∂xj

[
ks

∂T

∂xj

]
= ρsCps

∂T

∂t
(2.80)

2.2.5 The Implemented Governing Equations

Two configurations are defined for each solid cell, an instantaneous domain, denoted by xi,

and a referential configuration, denoted by Xj. The instantaneous domain reflects the actual

shape and deformations applied to the current grid cell whereas the referential domain is an
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undeformed cell used for integration purposes. These two domains are related to each other

by the deformation gradient, Fij, which is essentially a Jacobian array that allows coordinate

mapping between the two domains, as shown in equation 2.81. The configuration array is

related to the displacement gradient by equation 2.82, where I is the identity matrix.

Fij =
∂xi

∂Xj

(2.81)

∂Di

∂Xj

= Fij − Iij (2.82)

The desired quantities in the solid blocks are the displacement, Di, and velocity, vi, of the

nodes. The definition of the strain field, equation 2.83 allows for large deformations and

thermal strain; where βs is the coefficient of thermal expansion, TS is the temperature of

the solid and TR is the prescribed reference temperature which is an input value. Two stress

tensors are utilized to describe the physical state of the solid material, the 1st and 2nd Piola-

Kirchhoff stresses. The 2nd Piola-Kirchhoff stress, Sij, is related to the strain through the

St. Venant-Kirchhoff constitutive relationship, as shown in equation 2.86. The 1st and the

2nd Piola-Kirchhoff stresses are related using the configuration array as shown in equation

2.87. The 1st Piola-Kirchhoff stress, Pij, allows a direct mapping of forces to the referential

configuration. This connection is exploited to relate the solid momentum equation with the

stress field as described in equation 2.89. The Lamé parameters λ and µ are related to

Young’s Modulus, E, and Poisson’s Ratio, ν, as denoted in equations 2.84 and 2.85. Finally,

the 2nd Piola-Kirchhoff stress and the Cauchy stress, σij, are related by equation 2.88.
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Eij =
1

2

(∂Di

∂Xj

+
∂Dj

∂Xi

+
∂Dk∂Dk

∂Xi∂Xj

)
+ βx(TS − TR) (2.83)

λ =
νE

(1 + ν)(1− 2ν)
(2.84)

µ =
E

2(1 + ν)
(2.85)

Sij = λδijEkk + 2µEij (2.86)

Pik = FijSjk (2.87)

σik =
1

|F |
PijFkj (2.88)

ρs
∂vi
∂t

− ∂Pij

∂Xj

= fi (2.89)

∂T

∂xj

[
ks

∂T

∂xj

]
= ρsCps

∂T

∂t
(2.90)

These equations are solved using numerical methods discussed in chapter 3.
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Chapter 3

Numerical Methodology

This chapter will discuss the numerical methods that are implemented in the MBFLO3 code

package. The methods presented are used to solve the governing equations for the fluid and

solid continua and maintain the numerical stability. The algorithms used to develop unique

features such as the implementation overlaid/overset grid to model film cooling holes and

the fluid-structure interaction will be discussed.

3.1 MBFLO3 Overview

MBFLO3 is an in-house monolithic, fully coupled, finite volume based, fluid-thermal-structure

interaction code. It is written almost entirely in FORTRAN90 and has massively parallel

capabilities using Message Passing Interface (MPI), OpenMP, and OpenACC, and is spe-

cialized for turbomachinery. MBFLO3 was originally created by Bozinoski and Davis [3] [2].

Various improvements have been made by many contributors including Bates [1], Gottlieb [9]

and Lee [42]. MBFLO3 is a complex collection of nearly 200 subroutines. A highly simplified
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flow chart for the program is shown in figure 3.1.

3.1.1 Cell Centered Control Volume Technique

The Lax-Wendroff integration method used in MBFLO3, implemented by Bozinoski [2], is

combined with Ni’s distribution scheme [50] as described and applied by Dannenhofer [10]

and Davis et. al. [12]. The Lax-Wendroff technique is a spatially second order accurate

time marching scheme which is based upon a Taylor Series expansion, equation 3.1. The

implementation of the Lax-Wendroff integration with Ni’s distribution scheme are best un-

derstood with a simple one dimensional example. Let F (U) be some function applied to a

vector of conserved variables U defined in equation 2.23.

δUi = Un+1
i − Un

i =
(∂U
∂t

)n

i
∆t+

(∂2U

∂t2

)n

i

∆t2

2
+H.O.T. (3.1)

∂U

∂t
= −∂F (U)

∂x
(3.2)

Equation 3.1 describes how the change of an independent variable, U , between time steps

can be broken up into first-order and second-order time rate changes. Using equation 3.2,

the first order changes at a nodal point i can be found using a central differencing scheme.

For simplicity, consider a uniform grid with grid spacing ∆xi−1/2 = ∆xi+1/2 = ∆x. Note

that∆xi−1/2 and ∆xi+1/2 indicate cell centered quantities.

(∂U
∂t

)n

i
=

1

2

[(∂U
∂t

)n

i+1/2
+
(∂U
∂t

)n

i−1/2

]
(3.3)
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Figure 3.1: Simplified MBFLO3 Flow Chart
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where, (∂U
∂t

)n

i+1/2

∼=
F n
i − F n

i+1

∆xi+1/2(∂U
∂t

)n

i−1/2
∼=

F n
i−1 − F n

i

∆xi−1/2

(3.4)

The second order changes can be found using a similar approach by expanding 3.2 and using

3.3.

∂2U

∂t2
= − ∂

∂x

∂F

∂U

∂U

∂t
(3.5)

where,

− ∂

∂x

∂F

∂U

∂U

∂t
∼= − 1

∆xi

[(∂F
∂U

)n

i+1/2

(∂U
∂t

)n

i+1/2
−

(∂F
∂U

)n

i−1/2

(∂U
∂t

)n

i−1/2

]
(3.6)

By combining equations 3.1, 3.3 and 3.6 the Lax-Wendroff time marching scheme for the

simple one dimensional problem is shown in equation 3.7.

δUi =
(
F n
i−1 − F n

i+1

) ∆t

2∆x
+
[(∂F

∂U

)n

i−1/2

(
F n
i−1 − F n

i

)
−
(∂F
∂U

)n

i+1/2

(
F n
i − F n

i+1

)] ∆t2

2∆x2
(3.7)

As written in equation 3.7, the number of numerical operations become large when scaled

to two or three-dimensions. However, by implementing Ni’s [50] distribution formulas and

the above steps, the predicted changes at a nodal points can be found in a single step. The

first order changes based on the cell centered terms are shown in equation 3.8. The second
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order changes are shown in equation 3.9.

∆Ui−1/2 =
(
F n
i−1 − F n

i

)∆x

∆t

∆Ui+1/2 =
(
F n
i − F n

i+1

)∆x

∆t

(3.8)

∆F ≡
(∂F
∂U

)
∆U (3.9)

The predicted changes at the nodal points can be calculated in a single step by combining

equations 3.8, 3.9 with 3.7, resulting in equation 3.10. Upon examination of equation 3.10,

it can be observed that the changes experienced at nodal point i is influenced by changes up

and down stream of the node.

δUi =
1

2

[
∆Ui−1/2 +

∆t

∆x
∆Fi−1/2

]
+

1

2

[
∆Ui+ 1/2− ∆t

∆x
∆Fi+1/2

]
(3.10)

With the above findings, Ni [50] developed a control volume centered integration method

that consists of three basic steps. First, the governing equation are approximated at the cell

center, xi+1/2 using equation 3.11.

∆Ui+1/2 =
(
F n
i − F n

i−1
)∆t

∆x
(3.11)

Second, the corrections made to point i and i + 1 are determined with the use of Ni’s
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distribution formulas, equation 3.12.

(δUi)i+1/2 =
1

2

[
∆Ui+1/2 −

∆t

∆x
∆Fi+1/2

]
(δUi+1)i+1/2 =

1

2

[
∆Ui+1/2 −

∆t

∆x
∆Fi+1/2

] (3.12)

Third, the primary variables are updated, using equation 3.13.

Un+1
i = Un

i + δUi

δUi =
(
δUi+1

)
i−1/2 +

(
δUi

)
i+1/2

(3.13)

The integration procedure described above is second order accurate in time and space. This

procedure is also explicit, so the time step size is governed by the Currant-Friedrichs-Lewi

(CFL) condition, shown in equation 3.14, where W is the wave speed [50].

∆t =
∆x

|W |
(3.14)

The solid momentum and heat conduction equations are diffusion like, and do not contain

first derivative convection like terms that require second order changes for stability. The

changes in solid node velocity due to displacement are calculated using equation 3.8, and are

then distributed from the cell centers to the nodes.

3.1.2 Time Marching

The point-implicit dual time step method formulated by Jameson[32] is used for unsteady

simulations in the current study, described in equation 3.15; where n is the global time step,

m is the inner iteration index, and w represents a primary variable. This method is marched
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implicitly by a specified value of ∆tG, but the equations are solved at each global time step

iteratively using a local time step of ∆tL until the residual drops below a tolerance. Equation

3.15 is second order accurate in time.

wm+1 = F (wm)∆tL +
−3wm + 4wn − wn−1

2∆tG
∆tL + wm (3.15)

Each grid cell has an independent local time step size based on a specified Courant-Friedrichs-

Lewy (CFL) number, the geometry of the cell, and continuum types and properties. The

fluid and solid time-steps are different and are based upon the physics and numerical stability

considerations for each domain. For the fluid domain, the local time-step, equation 3.16, uses

two stability considerations; the first is related to local wave speed c, and the second related

to the grid cell minimum Reynolds number α, where Vol is cell volume, µtotal is the sum

of the laminar viscosity and an approximation to the numerical viscosity due to numerical

smoothing, α is the cell minimum cell Reynolds number, and c is the speed of sound.

∆tL = CFLf min
( ∆L

Vol + c+ αµtotal

∆L

)
(3.16)

The solid domain local time-step, equation 3.17, is dependent on the wave speed and the

cell dimensions. Vol is cell volume, E is the modulus of elasticity, ρ is the material density,

Ais, Ajs, Aks are one half of the root-sum-square of the cell face areas, and i, j, k subscripts

refer to the three-dimensional grid directions.

∆tL = CFLs min
( Vol

2
√

E
ρ
(Ais + Ajs + Aks)

)
(3.17)
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The solid momentum equation 2.89 is a second order partial differential equation in terms

of displacement. Therefore, a second time integration is necessary to determine the nodal

displacement. This is completed using equation 3.18, which is a second order accurate

backward difference equation in time; where m and n are the inner and outer iteration

indices respectfully, D is the nodal displacement, ∆tG is the global time step, and v is the

nodal velocity.

Dm+1 =
2vm+1∆tG + 4Dn −Dn−1

3
(3.18)

The dual time stepping method presented in equation 3.15 is the chosen method of time-

stepping because the point-implicit method allows for the simulation to be executed with a

larger global time step. The global time step may be two to four orders in magnitude larger

than the explicit time step given by equation 3.17. As will demonstrated in section 4.1.1,

the dual time stepping method can typically reduce simulation time by 25%.

3.1.3 Numerical Smoothing Techniques

Numerical smoothing techniques are implemented in the fluid and solid blocks to maintain

numerical stability and capture complex fluid flow structures in the fluid domain.

Fluid Domain

Jameson smoothing [33] is implemented in the MBFLO3 flow solver to capture shock waves

and reduce solution decoupling. The result of equation 3.19 is added to the primary variable

updates for the current inner iteration. Equation 3.22 is used to determine the 4th difference

smoothing coefficient, where f(τij) =
√

S2
xy + S2

xz + S2
yz is the damping function that is
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responsible for shutting off the smoothing in viscous flow regions, α(2) = 0.1, α(4) = 0.01,

Cav = 1×10−5. More details on the implementation of this smoothing method can be found

in Bozinoski [3].

Fi+ 1
2
= Fi+ 1

2
− di+ 1

2
(3.19)

di+ 1
2
= ϵ(2)(Ui+1 − Ui)− ϵ(4)(Ui+2 − 3Ui+1 + 3Ui − Ui−1) (3.20)

ϵ(2) = α(2)dpi (3.21)

ϵ(4) = α(4)
[
min

(
1,

1

max(Cav, f(τij)

)]2
(3.22)

dpi = max(∆Pi−1,∆Pi,∆Pi+1) (3.23)

∆Pi =
∣∣∣Pi−1 − 2Pi + Pi+1

Pi−1 + 2Pi + Pi+1

∣∣∣ (3.24)

Solid Domain Smoothing Techniques

Due to the second order accurate discretization of the solid domain using finite volumes, a

numerical issue arises called hourglassing. This phenomena is similar to the odd even de-

coupling which can occur in central-difference and finite-difference finite volume solvers. An

example of hourglassing is shown in figure 3.2. This section will discuss the two solid do-

main smoothing techniques that aim to prevent hourglassing without significantly impacting

the solution. The two smoothing methods considered are hourglass stiffeniing/smoothing

proposed by Gottfried and Fleeter [22] and Flanagan and Belytschko [19], and a modified

version of Jameson’s [33] second and fourth difference smoothing techniques.

Hourglass Stiffening and Smoothing
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Figure 3.2: Hourglassing example.

For hexahedral cells, there are eight deformation modes; four of the eight deformation modes

pertain to rigid body motion, expansion/contraction, and two shear modes that are all per-

missible modes of deformation. However, four hourglass modes exist which represent uncon-

strained motion that can lead to the destruction (decoupling) of the solution. Each hourglass

mode has a corresponding basis vector denoted by Γlk, listed in table 3.1. Hourglass modes

are represented pictorially in figure 3.3. To prevent the destruction of the solution, a fic-
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titious force is introduced at each solid node to discourage the unconstrained movement.

The hourglass force is described by equation 3.27; where F hg
il is the artificial smoothing

force, hij is the hourglassing velocity/displacement and is measure of how much a node is

allowed to move in an unconstrained manner, and Qhg is the hourglass coefficient. The hour-

glass displacement and hourglass velocity are shown in equations 3.25 and 3.26 respectfully.

Hourglass stiffening uses the displacement based definition of hlk in equation 3.25, while

hourglass smoothing uses the velocity based definition of hlk in equation 3.26. The hourglass

force is ultimately added to the right hand side of equation 2.89 as an additional nodal

force. MBFLO3 has the capability to use either hourglass stiffening or hourglass smoothing.

Gottfried and Fleeter[22] recommended Qhg to be between 0.05 and 0.15.

hlk =
DilΓlk

∆tL
(3.25)

hlk = uilΓlk (3.26)

F hg
il = −ρV 2/3(0.25QhgA+ 25Q2

hg|hik|)hikΓlk (3.27)

Table 3.1: Hourglass modes notation for equations 3.25 and 3.278

Local Node Number

Deformation Mode 1 2 3 4 5 6 7 8

Hourglass 1 Γl1 -1 -1 1 1 1 1 -1 -1
Hourglass 2 Γl2 -1 1 1 -1 1 -1 -1 1
Hourglass 3 Γl3 1 -1 1 -1 1 -1 1 -1
Hourglass 4 Γl4 1 -1 1 -1 -1 1 -1 1

2nd and 4th Difference Smoothing
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Figure 3.3: Description of Hourglass Deformation modes.

Hourglass stiffening reduces the maximum stable time step the solid solver may take. The

smoothing control parameter Qhg and the maximum stable time step are inversely related

[19]. An additional method of smoothing has been investigated to be used in conjunction with

hourglass stiffening/smoothing to enable larger global time steps and increased numerical

stability. A modified 2nd and 4th difference smoothing technique formulated by Jameson

[33] has been implemented. Zorn [71] tried using the 2nd and 4th differencnig equations

instead of hourglass stiffening and found these methods to be overly dissapative for use with

a structural solver. Rather than apply the 2nd and 4th difference smoother to the entire

solid domain, as Zorn [71] did, only the nodal displacements or velocities of free surfaces are

smoothed.

The 2nd difference smoothing implemented within the structural solver uses equations 3.28

and 3.1.3. The 4th difference smoothing uses equations3.28 and 3.1.3. The implementation

of these equations is verified using the cantilever beam subject to a gravitational load gravity

case in 4.1.1.

bsi = bi − di (3.28)

di = ϵ(Ui+1 − Ui) (3.29)
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di = ϵ(Ui+1 − Ui)− ϵ(Ui+2 − 3Ui+1 + 3Ui − Ui−1) (3.30)

3.1.4 Physical Boundary Conditions

MBFLO3 is capable of simulating a multitude of boundary conditions. This section will

focus on the boundary condition types and improvements that were developed specifically

for this effort. For additional details on the development and implementation of MBFLO3

boundary conditions see [3], [42], [1] and [9].

Conjugate Heat Transfer Boundary Conditions

The temperature field of solid blocks is modeled using the heat conduction equation, shown

in equation 2.80. The heat conduction equation is solved using the same numerical approach

as the fluid solver. Temperature and temperature dependent values are message passed from

fluid blocks to neighboring solid blocks at every inner iteration. This approach requires

point matched and overset grids to be generated at all fluid-solid interfaces. To minimize

the interblock communication, only the temperature of the first two fluid nodes off of the

solid surface, and the thermal conductivity of the fluid, are message passed to the solid block.

This information is stored in the solid block’s ghost nodes.The fluid thermal conductivity is

calculated at every inner iteration using equation 3.31, where Cpf is the thermal capacity of

the fluid at a constant pressure, µ is the dynamic viscosity and Pr is the Prantdl number.

kf =
Cpfµ

Pr
(3.31)
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Figure 3.4: Central differencing stencil

There are two physical requirements for a conjugate interface condition. First, to satisfy

energy conservation, the heat flux on either side of the interface is constant, as described

in equation 3.32. Where kf and ks are the thermal conductivity of the fluid and solid

respectively. Indices i+ and i− represent right and left hand limits at the fluid-solid interface.

Second, the temperature on either side of the fluid-solid boundary must be the same.

ks
∂T

∂x

∣∣∣
i−

= kf
∂T

∂x

∣∣∣
i+

(3.32)

The central differentiating formulas implemented in MBFLO3 can be derived using Lagrange

Polynomials, equation 3.33. The Lagrange interpolation formula for n+ 1 points will result

in an N th order accurate numerical scheme.

ϕ(x) =
n∑

j=0

n∏
k=0,j ̸=k

x− xk

xj − xk

ϕj (3.33)

The first order accurate central differencing scheme can be derived by setting n = 1, and

n = −1 resulting in two Lagrange polynomials shown in equations 3.34, and 3.35.

ϕ(x) =
(x− x1)

(x0 − x1)
ϕ0 +

(x− x0)

(x1 − x0)
ϕ1 (3.34)
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ϕ(x) =
(x− x−1)

(x−1 − x0)
ϕ−1 +

(x− x−1)

(x0 − x−1)
ϕ0 (3.35)

Then, the derivative of ∂ϕ
∂x

∣∣
x0

can be evaluated. Consider the first order forward difference

derivative, equation 3.36, as the fluid side of the boundary, and the first order backward

difference derivative, equation 3.37, as the solid side of the boundary.

∂ϕ

∂x

∣∣∣
x0

= − ϕ0

∆xi+1

+
ϕi+1

∆xi+1

(3.36)

∂ϕ

∂x

∣∣∣
x0

= − ϕ0

∆xi−1
+

ϕi−1

∆xi−1
(3.37)

Then, Tnkm is substituted for ϕn, where km is the thermal conductivity of the node’s assigned

continuum. Finally, the two quantities are set equal to each other and the temperature at the

interface is solved for, shown in equation 3.38, where ks and kf is the thermal conductivity

of the solid and fluid respectively; Ts and Tf the temperatures at the solid and fluid nodes

respectively.

T0 =

kfT
i+1
f

∆xi+1
+ ksT

i−1
s

∆xi−1

kf
∆xi+1

+ ks
∆xi−1

(3.38)

The second order accurate central differencing scheme can be derived by setting n = 2, and

n = −2 in equation 3.33. The result is two Lagrange polynomials shown in equations 3.39,

and 3.40.
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ϕ(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
ϕ0 +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
ϕ1 +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
ϕ2 (3.39)

ϕ(x) =
(x− x−1)(x− x−0)

(x−2 − x−1)(x−2 − x0)
ϕ−2 +

(x− x−2)(x− x0)

(x−1 − x−2)(x−1 − x0)
ϕ−1 +

(x− x−1)(x− x−2)

(x0 − x−1)(x0 − x−2)
ϕ0

(3.40)

Consider the second order forward difference derivative, equation 3.41, as the fluid side of

the boundary, and the second order backward difference derivative, equation 3.42, as the

solid side of the boundary. Evaluating ∂ϕ
∂x

∣∣
x0

of equations 3.39, and 3.40 results in equations

3.41 and 3.42.

∂ϕ

∂x

∣∣∣
x0

= − 2∆xi+1 −∆xi+2

∆xi+1(∆xi+1 +∆xi+2)
ϕ0 +

∆xi+1 −∆xi+2

∆xi+1∆xi+2

ϕi+1 −
∆xi+1

(∆xi+1 +∆xi+2)∆xi+2

ϕi+2

(3.41)

∂ϕ

∂x

∣∣∣
x0

=
2∆xi−1 +∆xi−2

∆xi−1(∆xi−1 +∆xi−2)
ϕ0 −

∆xi−1 +∆xi−2

∆xi−1∆xi−2
ϕi−1 +

∆xi−1

(∆xi−1 +∆xi−2)∆xi−2
ϕi−2

(3.42)

Then, Tnkm is substituted for ϕn, where km is the thermal conductivity of the node’s assigned

continuum. Finally, the two quantities are set equal to each other and the temperature at the

interface is solved for, shown in equation 3.43, where ks and kf is the thermal conductivity

of the solid and fluid respectively; Ts and Tf the temperatures at the solid and fluid nodes

respectively.

59



T0 =

∆xi+1+∆xi+2

∆xi+1∆xi+2
kfT

i+1
f − ∆xi+1

(∆xi+1+∆xi+2)∆xi+2
kfT

i+2
f + ∆xi−1+∆xi−2

∆xi−1∆xi−2
ksT

i−1
s − ∆xi−1

(∆xi−1+∆xi−2)∆xi−2
ksT

i−2
s

2∆xi−1+∆xi−2

∆xi−1(∆xi−1+∆xi−2)
+ 2∆xi+1+∆xi+2

∆xi+1(∆xi+1+∆xi+2)

(3.43)

Fluid-Structure Boundary Conditions

The fluid force imparted onto the solid surface is defined in equation 3.44, where τij and P

are the fluid shear stress and pressure at the solid surface respectively, Pref is a user specified

reference pressure at the solid surface, δij is the Kronecker delta, and dAi is the cell face

area.

Fi =

∫
(τij − (P − Pref )δij)dAi (3.44)

To apply this boundary condition, the shear stresses and cell face areas- that are stored

at cell centers- must be distributed to the fluid side nodes, as shown in figure 3.5. The

distributed quantities and nodal pressure are then message passed to the solid where the

integral equation 3.44 is evaluated. The fluid force, along with any body forces and the

hourglass smoothing force, makeup the right hand side of the solid momentum equation

2.89.

3.1.5 Fluid-Structure Interaction Process Flow Chart

A simplified version of the fluid-structure interaction process is shown in figure 3.6.
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Figure 3.5: Application of Fluid-Solid boundary condition

Solid Solver Solution Process

The structural solver solution process is outlined in figure 3.7. The structural solver may be

run independently or with fluid and/or thermal solver depending on user inputs.
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Figure 3.6: Fluid-structure interaction flow chart.
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Figure 3.7: Structural solver flow chart

3.1.6 Mesh Motion Techniques

To facilitate a fully coupled fluid-structure interaction simulation, the fluid grid must re-

spond to the solid deformations at every inner iteration. This process consists of six steps:

first, deformable solid node displacement is message passed to the adjacent fluid sub-faces,

ensuring the grid stays point matched at all fluid-structure boundaries. Second, the fluid
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node displacements are distributed through the block. Third, fluid node coordinates are

updated by adding the distributed displacement values to the undeformed grid. Fourth, the

fluid grid is smoothed via a Poisson smoother to preserve orthogonality. Fifth, the fluid

nodal velocity is updated using a second order backward difference given in equation 3.45,

where m is the inner iteration index, n is the outer iteration index, and ∆tGlob is the global

time-step. Finally, the nodal coordinates and velocity are averaged at inter-block boundaries

of deformable fluid blocks. This final step is necessary because all deformable fluid blocks

are allowed to deform independently. After deformation, all cell face areas and volumes are

re-calculated and the fluid solver computes updates to the primary variables. Steps two, four

and five merit further discussion.

vm+1
n =

3Dm+1
n − 4Dn +Dn−1

2∆tGlob

(3.45)

Distributing Surface Nodal Displacements

Fluid displacements are updated every inner iteration, therefore it is important that the

method of displacement distribution is computationally inexpensive. The chosen method

for displacement distribution involves the solution of eight algebraic equations. Fluid node

displacements are calculated using linear partial sum equations, listed in equations 3.46-3.53.

Equations 3.46-3.48 perform linear interpolation along the edges of deformable sub-faces.

Equations 3.49-3.51 update displacement on deformable sub-faces the nodal displacements

inside of a deformable fluid block are updated using equation 3.52. Finlay the partial sums

from each equation are combined using equation 3.53. Displacements are updated on edges,

then faces, then the interior nodes are updated.
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σξ(ξ, ϕ, η) = (1− ξ)D(0, ϕ, η) + ξD(1, ϕ, η) (3.46)

σϕ(ξ, ϕ, η) = (1− ϕ)D(ξ, 0, η) + ϕD(ξ, 1, η) (3.47)

ση(ξ, ϕ, η) = (1− η)D(ξ, ϕ, 0) + ηD(ξ, ϕ, 1) (3.48)

σξϕ(ξ, ϕ, η) = −(1− ξ)(1−ϕ)D(0, 0, η)− ξ(1−ϕ)D(1, 0, η)− (1− ξ)ϕD(0, 1, η)− ξϕD(1, 1, η)

(3.49)

σξη(ξ, ϕ, η) = −(1− ξ)(1−η)D(0, ϕ, 0)− ξ(1−η)D(1, ϕ, 0)− (1− ξ)ηD(0, ϕ, 1)− ξϕD(1, ϕ, 1)

(3.50)

σϕη(ξ, ϕ, η) = −(1−ϕ)(1−η)D(ξ, 0, 0)−ϕ(1−η)D(ξ, 1, 0)− (1−ϕ)ηD(ξ, 0, 1)−ϕηD(ξ, 1, 1)

(3.51)

σξϕη(ξ, ϕ, η) =(1− ξ)(1− ϕ)(1− η)D(0, 0, 0) + (1− ξ)(1− ϕ)ηD(0, 0, 1) + (1− ξ)ϕ(1− η)D(0, 1, 0)

+ (1− ξ)ϕηD(0, 1, 1) + ξ(1− ϕ)(1− η)D(1, 0, 0) + ξ(1− ϕ)ηD(1, 0, 1)

+ ξϕ(1− η)D(1, 1, 0) + ξϕηD(1, 1, 1)

(3.52)

D(ξ, ϕ, η) = σξ(ξ, ϕ, η)+σϕ(ξ, ϕ, η)+ση(ξ, ϕ, η)+σξϕ(ξ, ϕ, η)+σξη(ξ, ϕ, η)+σϕη(ξ, ϕ, η)+σξϕη(ξ, ϕ, η)

(3.53)

To demonstrate the capability of this simple method, consider a cube of arbitrary dimen-

sions with a two-Dimensional sinusoidal displacement is applied to the top surface while the

bottom surface remains fixed. The undeformed mesh is shown in figure 3.8 and the deformed

cube is shown in figure 3.9. Upon examination of figure 3.9, one can observe the displace-

ment varies smoothly from the top surface to the bottom surface, but the mesh does loose

some orthogonality. There are several limitations to the transfinite interpolation scheme as
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Figure 3.8: Undeformed cube.

it is currently implemented within MBFLO3, the most significant being that mesh orthogo-

nality is lost near surfaces when large displacements occur, which reduces, or destroys, the

quality of the solution. For this reason, fluid-structure interaction simulations with large

displacements undergo Poisson smoothing (discussed in sub section 3.1.6). Furthermore,

mesh deformation does not transfer into neighboring computational blocks which may be

required in configurations with large deflections.

This method of displacement distribution is fairly simple to implement in a single block case.

However, when parallelism and the multi-block data structure of MBFLO3 is introduced,

identifying which edges/sub-edges and faces/sub-faces are deformable becomes algorithmi-

cally complex.

Identifying Deformable Edges
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Figure 3.9: Deformed cube.

All boundary conditions applied to a computational block in MBFLO3 are specified in the

connectivity file. For a fluid-structure interaction simulation, there are two flags which

identify whether and how a block will proceed through the FSI routines. One flag identifies

fluid-solid deformable boundaries, the other identifies fluid-fluid deformable boundaries. The

displacement of fluid nodes at a fluid-solid deformable boundary is fixed and must be the

same as the solid to maintain a point-matched grid. However, the fluid node displacement

of edges and faces of fluid blocks normal to a deformable fluid boundary do need to be

determined by the displacement distribution technique. The difficulty in implementing the

displacement distribution technique is any given deformable fluid-fluid boundary may have

an edge which is not allowed to deform via displacement distribution because its nodes belong
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Figure 3.10: Cylinder-flag partial grid outline.

to a fluid-solid boundary or share nodes with a non-deformable fluid block. Figures 3.10 and

3.11 is included to aid in further discussion.

Figure 3.10 shows a partial grid outline with green and red edges denoting deformable and

non-deformable block edges respectfully. Figure 3.11 is a close up of the block immediately

downstream of the deformable flag with edge numbering included in black and face numbering

included in orange. The input information from the connectivity file indicates that face 1

and 4 are fixed while faces 2, 3, 5 and 6 are deformable. Face 3 has a sub-face which has

a deformable fluid-solid boundary so no displacement distribution may happen across this

sub-face. To determine which edges and sub-edges qualify for displacement distribution a
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Figure 3.11: Example of deformable faces and edges of a computational block used in the
Cylinder-flag test case.
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deformable fluid sub-face is chosen. Then, the boundary condition information of each edge

and sub-edge which shares a sub-face with the chosen fluid sub-face is checked. If that sub-

face is also deformable, the edge or sub-edge will qualify for displacement distribution. This

cumbersome process is completed in the pre-processing stage of MBFLO3.

Smoothing Fluid Grid with Poisson Smoothing

Poisson smoothing is conducted to preserve mesh orthogonality, grid spacing, and prevent

cells from collapsing. A finite difference based Poisson smoothing technique as proposed by

Thompson et. al. [62], Steger and Sorenson [59] and implemented by Davis et. al. [12] is used

here. Through this method, each deformable fluid computational block’s (x, y) coordinates

are mapped to computational space (ξ, η), transformed into referential coordinates, and

the following set of Poisson equations are solved, equations 3.54 and 3.55. In MBFLO3,

this method smooths (x, y, z) coordinates of computational block by considering only two

dimensions at a time. P and Q are forcing functions to maintain user-specified grid clustering

near boundaries.

αxξξ − 2βxξη + γxηη = −J(Pxξ +Qxη) (3.54)

αyξξ − 2βyξη + γyηη = −J(Pyξ +Qyη) (3.55)

where,

α = x2
η + y2η

β = xηxξ + yηyξ

γ = x2
ξ + y2ξ
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Figure 3.12: Cylinder-flag grid 1 close up.

Since each fluid block is smoothed and allowed to deform independently, it is possible for fluid

nodal coordinates at inter-block boundaries to vary significantly. This outcome is undesirable

because it reduces grid orthogonality and may reduce solution quality. To correct this issue,

the coordinates of two nodes normal to the inter-block boundary are message passed to the

neighboring fluid block and incorporated as ”ghost nodes”. The augmented computational

block coordinates are then smoothed with the Poisson smoother. Smoothing across block

boundaries can be repeated a user specified number of times to ensure grid continuity at inter-

block boundaries. For the current study, smoothing across inter-block boundaries twice per

global time step was found to be sufficient. The Poisson smoothing process is demonstrated

on the cylinder-flag grid in figures 3.12, 3.13 and 3.14.

3.1.7 Multi-disciplinary Overlaid Grid Treatments

One of the features of this overall procedure is the use of overlaid-grids for the film-cooling

holes that allow flow to be transported between the airfoil internal cooling plenums and the

mainstream airfoil passage flow. In addition, heat is transferred between the fluid and solid
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Figure 3.13: Unsmsoothed augmented computational block.
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Figure 3.14: Smoothed augmented computational block.

domains. Unique multi-disciplinary overlaid-grid treatments are used to allow information

to be transferred to and from the overlaid-grid blocks. An overlaid-grid block (solid or fluid)

is a block that does not have a neighboring block or physical boundary condition on at least

one of its faces. Overlaid-grid blocks may be FLUID or SOLID.

Two sets of overlaid-grid routines are used in the overlaid-grid treatments. The first set of

routines determine if a point within any block is overlaid into another underlying block (with

constraints), and if so, determine which cell of that underlying block the overlaid grid point

is within. Once this is achieved, the tri-linear interpolation coefficients used to interpolate

quantities for the overlaid-grid point may be determined and stored. A multi-step approach

is used to determine the location of a point within a cell in computational space (i.e. the

interpolation coefficients).
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This first set of routines are called in the preprocessing step of the overall MBFLO3 solution

procedure and are not required to be called during the time step iteration (unless overlaid-

grid blocks move transiently, which is not the case in for the current research effort). This

first step is the most time-consuming of the overlaid-grid procedures due to searching for

the cell where the overlaid-grid point is within. Steps are taken to reduce searching time

through the utilization of bounding-box information. Bounding box information consists of

the coordinates of all block and sub-block corners. In the current procedure, every block is

subdivided into Nsub sub-blocks by dividing each grid dimension by Ncells. The choice in

the value of Ncells is a trade off between efficiency and accuracy. A large value of Ncells can

result in sub-blocks being too large and overlaid-grid points being missed during the search

due to sub-block curvature. A small value of Ncells can result in an excessive number of sub-

blocks leading to higher search computational time and storage. In the current investigation,

Ncells was chosen to be 4. The coordinates of the sub-block corners are stored and broadcast

to all processors along with the block type (FLUID or SOLID) of the parent block. The

search for a cell where an overlaid-grid point lies within begins by finding the sub-block,

and thus the primary block, where the point lies within the maximum and minimum of the

sub-block corners. This limits the next search step to Ncells 3 of the sub-block. The next

step finds the closest point within the sub-block to the overlaid-grid point to reduce the

third search step to 8 particular cells of the sub-block. During the third and final step of

the search, a coordinate tri-linear shape function and it’s first derivative with respect to the

three primary directions is used to march from the closest point found in the second step

to the overlaid grid point location within one of the 8 cells. For computational grids with

fine grid spacing, under-relaxation of this marching technique is useful. Once a unique cell

is found where the overlaid-grid point lies within, the block number and grid indices (i, j,
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and k) of the overlaid-grid point and the cell that it lies within are added to a linked-list of

points.

The definition of the characteristics of an overlaid-grid point shall now be discussed. In the

MBFLO3 procedure, two levels of ghost nodes are used at all block boundaries for trans-

fer of inter-block information and numerical smoothing. These point-matched inter-block

boundary points and ghost node points do not qualify as an overlaid-grid point. Secondly,

to avoid hysteresis effects during the interpolation of overlaid-grid point values, overlaid-

grid blocks/points cannot lie within any other overlaid-grid block. In the current version of

MBFLO3, overlaid-grid blocks must be embedded into other blocks that are not determined

to be overlaid themselves. This constraint is used to avoid the necessity of copying the

variables of all blocks into a work array each time-step prior to interpolation and then using

the work array (that is unaltered) during for interpolation to avoid any hysteresis. Copying

entire-block variables into work arrays is a computationally expensive operation and should

be avoided when possible. Thirdly, overlaid-grid blocks are not allowed to be overlaid onto

themselves. This constraint is actually a subset of the third constraint but is used explicitly

for computational efficiency.

Three overlaid-grid routines of the first set are used to calculate the interpolation coefficients

for the eventual transfer of information to and from the overlaid-grid blocks during the second

set of overlaid-grid routines. The first of these routines (overlay) finds the cell of a FLUID

or SOLID block in which the overlaid-grid point lies within for overlaid-grid block boundary

and ghost node points. The second of these routines (overlays) finds the cell of a SOLID

block in which an internal overlaid-grid FLUID point lies within. The third of these routines

(overlayf) finds the cell of a FLUID block in which an internal overlaid-grid FLUID point

lies within. The purpose of these three routines of the first set will be described next in
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a discussion regarding the second set of routines that use the interpolation coefficients to

efficiently interpolate information for the overlaid-grid points.
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Figure 3.15: Flowchart of MBFLO3 overlaid grid routines.
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The second set of overlaid-grid routines is responsible for interpolating the overlaid-grid

points defined in the first set of routines from the underlying blocks during each time-step.

An outline of the routines used in the MBFLO3 time-marching solver, including this second

set of interpolating routines, is given in figure 3.15. There are four overlaid-grid interpolation

routines shown in dashed lines. The first routine, overlayintu, shown near the top of the

time-marching solver loop uses the overlay routine data structure to interpolate properties

at the boundaries/ghost nodes of any FLUID overlaid-grid block. If the underlying block is

also FLUID, then all primary variables are interpolated to the boundary and ghost nodes of

the overlaid-grid block. If the underlying block is SOLID, then only the temperature of the

SOLID block is interpolated. The second routine of the interpolation set is the overlayintdut

routine which is performed just prior to updating all primary variables. In the overlayindut

routine, the primary variables are interpolated from the underlying overlaid-grid blocks again

at the overlaid-grid boundaries and ghost nodes determined from the overlay routine and

the time-rate changes in the primary variables are computed in preparation for updating.

Again, if the underlying block is also FLUID, then the time-rate changes of all primary

variables are computed. If the underlying block is SOLID, then a heat flux balance between

the overlaid-grid FLUID block and the underlying SOLID block is performed. The third

routine of the interpolation set, overlayints, interpolates the temperature from overlaid-grid

FLUID blocks to underlying SOLID blocks. As a result, the temperature of the SOLID block

where an overlaid-grid FLUID block exists, is replaced by the FLUID temperature. This

treatment corresponds to a temperature feedback to the SOLID block. A similar feedback

of fluid primary variables to underlying FLUID blocks is performed by the fourth routine of

the interpolation set. In this routine, overlayintf, all primary variables of the overlaid-grid

FLUID block to any underlying FLUID block to make the fluid primary variables consistent
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between the overlaid-grid block and underlying block.

3.2 Parallel Computing

MBFLO3 is an in-house monolithic, fully coupled, finite volume based, fluid-thermal-structure

interaction code. It is written almost entirely in FORTRAN90 and has massively parallel

capabilities using Message Passing Interface (MPI), OpenMP, and OpenACC, and is spe-

cialized for turbomachinery. MBFLO3 was originally created by Bozinoski and Davis [3] [2].

Various improvements have been made by many contributors including Bates [1], Gottlieb

[9] and Lee [42].

3.2.1 Multi-Block Computational Grid Generation

The computational grids for all cases discussed in the results section are generated using

case specific utilities, except for the film cooled vane case which uses an advanced in-house

automated grid generator named Stage3 [11]. Each computational grid created separates the

fluid and solid domains into hexahedral, point-matched computational blocks to improve the

speed of computation. Computational blocks can be assigned to any number of processors

provided that the number of processors is less than or equal to the number of blocks. If

adjacent computational blocks are on different processors the primary variable information is

communicated using Message Passing Interface (MPI). Many more details on the generation

of each grid will be discussed in chapter 4.
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3.2.2 Multi-Block Data Structure

MBFLO3 has been developed to support massively parallel processing. The computational

grid is read by the in-house solver and load balanced among available processors. If there

are more computational blocks in the grid than available processors, then multiple com-

putational blocks will exist on some processors and a load balancing of the processors is

conducted. The load balancing approach aims to load each processor with computational

blocks (with associated weights) to achieve a uniform weight distribution across all proces-

sors. A computational block’s weight is determined by the number of points in the block,

number of points along the faces of the block, and the number of equations solved within

the block.

Consider the ideal case, where each processor has only one computational block. Figure

3.16 shows an example domain decomposition of a simple circular domain, where block

numbers are in red and NESW refers to the cardinal directions North, East, South and

West. Notice that each block has a North, East, South and West face and each face can

be discritized into any number of sub-faces, provided each sub-face contains at least one

node. This is best demonstrated in figure 3.16 northern boundary of block 1, where two

northern sub-faces are defined and communicate with separate computational blocks. It

also becomes clear that the node situated at each corner of block 1 belongs to three blocks.

Changes in primary variables at the corner node will depend on the surrounding nodes of each

computational block. Ideally, each computational block will have its own assigned processor

so it will be necessary to communicate quantities of interest between all three blocks using

Message Passing Interface (MPI). The type of data sent between adjacent computational

blocks depends on the boundary condition types assigned to a block sub-face.
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Figure 3.16: Multi-block domain decomposition.

The communication between computational blocks is defined in the connectivity file, desig-

nated as the connectivity file. This file is created manually for all cases except for the film

cooled vane case because it is an output of the automated grid generator, Stage3 [11]. The

connectivity file is fundamentally important to any computation as MBFLO3 has few logic

checks to ensure communication between computational blocks happens only at neighboring

boundaries.

3.2.3 Overlaid Grids

Overlaid grids occur when two or more grids occupy the same physical space, and are particu-

larly useful in multi-block simulations. Overlaid grids are implemented in MBFLO3 as ghost

nodes for adjacent point-matched computational blocks to communicate arrays across inter-

block boundaries, for sliding grids in turbomachinery, and as Chimera over-set/embedded

grids used for the modeling of film cooling holes.
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Figure 3.17: Three computational block illustration.

Ghost nodes are used to store and pass information across adjacent point-matched inter-block

boundaries. The physical boundary of a computational block is extended into neighboring

blocks by adding the first two interior nodes of the neighboring block to the arrays of the

current block. This process is demonstrated using a simple three block case shown in figure

3.17, where the dashed boundaries indicate the ghost node boundaries of each block. Figure

3.18 demonstrates the communication overlap of each block. The shared nodes are used

to exchange boundary condition information and conserved quantities across inter-block

boundaries. All shared nodes will communicate with one another using MPI.

Most turbomachinery computational grids for unsteady simulations consist of rotating (blade)

and non-rotating (stator/vane) grids. This complicates the analysis of turbomachinery be-

cause the interface between the rotating and non-rotating grids, known as the inter-blade-row

boundary, must allow the passage of information upstream and downstream of the boundary.

At the inter-blade row boundary the upstream and downstream computational blocks will

each create two ghost nodes via linear extrapolation in the axial direction into the neighboro-
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Figure 3.18: Three computational block illustration with nodes shown.
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Figure 3.19: Overlaid grid points between blade row boundaries, adapted from Lee [42]

ing block. This process is illustrated in figure 3.19, which is a side view of an inter-blade-row

boundary. The red points represent overlaid points that belong to the upstream non-rotating

grid, and the purple points represent the overlaid points that belong to the rotating grid.

Many more details regarding the implementation of sliding grid can be found in Lee [42].

Overlaid grids are also used to model film cooling holes/tubes in stator and rotor blades of

turbines. The cooling tubes, like all other overlaid blocks in MBFLO3, will generate two

additional grid points radially and axially along the tube. As a result, cooling tube blocks are

overlaid onto both fluid and solid blocks. The cooling-tube blocks are a unique application

of overlaid grids, because the primary variables and their time rate changes at all points

along the edges are interpolated from the underlying fluid and solid blocks as boundary

conditions. Additionally, film cooling blocks usually have a greater grid density than the

underlying blocks. As such, the flow solutions inside these blocks are considered to be

superior to the solutions of the underlying blocks which contain the cooling-tube blocks. So,

the film cooling blocks can be considered as embedded blocks. Many more details regarding

the implementation of overset grids to model film cooling holes will be discussed in 3.1.7.
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3.2.4 Parallel Processing of Blocks

In MBFLO3, computational blocks are distributed to load-balance the processors based on

“weights” that are a function of each block’s total number of points, the block number

of points on the faces, and the number of equations to be solved in the block (five flow

equations, two flow turbulence equations, three structural momentum equations, and one

solid heat conduction equation). The FLUID and SOLID computational blocks generated

by STAGE3 are stored in a specific order for the purpose of simplifying post-processing. In

MBFLO3 after the blocks are distributed to the processors, FLUID and/or SOLID blocks

can exist on any given processor. Restart files are generated periodically during the iteration

process and at the end of each simulation run. The restart files are generated such that blocks

are listed in the original block order as the grid and connectivity files to once again simplify

post-processing.

Distributed parallel processing occurs using non-blocking, immediate sends and receives in

the Message Passing Interface (MPI) software package. Data at points that lie along a sub-

face (or ghost nodes) of a given face of a block exchange information with its neighbor blocks

appropriate sub-face/face. All communications between processors occur simultaneously

and require a unique communication TAG. The unique tags are dependent on the 1) block

number, 2) neighbor block number, 3) face number, 4) neighbor face number, and 5) number

of points on the face. Messages do not occur in any particular fixed specific order making

TAG creation somewhat difficult. In MBFLO3, generation of the TAG for each message is

constructed using combinatorial mathematics that states that a combination of 5 positive,

non-zero numbers, A-E, will be unique if A + B ∗ N + C ∗ M + D ∗ O + E ∗ P is unique.

For this to happen, N = max(A), M = max(A) + max(A) ∗ max(B), O = max(A) +

max(A)∗max(B)+(max(A)+max(A)∗max(B))∗max(C) and so on. With this approach,
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unique TAGs can be generated but unfortunately may be larger than the maximum TAG

value allowed by the computer’s MPI library. This is remedied by recognizing that the list of

TAGs can be renumbered by sorting the TAG list from minimum to maximum and creating

a modified TAG list that ranges from 1 to the number of messages. This creation of the

TAG list occurs once for each simulation run during the pre-processing step in MBFLO3.
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Chapter 4

Results

This chapter will discuss the simulations used to verify and validate portions of the newly

developed algorithms. The capabilities added to MBFLO3 can be categorized into four major

development projects: the creation of a finite volume based structural solver, the creation of

a monolithic FSI method, enhancing the capabilities and order of accuracy of the conjugate

heat transfer solver, and the creation of overlaid/over-set grid techniques for the modeling

of film cooling holes. The verification of each development effort will be discussed at length

in the following sections. The validation of the conjugate heat transfer solver improvements

and overlaid/over-set grid techniques is also discussed.

High performance computing clusters, including the University of California, Davis HPC1

Intel cluster and various government clusters including Centennial SGI cluster at the Army

Research Laboratory, Mustang SGI cluster at the Air Force Research Laboratory, and Onyx

Cray cluster at the Army Engineering Research and Development Center were used during

the development, verification and validation of MBFLO3.
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4.1 Structural Solver Verification

Two test cases have been chosen to demonstrate the capability of the proposed structural

solver. The first is a flexible cantilever beam subject to a gravitational load. This three-

dimensional test case is inspired by a two-dimensional test case proposed by Turek and

Hron[63], also simulated by Zorn and Davis[72]. The purpose of the first test case is to

verify the implementation of the three-dimensional structural solver against literature and

theoretical results. The second test case is a highly flexible square cantilever plate subject

to a gravitational load. The purpose of this test case is to verify the stability and accuracy

of the structural solver with a test case that has arbitrarily large strains. This test case is

verified with commercially available software.

4.1.1 Cantilever Beam

The simulation parameters for a cantilever beam vibrating due to a gravitational load can

be found in table 4.1. The computational grid used for this study is shown in figure 4.1a.

The left side of the domain is fixed, while all other faces have a reflective boundary condition

applied where time-rate changes in nodal acceleration are doubled to prevent span wise vari-

ations in nodal displacement and velocity. This boundary condition application enables the

comparison of the three-dimensional solver with the two-dimensional results[72],[63]. Zorn

and Davis[72] solved the two-dimensional structural momentum equations using a control-

volume approach that is described in this work. Turek and Hron[63] employed the finite

element method to solve the two-dimensional structural momentum equations.

The displacement history of point A in figure 4.1a is tracked throughout the simulation.

Uniform, multi-block, hexahedral, structured girds are generated using a simple utility de-
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Table 4.1: Simulation parameters for cantilever beam case.

Physical Property Value

Density (kg/m3) 1000

Young’s Modulus(MPa) 1.4

Poisson Ratio 0.4

Gravitational Acceleration (m/s2) 2.0

Beam Length (m) 0.35

Beam Height (m) 0.02

Beam Width (m) 0.03

(a) Computational grid for the beam case; point
A is used to track the displacement and velocity
of the beam throughout the simulation.

(b) Beam grid at maximum deflection.

veloped for this effort. The beam grid shown in figure 4.1a has 1512 grid points and has

been decomposed into 4 computational blocks to allow for parallel computing using multiple

CPUs. The displacement time histories of the current study, using a time step of 5×10−6(s),

is compared with the time histories reported by Zorn and Davis[72] and Turek and Hron[72]

in figure 4.2. The maximum X and Y deformation of point A is 0.0381m and 0.142m respec-

tively. Zorn and Davis[72] reported maximum displacement of 0.022m and 0.120m, while

Turek and Hron[63] reported 0.029m and 0.130m. The discrepancy between maximum re-

ported displacements by Zorn and Davis[72], Turek and Hron[63] and the current study is

caused by the three-dimensional effects of the strain equations.
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Figure 4.2: 3D Cantilever beam case displacement time histories compared with 2D studies
[63],[72].
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Figure 4.3: Discrete Fourier Transform (DFT) of beam tip Y displacement data.

For further solution verification, displacement time history of point A is compared with

the theoretical natural frequency of a cantilever beam subject to a body force, described in

equation 4.1[57]; where fn is the natural frequency of the current mode, Kn is the vibration

constant where n refers to the mode of vibration (K1 = 3.52, K2 = 22.0, K3 = 61.7), I is

the area moment of inertia and w is the force per unit length applied to the beam. The first

three theoretical modal frequencies are 0.988Hz, 6.173Hz, and 17.31Hz. Equation 4.1 is useful

to compare the two-dimensional and three-dimensional simulations because the theoretical

beam frequency is independent of the depth of the beam, as long as the beam aspect ratio is 8

or greater[57]. The modal frequencies of the current simulation are determined by conducting

a Discrete Fourier Transform (DFT) on the Y displacement history of the tracked point. The

results of this operation are compared with theory and results reported by Zorn and Davis
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Table 4.2: Comparison of theoretical modal beam frequencies and those predicted by current
study, Zorn and Davis[72] and Turek and Hron[63].

Theory Current Study Zorn and Davis[72] Turek and Hron [63]
Mode Frequency (Hz) Frequency (Hz) % Error Frequency (Hz) % Error Frequency (Hz) % Error
1 0.989 1.00 1.25 1.05 6.31 1.10 11.37
2 6.17 6.10 1.18 No data No data
3 17.31 16.50 4.69 No data No data

[72] and Turek and Hron[63] are summarized in table 4.2. The method for solving the

structural equations presented in this work predict the first three modes of vibration more

accurately than the structural solvers presented Zorn and Davis[72] and Turek and Hron[72].

fn =
Kn

2π

√
EIg

wl4
(4.1)

A grid and temporal convergence study has been conducted to establish solution indepen-

dence. Three grids have been created for this study; grid 1 has 1512 grid points-shown in

figure 4.1a- grid 2 and 3 have 2376 and 2772 grid points respectively. Each grid has been run

with three global time steps, 10−5(s), 5× 10−6(s), and 10−6(s). A DFT has been conducted

on the Y displacement history data on all of the aforementioned cases and the results are

shown in figure 4.3. A grid and time step is considered to be accurate if the calculated

modal frequency for the first mode is within ±5% of the theoretical value. All grids meet

this criteria for time steps 5× 10−6(s), and 10−6(s). However, only grid 1 meets this criteria

for the 10−5(s) time step size.

Results of the grid and temporal convergence study are also used to verify that the presented

solution method is at least second order accurate. The order of accuracy of a numerical

scheme[7] can be determined though the use of equation 4.2; where E is the percent error, C
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Table 4.3: Global time step 5× 10−6(s) simulation results; used to determine the presented
method’s order of accuracy.

Grid Cell Volume (m3) 1st Mode Freq. (Hz) % error
1 1.906× 10−7 0.9995 1.197
2 1.158× 10−7 0.998 1.045
3 9.880× 10−8 0.997 0.944

is some constant, and P is the formal spatial order of accuracy of a numerical scheme, and

∆x is the cell volume. The constant C is only important in determining the absolute level of

errors in the order of accuracy. By taking the natural logarithm of equation 4.2, the formal

order of accuracy can be determined from a series of solutions with increasingly refined grids

using equation 4.3, where P is the slope of ln(E) vs. ln(∆x).

E = C∆xP (4.2)

ln(E) = Pln(∆x) + ln(C) (4.3)

The first mode frequencies predicted by each grid with time step 5 × 10−6(s) can be used

to determine the computational error. The order of accuracy of this method is found by

plotting ln(E) vs. ln(∆x) using the data from table 4.3 and calculating the line of best fit

through the data points. With the limited number of grid refinements used in the current

investigation, the spatial order of accuracy of this method is found to be 2.816.

To demonstrate benefits of developing a massively parallel structural solver algorithm, a

computational speed test has been conducted. The four block computational grid shown

figure 4.1a is simulated for 1,000 iterations with four blocks on one processor (serial), and

with one block per processor (parallel). The serial case and parallel case had average run
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times of 352(s) and 160(s) respectively. Parallel efficiency of the algorithm can be calculated

using η = tserial
n∗tparallel

; where n is the number of processors. The resulting parallel efficiency for

this case is 55%.

To demonstrate the simulation speed increase using the dual time stepping method presented

in equation 3.15, consider grid 1 shown in figure 4.1a. The minimum time step for this grid

is 8.05× 10−8(s), using equation 3.17, while an accurate solution has been obtained for this

gird with a global time step of 10−5(s) with 100 inner iterations. In this instance, the dual

time stepping method can deliver speed increases around 24%.

Comparison Solid Smoothing Techniques

Several solid domain smoothing techniques have been developed for this work all with the

intention of minimize the formation of hourglass modes. The implementation of these solid

domain smoothing methods are discussed in subsection 3.1.3. This section discussed the

development of four smoothing techniques: hourglass stiffening, hourglass smoothing, 2nd

difference smoothing, and 4th difference smoothing. Hourglass stiffening is applied to all

nodes in the solid domain, while the 2nd and 4th smoothing is applied only to solid surfaces.

To verify the implementation of the newly developed 2nd and 4th difference smoothing algo-

rithms, the beam case grid 1 is run with a time step of 10−5(s) under a gravitational load of

2m/s2. This grid and time step previously demonstrated grid and time step independence

as discussed in 4.1.1 and [23]. This simulation is run for 4(s) of physical time with an hour-

glass coefficient, Qhg, of 0.05. The displacement history of the tip of the beam is tracked

throughout the simulation. Displacement histories for select cases considered are shown in

figure 4.4.
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Figure 4.4: Displacement history of beam tip with various smoothing techniques applied.

The modal frequencies of the second difference displacement and velocity based smoothing

are determined by conducting a Discrete Fourier Transform (DFT) on the Y displacement
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history of the tracked point. The first three modal frequencies are again compared with

theoretical frequencies calculated using equation 4.1 in figure 4.5.
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Figure 4.5: Discrete Fourier Transform of displacement time history for 2nd difference cases.

The results of this simulation suggest that 2nd difference smoothing may be used in conjunc-

tion with hourglass stiffening without impacting the stability of the simulation. 2nd difference

displacement-based smoothing is less dissipative than the velocity-based smoothing and may

be a more suitable method. Additionally, the time frequency of vibration and displacement

magnitudes were not highly impacted by the 2nd difference displacement smoothing. 4th dif-

ference displacement and velocity based smoothing both diverge with the numerous tested

values of ϵ, and therefore are not considered viable methods of smoothing for this application.
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4.1.2 Cantilever Plate

To further demonstrate the capabilities of this structural solver, a three-dimensional highly

flexible plate case is considered. The goal of this case is to demonstrate the versatility of

the structural solver, by capturing multiple modes of a highly flexible plate in free vibration.

Simulation parameters are identical to those used by the beam case, listed in table 4.1,

except the plate width is 0.35m, and the plate thickness is 0.01m. The plate is subject to a

2m/s2 gravitational downward vertical acceleration. A fixed boundary condition is applied

to the left side of the domain and all other faces are free. The displacement of three points-

A, B and C in figure 4.6- on the plate tip are tracked throughout the simulation. Uniform,

multi-block, hexahedral, structured girds are generated using a simple utility developed for

this effort. The plate grid 1 has 3969 grid points, decomposed into a maximum of seven

computational blocks. The plate experiences a maximum x and y displacement of 0.297m

and 0.303m respectively. Figure 4.7 shows the plate grid 1 at maximum deflection.

A time history plot for the plate grid with a global time step of 2.5 × 10−6(s) is shown

in figure 4.8 a) and d). Figures 4.8 b), c), e), and f) show detail views of the maxima

and minima of displacement history for the first deformation cycle to demonstrate how the

displacement varies across the span of the plate.

To verify the plate simulations, a modal model of the plate was created in the commercial

code ANSYS DiscoveryAIM. To establish solution independence, two meshes were created

using eight node hexahedral elements. The first mesh had 450 nodes, the second mesh had

1152 nodes. A fixed boundary condition was applied to the left face of the plate, all other

faces are free. The first three modes calculated with ANSYS for each mesh are 0.526Hz,

1.230Hz, 3.179Hz and 0.525Hz, 1.224Hz, 3.15Hz respectively. The modal frequencies
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Figure 4.6: Plate computational grid, 3969 grid points. Points A, B, and C are tracked
throughout the simulation.

calculated by ANSYS on the second mesh have been used to verify the frequency response of

the plate calculated by the current method. The frequency response of the MBFLO3 plate

simulation is determined by conducting a DFT on the displacement time history of point A.

Table 4.4 compares the results of the plate simulation with 3969 grid points and a time step

of 2.5 × 10−6(s) with the 1152 node ANSYS mesh. There is very good agreement between

ANSYS and the in-house code presented for the first two modes. The third mode predicted

using the current method is 1.71Hz and does not agree with ANSYS predictions. Sampling

additional nodes may provide a better agreement with ANSYS third mode prediction.

To establish solution independence, a grid and temporal convergence study was conducted

on the plate. The first plate grid was run at an additional global time step of 10−6(s), and

a second grid with 8624 points was created and run at both time steps. A DFT was then
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Figure 4.7: Plate grid 1 at maximum deflection.

conducted on the displacement history of point A for each grid. All simulations were run

for 7(s) of physical time, which allows the plate to complete three and a half deformation

cycles. The results of this grid study are shown in figure 4.9. The first mode frequencies

predicted by both meshes and time steps are within±5% of each other, and demonstrate good

agreement with ANSYS frequency predictions satisfying the grid and temporal convergence

requirements.
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Figure 4.8: Plate simulation displacement history of point A, B, and C for grid 1 ∆t =
2.5× 10−6 (s).

To demonstrate the benefits of massively parallel computing, a computational speed test

for the cantilever plate case has also been conducted. Plate grid 1, shown in figure 4.6, is

decomposed into seven equally sized computational blocks. Then, a simulation is conducted

for 1,000 iterations serially (with seven blocks on one processor) and in parallel (with one

block per processor). The serial case and parallel case had average run times of 1,222(s) and

221(s) respectively. The resulting parallel efficiency is 79%. This parallel efficiency value

is 24% larger than that reported in the beam case because the computational size (overall

number of grid points as well as the ratio of block grid points to block face grid points) of

the plate case lends itself to parallelism. The number of points per processor for the parallel
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Table 4.4: Comparison plate modal frequencies predicted by current study and ANSYS-
DiscoveryAIM.

ANSYS-DiscoveryAIM Current Study

Mode Frequency (Hz) Frequency (Hz) % difference
1 0.525 0.571 8.1
2 1.224 1.286 4.8

100 101

Frequency (Hz)

10-5

10-4

10-3

10-2

10-1

100

d/
d

m
ax

ANSYS Mode 1
ANSYS Mode 2
Grid 1, t=2.5e-6
Grid 1, t=1e-6
Grid 2, t=2.5e-6
Grid 2, t=1e-6

Figure 4.9: Discrete Fourier Transform (DFT) of plate Y displacement time histories of point
A.

beam case is 432, while the plate case has 567 points per processor.

4.2 Fluid Structure Interaction

A common fluid structure interaction test case is considered to verify the monolithic fluid-

structure interaction code developed for this effort. The Cylinder-Flag test case proposed
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by Turek and Hron [63] is a common test case used to verify FSI solvers [72], [27].

4.2.1 Cylinder Flag

The cylinder flag test case has been to used verify the implementation of the fluid-structure

interaction solver because it is a benchmark test case used for this purpose. Turek and Hron

[63] used a monolithic finite element based approach with an incompressible flow solution

procedure. Zorn and Davis [72] used Turek and Hron’s [63] cylinder-flag geometry to verify a

two-dimensional, monolithic, fully coupled, fluid-structure interaction solver technique with

a compressible finite-volume flow solver. The structural response of the deformable flag in

this work is compared with structural results presented by Turek and Hron’s [63] and Zorn

and Davis’ [72] predictions to verify the newly developed three-dimensional FSI method.

4.2.2 Grid generation

The computational grids used for the cylinder-flag test case are generated using a utility

created for this effort. The basic dimensions of the domains are set by Turek and Hron [63],

shown in figure 4.10. The computational domain has a longer total domain length at 3.5m,

instead of 2.5m suggested by Turek and Hron [63]. The longer domain was found to be

necessary to reduce the effect of pressure wave propagation originating from the outlet by

Zorn and Davis [72] who used a similar computational method to the present work. Two

different multi-block point matched computational grids with 26 computational blocks are

used in this analysis to determine the effects of grid density. Grid 1 has 179,000 grid points

and grid 2 has 103,000 grid points. Every-other grid point of grid 1 is shown in figure 4.11.
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Figure 4.10: Cylinder-flag computational domain dimensions

Initial Conditions and Boundary Conditions

A slighty modified version of the parabolic velocity profile is prescribed at the left channel

inflow, subject to equation 4.4, per Turek and Hron [63], where H is the total domain

height y is the vertical coordinate, and M is the average inlet Mach number. MBFLO3 is a

compressible flow solver, unlike the finite element incompressible flow solver used by Turek

and Hron [63], therefore the velocity profile is input as a function of Mach number. An

average inlet Mach number of 0.1 is chosen to minimize the effects of compressibility. The

inlet total temperature is chosen to match the Reynolds number and Strohaul number used

in Turek and Hron [63]. The inlet static temperature is calculated by solving equations 4.5,

4.6 and 4.7 simultaneously.

M(y) = 1.5M
y(H − y)

(H
y
)2

(4.4)

St =
Dω

U
(4.5)

Re =
ρDU

µ
(4.6)
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U = M
√

γRT (4.7)

To maintain dynamic similarity with Turek and Hron [63], the ratio of fluid density to solid

density must be 10.0, which presents a minor difficulty for the compressible flow solver. A

fluid density of 1kg/m3 is chosen resulting in static and total temperatures that are near

absolute zero.

Reynolds Number 100
Strohaul Number 0.2
Vortex shedding frequency, ω 1.9 Hz
Average inlet Mach number,M 0.1
Average inlet velocity, U 1.0 m/s
Average inlet total temperature, Tt 0.250K
Average inlet total pressure, Pt 71.7 Pa
Fluid density, ρf 1 kg/m3

Solid density, ρs 10 kg/m3

Non-dimensional Young’s Modulus, E
ρfU2 1400

Poisson’s Ratio, ν 0.4

Table 4.5: Cylinder-flag simulation initial values

No slip boundary conditions are specified at the top and bottom surfaces of the channel

and all solid surfaces. Front and back faces of the domain are inviscid. The inlet boundary

condition holds specified Mach number, pressure and temperature profiles and the outlet uses

linearized flow theory. All fluid computational blocks which have a sub-face that contacts the

deformable flag will pass pressure and shear stress as loading conditions every inner iteration

per equation 3.44.

A color coded cylinder flag grid is shown in figure 4.11 to demonstrate which computational

blocks are allowed to deform. Cyan blocks are deformable fluid blocks, the green block is

the deformable flag, and all other blocks are stationary. Fluid blocks which have no adjacent
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boundary to the flag are allowed to deform to enhance the Poisson smoothing method’s the

ability to maintain inter-block grid orthogonality.

Figure 4.11: Color coded cylinder-flag computational grid, every other point shown; de-
formable fluid blocks are cyan, fixed fluid blocks are dark blue, rigid cylinder blocks are red,
deformable solid flag is green.

Results

The cylinder flag fluid only simulation was run for 1.75 seconds of physical time to allow

for a vortex street behind the cylinder to be established. Then the flag was deformed with

an initial x and y tip displacement of −0.008m and −0.06m. The fluid simulation was then

run for 2 seconds of physical time to to allow the fluid flow time to respond to the deflected

flag, then FSI simulations began. FSI simulations start with 2nd difference velocity based

smoothing in conjunction with hourglass smoothing for the first cycle to prevent solid domain

hourglassing. 2nd difference smoothing is initially necessary since there is no time history

of nodal velocities or displacements at the start of an FSI simulation with a pre-deformed

grid. The lack of time history data causes spurious errors in the dual time-stepping method.

After the first cycle, the 2nd difference smoothing parameter, ϵ, is gradually reduced from its

initial value of 0.005 to 0.0. Hourglass smoothing is continuously applied with a smoothing

parameter Qhg set to 0.15.
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The displacement and velocity of the flag tip, at point A shown in figure 4.10 is tracked

throughout the simulation. Displacement time histories of x and y displacement are plotted

in figure 4.12 and the grid is shown in figure 4.11 with a time step of 0.0001(s). The current

study’s time history is also compared with the tip y displacement history reported by Turek

and Hron [63] and Zorn and Davis [72]. The displacement history predicted in the current

study demonstrates fair agreement with the literature.

Figure 4.13 and 4.14 shows the Mach number contours at the maximum positive displacement

and maximum negative displacement of the flag respectively. In these figures, the capability

of the fluid-structure interaction solver to simulate large deformations while maintaining

numerical stability is demonstrated.

To gain insight into how effective the implemented mesh deformation techniques are consider

figure 4.15, which is a closeup of the deformed grid from figure 4.13. Despite the extreme

displacement, the mesh quality remains acceptable. The mesh quality could be further

improved, at the expense of computational time, if additional Poisson smoothing iterations

were used.

A grid and temporal convergence study has been conducted to establish solution indepen-

dence. Grid 2 has run with three global time-steps, 5× 10−4, 1.25× 10−4, and 1× 10−4 and

grid 1 ran with two global time steps 5× 10−4, 1.25× 10−4. All grids and time steps are run

for a minimum of 10 deformation cycles. A Discrete Fourier Transform (DFT) is performed

on the displacement history data for each grid and step, the result is shown in figure 4.16.

All time steps and grids shown in figure 4.16 are self similar, with first and second mode

frequency of 1.73Hz, and 10.5Hz. The results also demonstrate good agreement with fre-

quencies predicted by Turek and Hron [63], and Zorn and Davis [72], who predicted a first
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Figure 4.12: Cylinder-flag displacement history comparison with Zorn and Davis [72] and
Turek and Hron [63]
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Figure 4.13: Cylinder-flag Mach number contours at maximum displacement.

Figure 4.14: Cylinder-flag Mach number contours at minimum displacement.

Figure 4.15: Cylinder-flag grid close up at maximum positive displacement.
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mode frequency of 2.0Hz and 1.7Hz respectively.

The FSI method presented in this work demonstrates self similarity with the grid and tempo-

ral convergence study. The displacement history frequency is verified with numerical results

presented by Turek and Hron [63] and Zorn and Davis [72].

4.3 Heat Transfer Boundary Condition Verification

Two major modifications were made to the heat transfer solver to support this effort, in-

creasing the order of accuracy and enabling solid block-solid block heat transfer. Two simple

test cases, turbulent flow over a hot flat plate and a simple two block heat conduction case

are considered to verify the implementation of these improvements.

4.3.1 Turbulent Flat Plate

The second order accurate conjugate heat transfer scheme has been added to MBFLO3,

and the first order accurate scheme is still maintained. A simple turbulent flow over a hot

flat plate case, shown in figure 4.17, has been used to verify the implementation of the new

scheme.

The computational grid consists of six blocks, four of which are fluid blocks, shown in blue,

and two solid blocks, shown in gray, in figure 4.18. The grid has 436, 000 grid points and

was generated using a utility developed specifically for this effort.

The fluid has linearized inflow and outflow boundary conditions, with inviscid walls every-

where except for the solid boundaries, and an initial temperature of 530oR. The solid has

a thermal conductivity of 480 W
mK

material density of 8000 kg
m3 , specific heat of 480 J

kgK
, and a

109



10-1 100 101

Frequency (Hz)

10-5

10-4

10-3

10-2

10-1

100

d/
d

m
ax

Turek and Hron Frequency
Zorn and Davis Frequency

Grid 1, t=5x10 -4

Grid 1, t=1.25x10 -4

Grid 2, t=5x10 -4

Grid 2, t=1.25x10 -4

Grid 2, t=1x10 -4

Figure 4.16: DFT of cylinder-flag y displacement history.
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Figure 4.17: Turbulent flat plate case domain and initial values.

constant temperature of 580oR applied to all faces which are not in contact with the fluid.

A conjugate boundary condition is applied at the fluid-solid interface. The mesh near the

flat plate is highly refined, and has a y+ value of less than 2.0 along the solid boundaries.

Figure 4.18: Turbulent flat plate grid used for conjugate heat transfer second order improve-
ments
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A steady simulation of the turbulent flat plate was run with both the first order and second

order accurate conjugate heat transfer schemes. The first order accurate scheme has been

previously verified and validated by Lee [42] and Bates [1]. Simulation results from the first

order scheme were to verify the implementation of the second order accurate scheme. A

comparison of the Temperature profiles near the leading edge of the flat plate, x = 4.2505ft,

at 0.5s physical time, and 85s physical time are shown in figure 4.19. The temperature

profiles at 0.5s physical time are identical, which is expected with this simple case. As the

solution reaches convergence at 80s, the temperature profiles differ in the fluid and solid.

The steep temperature gradient near y = 0.1ft in figure 4.19 is the fluid-solid interface, and

is expected; only the boundary layer region of the fluid is expected to have a significant

temperature gradient. Figure 4.20 shows the temperature profile in the boundary layer. The

temperature profiles at 0.5s are identical which indicates that the second order accurate

scheme has been implemented correctly. At 85s the temperature profiles differ by about

4oR, which may be significant depending on the application.

4.3.2 Solid-Solid Heat Transfer

The addition of solid-solid heat transfer capabilities are verified using a simple two block

case. The heat conduction improvements are necessary to capture the heat transfer between

the thermal barrier coating and the metal turbine blade for the turbine vane case. This

case is discussed in detail in section 4.5. The addition of conduction heat transfer required

changes to message passing routines to enable solid-solid heat transfer.

The implementation of the solid-solid heat conduction case is verified using a two block solid

configuration, shown in figure 4.21. The computational domain is 1ft tall by 1ft deep, and

2ft wide. The grid has two blocks and 2000 nodes. The left and right solid blocks have an
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Figure 4.19: Temperature profile comparison near the leading edge of the plate.

initial temperature of 580oR and 530oR respectively. The leftmost and rightmost boundaries

are held at 580oR and 530oR respectively. The solid blocks have a thermal conductivity of

480 W
mK

material density of 8000 kg
m3 , and specific heat of 480 J

kgK
.

The steady simulation is allowed to run until the temperature field converges. The result

shown in figure 4.21 matches expectations of a linear temperature distribution through the

two blocks, q = − kA
∆x

(T2 − T1) [29].
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Figure 4.20: Temperature profile comparison in the boundary layer near the leading edge.

Figure 4.21: two block conduction case, a) initial temperature distribution b) final temper-
ature distribution
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4.4 Overlaid Grid Algorithm Verification

Verification of the previously described MBFLO3 overlaid-grid routines, overlayp, over-

layintup, overlayintdup, overlaysp, overlayinttp, overlayfp, and overlayintfp used for cool-

ing/blowing holes has been performed using a simple four-block conjugate converging-diverging

channel. The configuration and grid, shown in figure 4.22, has been used to verify conjugate

heat transfer with overlaid grids. The domain consists of three point-matched cubes (blue

and green blocks are fluid with black solid block) have unit lengths and one overlaid grid

(red, used to pass fluid from the upstream fluid domain (blue) to the downstream fluid do-

main (green) through the solid (black) that is two units in length. The grid has 6, 000 grid

points. The grid was generated by a utility developed specifically for this test case.

For this case, the inlet Mach number is 0.1, the inlet Reynolds number per unit length is

10, 000 1/ft, and the inlet total temperature is 530oR. The solid block (shown in black) has

a fixed temperature of 580oR on its boundaries. The overlaid-grid (shown in red) essentially

“drills” a hole through the solid block. An overlaid-grid conjugate boundary condition,

that is second order accurate similar to the standard matched-point conjugate treatment, is

applied at the boundary of the overlaid grid where it is embedded in the solid block. Figure

4.23 shows the resulting temperature contours of the solid and fluid regions. Streamwise

cutting planes are shown as well as a spanwise cutting plane for the overlaid-grid block. The

spanwise cutting plane shows the heat propagating into the overlaid fluid block from the

solid block. The streamwise cutting planes show the heat propagating into the upstream

and downstream fluid blocks that are point-matched with the solid block. Figure 4.24 shows

the Mach number contours in the fluid blocks. A no-slip boundary condition is used on the

walls of all fluid blocks including the overlaid-grid block. The Mach number contours show

that the flow accelerates through the overlaid-grid block as it migrates downstream which is
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Figure 4.22: Four block conjugate test case grid (blue, green, and red fluid blocks with black
solid block).

Figure 4.23: Temperature contours in four-block conjugate test case. Heat propagates into
the upstream, downstream, and overlaid-grid blocks
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Figure 4.24: Flow Mach number contours in 4-block conjugate test case. Contours show how
flow accelerates in cooling hole (overlaid-grid) block.

expected due to the boundary layer blockage and the heat that is added to the flow.

4.5 High Pressure Film Cooled Turbine Vane with Film

Cooling Holes and Thermal Barrier Coating

The overlaid grid algorithm and improvements made to the conjugate heat transfer solver

have been validated using experimental data by Johnson et. al [35],[36], [37] and Ooten

[54]. Comparisons between the experimental data and other predictions can be found in

[54],[53],[52],[51]. This test case demonstrates the capability to model extremely complex

geometries and flow fields.
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4.5.1 Grid Generation

Grid generation for conjugate simulations of film-cooled turbines can be extremely compli-

cated due to the cooling holes. Typical modern high-pressure turbine airfoils have hundreds

of holes distributed over the airfoil and endwall surfaces to maintain metal temperature be-

low critical values. For standard convection cooling schemes, each cooling hole cuts through

an airfoil wall to allow cooling flow to pass from an airfoil internal plenum to the mainstream

flow. The intersection between the cooling hole and the airfoil internal plenum or mainstream

is extremely difficult region for grid generation with point-matched computational grids and

can result in an abundance of “stripped” clustered-grid regions in the domain that lead to

numerical instability or degradation of convergence rate. Some researchers have instead used

unstructured grids of different cell shapes to avoid topological issues related to matching grids

at the cooling-hole/plenum or cooling-hole/mainstream intersection regions. Although this

approach can provide grids that blend smoothly between the cooling-holes and plenums or

mainstream, the techniques used to generate the grids can often require significant human-

hours of labor and force the use of unstructured-grid conjugate solution procedures that

can be computationally expensive. An alternate approach to film-cooled airfoil grid gener-

ation is the utilization of overlaid-grids. As previously mentioned, this approach is utilized

in the current research. The use of overlaid-grids for this application removes the point-

matching and topological issues at the interface between the cooling-holes and the plenum

or mainstream. However, an additional cost related to communication/interaction between

the overlaid-grids in these regions is added to the solution procedure.

The computational grid used for the current investigation is generated using the STAGE3

[11] multi-block, structured-grid generation procedure. In this approach, the computational

grid is generated directly from the design-intent information tree. In some grid generation
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Table 4.6: Grid block decomposition

processes, the design-intent information is input to a computer-automated-design (CAD)

package to generate splined surfaces with the desired features. Unfortunately, once the

splined surfaces are created, the topology of the geometrical entities is often lost making

grid generation on those surfaces and the volumes within quite difficult. Surface grid cells

(usually unstructured) can be generated on those surfaces more easily but the volume grids

within the surfaces is difficult. In the STAGE3 grid generation system [11], the design-

intent information along with the known topology of each feature is transformed into a

computational grid directly. When grid blocks are not easily connected with point-matched

boundaries, overlaid-grids are used. Grid blocks are algebraically generated and smoothed

using a Poisson equation to make the grid normal to boundaries when possible. The STAGE3

system also automatically generates the block connectivity information used in the parallel

processing of blocks on multiple computer processors.

Figure 4.25 shows the computational grid for a film-cooled axial turbine vane. The compu-

tational grid for this particular example consists of 1154 blocks with 68.9 million grid points.
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Figure 4.25: Vane case computational grid outline(left) and computational grid every 4th

point shown (right).
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A fine grid is required in this particular example due to the large number of cooling holes

that blanket the airfoil surface, especially on the vane pressure surface. Stream-wise clus-

tering of the airfoil surface grid is performed in STAGE3 in the vicinity of the film-cooling

hole rows. The computational grid shown in figure 4.25 was constructed automatically in 49

minutes on a single core of the Air Force Research Laboratory (AFRL) Mustang computer.

The description of the computational grid blocks is given in table 4.6.

Advances in Model/Grid Generation

1. Cooling Plenum Walls

Walls of the internal cooling plenum are constructed based on prescribed STAGE3 inputs

of plenum wall thickness and location of inter-plenum walls as well as the airfoil surface.

Inter-plenum walls are constructed based on prescribed inter-plenum wall thickness and the

axial locations where the inter-plenum wall intersects the upper and lower airfoil surfaces.

Inter-plenum outer wall boundaries are then determined as a straight line between the upper

and lower airfoil intersection points. Once the inter-plenum outer wall boundary coordinates

are determined, each plenum then has a closed outer wall boundary. The inner plenum wall

could be determined by projecting a normal from the outer plenum wall boundary if the

wall thickness is large enough. However, problems arise in regions where the airfoil thickness

becomes small such as near the trailing edge where the inner plenum wall boundary could

overlap. This can always be avoided by sacrificing the use of boundary normals for the

plenum wall grid. Instead, the inner plenum wall coordinates can be determined by first

finding the centroid of each plenum and then projecting a line between the centroid and

each point on the plenum outer wall boundary. This step guarantees non-overlapping grids.

Next, the plenum inner wall boundary coordinates are initially determined as the location
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that is some percentage distance (example 90%) along the line between the centroid and

plenum outer wall boundary. The plenum inner wall boundary location is then corrected to

make sure the plenum wall thickness is held. The corners of the plenum inner wall boundary

between the region of the airfoil surface and the inter-plenum walls are rounded using a

spline to avoid sharp corners in the wall that could create stress or thermal concentration.

As an example, figure 4.26 shows two cooling plenums used for the film-cooled turbine vane.

2. Thermal Barrier Coating (Kapton Layer)

Thermal barrier coatings may be included in the model with a single computational O-grid

around the airfoil based on prescribed coating thickness. For the film-cooled turbine vane

example shown in figures 4.25, a thin polyimide film coating, called a Kapton layer, is used

to embed the heat flux gauges into the actual vane used in the experimental configuration

that also acts as a thermal barrier coating. Figure 4.26 also shows the computational grid

used to model this Kapton layer for the film-cooled turbine vane.

3. Cooling Holes

Cooling hole blocks consist of an O-grid block just interior to the surface of the cooling hole

and an H-grid that resides inside of the O-grid throughout the length of the cooling hole.

Cooling holes can be flared at their exit where the cooling flow enters the main passage flow.

The cooling hole geometry STAGE3 inputs specified by the designer consist of:

• Number of cooling hole rows.

• Number of cooling holes within a row.

• The side of the airfoil (lower or upper) the cooling hole row corresponds.

• The radial location where the cooling hole row responds or a set of five quadratic curve
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Figure 4.26: Cooling Plenum model/grid and thermal barier coating (Kapton) grid

coefficients that describe the radial locations of the cooling holes within a row.

• The diameter of the holes within a row.

• The absolute or relative angles to the airfoil surface of the hole. Angles are in the x, θ

frame and the θ r frame.

• The flare angle of cooling holes within a row, if desired.

Cooling holes can be flared at their exit in order to improve the film-cooling effectiveness. For

the cooling holes that are flared, the outer boundary of the cooling hole is transformed from a

circle at a location just inside of the plenum wall to some desired geometry (e.g. square, etc.)

at the cooling hole exit. The cooling hole O-grid is then transfinite interpolated between the

circular O-grid inner radial boundary to the cooling hole outer radial boundary.
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Figure 4.27: Standard and flared overlaid cooling surface grids

4. Airfoil/Endwall Fillets

Near-circular fillets of specified radius in STAGE3 can be applied at the intersection of the

airfoil and endwalls that are used in manufactured blade-rows. A circular shape is fitted in

the corner between the airfoil and endwall at each streamwise grid location. The fillet does

not affect the thickness of any thermal barrier coating that may exist but does affect the

local thickness of any plenum wall with the inner plenum wall boundary not affected. The

end-wall fillets on the vane blade is shown in figure 4.28

4.5.2 Results and Validation

To validate MBFLO3 overlaid-grid capability and validate the overall multi-blade-row, con-

jugate simulation procedure, a simulation of a high-pressure, film-cooled, transonic turbine

vane tested experimentally at the Air Force Research Laboratory is used. Transonic turbine

rig tests were conducted in the Turbine Research Facility at Wright-Patterson Air Force

Base (Dayton, Ohio) [54]. Details of the experimental data are given by Johnson et. al

[35],[36], [37] and Ooten [54]. Comparisons between the experimental data and other predic-
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Figure 4.28: Standard and flared overlaid cooling surface grids

tions can be found in [54],[53],[52],[51]. The Turbine Research Facility, TRF shown in figure

4.29, is a full-scale transient facility designed to observe a single-spool turbomachine at flow

conditions consistent with turbine environments and extract time-resolved pressures, surface

temperature, and heat flux data.

For the vane-alone experiments, the airfoil count in the experimental rig consisted of 23

first vanes, shown in figure 4.29, around the wheel. The surface temperature and heat flux

data were measured using surface mounted (embedded in the Kapton layer) thermocouples

and double-sided thin-film heat-flux gauges, respectively. A radially-centered rake of nine

pressure gauges collects the total pressures up and downstream of the turbine vane. These

rakes swept 120 degrees of the annulus throughout the duration of the experiment and

measured the total pressure at the inlet of the first vane and the total pressure at the exit of

the second vane. The pressure transducers used are Kulite transducers, model LQ-062, and
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they have uncertainty of measurements to be 0.05 percent of the full scale output, resulting

in 344.7 Pa on the first vane. The pressure data was sampled at a rate of 800 kHz. The first

vane in the transonic experimental turbine rig had airfoil surface and endwall film-cooling.

A total of 16 first vanes out of the 23 around the wheel had film-cooling with most of the

cooling holes located on the pressure surface of each airfoil, fewer on the suction surface of

each airfoil, and even fewer on the first vane hub and casing endwalls.

Figure 4.29: Experimental TRF wind tunnel.
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Figure 4.30: High Pressure Vane geometry.

Steady Turbine Vane Simulation

A steady simulation of the vane-alone configuration with grid dimensions previously de-

scribed in Table 4.6 and computational grid shown in figures 4.25-4.28 has been executed

on various high-performance computer clusters. The film-cooling holes on the airfoil sur-

face were modeled using the standard and flared overlaid-grids, as previously described,

with design-intent prescribed geometry. The film-cooling holes on the rig endwalls were not
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Inlet Pressure 451,678.3 Pa (65.51 psi)
Inlet Total Pressure 453,677.8 Pa (65.8 psi)
Average Exit Pressure 266,897.7 Pa (38.71 psi)
Upstream Cooling Plenum Inlet Total Pressure [[35],[36], [37] 460,779.4 Pa (66.83 psi)
Upstream Cooling Plenum Inlet Total Temperature [35],[36], [37] 243 K (437.4 R)
Downstream Cooling Plenum Inlet Total Pressure[35],[36], [37] 472,086.9 Pa (68.47 psi)
Downstream Cooling Plenum Inlet Total Temperature [35],[36], [37] 242 K (435.6 R)
Upstream Cooling Plenum Inlet Total Pressure [52] 472,290.9 Pa (68.5 psi)
Upstream Cooling Plenum Inlet Total Temperature [52] 241.9 K (435.4 R)
Downstream Cooling Plenum Inlet Total Pressure [52] 460,914.5 Pa (66.85 psi)
Downstream Cooling Plenum Inlet Total Temperature [52] 243.6 K (438.6 R)
Real Gas Constant for Air 286 J/(kg K) (1716.32 ft lbf/(slug R)
Airfoil Solid Thermal Conductivity 15 N/(s K) (1.8735 lbf/(s R))
Airfoil Solid Specific Heat 480 m2/(s2 K) (2870.55 ft2/(s2 R))
Airfoil Solid density 7996.54 kg/m3 (15.52 slugs/ft3)
TBC (Kapton) Solid Thermal Conductivity 0.12 N/(s K) (0.015 lbf/(s R))
TBC (Kapton) Solid Specific Heat 1090 m2/(s2 K) (6518.54 ft2/(s2 R))
TBC (Kapton) Solid density 1419.4 kg/m3 (2.7548 slugs/ft3)

Table 4.7: Aerodynamic and material conditions for the Vane simulation.

modelled in the current simulation. The inlets to the airfoil internal cooling plenums were

located at the hub for the upstream plenum and at the casing for the downstream plenum

where the flow was held normal to the boundary. The airfoil plenum H-grid lower and outer

radial boundaries were used to hold the cooling plenum inlet conditions. The aerodynamic

and material conditions used in the simulation are listed in Table 24.7. The original cooling

plenum inlet conditions given by Ooten[54]and Johnson et. al[35],[36], [37] are given along

with those determined by Ni et. al [52] based on a root cause analysis of differences between

their predictions and the experimental data. Simulations were executed for both cooling

plenum inlet condition sets.

High performance computing clusters, including the University of California, Davis HPC1

Intel cluster and various government clusters including Centennial SGI cluster at the Army

Research Laboratory, Mustang SGI cluster at the Air Force Research Laboratory, and Onyx

Cray cluster at the Army Engineering Research and Development Center were used during
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the development and validation of the current capability in MBFLO3. The number of com-

pute nodes used in the example vane-alone simulation varied between 4 (SGI) and 6 (Cray or

Intel) with the number of 132 cores on both systems. The validation simulation was executed

until the maximum residual in the flow and temperature dropped three orders in magnitude

and the airfoil surface temperature was no longer changing with iteration, which took under

105 time-steps. On the Onyx Cray cluster, each time-step took 1.28 seconds. Solution times

are expected to be reduced in the future with improvements in the multiple-grid scheme and

the use of multiple iterations in the conjugate solver for each time-step in the fluid solver.

1. Temperature and Heat Flux Results:

Pressure- and suction-side temperature contours are shown in figures 4.31 and 4.32 for both

sets of cooling plenum inlet conditions. These contours show how the film-cooling flow is

exiting the holes and affecting the surface temperature. The inlet total temperature to

the mainstream and the cooling plenums are given in Table 4.7. The cooling plenum inlet

conditions of Johnson et. al [35],[36], [37] result in a higher surface temperature on the

upstream portion of the vane due to the higher inlet total temperature and lower inlet total

pressure of the upstream cooling plenum.

Based on total mass-flow parameter, both conditions result in a lower cooling mass-flow rate

exiting the upstream cooling holes with the Johnson et. al [35],[36], [37] conditions compared

to that with the Ni et. al [52] conditions. The surface temperature on the downstream

portion of the vane is nearly the same for the two sets of cooling plenum inlet conditions.

The downstream cooling plenum inlet total temperature is nearly the same in the two sets

of conditions but the inlet total pressure of the Johnson et. al [35],[36], [37] conditions is 2%

higher than that of the Ni et. al [52] conditions which results in a slightly higher mass-flow

exiting the downstream cooling holes. The slightly lower surface temperature resulting from
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(a) Pressure side (b) Suction side

Figure 4.31: Vane surface temperature contours using cooling plenum inlet conditions from
Johnson et. al. [35],[36], [37]

(a) Pressure side
(b) Suction side

Figure 4.32: Vane surface temperature contours using cooling plenum inlet conditions from
Ni et. al. [52]
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the slightly higher mass-flow in the downstream cooling holes of the Johnson et. al [35],[36],

[37] conditions compared to that with the Ni et. al [52] conditions is offset.

Figures 4.33 and 4.34 shows pitchwise temperature contours at various spanwise locations

through both the fluid and solid domains. The figures show the film-cooling flow exiting the

holes and how much the cooling flows penetrate the mainstream flow. The cooling flows lie

along the airfoil surfaces as desired and do not separate the flow along the airfoil surfaces.

The figures also show the temperature distribution through the solids and the effect of the

fluid cooling flows. As described for figures 4.31-4.32, the pressure side temperature is higher

for the Johnson et. al [35],[36], [37] inlet cooling plenum conditions than that predicted using

the Ni et. al [52] cooling plenum inlet conditions.

Figure 4.33: Pitchwise cooling plenum temperature contours, using cooling plenum inlet
conditions from Johnson et. al [35],[36], [37]

Figures 4.35 and 4.36 shows temperature distributions at 5%, 25%, 50% and 62% span. The

results are in fair agreement with the experiment. At 5% span, the temperature is high on

the suction side (X/Bx > 0 where Bx is the axial chord) near the trailing edge which is likely
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Figure 4.34: Pitchwise cooling plenum temperature contours, using cooling plenum inlet
conditions from Ni et. al [52].

due to the lack of modeling the endwall film-cooling flow. As shown in figures 4.31-4.32, the

temperatures in the front half of the vane for the Johnson et. al [35],[36], [37] conditions are

higher than those with the Ni et. al [52] conditions. The temperatures in the aft half of the

vane are similar between the two sets of conditions due to the flow and heat transfer physics

explained for figures 4.31-4.32.

The heat flux distributions at the 5%, 25%, 50% and 62% span-wise locations are shown in

figures 4.37 and 4.38. All of the heat flux distributions are in reasonably good agreement

with the experimental data for both sets of conditions.

2. Pressure Results:

Figures 4.39-4.40 shows pressure- and suction-side contours of the pressure. The pressure

loading on the airfoil surface is somewhat two-dimensional with only minor three-dimensional

effects. The pressure loading is affected locally only slightly by the film-cooling flow. The
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Figure 4.35: Surface temperature distributions, using cooling plenum inlet conditions from
Johnson et. al [35],[36], [37].

pressure contours are nearly the same for the two sets of cooling plenum inlet conditions.

Figures 4.41-4.42 show pitch-wise contours of the static pressure at the 5%, 25%, 50%, and

62% spanwise locations. The figures show how the film-cooling flow only slightly affects the

local pressure as it exits the holes. As shown in figures 4.39 and 4.40 the pressure field does

not vary significantly spanwise. The pitch-wise contours of static pressure are very similar

between the simulations with the two sets of cooling plenum inlet conditions.

Figures 4.43 and 4.44 show the pressure distributions at 5%, 25%, 50%, and 62% span.

The loading distributions are in good agreement with the experimental data and predictions
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Figure 4.36: Surface temperature distributions, using cooling plenum inlet conditions from
Ni et. al [52].

of Ooten [54]. The predicted loadings are essentially the same for both sets of cooling

plenum inlet conditions. The predicted loadings are slightly lower than what is shown by

the experimental data. Sudden jumps in the predicted pressure are shown where the cooling

air exits into the mainstream flow.

3. Mach Number Results:

Figures 4.45 and 4.46 show pitch-wise pressure contours of Mach number. The Mach number

at the throat of the vane passage is the greatest at the lower spanwise postions. The Mach

number contours are essentially the same for both sets of cooling plenum inlet conditions.
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Figure 4.37: Surface heat flux distributions, using cooling plenum inlet conditions from
Johnson et. al [35],[36], [37].

The Mach number inside the cooling plenums varies spanwise between 0 and 0.12 in the

upstream cooling plenum and between 0 and 0.095 in the downstream cooling plenum. For

flow initialization purposes, an average cooling plenum Mach number of 0.05 would be a

reasonable value to use.

The validation results shown in figures 4.31-4.46 demonstrate the ability of the MBFLO3

solution procedure to model film-cooling flows in axial turbines and solve for the conjugate

heat transfer through the airfoil metal and thermal barrier coating (Kapton) surfaces. The

presented method of automated grid generation and conjugate heat transfer simulations with
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Figure 4.38: Surface heat flux distributions, using cooling plenum inlet conditions from Ni
et. al [52].

over-laid grids has been proven to be valid.
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(a) Pressure side (b) Suction side

Figure 4.39: Vane surface pressure contours using cooling plenum inlet conditions from
Johnson et. al. [35],[36], [37].

(a) Pressure side

(b) Suction side

Figure 4.40: Vane surface pressure contours using cooling plenum inlet conditions from Ni
et. al. [52].
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Figure 4.41: Pitchwise cooling plenum pressure contours , using cooling plenum inlet condi-
tions from Johnson et. al [35],[36], [37].

Figure 4.42: Pitchwise cooling plenum pressure contours, using cooling plenum inlet condi-
tions from Ni et. al [52].
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Figure 4.43: Surface pressure distributions, using cooling plenum inlet conditions from John-
son et. al [35],[36], [37].
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Figure 4.44: Surface pressure, using cooling plenum inlet conditions from Ni et. al [52].
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Figure 4.45: Pitchwise cooling plenum Mach number contours, using cooling plenum inlet
conditions from Johnson et. al [35],[36], [37].

Figure 4.46: Pitchwise cooling plenum Mach number contours, using cooling plenum inlet
conditions from Ni et. al [52].
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Chapter 5

Summary and Recommendations

5.1 Summary

This work details the development effort of the in-house, high-fidelity, fully coupled, fluid-

thermal-structure interaction finite volume code, MBFLO3. A three-dimensional finite vol-

ume based structural solver capable of simulating arbitrarily large strains has been integrated

into the existing fluid-thermal interaction code to develop a monolithic, fully coupled, fluid-

thermal-structure interaction technique. The structural solver presented is verified through

two test cases. The first test case is a three-dimensional cantilever beam subject to a gravi-

tational load that is verified using theory and two-dimensional simulations reported in liter-

ature. The second test case is a three-dimensional highly deformable cantilever plate subject

to a gravitational load. The results of this case are verified through a comparison with the

modal response calculated by commercially available software.

The fully coupled, monolithic, fluid-structure interaction method is capable of simulating
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large structural displacements while maintaining mesh quality through the use of a Poisson

smoothing technique. The FSI method is verified using Turek and Hron’s [63] cylinder-flag

configuration. Throughout the development process of coupling the fluid and structural

solvers, several solid domain smoothing techniques were investigated and combined to main-

tain solution integrity during fluid-structure interaction simulations.

The MBFLO3 solution procedure has been extended to handle overlaid grids and the conju-

gate heat transfer modeling of multiple solids using spatial second-order accurate treatments.

A three-dimensional, steady, conjugate simulation of a film cooled vane with thermal bar-

rier coating is compared with experimental data from a vane-alone experiment at the Air

Force Turbine Research Facility. The numerical techniques used in the conjugate solution

procedure are described and the procedure is validated against the vane-alone experimental

data.

5.2 Recommendations

The next steps in the development process of MBFLO3 are to validate the fluid-structure

interaction solver. There are several test cases that could be used for the validation effort

including Giordano [20], Yates et. al [69] and Graves [24]. Graves et. al [24] may be a partic-

ularly interesting test case because the experimental data provided details the displacement

and the first modal frequency at several locations of the MAVRIC-I wing with various wing

configurations across a range of Mach numbers and angle of attack.

Recall from chapter 1 the eventual goal of this research was to perform a fully coupled fluid-

thermal-structure interaction simulation on a 11
2
stage turbine with thermal barrier coating

and film cooling holes on the first stage. The proposed computational domain is enormous
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with over 3000 computational blocks and over 150 million grid points. Three considera-

tions must be addressed before a simulation of this magnitude can be performed. First, an

understanding of how film cooling holes will be allowed to vibrate in an FSI simulation. Sec-

ond, whether and how to consider the pressure and shear stress imparted by the fluid onto

the solid through the film cooling hole. Third, the numerical stiffness of the fully coupled,

monolithic, fluid-thermal-structure interaction method should be reduced.

During a fluid-thermal-structure interaction simulation of the 11
2
stage turbine, the structure

will displace resulting in film cooling hole displacement. Film cooling holes should be allowed

to displace along with the solid domain, but this motion would require re-interpolation of

overlaid grid points that would prove to be memory intensive and time consuming. Instead,

cells which have overlaid points (underlying cells) should displace rigidly with the solid

and film cooling hole overlaid grid to avoid re-interpolation. This method should work for

simulations with relatively small aeroelsatic displacements, which should suffice for most

film-cooled turbomachinery configurations.

It is clear that the presence of cooling holes will somewhat act as stress concentrators on the

turbine blades. Pressurized flow is being ejected from these holes which create a complex

thermal distribution throughout the blade and further loads the blade near the holes because

of the high cooling plenum pressure. There are pressure and shear stress loads acting on

the walls of the film cooling holes, on the plenum walls (the interior of the blade), and the

blade coating surface. A methodology currently exists within MBFLO3 for load transfer

between fluids and solids with point matched grids, which exist at all fluid-solid interfaces

except inside the film cooling holes. An efficient load transfer methodology between the

overlaid grids of the film cooling holes and the solid will be needed to simulate the effects of

the film cooling holes on the blades. However, the extent to which the surface pressure and
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shear loads on the film cooling hole surface within the solids will effect the forced response

of the turbine blades is not known, and may be minimal. This hypothesis could be tested

by considering the single film cooling hole and thermal barrier coating test case presented

by Jiang et. al [34]. In this simulation, a low pressure hot gas and high pressure cooler gas

flow in parallel and are separated by a metal plate with thermal barrier coating and a single

film cooling hole. After demonstrating good agreement in surface temperature predictions

with experimental results, Jiang et. al [34] predicted large thermal stresses near the film

cooling hole. A similar analysis could be conducted using MBFLO3 with and without fluid

loading on the interior of the film cooling hole. The resulting simulation predictions could

inform whether it is necessary to include fluid loading on the interior of film cooling holes,

and serve as a validation case for the fluid-thermal-structure interaction method.

The fluid-thermal-structure interaction simulation of the 11
2
stage turbine with film cooling

holes and thermal barrier coating will be computationally expensive and numerically stiff

with the current treatment of the structural solver and conjugate heat transfer solvers in

MBFLO3. The numerical stiffness is a result of the point-matched grids that must be used

to enable the fully coupled, monolithic solution method. The point-matched grids force the

solid domain to have a much finder grid than is strictly necessary to resolve the temperature

and displacement fields. The increased solid domain refinement causes a smaller local time

step for the solid domain. As discussed in chapter 3 section 3.1.2, the local time step of the

solid domain may be orders of magnitude smaller than the local time step of the fluid domain.

This requires many additional inner iterations for the structural and conjugate solvers to

obtain convergence. To improve solid domain convergence and reduce numerical stiffness, a

multiple grid scheme for the solid domain or other convergence acceleration method should

be investigated.
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