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Lee A. Lavia,1 , Daniele Micciancioc,d,1 , Vinod Vaikuntanathanc,e,1 , Ahmad Al Badawic,1 , and Shafi Goldwasserc,f,1,2
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Real-world healthcare data sharing is instrumental in constructing broader-based
and larger clinical datasets that may improve clinical decision-making research
and outcomes. Stakeholders are frequently reluctant to share their data without
guaranteed patient privacy, proper protection of their datasets, and control over the
usage of their data. Fully homomorphic encryption (FHE) is a cryptographic capability
that can address these issues by enabling computation on encrypted data without
intermediate decryptions, so the analytics results are obtained without revealing the
raw data. This work presents a toolset for collaborative privacy-preserving analysis of
oncological data using multiparty FHE. Our toolset supports survival analysis, logistic
regression training, and several common descriptive statistics. We demonstrate using
oncological datasets that the toolset achieves high accuracy and practical performance,
which scales well to larger datasets. As part of this work, we propose a cryptographic
protocol for interactive bootstrapping in multiparty FHE, which is of independent
interest. The toolset we develop is general-purpose and can be applied to other
collaborative medical and healthcare application domains.

multiparty fully homomorphic encryption | privacy-enhancing technologies | oncology |
privacy-preserving data collaboration

There is a growing recognition of the important contribution of real-world data (RWD) in
supporting healthcare decision-making in general (1, 2) and specifically in oncology (3, 4).
RWD are routinely collected from a variety of sources, such as electronic health
records; medical claims and billing data; product and disease registries; and mobile
devices (5). RWD can complement data generated from randomized control trials
(RCTs). While RCTs analyze data collected from controlled, limited, and homogenous
patient populations, RWD allow the evaluation of larger and broader-based patient
populations within the context of routine clinical practice (6). Sharing RWD between
several data owners results in a more complete dataset than that obtained from a single
data source and thus allows broader data analyses for better decision-making (7, 8).
In addition, healthcare data can be viewed as a revenue-producing asset that can be
monetized. RWD analysis can save costs to the pharmaceutical industry by improving
the identification of target populations, endpoints, and inclusion criteria, and thereby
the overall study design (9). Some of the main challenges of using RWD for healthcare
decision-making are the facts that healthcare data are fragmented and originate from
multiple sources and that stakeholders are frequently hesitant to share or integrate their
data, mainly due to trust issues (10).

Generally, patient data may be shared only if the patient’s consent had been obtained
for a given purpose or if the data are anonymized or deidentified (11). While patients
participating in RCTs can give their consent for data sharing, patients for whom RWD
are collected do not necessarily provide their consent in advance for this purpose. In such
cases, data anonymization is required; however, anonymization procedures are recognized
as being time-consuming, requiring manual intervention that can result in human error,
difficult to scale, and challenging in terms of assessing their results (12). Furthermore,
anonymization requires the removal of sufficient patient data to prevent any possible
re-deidentification, many times resulting in the impairment of scientific analysis and
utility (13). Healthcare data challenges, particularly patient privacy, data ownership, and
data fragmentation, call for a data collaboration technology that, on the one hand, allows
different parties to share their data and analytics, and, on the other hand, protects patient
privacy and data ownership.

The two common cryptographic approaches to share and analyze sensitive data
without compromising patient privacy and data ownership are secure MultiParty
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Computation (MPC) and Fully Homomorphic Encryption
(FHE).* Both allow performing computations over encrypted
data, but the underlying mechanisms are different. MPC, which
was introduced by Yao (14), uses an approach where each party
holds a secret, and they perform computations on masked data
using an interactive protocol. MPC is communication-bound
and typically based on either garbled circuits or secret-sharing
schemes (15). FHE, which was first achieved by Gentry (16),
provides a noninteractive mechanism for performing computa-
tions on encrypted data in an untrusted environment, without
ever decrypting the data or intermediate results. Only once
the final computation results are obtained, the decryption of
results may be performed by a different party that has the
underlying secret key. FHE is compute-bound and typically based
on lattice cryptography, which is resistant to attacks by quantum
computers (17, 18).

Notable recent studies on privacy-preserving analysis of
individual-level healthcare data using MPC include Cho et al.
(19) and Hie et al. (20). Cho et al. (19) report on large-scale
genome-wide analysis of genotypic and phenotypic data using
MPC. They perform a genome-wide associate study (GWAS)
by dividing data among multiple servers and computing the
GWAS via MPC among the servers. They demonstrate that their
results provide adequate accuracy, and reasonable runtime (about
37 h) can be achieved for problem sizes of 100,000 individuals
and 500,000 single nucleotide polymorphisms, enabling real-
scale privacy-preserving GWAS. Hie et al. (20) develop a
computational protocol for securely training a predictive model
of drug–target interactions on a pooled dataset using MPC. Their
protocol for neural network training runs within days on a real
dataset of more than one million interactions and is more accurate
than state-of-the-art drug–target interaction prediction methods.

FHE has also seen significant success in performing privacy-
preserving analysis for certain healthcare use cases. Note that
almost all FHE results described below are based on the Cheon-
Kim-Kim-Song (CKKS) FHE scheme (21), which is the most
efficient scheme for real-number arithmetic and many machine
learning applications (18). For instance, Blatt et al. (22) demon-
strate that FHE can perform GWAS for 100,000 individuals
and 500,000 single nucleotide polymorphisms in less than 6 h,
hence achieving a better runtime than the prior MPC approach
of Cho et al. (19) while still providing a comparable accuracy.
Kim et al. (23) were able to train a logistic regression model
using an encrypted dataset for 1,579 individuals with 18 binary
genotypes and a binary phenotype outcome (cancer/no cancer).
Using several aggressive approximations and optimized values of
tunable parameters, the authors were able to perform encrypted
logistic regression training in about 6 min on a commodity
desktop machine.

However, practical results with FHE can typically be achieved
only for relatively shallow (limited-depth) computations that
do not require bootstrapping, a special procedure that re-
freshes exhausted ciphertexts to enable more computations.
Bootstrapping is a computationally expensive and memory-
intensive procedure that needs to be invoked many times for
deep computations such as logistic regression training or deep
neural network inference. In applications with bootstrapping,
the FHE runtimes and memory consumption become much
higher. Notable recent studies implementing machine learning
capabilities using CKKS bootstrapping are Han et al. (24) and

*Our paper uses a number of specialized terms in cryptography and oncology; for
convenience, we provide a glossary of these terms in SI Appendix, Table S21.

Lee et al. (25). Han et al. (24) present a logistic regression training
capability based on FHE that can train a model with 422,108
samples over 200 features in about 17 h. Lee et al. (25) develop
a privacy-preserving CNN inference solution that can classify
with a ResNet-56 model a CIFAR-10 image in about 2 h. In
both cases, most of the computation time is spent on CKKS
bootstrapping.

To minimize the number of CKKS bootstrapping invocations
in applications of FHE, researchers often use hand-tuned low-
accuracy–low-degree approximations for nonlinear functions and
dataset-optimized parameters, e.g., learning rate, which allows to
significantly improve the efficiency of an FHE computation for
a given dataset. But as soon as the FHE solution is applied to
other datasets, the solution stops working correctly or achieving
adequate accuracy. For example, Han et al. (24) used a degree-
3 polynomial approximation of the sigmoid function obtained
using the least squares method for the range of [−8, 8]. Our
analysis of polynomial sigmoid approximations in the Nesterov
gradient descent method of logistic regression training (same
method as in ref. 24) for another large dataset shows that
a Chebyshev interpolation in the range of [−32, 32] using a
polynomial of degree of at least 32 is needed to achieve satisfactory
accuracy results (see SI Appendix for details). Generally speaking,
both the range and polynomial degree may significantly vary
from one dataset to another. If a more costly polynomial
approximation is used, the bootstrapping has to be invoked much
more frequently. For comparison, the logistic regression solution
in ref. 24 performed bootstrapping every 5 iterations whereas
ours calls bootstrapping after each iteration.

To address the FHE bootstrapping inefficiency, Froelicher
et al. (26) present an interactive computation framework based
on multiparty FHE (the algorithms were originally introduced in
ref. 27), which uses FHE for most of the computations and inter-
active techniques for bootstrapping and several other operations.
In multiparty FHE [typically referred to as threshold FHE in
cryptography literature (28)], each party may have a secret share
(similar to classical MPC based on secret sharing), and distributed
key generation and decryption protocols are executed involving
all parties with secret shares (Fig. 1). The main efficiency benefit
of this approach as compared to FHE is that bootstrapping can
be done interactively much faster (by two orders of magnitude
or even more) than in the classical FHE setting. The authors
demonstrate the use of their privacy-preserving framework for
Kaplan–Meier survival analysis in oncology and genome-wide
association studies in medical genetics. Froelicher et al. (26)
consider the federated collaboration model between data owners,
where each party contributes a subset of records to the full dataset
used for privacy-preserving analysis (Fig. 2A).

Our work extends and improves the multiparty FHE frame-
work of ref. 26 in several different ways.

First, we add the private join collaboration model where
multiple parties can contribute data for the same records (e.g.,
individuals) in a way where the data owners do not learn which
records match (with only the computation party learning the
intersection size in the case of two data owners), and these joined
data are then used for further analysis using multiparty FHE
(Fig. 2B).

Second, we introduce a more efficient interactive bootstrap-
ping procedure for the case of two parties and improve the more
general (for any number of parties) interactive bootstrapping
method used in ref. 26, and initially proposed in ref. 27.

Third, we extend the list of computations to provide a more
general toolset for the privacy-preserving analysis of oncological
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Fig. 1. Schematic of multiparty (threshold) FHE. Any party may have a secret share (assignment of secret shares is determined by the use case). At least two
parties have secret shares. First, all parties with secret shares perform distributed key generation to compute the common public key, corresponding to the sum
of secret shares. Next, the data are encrypted by each data owner (DO) using the common public key. Then, the computation is performed by the computation
party (CP). If interactive bootstrapping is needed, the CP interacts with the parties that have secret shares. Finally, the encrypted result is decrypted using a
distributed decryption procedure involving all parties with secret shares. The analyzing party (AP) is the party that gets to see the result of the computation and
can be the same as one of DOs (multiple DOs may serve as APs in some use cases). In the setting of multiparty FHE, the CP can be one of the DOs. The DOs,
CP, and AP are separated in the schematic to show all possible roles involved in the multiparty FHE collaboration model.

data. The computations implemented in our work include mean,
median, SD, frequency, �2 test, t test, survival analysis (Kaplan–
Meier plots and log-rank test), and logistic regression training
over encrypted data.

Results

We applied our multiparty FHE toolset to two different onco-
logical datasets: a real-world dataset of colorectal cancer patients’
survival data at the Tel Aviv Sourasky Medical Center and
a previously published dataset based on two clinical trials of
immunotherapy in renal cell carcinoma (29).

The real-world dataset of colorectal cancer patients’ survival
data includes 623 patients and 24 variables, amounting to 14,952
items of data. The goal of the study was to examine the effect of
oxaliplatin treatment with and without cannabis for patients with
colorectal cancer. Statistical analysis of key oncological endpoints
was blindly performed on both the raw data and FHE-encrypted
data using descriptive statistics and survival analysis with Kaplan–
Meier curves and log-rank tests. The results were then compared
with an accuracy goal of two decimals. Early results of this study
(for the single-key FHE setting) are reported in ref. 30. The
study included the following statistical analyses: mean, median,
and SD for the age of cancer onset; frequency analysis for sex;
�2-test between cannabis indicator (with or without cannabis)
and diagnosis, �2-test between cannabis indicator and sex; t-test
for cannabis indicator by age of onset. Kaplan–Meier and log-
rank survival analysis was performed to examine the effect of the
treatment with cannabis on the overall survival of patients.

All accuracy metrics were found to be within the predeter-
mined accuracy goal of two decimal digits. The Kaplan–Meier
curves for both the data in the clear and encrypted data are
illustrated in Fig. 3. The numerical results of the first 15 wk out

of 141 wk following the first oxaliplatin treatment are listed in
SI Appendix, Table S1. The runtime of less than half a minute was
observed for descriptive statistics and about 3 min for the survival
analysis (30). Note that the time of the anonymization and
statistical analyses performed on the raw dataset by a statistician,
the method commonly used in clinical oncology, is estimated to
be about 10 h, which is significantly higher than the runtime of
FHE computations. As this dataset is not publicly available (see
the Data, Materials, and Software Availability for more details),
we performed a similar analysis for a publicly available dataset so
that our results could be independently reproduced. We further
extended the analysis to include logistic regression training,
another useful tool for oncological and broader healthcare studies.

Next, we show an example of applying our multiparty
FHE toolset to an analysis of a previously published dataset,
providing detailed results for it in SI Appendix. Individual-
level data from two clinical trials of immunotherapy in renal
cell carcinoma were accessed from prior publications (29). In
brief, a PD-1 immune checkpoint inhibitor (nivolumab) was
evaluated for 1,006 patients with advanced clear-cell renal cell
carcinoma (ccRCC) in the CheckMate 025 and CheckMate
010 randomized clinical trials, as compared to the standard
of care with mTOR inhibitors (everolimus). Clinical outcome
data included overall survival and progression-free survival as
well as basic patient demographics, and genomic data included
tumor whole exome sequencing. Prior work had identified a
survival benefit for nivolumab as well as improved progression-
free survival for the subset of patients with mutations in PBRM1,
and we focused on these positive controls in our analyses here.

First, we evaluated the accuracy of basic demographic sum-
maries of age, sex, prior treatment, and objective response
rate (ORR) within and across the treatments. More concretely,
we computed the mean, median, and SD for age; performed
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Fig. 2. Collaboration models for privacy-preserving analysis of data from
multiple DOs. (A) Federated model: each party contributes a subset of records
to the full data set used for privacy-preserving analysis. This model supports
two scenarios: 1) local FHE computations are performed by each DO (similar
to the federated learning setting) and 2) an FHE computation is carried out by
CP on the stacked encrypted data set. (B) Private join model: multiple parties
contribute features data for the same records in a way where the parties do
not learn which records match. Then an FHE computation is performed on
the linked encrypted data.

a �2-test between ORR and trial arm, where trial arm was
set to 1 for nivolumab and 0 for everolimus; performed t-tests
for age by trial arm (t-test 1) and age by ORR groups (t-test

2); we evaluated the frequency for sex (frequency 1), benefit
(frequency 2), PBRM1 (frequency 3), and the number of prior
therapies (frequency 4).

Second, we conducted survival analyses where mortality was
the endpoint and patients were censored at loss-to-follow-
up, with statistical significance assessed by log-rank test and
Kaplan–Meier analysis. For the treatment arm positive control
(nivolumab vs. other), which corresponds to Kaplan–Meier and
log-rank scenario 1, we observed a significant association, e.g.,
the P-value for the log-rank test was 0.001. For the sex-stratified
negative control, which corresponds to Kaplan–Meier and log-
rank scenario 2, as expected, we observed no significant difference
between groups, e.g., the P-value for the log-rank test was 0.104.

Third, we conducted biomarker survival analyses where
progression-free survival was the endpoint and patients were
censored at loss-to-follow-up. For the positive control within
the nivolumab arm, which corresponds to Kaplan–Meier and
log-rank scenario 3, patients with PBRM1 mutations exhibited
significantly longer survival than noncarriers by long-rank test,
e.g., the P-value for the log-rank test was 0.006.

Fourth, we conducted a logistic regression analysis where
ORR was the outcome, and age, sex, and trial arm were
independent variables. For this analysis, ORR was defined as
1 for complete response or partial response (CR/PR) and 0 for
stable disease or progression disease (SD/PD). As expected, a
significant association was observed with the trial arm.

For the multiparty FHE experiments, the full dataset was fil-
tered down and broken into different subsets to emulate realistic
private join scenarios with two data owners (see SI Appendix,
Table S2 for details). Note that the runtime and communication
costs for the private join protocol are negligibly small as the
numbers of records and features for the oncological dataset are
not high. Hence, the runtimes reported here are determined
by the FHE computations performed after executing the join
protocol.

Table 1 shows the relative errors for descriptive statistics and
survival analysis, as compared to the results in the clear. For
all computations, accuracy of more than 5 decimal digits (as
compared to the computations in the clear) was achieved. Note
that for frequency computations, the error was zero because we

A B

Fig. 3. Kaplan–Meier survival analysis of the real-world dataset for colorectal cancer patients: results in the clear vs encrypted data (A), FHE approximation
error (B). There were two groups of patients treated with oxaliplatin: The first group was taking cannabis and the other was not. The survival analysis results
for the encrypted dataset were found to be accurate up to 7 decimal digits compared to the results for the unencrypted dataset (see also SI Appendix, Table
S1 for numerical details). Note that this Kaplan–Meier analysis has no clinical significance and should not be interpreted as such. The analysis was performed
solely for the purpose of testing the proposed FHE method.
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Table 1. Numerical accuracy for descriptive statistics
and survival analysis computedwith FHE vs. the compu-
tations in the clear using the data published in ref. 29
FHE Scheme Computation Statistic Rel Error

CKKS Mean Average 2.83e−12
SD SD 1.62e−07
Median Quantile 0.0e+00
t-test 1 t-score 1.57e−09
t-test 2 t-score 1.60e−09
�2 �2 1.91e−09
Kaplan–Meier 1 Probability 2.04e−07
Kaplan–Meier 2 Probability 7.39e−06
Kaplan–Meier 3 Probability 2.08e−07
log-rank 1 �2 3.21e−08
log-rank 2 �2 4.92e−08
log-rank 3 �2 3.80e−08

BFV Frequency 1 Count 0.0e+00
Frequency 2 Count 0.0e+00
Frequency 3 Count 0.0e+00
Frequency 4 Count 0.0e+00

The mean, SD, and median were computed for age; t-test 1 for age by trial arm; t-test 2 for
age by ORR groups; �2-test for ORR by trial arm; Kaplan–Meier and log-rank 1 for overall
survivability by arm (OS, OS_CNRS); Kaplan–Meier and log-rank 2 for overall survivability by
sex (OS, OS_CNRS); Kaplan–Meier and log-rank 3 for progression-free survival with somatic
mutations by arm (PFS, PFS_CNRS); frequency 1 for sex; frequency 2 for benefit; frequency
3 for PBRM1; frequency 4 for the number of prior therapies. All these computations did
not require bootstrapping.

used BFV, an exact homomorphic encryption scheme, for these
computations. Table 2 illustrates the runtime and storage perfor-
mance. Besides more complex survival analysis, all computations
take less than half a minute. The survival analysis takes up to
1 min and a half. The memory requirements do not exceed a few
gigabytes. These results imply that privacy-preserving descriptive
statistics and survival analysis using multiparty FHE are already
practical for typical oncological datasets.

Our results for logistic regression training using multiparty
FHE suggest that accuracy of at least 6 decimal digits was achieved
after 100 iterations (SI Appendix). The performance results for

Table 2. Runtime and storage measurements for
computations in Table 1; Kaplan–Meier and log-rank
survival analysis methods are abbreviated as KM and
LR, respectively; KeyGen and Comp correspond to key
generation and computation

Peak RAM KeyGen Comp KeyGen Comp
[GB] [s] [s] [MB] [MB]

Mean 2.13 1.2 1.6 140 1.0
SD 2.51 6.2 2.5 600 3.0
Median 2.17 2.0 21.7 244 108.0
t-test 1 1.97 2.9 3.2 477 1.3
t-test 2 1.99 2.9 3.1 477 1.3
�2 2.43 9.7 6.7 1,458 1,458.0
KM & LR 1 2.36 3.1 79.3 546 3,030.0
KM & LR 2 2.39 2.7 79.6 546 3,030.0
KM & LR 3 2.43 2.9 20.7 546 727.0

Frequency 1 2.03 0.3 1.2 23 0.5
Frequency 2 2.06 0.3 1.2 23 0.8
Frequency 3 2.03 0.3 1.2 23 0.8
Frequency 4 2.13 0.3 1.2 23 1.3

Table3. Runtimeandmemoryperformance for logistic
regression training; interactive bootstrapping is per-
formed after every iteration; KeyGen refers to key
generation
Iterations Peak RAM Total KeyGen Iteration time

[GB] [s] [s] [s]

10 7.752 83.4 30.6 5.3
20 7.943 128.3 30.7 4.9
30 8.072 175.0 30.5 4.8
40 8.199 222.5 30.8 4.8
50 8.257 264.9 30.7 4.7
60 8.273 314.7 31.2 4.7
70 8.630 362.4 30.6 4.7
80 8.625 414.2 31.4 4.8
90 8.703 450.0 30.7 4.7
100 8.760 500.0 30.7 4.7

logistic regression training are illustrated in Table 3. One iteration
takes about 5 s, and the overall runtime of 500 s is observed for
100 iterations. The memory requirements do not exceed 9 GB.
Both the runtime and memory are significantly smaller than for
the scenario of noninteractive FHE bootstrapping, which makes
it possible to run training on a commodity desktop or server
machine. For instance, one noninteractive CKKS bootstrapping
operation for this setting takes at least 24 s (31).

To evaluate the scalability of our multiparty FHE framework,
we ran the most computationally intensive capability considered
in our work, logistic regression training in the private join
collaboration setting, for much larger problem sizes than the
oncological dataset. We considered the case of two DOs, where
the first DO has the encrypted outcome data and the second DO
has the features data. In this case, only encrypted outcome data
need to be sent to the party that sees the result of the private join,
which implies that the performance cost of private join is almost
negligible as compared to logistic regression training. We ran
performance experiments on a server commodity system with 72
threads for simulated datasets from 16,384 samples to 1,048,576
samples (doubling each time), all with 256 features. For the
sample sizes from 16,384 to 262,144, the runtime of one iteration
stayed roughly the same at about 60 s. For 524,288 and 1,048,576
samples, the runtime was 98 and 187 s, respectively. This implies
that our logistic regression solution scales relatively well with
the number of cores of the server system; more concretely, the
runtime degrades only by a factor of 3 when increasing the
number of samples by a factor of 64.

Discussion

Our approach enables multiple analyses of clinical and genetic
data.

First, the federated model allows multiple institutions with
disjoint clinical and genomic data to perform secure joint
analyses across all patients without decrypting the underlying
individual-level values. Clinical trials conducted across multiple
institutions can now evaluate drug efficacy by computing secure
Kaplan–Meier and log-rank analyses. In particular, genomic
data, which are often considered sensitive patient data that
may be impossible to deidentify, can be leveraged to perform
biomarker analyses within or across treatment subgroups to
identify treatment modifiers. We demonstrate the feasibility and
accuracy of this approach by recapitulating the protective effect
of somatic PBRM1 mutations in patients on immune checkpoint
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inhibitors (32). Such genetic biomarkers can prioritize effective
treatments for patients who would not have otherwise received
them and further improve patient outcomes as well as expand
our understanding of disease etiology. In addition to analyses
of survival-related outcomes, recent studies have identified
biomarkers associated with drug safety outcomes through time-
to-event analyses of adverse events (33). While overall adverse
event rates are reported with clinical trials, individual-level data
are typically not made available. Our methodology would enable
secure, large-scale adverse event studies across multiple trials with
the potential of identifying actionable predictors of toxicities that
can be mitigated before they occur.

Second, the private join model allows investigators to conduct
secure analyses of clinical and genomic data when the underlying
data reside at different sites and cannot be integrated in
the clear. This is often the case for biobank cohorts, which
routinely collect rich genetic/genomic data but typically only
sparse clinical measurements through billing codes, whereas
detailed chart review and clinical records abstraction are typically
conducted under strict Institutional Review Board protocols at
medical institutions which do not conduct routine biobanking.
For example, while the UK Biobank has collected a wide
array of omics data including whole-exome and whole-genome
sequencing, it only has rudimentary treatment billing codes and
does not report the duration, dosage, or treatment response (34).
Individual institutions that collect such data but do not conduct
genotyping could thus use our approach to tap into existing
genomic resources while retaining patient confidentiality across
both cohorts. While genetic data were used for demonstration
in this study, our approaches would naturally apply to broader
classes of omics that can be summarized as continuous or
categorical values, such as magnetic resonance images (35) or
structural brain images (36). Our approach thus enables privacy-
preserving identification of clinical biomarkers across institutions
and data silos.

Our approach has several limitations and areas for future
work. First, our private join approach requires sending the full
encrypted DO datasets (the fields to be computed on) to the party
computing the join of the datasets from DOs. This requirement
can only be removed if the DOs are allowed to learn something
about the intersection. Second, the extension of private join to
more than two DOs prevents DOs from learning anything about
the intersection only if the computing party performs expensive
homomorphic rearrangement of encrypted data (using many
rotations) or if the DOs are not allowed to collude with each
other. Devising a more efficient solution for extending the private
join to more than two DOs is left for future work. Third, while the
FHE scheme we use is plausibly postquantum secure, the private
join protocol in our framework uses a commutative deterministic
cipher based on an elliptic-curve instantiation of the decisional
Diffie–Hellman (DDH) problem, which is secure against classical
computer attacks but is not quantum-resistant. As future work,
we will look into developing a quantum-resistant version of this
private join protocol based on lattices. See SI Appendix for more
details on the first three limitations. Fourth, our multiparty FHE
framework is based on the same adversarial model as single-key
FHE, i.e., it is secure against semihonest adversaries.

Materials and Methods
Software Implementation. We implemented our multiparty FHE framework
in PALISADE v1.11.9 (37), an open-source lattice cryptography software library
that includes all common FHE schemes. For the experiments, we used full
Residue Number System (RNS) variants of the Cheon-Kim-Kim-Song (CKKS) and

Brakerski/Fan-Vercauteren (BFV) FHE schemes (21, 38, 39), which are already
available in PALISADE. The full RNS variants of CKKS and BFV are described in
refs. 40 and 41, respectively.

Multiparty FHE. Our implementation is based on the threshold FHE construc-
tion proposed in ref. 28. We consider the scenario of additive secret sharing
where the sum of all secret shares corresponds to the underlying secret key, but
this secret key is never revealed. PALISADE provides threshold FHE extensions
(without interactive bootstrapping) for the CKKS and BFV schemes (37).

Private Join. The private join collaboration model is a generalization of the
private intersection-sum-with-cardinality protocol proposed in ref. 42. We
extend the original protocol from encrypted summation to arbitrary encrypted
computations and add support for two or more DOs with FHE-encrypted data.
The model includes a CP and multiple DOs. Each DO has a subset of features for
common records (all DO datasets are encrypted using FHE). The purpose of join is
to link the datasets from DOs into a single dataset and perform FHE computations
on it. The same record identification scheme is used for all DOs, i.e., each common
record is uniquely described by the same identifier. The join is performed based
on exact matches. The CP computes the intersection by interacting with the DOs,
and the DOs also interact with each other. A deterministic commutative cipher
based on an elliptic curve instantiation of the DDH problem is used to compute
a common hash (encryption) for each record. As part of the protocol, the records
get randomly shuffled and random identifiers get inserted. In the case of two
DOs, the CP learns the intersection size whereas the DOs learn nothing about
the intersection. The protocol and security proofs for it are described in detail in
SI Appendix.

Interactive Bootstrapping. Our multiparty FHE framework includes two
interactive bootstrapping procedures. The first algorithm achieves more
efficient bootstrapping for two parties and is a contribution of our work. In
contrast to the more general procedure of ref. 27 that requires at least three
extra RNS residues, our algorithm requires only one extra RNS residue, which
reduces the computational complexity of the full FHE workflow (not only the
interactive bootstrapping invocations). Our procedure is based on a technique
of distributed rounding. We describe the CKKS instantiation of our 2-party
interactive bootstrapping protocol along with the security proofs in SI Appendix.
The second algorithm supports any number of parties and is an optimized version
of the procedure proposed in ref. 27. Our variant reduces the computational
complexity associated with sampling: One polynomial Gaussian sampling is
eliminated because it is not needed for security. We implement both protocols in
PALISADE.

Experimental Test Bed. FHE computations for the oncological dataset were
performed using a server with Intel(R) Xeon(R) Platinum 8275CL @ 3.00 GHz
and 96 GB of RAM. The experiments were run at 16 threads using the PALISADE
multithreading capability based on OMP. The server had Ubuntu 20.04 and
g++ (GCC) 9.3.0 installed. All parties were connected via a local area network
connection. Note that interactive computations were needed only for the logistic
regression training case, where the communication requirements for interactive
bootstrappingaresmall (asingleciphertext is transferredbetweentheinteracting
parties). The scalability experiments were run on a Ubuntu 20.04 server with
Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40 GHz (72 threads) and 128 GB RAM.

Computations. Before running the FHE computations, the source data were
preprocessed to normalize the input data and exclude NA records. Then, analysis
in the clear was performed to generate reference results for evaluating the
accuracy of FHE analysis. The FHE computations for mean, SD, median, �2-
test, t-test, survival analysis (Kaplan–Meier plot and log-rank test), and logistic
regression training were performed using the CKKS scheme. The CKKS in
PALISADE was configured to use hybrid key switching, the scaling factor size
was set to 50 bits (55 for SD), the standard mode without automatic rescaling
was used, the ring dimension was automatically set to the minimum value
required for achieving 128 bits of security, and the multiplicative depth was
set to the minimum needed to achieve the correctness. All other parameters
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were set to PALISADE defaults for CKKS. For frequency computations, we used
the BFV scheme configured to use the Brakerski–Vaikuntanathan key switching
and plaintext modulus of 1032193. The ring dimension was automatically set
to the minimum value required for achieving 128 bits of security and the
multiplicative depth was set to the minimum needed to achieve correctness. All
other parameters were set to PALISADE defaults for BFV. For logistic regression
training, we used the 2-party interactive bootstrapping proposed in this work.
For all computations, we used a 2-DO private join setup, i.e., the full dataset was
filtered down and broken into different subsets to emulate realistic private join
scenarios with two DOs. More details about the computations and private join
setup are provided in SI Appendix.

Our main experiments used a previously published dataset based on two
clinical trials of immunotherapy in renal cell carcinoma (29).

Data, Materials, and Software Availability. The PALISADE version we used
is publicly available in GitLab at https://gitlab.com/palisade/palisade-release
(37). The code with the FHE computations, including descriptive statistics,
survival analysis, and logistical regression training, is currently not publicly
available as its license does not allow for open-source redistribution. However,
the pseudocode of all algorithms used in our work, namely, private join and
interactive bootstrapping, is provided in SI Appendix. Upon request sent to the
corresponding author(s), we can provide binaries that, in combination with open-
source resources, can be used for the sole purpose of verifying and reproducing
the experiments in the manuscript.

Previously published data were used for this work (Our main experi-
ments are based on the public oncological data set described in ref. 29

https://doi.org/10.1038/s41591-020-0839-y). The colorectal cancer patients’s
datasets generated and/or analyzed during the current study are not publicly
available due to patients’ privacy. Personal patient information was anonymized
and stored on a password-protected computer. The computer is located in a
locked office of the investigator. The data that support the findings of this study
are available from Dr. Ravit Geva but restrictions apply to the availability of these
data, which were used under license for the current study, and so are not publicly
available. The data are, however, available from the authors upon reasonable
request and with permission of the Tel Aviv Sourasky Medical Center Helsinki
Committee.
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