
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Martin-Löf Randomness and Brownian Motion

Permalink
https://escholarship.org/uc/item/20072582

Author
Allen, Kelty Ann

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20072582
https://escholarship.org
http://www.cdlib.org/
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Abstract

Martin-Löf Randomness and Brownian Motion

by

Kelty Ann Allen

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Theodore Slaman, Chair

We investigate the Martin-Löf random sample paths of Brownian motion, applying tech-
niques from algorithmic randomness to Brownian motion, an active area of research in prob-
ability theory.

In Chapter 2, we investigate many classical results about one-dimensional Brownian
motion in the context of Martin-Löf randomness. We show that many results which are
known to hold almost surely for the Brownian motion process - including results concerning
the modulus of continuity, points of increase, time inversion, and law of large numbers - hold
for every Martin-Löf random sample path. We also show that scaling invariance and the
strong Markov property hold for every Martin-Löf random path, with suitable effectivization.

In Chapter 3, we investigate the zero set of one-dimensional Brownian motion. We
prove that the set of zeroes is characterized by having high effective dimension. We also
demonstrate that, although the zeroes are highly noncomputable in the sense of effective
dimension, many of them are layerwise computable from a Brownian path.

In Chapter 4, we give a new proof that the solution to the Dirichlet problem in the plane is
computable. It is a well-known result of Kakutani that the solution to the Dirichlet problem
can be found using expected hitting times of Brownian paths to the boundary. We show
that the hitting times of Martin-Löf random Brownian paths on a computable boundary
are layerwise computable in the path, and thus the expected value of the hitting times is
computable, and so the solution to the Dirichlet problem is computable.

In Chapter 5, we further investigate planar Martin-Löf random Brownian motion. We
demonstrate that a Martin-Löf random planar Brownian path only hits points such that
the path is not random relative to those points (except the origin), which implies that a
Martin-Löf random planar path has area zero and that every point except the origin is hit
by only measure 0 many paths. We also show that every Martin-Löf random planar Brownian
path has points of uncountable multiplicity.
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Chapter 1

Introduction and Background

1.1 Introduction

Background material in computability theory will mostly be based on the books “Com-
putability and Randomness” by Nies [27] and “Algorithmic Randomness and Complexity”
by Downey and Hirschfeldt [8]. Background in Brownian motion will mostly be based on
the book “Brownian Motion” by Mörters and Peres [26] and lecture notes of Peres [28].
Background in probability theory can be found in Durrett [9].

Algorithmically random Brownian motion uses tools from algorithmic randomness to
study Brownian motion. Heuristically, Brownian motion is the random continuous function
resulting from the limit of discrete random walks as the time interval approaches zero. The
paths of Brownian motion are considered typical with respect to Wiener measure on a
function space, generally C[0, 1], C[R≥0], or C[I,Rn] for I = [0, 1] or [0,∞)

Computability theory provides a collection of tools to formulate and study questions
about randomness. Intuitively, algorithmically random elements of a measure space are
those which appear random to any algorithm. The most widely studied notion of algorithmic
randomness is known as Martin-Löf randomness, but there exist stronger and weaker forms of
randomness. The Martin-Löf random (or Schnorr random, etc.) elements of a function space
with respect to Wiener measure are known as Martin-Löf random (or Schnorr random, etc.)
Brownian motion. Fouché showed that the class of Martin-Löf random Brownian motion
is the same as the class of complex oscillations, a class of functions defined by Asarin and
Pokrovskii and later investigated to a greater degree by Fouché, Kjos-Hanssen, Nerode, and
Szabados. [1], [11], [12], [10], [20], [21]

The study of Martin-Löf random Brownian motion provides insight into both classical
Brownian motion and the power of algorithmic randomness. In chapters two and five, we
will see how Martin-Löf random Brownian motion exhibits much of the “almost everywhere”
behavior observed in classical Brownian motion, providing an example of a particular measure
one set for which many of the important properties of Brownian motion hold. In chapter
three, we will see that the effective properties of Martin-Löf random Brownian paths are also
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quite fascinating. For example, the zeros of Martin-Löf Brownian motion are characterized
by having high “effective dimension” – meaning they are difficult to locate algorithmically.
In chapter four, we will show that techniques from algorithmic randomness combined with
a beautiful classic result applying Brownian motion to the Dirichlet problem provide a new
proof that solution to the Dirichlet problem is computable.

1.2 Notation and Definitions in Computability

Theory

We use N to denote the natural numbers, identified with the least countably infinite ordinal
ω. 2<ω will denote the set of finite binary strings and 2ω will denote Cantor space, the set of
infinite binary strings, identified both with binary expansions of real numbers in [0, 1] and
with subsets of N. For σ ∈ 2<ω, |σ| denotes the length of σ.

Definition 1.2.1.

1. A partial computable function is a partial function f : N → N that can be computed
by some deterministic algorithm (i.e. by a Turing machine), whose domain may not
be total.

2. A partial computable f which converges on every input is said to be computable.

Definition 1.2.2.

Definition 1.2.3.
A machine M is a partial recursive function M : 2<ω → 2<ω. M is prefix-free if for any

σ, τ ∈ 2<ω such that σ is an initial segment of τ , if M(σ) converges then M(τ) converges.

A prefix-free machine induces a notion of complexity on 2<ω given by KM(σ) = min{|τ | :
M(τ) = σ}, that is, the complexity of σ relative to M is the length of the shortest τ that
can be used as a code for σ. The following is folklore:

Theorem 1.2.1. There is a prefix-free machine U such that for any other prefix-free machine
M, there is a constant cM such that for all σ ∈ 2<ω,

KU(σ) ≤ KM(σ) + cM

U is known as a universal prefix-free machine.

Fixing some universal machine U , we have the following definition:

Definition 1.2.4.
For a finite binary string σ, the prefix-free Kolmogorov complexity of σ is

K(σ) = min{|τ | : U(τ) = σ}.

This will sometimes be referred to simply as the Kolmogorov complexity of a string.
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1.3 Randomness in Computability Theory

In trying to define what makes a set “random,” one intuitive notion is that such a set should
not have any rare properties, and that it should be difficult to describe. In computability
theory, there are many rigorous notions of what it means to be “describable,” and these
notions can be used to form different definitions of randomness. One such notion is the
idea of tests that a random number should pass. [24] These definitions were developed in
the context of Cantor space and the study of randomness is still primarily focused on the
study of random real numbers, but most definitions and results given are applicable in any
computable probability space.

Definition 1.3.1

• A Martin-Löf test on a computable probability space (X,µ) is a uniformly Σ0
1 sequence

(An)n∈N of open sets in X such that ∀n ∈ N, µ(An) ≤ 2−n

• A set Z ∈ X fails the test if Z ∈
⋂
n

An, otherwise Z passes the test.

• Z ∈ X is Martin-Löf random if Z passes each Martin-Löf test.

We say that a Martin-Löf test (Un)n∈N is universal if
⋂
n

An ⊂
⋂
n

Un for any Martin-Löf test

(An)n∈N.

Theorem 1.3.1 (Martin-Löf [24]). Let Un =
⋃
e∈NA

e
n+e+1. Then (Un)n∈N is a universal

Martin-Löf test.

Martin-Löf randomness was one of the first rigorous notions of algorithmic randomness
developed, and has proved to be one of the most robust. Several equivalent definitions have
been found for Martin-Löf randomness.

One useful equivalence is the notion of Solovay Randomness.

Definition 1.3.1.
We say that an element x of a computable probability space is Solovay random iff for all

computable collections of c.e. open sets {Un} such that
∑

n µ(Un) <∞, x is in only finitely
many Ui.

Theorem 1.3.2 (Solovay). A real x is Solovay random iff it is Martin-Löf random.

Martin-Löf randomness in Cantor space can also be characterized using the initial seg-
ment complexity of a string.

Theorem 1.3.3 (Levin [22], Schnorr [35]). The following are equivalent for a set Z.

• Z is Martin-Löf random.
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• ∃b∀n[K(Z � n) > n− b]

There also exist stronger and weaker notions of randomness. In computable analysis and
in the study of algorithmically random Brownian motion, we frequently encounter Schnorr
tests.

Definition 1.3.2.
A Schnorr test {Un}, n ∈ N is a computable collection of c.e. open sets such that

µ(Un) ≤ 2−n and the function f(n) = µ(Un) is a computable function of n.

Definition 1.3.3.
A real x is Schnorr random iff it passes all Schnorr tests.

Schnorr randomness is a weaker notion than Martin-Löf randomness, and although it
seems a natural notion in much of computable analysis, it has attracted less attention in com-
putability theory than Martin-Löf randomness. This is in part because Martin-Löf randomness
is enough for many results, as well as the fact that historically, Schnorr randomness has
proved harder to work with; for example it has no universal test. See [7] and [6] for more
discussion of Schnorr randomness and the many other types of algorithmic randomness.

1.4 Computable analysis

A real x is computable if there is a computable function f such that f takes an input ε ∈ Q,
and outputs a rational r such that |x− r| < ε.

A sequence of reals xi, i ∈ N is uniformly computable if there exists a function f which
takes input < i, ε > for ε ∈ Q, and outputs a rational r such that ‖xi − r‖ < ε.

Definition 1.4.1.
A computable metric space is a triple (X,µ, S) where:

• (X,µ) is a separable complete metric space

• S = {si : i ∈ N} is a countable dense subset of X,

• The real numbers µ(si, sj) are computable uniformly in < i, j >.

Definition 1.4.2.
For (X,µ) a probability space, a measurable map T : X → X is measure preserving if

for all measurable A ⊂ X, µ(T−1A) = µ(A).

Definition 1.4.3.
We say that a measurable set A ⊂ X is invariant under a map T : X → X if T−1A = A

up to a set of measure zero.
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Definition 1.4.4.
A measure-preserving map T : X → X is ergodic if every T -invariant measurable subset

of X has measure 0 or measure 1.

The following theorem provides a useful relationship between Martin-Löf random reals
and ergodic maps. See [3, 13] for proofs and further discussion of the relationship between
ergodicity and algorithmic randomness.

Theorem 1.4.1 (Bienvenu et al.). Let (X,µ) be a computable probability space and T : X →
X a computable, ergodic, measure-preserving map. Let A be a Σ0

1 set with µ(A) < 1. Then
any Martin-Löf random x ∈ X has T n(x) 6∈ A for infinitely many n.

1.5 Notation and Definitions in Probability Theory

Definition 1.5.1.
A probability space is a triple (Ω,F ,P) where Ω is a set (a set of outcomes), F is a

σ-algebra on Ω (a set of events), and P is a probability measure P : F → [0, 1].

Definition 1.5.2.
A (real-valued) random variable is a function from Ω to R.

Definition 1.5.3.
A random variable X has a normal distribution with mean µ and variance σ if

P(X > a) =
1

σ
√

2π

∫ ∞
a

e−
(y−µ)2

2σ2 dy, for all a ∈ R

Definition 1.5.4.
A stochastic process is a collection of random variables indexed by a totally ordered set

T (time), that is,
{Xt : t ∈ T}

where each Xt is a random variable on some probability space Ω.

1.6 Classical Brownian Motion

Brownian motion is of great theoretical interest and practical value. It arises as a limit of
random walks as the time interval goes to zero, as a model of the stock market [2] and as a
model of the random motion of particles in a fluid, originally described by Robert Brown,
from whom Brownian motion takes its name.

We begin by defining one-dimensional Brownian Motion on C[0, 1].
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Image from “Brownian Motion” by Mörters and Peres

Definition 1.6.1.
A real-valued stochastic process {B(t) : t ∈ I} is called standard Brownian motion if the

following holds:

• B(0) = 0,

• The process has independent increments : for all times 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,
the increments B(tn) − B(tn−1), B(tn−1) − B(tn−2), . . . B(t2) − B(t1) are independent
random variables,

• for all t ≥ 0 and h > 0, the increments B(t+ h)− B(t) are normally distributed with
expectation 0 and variance h,

• almost surely, the function t 7→ B(t) is continuous.

This defines Brownian motion as a stochastic process, that is, a family of uncountably
many random variables ω 7→ B(t, ω) defined on a probability space (Ω,A,P), but we can
also interpret this as a collection of random functions with the sample paths defined by
t 7→ B(t, ω). Much of the study of classical Brownian motion focuses on the sample path
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properties of these random functions, and this thesis is devoted to the study of the properties
of Martin-Löf random sample paths.

These requirements induce a measure on a function space called Wiener measure, and
which we will denote by P. It is possible to define Brownian motion starting at any point x
at time 0, rather than starting at the origin, in which case we will denote the corresponding
measure by Px (in other words, Px(B ∈ A) = P(x+ B ∈ A)). When we wish to emphasize
that we are talking about standard Brownian motion, we will use P0. Martin-Löf random
Brownian motion is the collection of functions which are Martin-Löf random with respect
to Wiener measure.

We denote by p(t, x, u) the transition density of Brownian motion, i.e., the unique function
such that

Px(B(t) ∈ A) =

∫
A

p(t, x, u)du

1.7 Construction of Brownian Motion

The construction presented here is the Franklin-Wiener series representation of Brownian
Motion as found in Kahane [18]. We construct an infinite series of the form

ξ0∆0(t) + ξ1∆1(t) +
∑
i

∑
j<2i

ξi,j∆i,j(t)

where ξi,j follows a Gaussian distribution of parameters with mean 0 and varaiance 1 and
∆i,j(t) are sawtooth functions with support on a dyadic interval.

Let ∆0(t) be the linear interpolation between the points (0, 0) and (1, 1). ∆1(t) is the lin-
ear interpolation between points (0, 0), (1/2, 1/2), and (1, 0). ∆i,j(t) (0 < j < 2i) is the func-
tion that linearly interpolates between (j/2i, 0), (j/2i + 2−(i+1), 2−j/2−1), and ((j + 1)/2i, 0)
and is equal to 0 everywhere else.

To define the weights, we’ll use the following function g : [0, 1]→ R

x =

∫ g(x)

−∞

e−t
2/2

√
2π

dt

For a given real α ∈ [0, 1] we will identify α with its binary representation. Using any
computable listing of the bits of α in an N × N grid, we obtain from one real in [0, 1] a
countably infinite list of reals in [0, 1] which we will number as β0, β1, {βi,j}i∈N,j<2i .

Then our weights will be ξ0 = g(β0), ξ1 = g(β1), ξi,j = g(βi,j), and the series

Bα(t) = ξ0∆0(t) + ξ1∆1(t) +
∑
i

∑
j<2i

ξi,j∆i,j(t) (1.1)
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converges to a continuous function for almost every α ∈ 2ω.

It is established in Kahane’s book [18] that the resulting class satisfies the definition of
Brownian motion on C[0, 1].

To extend Brownian motion to C[R≥0], let {Bn(t)}n∈N be independent Brownian motions
on C[0, 1]. Then

B(t) = Bbtc(t− btc) +
∑

0≤i<btc

Bi(1)

satisfies the definition of Brownian motion for the space of continuous functions on [0,∞).

1.8 Layerwise Computability

The driving engine of many of the results that will follow is the notion of layerwise com-
putability and the fact that layerwise computable maps preserve Martin-Löf randomness.
The intuition behind layerwise computability is that a computable probability space can
be thought of as having a canonical layering induced by a universal Martin-Löf test. Intu-
itively, a layerwise computable map can be thought of as one which is computable on every
Martin-Löf random real, given the additional information of when the real stops looking
nonrandom with respect to a fixed universal test. These ideas were developed by Hoyrup
and Rojas; see their papers [17] and [16] for a more detailed introduction.

Definition 1.8.1.
For Un a universal Martin-Löf test on a space (X,µ), let Kn := X\Un. A function

T : (X,µ)→ Y is layerwise computable if it is computable on every Kn, uniformly on n.

Definition 1.8.2.
The randomness deficiency of a Martin-Löf random real α will refer to the smallest n

such that α ∈ Kn.

Theorem 1.8.1 (Hoyrup, Rojas). If T : (X,µ)→ Y is a layerwise computable map from a
computable probability space to a computable metric space, then:

• The push-forward measure ν := µ ◦ T−1 ∈M(Y ) is computable.

• T preserves Martin-Löf randomness; i.e. T (MLµ) ⊂ MLν. Moreover, there is a
constant c (computable from a description of T ) such that T (Kn) ⊂ K ′n+c for all n,
where K ′n+c is the canonical layering of (Y, ν).

Layerwise computability was developed in the context of computable analysis, and proves
especially helpful in the study of Brownian motion. Many of the maps that arise in the
study of classical Brownian motion, such as some of the standard constructions of Brow-
nian motion, are layerwise computable but not computable. It is a common theme that
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a Brownian path will be well behaved “eventually,” or a sequence of random walks will
converge “eventually,” where, for Martin-Löf random Brownian paths, “eventually” corre-
sponds to when a path passes a particular Martin-Löf test. Knowing that such maps preserve
Martin-Löf randomness will prove useful again and again.

Another important result we will need in several occasions is that one can compute the
integral of layerwise computable functions.

Theorem 1.8.2 (Hoyrup, Rojas [16]). Let f be a layerwise computable function defined on
some computable probability space (X, µ). Then the integral∫

x∈X
f(x)dµ(x)

is computable uniformly in an index for f .

1.9 Two constructions of Martin-Löf random

Brownian motion

There are many known constructions for Brownian motion, including Kahane’s, above, and
the more widely-used limit of random walk construction, among others. When these con-
structions are layerwise computable, they correspond to different ways to define Martin-Löf
random Brownian motion.

Theorem 1.9.1 (Fouché [12]). If α is Martin-Löf random, then (1.1) converges to a con-
tinuous function, and, moreoever, for each α there is an Mα > 0 such that for all m > Mα,
one can compute a piecewise linear function pm using only the first m bits of α such that
||Bα − pm|| < logm√

m

Moreover, the constant Mα is layerwise computable from Bα - see [5] for a discussion of
this fact. Thus we have that

Corollary 1.9.1. The Martin-Löf random elements of C[0, 1] with respect to Wiener mea-
sure are exactly the functions Bα arising from (1.1) with α a Martin-Löf random real.

The next construction of Martin-Löf random Brownian motion is the original construc-
tion of Asarin and Prokovskiy [1]. They construct a class of functions they call “complex
oscillations,” which are the limits of random walks with high Kolmogorov complexity. This
construction is similar to Levy’s construction of Brownian motion as a limit of random walks.

Definition 1.9.1.
For n ≥ 1, let Cn be the class of continuous functions with slope ±

√
n on the intervals

[(i − 1)/n, i/n], i = 1, ..., n. For x ∈ Cn, we can associate a binary string c(x) ∈ 2<ω of
length n where the ith bit of c(x) is 1 if the slope of x is positive on [(i − 1)/n, i/n] and 0
otherwise.



CHAPTER 1. INTRODUCTION AND BACKGROUND 10

Definition 1.9.2.
A function x ∈ C[0, 1] is a complex oscillation if there is a sequence {xn}n∈N such that

• For all n, xn ∈ Cn

• There exists a d such that for all n, K(c(xn)) ≥ n− d,

• ||xn − x|| → 0 effectively as n→∞.

The following theorem, due to Asarin and Pokrovskiy [1] and translated from Russian in
a paper by Kjos-Hanssen and Szabados [21], establishes the connection between complex os-
cillations and Martin-Löf random Brownian motion. More discussion about the equivalence
of the two definitions of Martin-Löf random Brownian motion discussed here can be found
in papers by Fouché . [12]

Theorem 1.9.2 (Asarin). B ∈ C[0, 1] is a Martin-Löf random Brownian path if and only
if there is a constant d such that for all but finitely many n ∈ N there is xn ∈ Cn such that

||B − xn|| ≤ n−1/10 and K(c(xn)) ≥ n− d

Kjos-Hanssen and Szabados improved the bound on convergence to c logn√
n

. [21]

1.10 Justification of convergence for Martin-Löf

randomness

We end by giving a general theorem for convergence of sums of random variables on Martin-Löf
random reals. This result provides another way of proving the result of Fouché [12] and
Asarin and Prokovskiy [1] that their demonstrated constructions of Brownian motion con-
verge on every Martin-Löf random real, and also provides a more general statement about
layerwise computability in probability.

Proposition 1.10.1. Let (Xn) be a computable sequence of random variables taking their
values in a computable Banach space, and such that the sum

∑
||Xn|| is effectively conver-

gent. Then
∑

nXn is defined almost everywhere and is layerwise computable.

Proposition 1.10.2. Let (Xn) be a computable sequence of real-valued random variables
such that E(Xn) = 0 for all n and

∑
|Xn|2 is effectively convergent. Then the sum

∑
nXn

is defined almost everywhere and is layerwise computable.

Proof. Fix δ. For all N , define

AN =

{
x : (∃M > N)

∣∣∣∣∣
M∑
n=N

Xn(x)

∣∣∣∣∣ > δ

}
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Note that AN is uniformly Σ0
1. Moreover we have, by Chebychev’s inequality

P(AN) ≤ 1/δ2 · E

(∑
n≥N

Xn

)2

≤ 2/δ2 · E

(∑
n≥N

X2
n

)

(the second inequality coming from the fact that E(Xn) = 0 for all n). This means that
given δ, ε one can effectively find N such that P(AN) ≤ ε. Thus knowing where a particular
x passes the Martin-Löf test given by {An}, we can compute

∑
nXn(x), and so

∑
nXn is

layerwise computable.
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Chapter 2

Continuity, Local Properties, and
Invariance

Brownian motion has many fascinating local properties and limiting properties, and satisfies
many useful invariant relations. The theme of this chapter will be to summarize some of
these results, which typically hold almost surely for the Brownian motion process, and then
demonstrate that they hold for every Martin-Löf random Brownian path. It is a common
theme that Martin-Löf random Brownian motion reflects many of the most interesting and
useful classical results.

2.1 Invariance Properties and the Law of Large

Numbers

Scaling invariance is one of the most useful invariance properties of Brownian motion and
we will make use of it many times in the following chapters.

Theorem 2.1.1 (Classical Scaling Invariance). Suppose B(t) : t ≥ 0 is standard Brownian
motion. Let a > 0. Then the stochastic process X(t) : t ≥ 0 defined by X(t) = 1

a
B(a2t) is

also standard Brownian motion.

Proof. Proof is from Mörters and Peres [26]. Continuity of paths, independence and station-
arity of the increments remain unchanged under the scaling. It remains to observe that
X(t)−X(s) = 1

a
(B(a2t)−B(a2s)) is normally distributed with expectation 0 and variance

( 1
a2

(a2t− a2s)) = t− s.

Corollary 2.1.1. Let B be a Martin Löf random Brownian path on C[R≥0]. Then 1
a
B(a2t)

is also a Martin Löf random Brownian path whenever B is random relative to a.

Proof. The map f(t) 7→ 1
a
f(a2t) is a Wiener-measure preserving map from C[0,∞) →

C[0,∞) by Theorem 2.1.1. This map is a-computable and so preserves Martin Löf random-
ness relative to a for elements of C[0,∞) by Theorem 1.8.1.
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Note that Brownian scaling does not hold in general for Martin-Löf random Brownian
motion. For example, for a given Martin-Löf random Brownian path B(t), one can choose
an a so that 1

a
B(a2t) has a computable value for a computable time t, a contradiction for

Martin-Löf random Brownian motion [10]. See chapter 3 for a discussion on what values
zeros can and cannot have.

Using a similar argument, we can also see that Martin-Löf random Brownian motion
is preserved by time inversion. Time inversion is a useful property of Brownian motion
that allows us to draw parallels between the behavior of sample paths within an epsilon
neighborhood of zero and the behavior as time goes to infinity.

Theorem 2.1.2 (Classical Time Inversion). Suppose B(t) : t ≥ 0 is standard Brownian mo-
tion. Then the stochastic process defined by

X(t) =

{
0 for t = 0
tB(1/t) for t > 0

is also standard Brownian motion.

And again, using Theorem 1.8.1, we have see that the result holds for every Martin-Löf random
path.

Corollary 2.1.2. Let B(t) be a Martin Löf random Brownian path on C[0,∞). Then the
function defined by

X(t) =

{
0 for t = 0
tB(1/t) for t > 0

is also a Martin-Löf random Brownian path on C[0,∞).

This allows us to prove the Law of Large Numbers for Martin-Löf random Brownian
motion.

Corollary 2.1.3 (Law of Large Numbers). For a Martin-Löf random Brownian path,

lim
t→∞

B(t)

t
= 0

Proof. For B(t) a Martin-Löf random Brownian path,

lim
t→∞

B(t)

t
= lim

t→∞
B(1/t) = B(0) = 0
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2.2 Continuity

The definition of classical Brownian motion requires that the sample paths are continuous
almost surely, and we know by Theorem 1.9.1 that every Martin-Löf random Brownian path
is continuous. One can go further and show that, almost surely, Brownian motion obeys a
modulus of continuity for a deterministic function - that is, there is a deterministic function
φ(h) such that

lim sup
h→0

sup
0≤t≤1−h

|B(t+ h)−B(t)|
φ(h)

≤ 1

In his papers establishing many of the local properties of Martin-Löf random Brown-
ian motion[11], Fouché shows every Martin-Löf random Brownian path obeys a modulus of
continuity φ(h) such that

φ(h) = O
(√

hlog(1/h)
)

(2.1)

It is possible to extend this result with big-O notation to the particular constant (
√

2)
from the classical result, and moreover, the sufficiently small h for which the modulus always
holds can be seen to be layerwise computable in a Martin-Löf random path.

Proposition 2.2.1. Let B be a Martin-Löf random Brownian path. Then for all c <
√

2,
for all h0, there exists h < h0 such that

|B(t+ h)−B(t)| > c
√
h log(1/h)

Proof. For a large n (to be specified later), split the interval [0, 1] into chunks of size e−n

(omitting the last bit). For each 0 ≤ k < en, consider the event

Ak : |B((k + 1)e−n)−B(ke−n)| ≥ c
√
e−nn

(i.e., what we want, with h = e−n) Note that the Ak are independent by definition of
Brownian motion and by time-translation invariance, all have the same probability. Let us
estimate the probability of A0, which is the event: |B(e−n) − B(0)| ≥ c

√
e−nn. By scaling,

it is also equal to the probability of the event: |B(1)−B(0)| ≥ c
√
n. By the estimate given

in [26, Lemma 12.9], we have

P(A0) ≥ c
√
n

c2n+ 1
e−c

2n/2

so, by assumption on c, there exists an α < 1 such that for almost all n

P(A0) ≥ e−αn

Since the Ak are independent,

P(no Ak happens) ≤ (1− e−αn)e
n ∼ e−e

(1−α)n
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For n taken large enough, this can be made arbitrarily small. Moreover, notice that c can
be supposed to be computable, which makes the Ak Π0

1 classes, hence the event “no Ak hap-
pens” corresponds to a Σ0

1 class. Thus, we have a Solovay test that any Martin-Löf random
Brownian path should pass, and for such a Martin-Löf random Brownian path, there are
infinitely many n for which some Ak happens.

Proposition 2.2.2. Let B be a Martin-Löf random Brownian path. Then for all c >
√

2
there is h0 such that for all h < h0 and all t

|B(t+ h)−B(t)| < c
√
h log(1/h)

Moreover, h0 is layerwise computable in B.

The proof given is the same as that of Mörters and Peres Theorem 1.14 [26], with the
addition of keeping track of the layerwise computability of h0. We first look at increments
over a class of intervals which is chosen to be sparse but still large enough to approximate
arbitrary intervals. More precisely, given n,m ∈ N, we let Λn(m) be the collection of all
intervals of the form

[(k − 1 + b)2−n+a, (k + b)2−n+a],

for k ∈ {1, ...2n}, a, b ∈ {0, 1
m
, ..., m−1

m
}. We further define Λ(m) :=

⋃
n Λn(m).

Lemma 2.2.1. For any fixed m and c >
√

2, for B(t) a Martin-Löf random Brownian path,
there exists n0 ∈ N, layerwise computable in B(t), such that for any n ≥ n0,

|B(t)−B(s)| ≤ c

√
(t− s) log

1

(t− s)
for all [s, t] ∈ Λm(n).

Proof. From the tail estimate for a standard normal variable X, see, for example Lemma
12.9 in [26], we obtain

P

{
supk∈{1,...,2n} supa,b∈{0, 1

m
,...,m−1

m
}

|B((k − 1 + b)2−n+a)−B((k + b)2−n+a)| > c
√

2−n+a log(2n+a)

}

≤ 2nm2P{X > c
√

log(2n)}

≤ m2

c
√

log(2n)

1√
2π

2n(1− c
2

2
). (2.2)

Note that c can be taken to be computable, so for fixed m,n ∈ N the event

supk∈{1,...,2n} supa,b∈{0, 1
m
,...,m−1

m
}

|B((k − 1 + b)2−n+a)−B((k + b)2−n+a)| > c
√

2−n+a log(2n+a)
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is computable in B(t) and the right hand side of 2.2 is summable, giving a Solovay test which
every Martin-Löf random Brownian path B(t) will pass.

The standard proof of the equivalence of Solovay randomness and Martin-Löf randomness
gives a way of converting a Solovay test {Si} to a Martin-Löf test {Uj}, and knowing a k
such that a Martin-Löf random path B(t) 6∈ Uk gives us an n0 where the path no longer
appears in any Sn for n > n0. Thus the n0 given in the proof above is layerwise computable
in B. See, for example, [8] for a discussion on the equivalence of Martin-Löf randomness and
Solovay randomness.

Lemma 2.2.2. Given ε > 0 there exists m ∈ N such that for every interval [s, t] ⊂ [0, 1]
there exists an interval [s′, t′] ∈ Λ(m) with |t− t′| < ε(t− s) and |s− s′| < ε(t− s).

Proof. Choose m large enough to ensure that 1
m
< ε

4
and 21/m < 1 + ε

2
. Given an interval

[s, t] ⊂ [0, 1], we first pick n such that 2−n ≤ t−s < 2−n+1, then a ∈ {0, 1
m
, ..., m−1

m
} such that

2−n+a ≤ t− s < 2n+a+1/m. Next, pick k ∈ {1, ..., 2n} such that (k − 1)2−n+a < s ≤ k2−n+a,
and b ∈ {0, 1

m
, ..., m−1

m
} such that (k − 1 + b)2−n+a < s ≤ (k − 1 + b + 1

m
)2−n+a. Let

s′ = (k − 1 + b)2−n+a, then

|s− s′| ≤ 1

m
2−n+a ≤ ε

4
2−n+1 ≤ ε

2
(t− s).

Choosing t′ = (k + b)2−n+a ensures that [s′, t′] ∈ Λn(m) and, moreover,

|t− t′| ≤ |s− s′|+ |(t− s)− (t′ − s′)|

≤ ε

2
(t− s) + (2−n+a+1/m − 2−n+a)

≤ ε

2
(t− s) +

ε

2
2−n+a

≤ ε(t− s),

as required.

Proof of Proposition 2.2.2. Given c >
√

2, pick 0 < ε < 1 small enough to ensure that
c∗ := c− ε >

√
2 and m ∈ N as in Lemma 2.2.2. Using Lemma 2.2.1 we choose n0 ∈ N large

enough that, for all n ≥ n0 and all intervals [s′, t′] ∈ Λn(m), almost surely,

|B(t′)−B(s′)| ≤ c∗

√
(t′ − s′) log

1

(t′ − s′)
.
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Now let [s, t] ⊂ [0, 1] be arbitrary, with t − s < min(2−n0 , ε), and pick [s′, t′] ∈ Λ(m) with
|t− t′| < ε(t− s) and |s− s′| < ε(t− s). Then, recalling 2.1, there is a C such that

|B(t)−B(s)| ≤ |B(t)−B(t′)|+ |B(t′)−B(s′)|+ |B(s′)−B(s)|

≤ C

√
|t− t′| log

1

|t− t′|
+ c∗

√
(t′ − s′) log

1

(t′ − s′)
+ C

√
|s− s′| log

1

|s− s′|

≤ (4C
√
ε+ c∗

√
(1 + 2ε)(1− log(1− 2ε)))

√
(t− s) log

1

t− s
.

By making ε > 0 small, the first factor on the right can be chosen arbitrarily close to c. This
completes the proof of the theorem.

In addition to asking about behavior of the Brownian motion on small time intervals,
one might be interested in the asymptotic behavior of the sample paths. One aspect of
the asymptotic behavior is described in a classical result known as the Law of the Iterated
Logarithm. This result establishes that there is a function φ : (1,∞)→ R such that

lim sup
t→∞

B(t)

φ(t)
= 1.

Classically, the result holds almost surely, and Kjos-Hanssen and Nerode proved that this
classical almost surely result holds for every Martin-Löf random Brownian path.

Theorem 2.2.1 (Kjos-Hanssen, Nerode). Let B(t) : t ≥ 0 be a Martin-Löf random Brown-
ian path in C[0,∞). Then

lim sup
t→∞

|B(t+ h)−B(t)|√
2|h| log log(1/|h|)

= 1.

2.3 Strong Markov Property

In discussions of the strong Markov property we will need the concept of a filtration, which
is an increasing sequence of σ-algebras on a probability space. The following definitions and
exposition follow the book by Mörters and Peres [26].

Definition 2.3.1

1. A filtration on a probability space (Ω,F ,P) is a family (F(t) : t ≥ 0) of σ-algebras
such that F(s) ⊂ F(t) ⊂ F for all s < t.

2. A probability space together with a filtration is a filtered probability space.
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Suppose we have a Brownian motion {B(t) : t ≥ 0} defined on some probability space,
then we can define a filtration (F0(t) : t ≥ 0) by letting

F0(t) = σ(B(s) : 0 ≤ s ≤ t)

be the σ-algebra generated by the random variable B(s), for 0 ≤ s ≤ t. Intuitively, this
σ-algebra contains all the information available from observing a process up to time t.

We can also define a slightly larger σ-algebra F+(s) defined by

F+(s) =
⋂
t>s

F0(t).

The family (F+(t) : t ≥ 0) is again a filtration and F+(s) ⊃ F0(s), and intuitively F+(s)
is a bit larger than F0(s), allowing an additional infinitesimal glance into the future.

The following classical result tells us that if an event is dependent only on the “germ” of
Brownian motion, that is, on an infinitesimal small interval to the right of the origin, then
that event has probability 0 or 1. We will use the Blumenthal 0-1 law several times in the
following chapters.

Theorem 2.3.1 (Blumenthal 0-1 law). Let x ∈ Rd and A ∈ F+(0). Then Px(A) ∈ {0, 1}.

See Theorem 2.7 in Mörters and Peres for a proof and further discussion of the signifi-
cance of this result.

Now we turn our attention to the strong Markov property and a suitable effectivation for
the context of Martin-Löf random Brownian motion.

The classical strong Markov property states that Brownian motion is started anew at
each almost surely finite stopping time. A stopping time can be thought of as the first
moment where a random event related to the path happens - for example, the first exit time
of a planar Brownian motion from a circle with a given radius is an almost surely finite
stopping time. In looking at algorithmically random Brownian motion, we will talk about
almost surely finite stopping times which are layerwise computable from the path.

Definition 2.3.1.
A random variable T with values in [0,∞) and defined on a probability space with

filtration (F(t) : t ≥ 0) is called a stopping time with respect to (F(t) : t ≥ 0) if {T ≤ t} ∈
F(t) for every t ≥ 0.

We will make use of the following useful facts about stopping times. (See [26])

• Every deterministic time t ≥ 0 is a stopping time with respect to every filtration
(F(t) : t ≥ 0).
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• If (Tn : n ∈ N) is an increasing sequence of stopping times with respect to a filtration
(F(t) : t ≥ 0) and Tn → T , then T is also a stopping time with respect to (F(t) : t ≥ 0),
because

{T ≤ t} =
∞⋂
n=1

{Tn ≤ t} ∈ F(t)

Theorem 2.3.2 (Strong Markov Property). For every almost surely finite stopping time T ,
the process

{B(T + t)−B(T ) : t ≥ 0}

is standard Brownian motion.

Theorem 2.3.3 (Constructive Strong Markov Property). Let g be a layerwise computable
function from the space of continuous functions from Rn to R≥0 describing an almost surely
finite stopping time (e.g. g(f(t)) describes first zero of f(t) after some rational q; see Chapter
3 for a discussion on layerwise computability of zeros). Then for B a Martin-Löf random
Brownian path,

W (t) = B(g(B(t)) + t)−B(g(B(t)))

is also a Martin-Löf random Brownian path.

Proof. The strong Markov property states that for T an almost surely finite stopping time,
the map B(t) 7→ B(t + T ) − B(T ) is a Wiener measure preserving map from C[I,Rn] to
C[I,Rn]. For T = g(B(t)) a layerwise computable function of B, this map is layerwise
computable and so preserves Martin-Löf random elements of C[I,Rn] [16].

2.4 Points of Increase

Definition 2.4.1.
A function f : R→ R has a global point of increase in the interval (a, b) if there is a point

t0 ∈ (a, b) such that f(t) ≤ f(t0) for all t ∈ (a, t0) and f(t0) ≤ f(t) for all t ∈ (t0, b). A point
t0 is a local point of increase for f if there is an interval (a, b) for which t0 is a global point
of increase. We say that a sequence of real numbers s0, s1, . . . , sn has a point of increase at
k if s0, . . . , sk−1 ≤ sk and sk ≤ sk+1, . . . , sn.

Theorem 2.4.1 (See [26] Theorem 5.14). Classical Brownian motion almost surely has no
local points of increase.

Theorem 2.4.2 (Theorem 13.1 in [28]). Let S0, S1, . . . , Sn be a random walk where the
independent identically distributed increments Xi = Si−Si−1 have mean 0 and finite variance.
Then

P(S0, S1, . . . , Sn has a point of increase) ≤ C

log n
,

for n > 1, where C does not depend on n.
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Corollary 2.4.1. Martin-Löf random paths of Brownian motion do not have points of in-
crease.

Proof. Consider any interval (a, b). Without loss of generality, assume a and b are com-
putable.

By construction, sampling the class of Martin-Löf random Brownian motion on any fixed
set of reals of the form i

2k
, i+1

2k
, . . . , j

2k
gives a class of random walks with mean 0 and finite

variance.
For a given n, choose k large enough that we can find n+ 1 such dyadic points in (a, b);

call them S0, . . . , Sn. We know that

P(S0, S1, . . . , Sn has a point of increase) ≤ C

log n
,

Thus, sampling the dyadic points in (a, b), a computable interval, with increasingly large
denominators (i.e. increasingly small intervals) forms a Martin-Löf test on the set of contin-
uous functions, so any Martin-Löf random Brownian path does not have points of increase.
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Chapter 3

Zero sets of Brownian paths

Definition 3.0.2.
Let B(t) be a one-dimensional standard Brownian path. We will denote the zero set of

B by
ZB = {t : B(t) = 0}.

In classical probability theory, the zero set of Brownian motion is an interesting and
much-studied random object. Almost surely, it is a closed set with no isolated points - so
it is a perfect set, and therefore uncountable. It also, almost surely, has Lebesgue measure
zero, so in a sense it is a small set. An obvious interesting question then is to ask the fractal
dimension of the set. Let dim denote (classical) Hausdorff dimension. The following result is
well known in classical probability theory; see, for example, the book by Mörters and Peres
[26].

Theorem 3.0.3. Let {B(t) : 0 ≤ t ≤ 1} be a linear Brownian motion. Then, almost surely,

dim(Zeros ∩ [0, 1]) =
1

2

In this chapter, we will show that the classical results hold in the context of Martin-Löf
random Brownian motion, and extend the classical results by (almost) classifying the effective
Hausdorff dimension of the zero set of a Martin-Löf random Brownian path.

Effective Hausdorff dimension is a modification of Hausdorff dimension for the com-
putability setting. Intuitively, effective Hausdorff dimension describes how “computably
locatable” a point or set is in addition to its size. For example, an algorithmically random
point in Rn has effective Hausdorff dimension n because it can’t be computably located any
more precisely than a small computable ball, which has (classical) Hausdorff dimension n.

There are many equivalent definitions of effective Hausdorff dimension, but we will use
the following definition of Mayordomo [25]. See the book by Downey and Hirschfeldt [8], or
papers by Lutz [23] and Reimann [29, 32] for more details.
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Definition 3.0.3. The effective Hausdorff dimension of X ∈ 2ω is

cdim(x) := lim inf
n

K(X � n)

n

This definition can be extended to real numbers by identifying them with their binary
representation.

The majority of this chapter will be devoted to characterizing the effective dimension of
the zeroes of Martin-Löf random paths. This can be broken down in two questions.

1. Given a Martin-Löf random B, what is the set {cdim(x) | x > 0 and x ∈ ZB}?

2. Given a real x, can we give a necessary or sufficient condition in terms of the effective
dimension of x for the existence of some Martin-Löf random path which has a zero
at x?

As to the first question, Kjos-Hanssen and Nerode [20] have showed that with proba-
bility 1 over B, {cdim(x) | x > 0 and x ∈ ZB} is dense in [1/2, 1]1. We make this more
precise by showing that for every Martin-Löf random path B (not just almost all paths)
{cdim(x) | x > 0 and x ∈ ZB} is contained in [1/2, 1] and contains all the computable reals
> 1/2 of this interval.

We will answer the second question by proving that having effective dimension at least
1/2 is necessary, while having effective strictly greater than 1/2 is sufficient (although having
dimension 1/2 is not sufficient).

3.1 Effective version of Kahane’s Theorem

First we will prove an effective version of the following theorem of Kahane’s, which we will
need in the next section.

Theorem 3.1.1 (Kahane). Let E1 and E2 be two (disjoint) closed subsets of [0, 1] such that
dim(E1 × E2) > 1/2. Then:

P(B[E1] ∩B[E2] 6= ∅) > 0

(where B[E] is the set {B(t) : t ∈ E} and dim denotes classical Hausdorff dimension).
We shall prove the following.

Theorem 3.1.2. Let E1 and E2 be two (disjoint) Π0
1 classes such that dim(E1 ×E2) > 1/2

then:

(i) There exists a Martin-Löf random path B such that B[E1] ∩B[E2] 6= ∅
1this is actually a stronger form of the theorem proven in [20], but the proof of the latter can easily be

adapted
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(ii) Given a fixed Martin-Löf random path B, there exists an integer c such that B[E1/c]∩
B[E2/c] 6= ∅

Proof. First of all, observe that item (i) of the theorem follows from item (ii). Indeed, if we
have a Martin-Löf random path B and an integer c such that B[E1/c]∩B[E2/c] 6= ∅, by the
scaling property, 1√

c
B(ct) is also Martin-Löf random and satisfies (i). Thus we only need

to prove (ii). For this we will use the classical version of Kahane’s theorem, together with
Blumenthal’s 0-1 law and some recent results from algorithmic randomness.

Consider the scaling map S : B 7→ 1
2
B(4t). As we saw in Corollary 2.1.1, S is computable

and preserves Wiener measure P on C[0, 1]. Moreover, this map is ergodic. Indeed, let A
be an P-measurable event which is invariant under S, i.e we have B ∈ A ⇔ S(B) ∈ A. By
induction, B ∈ A ⇔ ∀nSn(B) ∈ A. The function Sn(B) on [0, 1] only depends on the values
of B on [0, 4−n]. Therefore the event A, which is equal to [∀nSn(B) ∈ A], only depends on
the germ of B. By Blumenthal’s 0-1 law, this ensures that A has probability 0 or 1. Thus
S is ergodic.

Now, consider the set
U = {B | B[E1] ∩B[E2] = ∅}

We claim that U is a Σ0
1 subset of C([0, 1]). This is because of a classical result in computable

analysis: the image of a Π0
1 class by a computable function is a Π0

1 class. This fact is uniform:
from an index of a Π0

1 class P and a computable function f on can effectively compute the
index of the Π0

1 class f [P ]. By uniform relativization, there is a computable function γ s.t.
given a pair (f, P ) where f is a continuous function given as oracle, and P is a Π0

1 class of
index e, γ(e) is an index for f [P ] as a Π0,f

1 -class. Here we have two Π0
1 classes E1 and E2,

say of respective indices e1 and e2. By the above discussion B[E1] and B[E2] have respective
indices γ(e1) and γ(e2) as Π0,B

1 -classes and since the intersection of two Π0
1 classes is index-

computable, there is a computable function θ such that B[E1]∩B[E2] has index θ(e1, e2) as
a Π0,B

1 -class. Since one can computably enumerate, uniformly in the oracle B, the indices of
Π0,B

1 -classes, it follows that the set U is Σ0
1, as wanted.

We can now apply the effective ergodic theorem 1.4.1: since U has measure less than 1 (by
Kahane’s theorem) and is a Σ0

1 set, there are infinitely many n such that Sn(B) /∈ U (in fact,
the set of such n’s is a subset of N of positive density), i.e., such that B[E1/2

n]∩B[E2/2
n] 6= ∅.

3.2 An initial result toward classifying the dimension

spectrum of zeroes

The next theorem is a direct consequence of the effective version of Kahane’s theorem.

Theorem 3.2.1. Given a Martin-Löf random path B and computable real α > 1/2, there
exists a real x in ZB of constructive dimension α.
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Proof. Let B be such a path and α such a real. Consider the Bernoulli measure µp (i.e.,
the measure where each bit has probability p of being a zero, independently of all other
bits) such that p < 1/2 and −p log p − (1 − p) log(1 − p) = α. Since α is computable, so
is p (and hence µp), because the function x 7→ −x log x − (1 − x) log(1 − x) is computable
and increasing on [0, 1/2]. Let E1 = {0} and E2 be the complement of the first level of the
universal Martin-Löf test for µp (it is a Π0

1 class since µp is computable). It is well-known
that every set of positive µp-measure has Hausdorff dimension ≥ α, and moreover that every
µp random real has constructive Hausdorff dimension α (see for example Reimann [29]).
Applying Theorem 3.1.2, there exists some c such that B[E1/2

c] ∩ B[E2/2
c] 6= ∅. That is,

there is some x ∈ E2 such that B(2cx) = 0. Multiplying by 2c just adds c zeros in the binary
expansion of x, thus 2cx has the same constructive dimension as x, which is α.

3.3 Effective Dimension of zeroes

We now address the second of the two above questions: what properties (in terms of effective
dimension or Kolmogorov complexity) characterize the reals that belong to ZB for some
Martin-Löf random B?

To find the effective dimension of zeros, we will first need to know the probability that
B(t) has a zero in a given interval [a, a+ ε].

Proposition 3.3.1. [28] For any ε ∈ (0, 1) and a > 0

P0 (B(s) = 0 for some s ∈ [a, a+ ε]) =
2

π
arctan

(√
ε

a

)
which is ∼ 2

πτ

√
ε as ε tends to 0.

We will also need the following theorem which estimates the probability for B to hit two
intervals of the same length.

Proposition 3.3.2. Let 0 < a < b < 1 and ε > 0. Suppose that the intervals [a, a + ε] and
[b, b+ ε] are disjoint. Let δ be the distance between them (i.e., δ = b− a− ε). Let A1 be the
event “B(s) = 0 for some s1 ∈ [a, a + ε]” and A2 be “B(s) = 0 for some s2 ∈ [b, b + ε]”.
Then

P0 (A1 ∧ A2) ≤ ε ·O(1)√
aδ

where the term O(1) is a constant independent of a, b, ε.

Proof. In this proof, we make use of the following notation: given an event A, A↑τ the unique
(by assumption on A) event such that t 7→ B(t+ s) ∈ A↑τ if and only if t 7→ B(t) ∈ A.

Now, let A1 and A2 be the above events, and let us write

P0 (A1 ∧ A2) = P0(A1)P0(A2 | A1)
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The term P0(A1) is, by Proposition 3.3.1, equal to O(
√

ε
a
). It remains to evaluate the term

P(A2 | A1). The event A2 only depends on the values of B on the interval [b, b+ ε], thus

P0(A2 | A1) =

∫
z∈R

Pz(A↑(a+ε)
2 ) f(z) dz

where f is the density function of B(a + ε) conditioned by A1. By shift invariance of

the Wiener measure, we observe that in this expression, the term Pz(A↑(a+ε)
2 ) is equal to

Pz(B has a zero in [δ, δ + ε]). This is, in turn, always bounded by P0(B has a zero in [δ, δ +
ε]), by Proposition 3.3.1. Thus

P0(A2 | A1) =

∫
z∈R

Pz(A↑(a+ε)
2 ) f(z) dz

≤
∫
z∈R

P0(A↑(a+ε)
2 ) f(z) dz

≤ P0(A↑(a+ε)
2 )

≤ P0(B has a zero in [δ, δ + ε])

≤ 2

π
arctan

(√
ε

δ

)
≤ 2

π

√
ε

δ

We have thus established the desired result.

Theorem 3.3.1. If B is a Martin-Löf random path, then all members of the set ZB \ {0}
have effective dimension at least 1/2.

Proof. Suppose that for a given B∗, we have B∗(a) = 0 for some a such that cdim(a) < 1/2.
We will show that B∗ is not Martin-Löf random.

Let cdim(a) < ρ < 1/2. Take also some rational b such that 0 < b < a. By definition of
constructive dimension, for all n, there exists a prefix σ of a such that K(σ) ≤ ρ|σ| −n. For
all strings σ such that 0.σ > b, let Iσ = [0.σ, 0.σ + 2−|σ|] and the event

Eσ : [B has a positive and a negative value in Iσ]

The event Eσ is a Σ0
1 subset of C[0, 1], uniformly in σ. The probability of Eσ is O(2−|σ|/2)

by Proposition 3.3.1, with the multiplicative constant depending on b. (We will use big-O
notation rather than named constants, because our estimates will change the constants in
ways that we do not need to keep track of.) Define

Un =
⋃{
Eσ | K(σ) ≤ ρ|σ| − n

}
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By assumption, B∗ belongs to almost all Un. However, we have

P(B ∈ Un) ≤ O(1) ·
∑
{2−|σ|/2 | K(σ) ≤ ρ|σ| − n

}
≤ O(1) ·

∑
σ

2−K(σ)−n

≤ O(2−n)

Thus the Un form a Martin-Löf test, which shows that B∗ is not Martin-Löf random.

We now prove an (almost) counterpart of Theorem 3.3.1:

Theorem 3.3.2. Let x ∈ [0, 1] be of effective dimension strictly greater than 1/2. Then
there exists a Martin-Löf random path B such that B(x) = 0.

The proof is much more difficult and involves the notion of α-energy. Given a measure
µ on R and α ≥ 0, the α-energy of µ is the quantity∫ ∫

dµ(x)dµ(y)

|x− y|α

This quantity might be finite or infinite, depending on the value of α.

Lemma 3.3.1. Let β > α ≥ 0. If µ is a measure satisfying the conditions of Frostman’s
lemma with exponent β (i.e., µ(A) ≤ c·|A|β for every interval A), then µ has finite α-energy.

Proof. Morters-Peres, proof of Theorem 4.32.

Lemma 3.3.2. Let β > 1/2 and let µ be a finite Borel measure on [0, 1] such that for every
dyadic interval I, µ(I) ≤ c · |I|β for some fixed constant c (and thus by the previous lemma
µ has finite 1/2-energy). Then there exists a constant c′ > 0 such that the following holds:
for any set A ⊆ [1/2, 1] which is a countable union of closed dyadic intervals

P0

(
ZB ∩ A 6= ∅

)
≥ c′ · µ(A)2

Proof. It suffices to prove this theorem for a finite number of intervals, and up to splitting
them if necessary we can assume that they all have the same length 2−n for some n. Let
I1, ..., Ik be those intervals. Define for all k the random variable Xk by

Xk = µ(Ik) · 2(n/2) · 1{ZB∩Ik 6=∅}

and Y =
∑k

j=1Xj. We want to show that P(Y > 0) ≥ µ(A)2

C
for constant C which does not

depend on A, which immediately gives the result (since Y > 0 is equivalent to ZB ∩A 6= ∅).
To do so, we will use the Chebychev-Cantelli inequality

P(Y > 0) ≥ E(Y )2

E(Y 2)
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Let us evaluate separately E(Y ) and E(Y 2). We have

E(Y ) =
k∑
j=1

E(Xj)

≥
k∑
j=1

2(n/2) · µ(Ij) · C1 · (
√

2−n)

≥ C1

k∑
j=1

·µ(Ij)

≥ C1 · µ(A)

for some constant C1 6= 0, the second inequality coming from Proposition 3.3.1.
Let us now turn to E(Y 2), which we need to bound by a constant. We have

E(Y 2) =
∑

1≤i≤k
1≤j≤k

E(XiXj)

To evaluate this sum, we decompose it into three parts:

E(Y 2) =
k∑
i=1

E(X2
i ) + 2

∑
1≤i<j≤k

Ii,Ij adjacent

E(XiXj) + 2
∑

1≤i<j≤k
Ii,Ij nonadjacent

E(XiXj)

The first part is an easy computation. For all i,

E(X2
i ) = µ(Ii)

2 · 2n · P{ZB ∩ Ii 6= ∅}
= O

(
µ(Ii)

2 · 2n · 2−(n/2)
)

= O
(
µ(Ii) · 2−βn · 2n · 2−(n/2)

)
= µ(Ii) ·O

(
2(1/2−β)n

)
= µ(Ii) ·O(1)

(for the third equality, we use the fact that µ(Ii) ≤ |Ii|β, and for the fifth one the fact
that β > 1/2). Thus

k∑
i=1

E(X2
i ) =

k∑
i=1

µ(Ii) ·O(1) = O(1)

For the second part, we use a rough estimate: first notice that

E(XiXj) = µ(Ii) · µ(Ij) · 2n · P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅}

and for the second part only, we will use the trivial upper bound:

P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅} ≤ P{ZB ∩ Ii 6= ∅} = O(2−n/2)



CHAPTER 3. ZERO SETS OF BROWNIAN PATHS 28

Combining this with µ(Ij) ≤ 2−βn, we get:

E(XiXj) = µ(Ii) ·O(2(1/2−β)n) = µ(Ii) ·O(1)

Moreover, each interval Ii has at most two adjacent intervals Ij. Thus,

∑
1≤i<j≤k

Ii,Ij adjacent

E(XiXj) ≤ 2
k∑
i=1

µ(Ii) ·O(1) = O(1)

Finally, for the third part, we will use the fact that the 1/2-energy of µ is finite. Let us, for
a pair of nonadjacent intervals Ii, Ij with max(Ii) < min(Ij), denote by g(i, j) the length of
the gap between the two, i.e., g(i, j) = min(Ij)−max(Ii). We have∑

1≤i<j≤k
Ii,Ij nonadjacent

E(XiXj) =
∑

1≤i<j≤k
Ii,Ij nonadjacent

µ(Ii) ·µ(Ij) ·2n ·P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅} (3.1)

By Proposition 3.3.2,

P{ZB ∩ Ii 6= ∅ ∧ ZB ∩ Ij 6= ∅} =
2−n ·O(1)√

g(i, j)
(3.2)

(note that we use the fact that Ii and Ij are contained in [1/2, 1], hence min(Ii) is bounded
away from 0).

Thus, ∑
1≤i<j≤k

Ii,Ij nonadjacent

E(XiXj) =
∑

1≤i<j≤k
Ii,Ij nonadjacent

µ(Ii) · µ(Ij)√
g(i, j)

·O(1) (3.3)

Note that, since Ii and Ij are non-adjacent dyadic intervals of length 2−n, we have g(i, j) ≥
2−n. Therefore, for two reals x, y, if x ∈ Ii and y ∈ Ij, then |y − x| ≤ 3g(i, j). By this
observation, we have∑

1≤i<j≤k
Ii,Ij nonadjacent

µ(Ii) · µ(Ij)√
g(i, j)

≤ O(1) ·
∫ ∫

dµ(x)dµ(y)

|x− y|1/2
≤ O(1)

(the last inequality comes from the fact that the 1/2-energy of µ is finite by Lemma 3.3.1).

We have thus established that E(Y 2) = O(1), which completes the proof.

Let KM denote the ‘a priori’ Kolmogorov complexity function (see [8, Section 6.3.2]).
Recall that KM(σ) = K(σ) + O(log |σ|), thus in particular K can be replaced by KM in
the definition of effective dimension. The reason we need KM instead of K is the following
result of Reimann [30, Theorem 14], which we will apply in the proof of Theorem 3.3.2: Let
z be a real such that KM(z � n) ≥ βn − O(1). Then, there exists a measure µ such that
µ(A) = O(|A|β) for all intervals A, and such that z is Martin-Löf random for the measure µ.
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Proof of Theorem 3.3.2. Let z be of dimension α > 1/2. Let β be a rational such that
1/2 < β < α. Then for almost all n, KM(z � n) ≥ βn. By Reimann’s theorem, let µ be a
measure such that µ(A) = O(|A|β) for all intervals A, and such that z is Martin-Löf random
for the measure µ.

For all n, let Kn be the complement of the n-th level of the universal Martin-Löf test
over (C[0, 1],P) and consider the set

Un = {x | ∀B ∈ Kn B(x) 6= 0}

We claim that Un is Σ0
1 uniformly in n, and µ(Un) = O(2−n/2). To see that it is Σ0

1 suppose
that x ∈ Un, i.e., B(x) 6= 0 for all B ∈ Kn. The set Kn being compact, the value of |B(x)|
for B ∈ Kn reaches a positive minimum. Thus there is a rational a such that B(x) > a for
all B ∈ Kn. By uniform continuity of the members of Kn (ensured by Proposition 2.2.1),
there is a rational closed interval I containing x such that |B(t)| > a/2 for all t ∈ I and
B ∈ Kn. Thus Un is the union of intervals (s1, s2) such that min{B(t) : t ∈ [s1, s2]} > b for
some rational b and all B ∈ Kn. Moreover, the condition “min{B(t) : t ∈ [s1, s2]} > b for all
B ∈ Kn” is Σ0

1, because the function B 7→ min{B(t) : t ∈ [s1, s2]} is layerwise computable
(thus uniformly computable on Kn), and the minimum of a computable function on an
effectively compact set is lower semi-computable uniformly in a code for that set. This
shows that Un is Σ0

1.
To evaluate µ(Un), let us first observe that by definition of Un,

P0(ZB ∩ Un) ≤ P0(B ∈ Kn and ZB ∩ Un) + 2−n ≤ 2−n

Applying Lemma 3.3.2, it follows that µ(Un) = O(2−n/2), as wanted. Since z is Martin-Löf
random with respect to µ, it cannot be in all sets Un, and thus it must be the zero of some
Martin-Löf random path.

3.4 The case of points of effective dimension 1/2

In the previous section we showed that no point of constructive dimension less than 1/2
can be the zero of a Martin-Löf random Brownian path, and that every point of dimension
greater than 1/2 is necessarily a zero of some Martin-Löf random path. This leaves open
the question of what happens at constructive dimension exactly 1/2. Laurent Bienvenu
has provided a partial answer to this question, which I will include here for completeness.
He has shown that among points of constructive dimension 1/2, some are zeroes of some
Martin-Löf random Brownian path, and some are not.

The next theorem, which strengthens Theorem 3.3.1, gives a necessary condition for a
point to be a zero of some Martin-Löf random path.



CHAPTER 3. ZERO SETS OF BROWNIAN PATHS 30

Theorem 3.4.1. If x > 0 is a zero of some Martin-Löf random path, then∑
n

2−K(x�n)+n/2 <∞

It is interesting to notice the parallel with the so-called ‘ample excess lemma’ (see [8,
Theorem 6.6.1]): a real x is Martin-Löf random if and only if

∑
n 2−K(x�n)+n <∞.

Proof. The proof is an adaptation of that of Theorem 3.3.1. First take a rational a such that
0 < a. We shall prove the lemma for all x > a, which will be enough since a is arbitrary.
For each string σ consider, like in Theorem 3.3.1, the interval Iσ = [0.σ, 0.σ + 2−|σ|] and the
event

Eσ : [B has a positive and a negative value in Iσ]

Now, consider the function t defined on C[0, 1] by

t(B) =
∑

σ s.t. a<0.σ

2−K(σ)+|σ|/2 · 1Eσ(B)

The event Eσ is a Σ0
1 subset of C[0, 1], uniformly in σ. Thus the function t is lower semi-

computable. Moreover, the probability of Eσ is O(2−|σ|/2) by Proposition 3.3.1 (the multi-
plicative constant depending on a). Thus the integral of t is bounded, and therefore t is an
integrable test (see [14]). Let now B be a Martin-Löf random path and suppose B(x) = 0
for some x > a. Then for almost all n, a < 0.(x � n). Moreover, for every n, B having
a zero in Ix�n, it must in fact have a positive and a negative value on that interval (by
Proposition 3.5.2). Thus, by definition of t

t(B) +O(1) ≥
∑
n

2−K(x�n)+n/2

(the O(1) accounts for the finitely many terms such that a ≥ 0.(x � n)). But since B is
Martin-Löf random and t is a integrable test, we have t(B) <∞, which proves our result.

This theorem shows in particular that if x is the zero of some Martin-Löf random path,
then K(x � n)− n/2→ +∞.

We now give a sufficient condition which actually is very close to our necessary condition.

Proposition 3.4.1. Let f : N → N be a function such that
∑

n 2−f(n) < ∞. Let µ be a
Borel measure on [0, 1] such that for every interval A of length ≤ 2−n, µ(A) ≤ 2−αn−f(n).
Then µ has finite α-energy.
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Proof. For now, let us fix some x. Define for all n the interval In to be [x− 2−n+1, x− 2−n]∩
[0, 1] and Jn = [x+ 2−n, x+ 2−n+1] ∩ [0, 1]. Then∫

dµ(y)

|x− y|α
≤

∑
n

∫
y∈In

dµ(y)

|x− y|α
+
∑
n

∫
y∈Jn

dµ(y)

|x− y|α

≤
∑
n

2αnµ(In) +
∑
n

2αnµ(Jn)

≤
∑
n

2αn2−αn−f(n) +
∑
n

2αn2−αn−f(n)

≤ 2 ·
∑
n

2−f(n)

< ∞

Therefore, the µ-integral over x of
∫ dµ(y)
|x−y|α is itself finite, which is what we wanted.

Theorem 3.4.2. Let f : N→ N be a nondecreasing computable function such that f(n+1) ≤
f(n) + 1 for all n, and such that

∑
n 2−f(n) < ∞. Let x be a real such that KM(x � n) ≥

n/2 + f(n) +O(1). Then x is the zero of some Martin-Löf random path.

Proof. Let f be such a function and x such a real. By a result of Reimann [30, Theorem
14], there exists a measure µ such that µ(A) ≤ 2−n/2−f(n)+O(1) for all intervals of length
≤ 2−n such that x is Martin-Löf random with respect to µ. By Proposition 3.4.1, µ has
finite 1/2-energy. The rest of the proof is identical to the proof of Theorem 3.3.2.

Theorem 3.4.3. Let 0 < α < 1 and let f : N → N be a Lipschitz function such that
f(n) = o(n). Then there exists x ∈ [0, 1] such that K(x � n) = αn+ f(n) +O(1).

Remark 3.4.1. This theorem was proven by J. Miller (unpublished) for f = 0.

Proof. Fix a large integer m, which we will implicitly define during the construction. We
will build the sequence x by blocks of length m. For m large enough, the empty string has
complexity less than 3 logm. Suppose we have already constructed a prefix σ of x such that
|K(σ � n) − αn + f(n)| ≤ 3 logm for all n ≤ |σ| multiple of m. Pick a string τ of length n
such that

K(τ | σ) ≥ m

We then have
K(στ) ≥ K(σ) +m− 2 logm−O(1)

On the other hand
K(σ0m) ≤ K(σ) + 2 logm+O(1)

For each i ≤ m, consider the “mixture” between 0m and τ : ρi = (τ � i)0m−i. Since
ρi and ρi+1 differ by only one bit in position ≤ m from the right, we have |K(σρi) −
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K(σρi+1)| ≤ 2 logm + O(1). By this ‘continuity’ property, there must be some i such that
|K(σρi)−αn−f(n)| ≤ 2 logm+O(1) (here the O(1) constant depends on f , but not on m).
Thus, for m large enough, we get |K(σρi)−αn−f(n)| ≤ 3 logm. Thus, if m is large enough,
we can iterate this argument to build a sequence x such that |K(x � n)−αn−f(n)| ≤ 3 logm
for all n multiple of m. Since αn + f(n) is a Lipschitz function, this is sufficient to ensure
|K(x � n)− αn− f(n)| = O(m).

We can finally prove the promised theorem.

Theorem 3.4.4. Among reals of effective dimension 1/2, some are zeros of some Martin-Löf
random path, and some are not.

Proof. By Theorem 3.4.3, first consider a real x such that K(x � n) = n/2 + O(1). This
real has effective dimension 1/2 and cannot be a zero of a Martin-Löf random path (Theo-
rem 3.4.1).

Applying Theorem 3.4.3 again, let y be a real such that K(y � n) = n + 4 log n + O(1).
Since for every σ, KM(σ) ≥ K(σ) − K(|σ|) − O(1) ≥ K(σ) − 2 log |σ| − O(1), it follows
that KM(y � n) ≥ n+ 2 log n−O(1), and thus y is a zero of some Martin-Löf random path
(Theorem 3.4.2). Of course, y has effective dimension 1/2 as well.

This section leaves open the existence of a precise characterization of the reals x of
dimension 1/2 for which there exists a Martin-Löf random path B such that B(x) = 0.
Short of an exact characterization, it would be interesting to know whether this depends
on Kolmogorov complexity alone. By this, we mean the following question: if K(x � n) ≤
K(y � n) + O(1) and x is a zero of some Martin-Löf random path, is y a zero of some
Martin-Löf random path? We ask the same question with KM instead of K.

3.5 Further results about zeroes of Brownian paths

Lemma 3.5.1. For B a Martin-Löf random Brownian path, B has zeros in all intervals
(0, ε).

Proof. Fix a real 0 < 2−k < ε for some k. By 3.3.1, we know that the probability of a
Martin-Löf random Brownian path not having a zero in any interval of the form (2−k−n, 2−k)
is

1− 2

π
arctan

(
2−k − 2−k−n

2−k−n

)
which limits to zero, computably, as n → ∞. This gives a Schnorr test for having a
zero before a real 2−k, which every Martin-Löf random Brownian path must pass, so ev-
ery Martin-Löf random Brownian path has a zero before every real of the form 2−k, so has
a zero in every interval (0, ε).
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Proposition 3.5.1. For B a Martin-Löf random Brownian path,

ZB = {t ≥ 0 : B(t) = 0}

is a closed set with no isolated points.

Proof. ZB is closed because B(t) is continuous.
To see there are no isolated points, consider τq = inf{t ≥ q : B(t) = 0}, the first zero

after some q ∈ Q. By closure of ZB, the infimum is a minimum. τq is layerwise computable
in B and is an almost surely finite stopping time. Thus by the constructive strong Markov
property, τq is not an isolated zero from the right.

Now, consider zeroes that are not of the form τq. Call some such zero t0. To see it is not
isolated from the left, consider a sequence of rationals qn ↑ t0. By assumption on t0, for all
n there is some τqn ∈ (qn, t0), so t0 is not an isolated zero from the left.

Thus far we have proved that the zero set is a perfect set, and we will see in further
sections that all zeroes have high effective dimension, meaning they are difficult to describe
computably. However, it turns out that many of the zeroes are easy to describe - in fact,
layerwise computable - from the path B(t). This result and its corollaries will prove very
useful, and they inspired the proof given in chapter four that the solution to the Dirichlet
problem is computable.

First, we will show that the maximum (and minimum) values of a Martin-Löf random
path on a given computable interval cannot be computable. This observation was first made
by Fouché in [11], though the proof given here is different than that suggested by Fouché .

Lemma 3.5.2. For B(t) a Martin-Löf random Brownian path and [r1, r2] a computable
interval, the maximum and minimum of B(t) on [r1, r2] are layerwise computable in B(t).

Proof. To compute the maximum of B(t) on [r1, r2] to within ε, we run the following simple
algorithm: Pick h0 small enough so thatB(t) obeys a modulus of continuity with constant c =
2 (see proposition 2.2.2) and so that 2

√
h0 log(1/h0) < ε. Then we know that the maximum

of the values B(r1), B(r1 + h0), B(r1 + 2h0), ..., B(r2) must be within 2
√
h0 log(1/h0), and

therefore within ε, of the maximum value of B(t) on [r1, r2]. The minima are also layerwise
computable by the same argument.

Note that this argument does not establish the layerwise computability of the time(s) at
which the maximum occurs; the best we can say using this argument is that the time(s) are
Π0

1 in B, and the argument uses the randomness deficiency of B and so is not uniform.

Proposition 3.5.2. Local maxima and local minima of a Martin-Löf random Brownian path
are Martin-Löf random reals (in particular, they cannot be computable reals).
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Proof. Fix two rational numbers x < y. It is known classically that max(B, 0, y) is dis-
tributed according to the density function

f(a) = 2 · e
−a2/(2y)

√
2πy

for a ≥ 0, and f(a) = 0 for a < 0 (see [26, Theorem 2.21]). By the Markov property,
max(B, x, y) has the same distribution as B(x) + max(B, 0, y − x), and thus is distributed
according to the density function

g(a) =
e−a

2/(2x)

√
2πx

+ 2
e−a

2/(2(y−x))√
2π(y − x)

for a ≥ 0, and f(a) = 0 for a < 0. It is known that if a computable measure µ on R admits
a continuous positive density function, then its random elements are exactly the Martin-Löf
random reals [17]. Since the function

B 7→ max(B, x, y)

is layerwise computable, its image measure is computable, and by the above has a continuous
positive density function. Moreover, by the randomness preservation theorem since the
function

B 7→ max(B, x, y)

is layerwise computable, the image of a Martin-Löf random B is random for the image
measure, hence is Martin-Löf random for the uniform measure.

Now we can begin the proof of the main result of this subsection:

Proposition 3.5.3. For B a Martin-Löf random Brownian path, the first zero of B after
any given computable real q is layerwise computable from B.

We will need the following lemmas:

Lemma 3.5.3. It is layerwise computable in a Martin-Löf random path B(t) to see that
there is not a zero in a given interval [r1, r2] with computable endpoints.

Proof. This follows from 2.2.2 above. Because h0 is layerwise computable in B(t), we can,
layerwise computably in B, find increments of size h in [r1, r2] such that B(r1), B(r1 +
h), ..., B(r2) > 2h

√
log 1/h if B is bounded above zero, or B(r1), B(r1 + h), ..., B(r2) <

−2h
√

log 1/h if B is bounded below zero. Then 2.2.2 tells us that B(t) must be bounded
away from zero on [r1, r2].

Lemma 3.5.4. It is layerwise computable in B(t) to see that there is a zero in a given
interval [r1, r2] with computable endpoints.
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Proof. By Proposition 3.5.2, we know that the maxima and minima of B(t) on [r1, r2] must
have non-computable values, so any zero must have times s1 and s2 arbitrarily close on either
side where B(s1) < 0 and B(s2) > 0. In fact, there must be computable such points, as
continuity of the function guarantees open intervals arbitrarily close to the zero where the
function is always positive and always negative.

The construction for B(t) given above has layerwise computable convergence, so we
can layerwise computably search through any dense set of computable times in [r1, r2] and
eventually find times s1, s2 where B(s1) < 0 and B(s2) > 0

Proof of 3.5.3. Then we can (layerwise in B) compute the first zero after a given computable
real q in the following way: We start by dividing the interval [q, 1] into subintervals of size
1/2n0 for some suitable n0, then finding the closest such interval [l0, r0] that contains a zero,
as the endpoints l0, r0 will be computable when q is computable. We divide this interval
into intervals of size 1/2n1 for n1 > n0, and finding the closest such interval [l1, r1] to l0
that contains a zero. Continuing in this way, we will have convergent sequences l0, l1, ... and
r0, r1, ... that converge from the left and from the right toward the first zero after q.

Note the fact that we are crossing zero did not play a large role in the proof - in lemmas
3.5.3 and 3.5.4 we could just as easily have checked if B(t) was greater or less than a for any
computable a. This gives us the following corollary.

Corollary 3.5.1. For B(t) a standard one-dimensional Martin-Löf random Brownian path,
it is layerwise computable to see if B(t) crosses a computable value a in computable time
interval [t1, t2], and thus the first hitting time of B(t) to any computable value a after any
computable time t is layerwise computable in B.
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Chapter 4

Dirichlet Problem

4.1 Brownian motion in higher dimensions

So far we have talked about Brownian motion on C[0, 1] or C[R≥0], but it is easy to extend
these definitions to Brownian motion in higher dimensions.

Definition 4.1.1.
If B1, ..., Bd are independent linear Brownian motions started in x1, ..., xd, then the pro-

cess {B(t) : t ≥ 0} given by B(t) = (B1(t), ..., Bd(t)) is d-dimensional Brownian motion
started in (x1, ..., xd). The d-dimensional Brownian motion started at the origin is also
called standard Brownian motion. One-dimensional Brownian motion is also called linear,
and two-dimensional Brownian motion is also called planar Brownian motion.

Theorem 4.1.1. A function B(t) = (B1(t), ..., Bd(t)) in the space of continuous functions
from [0,∞) to Rd with Wiener measure is a Martin-Löf random Brownian path if and only
if B1(t), ..., Bd(t) are mutually Martin-Löf random linear Brownian motion.

Proof. This follows immediately from Van Lambalgen’s theorem which states that (A,B) is
a Martin-Löf random element of a product space (X,µ)× (X,µ) if and only if A and B are
mutually Martin-Löf random elements of (X,µ).

4.2 Dirichlet Problem

The Dirichlet problem asks the following question: given a region U in Rn and a function φ
defined everywhere on the boundary ∂U of U , is there a unique, continuous function u such
that u is harmonic on the interior of U and u = f on ∂U? The Dirichlet problem arises
whenever one considers notions of potential - for example, the problem may be thought of as
finding the temperature of the interior of a heat-conducting region for which the temperature
on the boundary is known, or alternatively, finding the electric potential on the interior of a
region for which the charge on the boundary is known.
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These physical interpretations of the problem make it clear that there should be a unique
solution, and indeed, many ways of finding this unique solution are known. One method
of solving the Dirichlet problem which arises from an intuition of heat diffusion in a heat-
conducting substance uses the mathematical model of Brownian motion [19].

Definition 4.2.1.
Let U ⊂ Rd be a domain. We say that U satisfies the Poincaré cone condition at

x ∈ ∂U if there exists a cone V based at x with opening angle α > 0 and h > 0 such that
V ∩B(x, h) ⊂ U c, where B(x, h) denotes an open ball around x of radius h.

Theorem 4.2.1 (Kakutani). Suppose U ⊂ Rd is a bounded domain such that every boundary
point satisfies the Poincaré cone condition, and suppose φ is a continuous function on ∂U .
Let τ(∂U) = inf{t > 0 : B(t) ∈ ∂U}, which is an almost surely finite stopping time. Then
the function u : U → R given by

u(x) = Ex [φ(B(τ(∂U)))] , for x ∈ U,

is the unique continuous function harmonic on U with u(x) = φ(x) for all x ∈ ∂U .

By relativizing Proposition 3.5.3, we can use the layerwise computability of the hitting
time of Martin-Löf random Brownian motion to a computable line to show that the solution
to the Dirichlet problem is computable in the planar case when the boundary is a computable
curve and the condition on the boundary is both computable. Of course, we first need to
specify what we mean by that. In particular, there are several notions of computable curve,
see [33]. We will take the most general one: We assume that ∂U is computable in the sense
that there exists a computable sequence (Cn)n∈N such that for all n, Cn is a finite set of
squares in the 2-dimensional grid 2−nZ× 2−nZ whose union is connected, contains ∂U , and
every point inside this union of squares is at distance at most 2−n+2 of the curve. To formalise
the fact that the condition φ is computable, we assume that there is a uniformly computable
family (φn)n∈N, where each φn is a function which assigns a real value to each square c, in
such a way that this value is within ε(n) of the values of φ on ∂U ∩ c, and the values of two
adjacent squares are within ε(n) of each other, ε being a computable function which tends
to 0 computably in n.

Theorem 4.2.2 (Computable Dirichlet Problem). Let U be a bounded domain whose bound-
ary ∂U satisfies the Poincaré cone condition and φ a condition on the boundary. Assume
∂U and φ are computable in the sense described above. Then the solution to the Dirichlet
problem - the unique, continuous function u : U → R harmonic on U such that u(x) = φ(x)
for all x ∈ ∂U - is computable.

The rest of the section will be devoted to proving this result. The plan is to prove the
theorem in two steps:
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(i) First, we prove it in the particular case where ∂U is a squared curve, i.e., a closed
curve which is made of a finite number of vertical and horizontal (i.e, parallel to the
x-axis or y-axis) segments with rational endpoints, the list being given explicitly. As
we will see, in this case, we can apply the results of the previous sections to compute
the first time a Martin-Löf random path hits the curve.

(ii) Then we extend it to all computable functions γ by approximation. That is, we ap-
proximate ∂U by a squared curve with arbitrary precision and apply Step 1.

Let us first see how to apply the results of the previous section to planar Brownian
motion.

Lemma 4.2.1. For B(t) a Martin-Löf random planar Brownian motion started at a com-
putable point, seeing when B(t) hits the line parallel to either the x−axis or y−axis, if the
line is computable, is layerwise decidable in B(t).

Proof. Without loss of generality, say we are looking for the first time X(t) = α, for B(t) =
(X(t), Y (t)), α computable, B(t) started at q = (qx, qy) ∈ Q. This is equivalent to looking
for the first time X ′(t) = X(t) − qx, a standard 1-dimensional Brownian motion, crosses
qx − α, which follows from Corollary 3.5.1 above.

Lemma 4.2.2. For B(t) a Martin-Löf random planar Brownian motion started at a com-
putable point, the first time B(t) passes through a vertical or horizontal line segment with
computable endpoints is layerwise computable in B(t).

Proof. To layerwise computably find the first crossing time through the line segment, we run
the following algorithm. Let r0 = 0 be the first time considered. The first crossing of B(t)
through the line y = α after r0 is layerwise computable in B, call this time t1. If t1 falls
within the line segment, we are done.

Assuming t1 crosses the line away from the line segment, we will call the distance from
the line segment ε1 > 0. In order for B(t) = (X(t), Y (t)) to hit the line segment after t1,
X(t) must change by more than ε1. By Proposition 2.2.2, we can find an h1, layerwise in
X(t), such that this does not occur in (t1, t1 + h1). We choose r1 ∈ (t1 + h1/2, t1 + h1) to be
any rational time, and then continue the algorithm by finding the next crossing time t2 > r1

through the line y = α.
Because the line segment has computable vertices, B(t) will not cross through the vertex

of the line by Corollary 5.1.3. This tells us that before hitting the line segment, there is a
closest value εL > 0 away from the vertex of line segment such that B(t) crosses no closer
than εL to the vertex. As above, this εL is associated with a time hL within which X(t) will
not cross the line segment. As each εn ≥ εL, each hn ≥ hL > 0, so we are incrementing our
time steps by at least hL/2 at each stage. Therefore we are taking time steps small enough
so that we do not miss the first crossing time, but time steps which are always bounded away
from 0, so we must eventually find the first crossing time of B(t) through the line segment.
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We can now prove our theorem in the restricted case of an explicitly given squared curve.

Proposition 4.2.1. If U is a planar region such that ∂U is an explicitly given squared
curve and φ is a computable function on ∂U , then the solution to the Dirichlet problem is
computable for U .

Proof. By Lemma 4.2.2 the first hitting times on each line segment are computable uniformly
in starting point x and layerwise in B, and δU is composed of finitely many line segments
with computable endpoints, so the first hitting time τB(∂U) to the boundary is layerwise
computable in B, uniformly in the starting point. Since φ is computable, φ(τB(∂U)) is
computable uniformly in starting point x and layerwise in B.

By Theorem 1.8.2, the expression

u(x) = Ex [φ(B(τB(∂U)))] , for x ∈ U

is computable, uniformly in x, and by Kakutani’s classical result 4.2.1, this is the solution
to the Dirichlet problem.

Now, all we need to do is extend this last proposition to the general case.

Proof of Theorem 4.2.2. Let u be the solution of Dirichlet’s problem (we don’t know yet it
is computable, but we know it exists) for condition φ on ∂U . Given a point x ∈ U , we first
compute, for all n, an approximation Cn of ∂U which are squares of 2−nZ× 2−nZ. Compute
the largest set Q of squares of 2−nZ×2−nZ which (a) contains the square c which contains x,
(b) does not contain any square in Cn and (c) is 4-connected, i.e., every square of Qn should
share an edge with another member of Qn (unless there is only one square). Call Vn the
interior of the union of the squares in Qn. Observe that, by Jordan’s curve theorem, Vn
must be contained in U , since it contains a point in U , is connected, and is disjoint from
∂U . Observe also that each segment of ∂Vn must be the edge of a square c ∈ Cn, so we can
compute a condition ψ on ∂Vn which is equal to φn(c) on the edge of φn(c) (up to smoothing
it out around corners to ensure continuity).

Claim. For every point z ∈ ∂Vn, |ψ(z)−u(z)| < O(ε(n) + 2−n). Indeed, let c be the member
of Cn which has z on its edge. Every point of c is at distance at most 2−n+2 of the curve,
so there is a square c′ at distance O(2−n) of c′ which contains some point z′ ∈ ∂U , and the
value of φn(c′) is within ε(n) of the value of u(z′). Thus,

|ψ(z)− u(z)| ≤ |ψ(z)− φn(c′)|+ |φn(c′)− u(z′)|+ |u(z′)− u(z)|
≤ O(ε(n)) + ε(n) +O(2−n)

(for the last term, we use the fact that |z′−z| = O(2−n) and the fact that u is harmonic, hence
Lipschitz), the constants in the O-notations not depending on n, z′, z. To be precise, we need
to add the possible error induced by the ‘smoothing around corners’, but it itself is bounded
by O(ε(n)+2−n) since the φn-values of two adjacent segments of ∂Vn are O(ε(n)+2−n)-close
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to each other. . Thus, applying the restricted case of our theorem (Proposition 4.2.1) to ψ
and Vn, we can compute the value vn(x) of the solution to Dirichlet’s problem on ∂Vn with
condition ψ. But since |ψ − u| = |vn − u| is bounded by O(ε(n) + 2−n) by O(ε(n) + 2−n) on
∂Vn, this implies that |vn − u| is also bounded O(ε(n) + 2−n) on all of Vn (by the maximum
principle, since vn− u is harmonic). Thus, we have effectively obtained an approximation of
u(x) with precision O(2−n + ε(n)) uniformly in n and x, which means that u is computable.

Then letting Bx(t) be a Martin-Löf Brownian motion started at a point x in U , and
picking g(t) so that x is also inside the boundary g(t), let τg denote the first hitting time
of Bx(t) on g(t). By 4.2.1, ψ(Bx(τg)) is layerwise computable in B, uniformly in x, and is
within k · ε of u(Bx(τg)), so u(Bx(τg)) is also layerwise computable in B, uniformly in x.

So by the result of Hoyrup and Rojas that the integral of a bounded, layerwise computable
function is computable [16],

u(x) = Ex [u(B(τg))] , for x ∈ U

is computable, uniformly in x, and by Kakutani’s result 4.2.1, this is the solution to the
Dirichlet problem.
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Chapter 5

Planar Martin-Löf random Brownian
Motion

The real plane captures an exceptionally interesting set of behaviors of Brownian paths. It is
the smallest Euclidean space where Brownian motion almost surely does not hit points - that
is, in one dimension, a Brownian path which runs forever will hit every point uncountably
many times, almost surely, but in the plane, any fixed point except the origin is almost surely
not hit by a Brownian path. However, the real plane is the largest Euclidean space where
Brownian motion is neighborhood recurrent, meaning a path will hit any ε-neighborhood in
a time set limiting to infinity, almost surely, although in all higher dimensions, a Brownian
path is almost surely divergent. This combination of properties leads to a lot of interest-
ing behavior in planar Brownian motion, such as the existence of multiple points of high
multiplicity. And, as in the one-dimensional case, many of the interesting “almost surely”
properties of planar Brownian motion are reflected in every Martin-Löf random Brownian
path.

5.1 Points on planar Martin-Löf random Brownian

Motion

Several interesting results about the behavior of planar Brownian motion can be realized
as consequences of the fact that a Martin-Löf random planar path will only hit points that
derandomize it, with the exception of starting at the origin.

Theorem 5.1.1. At any time t > 0, for B(t) a planar Martin-Löf random Brownian path
started at (0, 0), B is not random relative to any point (Bx(t), By(t)) on the path.

Proof. For B(t) a standard planar Brownian motion, the probability that B(t) hits an ε-
ball around a point (x, y) 6= (0, 0), for ε < |x2 + y2| is equivalent to the probability that
a planar Brownian motion started at radius |x2 + y2| = R hits an ε-ball around zero, by
radial symmetry of the planar Brownian motion. The radial part of d-dimensional Brownian
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motion is the Bessel process of order ν where d = 2ν + 2, and is well understood. In the
planar case we are concerned with the Bessel process of order zero.

Let τR,ε be the first hitting time of the Bessel process of order zero started at R, hitting
to ε. Using a result of Haman and Matsumoto [15], we know that

P(τR,ε ≤ 1) =

∫ 1

0

R− ε√
2πs3

e−
(R−ε)2

2s ds−
∫ 1

0

R− ε√
2πs3

e−
(R−ε)2

2s

[∫ ∞
0

L0,R/ε(x)

x
e
−x(R−ε)

ε
√
s dx

]
ds

where

L0,R/ε(x) =
I0(Rx/ε)K0(x)− I0(x)K0(Rx/ε)

(K0(x))2 + π2(I0(x))2

and

I0(x) =
1

π

∫ π

0

ex cos tdt,

K0(x) =

∫ ∞
0

cos (xt)√
t2 + 1

dt

These functions are computable, because all the component pieces - cosine, square root,
exponentiation, multiplication, and division - are computable, and the integral of a com-
putable function is computable. See the book by Weihrauch [37] for more details. Moreover,
this integral goes to zero as ε goes to zero, which is more easily seen using a classical result
of Spitzer [36]:

lim
ε→0

log

(
1

ε

)
Pr(τR,ε ≤ 1) =

∫ ∞
R2/2

e−x

2x
dx.

As the right hand side is a constant, and log(1
ε
)→∞, we know that Pr(τR,ε ≤ 1)→ 0.

Thus we have a Schnorr test relative to the point (x, y), so a Martin-Löf random Brownian
path B(t) will only pass through points (x, y) such that the path B (or a code for the path)
is not random relative to (x, y), before time 1. The argument is the same for any finite time,
not just time 1, so the statement of the theorem holds.

Corollary 5.1.1. B(t) a standard planar Martin-Löf random Brownian path has zero area.

Proof. Only Lebesgue measure zero many points derandomize any particular real, so any
Martin-Löf random path hits only Lebesgue measure zero many points.

Corollary 5.1.2. For any point (x, y) 6= (0, 0), only measure zero many Brownian paths hit
(x, y) (Almost surely, Brownian motion does not hit points)

Proof. A real derandomizes only Lebesgue measure zero many reals.
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Corollary 5.1.3. At any time t > 0, for B(t) a standard planar Martin-Löf random Brow-
nian path, B does not pass through any computable points.

Proof. A Martin-Löf random path is always random relative to a computable point.

5.2 Multiple Points of Martin-Löf random Brownian

motion

Nearly any question one can formulate about Brownian motion leads to interesting results,
and planar Brownian motion has especially fascinating behavior. Although a planar Brow-
nian path hits only Lebesgue-measure zero many points, we know that it is neighborhood
recurrent - meaning that, almost surely, for every point x and real ε > 0, there is a se-
quence tn � ∞ such that a planar Brownian motion path B(t) has B(tn) ∈ B(x, ε) for all
n ∈ N. Given this fact, it is unsurprising that a Brownian motion path has multiple points
- that is, points x ∈ Rn such that there exist t1 6= t2 where B(t1) = B(t2) = x. However,
what is surprising is that not only does planar Brownian motion have double points almost
surely, but it has multiple points of every finite multiplicity almost surely, and it is even the
case that planar Brownian motion has points of uncountable multiplicity almost surely. We
will reproduce this surprising result for Martin-Löf random Brownian paths, following the
classical proof in Mörters and Peres [26].

In Chapter four, we showed that it is layerwise computable in a Martin-Löf random
Brownian path B(t) to see whether B(t) crossed a computable line segment. For the proof of
the existence of uncountable multiple points, we need to show that it is layerwise computable
in B(t) to see whether it crosses through the boundary of a circle C with computable center
(a, b) and computable radius r.

For a, b computable reals and B(t) = (X(t), Y (t)) a planar Martin-Löf random Brownian
path, let D(B(t)) =

√
(X(t)− a)2 + (Y (t)− b)2 denote the distance from B(t) to (a, b) at

a time t. For (a, b) the center of a computable circle C with radius r, we can determine
whether B(t) crossed through the boundary of C by seeing if D(B(t)) has values both above
and below r.

To see whether D(B(t)) has values both above and below r, we will first need to
show that maxima and minima of D(B(t)) are not computable. This tells us that if a
Martin-Löf random Brownian path intersects a computable circle, it must cross the bound-
ary of the circle, and that will be an event that we can prove does or does not happen,
layerwise computably in B.

First we will show that D(B(t)) obeys a modulus of continuity. From here on we will
refer to D(B(t)) as DB(t) to indicate that we are thinking of D as a function of time for a
fixed B(t). Note that as B(t) is continuous, DB(t) is also a continuous function of t.
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Lemma 5.2.1. Let DB(t) be as defined above for B(t) Martin-Löf random and (a, b) com-
putable. Then for all c >

√
2, there is an h0 ∈ R, such that for all h < h0 and all t

|DB(t+ h)−DB(t)| < 2c
√
h log(1/h)

Moreover, h0 is layerwise computable in B.

Proof. The result follows immediately from lemma 2.2.2 and the triangle inequality. h0 is
layerwise computable because we can simply take the smaller of the two h that are layerwise
computable from the Brownian paths X(t) and Y (t).

Now that we have the immensely useful modulus of continuity result, we can show that
the values of the maxima and minima of DB(t) on a computable interval [t1, t2] are layerwise
computable in B, but not computable.

Lemma 5.2.2. For B(t) = (X(t), Y (t)) a planar Martin-Löf random Brownian path and
[t1, t2] a computable interval, the maximum and minimum of
DB(t) =

√
(X(t)− a)2 + (Y (t)− b)2 on [t1, t2] are layerwise computable in B(t).

Proof. To compute the maximum of DB(t) on [t1, t2] to within ε, we run the following simple
algorithm: Pick h0 small enough so that DB(t) obeys a modulus of continuity with constant
c = 2 (see lemma 5.2.1) and so that 4

√
h0 log(1/h0) < ε. Then we know that the maximum

of the values DB(t1), DB(t1 + h0), DB(t1 + 2h0), ..., DB(t2) must be within 4
√
h0 log(1/h0),

and therefore within ε, of the maximum value of DB(t) on [t1, t2]. The minima are also
layerwise computable by the same argument.

Lemma 5.2.3. The maxima (and minima) of DB(t) =
√

(X(t)− a)2 + (Y (t)− b)2 on a
computable interval [t1, t2] are not computable for B(t) = (X(t), Y (t)) a planar Martin-Löf
random Brownian path.

Proof. Let m[t1,t2] denote the maximum of DB(t) on a computable interval [t1, t2]. By Lemma
5.2.2, we know that m[t1,t2] is layerwise computable in B. Using 1.8.1, this tells us that the
map g[t1,t2] : (C(R[ ≥ 0],R2),P)→ R which gives the max of DB(t) on [t1, t2] is a measurable
map, which preserves Martin-Löf randomness. That is, we are pushing Wiener measure to its
image under D(B(t)) and then to the maximum of DB(t) on [t1, t2]. Calling that pushforward
measure ν, the maximum of DB(t) on a computable interval is a Martin-Löf random real
with respect to the measure ν.

Note that ν having an atom corresponds to a positive (Wiener) measure of paths B(t)
having maximum radius r from a point (a, b) in time [t1, t2]. Classically, we know that the
probability of entering a circle with radius r+ ε but not entering the circle with radius r− ε
goes to zero as ε goes to zero - that is,

lim
ε→0

[P(B(t) enters B((a, b), r + ε))− P(B(t) enters B((a, b), r + ε))]→ 0
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See, for example, the proof of Theorem 5.1.1 and the references given there for a discussion
of the probability that a planar Martin-Löf random path hits a ball around a given point
away from zero in a given time.

Thus ν is a non-atomic measure, so by a result of Reimann and Slaman [31], m[t1,t2],
which is Martin-Löf random with respect to ν, cannot be computable. Minima also cannot
be computable by the same argument.

Now we can prove that it is layerwise computable to see whether a planar Martin-Löf random
path B(t) crosses through a circle with computable center and radius. This is similar to the
proof that it is layerwise computable in B(t) to see if B crosses through a computable real
value, for B(t) a one-dimensional standard Martin-Löf random Brownian path.

Proposition 5.2.1. For B(t) = (X(t), Y (t)) a planar Martin-Löf random Brownian path,
it is layerwise computable in B(t) to see whether B(t) crosses the boundary of a circle with
computable center (a, b) and computable radius r in a given computable time interval [t1, t2]

This is equivalent to seeing whether DB(t) =
√

(X(t)− a)2 + (Y (t)− b)2 crosses through
a computable real r in time [t1, t2].

Lemma 5.2.4. It is layerwise computable in B(t) to see that DB(t) does not cross through
a computable value r in time [t1, t2]

Proof. This follows from 5.2.1 above. Because h0 is layerwise computable in B(t), we can,
layerwise computably in B, find increments of size h in [t1, t2] such that DB(t1), DB(t1 +
h), ..., DB(t2) > r+4h

√
log 1/h ifB is bounded outside the circle, orD(t1), D(t1+h), ..., D(t2) <

r − 4h
√

log 1/h if B is bounded inside the circle. Then 5.2.1 tells us that B(t) must be
bounded away from the boundary of the circle on [t1, t2].

Lemma 5.2.5. It is layerwise computable in B(t) to see that DB(t) does cross through a
computable value r in time [t2, t2].

Proof. By Lemma 5.2.3, we know that the maxima and minima of DB(t) on [t1, t2] must have
non-computable values, so any crossing time must have times s1 and s2 arbitrarily close on
either side where DB(s1) < r and DB(s2) > r. In fact, there must be computable such
points, as continuity of DB(t) guarantees open intervals arbitrarily close to the crossing time
where the function is always greater than r and always less than r.

The construction for B(t) given in Chapter 1 has layerwise computable convergence, so
DB(t) must also have layerwise computable convergence, so we can layerwise computably
search through any dense set of computable times in [t1, t2] and eventually find times s1, s2

where DB(s1) < r and DB(s2) > r
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These lemmas together prove proposition 5.2.1.

Now we can begin the proof that planar Martin-Löf random Brownian has points of
uncountable multiplicity.

Theorem 5.2.1. [26, Theorem 9.24] Let {B(t) : t ≥ 0} be a planar Brownian motion. Then,
almost surely, there exists a point x ∈ R2 such that the set {t ≥ 0 : B(t) = x} is uncountable.

And, as always, we can replace “almost surely” with “for every Martin-Löf random path”

Theorem 5.2.2. Let {B(t) : t ≥ 0} be a Martin-Löf random planar Brownian motion.
Then there exists a point x ∈ R2 such that the set {t ≥ 0 : B(t) = x} is uncountable.

The proof of Theorem 5.2.2 that follows is the same as the proof of Theorem 5.2.1 given
in the book by Mörters and Peres [26], with some modifications in order to demonstrate that
failing to have an uncountable multiple point corresponds to failing a Martin-Löf test.

First we describe the rough strategy of the proof. We start by finding two disjoint intervals
I1 and I2 with B(I1)∩B(I2) 6= ∅. Inside these we find disjoint subintervals I11, I12 ⊂ I1 and
I21, I22 ⊂ I2 such that the four Brownian images B(Iij) intersect. Continuing this way, we
construct a binary tree T of time intervals where rays in T represent sequences of nested
intervals and the intersection of each such sequence will be mapped to the same point by
the Brownian motion.

We will use the following notation. For any open or closed sets A1, A2, ... and a Brownian
motion B : [0,∞)→ R2 define stopping times

τ(A1) := inf{t ≥ 0 : B(t) ∈ A1}

τ(A1, ..., An) := inf{t ≥ τ(A1, ...An−1) : B(t) ∈ An}, for n ≥ 2,

where the infimum of the empty set is taken to be infinity. We say the Brownian path
upcrosses the shell B(x, 2r) \B(x, r) twice before a stopping time T if

τ(B(x, r),B(x, 2r)C ,B(x, r),B(x, 2r)C) < T.

We call the paths between τ(B(x, r)) and τ(B(x, r),B(x, 2r)C), and between
τ(B(x, r),B(x, 2r)C ,B(x, r)) and τ(B(x, r),B(x, 2r)C ,B(x, r),B(x, 2r)C)) the upcrossing
excursions. See figure 5.1.

From now on let T be the first exit time of Brownian motion from the unit ball.

Lemma 5.2.6. There exist (computable) constants 0 < c0 < C0 such that, if 2 < m < n
are two integers and B a ball of radius 2−n with center at distance at least 2−m and at most
3 ∗ 2−m from the origin, we have

c0
m

n
≤ P0{τ(B) < T} ≤ C0

m

n
.
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Figure 5.1: The path B(t) upcrosses the shell twice; the upcrossing excursions are bold and
marked B(1) and B(2). Image from “Brownian Motion” by Mörters and Peres.

See Mörters and Peres [26] Lemma 9.25 for proof.

The density of B(T ) under Pz is given by the Poisson kernel,

P(z, w) =
1− |z|2

|z − w|2
for any z ∈ B(0, 1) and w ∈ ∂B(0, 1).

Lemma 5.2.7. Consider Brownian motion started at z ∈ B(0, r) where r < 1, and stopped
at time T when it exits the unit ball. Let τ ≤ T be a stopping time, and let A ∈ F(τ). Then
we have

• Pz(A|B(T )) = Pz(A)
Ez[P(B(τ), B(T ))|A]

P(z,B(T ))
.

• If Pz({B(τ) ∈ B(0, r)}|A) = 1, then(
1− r
1 + r

)2

Pz(A) ≤ Pz(A|B(t)) ≤
(

1 + r

1− r

)2

Pz(A) almost surely.

See Mörters and Peres [26] Lemma 9.26 for proof.

The following lemma, concerning the upcrossings of L-many Brownian excursions, is the
driving engine of the proof of the theorem, so we will give the proof in full, though it is
identical to that found in [26].
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Lemma 5.2.8. Let n > 5 and let {x1, ..., x4n−5} be points such that the balls B(xi, 2
1−n) are

disjoint and contained in the shell {z : 1
4
≤ |z| ≤ 3

4
}. Consider L independent Brownian

upcrossing excursions W1, ...,WL, started at prescribed points on ∂B(0, 1) and stopped when
they reach ∂B(0, 2). Let S denote the number of centers xi, 1 ≤ i ≤ 4n−5 such that the
shell B(xi, 2

−n+1) \ B(xi, 2
−n) is upcrossed twice by each of W1, ...,WL. Then there exist

constants c, c∗ > 0 such that

P{S > 4n(c/n)L} ≥ cL∗
L!
. (5.1)

Moreover, the same estimate (with a suitable constant c∗) is valid if we condition on the
endpoints of the excursions W1, ...,WL, and the constants c, c∗ can be taken to be computable.

Proof. By lemma 5.2.6, for any z ∈ ∂B(0, 1), the probability of Brownian motion starting
at z hitting the ball B(xi, 2

−n) before reaching ∂B(0, 2) is at least c0
n

, and the probability of
the second upcrossing excursion of B(xi, 2

−n+1) \B(xi, 2
−n), when starting at ∂B(xi, 2

1−n)
is at least 1/2. Thus

ES ≥ 4n−5
( c0

2n

)L
. (5.2)

We now estimate the second moment of S. Consider a pair of centers xi, xj such that
2−m ≤ |xi − xj| ≤ 21−m for some m < n − 1. For each k ≤ L, let Vk = Vk(xi, xj) denote
the event that the balls B(xi, 2

−n) and B(xj, 2
−n) are both visited by Wk. Given that

B(xi, 2
−n) is reached first, the conditional probability that Wk will also visit B(xj, 2

−n) is
at most C0

m
n

, by lemma 5.2.6. We conclude that P(Vk) ≤ 2C2
0
m
n2 , giving us that

P

(
L⋂
k=1

Vk

)
≤
(

2C2
0

m

n2

)L
.

For each m < n− 1 and i ≤ 4n−5, the number of centers xj such that 2−m ≤ |xi − xj| ≤
21−m is at most a constant multiple of 4n−m. Using that the diagonal terms are of lower
order, we deduce that there exists C1 > 0 such that

ES2 ≤ CL
1 42n

n2L

n∑
m=1

≤ (2C1)L42nL!

n2L
, (5.3)

where the last inequality follows, e.g., from taking x = 1/4 in the binomial identity

∞∑
m=0

(
m+ L

L

)
xm = (1− x)−L−1.

Note that C1 can be taken to be computable.
Now (5.2), (5.3), and the Paley-Zygmund inequality yield (5.1).The final statement of

the lemma follows from lemma 5.2.7.
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The Paley-Zygmund inequality states the following: For any nonnegative random variable
X with E[X2] <∞ and λ ∈ [0, 1),

P{X > λE[X]} ≥ (1− λ)2E[X]2

E[X2]
.

Proof of Theorem 5.2.2. Let {ni : i ≥ 1} denote a computable increasing sequence to be
chosen later, and let Nl =

∑l
i=0 ni with N0 = 0. Denote qi = 4ni−5 and Qi = 4Ni−5i. We

begin by constructing a nested sequence of centers with which we associate a forest, i.e. a
collection of trees, in the following manner. The first level of the forest consists of Qi-many
centers, {x(1)

1 , ..., x
(1)
Q1
}, chosen such that the centers are computable points in R2 and the balls

{B(x
(1)
k , 2−N1+1) : 1 ≤ k ≤ Q1} are disjoint and contained in the annulus {z : 1

4
≤ |z| ≤ 3

4
}.

Continue this construction recursively. For l > 1 suppose that the level l − 1 of the
forest has been constructed. Level l consists of Ql-many vertices {x(l)

1 , ..., x
(l)
Ql
}. Each vertex

xl−1
i , 1 ≤ i ≤ Q(l−1), at level l − 1 has ql-many children {x(l)

j : (i− 1)ql < j ≤ iql} at level l;
the balls of radius 2−Nl+1 around these children are disjoint and contained in the annulus

{z :
1

4
2−Nl−1 ≤ |z − x(l−1)

i | ≤ 3

4
2−Nl−1}

and the vertices are chosen to be computable, uniformly in l. Recall that T = inf{t > 0 :

|B(t)| = 1}. We say that a level one vertex x
(1)
k survived if the Brownian motion upcrosses

the annulus B(x
(1)
k , 2−N1+1) \B(x

(1)
k , 2−N1) twice before T .

A vertex at the second level x
(2)
k is said to have survived if its parent vertex survived,

and in each upcrossing excursion of its parent, the Brownian motion upcrosses the annulus
B(x

(2)
k , 2−N2+1) \B(x

(2)
k , 2−N2) twice.

Recursively, we say a vertex x
(l)
k , at level l of the forest, survived if its parent vertex

survived, and in each of the 2l−1 upcrossing excursions of its parent, the Brownian motion
upcrosses the shell

B(x
(l)
k , 2

−Nl+1) \B(x
(l)
k , 2

−Nl)

twice. Note at this point that if there is an infinite sequence of surviving vertices

x
(1)
k(1), x

(2)
k(2), x

(3)
k(3), ...

such that x
(l+1)
k(l+1) is a child of x

(1)
k(l), for l = 1, 2, 3, ..., then the sequence of compact balls

centered in x
(l)
k(l) with radius 2−Nl is nested. Therefore there exists exactly one point in the

intersection of these balls. For any level l, there are 2l-many disjoint upcrossing excursions
of the shell B(x

(l)
k , 2

−Nl+1) \B(x
(l)
k , 2

−Nl). Each of these contains two disjoint excursions at
level l + 1. Thus the time intervals corresponding to these excursions form a binary tree,
where the children of an interval at level l are the two intervals at level l+ 1 it contains. An
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infinite ray in this tree is a nested sequence of compact intervals and their intersection is a
time t with B(t) = x. Since there are uncountably many rays, x has uncountable multiplicity.

Now, for any l ≥ 1, let Sl denote the number of vertices at level l of the forest that
survived. Using the notation of lemma 5.2.8, let

Γl = 4nl
(
c

nl

)L
and pl =

(c∗)
L

L!
,

where L = L(l) = 2l−1. Lemma 5.2.8 with n = n1 states that

P{S1 > Γ1} ≥ p1 = c∗. (5.4)

For l > 1, the same lemma, and independence of excursions in disjoint annuli given their
endpoints, yield

P({Sl+1 ≤ Γl+1}|{Sl > Γl}) ≤ (1− pl+1)Γl ≤ e−pl+1Γl . (5.5)

By choosing each nl large enough, we can control how small each e−pl+1Γl becomes, making
the right hand side summable in l. Consequently,

P
(

There is not a multiple point in the annulus
1

4
≤ |z| ≤ 3

4
before B(t) exits B(0, 1)

)

≤ P (∃l[{Sl+1 ≤ Γl+1}|{Sl > Γl}]) = 1− P

(
∞⋂
l=1

{Sl > Γl}

)

= 1−

(
P(S1 > Γ1)

∞∏
l=1

P ({Sl+1 > Γl+1}|{Sl > Γl})

)

≤ 1− c∗
∞∏
l=1

(1− e−pl+1Γl) = β ∈ (0, 1)

Note that because all constants are computable and we control the sequence {nl}l∈N, β
is computable. And because it is layerwise computable in a fixed path B(t) to see whether
B(t) has crossed into or out of a circle with computable center and computable radius, the
statement [{Sl+1 ≤ Γl+1}|{Sl > Γl}] is layerwise computable, or for a fixed randomness defi-
ciency, the statement is computable. Then, for a fixed randomness deficiency, the statement
∃l[{Sl+1 ≤ Γl+1}|{Sl > Γl}] is Σ0

1.

Let H1 denote the event ∃l[{Sl+1 ≤ Γl+1}|{Sl > Γl}] in the annulus 1
4
≤ |z| ≤ 3

4
before

B(t) exits B(0, 1). As argued above, H1 is a Σ0
1 event with P(H1) ≤ β for 0 < β < 1.

Now, run the same argument in the annulus 1
16
≤ |z| ≤ 3

16
before the path B(t) exits

B(0, 1
4
). Let H2 be the event ∃l[{Sl+1 ≤ Γl+1}|{Sl > Γl}] in the annulus 1

16
≤ |z| ≤ 3

16
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before B(t) exits B(0, 1
4
). This is independent of H1 because the annuli are disjoint, so the

segments of the path before exiting B(0, 1
4
) and after entering 1

4
≤ |z| ≤ 3

4
are disjoint. By

Brownian scaling, P(H2) = P(H1) = β, so the event [H1 and H2] is a Σ0
1 event such that

P(H1 and H2) ≤ β2

Similarly, for event Hn defined to be ∃l[{Sl+1 ≤ Γl+1}|{Sl > Γl}] in the annulus 1
22n
≤

|z| ≤ 3
22n

before B(t) exits B(0, 1
22n−2 ), Hn is independent of Hi for all i < n, so H1 ∧H2 ∧

... ∧Hn is a Σ0
1 event such that

P(H1 ∧H2 ∧ ... ∧Hn) ≤ βn,

giving a Martin-Löf test. Thus there must be an infinite number of annuli 1
22n
≤ |z| ≤ 3

22n

such that a Martin-Löf random Brownian path does not have a level l such that {Sl+1 ≤
Γl+1}|{Sl > Γl}, guaranteeing that B(t) must have an uncountable multiple point in that
annulus.

Note that this Martin-Löf test is dependent on a fixed randomness deficiency, so while
all Martin-Löf random planar Brownian paths B(t) will “pass” the test, it only guarantees
a multiple point of uncountable multiplicity for paths whose randomness deficiency match
that of the test. However, for each path, there is such a Martin-Löf test with appropriate
randomness deficiency, so for each Martin-Löf random Brownian path B(t), B has multiple
points of uncountable multiplicity.
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