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Time-Varying Effect Modeling with Longitudinal Data
Truncated by Death: Conditional Models,

Interpretations and Inference

Jason P. Estes, Danh V. Nguyen, Lorien S. Dalrymple, Yi Mu and
Damla Şentürk

Abstract

Recent studies found that infection-related hospitalization was associated with in-
creased risk of cardiovascular (CV) events, such as myocardial infarction and stroke in
the dialysis population. In this work, we develop time-varying effects modeling tools in
order to examine the CV outcome risk trajectories during the time periods before and
after an initial infection-related hospitalization. For this, we propose partly conditional
and fully conditional partially linear generalized varying coefficient models (PL-GVCMs)
for modeling time-varying effects in longitudinal data with substantial follow-up trunca-
tion by death. Unconditional models that implicitly target an immortal population is not
a relevant target of inference in applications involving a population with high mortality,
like the dialysis population. A partly conditional model characterizes the outcome trajec-
tory for the dynamic cohort of survivors, where each point in the longitudinal trajectory
represents a snapshot of the population relationships among subjects who are alive at
that time point. In contrast, a fully conditional approach models the time-varying ef-
fects of the population stratified by the actual time of death, where the mean response
characterizes individual trends in each cohort stratum. We compare and contrast partly
and fully conditional PL-GVCMs in our aforementioned application using hospitalization
data from the United States Renal Data System. For inference, we develop generalized
likelihood ratio tests. Simulation studies examine the efficacy of estimation and inference
procedures.

Key words: Cardiovascular outcomes; End stage renal disease; Fully conditional model;
Infection; Partially linear generalized varying coefficient models; Time-varying effects;
United States Renal Data System
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1 Introduction

As of 2011, more than 430,000 adults in the United States were on dialysis, a life-sustaining

treatment (USRDS, 2013). Annual mortality for patients on dialysis treatment is approxi-

mately 20-25% with an overall 5-year survival lower than that associated with most malignan-

cies. Cardiovascular (CV) disease and infection remain the leading causes of mortality and

hospitalization in patients on dialysis (USRDS, 2013). Characterizing the time-varying effects

of risk factors on outcomes of patients with chronic diseases, such as CV events and infection

in patients on dialysis, is important for exploring more effective approaches to disease manage-

ment. For instance, more effective CV risk reduction strategies will first require understanding

the time-dynamic changes in patients’ CV outcome trajectories over time to allow for iden-

tification of timeframes of increased CV risk (probability). This depends on the interplay of

time on dialysis (vintage); time since sentinel events such as infection; and patients’ baseline

characteristics, including baseline co-existing illnesses. Our recent studies (Dalrymple et al.,

2011; Mohammed et al., 2012; 2013; Estes et al., 2014) found that infection or infection-related

hospitalization was associated with increased risk of CV outcomes (e.g., myocardial infarction

stroke, transient ischemic attack) in older patients on dialysis.

A challenge in the next step to elucidate the time-varying effect of infection on patients’

CV outcome trajectories over time, from the start of dialysis, is the high mortality in this pop-

ulation. In chronic diseases and/or geriatric populations with high mortality, such as the older

dialysis population, many individuals’ follow-up times are truncated by death. For example,

our study to assess the time-varying effect of infection on CV outcomes uses longitudinal hos-

pitalization data from the United States Renal Data System Annual Data Report (USRDS) for

patients aged 65 and older who newly initiated dialysis between January 1, 2000 and December

31, 2007 without a prior history of renal transplant. The follow-up on 80% of the patients

through the end of 2009 have been truncated by death. Under such high level of mortality
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and when death is related to the outcome variable, one must be careful in selecting statistical

models that have useful targets of inference. For instance, information from an estimate of the

CV outcome trajectory based on an unconditional model, ignoring truncation by death (which

implicitly assumes an immortal population), would be of limited practical use.

Thus, a primary focus of the current paper is to develop conditional modeling approaches for

handling truncation by death. More precisely, for the first time, we will present developments

for partially linear generalized varying coefficient models (PL-GVCMs) to model time-varying

effects, where the expected outcome trajectory is modeled by conditioning on (a) the dynamic

cohort of survivors (“partly conditional” approach) and (b) the actual death time (“fully con-

ditional” approach). Second, we will apply these conditional PL-GVCM approaches to assess

the time-varying effect of infection on CV outcome trajectory. And in this process, we will con-

trast the targets/goals of inference (i.e., their interpretations) for partly and fully conditional

models to provide practical guidance on their applications in the context of longitudinal data

with substantial truncation by death. Third, we will present studies evaluating the proposed

estimation methods as well as efficacy of generalized likelihood ratio tests (GLRTs) on the

varying coefficient functions in the presence of follow-up truncation by death.

We now provide a summary of the relevant literature and an introductory illustration

of the partly conditional, fully conditional and unconditional targets of inference for time-

varying effects. Standard varying coefficient models (VCMs; Cleveland et al., 1991; Hastie and

Tibshirani, 1993) for continuous outcomes and generalized varying coefficient models (GVCMs)

for generalized outcomes, including binary and count data (Cai et al., 2000; Zhang, 2004; Qu

and Li, 2006; Senturk and Mueller, 2009; Senturk et al., 2013), have been adapted for analyzing

longitudinal data (Hoover et al., 1998; Wu and Chiang, 2000; Fan and Zhang, 2000; Chiang

et al., 2001; Huang et al., 2002; 2004; Senturk and Mueller, 2010; Senturk and Nguyen, 2011

and references therein). Lu (2008) proposed PL-GVCMs where some regression coefficients
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vary with time and others remain constant. PL-GVCM is an extension of the partially linear

varying coefficient models (Zhang et al., 2002; Xia et al., 2004; Ahmad et al., 2005; Fan and

Huang, 2005) for generalized outcomes, where the covariates are cross-sectional. In our current

work, we consider the following PL-GVCM, containing both cross-sectional and longitudinal

predictors, necessary for our application:

g[E{Y (t)|X,U(t)}] =

p∑
r=1

βrXr +

q∑
s=1

αs(t)Us(t), (1)

where Y (t) is the outcome trajectory, g(·) is a known link function, X = (X1, . . . , Xp)
T is

the vector of baseline covariates, and U(t) = {U1(t), . . . , Uq(t)}T is the vector of longitudinal

covariates. The coefficients, β = (β1, . . . , βp)
T, describe constant effects corresponding to

baseline factors and the time-varying regression coefficients, α(·) = {α1(·), . . . , αq(·)}T, capture

the dynamic effects of the longitudinal predictors.

Despite the aforementioned rich literature on modeling time-varying effects, limited works

have dealt with the consequences of longitudinal data truncated by death. In particular, when

death is related to the outcome variable, the statistical modeling requires careful consideration

of the relevant targets of inference. For instance, methods based on imputation from the

nonignorable dropout literature targeting an unconditional mean trajectory model, specifically

µ ≡ E{Y (t)|X,U(t)}, would have limited relevance because the imputation of longitudinal

data after death implicitly assumes a population where nobody dies. Alternatively, a relevant

target of inference is to condition on the cohort of individuals still alive at time t (i.e., all

individuals with death time S, where S > t), and target the partly conditional mean trajectory

µP ≡ E{Y (t)|X,U(t), S > t} (Estes et al., 2014). A second relevant target of inference in the

presence of substantial truncation by death is to target the fully conditional mean trajectory,

µF ≡ E{Y (t)|X,U(t), S = t}, which conditions on the actual death time (i.e., S = t). We note

that the ideas of conditioning on the survival and on actual death time, namely partly and

fully conditionals, were introduced by Kurland and Heagerty (2005) and Kurland et al. (2009)
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for standard generalized linear models; the current work develops these ideas for time-varying

effects.

As a prelude to the more general conditional models considered in this paper, we first

illustrate the difference between partly and fully conditional models using a simple GVCM,

where about 3 of 4 subjects die during follow-up (detailed in supplemental Appendix A). Figure

1 displays the partly conditional and fully conditional (along with the unconditional) estimates

of the varying coefficient function targets. The partly conditional model, which conditions on

the cohort alive at time t (years), characterizes time-varying regression relationships for the

dynamic cohort of survivors. It is relevant to addressing questions such as, “What is the

expected CV outcome risk trajectory during the first two years of dialysis among patients who

survive at least two years on dialysis?” (The partly conditional CV outcome trajectories for the

time periods before and after infection can then be compared, for instance.) In Figure 1, it can

be seen that the partly conditional trajectory diverges from the unconditional trajectory around

year 3 because, by then, the cohort of individuals still alive have critically changed/declined;

this reflects the fact that µP (t) 6= µ(t), particularly for high level of mortality during follow-up.

In contrast, a fully conditional model is conditioned on a specific time of death t and, thus, the

inferential interest focuses on the time-varying trajectory for the strata of patients who died

at time t. Typically, a series of fully conditional models, conditioned on a sequence of death

times (as illustrated in Figure 1 for death times t = 3, 4, and 5 years) are estimated to compare

trends in the expected outcome trajectories for the death stratum. For our data application,

the fully conditional model approach will allow us to compare the CV risk trajectories before

and after infection for a series of dialysis patient cohorts who die around 1, 2, and 3 years etc.

The paper is organized as follows. Conditional PL-GVCM models formulation, estimation,

and generalized likelihood ratio tests (GLRTs) for analyzing time-varying effects of infection on

CV outcome risk using USRDS data are described in Section 2. Section 3 provides modeling
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results and interpretations, followed by simulation studies in Section 4 and a discussion in

Section 5.

2 Partly and Fully Conditional Time-Varying Effect Modeling

2.1 Model Specification: Conditional PL-GVCM

As introduced in Section 1, our primary interest is to determine the course of CV risk over

time, from the start of dialysis, and assess how the CV risk trajectory changes over time

after a pivotal infection-related hospitalization. To specify the conditional PL-GVCMs for this

purpose, let Si be the death time and ti be the overall follow-up time index of patient i. We

divide the time axis, ti, into two parts, t0i and t1i, to track the follow-up time before and after

the first pivotal infection-related hospitalization, respectively. Also, let Zi mark the time of

the first infection-related hospitalization. Thus, for patients who experienced a pivotal initial

infection-related hospitalization during follow up, note that ti = Zi + t1i after infection, and

for patients who do not experience a pivotal infection-related hospitalization during follow up

and for those who do experience infection, before their initial infection, ti = t0i. To study the

time-varying CV event probability (risk), we model the binary indicator of having a CV event

within a 3 month follow-up interval. Since the probability of having more than one CV event

in a three month interval is less than 0.1% in our data, we use a binary (rather than a count)

outcome in our modeling. Hence, let Yi(ti, t0i, t1i) be the indicator of a CV event for subject

i in a 3 month time interval centered around a fixed value of t0i or t1i. The proposed partly

conditional PL-GVCM targets the CV risk, conditioned on being alive:

µi,P ≡ µi,P (ti, t0i, t1i) = E{Yi(ti, t0i, t1i)|Zi, Xi, IGi
(ti), Si > ti}, (2)

where IGi
(ti) denotes a time-varying indicator of infection-related hospitalization prior to time

ti; Zi is the vintage till first infection-related hospitalization if patient i has at least one

infection-related hospitalization; Xi = (X2i, . . . , Xpi)
T are baseline covariates. We use the

5



logit link function, denoted g(µi,P ) = log{µi,P/(1 − µi,P )}, to connect the partly conditional

mean to the time-varying effects of the covariates:

g(µi,P ) = α0,P (t0i){1− IGi
(ti)}+ α1,P (t1i)IGi

(ti) + β1,PZiIGi
(ti) +

p∑
r=2

βr,PXri, (3)

where α0,P (t0i) captures the vintage-varying effects; α1,P (t1i) captures the time-varying effects

after the initial infection-related hospitalization; the coefficients {βr,P}pr=1, correspond to the

effects of vintage prior to the first infection and baseline covariates. The supports for the

varying coefficient functions in (3) are: t0i ∈ [0, T0i], t1i ∈ [0, T1i], T0i ≤ T, T1i ≤ T , where T is

the maximum study follow-up duration; T = 5 years in our USRDS data application.

The time-varying indicator, IGi
(ti), in the PL-GVCM (3) allows for a natural transition

between the model components before and after the pivotal initial infection-related hospi-

talization. That is, for the time period before the initial infection-related hospitalization

among patients with infection-related hospitalization(s) and for the entire follow-up time pe-

riod among patients with no infection-related hospitalization, the CV risk model is µi,P =

g−1{α0,P (t0i) +
∑p

r=2 βr,PXri}. For patients with at least one infection-related hospitalization,

we see from (3) that the CV risk model after the initial infection-related hospitalization tran-

sitions to µi,P = g−1{α1,P (t1i) + β1,PZi +
∑p

r=2 βr,PXri}. Note that this model appropriately

accounts for vintage till the initial infection-related hospitalization, namely Zi.

In contrast, for the fully conditional model, instead of conditioning on survival status, we

condition on time of death. For this, we partition the overall follow-up time into disjoint 3

months intervals/bins, where the left endpoint of the first bin is 0, and the right endpoint of

the last bin is T . Denote the jth death bin by Dj. The CV risk within bin Dj is

µij,F ≡ µij,F (ti, t0i, t1i) = E{Yi(ti, t0i, t1i)|Zi, Xi, IGi
(ti), Si ∈ Dj}, (4)

and the fully conditional PL-GVCM for the CV risk is

g(µij,F ) = α0j,F (t0i){1− IGi
(ti)}+ α1j,F (t1i)IGi

(ti) + β1j,FZiIGi
(ti) +

p∑
r=2

βrj,FXri. (5)
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The parameters and varying coefficient functions in (5) above are analogously defined as in

the partly conditional model (3).

2.2 Estimation

Estimation procedures for partially linear VCMs and PL-GVCMs usually contain several main

steps, where the regression coefficients of the linear part are targeted first, followed by estima-

tion of the varying coefficient functions (VCFs) using coefficient estimates of the linear part

from the initial step (Zhang et al., 2002; Xia et al., 2004; Fan and Huang, 2005). For example,

Lu (2008) proposed local quasi-likelihood for estimation of the αs’s first, then targeting the

βr’s via maximum likelihood using the estimated VCFs, followed by re-estimation of the VCFs

using the estimated βr’s. To fit the proposed conditional PL-GVCMs, we will extend the

method of Lu (2008) to the context of longitudinal data and allow for longitudinal covariates

where follow-up is truncated by death. The proposed 3-step estimation algorithm is provided

next for the partly conditional model. We note that for the fully conditional PL-GVCM, this

estimation method is applied to data from death bin Dj, instead of the entire cohort.

2.2.1 Step 1: Initial Estimation of α0,P (t0) and α1,P (t1)

We begin by partitioning each patient’s follow-up period into disjoint 3-month intervals after

initiation of dialysis and after the initial infection-related hospitalization if the patient has

at least one infection-related hospitalization. Let N0i denote the number of 3-month inter-

vals in the ith patient’s follow-up after initiation of dialysis until the initial infection-related

hospitalization or to the end of follow-up (for a patient without an infection-related hospital-

ization). Similarly, let N1i be the number of 3-month intervals since the initial infection-related

hospitalization to the end of follow-up for patient i. Further, define t0ik and t1ik′ to be the

midpoints of the kth and k′th 3-month time intervals since initiation of dialysis and since the

initial infection-related hospitalization, respectively. We define the binary response variable
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Y0,ik ≡ Yi(ti = t0i = t0ik) = 1, if the ith patient had at least one CV event in the kth 3-month

interval after initiation of dialysis. Similarly, Y1,ik′ ≡ Yi(ti = Zi + t1i, t1i = t1ik′) = 1 if the ith

patient had at least one CV event in the k′th 3-month interval after the initial infection-related

hospitalization. Hence, the available data is {(t0ik, t1ik′ , Xri, Zi, Y0,ik, Y1,ik′) : i = 1, . . . , n;

k = 1, . . . , N0i; k
′ = 1, . . . , N1i}, where n is the total number of subjects.

The first step of the estimation algorithm targets the VCFs, α0,P (t0) and α1,P (t1), via local

maximum likelihood (ML). Assuming that the VCFs have continuous second derivatives, we

approximate each function locally by α0,P (t0) ≈ c0 + c1(t0− s0) and α1,P (t1) ≈ d0 + d1(t1− s0)

for t0 and t1 in the neighborhood of the fixed time point s0. Maximizing the local log-likelihood

`1(c), defined by

`1(c) =
1∑n
i=1Ni

n∑
i=1

(N0i∑
k=1

`

[
g−1

{
c0 + c1(t0ik − s0) +

p∑
r=2

brXri

}
, Y0,ik

]
Kh(t0ik − s0)

+

N1i∑
k′=1

`

[
g−1

{
d0 + d1(t1ik′ − s0) + b1Zi +

p∑
r=2

brXri

}
, Y1,ik′

]
Kh(t1ik′ − s0)

)
, (6)

provides the initial local ML estimators for the VCFs, namely α̂0,P (t0) = ĉ0 and α̂1,P (t1) = d̂0.

In the above local log-likelihood, Kh(·) = K(·/h)/h, K(·) denotes a kernel function and h is the

bandwidth; c ≡ (c0, c1, d0, d1, b1, . . . , bp)
T; Ni = N0i +N1i and `(·, ·) denotes the log-likelihood

function. Note that the local likelihood only includes data from subjects who are still alive at

t0 and t1. We also point out that the formulation for the local log-likelihood `1(c) in (6) tacitly

utilizes working independence for repeated values within a subject. This is consistent with

Kurland and Heagerty (2005), which found that standard likelihood based methods will not

target the partly conditional mean, and generalized estimating equations with independence

weights provides unbiased estimation in a generalized linear model of longitudinal data.

The maximization can be implemented using the Newton-Raphson algorithm. For this,

let p̂0,ik = g−1{ĉ0 + ĉ1(t0ik − s0) + τ̂i} and p̂1,ik′ = g−1{d̂0 + d̂1(t1ik′ − s0) + b̂1Zi + τ̂i}, where

τ̂i =
∑p

r=2 b̂rXri. Also, define {κv,ij ≡ Kh(tvij − s0)}Nvi
j=1, {p̃v,ij ≡ p̂v,ij(1 − p̂v,ij)}Nvi

j=1, and
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{κ̃v,ij ≡ κv,ij p̃v,ij}Nvi
j=1, for v = 0, 1. Then the Newton-Raphson update at iteration m + 1 is

given by

ĉm+1 = ĉm +

{ n∑
i=1

XT
1iW1i(ĉm)X1i

}−1 n∑
i=1

XT
1iW2iỸi(ĉm),

where

X1i =



1 (t0i1 − s0) 0 0 0 X2i . . . Xpi
...

...
...

...
...

...
...

1 (t0iN0i
− s0) 0 0 0 X2i . . . Xpi

0 0 1 (t1i1 − s0) Zi X2i . . . Xpi
...

...
...

...
...

...
...

0 0 1 (t1iN1i
− s0) Zi X2i . . . Xpi


(7)

is the predictor matrix of size Ni × (p+ 4), W1i(ĉm) = diag{κ̃0,i1, . . . , κ̃0,iN0i
, κ̃1,i1, . . . , κ̃1,iN1i

},

W2i = diag{κ0,i1, . . . , κ0,iN0i
, κ1,i1, . . . , κ1,iN1i

} and Ỹi(ĉm) = (Y0,i1−p̂0,i1, . . . , Y0,iN0i
−p̂0,iN0i

, Y1,i1−

p̂1,i1, . . . , Y1,iN1i
− p̂1,iN1i

)T, for a Bernoulli distributed response. For modeling a Poisson dis-

tributed response, W1i(ĉm) = diag{κ0,i1p̂0,i1, . . . , κ0,iN0i
p̂0,iN0i

, κ1,i1p̂1,i1, . . . , κ1,iN1i
p̂1,iN1i

}. For

subjects who do not have any infection-related hospitalization, the predictor matrix reduces

to size N0i × (p+ 4) and sizes of the above quantities adjust accordingly.

2.2.2 Step 2: Estimation of βr,P

In the second step, we target βr,P , by using the VCF estimators α̂0,P (t0ik) and α̂1,P (t1ik′)

obtained in step 1 in the global likelihood,

`2(e) =
1∑n
i=1Ni

n∑
i=1

(N0i∑
k=1

`

[
g−1

{
α̂0,P (t0ik)+LC

}
, Y0,ik

]
+

N1i∑
k′=1

`

[
g−1

{
α̂1,P (t1ik′)+e1Zi+LC

}
, Y1,ik′

])
,

resulting in the ML estimators β̂r,P = êr for r = 1, . . . , p, where LC denotes
∑p

r=2 erXri.

The maximization can be done using the Newton-Raphson algorithm with the m+ 1 iteration

update given by

êm+1 = êm+

{
n∑
i=1

X T
2iWi(êm)X2i

}−1{ n∑
i=1

X T
2i Ỹi(êm)

}
where X2i =



0 X2i X3i . . . Xpi
...

...
...

...
...

0 X2i X3i . . . Xpi

Zi X2i X3i . . . Xpi
...

...
...

...
...

Zi X2i X3i . . . Xpi


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is the predictor matrix of sizeNi×p, p̂0,ik = g−1{α̂0,P (t0ik)+
∑p

r=2 êr,mXri}, p̂1,ik′ = g−1{α̂1,P (t1ik′)

+ê1,mZi +
∑p

r=2 êr,mXri}, Wi(êm) = diag{p̃0,i1, . . . , p̃0,iN0i
, p̃1,i1, . . . , p̃1,iN1i

}, and Ỹi(êm) =

(Y0,i1− p̂0,i1, . . . , Y0,iN0i
− p̂0,iN0i

, Y1,i1− p̂1,i1, . . . , Y1,iN1i
− p̂1,iN1i

)T, for a Bernoulli distributed re-

sponse. For modeling a Poisson distributed response, Wi(êm) = diag(p̂0,i1, . . . , p̂0,iN0i
, p̂1,i1, . . . , p̂1,iN1i

).

2.2.3 Step 3: Final Estimation of α0,P (t0) and α1,P (t1)

In step 3, we use the final global estimates for βr,P , to arrive at the final VCF estimators. For

this, we maximize the local likelihood given in step 1, where br are replaced with β̂r,P , r =

1, . . . , p from step 2. Hence, the Ni×4 design matrix X1i uses the first 4 columns of the design

matrix defined in step 1 and p̂0,ik and p̂1,ik′ are redefined as g−1{ĉ0+ĉ1(t0ik−s0)+
∑p

r=2 β̂r,PXri}

and g−1{d̂0 + d̂1(t1ik′ − s0) + β̂1,PZi +
∑p

r=2 β̂r,PXri}, respectively.

2.3 Generalized Likelihood Ratio Test Under Follow-up Truncation by Death

The proposed PL-GVCM aims to characterize the time-varying CV outcome trajectories from

the start of dialysis and to compare patterns of CV outcome risk before and after an infection.

These time-varying effects are described by the VCFs, α0(t0) and α1(t1), for the time periods

before and after infection, respectively. Thus, we consider hypothesis tests on the VCFs. The

first hypothesis of interest involves whether the VCFs are constant over time (before and after

infection), i.e., H0 : α0(t0) = c0 and α1(t1) = c1, as illustrated in Figure 6(a). This hypothesis

encompasses the case where the infection event induces a constant change (shift) in the CV

outcome risk (i.e., when c0 6= c1). A second hypothesis of interest involves a comparison of

time-varying effects before and after an initial infection-related hospitalization, specifically

H0 : α0(t0) = α1(t1), as illustrated in Figure 6(b). This hypothesis examines whether the

infection event leads to a transient change (e.g. an increase) in CV risk, but the CV risk

pattern over time after infection parallels the CV risk trajectory before the infection event.

In the first hypothesis test for constancy of the varying coefficient functions, the null hy-
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pothesis is parametric, while the alternative is nonparametric. In the second hypothesis test,

both null and alternative hypotheses are nonparametric. Fan et al. (2001) extended GLRTs for

nonparametric inferences in a variety of models. More specifically, they showed that the Wilks

phenomenon that the asymptotic null distributions of the GLRTs are independent of nuisance

parameters holds for a variety of nonparametric problems for i.i.d. data. Based on these ideas,

we consider the GLRTs for the above two hypotheses in the PL-GVCM with longitudinal data

substantially truncated by death. Because the within subject correlation for the response is

quite weak in our data application (∼ 0.02), we consider extensions of the Fan et al. (2001)

i.i.d. framework to longitudinal data where the test statistic defined via log-likelihoods and

the bootstrap data generation under the null hypotheses assume independence for repetitions

within a subject. We study the validity and power of the proposed GLRTs using simulations

in Section 4, where high follow-up truncation by death ranges from 40-80%.

The GLRT statistic, denoted T , is of the form T = rk{`(H1)− `(H0)} where rk = {K(0)−

0.5
∫
K2(u)du}/[

∫
{K(u)−0.5(K ∗K)(u)}2du], K ∗K denoting the convolution of K with itself

and `(H0) and `(H1) denoting the log-likelihoods under the null and alternative hypothesis,

respectively. The form of log-likelihoods, `(·), is given by

n∑
i=1

[N0i∑
k=1

{Y0,ik log(p0,ik)+(1−Y0,ik) log(1−p0,ik)}+
N1i∑
k′=1

{Y1,ik′ log(p1,ik′)+(1−Y1,ik′) log(1−p1,ik′)}
]
.

(8)

In our application, we use the Epanechnikov kernel where rk = 2.1153. Fan et al. (2001)

showed that the GLRT statistic follow a χ2-distribution asymptotically; however, the level of

the test may not be achieved consistently. To alleviate this issue, we will adopt the approach

by Cai et al. (2000) by using a conditional bootstrap procedure which provides an improved

estimate of the null distribution with moderate sample size for GVCMs. More precisely, we

will use a nonparametric bootstrap method to estimate the null distribution. The main steps

of the GLRT algorithm are:
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(i) Estimate the PL-GVCM parameters under the null and alternative hypothesis, providing

`(H0) and `(H1).

(ii) Compute the GLRT statistic T = 2.1153{`(H1)− `(H0)}.

(iii) Generate a bootstrap sample of response values conditional on the estimates of the model

parameters under the null hypothesis.

(iv) Compute the test statistic T based on the bootstrap sample by repeating steps (i)-(ii);

denote this bootstrap statistic by T ∗.

(v) Use the distribution of the bootstrap test statistic, T ∗, to approximate the distribution

of T under the null.

For the first test H0 : α0(t0) = c0 and α1(t1) = c1, the proposed model in (3) reduces to

the generalized linear model g(µi,P ) = c0{1− IGi
(ti)}+ c1IGi

(ti) +β1,PZiIGi
(ti) +

∑p
r=2 βr,PXri

under the null hypothesis. Parameters βr,P can be estimated by maximizing the global like-

lihood in step 2 of the proposed estimation algorithm where α̂0,P (t0i) and α̂1,P (t1i) would

be replaced by c0 and c1 specified in the null, respectively. To obtain the parameter es-

timates of the partly conditional PL-GVCM under the alternative, we utilize the proposed

3-step fitting algorithm described in Section 2.2. Next, the test statistic is computed using

the log-likelihoods given in (8) under the null and alternative hypotheses; where under the

null p̂0,ik = g−1(c0 + τ̂i) and p̂1,ik = g−1(c1 + β̂1,PZi + τ̂i) with τ̂i =
∑p

r=2 β̂r,PXri. Simi-

larly, under the alternative p̂0,ik = g−1{α̂0(t0i) + τ̂i} and p̂1,ik = g−1{α̂1(t1i) + β̂1,PZi + τ̂i),

all evaluated using parameter estimates under respective hypotheses. The response values

(Y ∗0,i1, Y
∗
0,i2, . . . , Y

∗
0,iN0i

, Y ∗1,i1, Y
∗
1,i2, . . . , Y

∗
1,iN1i

)T in the bootstrap sample are generated using pa-

rameter estimates under the null according to Y ∗0,ik ∼ Bernoulli{g−1(c0 + τ̂i)} and Y ∗1,ik ∼

Bernoulli{g−1(c1 + β̂1,PZi + τ̂i)}. After B bootstrap test statistics are obtained based on B
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bootstrap samples, the χ2-distribution of T under the null is approximated via estimating the

degrees of freedom of the distribution based on the distribution of the bootstrap test statistics.

B is taken to be 500 in our applications.

For the second test H0 : α0(t0) = α1(t1), model (3) reduces to g(µi,P ) = α(t0i){1−IGi
(ti)}+

α(ti1)IGi
(ti) + β1,PZiIGi

(ti) +
∑p

r=2 βr,PXri under the null, where α(·) denotes the common

varying coefficient function under the equality α0(t0) = α1(t1). An adaptation of the proposed

estimation algorithm is used to estimate the parameters under the null hypothesis, where d0 and

d1 is replaced with c0 and c1, respectively in (6), X1i in (7) reduces down to a Ni×(p+2) matrix

with second to fourth columns replaced with (t0i1− s0, . . . , t0iN0i
− s0, t1i1− s0, . . . , t1iN1i

− s0)
T

and similar adjustment are made in step 3. For the unrestricted partly conditional PL-GVCM

under the alternative, parameters are targeted with the proposed 3-step estimation algorithm

of Section 2.2. Similar to the the first hypothesis test, the test statistic is computed using

the likelihood in (8) under the null and alternative hypotheses, where under the null p̂0,ik =

g−1{α̂(t0i)+ τ̂i} and p̂1,ik = g−1{α̂(t1i)+ β̂1,PZi+ τ̂i}; under the alternative p̂0,ik = g−1{α̂0(t0i)+

τ̂i}, p̂1,ik = g−1{α̂1(t1i) + β̂1,PZi + τ̂i} using parameter estimates under respective hypotheses.

The bootstrap response (Y ∗0,i1, Y
∗
0,i2, . . . , Y

∗
0,iN0i

, Y ∗1,i1, Y
∗
1,i2, . . . , Y

∗
1,iN1i

)T is generated under the

null according to Y ∗0,ik ∼ Bernoulli[g−1{α̂(t0i)+τ̂i}] and Y ∗1,ik ∼ Bernoulli[g−1{α̂(t1i)+β̂1,PZi+

τ̂i}]. The bootstrap test statistics are used to approximate the distribution of T under the null

similar to the first test.

3 Applications to Infection-Cardiovascular Risk Modeling

3.1 Description of the Study Cohort

We use data from the USRDS, a national data system that collects information on nearly

all patients with end-stage renal disease in the US, including data on inpatient care patient

demographics and baseline patient factors prior to the start of dialysis. The population of
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inference are adults aged 65 to 90 who newly initiated dialysis between January 1, 2000 and

December 31, 2007 without a prior history of renal transplant. Eligibility criterion included

(a) having survived the first 90 days of dialysis and did not recover renal function or receive

a kidney transplant during this interval, (b) having Medicare as the primary payer on day

91 of dialysis, and (c) receiving hemodialysis or peritoneal dialysis on day 91. Thus, the

observation period began on day 91 and subjects were followed-up until death (80%), study

end on December 31, 2009 or after 5 years of observation (from the initiation of dialysis or

the initial infection-related hospitalization). We exclude 1.3% of the cohort that recovered

renal function and 2.1% of the cohort that received a kidney transplant, since the evaluation

of candidates for transplant relates to overall health.

The outcome, CV events were defined as a myocardial infarction, unstable angina, stroke,

or transient ischemic attack, determined from primary discharge diagnosis and based on the

International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) codes.

An infection-related hospitalization was determined from discharge diagnosis, also based on

ICD-9-CM codes, and included the following types of infection: blood stream infections and

sepsis; central nervous system; cardiovascular; peritoneal; gastrointestinal and hepatobiliary;

genitourinary; pulmonary; skin and soft tissue; bone and joint; dialysis access and central

venous catheters; device, procedure and surgery-related. Table 1 summarizes the baseline

covariates included in the study.

3.2 Cardiovascular Outcome Risk Trajectories

3.2.1 Partly and Fully Conditional Time-Varying Models without Covariates

To explore partly and fully conditional time-varying effects, we first consider the CV outcome

risk trajectories over time from the initiation of dialysis without covariates. For this, the partly

conditional GVCM is g[E{Yi(ti)|Si > ti}] = αP (ti), where the model fits to 3 cohorts are shown

in Figure 2(a): (i) patients who die, (ii) patients followed to the end of study (EOS), and (iii)
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all patients combined. The VCF estimates (the CV risk trajectories) have generally increasing

trends over time after dialysis, both in the cohort of patients (i) whose death is observed and

(ii) followed to the EOS. As expected, the CV risk over time is lower for the cohort of patients

alive at the EOS compared to the cohort of patients who die during follow-up; and due to

the high mortality of patients on dialysis, the ratio of sample sizes of cohort (i) over cohort

(ii) is sharply decreasing with follow-up time (Figure 2(a), solid gray line). Even though CV

risk trajectories are increasing in cohorts (i) and (ii), for the combined cohort of all patients

(iii) the CV risk trajectory has an overall decreasing trend, especially within the first 2 years

after starting dialysis. This is related to the fact that the partly conditional model describes

different (dynamic) cohorts at each time point in the follow-up. That is, while the CV risk

is high at the initiation of dialysis because the dynamic cohort of survivors consists mostly of

patients with observed death and higher CV risk, this CV risk decreases over time as the ratio

of the number of patient who die relative to patients alive at the end of follow-up declines in

the dynamic cohort of survivors. This is illustrated in Figure 2(a), where the combined cohort

VCF estimate (dashed line) represents a weighted average of the estimates for cohorts (i) and

(ii), which depends on the changing sample size ratios (gray line) over time.

Figure 2(b) displays 4 fully conditional model fits to data from 4 death bins (strata) with

midpoints 1.125, 2.125, 3.125, and 4.12 years (time of death). These fully conditional analyses

can be interpreted simply as stratified analyses. As expected, we also see an overall global

increasing CV trajectory for each death bin and CV risk is substantially higher for early death

stratum. We emphasize that while the partly conditional model is fitted to the entire cohort,

the fully conditional model can only be fitted in a subset of the cohort for patients whose death

is observed since it conditions on death time. Thus, the estimated VCFs should be interpreted

accordingly. We note that the phenomenon of opposing trends observed in the partly and fully

conditional models was replicated in a simulation study (details in supplemental Appendix B).
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A key aspect in replicating this phenomenon is the inclusion of a high proportion of subjects

with observed mortality early on near the start of dialysis where this proportion gradually

decreases with follow-up time (Figure 2(c)-(d)).

3.2.2 Time-Varying CV Risks Before and After Infection, and Baseline Factors

We next turn to the main study objectives, which are to examine the CV risk trajectories during

the time periods before and after an initial infection-related hospitalization and to assess the

association of vintage and patient baseline characteristics, including comorbidities, on CV

outcome. For this, we fit the partly and fully conditional PL-GVCMs described in Section 2.1

with covariates demographic characteristics (age, sex, race), comorbidities (diabetes, coronary

heart disease, congestive heart failure, peripheral vascular disease), body mass index (BMI) and

estimated glomerular filtration rate (eGFR). Bandwidth selection are given in supplemental

Appendix C.

The estimated partly conditional VCFs before and after infection, namely α̂P (t0) and

α̂P (t1), and the corresponding CV risk trajectories are given in Figures 3(a) and 3(b), re-

spectively. Also, given are 90% bootstrap percentile confidence intervals (CIs) based on 200

bootstrap samples where entire subject trajectories are sampled with replacement. We for-

mally tested whether the partly conditional VCFs characterizing CV risks are constant over

time (Test I) and whether they are equal to each other (Test II) using the GLRTs described

in Section 2.3. There is strong evidence indicating that there is differential time-varying ef-

fects before and after infection (both null hypotheses rejected with p-value < .0001). As

evident from Figures 3(a)-(b), both VCFs (and corresponding CV outcome risk trajectories)

are decreasing in time for the dynamic cohort of survivors. Furthermore, the initial infection-

related hospitalization marks a significant increase in CV risk with non-overlapping CIs for

α0,P (t0) and α1,P (t1). Figures 3(c)-(f) show the estimated CV risk trajectories where the ini-

tial infection-related hospitalization occurs at 1-4 years after starting dialysis. This indicates a
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sustained increase in CV risk across the duration of follow-up after infection, in the sense that

the CV risk levels after infection do not return to the levels observed at initiation of dialysis.

In addition, the CV risk declines at a faster rate within the first year after initiation of dialysis

compared to the linear decrease after the initial infection-related hospitalization.

Results for the fully conditional model fits, stratified by death bins, show that CV risk has

a general decreasing trend as survival of the patients in the bins increase (with bin midpoints

or time of death at 1.125, 2.125, 3.125, and 4.125 years); this pattern of results (omitted) is

similar to Figure 2(b). Figures 4(a)-(c) show the typical pattern of increased CV risk after the

initial infection in the fully conditional model fits, consistently across death bins/strata. While

the partly conditional model provides information about the dynamic cohort of survivors, the

fully conditional model provides an opportunity to compare estimated effects across cohorts

with differential death strata directly.

The estimated effects of baseline covariates, {β̂r,F}, on CV risk for a sequence of fully

conditional models are summarized in Figure 5. Being male is associated with lower CV

risk in both the fully and partly conditional model (β̂3,P = −.125, 95% bootstrap CI [95%

bCI]: (−.143,−.110)). Baseline comorbidities, including coronary heart disease (β̂7,P = .201,

95% bCI: (.185, .218)) and diabetes (β̂9,P = .179, 95% bCI: (.164, .198)) are associated with

higher CV outcome risk in both the partly and fully conditional models. Several comorbidities,

specifically congestive heart failure (β̂6,P = .045, 95% bCI: (.026, .065)) and peripheral vascular

disease (β̂8,P = .093, 95% bCI: (.070, .115)), in addition to baseline age (β̂2,P = .009, 95% bCI:

(.007, .010)), are found to be associated with increased CV risk in the partly conditional model.

But once conditioned on death time, are not found significant in most of the death bins (Figure

5). This may be related to some comorbidities and age being related to CV risk via their effect

on survival in the entire cohort, where once conditioned on death time may no longer be

associated with CV risk, while others such as coronary heart disease and diabetes having a
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more direct effect on CV across differential survival. Among those who survive longer, higher

BMI is associated with lower CV outcome risk, and among those who die within 3 years of

dialysis, higher eGFR is associated with lower CV risk, consistent with the general trends

observed in the partly conditional model (β̂10,P = −.008, 95% bCI: (−.010,−.006) for BMI;

β̂11,P = −.009, 95% bCI: (−.011,−.008) for eGFR). Finally, the particular infection time does

not seem to have a strong association with CV risk in either the partly (β̂11,P = −.021, 95%

bCI: (−.030,−.010)) or the fully conditional models (Figure 5(a)).

4 Simulation Studies

As described in Section 2.2, the fully conditional estimation involves fitting the PL-GVCM

within each death bin, where subjects with similar death times are grouped together. Thus,

the issue of truncation by death is handled by stratification by death time (death bins) and

the model fits within each death bin follow a standard estimation algorithm for PL-GVCM.

In contrast, the partly conditional PL-GVCM is fitted based on subjects who have differential

follow-up, where many individuals’ follow-up times are truncated by death. Thus, our simula-

tion studies here will focus on the finite sample properties of the proposed estimation method

for the partly conditional PL-GVCM; similarly we will examine the validity and power of the

proposed GLRTs in Section 2.3.

4.1 Simulation Model and Design

To study the efficacy of the estimation method under truncation by death, we consider a model

for the partly conditional outcome mean, µi,P = E{Y (ti, t0i, t1i)|Zi, X1i, X2i, IGi
(ti), Si > ti},

through the following PL-GVCM:

log{µi,P/(1−µi,P )} = α0,P (t0i){1−IGi
(ti)}+α1,P (t1i)IGi

(ti)+β1,PZiIGi
(ti)+β2,PX1i+β3,PX2i,
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where α0,P (t) = −.05t2 + .025t− 1.25, α1,P (t) = −.03t2 − .05t, (β1,P , β2,P , β3,P ) = (−.5, .5, 1),

and the time support is tvi ∈ [0, Tvi], Tvi ≤ T = 5 (for v = 0, 1). X1i is generated from

a Gamma distribution with {shape, rate} parameters {4, 6} and X2i ∼ Bernoulli(.52). In

order to generate the time-varying indicator variable, IGi
(ti), we first generate a binary in-

dicator of whether or not a subject experiences an infection-related hospitalization according

to a Bernoulli distribution with probability .68 to mimic the infection rate in our data ap-

plication. For those subjects who experience an infection-related hospitalization, we generate

Zi = 1
4
b4Wic where Wi ∼ N(1.25, .25) and b·c denotes the floor function.

The response vector and survival time are generated jointly using the bisection algo-

rithm, similar to Estes et al. (2014) and Kurland and Heagerty (2005). This data simu-

lation design mimics the real data in that within-subject correlation of the response is low

(∼ 0.04) and truncation by death is high during the 5-year follow-up, ranging from 40-

80%. The binary response Y0,ik and Y1,ik′ , are generated as indicators for (Y ∗0,ik > 0) and

(Y ∗1,ik′ > 0), respectively. For subjects who do not experience an infection-related hospital-

ization, we generate (Y ∗0,i1, . . . , Y
∗
0,i21, Si)

T according to a 22-dimensional normal distribution

with mean vector [µ∗T0,i , E(Si) = 3.38]T where µ∗0,i = (µ∗0,i1, . . . , µ
∗
0,i21)

T is the mean vector

E{Yi(ti, t0i, t1i)|Zi, Xi, IGi
(ti)} of the ith subject, unconditional on survival status. We include

a maximum of 21 repeated measures per subject on the outcome similar to the outcome in

USRDS data measured every 3 months for a maximum of 5 years of follow-up. The covariance

matrix of the 22-dimensional normal distribution is Σ =
[
I21,−.05η21;−.05ηT

21, .5
]
, where Ia is

an identity matrix of size a and ηa is a vector of ones of size a. Elements of the unconditional

mean vector, µ∗0,i, are computed through the correspondence:

µ0,ik = E[Y0,ik|Si > t0ik] = P (Y ∗0,ik > 0|Si > t0ik) = P (Y ∗0,ik > 0, Si > t0ik)/P (Si > t0ik), (9)

where µ0,ik = g−1{α0,P (t0ik) + β2,PX1i + β3,PX2i}. Through (9) P (Y ∗0,ik > 0, Si > t0ik) is

computed via µ0,ik × P (Si > t0ik) and we find {µ∗0,il}21
l=1 using the bisection method. The
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generated (Y0,i1, . . . , Y0,i21)
T vector is truncated such that t0,ik ≤ Si to create the observed

outcomes for k = 1, . . . , N0i.

For subjects who experience an infection-related hospitalization, based on the previously

generated Zi, we generate (Y ∗0,i1, . . . , Y
∗
0,iN0i

, Y ∗1,i1, . . . , Y
∗
1,i20, Si)

T ∼ NN0i+20([µ
∗
0,i1, . . . , µ

∗
0,iN0i

,

µ∗1,i1, . . . µ
∗
1,i20, E(Si) = 3.38 + Zi]

T,Σ) where N0i = 4Zi + 1, Σ =
[
Ia,−.05ηa;−.05ηT

a , .5
]

with

a = N0i + 20. The unconditional means (µ∗0,i1, . . . , µ
∗
0,iN0i

) are calculated as described in (9)

and (µ∗1,i1, . . . , µ
∗
1,i20) are calculated similarly by the bisection method using P (Y ∗1,ik′ > 0, Si >

Zi+t1ik′) = µ1,ik′×P (Si > Zi+t1ik′) where µ1,ik′ = g−1{α1,P (t1ik′)+β1,PZi+β2,PX1i+β3,PX2i}.

The generated (Y1,i1, . . . , Y1,i21)
T vector is truncated such that Zi + t1,ik′ ≤ Si to create the

observed outcomes after the pivotal exposure for k′ = 1, . . . , N1i.

4.2 Simulation Results

4.2.1 Estimation

We generated 200 datasets at sample sizes of n = 500 and 2000. For the estimation, bandwidths

were chosen by 20-fold cross-validation as described in Cai et al. (2000). Bandwidths utilized

were chosen in a preliminary simulation study yielding h = (1.5, 1.5) for α̂0,P (t0), α̂1,P (t1) at

n = (500, 2000), respectively. To study the performance of the proposed estimation procedure,

we utilize a relative mean squared deviation error (MSDE) defined as

MSDEαv =

[∫ T

0

{αv,P (tv)− α̂v,P (tv)}2dtv
]/∫ T

0

α2
v,P (tv)dtv

for the VCFs, v = 0, 1, and mean squared error MSEβr for the constant coefficients {βr,P}3r=1.

The median and first and third quartiles of the estimated MSDE and MSE measures over 200

Monte Carlo runs are presented in Table S1 of the supplemental Appendix. The MSDE and

MSE values are relatively small and decrease with increasing sample size, indicating the overall

effectiveness of the estimation in targeting partly conditional PL-GVCMs using longitudinal

data truncated by death (at 80%; results are similar for other levels of truncation by death). In
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addition, Figure S1 of the supplemental Appendix displays the estimated median and 5th and

95th percentiles of the VCF estimates along with the true curves for n = 2000. The estimated

functions track the true VCFs.

4.2.2 Hypothesis Tests

We also examine the validity and power of the two proposed GLRTs, namely Test I: H0 :

α0,P (t0) = c0 and α1,P (t1) = c1 and Test II: H0 : α0,P (t0) = α1,P (t1) (illustrated in Figure

6(a)-(b), respectively) for longitudinal data under high levels of truncation by death, similar

to our data application (ranging from 40-80%).

We first study the Wilks phenomenon under the high level of truncation by death (at 80%),

that the null distribution of the test statistic approximately follows a χ2-distribution and does

not depend on the specific null values considered. For Test I, we consider 5 different sets of null

values: (c0, c1) ∈ {(−1, 1), (−1, 0), (0,−1), (0, 1), (1, 0)}. The parametric bootstrap procedure

(Section 2.3) is used for n = 500 to estimate the null distribution of the test statistic under

these 5 settings. The estimated densities of the GLRT statistic, T , based on B = 500 bootstrap

samples are given in Figure 6(c) along with the density of the χ2-distribution. The degrees

of freedom of the χ2-distribution is chosen to be close to the sample mean of the bootstrap

test statistic values across null configurations. The plotted densities of T are close to the χ2

density, indicating that the Wilks phenomenon holds for the partly conditional PL-GVCMs

under substantial truncation by death.

Next, we study the power and validity of the two proposed hypothesis tests. For Test I, the

power is evaluated at a sequence of alternatives indexed by δ: H1 : α0,P (t0) = c0(1−δ)+δα0
0(t0)

and α1,P (t1) = c1(1− δ) + δα0
1(t1) where α0

0(t) = −.05t2 + .025t− 1.25, α0
1(t) = −.03t2 − .05t,

δ ∈ [0, 1], c0 = E[α0(t0)] and c1 = E[α1(t1)]. Similarly, for Test II, we consider the alternative

H1 : α0,P (t0) = (1 − δ)α0
0(t0) + δα0

0(t0) and α1,P (t1) = (1 − δ)α0
0(t1) + δα0

1(t1) where α0
0(t) =

−.05t2 + .025t−1.25, α0
1(t) = −.03t2− .05t and δ ∈ [0, 1]. Note that in both cases, larger values
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of δ correspond to further deviations from the null. Figure 6(d) gives the 3 power curves, at

level .05, for 80%, 60% and 40% truncation by death for Test I. Results are presented based

on 200 replications at n = 500. Similarly Figure 6(e) gives the 3 power curves for Test II. As

expected, the power increases with effect size (δ ↑) and the power degrades with increasing

level of truncation by death. The validity of a test is indicated by the empirical power under

the null (δ = 0, Type I error), which should coincide approximately with the level of the test.

For Test I at significance levels (.05, .1, .2, .5), the corresponding empirical Type I errors are

(.06, .13, .23, .56) for 80% truncation by death. The results are similar for 60% and 40%

truncation by death: (.04, .12, .24, .51) and (.06, .11, .19, .53). Similarly, validity of Test II

holds, indicated by the following empirical Type I error rates: (.04, .1, .19, .48), (.04, .11, .19,

.47) and (.04, .09, .17, .48) for 80%, 60% and 40% truncation by death.

5 Discussion

In this work, we proposed partly and fully conditional approaches to modeling time-varying

effects for longitudinal data with substantial truncation by death. We provided an in-depth

comparative study of these conditional modeling approaches with applications to further un-

derstand the time-varying effect of infection on patients’ CV outcome trajectories over time,

from the start of dialysis. While the partly conditional approach provides information on an

evolving/dynamic cohort of survivors, the fully conditional approach conditions on the actual

death time where the analysis involves fitting a sequence of stratum-specific time-varying effect

models (within death bins). Thus, the later approach enables direct comparison of time-varying

effects for each death bin/stratum as well as variation in baseline covariate effects on outcome

across death bins. We note that another approach for longitudinal data truncated by death is

joint modeling of CV risk and survival. The joint modeling typically focuses on the survival

outcome (and the longitudinal outcome) and is not suitable to our application of modeling
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the infection-CV outcome relationship. For inference via hypothesis testing, we proposed an

extension of the GLRT statistic to longitudinal data with substantial truncation by death, like

the dialysis population. Empirical estimate of power and validity via simulation shows the

efficacy of the proposed tests. We provide R codes for the proposed partly conditional and

fully conditional PL-GVCM at http://dsenturk.bol.ucla.edu/PLVCM algorithm JASA.pdf.
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Table 1: Baseline characteristics of n = 243, 730 patients aged 65 to 90. Data presented are
mean ± standard deviation (SD) for continuous variables or count (percent) for categorical
variables.

Variable Mean ± SD/ Count (%)
Baseline age 75.78 ± 6.25
Male 125,875 (52)
Race

Black 53,704 (22)
White 176,780 (73)
Other 13,246 (5)

Congestive heart failure 100,896 (41)
Coronary heart disease 87,532 (36)
Peripheral vascular disease 46,357 (19)
Diabetes 138,682 (57)

Estimated glomerular filtration rate 10.923 ± 5.445
Body mass index 26.973 ± 6.783
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Figure 1: Illustration of partly conditional, fully conditional and unconditional model estimates
of the varying coefficient function targets in a simple generalized varying coefficient model.
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Figure 2: (a) Fits from a simple partly conditional GVCM, g[E{Yi(ti)|Si > ti}] = αP (ti) using
3 USRDS cohorts. Also displayed (gray line) is the sample size ratio for the cohort whose death
is observed over the cohort who were followed to the end of the study. (b) Fits from a fully
conditional GVCM, g[E{Yi(ti)|Si ∈ Dj}] = αj,F (ti), for subjects in 3-month death bins with
midpoints 1.125, 2.125, 3.125, and 4.125 years. (c and d) Fits from simulated data under the
simple partly and fully conditional GVCMs. Presented are the cross-sectional median varying
coefficient function estimates over 200 Monte Carlo runs.
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Figure 3: (a) Estimated varying coefficient functions from partly conditional PL-GVCM fits
α̂0,P (t0) (black), α̂1,P (t1) (gray). (b) Estimated CV risk since initiation of dialysis (black) and
since the initial infection-related hospitalization (gray) for a white diabetic male who initiated
dialysis at age 75.5 with a median levels of eGFR and BMI (9.83 and 25.81, respectively). (c)-
(f) Estimated CV risk trajectories for an adult described above where the patient experiences
the initial infection-related hospitalization at 1 − 4 years after initiation of dialysis. 90%
bootstrap confidence intervals given as dashed lines.
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Figure 4: (a)-(h) Estimated CV risk based on the fully conditional PL-GVCM fits from 3-
month death bins with midpoints 1.125, 2.125, 3.125 and 4.125, respectively, for a white male
diabetic initiating dialysis at age 75.25 with a median levels of eGFR and BMI (9.79 and 26.05,
respectively). Time of the initial infection-related hospitalization (vintage) was selected as the
median value within each death bin at 0.90., 1.62, 2.06 and 2.43, respectively. 90% bootstrap
confidence intervals given as dashed lines.
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Figure 5: Estimated coefficients for baseline covariates (a) vintage, (b) age, (c) gender-male, (d)
congestive heart failure, (e) coronary heart disease, (f) peripheral vascular disease, (g) diabetes,
(h) eGFR, and (i) BMI for a sequence of fully conditional PL-GVCMs from death bins with
midpoints Dj = 1.125, 1.625, 2.125, 2.625, 3.125, 3.625, 4.125, 4.625 years, respectively from left
to right. 90% bootstrap confidence intervals are displayed as whiskers. The gray horizontal
line at zero (no effect) is included for reference.
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Figure 6: (a)-(b) The null hypotheses of constancy (i.e., Test I: H0 : α0(t0) = c0 and H0 :
α1(t1) = c1) and equality (i.e., Test II: H0 : α0(t0) = α1(t1)) (c) Estimated densities of the
generalized likelihood ratio test statistic, T , from 5 different sets of (c0, c1) values (dashed) along
with the density function of a χ2-distribution with 10 degrees of freedom (solid). Empirical
power estimated at significance level .05 for Test I and II with 40-80% truncation by death.




