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Web-Based Genome-Wide Association Study Identifies
Two Novel Loci and a Substantial Genetic Component for
Parkinson’s Disease
Chuong B. Do1*, Joyce Y. Tung1, Elizabeth Dorfman1, Amy K. Kiefer1, Emily M. Drabant1, Uta Francke1,

Joanna L. Mountain1, Samuel M. Goldman2, Caroline M. Tanner2, J. William Langston2, Anne Wojcicki1,

Nicholas Eriksson1*

1 23andMe, Mountain View, California, United States of America, 2 Parkinson’s Institute, Sunnyvale, California, United States of America

Abstract

Although the causes of Parkinson’s disease (PD) are thought to be primarily environmental, recent studies suggest that a
number of genes influence susceptibility. Using targeted case recruitment and online survey instruments, we conducted the
largest case-control genome-wide association study (GWAS) of PD based on a single collection of individuals to date (3,426
cases and 29,624 controls). We discovered two novel, genome-wide significant associations with PD–rs6812193 near SCARB2
(p~7:6|10{10, OR~0:84) and rs11868035 near SREBF1/RAI1 (p~5:6|10{8, OR~0:85)—both replicated in an
independent cohort. We also replicated 20 previously discovered genetic associations (including LRRK2, GBA, SNCA, MAPT,
GAK, and the HLA region), providing support for our novel study design. Relying on a recently proposed method based on
genome-wide sharing estimates between distantly related individuals, we estimated the heritability of PD to be at least 0.27.
Finally, using sparse regression techniques, we constructed predictive models that account for 6%–7% of the total variance
in liability and that suggest the presence of true associations just beyond genome-wide significance, as confirmed through
both internal and external cross-validation. These results indicate a substantial, but by no means total, contribution of
genetics underlying susceptibility to both early-onset and late-onset PD, suggesting that, despite the novel associations
discovered here and elsewhere, the majority of the genetic component for Parkinson’s disease remains to be discovered.
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Introduction

To date, a number of different genetic susceptibility factors have

been identified for Parkinson’s disease. Autosomal dominant

factors involved in PD include mutations in the SNCA (a-synuclein)

[1,2] and LRRK2 (leucine-rich repeat kinase 2) [3,4] genes.

Autosomal recessive factors include mutations in the PARK2

(parkin) [5], PINK1 (PTEN induced putative kinase 1) [6], PARK7

(DJ1) [7], and ATP13A2 (ATPase type 13A2) genes [8,9].

Parkinson’s disease is sometimes thought of as consisting of an

early-onset form, characterized by familial clustering and high

penetrance mutations, and a late-onset form, which occurs more

sporadically. In contrast with the evidence for Mendelian inhe-

ritance of early-onset PD, studies comparing rates of concordance

in monozygotic and dizygotic twins [10–12] have traditionally

yielded low estimates of heritability for late-onset PD. Evidence of

familial aggregation in late-onset PD, when present, is thus some-

times attributed to shared environmental effects or ascertainment

bias (see [13], but cf., [14]). Nonetheless, genome-wide association

studies have uncovered a few new genes involved in late-onset PD

in European [15–19] and Japanese [20] populations. These studies

have shown repeatedly that common variation in SNCA and an

inversion of the region containing the MAPT (microtubule-

associated protein tau) gene are associated with PD. In addition,

NUCKS1 (nuclear casein kinase and cyclin-dependent kinase sub-

strate 1) [16,20], the HLA (human leukocyte antigen) region [18],

GAK (cyclin G associated kinase) [15,19], BST1 (bone marrow

stromal cell antigen 1) [20,21], and five additional loci [22] have

recently been associated with PD.

Here, we present a genome-wide association study of PD with a

number of distinguishing features. The recruitment of PD cases

took place primarily through targeted emails to PD foundations

and support groups over the course of 18 months. The large set of

controls was recruited through the 23andMe customer database.

Determination of case status was conducted through a set of online

questionnaires. We present three main scientific results. First, we

identify two novel loci associated with PD and replicate many

more. Second, we present lower-bound estimates of PD heritabil-

ity based on observed genome-wide sharing that imply a large

fraction of the genetic component underlying the etiology of PD
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has not yet been discovered. Third, we use sparse regression

techniques to construct risk estimation algorithms that account for

roughly 6–7% of the total variance in liability to PD and that

suggest the existence of true associations lying just beyond

genome-wide significance.

Results

Participants were drawn from the customer database of the

personal genetics company, 23andMe, Inc. The majority of cases

were recruited into that database through PD support groups and

tertiary clinics. All cases reported via web-based surveys having

been diagnosed with Parkinson’s disease by a physician. Most

cases (approximately 84%) also provided detailed information

about their disease progression, other diagnoses, symptoms, res-

ponse to medication, and family history. All participants included

in this study were unrelated individuals of primarily European

ancestry, based on the criteria described in Materials and Methods.

We used two different sources of data for validating SNPs

discovered and models constructed using the 23andMe cohort. To

replicate our association results, we exchanged p-values with the

International Parkinson Disease Genomics Consortium (IPDGC),

whose dataset consisted of 6,584 cases and 15,470 controls com-

piled from seven separate cohorts containing individuals of Euro-

pean descent [23]. To validate our risk prediction methods, we

used data from the National Institute of Neurological Disease and

Stroke (NINDS) Database (see Materials and Methods for details).

We did not attempt to replicate our novel associations on the

NINDS dataset due to lack of statistical power; similarly, we did

not validate our risk prediction methods on the IPDGC cohort as

we did not have access to the genetic data for this group. Summary

statistics describing all three datasets are provided in Table 1.

Associations
We performed a GWAS using the 23andMe dataset consisting

of 3,426 cases and 29,624 controls, controlling for age, sex,

genotyping platform, and five principal components. All 23andMe

samples were genotyped using a custom Illumina HumanHap

550+ panel, with 522,782 markers passing quality control (see

Materials and Methods). Manhattan and q-q plots can be found in

Figures S1 and S2. All SNPs with p-values under 10{6 in the

23andMe cohort are shown in Table 2. Summary data for the

SNPs in Table 2 can be found in Table S1. All SNPs with p-values

under 10{4 can be found in Table S2. Using a cutoff of

9:6|10{8 for significance based on a Bonferroni correction

across all markers, we identified two novel regions–SCARB2 and

SREBF1/RAI1–and replicated six previously reported regions–

LRRK2, SNCA, GBA, MAPT, MCCC1/LAMP3, and GAK. A

seventh replication (SLC41A1/PARK16) and two other potentially

novel regions (RIT2/SYT4 and USP25) appear nearly genome-

wide significant as well.

The first novel association is rs6812193, with an odds ratio (OR)

of 0:839 and p-value of 7:6|10{10, in an intron of FAM47E (see

Figure 1), upstream of SCARB2. This SNP replicates in the

IPDGC cohort with an OR of 0:89 and p-value of 3:3|10{6.

The second novel association is rs11868035, with an OR of 0:851
and p-value of 5:6|10{8, located in an intron of SREBF1 (see

Figure 2). This association also replicates in the IPDGC cohort

with an OR of 0:95 and p-value of 0.03. Of potential interest is a

non-synonymous variant (proline to threonine change), with a p-

value of 1:52|10{6, in RAI1, rs11649804, in tight linkage

disequilibrium (LD) with rs11868035 (r2&0:9).

Among replications of previously reported associations, rs34

637584 is the non-synonymous G2019S mutation in the LRRK2

gene, well known to be associated with PD [24]. GBA N370S is one

of the mutations causing Gaucher’s disease and has recently been

associated with PD [25,26]. These two SNPs, both rare variants,

were included as part of the custom set of variants used to geno-

type the 23andMe cohort. The associations with SNCA, MAPT, GAK,

and SLC41A1 have been reported multiple times. Here we provide

the first independent confirmation of the association of rs10513789

in the MCCC1/LAMP3 region with PD, as first reported in [22].

Of the three suggestive associations that do not reach genome-

wide significance, rs823156 near SLC41A1/PARK16 has been

previously reported [20]. The association with rs4130047 (in an

intron of RIT2, with an OR of 1.16 and p-value of 2:44|10{7) is

not quite significant, though it independently appears in the

IPDGC cohort with a replication p-value of 0:0014, and also is

included in the supplement of [15] as a suggestive association

under a recessive model. The last suggestive SNP, rs2823357, lies

170 kb upstream of USP25, a ubiquitin-specific protease. This

association, however, fails to replicate in the IPDGC cohort, with

a p-value of 0:19. See Figure 5 and Figure 6 in [15] for plots of the

RIT2/SYT4 and USP25 regions.

On the basis of candidate gene studies or modest significance

levels in previous GWASs, researchers have proposed associations

for many genes with PD to date. We used the set of ‘‘Top Results’’

from the meta-analysis at http://www.pdgene.org/ [27] as well as

Table 1. Description of cohorts.

Description Number Age % Male Age of onset

23andMe controls 29624 48.2 (16.0) 58.5% –

23andMe cases 3426 64.3 (10.6) 60.3% 57.4 (10.7)

IPDGC controls 15470 – – –

IPDGC cases 6584 – – –

NINDS controls 799 58.6 (16.4) 41.9% –

NINDS cases 932 66.2 (11.0) 59.8% 58.5 (13.1)

Age is the average current age for the 23andMe cohort and the average age at
collection for the NINDS cohort. Standard deviations are given in parentheses.
doi:10.1371/journal.pgen.1002141.t001

Author Summary

We conducted a large genome-wide association study
(GWAS) of Parkinson’s disease (PD) with over 3,400 cases
and 29,000 controls (the largest single PD GWAS cohort to
date). We report two novel genetic associations and
replicate a total of twenty previously described associa-
tions, showing that there are now many solid genetic
factors underlying PD. We also estimate that genetic
factors explain at least one-fourth of the variation in PD
liability, of which currently discovered factors only explain
a small fraction (6%–7%). Together, these results expand
the set of genetic factors discovered to date and imply
that many more associations remain to be found. Unlike
traditional studies, participation in this study took place
completely online, using a collection of cases recruited
primarily via PD mailing lists and controls derived from the
customer base of the personal genetics company 23an-
dMe. Our study thus illustrates the ability of web-based
methods for enrollment and data collection to yield new
scientific insights into the etiology of disease, and it
demonstrates the power and reliability of self-reported
data for studying the genetics of Parkinson’s disease.

A Substantial Genetic Component for Parkinson’s
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all SNPs appearing in a PD GWAS with p-values under 10{5

from [28]. After removing SNPs for which we did not have a good

proxy, and omitting highly correlated or duplicate SNPs, we were

left with 42 potential replications. In addition to LRRK2 G2019S,

19 other previously reported associations replicated with the

correct directionality in the 23andMe cohort using a significance

threshold of 0.05 (see Table 3). Of these, 17 of our confidence

intervals include the published OR. Of the two that did not, one

was using a proxy SNP with a rather weak r2 of 0.16, so it is not

surprising that our OR is weaker in this case.

We had good power (over 86% in all but one case) to replicate

all 42 of these associations, assuming the reported odds ratio (from

the meta-analysis in the case of associations from [27], from the

original paper otherwise) was correct. Thus the failure to replicate

many of the reported associations (including two with ‘‘A’’ or ‘‘B’’

meta-analysis grades) is likely partially due to inflation of the odds

ratios in those reports, although a few of the associations that were

discovered in Asian populations, such as rs1994090, may simply

not have the same effect in European populations.

Finally, we note that in all analyses above, we restricted con-

sideration to a log-additive model of association. Allowance for

dominant and recessive models might lead to increased power for

detection in cases where a log-additive model is not appropriate,

and may also affect the success rates in our replication experiment.

Heritability
To characterize the extent to which genetic factors tagged on

genotyping panels play a role in PD susceptibility, we applied a

recently proposed approach for estimating heritability based on

genome-wide sharing between distantly related individuals

[29,30]. Using the 23andMe cohort, we estimated the heritability

of PD to be 0.272 with 95% CI of 0.229 to 0.315. This estimate

refers only to the proportion of phenotypic variance arising from

causal variants that are in LD with the SNPs on our genotyping

platform, which may be less than the corresponding proportion for

all causal variants. This estimate has only a mild dependence on

the assumed prevalence: using prevalences of K~0:005 or

K~0:015 gives estimates of h2
L~0:233 or h2

L~0:300, respective-

ly. Thus, our estimates generally suggest a lower-bound on the

actual heritability in the 0.25 to 0.3 range.

Table 4 compares our heritability estimates using the 23andMe

cohort with an estimate computed for the NINDS cohort based on

the same analytic methods, and with numbers obtained from the

literature. Where only relative recurrence risk ratios were provided,

we inferred the corresponding heritability of liability under an

assumption of no shared environmental covariance [31]; in practice,

such an assumption is unlikely to hold for close relatives, and as

such, the estimates of heritability we have inferred from those

studies are likely to be upwardly biased. We note that our estimates

of heritability for PD are most consistent with estimates from prior

twin studies, though with substantially tighter confidence intervals

even after accounting for the uncertainty in prevalence.

Risk prediction
Given our estimates of the genetic contribution to PD, we then

sought to determine the proportion of this contribution that we

Table 2. GWAS results for all SNPs with pv10{6 in the 23andMe cohort.

SNP Chr Position Region Alleles MAF Cohort OR p

rs34637584 12 39020469 LRRK2 G/A 0.002 23andMe 9.615 (6.43–14.37) 1:82|10{28

IPDGC – –

i4000416 1 153472258 GBA T/C 0.005 23andMe 4.048 (3.08–5.32) 5:17|10{21

IPDGC – –

rs356220 4 90860363 SNCA C/T 0.375 23andMe 1.285 (1.22–1.36) 2:29|10{19

IPDGC – –

rs12185268 17 41279463 MAPT A/G 0.211 23andMe 0.769 (0.72–0.82) 2:72|10{14

IPDGC – –

rs10513789 3 184242767 MCCC1/LAMP3 T/G 0.201 23andMe 0.803 (0.75–0.86) 2:67|10{10

IPDGC 0.873 (0.83–0.92) 1:7|10{6

rs6812193 4 77418010 SCARB2 C/T 0.365 23andMe 0.839 (0.79–0.89) 7:55|10{10

IPDGC 0.90 (0.86–0.94) 3:29|10{6

rs6599389 4 929113 GAK G/A 0.075 23andMe 1.311 (1.19–1.44) 3:87|10{8

IPDGC – –

rs11868035 17 17655826 SREBF1/RAI1 G/A 0.309 23andMe 0.851 (0.80–0.90) 5:61|10{8

IPDGC 0.95 (0.91–0.996) 0.033

rs823156 1 204031263 SLC41A1 A/G 0.183 23andMe 0.827 (0.77–0.89) 1:27|10{7

IPDGC – –

rs4130047 18 38932233 RIT2/SYT4 T/C 0.313 23andMe 1.161 (1.10–1.23) 2:44|10{7

IPDGC 1.077 (1.03–1.13) 0.0014

rs2823357 21 15836776 USP25 G/A 0.376 23andMe 1.149 (1.09–1.21) 6:32|10{7

IPDGC 0.971 (0.93–1.02) 0.187

All genomic positions are given with respect to NCBI build 36.3. Alleles are listed as major/minor and are specified for the forward strand. Odds ratios per copy of the minor
allele and p-values are provided for the 23andMe cohort and, where requested, the IPDGC replication set. Minor allele frequencies are provided for the 23andMe cohort.
doi:10.1371/journal.pgen.1002141.t002

A Substantial Genetic Component for Parkinson’s
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could attribute to specific genetic factors on our genotyping panel

by constructing risk prediction models for PD. We considered two

settings: an internal five-fold cross-validation experiment, where

we divided the 23andMe cohort into five matched sets of cases and

controls and computed predictions for each set using models

trained using the other four sets; and an external cross-validation

experiment, where we trained risk prediction models using the

entire 23andMe cohort and tested them on the NINDS cohort

after restricting both datasets to the set of common SNPs passing

quality control for each dataset individually.

In both the internal and external validation experiments, we

measured the discriminative accuracy of the risk prediction

algorithm using the area under the receiver operating character-

istic curve (AUC). The AUC for a model can be interpreted as the

probability that a randomly selected case will have a higher

estimated risk of developing PD than a randomly selected control.

An AUC of 1 implies that a model discriminates perfectly between

cases and controls, whereas an AUC of 0.5 corresponds to a model

based on random guessing. To measure predictive accuracy, we

used a covariate-adjusted measure of AUC that removed the effect

of potential confounding by sex, age, population structure, and,

where appropriate, cross-validation fold or genotyping platform

(see Materials and Methods).

To avoid making manual decisions in the choice of SNPs to

include, we used a sparse logistic regression algorithm for building

risk prediction models, and varied the strength of the sparsity-

inducing prior (see Materials and Methods). For a given training

set, this procedure generated a series of risk prediction models of

differing size, each of which we characterized using an ap-

proximate theoretical upper bound on the expected number of

false positive SNPs, E½FP�; here, E½FP�ƒ0:05 corresponds to a

model containing only genome-wide significant associations. In the

internal five-fold cross-validation experiment (see Table 5), the

differences in AUCs between each of the largest three models (i.e.,

E½FP�ƒ1000, 100, or 10) and each of the smallest two models

(i.e., E½FP�ƒ0:05 or 1) were significant (e.g., 0:597w0:568
comparing the largest and smallest models, one-sided p&0:001;

see Table S3). In the external cross-validation results, the four

largest models were significantly better than the genome-wide

significant model (e.g., 0:605w0:550 comparing the largest and

smallest models, one-sided p&0:010).

Taken at face value, these results seem to suggest that the larger

models, which include many more genomic regions than those

deemed genome-wide significant, may harbor associations that

account for their increased predictive accuracy. An alternative

possibility, however, is that the differences in performance between

models are actually just a consequence of differing levels of bias

arising from the use of sparsity-inducing regularization. In Text S1

and Table S4, we present an argument using a bias-corrected

version of our external cross-validation experiment that the above

caveats do not explain the improved accuracy for the E½FP�ƒ1
and E½FP�ƒ10 models, thus suggesting that these models are

likely to harbor additional important loci for PD; see Tables S5

and S6 for the SNPs included in these models. We note that this

argument may not be the only way of demonstrating the existence

of meaningful associations beyond the genome-wide significance

Figure 1. Plot of { log10 p-values around rs6812193 and SCARB2. In the plot, circles represent unannotated SNPs, upside-down triangles
represent non-synonymous variants, and boxes with an ‘‘x’’ are SNPs in regions that are highly conserved across 44 placental mammals. Colors depict
the squared correlation (r2) of each SNP with the most associated SNP (i.e., rs6812193). Purple designates the SNP with the strongest association, and
gray indicates SNPs for which r2 information was missing. Plots were produced using the LocusZoom program [71].
doi:10.1371/journal.pgen.1002141.g001

A Substantial Genetic Component for Parkinson’s
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threshold; closely related arguments based on the sparse regression

methods [32] or genetic profile scores have also been previously

proposed [33].

Regardless, our heritability estimates imply an upper bound on

AUC for a genetic risk prediction model of roughly 0.83 to 0.88

based on the method of [31], though this would rise if the actual

heritability were higher. Based on these numbers, the genetic risk

prediction models detailed previously, which attain an AUC of

roughly 0.6 in our cross-validated tests, account for approximately

6–7% of the total genetic variance in liability (see Materials and

Methods).

Discussion

We found two novel associations at a genome-wide level of signi-

ficance near SCARB2 (rs6812193) and SREBF1/RAI1 (rs11868035),

both of which were replicated in data from [23]. We also report two

novel associations (near RIT2 and USP25) just under the level of

significance, one of which (RIT2) was also replicated. While it is

difficult to pinpoint any causal genes from a GWAS, there are a few

biologically plausible candidates worthy of discussion.

The PD-associated SNP rs6812193 lies in an intron of the

FAM47E gene, which gives rise to multiple alternatively spliced

transcripts, many of which are protein-coding; the functions of

these hypothetical proteins are unknown. A more attractive

candidate, located &50 kb centromeric to the SNP, is SCARB2

(scavenger receptor class B, member 2), which encodes the

lysosomal integral membrane protein type 2 (LIMP-2). LIMP-2

deficiency causes the autosomal-recessive disorder Action Myoc-

lonus-Renal Failure syndrome (AMRF), which combines renal

glomerulosclerosis with progressive myoclonus epilepsy associated

with storage material in the brain [34]. LIMP-2 is involved in

directing b-glucocerebrosidase to the lysosome where it hydrolyzes

the b-glycosyl linkage of glucosylceramide [35]. Deficiency of this

enzyme due to mutations in its gene (GBA) causes the most

common lysosomal storage disorder, Gaucher’s disease. Recently,

mutations in GBA have also been identified in PD [36], pointing to

a possible functional link between the newly identified candidate

gene SCARB2 and PD.

rs11868035 appears in an intron of the alternatively spliced

gene, SREBF1 (sterol regulatory element-binding transcription

factor 1), within the Smith-Magenis syndrome (SMS) deletion

region on 17p11.2. SREBF1 encodes SREBP-1 (sterol regulatory

element-binding protein 1), a transcriptional activator required for

lipid homeostasis, which regulates cholesterol synthesis and its

cellular uptake from plasma LDL [37]. Studies of neuronal cell

cultures have implicated SREBP-1 as a mediator of NMDA-

induced excitotoxicity [38]. rs11868035 is directly adjacent to the

acceptor splice site for the C-terminal exon of the SREBP-1c

isoform of the protein [39], suggesting that the effect of the poly-

morphism may be specifically related to the splicing machinery for

this protein. The mutation is also in strong LD with rs11649804, a

nonsynonymous variant in the nearby gene RAI1 (retinoic acid-

induced protein 1), which regulates transcription by remodeling

chromatin and interacting with the basic transcriptional ma-

chinery. Heterozygous mutations in RAI1 reproduce the major

symptoms of SMS, such as developmental and growth delay, self-

injurious behaviors, sleep disturbance, and distinct craniofacial

and skeletal anomalies [40]. Future work is needed to identify the

functionally important variant(s) responsible for this association.

Figure 2. Plot of { log10 p-values around rs11868035 and SREBF1/RAI1. Colors depict the squared correlation (r2) of each SNP with
rs11868035. For details, see Figure 1.
doi:10.1371/journal.pgen.1002141.g002

A Substantial Genetic Component for Parkinson’s
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Table 3. Replication of previously reported associations.

Published SNP (Proxy) Region Alleles p 23andMe OR (CI) Pub. OR (CI) Pop Ref. Grade

GBA N370S (i4000416) GBA T/C 5:2|10{21 4.048 (3.08–5.32) 3.28 (2.41–4.47) All [27] B

rs356220 SNCA C/T 2:3|10{19 1.285 (1.22–1.36) 1.32 (1.26–1.38) All [27] A

MAPT-H1H2 (rs1876828) MAPT C/T 1:1|10{14 0.764 (0.71–0.82) 0.76 (0.72–0.80) Euro [27] A

rs6812193 SCARB2 C/T 7:6|10{10 0.839 (0.79–0.89) 0.89 (NR) Euro [16] –

rs823156 SLC41A1 A/G 1:3|10{7 0.827 (0.77–0.89) 0.82 (0.75–0.89) Asian [27] A

rs11711441 (rs11716740) LAMP3 C/T 1:3|10{6 0.821 (0.76–0.89) 0.82 (0.74–0.90) Euro [22] –

rs11248060 GAK C/T 2:7|10{6 1.202 (1.11–1.30) 1.24 (1.10–1.40) All [27] C

rs2102808 (rs9917256) STK39 G/A 5:1|10{6 1.199 (1.11–1.30) 1.28 (1.20–1.36) Euro [22] –

rs4698412 BST1 A/G 2:3|10{5 0.891 (0.84–0.94) 0.87 (0.82–0.91) Asian [27] A

rs1491942 (rs11175655) LRRK2 G/A 0.00016 1.167 (1.08–1.26) 1.19 (1.13–1.25) Asian [22] –

rs823128 NUCKS1 A/G 0.00019 0.758 (0.65–0.88) 0.70 (0.64–0.76) Asian [27] A

chr1:154105678 (rs10737170) SYT11 A/C 0.00047 1.165 (1.07–1.27) 1.67 (1.50–1.84) Euro [22] –

rs12817488 (rs11060112) CCDC62 A/C 0.0072 0.920 (0.86–0.98) 0.86 (0.82–0.91) Euro [22] –

rs2282048 (rs872606) FARP1 A/C 0.0097 0.932 (0.88–0.98) 0.91 (0.84–0.99) All [27] C

rs12718379 FGF20 A/G 0.011 1.072 (1.02–1.13) 1.09 (1.01–1.18) All [27] C

rs7077361 ITGA8 T/C 0.0114 0.900 (0.83–0.98) 0.84 (NR) Euro [16] –

rs10200894 2q36.3 C/G 0.0136 0.889 (0.81–0.98) 0.92 (0.83–1.01) Euro [27] C

rs3129882 HLA A/G 0.0194 1.066 (1.01–1.13) 1.16 (1.02–1.32) All [27] C

rs4880 SOD2 A/G 0.0304 0.943 (0.89–0.99) 0.88 (0.74–1.04) Asian [27] B

rs797906 GLIS1 C/A 0.0578 1.055 (1.00–1.11) 1.08 (1.01–1.15) All [27] C

rs7617877 3p24.1 G/A 0.0859 1.050 (0.99–1.11) 1.23 (1.13–1.33) Euro [19] –

rs6280 DRD3 T/C 0.129 0.957 (0.90–1.01) 1.08 (1.02–1.15) All [27] C

rs1079597 DRD2 C/T 0.157 1.056 (0.98–1.14) 1.17 (1.00–1.36) All [27] C

rs6710823 (rs4954218) AMCSD T/G 0.194 1.042 (0.98–1.11) 1.38 (1.29–1.47) Euro [22] –

rs17115100 CYP17A1 G/T 0.198 1.061 (0.97–1.16) 0.80 (NR) Euro [16] –

rs7412 APOE C/T 0.2 1.067 (0.97–1.18) 1.15 (1.03–1.28) All [27] C

rs12063142 TAS1R2 C/T 0.252 1.035 (0.98–1.10) NR (NR) Euro [17] –

rs2010795 PDXK G/A 0.277 1.032 (0.98–1.09) 1.09 (1.02–1.16) All [27] C

rs10464059 (rs1862326) 5q35.3 G/T 0.308 0.962 (0.89–1.04) 1.33 (1.19–1.52) Euro [17] –

rs1799836 MAOB T/C 0.414 0.983 (0.94–1.03) 1.10 (1.01–1.20) All [27] C

rs11030104 BDNF A/G 0.485 0.977 (0.92–1.04) 1.12 (1.04–1.22) All [27] C

rs1043424 PINK1 A/C 0.492 1.021 (0.96–1.08) 0.91 (0.81–1.01) Euro [27] C

rs1994090 LRRK2 T/G 0.496 1.023 (0.96–1.09) 1.39 (1.24–1.56) Asian [20] –

rs1801133 MTHFR G/A 0.506 0.981 (0.93–1.04) 1.12 (1.02–1.22) Asian [27] B

rs1223271 C20orf82 G/A 0.553 0.976 (0.90–1.06) 0.85 (NR) Euro [16] –

rs17329669 7p14.2 A/G 0.56 0.978 (0.91–1.05) 1.13 (1.03–1.24) All [27] C

rs12431733 BMP4 C/T 0.678 0.989 (0.94–1.04) 1.13 (NR) Euro [16] –

rs5174 LRP8 C/T 0.841 0.994 (0.94–1.05) 0.93 (0.87–1.00) All [27] C

rs13312 USP24 C/G 0.874 0.995 (0.93–1.06) 0.76 (0.66–0.86) All [27] A

rs1801582 PARK2 C/G 0.881 0.995 (0.93–1.07) 0.79 (0.64–0.97) All [27] C

rs1805874 (rs2205108) CALB1 G/T 0.882 1.004 (0.95–1.06) 1.12 (1.01–1.25) All [27] C

rs4837628 DBC1 T/C 0.925 0.997 (0.95–1.05) 0.79 (0.72–0.87) Euro [17] –

SNPs were taken from the PDGene ‘‘Top Results’’ list of meta-analyses [27] and the NHGRI list of associations [57]. Alleles are given with respect to the forward genomic
strand for NCBI build 36.3 and are listed as major/minor. Where a proxy SNP was used, alleles refer to the proxy SNP. Published OR is the published odds ratio per copy
of the minor allele for the association, as reported in the corresponding reference. Overall grades for SNPs based on the Venice criteria [72] were taken from the PDGene
list, where available, and omitted otherwise. ‘‘NR’’ means that an OR or CI was not reported. p-values and power calculations were calculated assuming a two-sided test.
Our power to replicate a given association conditional on the published odds ratio and the minor allele frequency using a 0.05 threshold for significance was above 86%
for all associations except for rs10200894, for which it was 59%. ‘‘Pop’’ refers to the ancestry in which the association was discovered, as taken from the PDGene list or
the original paper where applicable. ‘‘All’’ indicates that multiple studies were used in the PDGene meta-analysis, irrespective of ancestry.
doi:10.1371/journal.pgen.1002141.t003
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The SNP rs4130047, slightly below the genome-wide signifi-

cance threshold, lies in an intron of the RIT2 (Ras-like without

CAAX 2) gene that encodes Rit2, a member of the Ras

superfamily of small GTPases. Though we do not claim this

SNP as a confirmed replication, there are a number of reasons to

suspect that this association may also be real. Rit2 binds

calmodulin in a calcium-dependent manner, and is thought to

regulate signaling pathways and cellular processes distinct from

those controlled by Ras [41]. It localizes to both the nucleus and

the cytoplasm. Independent of our study, RIT2 was previously

proposed as a candidate gene for PD, based on the possibility that

dopaminergic neurons may be especially vulnerable to high

intracellular calcium levels, perhaps through an interaction with

a-synuclein [42]. The PD-associated region contains another

biologically plausible candidate gene, SYT4 (synaptotagmin IV),

which encodes synaptotagmin-4, an integral membrane protein of

synaptic vesicles thought to serve as Ca2z sensor in the process of

vesicular trafficking and exocytosis. It is expressed widely in the

brain but not in extraneural tissues [43]. Homozygous Syt42/2

mouse mutants have impaired motor coordination [44]. SYT4 is

particularly interesting as a SNP near SYT11 (synaptotagmin XI)

has been associated with PD in [22], and the encoded protein,

synaptotagmin-11, is known to interact with parkin [45].

The suggestively associated SNP rs28233572 lies in a gene-poor

region with only one candidate gene downstream, USP25, encoding

ubiquitin specific peptidase 25, which regulates intracellular protein

Table 4. Heritability estimates.

Source Description lR h2
L AUCmax h2

L½x�=h2
L

NINDS All PD - 0.229 (0.000–0.543) 0.833 (0.500–0.935) 0.077 (0.036-?)

23andMe All PD - 0.272 (0.229–0.315) 0.857 (0.833–0.877) 0.065 (0.056–0.077)

23andMe Early-onset PD (v50) - 0.306 (0.136–0.476) 0.873 (0.766–0.933) 0.057 (0.037–0.129)

23andMe Late-onset PD (§50) - 0.285 (0.224–0.346) 0.863 (0.830–0.890) 0.062 (0.051–0.078)

[12] Twin study; broad-definition PD - 0.30 (0.00–0.47) 0.87 (0.50–0.93) 0.059 (0.037-?)

[10] Twin study; all PD - 0.274 (0.000–0.708) 0.858 (0.000–0.976) 0.064 (0.025-?)

[10] Early-onset PD (ƒ50) - *1.0 (0.33–1.00) 0.996 (0.884–0.996) 0.018 (0.018–0.053)

[10] Late-onset PD (w50) - 0.068 (0.00–0.59) 0.693 (0.000–0.958) 0.258 (0.030-?)

[48] Family study; all PD - 0.401 0.910 0.044

[48] Early-onset PD (v55) - 0.169 0.793 0.104

[48] Late-onset PD (§55) - 0.453 0.926 0.039

[73] Family study; all PD - 0.60 (0.40–0.80) 0.96 (0.91–0.99) 0.029 (0.022–0.044)

[14] Offsprings; all PD 3.0 0.35 0.89 0.050

[14] Late-onset PD (w50) 3.2 0.38 0.90 0.046

[74] Parents and siblings; all PD 3.92 0.456 0.927 0.038

[74] Early-onset PD (v50) 7.76 0.747 0.980 0.024

[74] Late-onset PD (§50) 2.95 0.348 0.891 0.050

h2
L denotes the heritability of liability for PD, with a 95% CI provided where available. In the case of [10], confidence intervals were estimated via a bootstrap procedure

based on numbers provided in the original paper. For studies that did not provide direct estimates of heritability, the relative recurrence risk ratio lR was used to
estimate h2

L under the assumption of no shared environmental covariance (see Materials and Methods). AUCmax denotes the maximum theoretical AUC corresponding
to the given heritability of liability, assuming a disease prevalence of 0.01. h2

L½x�=h2
L denotes the proportion of additive genetic variance explained by a genetic profile

that achieves an AUC of 0.6 (see Materials and Methods).
doi:10.1371/journal.pgen.1002141.t004

Table 5. Internal and external cross-validation experiments using sparse logistic regression.

Internal Validation External Validation

Signif. Threshold Avg SNPs Avg Regions AUC SNPs Regions AUC

E½FP�ƒ0:05 9.0 6.6 0:568+0:018 11 9 0:550+0:047

E½FP�ƒ1 18.4 15.4 0:573+0:018 22 19 0:573+0:047

E½FP�ƒ10 41.6 35.0 0:586+0:018 60 51 0:587+0:047

E½FP�ƒ100 156.0 138.8 0:594+0:017 220 195 0:588+0:046

E½FP�ƒ1000 698.4 639.2 0:597+0:018 803 727 0:605+0:044

The internal five-fold cross-validation experiment was performed using only the 23andMe cohort. The external cross-validation experiment was performed by training
on the 23andMe cohort and testing on the NINDS cohort. ‘‘SNPs’’ denotes the number of SNPs included in the fitted model. ‘‘Regions’’ denotes the number of distinct
LD blocks represented by the SNPs in the fitted model. Each AUC value represents a covariate-adjusted AUC. For the internal validation experiment, average values are
provided for SNPs and Regions, providing an average over all five cross-validation folds, and AUCs were computed by pooling predictions over the five cross-validation
folds. For each row of the table, the sparsity inducing prior was chosen to achieve the approximate upper bound on the expected false positive rate indicated in the first
column; here, E½FP�ƒ0:05 corresponds to a model containing only genome-wide significant associations, whereas E½FP�ƒ1 corresponds to suggestive associations. In
each of the internal and external validation experiments, models with AUCs in bold are significantly better than non-bold models (see Table S3).
doi:10.1371/journal.pgen.1002141.t005
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breakdown by disassembly of the polyubiquitin chains. Other

ubiquitin-specific proteases (USP24, USP40) have been proposed as

candidate genes for PD [46] (although USP24 fails to replicate here,

see Table 3).

Our heritability estimates, which suggest that genetic factors

account for at least one-fourth of the total variation in liability to

PD, represent the tightest confidence bounds determined for the

heritability of PD to date. These estimates, which rely on observed

genetic sharing rather than predicted relationship coefficients,

avoid confounding from shared environmental covariance by

restricting attention to very distantly related individuals. Further-

more, they complement estimates of heritability from twin studies

by considering large numbers of individuals with low amounts of

genetic sharing, rather than small numbers of twin pairs with large

amounts of genetic sharing.

These estimates should only be interpreted as lower bounds on

the actual heritability of liability of PD for two reasons. First, they

only reflect phenotypic variation due to causal variants in LD with

SNPs on the genotyping platform. Second, they only capture the

contribution to additive variance that arises from a polygenic

model of many SNPs of small effect, but do not include the

variance arising from known specific associations. This limitation

is most apparent in our estimate of heritability based on only early-

onset cases (h2
L&0:306), which is considerably lower than reported

in prior twin studies (e.g., h2
L&1 in [10]). In early-onset PD,

mutations in six specific genes (SNCA, PRKN, PINK1, DJ1, LRRK2,

and GBA) have been reported to account for 16% of cases [47];

these specific mutations are not directly accounted for in our

estimate, which is based on a polygenic model. We note that a

similar effect may explain the low heritability estimate for early-

onset PD in [48]. Thus, the actual heritability of PD, and the

corresponding true upper bound on discriminative accuracy

achievable through genetic factors, may be even higher than the

estimates we provide.

Our estimates also indicate a substantial genetic component for

late-onset PD (h2
L&0:285), for which previous estimates of

heritability have been inconclusive due to the lack of statistical

power (e.g., 0.068 in [10] and 0.453 in [48]). One might ask, if

late-onset PD is indeed so heritable, why do cases frequently

appear sporadically in the general population? Following the

analysis of [49], if one were to assume a heritability of h2
L~0:272

and an average of three children per family, then the proportion of

sporadic cases (i.e., no parent, child, sibling, grandparent, aunt or

uncle, or first cousin with PD) among all PD cases would be 64%

for a prevalence of K~0:01; in the 23andMe cohort, 69% of PD

cases would be considered sporadic by this definition based on self-

reported family history. Similarly, the expected proportion of PD

cases with no affected parent or sibling would be 88% under the

same assumptions, compared with 84% as reported in [50], or

89% based on the cohort in [51]. These examples illustrate the fact

that the presence or absence of a familial pattern cannot always be

used to determine pathogenesis, especially for diseases that are

rare and have a complex etiology.

Overall, our risk prediction results are consistent with a mea-

sured AUC of roughly 0.6. The cross-validated AUCs presented

here should be distinguished from more usual measurements of

AUC in genome-wide association studies, which are typically only

estimated on the development set, and which rely on weighted

combinations of SNPs with independently estimated odds ratios.

In some cases, the bias resulting from lack of proper external

validation can be quite large. For example, a simple genetic profile

score based on multiplying together odds ratios for the SNPs in

Table 2 appears to achieve an AUC of 0:593+0:019 in the

23andMe data (or 0:603+0:010 if no covariate adjustment is

performed) making it appear competitive with some of the best

models described in Table 5. However, when the same model is

evaluated in the NINDS data, the AUC drops to 0:545+0:052,

exhibiting a drop in performance characteristic of models that

have been overfit to their training data. In contrast, the con-

sistency between the internal and external validation results in the

models shown in Table 5 demonstrate not only the predictiveness

of our models within the 23andMe cohort but also their ability to

generalize to other populations.

Our empirical demonstration that including SNPs beyond the

genome-wide significant level provides improved discriminative

power mirrors the recent results of [32], which also studied the

performance of sparse regression methods in a risk prediction

setting. In an applied setting where the goal is to achieve the best

predictive accuracy rather than to isolate the contribution of indi-

vidual genetic factors, however, even higher discriminative accura-

cies may be possible if one were to incorporate these covariates as

part of the predictive models. Even without these, however,

significant improvements in risk prediction are likely still possible,

with our heritability analyses indicating asymptotic target AUCs

above 0.8.

Our AUCs are generally conservative for a number of reasons.

In the internal experiments, they were obtained by training on

only 80% of the data. In the external experiments, the models

included only the SNPs in common between the 23andMe and

NINDS datasets and thus excluded several SNPs with large effects

in LRRK2 and GBA that may add a percent or more to the AUC if

included. Furthermore, our analyses adjusted for confounding

from population structure and other covariates so as to ensure that

the discriminative accuracies we reported were specifically due to

genetic effects.

Finally, we note that data for the 23andMe cohort used in this

study were acquired in a novel manner, using genotype and survey

data acquired through a commercial online personal genetic

testing service. The use of self-reported phenotype data raised

some unique challenges. For example, our cohort was not a true

population sample for a number of reasons, such as the general

bias toward higher socioeconomic status, as typical of 23andMe

customers. In general, however, we would not expect these ascer-

tainment biases to substantially affect our conclusions unless their

effects varied differentially between the case and control sets.

As another example, in compiling the cohort, we used par-

ticipants with varying levels of completeness in their self-reported

data (see Materials and Methods). Out of the 3,426 cases in the

23andMe cohort, though most cases reported having PD in a

questionnaire, 482 affirmatively stated they had PD upon entry to

the research study but did not fill out any PD-related questionnaire

during the study. However, we did not see a large difference

between those answering questions and not. Among the 11

associations presented in Table 2, only the association with MAPT

showed a significant difference between the cohort who answered

a questionnaire and those who did not (see Table S7). Also,

approximately 84% of the cases filled out a questionnaire, and of

them, over 96% reported a PD diagnosis. Even if a larger fraction

(say 10–15%) of those who did not take a questionnaire did not

have PD, the gain in power from the additional cases would more

than offset the loss of power from having some 50 more false

positive cases.

Despite the challenges associated with using self-reported data

collected through online surveys, ultimately, our results lend credi-

bility to the accuracy of this novel research design. For example,

the agreement between our study and previous studies in terms of

the ORs estimated for the 19 associations replicated in Table 3

strongly suggests that our cohort is similar to those used in other
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PD studies. Similarly, the consistency of AUCs and heritability

estimates across our cohort and the NINDS cohort both suggest a

limited role of bias in our study.

Importantly, our mode of data collection also provided a num-

ber of clear benefits. The use of internet-based techniques enabled

rapid recruitment of a large patient community. The 3,426 cases

in this study were enrolled in about 18 months, with over half

joining in the first month of the study. Also adding significantly to

the power and robustness of this study was the availability of a

large cohort of controls derived from the 23andMe customer base.

By using a non-traditional recruitment approach, we thus were

able to attain good power for our study through large sample sizes.

To our knowledge, this study represents the largest genome-wide

association study of Parkinson’s disease conducted on a single

cohort to date, with only a recent meta-analysis achieving a larger

number of cases [22]. We suggest that this methodology for study

design may prove advantageous for other conditions where the

advantage of having a large cohort is paramount for detecting

subtle genetic effects.

In summary, we have for the first time used a rapid, web-based

enrollment method to assemble a large population for a genome-

wide association study of PD. We have replicated results from

numerous previous studies, providing support for the utility of our

study design. We have also identified two new associations, both in

genes related to pathways that have been previously implicated in

the pathogenesis of PD. Using cross-validation, we have provided

evidence that many suggestive associations in our data may

also play an important role. Using recently developed analytic

approaches developed for GWAS that take into account the

ascertainment bias inherent in a case-control population, we have

estimated the genetic contribution to PD in this sample. These

findings confirm the hypothesis that PD is a complex disorder,

with both genetic and environmental determinants. Future in-

vestigations, expanded to include environmental as well as genetic

factors, will likely further refine our understanding of the patho-

gensis of PD, and, ultimately, lead to new approaches to treatment.

Materials and Methods

Study populations
The 23andMe cohort consisted of customers of 23andMe, Inc.,

a personal genetics company. Patients with PD were recruited to

join this cohort through a targeted email campaign in conjunction

with the Michael J. Fox Foundation, The Parkinson’s Institute and

Clinical Center, and many other PD patient groups and clinics.

Emails or hard copy mailings were sent to all individuals who had

registered with these groups as PD patients. A limited number of

patients were also recruited in person at PD workshops and con-

ferences. Family members of individuals with the LRRK2 G2019S

were also recruited to participate in the general Parkinson’s disease

research at 23andMe, without regard to Parkinson’s disease status;

however, most of these individuals were not included in the cohort

used for this particular study, due to our restriction of the dataset

to unrelated individuals (see below). Patients were invited to fill out

a screening questionnaire asking if they had been diagnosed with

PD and their physician’s name, phone number, and institution.

Patients who stated they had been diagnosed with PD and who

gave complete, non-suspicious answers to the other questions were

offered the 23andMe Personal Genome Service for a nominal fee

of $25.

Individuals included in the 23andMe cohort were selected for

being of primarily European ancestry, as determined through an

analysis of local ancestry via comparison to the three HapMap 2

populations, using an unpublished method substantially similar to

[52]. A maximal set of unrelated individuals in the 23andMe

cohort was chosen for the analysis using a segmental identity-by-

descent (IBD) estimation algorithm (as used in [53]). Individuals

were defined as related if they shared more than 700 cM IBD,

including both regions where the two individuals share either one

or both genomic segments identical-by-descent. This level of

relatedness (roughly 20% of the genome) corresponds approxi-

mately to the minimal expected sharing between first-cousins in an

outbred population. We determined that 29 individuals were

included in both the 23andMe and NINDS cohorts and hence

were removed from the latter cohort for all analyses.

Genotype and phenotype data for the National Institute of

Neurological Disease and Stroke (NINDS) cohort were obtained

from the NINDS Database found at http://www.ncbi.nlm.nih.

gov/gap through dbGaP accession number phs000089.v3.p2,

supplemented with individual-level data for 200 subjects from

phs000089.v2.p2 who were left out of the later version as of

December 12, 2010. Cases in the NINDS cohort consisted of

North American Caucasians with Parkinson’s disease, as assessed

by a neurologist. Controls consisted of neurologically normal,

unrelated, white individuals with no family history for a number of

neurological conditions, including Parkinson’s disease. A complete

description of the inclusion and exclusion criteria can be found

directly at the NINDS Database website as referenced above, and

in related studies using the data from this cohort [16,54,55].

This study was conducted according to the principles expressed

in the Declaration of Helsinki. The 23andMe study protocol and

consent were approved by the external AAHRPP-accredited IRB,

Ethical and Independent Review Services (E&I Review). Our

consent and privacy statement preclude the sharing of individual-

level data without explicit consent. We have, however, shared

summary statistics for all SNPs with p-values under 10{4 (Table

S2). We also hope to further collaborate with the scientific

community using this data. The NINDS dataset was analyzed

anonymously.

Self-reported diagnosis
Patients recruited through the PD outreach initiative as well as

individuals from the general 23andMe customer base were asked

to take online questionnaires, including a general medical ques-

tionnaire and a detailed questionnaire specifically on PD (covering

disease onset, diagnosis, and symptoms). Both of these questionnaires

asked the subject if he or she had ever received a PD diagnosis from a

physician and if so, the age of onset. The detailed questionnaire also

asked for much more specific information regarding the symptoms,

clinical history, and family history of the patient.

We selected as cases all participants who provided an affir-

mative diagnosis of PD from a physician (on the initial screening

form or on either of the two questionnaires) and who did not

provide any potentially contradictory information, defined here as:

N Providing an affirmative answer to the screening question but

only negative answers to the two questions about PD.

N Answering ‘‘yes’’ to PD on the general medical questionnaire

but ‘‘no’’ to PD on the detailed questionnaire.

N Stating their diagnosis changed because they no longer had

symptoms or because the cause of their symptoms was

unknown.

N Stating they had been diagnosed with any of 19 other

neurological conditions (see Table S8).

Due to the low prevalence of PD, we used controls taken from

general 23andMe customer base in the analysis. Some of the

controls filled out no questionnaires; however, others answered
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questions about possible PD-like symptoms or filled out a general

medical history. In order to maximize our power to detect genetic

associations with PD, we excluded some putative controls who

might be at higher probability for developing PD in the future.

Thus, the controls consisted of all consented European 23andMe

customers who met all of the following criteria:

N Were not part of a PD related recruitment drive (&130

individuals excluded)

N Did not report a diagnosis of PD, Parkinsonism, dementia,

cognitive impairment, senility, tremor disorder, Alzheimer’s

disease or memory loss (&240 individuals excluded)

N Did not report a family history of PD (&780 individuals

excluded)

N Reported a maximum of two of the following PD-like

symptoms (&280 individuals excluded):

– Trembling or shaking of any body part

– Handwriting became slower, smaller, or shakier (each

considered a separate symptom)

– Speech or voice become softer

– Dragging one or both feet while walking

– Feet shuffling while walking

– Walking more slowly

– Taking smaller steps than before

– Steps becoming faster and faster

– Feet getting stuck as if glued to the floor

– Swinging arms less than before

– Stooping or bending forward more than before

– Falling or balance trouble

Approximately 1,430 individuals in total were excluded from

the control set due to these filters. We note that as a consequence

of both our exclusion criteria and other recruitment biases asso-

ciated with the 23andMe customer base, our controls are unlikely

to be exactly representative of the general population.

Genotyping and SNP quality control
For the 23andMe cohort, DNA extraction and genotyping were

performed on saliva samples by National Genetics Institute (NGI),

a CLIA-certified clinical laboratory and subsidiary of Laboratory

Corporation of America. Samples were genotyped on the Illumina

HumanHap550+ BeadChip platform, which included SNPs from

the standard HumanHap550 panel augmented with a custom set

of approximately 25,000 SNPs selected by 23andMe. Every

sample that failed to reach 98.5% call rate was re-analyzed.

Individuals whose analyses failed repeatedly were re-contacted by

23andMe customer service to provide additional samples, as is

done for all 23andMe customers. Two slightly different versions of

the genotyping platform were used in this study. See [53] for

further details on the genotyping and sample quality controls.

The NINDS dataset consisted of 519 samples genotyped on a

combination of an Illumina HumanHap 250 K and Illumina

HumanHap 300 K chip, and 1,183 samples genotyped on an

Illumina HumanHap 550 K chip. As the proportion of cases

genotyped on each platform in the NINDS dataset differed

between the two platforms, any marker with differing frequencies

across the two platforms (due to problems with clustering or other

genotyping error) would show up as associated with PD status in

the NINDS dataset. To account for potential stratification arising

from this, we defined a binary covariate to indicate genotyping

platform, which we used for covariate adjustment during analyses

involving the NINDS dataset.

In all analyses, SNPs with a call rate v95% or minor allele

frequency v10{4 were excluded from analysis. Additionally, SNPs

with Hardy-Weinberg p-values v10{5 or v10{3 were excluded

from the 23andMe and NINDS datasets, respectively [56]. For

analyses involving external validation of risk prediction models

trained on the 23andMe dataset against the NINDS dataset, only

SNPs common to both datasets were used in both model de-

velopment and testing. Altogether, 522,782 SNPs were retained for

the 23andMe dataset with an average call rate of 99.8%, 514,362

SNPs were retained for the NINDS dataset with an average call rate

of 99.8%, and 492,136 SNPS were common to both datasets.

Association analysis
For the association analysis, all p-values were calculated using a

likelihood ratio test for the logistic regression model, adjusting for

sex, age, and the first five principal components (chosen based on

an examination of the eigenspectrum of our data):

logit(P(y~1jgi,sex,age,pc1, . . . ,pc5))

~agi
gizasexsexzaageagez

X5

j~1

apcj
pcj :

Here, the phenotypic status of each individual was coded as 0 for

unaffected individuals and 1 for affected individuals. Genotypes

gi [ 0,1,2f g were coded to indicate the number of minor alleles

present for tested SNP (corresponding to a log-additive model of

association), and pcj was the projection of the individual onto the

jth principal component of the genotype data matrix. Reported

odds ratios for each SNP relative to the minor allele were defined

as ORi~ exp (agi
), and the alleles used throughout refer to the

plus strand of NCBI build 36.3 of the human genome.

Principal components were computed using multi-dimensional

scaling over the allele-sharing distance matrix as in [53]. The

SNPs used for the replication analysis (Table 3) were taken

from http://www.pdgene.org/ [27] and http://www.genome.

gov/gwastudies/ [57] on November 18, 2010. We added the SNPs

reported as genome-wide significant from [22] to this list. For the

power calculations, we used the model from [58].

Heritability estimation
To estimate heritability of liability, we used the GCTA package

(v0.90.3) [29] for genome-wide complex trait analysis. Previously,

this approach was used to estimate the proportion of the heritability

in height that could be explained by common variation on a genomic

panel [69]. Here, we used a recent adaptation of this method to case-

control studies [30] to estimate the heritability of PD in both the

NINDS and 23andMe cohorts. We analyzed the NINDS cohort

data by using GCTA to remove individuals with genetic relationship

greater than 0.025, and estimating heritability of liability using 20

principal components as covariates and assuming a disease pre-

valence of 0.01. For the 23andMe cohort, we adopted the same

procedure but pre-filtered the data by stratifying the dataset on sex,

and matching on age and five principal components in order to

obtain a reduced size dataset with one case per four controls.

For Table 4, we converted relative recurrence risk ratios lR to

heritability of liability estimates h2
L using a modification of the

analysis described in [31]. Formulas for estimating the maximum

AUC achievable for a given heritability, and for computing the

proportion of variance in liability explained were also based on

[31]. Details are provided in Text S1.
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We note that in Table 4, the heritability estimates shown were

based on the authors’ criteria for ‘‘broad-definition PD’’ as no

heritability estimates could be provided for the strict PD definition

due to the lack of concordant monozygotic twins present in the

dataset. For [10], 95% confidence intervals were obtained through

a reanalysis of the original data using 100,000 bootstrap samples

for the counts of doubly-ascertained concordant, singly-ascer-

tained concordant, and discordant monozygotic and dizygotic

twin pairs. Heritability of liability was estimated as twice the dif-

ference in tetrachoric correlations for monozygotic and dizygotic

twins, using a specialized numerical integration procedure for

multivariate normal densities [70].

Risk prediction
We performed risk prediction experiments using a sparse logistic

regression solver based on the ‘‘elastic net’’ regularization penalty

[59]. In this approach, one solves the convex optimization

problem,

minimize
b[Rn,b0[R

{
Xm

i~1

log P(y(i)jx(i); b,b0)zC2 bk k1z
1

2
C2 bk k2

3

for fixed constants C1,C2§0, where xk k1~
X

i
xij j and xk k2

2

~
X

i
x2

i , and where P(yjx; b,b0)~(1z exp ({bT x{b0)){1.

Sparse regression methods, which tend to estimate solution vectors

b with very few non-zero components, have enjoyed increased

popularity in recent years due to their effectiveness in picking out

relevant features from extremely high-dimensional data. In the

context of genetic association analysis, sparse regression methods

can be used to identify the set of SNPs that are most relevant to

prediction of a given phenotype. The ‘‘elastic net’’ approach we

used is a particular sparse regression variant based on combining

L1/L2 regularization penalties that has the advantage of grouping

together correlated features while maintaining sparsity. We note

that elastic net regularization has also previously been applied in

the context of GWAS and SNP-based risk prediction in a number

of recent papers [32,60–62].

For all experiments, we used a default value of C2~1 (to ensure

uniqueness of the solution to the optimization problem) and

evaluated the performance of the risk prediction algorithm in two

different ways. We varied the C1 hyperparameter to obtain dif-

ferent bounds on the expected number of false positive associations

(i.e., genotype features with non-zero coefficients corresponding to

SNPs that are not truly associated with the phenotype), using an

adaptation of the analysis from [63].

AUC analysis
We performed two types of cross-validation experiments: an

internal cross-validation analysis using only the 23andMe cohort,

and an external cross-validation analysis testing the predictive

accuracy of a model trained using the 23andMe cohort on the

NINDS cohort. In both cases, all aspects of the analysis following

QC were included as part of the cross-validation.

For the internal cross-validation experiment, we generated a

matched dataset using a portion of the 23andMe cohort. More

specifically, we separated the 23andMe dataset into 20 partitions

based on sex and age decile. Next, all partitions were then

balanced to contain roughly the same ratio of cases to controls.

Finally, five equally-sized cross-validation folds were formed,

containing the same amount of representation from each of the

partitions. In total 3,380 cases and 21,640 controls were used

across the five cross-validation folds. For the external cross-vali-

dation experiment, the entire 23andMe cohort was used as a

training set, and evaluation was performed on the NINDS dataset.

When estimating AUC using a test set, stratification biases can

arise when the apparent discriminative accuracy of the model can

be attributed to one or more covariates. This could occur, for

example, if the prevalence of the disease were to vary by population,

provided that the SNPs included in the risk prediction model were

informative of ancestry. To control for confounding from covariate

imbalance, we used a stratified variant of the AUC known as the

‘‘covariate-adjusted AUC,’’ defined as the probability that a ran-

domly selected case will have a higher estimated risk of developing

PD than a randomly selected matched control. More details on our

procedure for covariate adjustment are provided in Text S1.

The use of AUC-based statistics for risk prediction is not

without controversy. In the setting of a case-control study, the

AUC has the advantage of being neither dependent on an

arbitrarily set threshold for risk (which would be needed when

computing sensitivity or specificity) or the relative proportion of

cases and controls in the study. Some authors have contended that

the AUC is not a clinically relevant measurement of performance

and may be insensitive to changes that would otherwise be

considered important in a diagnostic setting [64–67], while others

have argued that changes in AUC are nonetheless meaningful in

assessing discriminative performance [68]. Here, we have chosen

to rely on AUC not as a summary of the clinical performance of a

classifier, but rather as a mechanism for studying the genetic

etiology of a disease, and for estimating the proportion of genetic

variance captured by the SNPs used in our models. Were one

specifically interested in developing a clinically useful classifier,

other measures of accuracy may be more appropriate.

Since the goal of our experiments was to measure the predictive

capacity that could be attributed to SNPs in our model, rather than

covariates such as sex, age, or ancestry, we intentionally excluded

covariates when fitting our predictive models. We note that because

of our use of covariate-adjusted AUCs, the decision to exclude

covariates had little impact on our results since changes in predictive

performance arising from the inclusion of covariates would have

been ‘‘factored out’’ by the stratification procedure anyway. For

example, the covariate-adjusted external validation accuracies of

the smallest and largest models in Table 5 were 0.550 and 0.605,

respectively; the analogous risk prediction model including

covariates would have achieved accuracies of 0.557 and 0.603.

Supporting Information

Figure S1 Manhattan plot { log10 p-values by chromosome for

the 23andMe dataset. Genome-wide significant SNPs are shown in

red.

(TIFF)

Figure S2 Quantile-quantile plot Observed p-values versus

theoretical p-values under the null. The genomic control inflation

factor for the study was 1:03 and is shown by the red line.

(TIFF)

Figure S3 Plot of { log10 p-values around RIT2/SYT4. Colors

depict the squared correlation (r2) of each SNP with rs4130047.

For details, see Figure 1.

(TIFF)

Figure S4 Plot of { log10 p-values around rs2823357 and

USP25. Colors depict the squared correlation (r2) of each SNP

with rs2823357. For details, see Figure 1.

(TIFF)

Table S1 Genotype by phenotype tables for SNPs in Table 2.

(PDF)
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Table S2 Details for all SNPs with p-values under 10{4. See

Table 2 for details.

(XLS)

Table S3 Internal and external cross-validation AUC difference

test for sparse logistic regression models. Rows and columns of

each table correspond to models being compared, and are labeled

using the theoretical upper bound on E½FP� of the model for that

particular row or column. Elements of the tables are one-sided p-

value tests for the alternative hypothesis that the row model has a

higher AUC than the column model. One-sided comparisons

significant at the 0.05 level are indicated in bold.

(PDF)

Table S4 External cross-validation AUC difference test using

bias-corrected models. Each row of the table represents a com-

parison of a ‘‘test’’ risk prediction model based on the significance

threshold indicated in the first column against a ‘‘reference’’ model

containing only SNPs found in genome-wide significant regions. In

all cases, reported AUCs have been adjusted for covariates (see

Materials and Methods), and all models were bias-corrected by

omitting the sparsity-inducing prior during model fitting. The

second and third columns show the predicted AUC for each model

based on the estimated SNP effect sizes and test distribution

genotype frequencies. The fourth and fifth column show the

covariate-adjusted AUCs actually observed on the test data. The

poor agreement between predicted and observed test AUC for the

largest two models is evidence of severe overfitting in these cases.

The last column gives one-sided p-values for an AUC difference

test under the alternative hypothesis that the test model has a

higher AUC than the reference model; one-sided comparisons

nominally significant at the 0.05 level are indicated in bold.

(PDF)

Table S5 Bias-corrected E½FP�ƒ1 model. This model, which

achieves a covariate-adjusted AUC of 0.608 on the NINDS data,

was obtained by training on the 23andMe cohort, using the subset

of SNPs that were shared with the NINDS cohort. wi refers to

the weight for each SNP (i.e., the log odds ratio per copy of

the alphabetically lesser allele), and w
missing
i is the weight used

in the algorithm in the case of missing data for that SNP.

(PDF)

Table S6 Bias-corrected E½FP�ƒ10 model. This model, which

achieves a covariate-adjusted AUC of 0.614 on the NINDS data,

was obtained by training on the 23andMe cohort, using the subset

of SNPs that were shared with the NINDS cohort. wi refers to the

weight for each SNP (i.e., the log odds ratio per copy of

the alphabetically lesser allele), and w
missing
i is the weight used in

the algorithm in the case of missing data for that SNP.

(PDF)

Table S7 Test for heterogeneity. The low confidence group con-

sisted of participants who did not answer a questionnaire, whereas

the high confidence group consisted of participants who did. The

second and third columns show the estimated log odds-ratio for each

SNP from Table 2 using only low and high confidence data,

respectively. The fourth column shows the combined log odds-ratio

when using data from both groups together, and the final column

gives a p-value for heterogeneity. Note that while three of the p-

values are nominally significant, only that for rs12185268 survives a

correction for multiple testing (correcting for the 11 SNPs tested).

(PDF)

Table S8 Exclusionary conditions. People reporting any of the

above diagnoses were excluded from the analysis.

(PDF)

Text S1

(PDF)
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