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LYAPUNOV STABILITY AND ACCURACY OF DIRECT 

INTEGRATION ALGORITHMS IN NONLINEAR DYNAMIC 

PROBLEMS AND CONSIDERING THE STRICTLY POSITIVE 

REAL LEMMA 

Xiao Liang1,  

Khalid M. Mosalam2 

Abstract 

In structural dynamics, direct integration algorithms are commonly used to solve the temporally 

discretized differential equations of motion. Numerous research efforts focused on the stability 

and accuracy of different integration algorithms for linear elastic structures. However, 

investigations of those properties applied to nonlinear structures are relatively limited. 

Systematic Lyapunov stability and accuracy analyses of several direct integration algorithms for 

nonlinear structural dynamics are presented in this report. These integration algorithms include 

the implicit methods of the Newmark family of integration algorithm and the TRBDF2 algorithm, 

as well as the explicit methods of Operator-Splitting (OS) algorithms. Two versions of the OS 

algorithms, using initial and tangent stiffness formulations, are investigated. The latter one is 

shown to possess similar stability properties to the implicit Newmark integration. Some 

arguments of stability regarding these direct integration algorithms from past studies are found to 

be incomplete. An approach that enables performing the stability analysis numerically is 

proposed. It transforms the stability analysis to a problem of convex optimization. In addition, 

another systematic approach is proposed to investigate the Lyapunov stability of explicit 

algorithms by means of the strictly positive real lemma. In this approach, the stability analysis is 

equivalent to investigating the strictly positive realness of the transfer function for the formulated 

system. Subsequently, Nyquist plot is used to determine the range of the system stiffness where 

the explicit algorithm is stable in the sense of Lyapunov. This approach is finally considered for 

the commonly used explicit Newmark integration algorithm applied to single degree of freedom 

systems with softening or stiffening behavior. Besides the stability, accuracy of the above-

mentioned five integration algorithms is investigated using a geometrically nonlinear test 

problem, where acceptable amounts of period elongation and amplitude decay were evident. 

Keywords: Accuracy, Convex Optimization, Direct Integration Algorithm, Explicit, Implicit, 

Lyapunov Stability, Nonlinear, Nyquist Plot, Strictly Positive Real Lemma, Structural Dynamics. 
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Introduction 

The structural response under dynamic loading is governed by the differential equations of 

motion. In structural dynamics, direct integration algorithms are commonly used to solve these 

equations of motion after they are temporally discretized. The used integration algorithms for 

solving a structural dynamics problem are categorized into either implicit or explicit. An 

integration algorithm is explicit when the responses of the next time step depend on the 

responses of previous and current time steps only. On the other hand, implicit algorithms require 

iterations because the responses of the next time step depend on the responses of previous, 

current and also next time steps. Numerous implicit and explicit direct integration methods have 

been developed, including the Newmark family of algorithms (Newmark 1959), the TRBDF2 

algorithm (Bathe 2007), and the Operator-Splitting (OS) algorithms (Hughes et al. 1979).  

Most of the research efforts for determining the robustness of direct integration 

algorithms focused on the stability and accuracy for linear structures, e.g. Bathe and Wilson 

1973. Studies related to the stability and accuracy of direct integration algorithms applied to 

nonlinear dynamic analysis are relatively limited. For example, Hughes (1976) investigated the 

stability of the Newmark algorithm with constant acceleration in nonlinear dynamics. Chen and 

Ricles (2008) explored the stability of several direct integration algorithms by utilizing discrete 

control theory.  

In this report, two general classes of nonlinear response of structural systems, namely 

stiffening and softening responses, are considered. The idealized backbone curves (force-

displacement relationship) of these two systems are illustrated in Fig. 1. Systematic Lyapunov 

stability and accuracy analyses of several implicit and explicit direct integration algorithms for 

these two nonlinear structural systems are presented. Some arguments of stability regarding these 

direct integration algorithms from past studies are found to be incomplete and these findings are 

discussed in this report. The report also investigates the OS algorithm that uses tangent stiffness 

in the formulation, which has not been previously studied. It is shown that this algorithm 

possesses similar stability properties to those of the implicit Newmark integration. An approach 

that enables performing the stability analysis numerically is proposed. It transforms this analysis 

to a problem of convex optimization. It is shown that the proposed approach is generally 

applicable to direct integration algorithms for various nonlinear behaviors.  

 

Fig. 1. Definition of Stiffening and softening systems. 

In addition, another systematic approach is proposed to investigate the Lyapunov stability 

of explicit algorithms for the same structural systems in Fig. 1 by means of the strictly positive 

real lemma (Cains 1989). In this approach, a generic explicit algorithm is formulated for a 

nonlinear structural system that has a structural response governed by a nonlinear function of the 
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restoring force. Based on this formulation, the stability analysis is transformed to be equivalent 

to pursuing the strictly positive realness of the transfer function for the formulated system. Using 

this proposed approach, a sufficient condition in terms of the range of the stiffness in this study, 

where the explicit algorithm is stable in the sense of Lyapunov, can be obtained using Nyquist 

plot. Specifically, the maximum and minimum stiffness values for stable (in the sense of 

Lyapunov) stiffening and softening systems, respectively, are determined. Finally, the stability 

analysis of the explicit Newmark algorithm, as a commonly used method in structural dynamics, 

using the proposed approach is applied to SDOF nonlinear stiffening or softening systems. 

Besides the stability, the accuracy of the integration methods is examined using a geometrically 

nonlinear problem, which has a closed-form exact solution. 

Mathematical Preliminaries 

In this section, definitions, notations and the strictly positive real lemma are introduced. Here, 

 T  and  *  denote transpose and complex conjugate transpose, respectively. Denote 

   








DC

BA
G ~z  (1) 

as a state-space realization (Cains 1989) of a transfer function matrix  zG  expressed as follows: 

     BAICDG
1

 zz  (2) 

where jez   is a complex variable with 1j  and   2,0 , A , B , C  and D  are real 

constant matrices and I  is the identity matrix with proper dimensions.  

A square transfer function matrix  zG  is called strictly positive real (Kapila and Haddad 

1996) if: (i)  zG  is asymptotically stable, which is stronger than Lyapunov stability as it 

guarantees convergence to a specific value as “time” approaches infinity, and (ii) 

    jj ee *
GG   is positive definite ∀   2,0 . Condition (i) is equivalent to the condition 

that the spectral radius of A  must be less than 1, i.e.   1A . The discrete-time strictly positive 

real lemma (Cains 1989) is stated as follows: 

   








DC

BA
G

min

~z  (3) 

The notation 
min

~  denotes a minimal realization. The minimally realized transfer function matrix 

is strictly positive real if and only if there exist matrices M , L  and W  with M  positive 

definite such that the following conditions are satisfied (Cains 1989): 

 LLAMAM
TT   (4a) 
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 LWCAMB0
TT   (4b) 

 WWBMBDD0
TTT   (4c) 

The minimal realization is guaranteed by the observability, i.e. how well internal states of a 

system can be inferred by knowledge of its external outputs, of  CA,  and the controllability, e.g. 

stabilization of unstable systems by feedback, of  BA, . In that regard the row ranks of the 

following matrices should be n . 

 

























1

2
1

n
AC

AC

AC

C

Z



 (5a) 

 ][ 12

2 BABABABZ
 n  (5b) 

Accordingly,     n 21 rankrank ZZ , where n  is the dimension of the square matrix A . 

Integration Algorithms 

The discretized equation of motion of a single degree of freedom (SDOF) system under an 

external dynamic force excitation is expressed as follows: 

 1111   iiii pfucum   (6) 

where m  and c  are the mass and viscous damping, and 1iu , 1iu , 1if , and 1ip  are the 

acceleration, velocity, restoring force, and external force at the time step 1i , respectively. The 

restoring force,  uf , is generally defined as a function of displacement, u .  

Usually, single-step direct integration algorithms are defined by the following difference 

equations: 

       31

2

2

2

101    iii utututuu ii
  (7) 

     716541 Δ    iiii ututuu   (8) 

In general, Eqs. (6)-(8) require an iterative solution, which forms the basis of implicit algorithms. 

On the other hand, these algorithms become explicit when 02  . Coefficients of the Newmark 

integration family (Newmark 1959) and the explicit OS algorithms (Hughes et al. 1979) are 

summarized in Table 1 where       1

2

 iktctm   and 1ik  is defined below.  
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Table 1. Coefficients for the Newmark and the OS Integration Algorithms  

 Newmark OS  Newmark OS 

0  1   tc  1  
4  1   tc  1  

1    221         tc   1221  5  1      tc   11  

2    0 6    0 

3  0   11

~
  ii fp  7  0     tfp ii    11

~
 

  

For the Newmark family of integration algorithms, the parameters   and γ  define the variation 

of accelerations over a time step, t . The values of these parameters considered in this report are 

either    21,41,  , which represent constant average acceleration over t , or 

   21,0,   , which transform the integration to the explicit Newmark algorithm. On the 

other hand, for the OS algorithms, 1

~
if  is the restoring force corresponding to the predicted 

displacement 1
~

iu  that is represented in an explicit form as follows: 

  
 

  ii uβ
t

utuu ii
 21

2

Δ
Δ~

2

1   (9) 

Two versions of the OS algorithms are considered: (1) Ii kk 1  for the OSinitial algorithm 

with initial stiffness Ik ; (2)  
1

~
1 
 iTi kk  for the OStangent algorithm with tangent stiffness 

1

~
iTk  

evaluated at 1
~

iu  determined from Eq. (9). It is to be noted that the OSinitial algorithm is 

commonly used for hybrid simulations (Nakashima et al. 1990; Combescure and Pegon 1997) 

because of the difficulties in obtaining the tangent stiffness matrices. On the other hand, 

analytical simulations do not have such a limitation that prevents the use of the OStangent 

algorithm. However, OStangent algorithm was not previously investigated in the literature since the 

OS algorithms were rarely used in pure analytical simulations. Liang et al. (2014) investigated 

the suitability of the OStangent algorithm in nonlinear dynamic analyses of multi-degree of 

freedom (MDOF) bridge systems. 

In addition to the previously discussed implicit and explicit Newmark algorithms and the 

OSinitial and OStangent algorithms, this study also considers the TRBDF2 algorithm (Bank et al. 

1985; Bathe and Baig 2005; Bathe 2007) as an example of a composite multi-step integration 

algorithm. The TRBDF2 algorithm interchanges the use of the implicit Newmark algorithm with 

constant average acceleration and the use of the three point Euler backward scheme presented in 

Eqs. (10) and (11) in consecutive integration time steps.  

   tuuuu i-iii   11 34
2

1
1

  (10) 

   tuuuu i-iii   11 34
2

1
1

  (11) 
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In Bathe and Baig (2005) and Bathe (2007), every two consecutive steps in the above 

formulation are considered as two sub-steps of one step, i.e. integration time steps 1i  and i  

become integration time steps i  and, 5.0i . Therefore, the integration time step in Eqs. (7), (8), 

(10) and (11) is 2t  instead of t . Bathe and Baig (2005) and Bathe (2007) used the TRBDF2 

algorithm in structural dynamics to conserve energy and momentum at large deformations (not 

necessarily involving material nonlinearity) where the implicit Newmark algorithm may fail to 

do so and become unstable. Herein, it is considered because of its superior stability due to 

numerical damping introduced by the Euler backward scheme. 

Lyapunov Stability Analysis 

For each direct integration algorithm, the relationship between the kinematic quantities at time 

steps 1i  and i  can be established as follows: 

 iiii LA  xx 1  (12) 

where     Tiiii uutut  
2

x , iA  and iL  are the approximation operator and the loading 

vector at the time step i , respectively. The loading vector, L , is generally independent of the 

vector of kinematic quantities, x . Eq. (12) can be further extended as follows: 

 i

i

l

l

l

ik

k

ij

ji LLAA 































  











1

1

1

1

1

1 xx  (13) 

where 121

1

AAAAA 



 ii

ij

j . In order to investigate the stability of the system in Eq. (12), a 

Lyapunov artificial energy function candidate 1iv   (Franklin et al. 2015) at the time step 1i , 

can be chosen as follows: 

 
111   i

T

iiv xx M  (14) 

where M  is positive definite, i.e. 0MM T  and 0  is the null matrix of the same dimension 

as M . The system in Eq. (12) is stable if the Lyapunov function in Eq. (14) is bounded for 

i .  Substituting Eq. (13) into Eq. (14) with some manipulations leads to the following: 

 










































































































 

 

 



































1

1

11

1

1

1

11

1

1

1

1

1

11

1

11

11

2

22

i

m

m

m

in

n

ik

T

k

T

i

i

l

l

ik

T

k

T

li

ik

T

k

T

i

T

i

i

l

i

m

m

m

in

n

l

ik

T

k

T

l

ij

j

ik

T

k

T

iv

LAMA

MLALMLA

MLLLAMALAMA

x

x

xx

 (15) 
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The loading vector, L , is generally a function of external force, p . Therefore, it is 

bounded. Therefore, based on Eq. (15), the boundedness of the Lyapunov function 1iv  for i  

leads to the boundedness of 


1

ij

jA  for i . For linear behavior of structures, the 

approximation operator, A , remains constant, thus 


1

ij

jA  becomes i
A  that can be decomposed 

as follows: 

 1-ii
VVDA   (16) 

where D  and V  are matrices of eigenvalues and eigenvectors of A , respectively. The 

boundedness of i
A  for i  leads to the well-known stability criterion for linear systems, 

namely the spectral radius of the approximation operator  A  must be less than or equal to 1.0. 

For nonlinear structures, 


1

ij

jA  is more involved due to the continuous variation of the 

approximation operator iA . Therefore, the stability of a nonlinear system cannot be solely 

determined using the spectral radius of its approximation operator iA . However, the 

investigation of the eigen properties of iA  is still necessary in nonlinear problems. For small 

values of t , the increment of restoring force can be approximated (Chopra 2006) as follows: 

  iiTii uukff
i

  

*

1

**

1 1
 (17) 

where    11

*

1

**

1 ,,,,
11  

 iTiiTi ukfukf
ii

 for the Newmark family of algorithms and 

   11

*

1

**

1
~,

~
,

~
,,

11  
 iTiiTi ukfukf

ii
 for the OS algorithms. It is to be noted that 

1iTk  is the tangent 

stiffness at the time step 1i , and other parameters are defined before. The tangent stiffness is 

generally a function of the displacement, thus Eq. (12) represents a nonlinear system of equations. 

With the approximation in Eq. (17), the approximation operator iA  for the Newmark and the OS 

algorithms is derived as follows: 

    

   
 

   
     
   

 
 

   
     
   

 
    
































































1
21

1
2

21

21

121

0
21

11
21

121

0
2121

121

22

1

22

0

22

1

22

02

21

22

1

22

0

22

1

22

02

21

22

1

22

0

22

1

22

02

21

tt

t

tt

tt

tt

t

tt

tt

tt

t

tt

tt

nn

n

nn

n

nn

n

i
































A  (18) 

where   mkmc Inn  2,2  . Coefficients 0  and 1  for the Newmark integration family 

and the OS algorithms are listed in Table 2. 
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Table 2. Coefficients of approximation operators for the Newmark and the OS Integration Algorithms 

 Newmark OSinitial OStangent 

0  
1iT  

1

~
iT

 

1

~
iT

 

1  
1iT  

n  
1

~
iT  

 

where mkmk
iiii TTTT 1111

~~, 22


  . It is obvious that one of eigenvalues of iA  in Eq. (18) is 1. 

For the Newmark and OS algorithms with    21,41,  , the other two eigenvalues are 

obtained as follows: 

         
 22

14

1

2

0

4

1

2

1

2

0

4

0

22

0

2

14

12222

18

122

08

3

21
1

1091
λ

tt

ttttt

n

nn

,








    

(19) 

On the other hand, for the explicit Newmark algorithm, i.e.    21,0,  , 

 
   

t

ttt

n

TTnT

,

iii












1

1
λ

224

4

12222

2

1

21

111
 (20) 

The conditions for   1iA  are summarized in Table 3 for the case of zero viscous 

damping ( 0 ), which is the most critical case for the stability analysis of direct integration 

algorithms. In Table 3, 
111

22



iii TTT kmT   and    21,41,   are used for implicit 

Newmark, OSinitial and OStangent and thereafter in this report. 

Table 3. Conditions for   1iA  

Integration Algorithms Limits 

Implicit Newmark  0
1


iTk  

Explicit Newmark 1
1


iTTt  

OSinitial 
1

0
iT Ik k


   

OStangent 0
~

1


iTk  

 

The conditions in Table 3 are not stability criteria of the listed direct integration 

algorithms used in nonlinear systems. Some past studies, however, determined the stability of 

direct integration algorithms based solely on the spectral radius. Combescure and Pegon (1997) 

claimed that the OSinitial algorithm is unconditionally stable as long as the tangent stiffness is 
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smaller than or equal to the initial stiffness, i.e. they directly applied the stability criterion for 

linear structures to nonlinear ones. Chen and Ricles (2008) demonstrated that the Newmark 

method with constant average acceleration and explicit Newmak method have the stability limits 

listed in Table 3. They investigated such stability using discrete control theory. However, the 

method presented in their paper is only applicable to linear time-invariant systems (Franklin et al. 

2015). This is equivalent to investigating the conditions of the spectral radius for the 

approximation operator iA  and that is the reason why the results they obtained are the same as 

those expressed by Eqs. (19) and (20). Accordingly, these published arguments of stability, i.e. 

those by Combescure and Pegon (1997) and Chen and Ricles (2008), are incomplete as they are 

not, in general, applicable to nonlinear problems. Another noteworthy observation is that the 

approximation operator of the explicit OStangent algorithm is the same as that of the implicit 

Newmark algorithm with 
1iT  replaced by 

1

~
iT , refer to Table 2. This indicates that they 

possess similar stability properties, as indicated in Table 3. 

Different from the integration algorithms above, the TRBDF2 is a multi-step algorithm 

with numerical damping introduced by the Euler backward scheme. Its approximation operator 

in Eq. (22) is obtained for the case of zero viscous damping ( 0 ) by similar linearization 

approximation for the tangent stiffness as before and given as follows: 

        iiiiiiiiT uuffuuffk
i

  5.05.05.015.011
 (21) 

     

   

         





























199

099

099
1

22

16

12222

16

522

16

1

2

9

22

16

4722

16

5

2244

16

522

16

47

1111

11

111

tttt

tt

ttt

B

iiii

ii

iii

TTTT

TT

TTT

i







A  (22) 

where      19
22

16

122

11



ttB

ii TT  . Thus, besides the one obvious eigenvalue of 1, the 

other two are as follows: 

 
      

    9

99
λ

22

16

2544

16

1

2222

16

522

16

47

2.1

11

111










tt

ttt

ii

iii

TT

TTT




 (23) 

It can be shown that for 0
1


iTk , magnitudes of the eigenvalues in Eq. (23) are always 

less than 1 because of introduced numerical damping. It is to be noted that for the case of zero 

viscous damping ( 0 ), eigenvalues in Eqs. (19), (20) and (23) are imaginary, which implies 

vibration. 

As previously discussed, a system is stable if its  


1

ij

jA  is bounded for i . This is 

equivalent to investigating the system in Eq. (12) with the loading vector 0L  , i.e. 

 iii xx A1  (24) 
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iA  can be rewritten non-dimensionally, e.g. in the implicit Newmark algorithm: 

 

 




























































1
21

21

21

0
21

21

21

1

0
2121

21

22

1

222

1

2

2

1

22

1

2

22

1

2

22

1

2

22

1

2

22

0

22

1

2

22

1

2





















ii

i

i

i

ii

i

i

t

A  (25) 

where InnnnTi kmTTt
i

 22,,
11 
 . Therefore, iA  is a function of 1i . 

Similar to Eq. (14), the Lyapunov function candidate 1iv  at the time step 1i  can be selected as 

follows:  

 
1111   ii

T

iiv xx M  (26) 

where the positive definite matrix T

ii 11  MM  is a function of 1i . A sufficient condition for the 

system and thus the direct integration algorithm to be stable is as follows: 

 
 

01

1

111

11

















ii

T

i

iitii

T

i

T

i

ii

T

itii

T

i

itii

r

r

vrvv

xx

xx

xxxx

-

P

MAMA

MM
 (27) 

where  1,0tr  controls the rate of convergence, i.e. the smaller the tr , the faster the 

convergence. Eq. (27) leads to the negative semi-definiteness of 1iP , i.e. 0P  1i . 

Numerical Stability Analysis 

In this section, a numerical approach is presented to enable investigating the stability discussed 

in the previous section. This approach is based on transforming the stability analysis to a 

problem of convex optimization, which is applicable to direct integration algorithms applied to 

nonlinear problems. For a direct integration algorithm, 1iM  can be expressed as: 

 


 
N

j

jiji

1

11 )( ΦM  (28) 

where j  and jiδ )( 1Φ  are the j–th constant coefficient and base function, respectively, and N  

is the total number of base functions. One example set of base functions is given in the Appendix. 
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With the range of i  and 1i  given, e.g.  baii ,, 1 , points can be sampled within this 

range, e.g. sampling 1n  points in  ba,  with interval   nab  . This yields  21n  

possible pairs of  1, ii  . Accordingly, the stability analysis becomes a problem of convex 

optimization that seeks the determination of the coefficients j  by minimizing their norm for the 

selected base functions 
jiδ )( 1Φ  where Nj 1: , subjected to the following conditions on the 

 21n  possible pairs of  1, ii  : 

 

   

0ΦM0ΦM

0ΦAΦAMAMA












































N

j

jiji

N

j

jiji

N

j

jijtii

N

j

jij

T

iiitii

T

i

ii

rr

nabba

1

11

1

1

1

1

111

1

)(,)(

)()()()(

,,





 ,

 (29) 

Optionally, with knowledge about the variation of 1i , the range of ii  1  can be specified, 

e.g.   ii 1 , where   is a constant that is not necessarily small. This leads to fewer 

possible pairs of  1, ii   that require less computational effort. 

The problem of convex optimization can be solved numerically by CVX, a package for 

specifying and solving convex programs (CVX Research Inc. 2011). An example for the implicit 

Newmark algorithm is conducted based on the following conditions: 

 

 

0.105.0005.0

200.19.0

205.005.0







tr

nba





 (30) 

Same set of base functions as in the Appendix is used. The coefficients j , 121: j , obtained 

by minimizing the 2-norm of  , i.e. 

2/1
12

1

2

min 













j

j , are as follows: 

 

10

12

10

11

9

10

11

9

9

8

8

7

10

6

10

5

9

4

10

3

9

2

8

1

1000.2,1030.4,1035.3,1000.6

,1005.1,1076.1,1060.4,1070.2

,1025.2,1070.1,1046.2,1090.1



















 (31) 

The set of j  in Eq. (31) from many determined sets has the minimum 2-norm explaining the 

listed small values of j . The existence of such set of j  implies that the implicit Newmark 

algorithm is stable for the conditions in Eq. (30). Accordingly, if more points are sampled, e.g. 

41 points for 0.0025  , then more computational effort is required accompanied with more 

accurate stability analysis. 
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The proposed approach in this section can be applied to investigating the stability of other 

direct integration algorithms, including the other four methods considered in this report. Also, 

various nonlinear problems, including stiffening ( 11 i ) and softening ( 11 i ) behaviors in 

Fig. 1, can be taken into account. Accordingly, the proposed approach is generally applicable to 

direct integration algorithms as long as they can be expressed as given by Eq. (24). 

Explicit Integration Algorithms 

Another systematic approach is proposed in the subsequent sections to investigate the Lyapunov 

stability of explicit algorithms by means of the strictly positive real lemma. Single-step explicit 

direct integration algorithms considered in this approach are defined by the following difference 

equations: 

     ii ututuu ii
 2

101    (32a) 

     1321 Δ   iiii ututuu    (32b) 

For example,    21212113210  κ  leads to the explicit Newmark 

algorithm (Newmark 1959). The restoring force,  uf , is here defined as a function of 

displacement, u , and restricted to the following range (to be determined in this approach 

according to the proposed Lyapunov stability analysis): 

  2 2

Min Maxk u f u u k u   (33) 

  

a) Stiffening system b) Softening system 

Fig. 2. Schematic illustrations of two structural systems with sector-bounded memoryless restoring forces. 

Fig. 2 shows the schematic illustrations for stiffening (Fig. 2a) and softening (Fig. 2b) systems 

with memoryless restoring forces bounded in the sector between ukMin  and ukMax . As mentioned 

before, the maximum, Maxk  and minimum, Mink , stiffness values for stable (in the sense of 

Lyapunov) stiffening and softening systems, respectively, are to be determined. 
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Nonlinear Structural Systems 

Stiffening Systems 

For the explicit direct integration algorithm formulated by Eqs. (6) and (32), the relationship 

between the kinematic quantities at time steps 1i  and i  can be established as follows: 

 1111   iiii pf DBAxx  (34) 

where     Tiiii uutut  
2

x , A , 1B  and D  are as follows: 

 























1

01

0

01

3322

2







EcEc

EcEc

A  (35a) 

     TEtEt 031  DB  (35b) 

where   3ctmE  . The external force, p , is generally independent of the kinematic 

quantities, x , and does not affect the Lyapunov stability of the direct integration algorithms as 

discussed before. Therefore, 1ip  is set to zero in Eq. (34) and thereafter in this report.  

It is obvious that one of the eigenvalues of A  is 1 that fails to satisfy the first condition (i) 

of the strictly positive realness of the transfer function. Therefore, Eq. (34) (after setting 01 ip ) 

is further manipulated as follows: 

 
   

   

111

1111

111

11111

eie

iMiniiMin

iMiniiMin

iiMiniMinii

f

ukfk

kfk

fkk

BA

BCBA

CBCBA

BCBCBA















x

x

xx

xxxx

 (36) 

where 

  101 C  (37a) 

 iiu xC1  (37b) 

 CBAA 11 Mine k  (37c) 

 111   iMinie ukff  (37d) 
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Softening Systems 

For softening systems, similar to Eq. (34), with 12 BB   and also setting 01 ip , as 

mentioned above: 

    

   

222

1122

122

1222

121

eie

iiMaxiMax

iiMaxiMax

iiMaxiMaxi

iii

f

fukk

fkk

fkk

f

BA

BCBA

CBCBA

BCBCBA

BA



















x

x

xx

xxx

xx

 (38) 

where 

 CBAA 22 Maxe k  (39a) 

 112   iiMaxe fukf  (39b) 

Accordingly, both stiffening and softening systems can be expressed in Eq. (40) with coefficients 

ee BA ,  and ef  summarized in Table 4. 

 eeiei fBA  xx 1  (40) 

Table 4. Coefficients for stiffening and softening systems 

 Stiffening Systems Softening Systems 

eA  CBAA 11 Mine k  CBAA 22 Maxe k  

eB  
1B  2B  

ef  iMinie kff xC 11  12  iiMaxe fkf xC  

 

Lyapunov Stability Analysis of Explicit Algorithms 

Based on Eqs. (33), (37d) and (39b), ef , expressed as a function of 1iu ,  has the following range 

   2

1 1 10 e i i if u u k u     (41) 

where MinMax kkk  . In order to investigate the stability of the system in Eq. (40), similar to Eqs. 

(14) and (26), a Lyapunov artificial energy function candidate 1iv   (Franklin et al. 2015) at the 

time step 1i  can be chosen as follows: 

 111   i

T

iiv xx M  (42) 
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where M  is positive definite, i.e. 0MM T  and 0  is the null matrix of the same dimensions 

as M . A sufficient condition for the system, and thus the explicit direct integration algorithm, to 

be stable is as follows: 

    

  02

1111





 

ee

T

e

T

eie

T

e

T

eie

T

e

T

i

T

ieeie

T

eeie

i

T

ii

T

iiii

fff

ff

vvv

MBBMABMMAA

MBAMBA

MM

xxx

xxxx

xxxx

 (43) 

Note that 
e

T

e ff  . Multiplying Eq. (41) by 0, 11  iie uuf , which is always positive, and 

rearranging, one obtains: 

     01   ieeiee kffkuff xC  (44) 

Eq. (43) becomes 

   

      ie

T

e

T

eee

T

e

T

eie

T

e

T

i

ieeee

T

e

T

eie

T

e

T

eie

T

e

T

iii

kfff

kfffffvv

xxx

xxxx

CMABMBBMMAA

CMBBMABMMAA



 

22

2211
 (45) 

where 1 iv  can be further transformed as follows: 

  
    iTT

iie

T

e

T

eee

T

e

T

e

i

T

e

T

e

T

i

i

TT

ii

TT

iii

kfff

vv

xxx

xx

xxxx

LLMABCMBB

LLMMAA

LLLL





 

22

11

 (46) 

where L  is a 3×3 matrix. A sufficient condition for 01  iv  and thus 01  iv  is as follows: 

 LLMAAM
T

e

T

e   (47a) 

 LWCMAB0
T

e

T

e k   (47b) 

 WWMBB
T

e

T

e

T  110  (47c) 

where W  is a 3×1 vector. With Eqs. (47), Eq. (45) becomes 

 
 

    0

211



 

ie

T

ie

i

TT

ii

TT

ee

TT

ei

T

iii

ff

fffvv

xx

xxxxx

LWLW

LLLWWW0
 (48) 

Therefore, the Lyapunov stability of the explicit integration algorithm depends solely on the 

existence of M , L  and W such that Eqs. (47) are satisfied. Recall the strictly positive real 

lemma presented before, i.e. Eqs. (4), the comparison between Eqs. (4) and (47) gives 
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  W WL  LMMDCCBBAA  ,,,1,,, kee
 (49) 

Accordingly, the stability analysis reduces to seeking k  such that the transfer function  zG  in 

Eq. (50) is strictly positive real. 

     eezkzG BAΙC
1

1


  (50) 

To be strictly positive real, the first condition (i) requires that eA  must be asymptotically stable. 

It is noted that eA  can be expressed non-dimensionally for the SDOF governed by Eqs. (6), (32a) 

and (32b) as follows: 

 

       
       























1

11

1

01

3303122

012







FFF

FFF

eA  (51) 

where 

   341  F  (52) 

The second condition (ii) for this case where the dimension of  zG  in Eq. (50) is 1 becomes 

equivalent to the following: 

    0Re zG  (53) 

which leads to 

    kzH 1Re   (54) 

where 

     eezzH BAΙC
1

  (55) 

The Nyquist plot (Franklin et al. 2015) can be used to plot  jeH  ∀   2,0 . From this plot, 

the minimum value of   zHRe  that is corresponding to the k1  can be obtained.  

It is noteworthy that if  uf  in Eq. (33) is strictly within the following range: 

  2 2

Min Maxk u f u u k u   (56) 

Eqs. (41), (44) and (48) become 

 2

1 10 e i if u k u    (57a) 
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     01   ieeiee kffkuff xC  (57b) 

 011   ii vv  (57c) 

Therefore, the explicit direct integration algorithm is asymptotically stable in this case, i.e. 

   22 , ukukuuf MaxMin , refer to Fig. 2. 

Numerical Example for the Stability Analysis 

In this section, the explicit Newmark algorithm, i.e.  2121211κ , is used to 

demonstrate the approach proposed in the previous sections based on the following numerical 

conditions:  

 1,01.0,05.0,1  Ikm   (58) 

For convenience, all units in this section are omitted. Based on Eq. (58), eA , C  and  eA  are 

as follows: 

 























0000.10000.15000.0

0020.09949.04975.0

0039.00102.00051.0

eA  (59a) 

  0000.10000.15000.0C  (59b) 

   9969.0eA  (59c) 

  1eA  implies that eA  is asymptotically stable and thus the first condition of the strictly 

positive realness of  zG  in Eq. (50) is satisfied. 

Stiffening Systems 

For stiffening systems, 1BB e  is as follows:  

  Te 00020.00039.0B  (60) 

The row ranks of the following matrices: 

 


















2

1

e

e

CA

CA

C

Z  (61a) 

 ][ 2

2 eeeee BABABZ   (61b) 
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are equal to 3, i.e.     3rankrank 21  ZZ . Therefore,  CA ,e  is observable and  ee BA ,  is 

controllable, and thus it is a minimal realization. 

The Nyquist plot of  zH  in eq. (55) corresponding to eA , C  and eB  in Eqs. (59) and 

(60) is shown in Fig. 3, where     7642.4Remin zH  is obtained. Based on Eq. (54), one 

obtains: 

    zHk Remin1   (62a) 

     2099.0Remin1  zHk  (62b) 

Accordingly, for stiffening systems, the explicit Newmark algorithm is stable in the sense of 

Lyapunov in the range that     0,2099.1,1,  ukkkuf II  for the numerical conditions in 

Eqs. (58).  

 

Fig. 3. Nyquist plot of )(zH  for a stiffening system. 

Softening Systems 

For softening systems, 2BB e  is as follows: 

  Te 00020.00039.0B  (63) 

Fig. 4 shows the Nyquist plot of  zH  in Eq. (55) corresponding to eA , C  and eB  in Eqs. (59) 

and (63). Similar to Eqs. (62), with     2586.5Remin zH  obtained from Fig. 4, one obtains: 

     1902.0Remin1  zHk  (64) 

Therefore, for softening systems, the explicit Newmark algorithm is stable in the sense of 

Lyapunov in the range that     0,1,8098.0,  ukkkuf I  for the numerical conditions in 

Eqs. (58). 
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Fig. 4. Nyquist plot of )(zH  for a softening system. 

The proposed approach can be applied to investigate the stability of other explicit direct 

integration algorithms. It is also noted that neither Mink  nor Maxk  is necessarily equal to Ik  for 

the stiffening or the softening systems, respectively. These stiffness values can be any other 

values of stiffness along the loading path. Therefore, various nonlinear systems, besides strictly 

stiffening and softening systems, can be treated using the proposed stability analysis approach. 

Accordingly, this proposed approach is generally applicable to explicit direct integration 

algorithms for various nonlinear systems. 

Accuracy Analysis 

The accuracy of the numerical integration algorithms depends on several factors, e.g. the loading, 

the time-step size, and the physical parameters of the system. In order to develop an 

understanding of this accuracy, a nonlinear test problem with an available closed-form exact 

solution is analyzed in this section. 

Consider a simple pendulum (Fig. 5) of length l , forming a time-dependent angle )(t  

with the vertical axis and undergoing time-dependent angular acceleration )(t . The governing 

equation, initial conditions, exact solution, and period of vibration are summarized in Table 5 

where g  is the gravitational acceleration,   trKn 0 , lg0 ,  rK  is the complete 

elliptical integral of the first kind, and  rnsn ;  is the Jacobi elliptic function (Abramowitz and 

Stegun 1972). 

 

Fig. 5. Schematic of the nonlinear pendulum in a general deformed state. 
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Table 5. Nonlinear pendulum  

Governing equation    0sin   lg  

Initial conditions 0)0(,)0( 0  θθθ   

Exact solution (Beléndez et al. 2007)         2sin,;2sinarcsin2 0
2

0   rrnsnt  

Period    04 rKT   

 

  

Fig. 6. Period elongation and amplitude decay for the pendulum problem with π.θ 1000  . 

  

Fig. 7. Period elongation and amplitude decay for the pendulum problem with π.θ 5000  . 

Figs. 6 and 7 present the period elongation and the amplitude decay of the investigated 

integration algorithms for π.θ 1000   and π.θ 5000  , respectively. The period is shortened using 

explicit Newmark (Chopra 2006), and elongated by the other algorithms. It is observed that 

OStangent and implicit Newmark present similar period elongations. The TRBDF2 has the smallest 
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period change while it is about twice computationally expensive compared to the other 

algorithms. Considering roughly the same computational efforts, e.g. 08.0 Tt  for TRBDF2 

and 04.0 Tt  for the others, the accuracy becomes comparable. Moreover, the accuracy of all 

algorithms is indifferent for the integration time steps required for accuracy, i.e. 01.0 Tt  

(Bathe 2006). All algorithms do not result in any significant amplitude decay except TRBDF2, 

which presents some amplitude decay due to introduced numerical damping. Up to 1.0 Tt , 

period elongation (< ±3%) and amplitude decay (< 1%) are acceptable. 

Summary and Conclusions 

Systematic Lyapunov stability and accuracy analyses of five direct integration algorithms 

(implicit and explicit Newmark, OSinitial, OStangent, and TRBDF2) for two types of nonlinear 

SDOF structural systems (stiffening and non-degrading softening), have been presented. An 

integration algorithm is stable if its Lyapunov artificial energy function is bounded. The general 

condition that the boundedness of 


1

ij

jA for i  is derived from the boundedness of the 

Lyapunov function. For linear structures, the stability criterion is that the spectral radius of the 

approximation operator is less than or equal to 1.0, which is applied to nonlinear structures by 

some researchers. It should be emphasized that the stability limit for linear structures, however, 

does not automatically hold for nonlinear structures. Therefore, some well-known stability limits 

of direct integration algorithms, e.g. OS algorithm with initial stiffness (OSinitial), are incomplete. 

An approach is proposed to perform the stability analysis numerically. This approach transforms 

the stability analysis to the solution of a convex optimization problem. The proposed approach is 

generally applicable to direct integration algorithms for nonlinear problems. 

In addition, another systematic approach to investigate the Lyapunov stability of explicit 

direct integration algorithms has been presented. The generic explicit algorithm is formulated for 

a nonlinear system represented by a general nonlinear restoring force in terms of the 

displacement, u . In this approach, the restoring force is a memoryless nonlinear function 

bounded in the sector between ukMin  and ukMax  where Mink  and Maxk  are lower and upper 

bounds on the SDOF stiffness. Based on this formulation, the proposed approach transforms the 

stability analysis to investigating the strictly positive realness of the transfer function for the 

formulated system. Nyquist plot is used to obtain a sufficient condition, i.e. the range of the 

restoring force, that the explicit algorithm is stable in the sense of Lyapunov. Furthermore, the 

explicit algorithm is asymptotically stable if the restoring force is strictly within the range given 

by Eq. (56). The proposed approach is demonstrated by a numerical example that investigates the 

Lyapunov stability of the explicit Newmark algorithm and this illustrated by a numerical 

example of a SDOF. In conclusion, the proposed approach is shown to be applicable for 

investigating the stability of the explicit direct integration algorithms used to determine the 

dynamical response of a variety of nonlinear structural systems.  

A geometrically nonlinear pendulum problem with a closed-form exact solution is used to 

investigate the accuracy of the considered five integration algorithms. The period is shortened by 

explicit Newmark and elongated by the other algorithms. The OStangent and implicit Newmark 

present similar period elongations. The more computationally expensive TRBDF2 has the 
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smallest period change. All algorithms present no amplitude decay except the TRBDF2 

undergoes some amplitude decay due to the introduced numerical damping. Finally, observed 

period elongation (< ±3%) and amplitude decay (< 1%) values are practically acceptable. 
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Appendix: Base Functions Used for Numerical Stability Analysis 
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