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Abstract

Human milk plays a substantial role in the child growth, development and determines their
nutritional and health status. Despite the importance of the proteins and glycoproteins in human
milk, very little quantitative information especially on their site-specific glycosylation is known.
As more functions of milk proteins and other components continue to emerge, their fine-detailed
quantitative information is becoming a key factor in milk research efforts. The present work
utilizes a sensitive label-free MRM method to quantify seven milk proteins (a-lactalbumin,
lactoferrin, secretory immunoglobulin A, immunoglobulin G, immunoglobulin M, a.1-antitrypsin,
and lysozyme) using their unique peptides while at the same time, quantifying their site-specific
N-glycosylation relative to the protein abundance. The method is highly reproducible, has low
limit of quantitation, and accounts for differences in glycosylation due to variations in protein
amounts. The method described here expands our knowledge about human milk proteins and
provides vital details that could be used in monitoring the health of the infant and even the mother.

Keywords
Human milk; MRM; Glycoproteomics; UPLC; Mass spectrometry

Correspondence to: Carlito B. Lebrilla.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interest.
Informed consent Informed consents were obtained from all individual participants.

Human and animal rights All the procedures related to human samples were performed in accordance with policies, procedures, and

regulations approved by the ethics committee at the University of California in Davis.

Published in the topical collection Glycomics, Glycoproteomics and Allied Topics with guest editors Yehia Mechref and David
Muddiman.

Electronic supplementary material The online version of this article (doi:10.1007/s00216-016-0029-4) contains supplementary
material, which is available to authorized users.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Huang et al. Page 2

Introduction

Human milk contains abundant biologically active components, including proteins,
endogenous peptides, lipids, carbohydrates, and minerals, which contribute to the nutritional
and physiological wellbeing of newborns [1-7]. Human milk proteins provide primary
nutrients for the infant and also protect them against infections via antimicrobial and
immune-modulatory activities that helps build immunity of the breast-fed infant [8, 9].
Accurate and sensitive quantitation of human milk proteins is expected to contribute to our
understanding of the milk biogenesis and their benefits to the neonates.

The vast majority of human milk proteins are glycosylated. It has been reported that
glycosylation helps to reduce the number of pathogenic infections and promotes the
development of the intestinal epithelium [7, 10]. Glycosylation is a common but complicated
protein post-translational modification (PTM). It plays key roles in many biological
functions, such as stabilizing the glycoprotein structure, mediating cell signaling and cell-
cell recognition events, and modulating microbial adhesion and invasion during infection
[11-14].

a-Lactalbumin (a-Lact) is one of the most abundant proteins in milk. Proteolytic fragments
of a-Lact have prebiotic properties useful in stimulating the growth of beneficial bacteria
besides its well-known roles in lactose biosynthesis [15, 16]. Lactoferrin (LF) is a major
glycoprotein in human milk with several physiological functions including bacteriostatic,
antiviral, and antibacterial [4, 7-9]. The dominant antibody in human milk, secretory
immunoglobulin A (slgA), has immunological properties and anti-pathogenic activities [17].
It is known that glycans on sIgA bind to pathogens that threaten the health of the newborns
[18-20]. Besides sIgA, there are other immunoglobulins in human milk that are also
glycosylated such as immunoglobulin G (1gG) and immunoglobulin M (IgM). a1-
Antitrypsin (A1AT), with three N-glycosites, is present in human milk as a protease
inhibitor. It is believed that A1AT can help limit protein digestion during early infancy when
its concentration is relative high. As a result, A1AT can also facilitate the action of other
bioactive proteins [21, 22]. Lysozyme (LZ), while not glycosylated, is another protective
milk protein. It is an enzyme that breaks f1,4 bonds between GIcNAc residues, thus playing
a key role in the defense of mucus membrane against infections [23].

Despite the numerous studies on milk proteins, nutritive and protective functions, their
simultaneous quantitation has not been performed nor has the extent of their glycosylation
level been fully characterized. The analytical methods available for the determination of
milk protein concentration include gel electrophoresis [24], capillary electrophoresis [6, 25],
liquid chromatography [26], and immunological techniques [27-29]. However, these
methods are less accurate, less reproducible, and sample processing procedures are laborious
and time-consuming. Multiple reaction monitoring (MRM) technology has found utility in
the quantitation of proteins in complex mixtures [30-32]. Its remarkable sensitivity and
selectivity enable the detection and quantification of low abundant substances in complex
mixtures. Quantitative protein assays have been developed with targeted MRM methods to
analyze protein concentrations in human plasma [33], human serum [34], and bovine milk
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[35]. However, MRM has not been used to monitor multiple proteins in human milk
simultaneously. Our group has recently reported a novel MRM method for quantifying
serum IgG and its glycoforms simultaneously [36]. This method yields both protein
concentration and site-specific glycosylation quantitation in a single experiment, thereby
enabling unprecedented insight into glycosylation.

In this study, we employ the power of MRM, for the first time, to obtain label-free
quantitation of the seven most abundant whey proteins: a-lactalbumin, lactoferrin, secretory
immunoglobulin A (sIGA), immunoglobulin G (IgG), immunoglobulin M (IgM), a.1-
antitrypsin (A1AT), and lysozyme (LZ). By quantifying unique peptides from each protein,
we achieved high reproducibility and low limits of quantitation (LOQ). Furthermore, the
site-specific glycosylation of five glycoproteins (LF, sIgA, 1gG, IgM, and A1AT) were
determined. Quantitation of the glycoforms was performed by normalizing glycopeptides
MS response to the protein abundances. This approach removes the contribution of protein
concentration to glycan abundances and allows for the simultaneous monitoring of
glycosylation across several proteins and several sites. The analytical platform was tested for
its reproducibility and LOQ in a 96-well plate format. The study provides the foundation of
a general method for the rapid-throughput analysis with quantitation of human milk proteins
and their glycoforms. The method can be used to profile the changes in levels of proteins
and glycosylation between milk samples.

Experimental procedures

Materials and chemicals

Analytical standards including human milk proteins IgG, LF, a-Lact, IgM, slgA, and ALAT
from human plasma were purchased from Sigma-Aldrich (St. Louis, MO). Human
neutrophil lysozyme was purchased from Lee Biosolutions (St. Louis, MO). Human IgA
was purchased from Calbiochem (Chicago, IL). Sequencing grade modified trypsin (Cat.#
V5111) and dithiothreitol (DTT) were purchased from Promega (Madison, WI).
lodoacetamide (IAA) CAS 74-88-4 was purchased from Sigma-Aldrich (St. Louis, MO).

Human milk samples

Milk samples were collected from three healthy donors enrolled in the UC Davis Lactation
Study who gave birth to term infants (>38 weeks). Milk samples were collected on day 28—
30 postpartum from one breast and transferred into polypropylene Falcon tubes and frozen
immediately in their Kitchen freezers (=20 °C) until weekly sample pick up by the study
staff. Samples were transported to the lab on dry ice and stored in =80 °C until processing.

Tryptic digestion

Trypsin digestion was first carried out on the seven individual protein standards to profile
their peptides and glycopeptides. A 50-ug sample of each protein was dissolved/diluted with
50 mM NH4HCO3 prior to reduction and alkylation with 2 uL of 550 mM dithiothreitol
(DTT) (60 °C, 50 min) and 4 pL of 450 mM iodoacetamide (IAA) (1 h, in dark) respectively.
Then, 1 pg of trypsin in 10 pL of 50 mM NH4HCO3 was added, and each protein was
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digested in a 37 °C water bath for 18 h. The resulting peptide samples were used directly for
Q-TOF mass spectrometry (MS) analysis without further sample cleanup.

For rapid throughput quantitation, accurate amounts of protein standards (LF, a-Lact, 1gG,
and A1AT) were weighed using a micro-balance (Mettler Toledo, XP26) and dissolved in 50
mM NH4HCO3 to make 4 mg/mL stock solution. A 50-pL LF stock solution, 50-pL a-Lact,
5-uL A1AT, and 5-uL IgG stock solution were combined to make the standard protein
mixture. A 100-ug sample of IgA (62.5 pL conc. 1.6 mg/mL), 20 ug of IgM (18.2 pL conc.
1.1 mg/mL), and 20 pg (18.2 pL conc. 1.1 mg/mL) of LZ solution were then added into the
previous solution to make the final standard protein mixture. The standard protein mixture
(~209 pL) was transferred to a single well in a 96-well plate. For tryptic digestion, 175 pL of
50 mM NH4HCO3 was added to 25 pL of whole milk in the same 96-well plate with the
standard protein mixture. The milk samples and standard mixtures were reduced with 2 and
4 pL of 550 mM dithiothreitol (DTT) followed by incubation for 50 min at 60 °C. A 4 and
8-uL 450 mM iodoacetamide (IAA) was then added to the milk samples and the standard
mix, respectively, followed by carboxymethylation by incubation for 60 min at room
temperature in the dark. Two micrograms of trypsin in 20 pL of 50 mM NH4HCO3 was
added to the samples, prior to the digestion for 18 h at 37 °C in an incubator (Fisher
Scientific, Pittsburgh, PA).

The digests were purified on C18 96-well cartridge plate (Glygen, Columbia, MD). The C18
plate was preconditioned successively with two volumes (200 pL for each volume) of pure
water in 0.1 % TFA, two volumes of 100 % acetonitrile (ACN), and three volume of pure
water in 0.1 % TFA, by adding each solvent and centrifuging the plate in Eppendorf 5810R
centrifuge (Eppendorf, Hauppauge, NY) at 1700 rpm in room temperature. The tryptic
digests were loaded on the plate and then washed with three volumes of pure water in 0.1 %
TFA by centrifugation, prior to eluting with two volumes of 40 % ACN in 0.1 % TFA and
one column of 80 % ACN in 0.1 % TFA and dried to completion.

Instrumentation

A nano-HPLC-Chip Q-TOF instrument using the Agilent 1200 series microwell-plate
autosampler (maintained at 6 °C by the thermostat), capillary pump, nano pump, HPLC-
Chip interface, and the Agilent 6520 Q-TOF MS (Agilent Technologies, Inc., Santa Clara,
CA) were used in this study.

For the peptides and glycopeptides, a reverse-phase nano-HPLC Chip (G4240-62001,
Agilent Technologies, Inc., Santa Clara, CA) with a 40-nL enrichment column and 43 x
0.075 mm ID analytical column was used. The column was packed with ZORBAX C18 (5
um pore size) stationary phase. The mobile phase for tryptic peptides consisted of 0.1 %
formic acid in 3 % ACN in water (V1) as solvent A and 0.1 % formic acid in 90 % ACN in
water (V1) as solvent B. The nano pump gradient was performed on the analytical column to
separate the tryptic peptides with a flowrate at 0.4 uL/min. The peptides were eluted in 60
min with the following gradient: 3 % B (0.00-2.50 min), 3 to 16 % B (2.50-20.00 min), 16
to 44 % B (20.00-30.00 min), 44 to 100 % B (30.00-35.00 min), and 100 % B (35.00-45.00
min) and re-equilibrated at 3 % B from 45.01 to 60 min.
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The Agilent 6520 Q-TOF MS was operated in the positive ion mode for MS and MS/MS of
the tryptic peptides. The recorded mass ranges were /7/z500-3000 for MS only and /m/z50-
3000 for MS/MS. Acquisition rates were 7.99 spectra/s for MS scan and 3 spectra/s for
MS/MS scan. The drying gas temperature was set at 325 °C with a flow rate of 4 L/min. All
mass spectra were internally calibrated using the G1969-85000 ESI tuning mix (Agilent
Technologies, Inc., Santa Clara, CA), with reference masses at //2922.010, and 1521.971
in the positive ion mode. In MS/MS mode, the collision energies for the tryptic peptides
were calculated as follows:

m/z
Veollision(eV')=3.6 —4.8
ollisio (6 ) ( 100Da>

The peptide samples were analyzed and quantified using an Agilent 1290 infinity LC system
coupled to an Agilent 6490 triple quadrupole mass spectrometer (Agilent Technologies,
Santa Clara, CA) using a 96-well injection plate (Eppendorf, Hauppauge, NY). An Agilent
Eclipse plus C18 (RRHD 1.8 um, 2.1 x 100 mm) was used for UPLC separation.

The standard protein mix was diluted serially in nano pure water to obtain a calibration
curve for protein quantitation. The human milk samples were reconstituted with 100 pL
nano pure water. A 1.0-uL sample was injected for each run. Three replicate injections were
performed for each protein standard mix to evaluate the instrument repeatability. One nano
pure water blank was run after every four sample runs to observe potential carry overs.

The mobile phase for tryptic peptides consisted of 0.1 % formic acid in 3 % ACN in water
(V) as solvent A and 0.1 % formic acid in 90 % ACN in water (//V) as solvent B. The 16-
min gradient was as follows: 0 min at 2.0 % B, 1.5 min at 15.0 % B, 3 min at 25 % B, 4 min
at 30 % B until 7 min, 10 min at 35 % B, 11 min at 40 % B, and 12 min at 100 % B; the
column was washed at 100 % B from 12.1 to 14 min and re-equilibrated at 2.0 % B from
14.1to 16 min.

The MS was operated in the positive mode. Q1 and Q3 were operated at unit resolution. The
optimal parameters used were as follows: drying gas (N») temperature and sheath gas (N»)
temperature 290 °C, drying gas flow rate 11 L/min, sheath gas flow rate 12 L/min, nebulizer
pressure 30 psi, capillary voltage 1800 V, and fragmentor voltage 280 V. RF voltage
amplitude of high pressure and low pressure ion funnel were 100 and 60 V, respectively.

The dynamic MRM mode was used, whereby the transitions were monitored only when the
target analyte was eluted. The cycle time was fixed at 500 ms, while the dwell time
depended on the number of concurrent transitions monitored.

The MRM results were analyzed using Agilent MassHunter Quantitative Analysis B.6.0
software. The peak areas were integrated by the software and used for quantitation. The limit
of detection (LOD) and limit of quantitation (LOQ) were defined as S/N =3 and 10,
respectively.
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Data processing

Tryptic peptide MS/MS data from Q-TOF MS were analyzed using X! Tandem
(www.thegpm.org). X! Tandem was set to search the Swissprot human proteome database.
X! Tandem was searched with a fragment ion mass tolerance of 80 ppm and a parent ion
tolerance of 100 ppm with one trypsin missed cleavages allowed. lodoacetamide derivative
of cysteine was specified in X! Tandem as a fixed modification. Deamination of asparagine
and glutamine, oxidation of methionine, and tryptophan were specified in X! Tandem as
variable modifications. Peptides for each protein in the standard protein mix were selected
based on the peptide profile. Glycopeptide identification from glycoproteins (LF, sIgA, 1gG,
IgM, and antitrypsin) was performed using in-house software, GPFinder. Carbohydrate
oxonium ions, such as, m/z204.08 (HexNAc), m/z366.14 (Hex1HexNAcl), miz292.09
(Neu5Ac), and m/z657.24 (Hex1HexNAc1Neu5Acl) were used as diagnostic fragments for
glycopeptides. The glycopeptide compositions were assigned on the basis of their exact
mass and the fragmentation pattern.

Results and discussion

Peptide and glycopeptide profiling
Standard LF, a-Lact, slgA, IgG, IgM, A1AT, and LZ were digested using trypsin prior to the
analysis with LC-Q-TOF MS/MS to evaluate the fragmentation behavior of the respective
peptides and glycopeptides. During the protein digestion, DTT was used to reduce the
cysteine disulfide bonds. The free —SH groups were subsequently alkylated using IAA to
prevent them from reforming. All the observed cysteine residues were
Carbamidomethylated. Our group has reported the peptide selection for quantitation of
serum IgG [36]. fA similar strategy was applied for the other six proteins in milk. However,
the predominant immunoglobulin in breast milk, sIgA, is a protein complex consisting of
two identical IgA monomers (IgAL or IgA2), joined together via a 16-kDa joint chain (J
chain), and a secretory component (SC). It is not possible to find a common peptide for all
the four polypeptides; therefore, quantitation was not possible for sigA. Instead, IgA
standard was used to obtain IgA concentration in human milk. The tryptic peptides
YLTWASR and VAAEDWK, which are common to both IgA1 and IgA2, were selected for
quantitation of IgA. In Fig. S1a (see Electronic Supplementary Material, ESM), the MSMS
spectrum of the tryptic peptide YLTWASR is shown, thereby illustrating the abundances of
b- and y-ions. Abundant b- and/or y-ions were selected for the MRM analysis. Peptides
TPLTATLSK for IgA1l, DASGATFTWTPSSGK for IgA2, GSVTFHCALGPEVANVAK for
SC, and IIVPLNNR for the J chain were used for glycosylation quantitation. The tandem
mass spectra of the SC and J chain peptides are shown in Fig. S1b and S1c (see ESM).

Compositions of glycopeptides obtained from trypsin digestion were assigned based on the
MS/MS data and the accurate precursor ion mass measurement. Previous studies from our
group on the analysis of tryptic glycopeptides with collision-induced dissociation (CID)
experiments revealed detailed and comprehensive glycan compaositional information for IgG
subclasses [36]. Glycosidic bond cleavages (B- and Y-type ions) were the major products
including m/z292.09 (Neu5Ac), 274.08 (Neu5Ac—H,0), 204.08 (HexNAc), 366.14 (Hex
+HexNAC), and 657.24 (Hex+HexNAc+ Neu5Ac). Tandem spectra of glycopeptides from
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two N-glycosites of LF with the same glycan composition are depicted in Fig. 1a, b. Due to
the labile nature of sialic acid residues and their positions at the terminus, the initial loss of
sialic acid was commonly observed with the sialylated glycopeptides. Following the
sequential neutral losses of NeubAc, Hex and HexNAc loss leads to the glycopeptide
fragment (peptide+HexNAc). The presence of the peptide+HexNAc is valuable for
validating the assignment of parent glycopeptide [37, 38]. Glycopeptides from each
glycoprotein were examined in the similar manner, thereby revealing the site-specific
glycosyation with trypsin digestion.

Figure 2 shows the site heterogeneity of the five glycoproteins (LF, 1gG, IgM, AL1AT, and
slgA). LF is an abundant milk glycoprotein with three potential glycosylation sites, of which
two sites are highly occupied (1°6N and 497N) while a third site (842N) is rarely occupied
[39, 40]. LF has long been imbued with the role of bacterial defense by acting as decoys and
occupying binding sites on bacteria, thereby prohibiting them from binding to host cells
[39-42]. Less known are the roles of glycosylation in this function. Previous binding studies
of bacteria to host epithelial cells in our lab show that LF blocks the binding of pathogens to
host cells [7]. For example, cleaving all the N-glycans diminishes its ability to block
Escherichia coli. Removing fucose increases the ability of Sa/monella typhimurium to bind
to epithelial cells while removing sialic acid increases the ability of Sa/monella enteritidis to
adhere to host cells. The efficacy of LF is mediated by specific glycan structures. However,
the site-specific glycosylation of LF was still not fully elucidated. Here in Fig. 2a, glycan
site heterogeneity of LF is shown. The two major N-glycosites were characterized with
mainly sialylated glycans, which most times may act as receptors for many viruses and
pathogenic bacteria, enabling the viruses to gain entry into human cells [43-47]. As shown
in Fig. 2b, glycopeptides from four subclasses of 1gG were profiled, and the resulting glycan
heterogeneity corresponded well with what has been previously reported [36, 48, 49].

In the heavy chain of IgM, three N-glycosites (*6N, 209N, and 272N) were reported to be
occupied with complex type N-glycans, while the other two (27°N and #3°N) were occupied
with high mannose type [50-52]. Detailed site-specific glycosylation mapping has not yet
been reported. Due to the limitations often inherent with trypsin digestion, glycosites 272N
and 279N were close together and yielded one tryptic peptide so the site-specific information
for the individual site was not available. However, as shown in Fig. 2c, the other sites were
readily characterized. 43°N was occupied with high mannose glycans ranging in size from
MansGIcNAC, to MangGIcNAC,, while 46N and 209N were occupied by complex glycans
with various degrees of sialylation.

A1AT is an important human glycoprotein that belongs to the family of serpins and is the
major inhibitor of neutrophil elastase [53, 54]. It has been shown that glycosylation
increases the stability of ALAT [55, 56]. ALAT was characterized with three N-glycosites
that were mainly occupied with complex type N-glycans (Fig. 2d). The results of our study
also matches well with literature, [57-59] where complex N-glycans, mostly di- and
triantennary with sialic acids, were reported for all three sites. However, peaks for 7N were
not observed in the MRM profiling probably due to the low occupancy of this glycosite.
Therefore, in this study, only two sites from ALAT were monitored and quantified in the
MRM assays.
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The protein sIgA is a major antibody found in external secretions such as human milk, and it
plays a major role in the protection of mucosal surfaces [60, 61]. In Fig. 2e, the site-specific
glycosylation was determined using trypsin digestion for each component of sIgA including
the secretory component, IgA1, IgA2, and the J chain. Due to either the resistance of many
glycoproteins to undergo tryptic digestion or the relatively large size of glycopeptides,
glycans at several sites were not observed. The results obtained with the trypsin, while
incomplete matched well with those using nonspecific proteases. Furthermore, the goal of
this study was to quantify the proteins and their glycoforms; therefore, the more specific
protease trypsin was selected and characterized to yield reproducible glycopeptides.

Configuration and Optimization of MRM Assay

The main concern with using QqQ mass spectrometers for targeted analysis is the low mass
selection resolution that may cause interference by other ions particularly in a complicated
matrix such as milk [32]. To reduce the chances of potential interferences, two peptides for
each protein were selected to increase specificity and selectivity of the quantitative assay in
human milk. The selection for peptides followed several rules that have been discussed in a
recent study from our laboratory [36]. Firstly, the selected peptides should be unique to the
protein and unmodified by other PTMs, such as deamination and oxidation. Secondly, two
peptides from each protein are chosen for quantitation in MRM. The exception of the second
rule was LZ where the short length yielded only one peptide with no potential PTMs.

MRM transitions were optimized for these peptides for their quantifier, qualifier, retention
time, and collision energy. For 1gG and slgA, the peptides common to all four IgG subtypes
and to both IgA1/1gA2 were selected for overall quantitation. For example, the
quasimolecular ion ([M + 2H]?* mlz409.7) for the 1gA1/2 peptide VAAEDWK was selected
as the precursor ion, while 77z 648.3 was selected as the fragment ion. Additionally, a
second transition from the same precursor ion to fragment ion 7/2719.4 was used as
qualifier. It is unlikely that an interference may share both quantifier and qualifier, giving the
method high specificity and selectivity with the targeted peptides. A dynamic MRM method
was applied to specifically monitor one analyte at a time, which reduced the number of
concurrent transitions. The retention time for the above peptide was determined to be 2 min,
and the optimized fragmentation voltage was 9 eV. Every MRM transition was optimized
with a specific retention time to reduce the duty cycle. Summarized in Table 1a are the
transitions for all peptides monitored with their precursor mass, product mass, retention
time, and fragmentation voltage.

Reproducibility of the selected peptides was determined by relative standard deviation
(RSD) of the peak areas based on triplicates performed on different days (Table 1a). The
RSD were generally below 10 % illustrating the high repeatability of the method.

As shown in Fig. 1, oxonium ions corresponding to small glycan fragments /m/z204.08
(HexNAc) and m/z 366.14 (Hex+ HexNAc) were abundant and therefore chosen as the
product ion for most of the glycopeptide MRM transitions. However, for some of the high
mannose-containing glycopeptides, the fragment peptide+HexNAc was found to yield better
responses. For example, for the site 439N of IgM, which contains primarily high-mannose
type N-glycans, the product ion selected correponded to 7/21284.7
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(STGKPTLY“3NVSLVMSDTAGTCY+ HexNAc). Listed in Table 1b are the glycopeptides
from the five glycoproteins discussed above including more than 100 glycopeptides. It
should be noted that the retention times of the glycopeptides on C18 stationary phases rely
mainly on the peptide moiety of the glycoconjugates. Therefore, glycopeptides that originate
from the same site and thus share the same peptide generally elute closely together. Due to
the limitations in duty cycles, one transition was selected for each glycopeptide monitored.
Dynamic MRM help reduced the effects of co-elution of the glycopeptides and increased the
sensitivity of the analysis.

An example chromatogram obtained from the MRM transitions of the standard protein
mixture is shown in Fig. 3. Good separation was obtained within the 16 min UPLC gradient.
Most of the glycopeptides eluted after 4 min while the nonglycosylated peptides eluted
between 2 and 4 min (Fig. 3a). This difference fortunately reduced the charge competition
during electrospray ionization resulting in higher glycopeptide sensitivity because peptides
ionize more readily than glycopeptides.[62-64] Due to the ionization differences, the
peptides MS signal (shown in black in Fig. 3a) are significantly higher than the
glycopeptides MS signal. Good separation between the peptides and glycopeptides is critical
for MRM of glycopeptides. Peptide peaks from the seven proteins and glycopeptide peaks
from the five glycoproteins are shown in Fig. 3b, c, respectively. This method provides a
general and sensitive analysis that can be used for a large number of proteins and their
glycoforms.

Quantitation of Human Milk Proteins

The relative abundances of the seven proteins in milk varies considerably from ~20 % for a.-
Lact and LF, ~10 % for slgA, ~5 % for LZ, and <1.0 % for 1gG, IgM, and A1AT [65, 66].
Different concentrations of each standard protein were prepared to produce a standard
mixture (as 1x stock solution) consisting of 4.0 mg/mL for a-Lact and LF, 2.0 mg/mL for
IgA, 0.4 mg/mL for LZ, 1gG, IgM, and A1AT. In order to quantitate the targeted proteins, a
series dilution of the standard protein mix was used to build the calibration curve from
5000x%, 2000x, 1000%, 500x, 100x, 50x%, 20x, 10x, 5%, 2x, and 1x (ESM Table S1). A 1.0-
UL volume of each dilution was analyzed. The resulting calibration curves using one peptide
from each protein is shown in Fig. 4. The calibration curve was linear over at least two
orders of magnitude for the concentration range. The calibration curves were fitted linearly
with /2 from 0.99 to 0.999. Limit of quantitation (LOQ) was defined by the S/N>10. The
LOQ of all seven targeted proteins are listed in Table 1.

The concentration of each protein in milk was determined by fitting its unique peptide to the
linear regression curve. With two peptides selected for each protein (except for LZ), the
average was used yielding variations of less than 20 % (data not shown). Tryptic digestion is
affected by the local activity of the enzyme. It is widely known that different amino acid
modifications may generate different efficiencies of the trypsin digestion and may yield
missed cleavages. Hence, the average of different peptides from the same protein is a
reliable way of diminishing the potential variations in enzymic activity.

The overall goal of this study is to develop a rapid-throughput method to quantify human
milk protein concentrations and their glycosylation levels in different samples. To this end,
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mature human milk samples (>25 days of lactation) from three healthy donors were
analyzed in triplicates (nine milk samples in total) along with the standard mixtures by
randomizing the sample pool in a 96-well plate and trypsin digested as discussed in the
experimental section above. An example of chromatograms obtained from the MRM
transitions of human milk digest are shown in ESM Fig. S2a and S2b for the selected
peptides and glycopeptides, respectively.

The concentrations of the targeted proteins were calculated from the calibration curves with
the mean concentration and intraday reproducibility as shown in Table 2a. Parallel
experiments were performed on two other days to determine the interday reproducibility
(Table 2a). High reproducibility of protein quantitation in human milk was obtained with
less than 10 % RSD from intraday analysis and slightly higher from interday analysis. The
concentrations of the seven proteins from three mature milk samples a-Lact (3.1 £ 0.4 g/L),
LF (2.2+0.59/L), IgA (0.39 £ 0.12 g/L), 1gG (0.045 £ 0.02 g/L), IgM (0.019 + 0.007 g/L),
ALAT (0.037 £ 0.015 g/L), and LZ (0.22 £ 0.13 g/L) include biological variations from the
three individuals.

Conventional methods including radial immunodiffusion, immunoelectrophoresis, enzyme-
linked immunosorbent assay (ELISA), sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), and microparticle-enhanced nephelometric immunoassay were
the commonly used analytical methods to quantitate individual proteins in human milk [6,
28, 29, 67-69]. Previous studies have shown similar concentrations of these proteins using
other techniques [65, 67-69]. However, none of these methods monitor protein
glycosylation. Here, we present for the first time, a mass spectrometric method to quantify
seven proteins along with their glycoforms in human milk.

The approach we developed takes protein abundances into consideration. Quantitation of
glycosylation in milk proteins, where the vast majority of studies have been performed, is
currently limited only to the ion abundances of glycans/glycopeptides [70, 71]. However,
there has been no information on how the protein level affects measured glycan abundances.
We have previously reported a method for IgG where the glycopeptide signals were
normalized to the protein abundances to remove the contribution of protein concentration
[36]. Here, we expand this capability for several proteins in milk. For LF, IgM, and A1AT,
the glycopeptide signals were normalized to the peptide yielding the higher ion abundance.
For slgA and IgG, because of their complexity with different polypeptides and subclasses,
the glycopeptides were normalized to respective peptides on SC, 1gA1, IgA2, J chain, 1gG1,
1gG2, and 1gG3/4. The unique peptide from these polypeptides that were monitored are
listed in Table 1a. Glycopeptides from 1gA1 (144N) and 1gA2 (13IN) could not be
distinguished because the tryptic peptides are identical; thus, the signals were normalized to
the common peptide from IgAL/2. Similarly, glycopeptides from 1gG3 and 1gG4 could not
be distinguished; thus, the signals were normalized to the sum of the two peptides from
IgG3 and 1gG4. The normalized glycopeptide level from the three milk samples with their
RSD is shown in Table 2b. A relatively higher RSD was observed for glycopeptides, which
is expected. The variation is likely due to the incomplete trypsin digestion due to the
presence of glycan [72-74] that may block the cleavage site. Some of the glycopeptides
were not quantified due to their low S/N (<10) (Table 2b). Because the concentration of
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these proteins in milk usually ranges some three orders of magnitude, signals of
glycopeptides from the less abundant proteins such as 1gG and IgM were limited. However,
quantitation of these glycopeptides could be achieved alternatively by the enrichment of the
respective glycoproteins.

Differences in levels of glycosylation were observed from the three milk samples. For
example, in Fig. 5, the 11 observed LF-glycopeptides are provided along with the
concentration of LF. There appears to be no correlation between glycosylation and protein
concentrations. However, the method illustrates well the quantitation of protein and their
site-specific glycosylation simultaneously, and it will facilitate the understanding of function
of glycosylation in human milk.

Conclusion

We have established an analytical method using MRM for the quantitation of milk proteins
and their glycoforms in a rapid throughput manner. The approach detailed here provides
quantitative analyses of proteins and the site-specific glycosylation. Quantitative
glycosylation information at a given site is obtained by normalization to the protein
measured abundances, which was previously not feasible. High sensitivity and
reproducibility were observed from this MRM analysis. The method developed in this study
is currently being used to analyze large sample sets and will aid in elucidating the biological
functions of human milk glycoproteins during lactation.
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Fig. 1.

Regpresentative Q-TOF tandem mass spectra of glycopeptides. a MS/MS spectrum of
glycopeptide HexsHexNAcsFuciNeuSAc;-TAGWNIPMGLLF49’NQTGSCK from LF. b
MS/MS spectrum of HexsHexNAcsFuciNeu5Ac;- TAGWNVPIGTLRPFLISSNWTGPPEP-
IEAAVAR from LF. Green circles, yellow circles, blue squares, red triangles, and purple
diamonds represent mannose, galactose, GICNAc, fucose, and NeuAc residues, respectively
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Glycan site-heterogeneity of human milk glycoproteins: a LF, b 1gG, c IgM, d A1AT, and e

sIgA. Green circles, yellow circles, blue squares, red triangles, and purple diamonads
represent mannose, galactose, GIcNAc, fucose, and NeuAc residues, respectively
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Total MRM chromatogram for seven standard protein mix using UPLC-C18

w
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chromatography. MRM chromatograms for a peptides and glycopeptides, b peptide with
assigned transitions, and ¢ glycopeptides with assigned transitions. The MRM transitions are
shown in Table 1. One MRM transition was monitored for each glycopeptide; two MRM

transitions were monitored for each peptide
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Fig. 5.

Elgven normalized LF glycopeptide abundances monitored from three milk samples (a, b,
and c). LF concentration (g/L) of three milk samples on the right of the plot. Normalization
was performed with the ratio between glycopeptide signal peak area and the LF peptide peak
area. This suggests the dynamic variation on site-specific glycosylation. Error bars are
representative of reproducibility from replicates on different days
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