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Abstract of the Dissertation

Contributions in Design of Experiments:
Methods and Applications

by

Jessica Lynn Jaynes

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2013

Professor Hongquan Xu, Co-chair

Professor Weng Kee Wong, Co-chair

Progresses in science and technology continuously raise new challenges to ex-

perimenters and statisticians, calling for innovation in methodological and theoret-

ical development of experimental design. Factorial designs are popular experimen-

tal plans for identifying important factors. Motivated by real world applications,

we construct efficient and optimal factorial designs with applications in the fields

of, but not limited to, biomedical sciences, for drug combination determination,

and marketing survey research. First, we provide a novel application of fractional

factorial designs to investigate a biological system with Herpes simplex virus type

1 and six antiviral drugs. We show how the sequential use of two- and three-level

fractional factorial designs can screen for important drugs and drug interactions,

as well as determine potential optimal drug dosages. Second, we construct a new

class of composite designs based on a two-level factorial design and a three-level

orthogonal array. These new composite designs have many desirable features and

are effective for factor screening and response surface modeling. Finally, motivated

by the need for smaller optimal discrete choice experiments, we propose a novel

application of blocked factorial designs for designing discrete choice experiments

for estimating main effects, and main effects plus some two-factor interactions,
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with 100% efficiency. These observations have major implications in the under-

standing of factorial designs, ultimately leading to a better design practice and

theory.
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CHAPTER 1

Introduction

In an experiment, we deliberately change one or more factors in order to observe

the effect of the change on the outcome. That is, we design the experiment to test

a cause and effect relationship. Experimental design is an effective and commonly

used tool in scientific investigations and industrial applications to study the rela-

tionship between two or more variables. The framework for experimental design

can be traced back to the 1930’s by R.A. Fisher in agriculture. Typically, agricul-

tural and biological experiments require vast amounts of land and time, as well as

variation among the plots. This lead to the development of the core concepts of

experimental design: blocking, randomization, replication, and orthogonality. By

using experimental design techniques, we can represent a real world complexity

to determine if one variable depends on another. Additionally, an experiment

should be designed such that maximum information can be obtained from fewer

experiments; therefore, efficient in terms of time and cost. A well designed study

is often more important than the actual analysis because no statistical analysis

can rescue a poorly designed experiment.

The design of experiments has a variety of applications. Since the early devel-

opment of experimental design in agriculture, experimental designs have become

common practice, particularly in engineering. Experiments are often iterative

and involve several stages. Factorial designs are cost-effective for studying the

effects of two or more factors simultaneously and commonly used for identifying

important factors from a large pool of factors in early stages. Full factorial de-
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signs at two- and three- levels are most commonly used to determine the effect

of one factor on another. These designs allow the independent estimation of all

the main effects as well as all of the interaction effects. However, the size (in

terms of the number of runs) of these designs increases rapidly as the number of

factors and level increases. Rather, consider a fraction of the full factorial design,

which requires fewer runs. These designs can be selected such that the fractions

are optimal according to a particular criteria. As a tradeoff for the reduced run

size, some effects are aliased (indistinguishable from one another). Details on the

construction of factorial designs are given in Chapter 2.

The goal of this dissertation is to develop new methodologies in the field of ex-

perimental design based upon and motivated by real world applications. Efficient

and optimal factorial designs are constructed with applications in the fields of,

but not limited to, biomedical sciences, for drug combination determination, and

marketing survey research. We will illustrate that the design, and construction,

of experiments can strongly benefit researchers in a wide variety of areas. More

specifically, we will show that the ideas that have been used in engineering for

many years can be applied to medical research, as well as consumer preference

modeling. While fractional factorial designs have successfully, and effectively, been

used in a wide array of areas, they have yet to make an impact in the area of virol-

ogy and drug combinations. With the emerging use of experimental design in new

areas of research, this calls for innovative, and alternative, design construction

techniques and methods. With the construction of new composite designs and

applications in various fields, the findings are similar to many successful applica-

tions of factorial designs used in engineering experiments, and gives us confidence

that factorial designs can be useful in other disciplines.

The remainder of the dissertation is organized as follows: (1) we will provide a

novel application of factorial designs in the area of virology; (2) develop a new class

of composite designs; and (3) construct smaller efficient choice sets for the area of
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discrete choice experiments. In comparison to current methods and techniques,

generally these designs provide higher efficiency, more in depth analyses, and

require a shorter time to run.

Chapter 2 illustrates the usefulness of fractional factorial designs to medical

researchers to find optimal drug combinations and to screen out inactive com-

ponents. We develop an application of fractional factorial designs to investigate

a biological system versus current techniques of random search algorithms. An

alternative approach to the feedback system control is presented, replacing part of

the feedback system control by a fractional factorial design. By using a fractional

factorial design to search for optimal drug combinations we present the following

advantages: (1) fractional factorial designs are efficient for studying two or more

factors, (2) a statistical model can be built with fewer runs, (3) important drugs

and their combinations can be successfully identified, and (4) ability to predict

optimal drug combinations.

Chapter 3 is motivated by an antiviral drug experiment. We construct a

new class of composite designs by combining a two-level factorial design and a

three-level orthogonal array. The resulting design is called an orthogonal-array

composite design (OACD). This new class of composite designs is constructed with

careful consideration of experimental cost, time and statistical efficiency, and can

perform the entire experiment in one iteration, reducing cost and variation. An

OACD has several advantages: (1) the OACD can use a better initial design than

other existing composite designs, enabling all linear effects to be estimated clearly

from any bilinear effects and offers higher efficiencies, (2) an OACD can be used

in a single experiment or in a sequential experiment; this feature is particularly

appealing in many industrial and engineering experiments, and (3) more in depth

analyses than traditional designs using either a two- or three-level design. It is

shown that this new class of composite designs provides a good trade-off between

estimation efficiency and run size economy, and can be used as an alternative to

3



the popular other existing composite designs.

Chapter 4 presents an application of factorial designs in the research area

of discrete choice experiments (DCEs). A DCE is an attribute based method

that gives further insight into how individuals develop preferences for particular

attributes. A DCE presents respondents with several choice sets of hypothetical

scenarios, where each choice set is made up of 2 or more options. Motivated by the

need for smaller optimal DCEs, we proposed a unique method applying blocked

factorial designs to construct smaller DCEs for estimating main effects, and main

effect plus some two-factor interactions, with 100% efficiency. There are many

recent studies on the optimal choices of blocking schemes for fractional factorial

designs (Cheng and Wu, 2002); however, DCEs have yet to incorporate recent

developments in blocked fractional factorial designs. It is shown that in general,

all DCEs constructed using a blocked factorial design for the estimation of the

clear effects are: (1) always D-optimal and 100% efficient, (2) present equal or

smaller number of choice sets to the respondent, and (3) do not need to assume

any two-factor interactions negligible.
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CHAPTER 2

An Application of Fractional Factorial Designs

to Study Drug Combinations

Herpes simplex virus type 1 (HSV-1) is known to cause diseases of various sever-

ities. There is increasing interest to find drug combinations to treat HSV-1 by

reducing drug resistance and cytotoxicity. Drug combinations offer potentially

higher efficacy and lower individual drug dosage. In this paper, we report a

new application of fractional factorial designs to investigate a biological system

with HSV-1 and six antiviral drugs, namely, Interferon-alpha, Interferon-beta,

Interferon-gamma, Ribavirin, Acyclovir, and TNF-alpha. We show how the se-

quential use of two- and three-level fractional factorial designs can screen for im-

portant drugs and drug interactions, as well as determine potential optimal drug

dosages through the use of contour plots. Our initial experiment using a two-

level fractional factorial design suggests that there is model inadequacy and drug

dosages should be reduced. A follow-up experiment using a blocked three-level

fractional factorial design indicates that TNF-alpha has little effect and HSV-1

infection can be suppressed effectively by using a right combination of the other

five antiviral drugs. These observations have practical implications in the under-

standing of antiviral drug mechanism that can result in better design of antiviral

drug therapy.
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2.1 Introduction

Herpes simplex virus (HSV) is known to cause diseases of various severities, includ-

ing mucocutaneous diseases, neonatal herpes and herpes encephalitis (McGrath,

Anderson, Croxson, Powell, 1997). Recent reports also suggest HSV infection

could strongly increase risk for HIV infection (Zuckerman, Lucchetti, et al., 2007).

HSV has become one of the most common sexual transmitted diseases in U.S.A.,

U.K., French and other western societies (Malkin, Morand, Malvy et al., 2008;

Scoular, Norrie, Gillespie, et al., 2002; Xu, Sternber, et al., 2006). Furthermore,

HSV encephalitis is the most common form of fatal encephalitis in the U.S., occur-

ring about two per 100,000 persons yearly in the U.S. (Whitley, Lakeman, 1995).

Many therapeutic agents both pharmaceutical and chemical have been developed

and to treat HSV infections (Rong, Alexander, et al., 2003; Andersen, Jenssen, et

al., 2003). While these agents are generally effective, drug resistance and toxicity

concerns have been increasingly reported (Biswas, Sukla, Field, 2009; Gray, Wil-

son, 2010). To reduce possible drug resistant viral mutant and the cytotoxicity,

combinations of different antiviral drugs have been widely used (De Clercq, 2004).

For two drugs, effective drug combinations can be found using some nonlinear

modeling approaches (Chou, 2010; Straetemans, et al., 2005). Drug combinations

have often been reported to have higher efficacy and lower individual drug dosage.

Many challenges and complexities arise when trying to understand a system

with multiple drugs (e.g., three or more drugs) because the underlying biological

system is intrinsically complex and there are potential multiple drug interactions.

For example, to study six antiviral drugs, each with seven dosage levels, there

are 76 = 117, 649 different drug combinations to be tested. It is time and labor

consuming to test all possible drug combinations. Researchers have developed

a feedback system control to identify optimal drug combinations with five to 10

drugs at six or more dosage levels (Wong, et al., 2008; Tsutsui, et al., 2011,
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Ding, et al., 2012). The feedback system control technique combines two parts,

1) biological experiment and 2) search algorithm, into a feedback loop. It is a

rapid platform and usually identifies optimal drug combinations in less than 15

iterations by testing 1% or less of the total searching space. Yet, with such an

approach it is challenging to quantify drug contributions and drug interactions

(Al-Shyoukh, et al., 2011).

Here, we introduce an alternative approach by using fractional factorial designs

to replace the part of search algorithm in the feedback system control. Fractional

factorial designs are an effective and commonly used tool in scientific investiga-

tions and industrial applications. Many successful applications have been reported

in physical and chemical sciences, and engineering. Many textbooks on experi-

mental design, such as Box, Hunter, Hunter (2005); Box and Draper (2007); My-

ers, Montgomery, Anderson-Cook (2007); Wu and Hamada (2009); Montgomery

(2011); and Mee (2009), provide various real applications. However, fractional

factorial designs have yet to make an impact in bioscience, particularly in virol-

ogy study. A main advantage of fractional factorial designs is that they enable us

to build statistical models with a small number of runs. Using the models we can

not only identify important drugs and drug interactions, but also predict optimal

drug combinations.

In this paper, we present one of the first uses of fractional factorial designs

in the area of virology by sequentially using two- and three-level fractional fac-

torial designs to investigate a biological system with Herpes simplex virus type

1 (HSV-1) and six antiviral drugs: Interferon-alpha (A), Interferon-beta (B),

Interferon-gamma (C), Ribavirin (D), Acyclovir (E), and TNF-alpha (F ). The

experiments were conducted at the UCLA Micro Systems Laboratories. We show

that our approach successfully identifies that Ribavirin (D) has the largest ef-

fect on minimizing the virus load and TNF-alpha (F ) has the smallest effect on

minimizing the virus load.

7



The paper is organized as follows. In Section 2.2, we first provide a brief

overview of two-level factorial and fractional factorial designs, which are widely

used in early stages of experiments to screen important factors from a large num-

ber of potential factors. We then describe our initial antiviral drug experiment

using a two-level fractional factorial design and perform data analysis. We demon-

strate how this two-level experiment helps us understand the HSV-1 system and

identify potential effective drug combinations. Section 2.3 describes the follow-up

experiment using a three-level blocked fractional factorial design when there is

evidence of model inadequacy in the two-level experiment. In addition, we report

our analysis results and show how we determine the optimal drug levels using

contour plots. Section 2.4 contains conclusions.

2.2 Initial two-level experiment

2.2.1 Full factorial design

Factorial designs are very efficient for studying two or more factors. The effect

of a factor can be defined as the change in response produced by a change in the

level of the factor. This is referred to as the main effect. In some experiments, it

may be found that the difference in the response between levels of one factor is

not the same at all levels of the other factors. This is referred to as an interaction

effect between factors. Collectively, main effects and interaction effects are called

the factorial effects (Wu and Hamada, 2009). A full factorial design can estimate

all main effects and higher-order interactions.

Another way to define the concept of main effects and interaction effects for

two-level designs is using a regression model. Suppose we have a full factorial

design studying the six antiviral drugs: A, B, C, D, E, and F with two levels for

each drug. There are 26 = 64 treatments or level combinations. A common
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regression model for studying main effects and interactions is

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6

+β12x1x2 + · · · + β123x1x2x3 + · · · + β1234x1x2x3x4 + . . .

+β12345x1x2x3x4x5 + · · · + β123456x1x2x3x4x5x6 + �.

(2.1)

Here y is the response, the β’s are unknown parameters, x1, . . . , x6 represent drugs

A–F , and � is a random error term. The variables x1, . . . , x6 are coded as 1 and−1,

for the high and low levels for their respective factors. The interaction between x1

and x2 is denoted as x1x2, and the other interaction effects are similarly defined.

It is well known that the least squares estimates of the β’s in the model (2.1) are

half of the corresponding factorial effects (Wu and Hamada, 2009).

Using a full factorial design with 64 runs for all six drugs, we can estimate 6

main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor

interactions, 5 five-factor interactions, and 1 six-factor interaction. Note that out

of the 63 (26 − 1) degrees of freedom in the 64-run (26) design, 42 are used for

estimating three-factor or higher interactions. However, in many experiments, we

often find that three-factor and higher order interactions are usually not important

(Wu and Hamada, 2009). This means that we are using over half of the degrees of

freedom to estimate effects that are potentially not significant. Therefore, using

a full factorial design to study six drugs in 64 runs is quite wasteful. A more

practical and economical approach is to use a fractional factorial design that

allows the estimation of lower-order effects.

2.2.2 Fractional factorial design

For economical reasons, we study six drugs in the antiviral drug experiment,

introduced in Section 2.2, in 26−1 = 32 runs, a half fraction of the full 26 design.

To construct such a design, we write down all possible 25 level combinations for
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drugs A, B, C, D, and E, and then set the level of drug F as the product of the

levels of drugs A, B, C, D, and E, that is, F = ABCDE. Note that the low and

high levels are coded as −1 and 1. The price we pay for using a half-fraction design

is that the main effect of F is aliased with the ABCDE interaction because they

are identical in the model. Additionally, there is also aliasing among other effects.

Indeed, each main effect is aliased with a fifth-order interaction: A = BCDEF ,

B = ACDEF , C = ABDEF , D = ABCEF , and E = ABCDF . Each two-

factor interaction is aliased with a fourth-order interaction, i.e., AB = CDEF ,

AC = BDEF , . . . , EF = ABCD, and each three-factor interaction is aliased

with a third-order interaction, i.e., ABC = DEF, ABD = CEF, . . . , AEF =

BCD. To disentangle these effects, a common and reasonable assumption is that

higher-order interactions are assumed to be negligible because they are less likely

to be important than lower-order interactions (Wu and Hamada, 2009). This

means that for this fractional factorial design we can estimate all main effects and

all two-factor interactions assuming that fourth-order and higher interactions are

negligible, which is quite reasonable in practice. Furthermore, every three-factor

interaction is aliased with another three-factor interaction and so we can only

estimate their sum.

Effect aliasing is a consequence of using a fractional factorial design. A related

concept is resolution, which captures the amount of aliasing. This half-fraction

design has resolution VI, which allows the estimation of all main effects and two-

factor interactions under the assumption that fourth-order and higher interactions

are negligible. In general, the higher the resolution of a fractional factorial design,

the less restrictive the assumption is regarding which interactions are negligible

to obtain a unique interpretation of the data. See Wu and Hamada (Wu and

Hamada, 2009) for more details on aliasing and resolution for fractional factorial

designs.

Table 2.1 gives the design and data for the initial experiment, where the two
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levels are coded as −1 and 1. Each run represents a combinatorial drug treatment

and the outcome, called readout, is the percentage of virus infected cells after the

treatment. The first 32 runs correspond to the half fraction design obtained by

setting F = ABCDE. Following the typical practice for two-level designs, we

add three replicated runs (the last three runs) at the center (0). The addition of

replicated center points allows an independent estimate of error to be obtained

without affecting the estimates of the factorial effects. Generally, three to five

center runs are recommended (Montgomery, 2011). Using these center points, we

can obtain an estimate of the variability and conduct a lack-of-fit test.

2.2.3 Antiviral drug experiments

We now provide technical details of the antiviral drug experiment, where NIH

3T3 cells were chosen as host cells. Cells were initially cultured on 15mm plates

covered with 25mL culture medium. The culture medium was made from DMEM

in presence of 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin

(Pen-Strep). The 15mm plates were maintained in 37oC incubator filled with 5%

CO2. Cultures were propagated at 107 cells/plate every 24 hours for two times

before use in experiment.

Cell infection was carried out in 24-well plates. Each well contained 2 × 105

cells in 1mL culture medium. Cells were allowed to grow for four hours before

viral infection and drug treatments occurred. Drug combinations were added

simultaneously with HSV-1 to the host cells in 24-well plates. The plates were

incubated at 37oC incubator with 5% CO2 for 16 hours. The virus was engineered

to carry the green fluorescent protein (GFP) gene. Thus, cells infected with the

virus would be GFP positive. GFP served as a biomarker to assess the percentage

of infected cells. The readout was defined as the percentage of GFP positive cells

after combinatorial drug treatments. The readout was measured through a flow

cytometer (BD FACSCanto II, BD Biosciences).
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Table 2.1: Design and data for the initial two-level experiment: A 26−1 design

Factor
Run A B C D E F readout

1 −1 −1 −1 −1 −1 −1 31.6
2 −1 −1 −1 −1 1 1 32.6
3 −1 −1 −1 1 −1 1 13.4
4 −1 −1 −1 1 1 −1 13.2
5 −1 −1 1 −1 −1 1 27.5
6 −1 −1 1 −1 1 −1 32.5
7 −1 −1 1 1 −1 −1 11.6
8 −1 −1 1 1 1 1 20.8
9 −1 1 −1 −1 −1 1 37.2

10 −1 1 −1 −1 1 −1 51.6
11 −1 1 −1 1 −1 −1 14.1
12 −1 1 −1 1 1 1 19.9
13 −1 1 1 −1 −1 −1 27.3
14 −1 1 1 −1 1 1 40.2
15 −1 1 1 1 −1 1 19.3
16 −1 1 1 1 1 −1 23.3
17 1 −1 −1 −1 −1 1 31.2
18 1 −1 −1 −1 1 −1 32.6
19 1 −1 −1 1 −1 −1 14.2
20 1 −1 −1 1 1 1 22.4
21 1 −1 1 −1 −1 −1 32.7
22 1 −1 1 −1 1 1 41.0
23 1 −1 1 1 −1 1 20.1
24 1 −1 1 1 1 −1 18.7
25 1 1 −1 −1 −1 −1 29.6
26 1 1 −1 −1 1 1 42.3
27 1 1 −1 1 −1 1 18.5
28 1 1 −1 1 1 −1 20.0
29 1 1 1 −1 −1 1 30.9
30 1 1 1 −1 1 −1 34.3
31 1 1 1 1 −1 −1 19.4
32 1 1 1 1 1 1 23.4
33 0 0 0 0 0 0 16.8
34 0 0 0 0 0 0 17.5
35 0 0 0 0 0 0 16.2
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Table 2.2: Factors and levels for the initial two-level antiviral drug experiment

Levels
Factor Low (−1) High (+1)
A= Interferon-alpha 3.12 ng/mL 50 ng/mL
B= Interferon-beta 3.12 ng/mL 50 ng/mL
C= Interferon-gamma 3.12 ng/mL 50 ng/mL
D= Ribavirin 1560 ng/mL 2.5e4 ng/mL
E= Acyclovir 31 ng/mL 5e3 ng/mL
F= TNF-alpha 0.31 ng/mL 5 ng/mL

Table 2.2 shows the actual dosage levels for the six drugs. Before this study,

we performed single drug pilot studies and tested a wide range of dosages for each

drug in order to find the “minimum response dosage”, at which the drug started

to show some efficacy, and the “plateau dosage”, at which the drug’s efficacy did

not increase when higher dosage was used. The pilot study suggested that the

minimum response dosage was about 16 times diluted from the plateau dosage.

In this study, we chose the plateau dosage as the high level (coded as 1) and the

minimum response dosage as the low level (coded as −1). A center level (coded

as 0) was added for the additional runs at the center of the factorial design. The

center level is four times diluted from the high level and the low level is four time

diluted from the center level.

2.2.4 Analysis and results

As explained in Section 2.2.2, our design can estimate all six main effects, all 15

two-factor interactions, and 10 pairs of aliased three-factor interactions, assuming

that four-factor and higher interactions are negligible. In the analysis, we use

y = log(readout), i.e., log base 10 of the viral infection load, as the response

because the distribution of the viral infections are positively skewed. The log

transformation is also confirmed with the Box-Cox method. Table 2.3 presents

the least squares estimates, the sum of squares, and the percentage of total sum

of squares. The sum of squares of an effect here is simply 32 times the square of
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its estimate.

Table 2.3 suggests that the effects of drugs D and E are the largest. The linear

effect of drug D is the most significant with an estimate of three times the estimate

of the next most significant drug, E; showing that drug D is very significant and

important relative to the other drugs. Together, drugs D and E account for 75.3%

of the total sum of squares in the data. Overall, the six main effects contribute

81.5% of the sum of squares, the fifteen two-factor interactions contribute 6.8%,

the ten pairs of three-factor interactions contribute 3.2%, and the residuals account

for 8.3%. In this antiviral experiment the main effects dominate the system, and

drug D alone accounts for 68.0% of the total sum of squares within the system.

Such finding is similar to many engineering experiments where fractional factorial

designs are successfully used. This observation gives us confidence that fractional

factorial designs can be useful for studying cellular system under multiple drug

stimulations.

We observe that all of the estimates for drugs A-F have positive coefficients

except for drug D. The practical implication is that in our experiment the min-

imum viral infection can be achieved when we set the dugs A, B, C, E, and F at

the low level and D at the high level. Accordingly we decrease the dosage for the

drugs A, B, C, E, and F and increase the dosage for D. However, while drug D

is an effective antiviral drug, it often induces an unacceptable levels of toxic side

effects for the subjects. To screen for less toxic drug combinations we reduce all

of the drug dosages in a follow-up experiment.

We use the data from the three independent center runs to test for lack-of-fit.

The lack-of-fit test is also known as a check for curvature (Wu and Hamada, 2009;

Montgomery, 2011) for a two-level factorial design. The residuals sum of squares

in Table 2.3 can be decomposed into two parts: lack-of-fit and pure error, with

one and two degrees of freedom, respectively. The lack-of-fit test presented in

Table 2.4 shows that lack-of-fit is very significant with an F value of 272.46 and
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Table 2.3: Estimates for the initial two-level experiment

Effect Estimates Sum Sq. % Sum Sq.
A 0.017 0.009 1
B 0.03 0.029 3.1
C 0.008 0.002 0.2
D -0.141 0.636 68
E 0.046 0.068 7.3
F 0.024 0.018 1.9
AB -0.022 0.015 1.6
AC 0.005 0.001 0.1
AD 0.019 0.011 1.2
AE -0.009 0.002 0.3
AF 0.005 0.001 0.1
BC -0.009 0.003 0.3
BD 0.008 0.002 0.2
BE 0.008 0.002 0.2
BF -0.008 0.002 0.2
CD 0.024 0.018 1.9
CE 0.002 0 0
CF 0.003 0 0
DE 0.001 0 0
DF 0.014 0.006 0.7
EF -0.001 0 0
ABC+DEF -0.002 0 0
ABD+CEF 0.002 0 0
ABE+CDF -0.006 0.001 0.1
ABF+CDE -0.001 0 0
ACD+BEF -0.017 0.009 0.9
ACE+BDF -0.015 0.007 0.8
ACF+BDE -0.012 0.004 0.5
ADE+BCF -0.004 0 0
ADF+BCE -0.009 0.002 0.2
AEF+BCD 0.014 0.007 0.7
Residuals - 0.077 8.3
Total - 0.935 100
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Table 2.4: Lack-of-fit Test

Source DF Sum Sq. Mean Sq. F -statistic p-value
Lack-of-fit 1 0.07663 0.07663 272.46 0.0037
Pure error 2 0.00056 0.00028
Residuals 3 0.07719

a p-value of 0.0037. This implies that the relationship between the response and

the drugs is nonlinear; therefore, we need additional levels and runs to model the

nonlinear relationship.

Summarizing the results, lower drug dosages for all drugs are desirable in

order to reduce potential drug toxicity and minimize viral infection. In addition,

we need to add a third level for each drug to model the nonlinear relationship.

This naturally leads to a three-level design.

2.3 Follow-up three-level experiment

2.3.1 Experimental design

Two-level designs are commonly used to screen factors in the initial stage given

a small number of runs. Three-level designs are widely used in practice to study

the nonlinear relationship for quantitative factors. In the follow-up experiment,

we use three levels for each drug. Table 2.5 shows the drug dosage levels for the

follow-up three-level experiment, where the three levels are denoted as low (0),

intermediate (1), and high (2). The highest concentration level for the follow-up

experiment is the middle concentration level for the initial two-level experiment.

Similar to the two-level experiment, the intermediate level is 16 times diluted from

the high level and the low level is to be no drug.

One possible design to consider for the follow-up experiment is a resolution VI,

36−1 design, which has 243 runs and enables the estimation of all main effects and

two-factor interactions. However, this design is not so feasible in practice because
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Table 2.5: Factors and levels for the follow-up three-level antiviral drug experiment

Levels
Factor Low (0) Mid (1) High (2)
A= Interferon-alpha 0 0.78 ng/mL 12.5 ng/mL
B= Interferon-beta 0 0.78 ng/mL 12.5 ng/mL
C= Interferon-gamma 0 0.78 ng/mL 12.5 ng/mL
D= Ribavirin 0 390 ng/mL 6250 ng/mL
E= Acyclovir 0 80 ng/mL 1250 ng/mL
F= TNF-alpha 0 0.08 ng/mL 1.25 ng/mL

of the large number of runs required. Instead, we employ a 81-run design, a one-

ninth fraction of the 36 design, 36−2 design. First, the design is constructed by

choosing the column for factor E to be equal to column A + column B + column

C + column D (mod 3); that is, every entry in column E is the sum of the first

four levels of the factors modulus 3. Here modulus 3 means that any multiple of

3 equals zero. Second, we choose F to be equal to column A + 2(column B) +

column C (mod 3). The conventional notation for such a design is E = ABCD

and F = AB2C, which are called the generators of this particular three-level

design. If x1, . . . , x6 represents the six factors, then E = ABCD is equivalent to

x5 = x1 +x2 +x3 +x4 (mod 3), and F = AB2C is equivalent to x6 = x1 +2x2 +x3

(mod 3). This design has resolution IV; therefore, all main effects are not aliased

with any two-factor interactions and some two-factor interactions are aliased with

other two-factor interactions. Moreover, this 81-run design has the ability to

estimate each of the main effects as well as some of the two-factor interactions.

However, there are practical issues with this design. The antiviral drug exper-

iments require cell culture preparation and adding virus and drug combinations

manually. It is also not practical to perform the 81-run design using a single

batch of cell culture. Experiences show that there are substantial batch to batch

variation from the nature of cells. These systematic sources of variation are in-

trinsic and are independent of the researcher or the equipment. If such an issue

is not addressed carefully, the precision of the experiment can be reduced greatly
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by these systematic sources of variation. Blocking is a useful way to reduce the

influence of these systematic sources of variation by arranging homogeneous ex-

perimental runs into groups. There are many recent studies on the optimal choices

of blocking schemes for fractional factorial designs; see, among others, Sun, Wu,

and Chen (1997); Sitter, Chen, Feder (1997); Chen and Cheng (1999); Cheng and

Wu (2002); Xu (2006); Xu and Lau (2006); and Xu and Mee (2010). However,

real applications of blocked fractional factorial designs is limited in the biomedical

science area. Considering the experimental capacity and time, we divide the 81

runs in three blocks, each of size 27. Each block uses one batch of cell culture

and the runs within a block are randomized. In particular, we arrange the 36−2

design into 3 blocks with the block generator, block = AC2D, or equivalently

block= x1 + 2x3 + x4 (mod 3), following Xu and Lau (2006). Because the block

effect and the three-factor interaction have the same estimate, the block effect is

said to be confounded with the three-factor interaction effect. With this arrange-

ment the main effects and two-factor interactions are not confounded with the

block effects and therefore they can be estimated efficiently. Table 2.6 gives the

design and data of the experiment.

2.3.2 Analysis

To analyze the data, we fit a second-order model with the addition of the block

effects:

y = log(readout) = β0 +
6�

i=1

βixi +
6�

i=1

βiix
2
i

+
6�

1=i<j

βijxixj + γ1block1 + γ2block2 + �, (2.2)

where βi represents the linear effect of xi, βii represents the quadratic effect of

xi, and βij represents the bilinear (i.e., linear-by-linear) interaction between xi
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and xj. For convenience, in the analysis, the three dosage levels (0, 1, and 2) are

encoded as −1, 0, 1, respectively. The variables, block1 and block2, are indicators

of blocks 1 and 2, respectively, with block 0 as a reference. As explained earlier,

the blocking variables are not correlated with other variables in model (3.1).

Table 2.7 column (a) gives the estimates of the model. The model fits the

data well with an R2 value of 91.4%. Table 2.7(a) shows that the linear effects

D and E, the quadratic effect D2, and the interaction AD are significant at the

0.1% level; the linear effect B is significant at the 5% level. As expected, both

blocking variables are significant at the 1% level, indicating that the batch-to-

batch variation is large. Residual analysis indicates that the usual assumptions

on the error are reasonable. However, run 80 turns out to be an outlier. This

is obvious from inspecting Table 2.6. When factor D is at the high level the

readout is usually small, except run 80. We remove this outlier and refit the

model. Column (b) of Table 2.7 gives the results after the removal of the outlier.

The new model has a slightly higher R2 value of 94.5% and the significant effects

identified earlier remain significant. We note that the linear effect B becomes

more significant and the linear effect C becomes significant at the 5% significance

level. We further perform variable selection via stepwise regression and confirm

that there are no other significant effects. The final model at the 1% significance

level is

log(readout) = 0.839− 0.036A− 0.054B − 0.045C − 0.508D − 0.119E

+0.168D2 − 0.327block1− 0.174block2 + 0.079AD,
(2.3)

with R2 of 92%. The linear effect A is not significant, but we keep the term in

the model because the interaction AD is significant.
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2.3.3 Results

The data analysis identifies that four drugs, Interferon-beta (B), Interferon-gamma

(C), Ribavirin (D), Acyclovir (E), have a significant linear effect on HSV-1. The

nonlinear (quadratic) effect of Ribavirin also has a very significant effect on HSV-

1. We also observe a significant interaction between Interferon-alpha (A) and

Ribavirin (D). We do not see any significance for the drug TNF-alpha (F ), and

it is considered inert in the minimization of the viral infection. The negative co-

efficients associated with drugs B, C, and E imply that these particular drugs

have the potential to lower the virus. Therefore, to achieve the minimum viral

infection we set drugs B, C, and E at the high level.

Since the interaction effect between A and D is significant we use a contour

plot to identify potential optimal drug dosage levels. Contour plots are used in full

and fractional factorial experimental designs and analyses to determine settings

that will maximize, or minimize, the response of interest. The x and y axes of the

plot represent the values of the first and second factors. We examine the contour

plot of A and D for the predicted percentage of viral infection from the final fitted

model (2.3). Figure 2.1 shows the contour plot of the predicted readout in terms

of A and D, while drugs B, C, and E are held at the high level and block1 =

block2 = 0, see Table 2.5. This contour plot suggests the minimum viral infection

is achieved when A is set at the low level, no drug, and D is set at the high

level. If multiple two-factor interactions are considered important, then one can

generate a series of contour plots, each of which is drawn for two of these factors.

Therefore, the optimal drug combinations to minimize the viral infection for the

final model (2.3) are: B, C,D, and E at the high level and A at the low level.

The predicted response for these recommendations comes out to be 1.72%.

Ribavirin (D) is an effective antiviral drug; however, it can also induce toxic

side effects. Hence, it is desirable to reduce the dosage level of Ribavirin to the
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Table 2.7: Estimates for the follow-up three-level experiment

(a) (b)
(Intercept) 0.761*** 0.761***

A -0.018 -0.037
B -0.054* -0.054**
C -0.027 -0.046*
D -0.491*** -0.509***
E -0.119*** -0.119***
F -0.007 0.011
A2 0.046 0.028
B2 -0.026 0.011
C2 -0.008 -0.026
D2 0.185*** 0.167***
E2 0.018 0.054
F 2 0.069 0.051
AB 0.028 0.01
AC 0.047 0.005
AD 0.105*** 0.078**
AE 0.036 0.036
AF -0.05 -0.013
BC 0.012 -0.006
BD -0.02 -0.02
BE 0.041 0.023
BF -0.052 -0.025
CD 0.055 0.028
CE -0.029 -0.029
CF -0.019 0.018
DE 0.021 0.007
DF 0.000 0.036
EF -0.038 -0.038

block1 -0.327*** -0.327***
block2 -0.139** -0.176***

σ̂ 0.177 0.142
R2 0.914 0.945

NOTE: (a) With all 81 runs (b) without run 80. Significance levels are coded as 0
(***) 0.001 (**) 0.01 (*) 0.05.
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Figure 2.1: Contour plot of predicted readout for A and D
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lowest possible setting in order to lower the toxicity. Figure 2.2 shows the predicted

readout for Ribavirin using model (2.3), with the settings recommended for the

other drugs above. Notice that the shape of the predicted response for Ribavirin

is convex because the coefficient of D2 is positive in model (2.3). The convexity

has an important application, that is, reducing the Ribavirin dosage will not affect

its efficacy substantially. For example, if we lower the drug dosage of Ribavirin

from the high dosage level of 6,250 ng/mL to the middle dosage level, 390 ng/mL,

the predicted response only changes from 1.72% to 3.84%, an absolute difference

of approximately 2%. The relative change in the predicted response from the

high dosage level to the middle dosage level, based on the percentage of viral

infection with no drug treatment 49.1%, run 1 in Table 2.6, is approximately

4.3%. Therefore, we can potentially decrease the toxicity by reducing the dosage

of Ribavirin by 16 times with only a relative change of 4% in the viral infection.

This enables us to achieve the goal of finding drug combinations with higher

efficacy and lower toxicity.
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Figure 2.2: Plot of predicted readout for D
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2.4 Concluding remarks

We provide a new sequential application of fractional factorial designs to inves-

tigate the complicated underlying biological system of HSV-1 and six antiviral

drugs in virology. In the present study, we apply an initial two-level design to

study six drugs at two dosage levels. The need for the quadratic model comes

about upon testing the assumption of linearity in the two-level experiment. To

investigate the possibility of insignificant drugs, and the need to change levels of

the overall drug dosage levels, we use a three-level fractional factorial design with

blocks in the follow-up experiment. We find that TNF-alpha has little effect and

HSV-1 infection can be suppressed effectively by using a right combination of the

other five antiviral drugs.

There is a growing demand for identifying drug combinations for a large num-

ber of drugs, say 10–50 drugs. We are currently working on a colon cancer project

with 11 FDA approved drugs up to 10 dosage levels each. Our aim is to identify
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effective and low-toxic combinations of these FDA approved drugs to treat colon

cancer. To accommodate the large number of drugs and the large number of

dosage levels, fractional factorial designs with large run sizes (128 runs or more)

could be a viable alternative to high throughput methods. Efficient fractional

factorial designs with 128–4,096 runs have been recently constructed, see: Xu

(2005); Xu and Wong (2007); Xu (2009); and Ryan, Bulutoglu (2010), and could

be potentially useful for our project. It is also possible that we need to construct

new fractional factorial designs or develop new design strategies to meet our goal.

A full exploration of the application of fractional factorial designs to study drug

combinations for a large number of drugs is left as future research.
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CHAPTER 3

Combining Two-Level and Three-Level
Orthogonal Arrays for Factor Screening and

Response Surface Exploration

Experimental design and analysis is an effective and commonly used tool in scien-

tific investigations and industrial applications. Orthogonal arrays, such as facto-

rial and fractional factorial designs, are popular experimental plans for identifying

important factors. Motivated by an antiviral drug experiment, we introduce a new

class of composite designs based on a two-level factorial design and a three-level

orthogonal array. These designs have many desirable features and are effective for

factor screening and response surface modeling. Some advantages are that they

can use resolution IV designs in the screening stage, they can perform in-depth

analyses, and they can be used in either a single or a sequential experiment. We

study the construction method and compare the new composite designs with ex-

isting ones. We illustrate the methodology with data from an experiment that

studies the effects of five antiviral drugs on the Herpes simplex virus type 1.

3.1 Introduction

In many experiments the researcher is faced with a number of factors that affect

the response of interest. An appealing technique is the response surface methodol-

ogy (Box and Wilson (1951)) that seeks to relate the response variable to several

predictors through experimentation, modeling, data analysis, and optimization

(Wu and Hamada (2009)). The initial stage of factor screening identifies impor-

tant factors from a larger number of potential factors, typically using a two-level
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factorial or fractional factorial design, possibly with some center points. The sec-

ond stage of sequential experimentation determines the optimum region, and the

final stage fits a polynomial model in this region. The last stage often uses some

second-order designs that allow the estimation of a second-order model. Many

second-order designs have been proposed in the literature, the most popular are

the central composite designs (CCD) introduced by Box and Wilson (1951) and

variations such as the small composite designs of Draper and Lin (1990). Other

second-order designs include those of Box and Behnken (1960), augmented pairs

designs (Morris (2000)), subset designs (Gilmour (2006)), and more. For a com-

prehensive account of response surface methodology, see Box and Draper (2007),

Khuri and Cornell (1996), and Myers, Montgomery, and Anderson-Cook (2009).

Progress in science and technology often calls for innovation in methodological

and theoretical development of experimental design. Since the successful demon-

stration of HIV treatment with drug combinations, combinatory drugs have been

broadly applied to various aspects of disease treatment (De Clercq (2004)). The

advantage of combinatory drugs is that they often have higher efficacy and lower

drug dosages than individual drugs. However, it is challenging to identify poten-

tial drug combinations by trial and error because of the large number of possible

combinations and the complexity of the underlying biological system. Researchers

at UCLA Micro Systems Laboratories investigated a system with Herpes simplex

virus type 1 (HSV-1) and six antiviral drugs: IFN-alpha (A), IFN-beta (B), IFN-

gamma (C), Ribavirin (D), Acyclovir (E), and TNF-alpha (F ). They chose seven

dosage levels for each drug, which led to 76 = 117, 649 drug combinations. They

used a feedback system control method to search for optimal drug combinations

(Ding et al. (2012a)). The search was stochastic and performed in iterations.

Each iteration tested 32 drug combinations and took up to 4 days due to the

preparation of cell culture and viral infection. Each virus and drug combination

was performed in a test tube, the experimental unit. They conducted 21 iterations
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and found that the drug effects were nonlinear and non-additive and that there

were complex drug interactions; however, they could not pinpoint drug interac-

tions. One of the authors was consulted in order to understand the HSV-1 system

and the interactions. Some standard designs such as fractional factorial designs

and central composite designs were used for this purpose. After a few iterations,

TNF-alpha (F ) was found not effective in treating HSV-1 and dropped (Jaynes

et al. (2013)). With consideration of experimental cost, time, and statistical ef-

ficiency, one of us constructed a composite design consisting of a 16-run factorial

design with 2 levels and an 18-run orthogonal array with 3 levels. The resulting

composite design had 3 levels and 34 runs so that the entire experiment could

be conducted in one iteration. Two researchers conducted the experiment inde-

pendently with different random orders, yielding two replicates. Table 3.1 shows

the design and data of the experiment, where the run order was randomized. For

each drug −1, 0, and 1 correspond to no drug, intermediate drug dosage, and

high drug dosage, respectively. The observed data, readout, were the percentage

of infected cells after the combination drug treatment. Ding et al. (2012a and

2012b) and Jaynes et al. (2013) give details of the experimental procedure and

other technical issues.

Motivated by this, we introduce a new class of composite designs that combine

a two-level factorial or fractional factorial design and a three-level orthogonal ar-

ray, and refer to them as orthogonal-array composite designs (OACD). An orthog-

onal array of N runs, k columns, s levels, and strength t, denoted by OA(N, sk, t),

is an N × k matrix in which all st level combinations appear equally often in ev-

ery N × t submatrix. The strength t is often omitted when t = 2. Orthogonal

arrays, including factorial or fractional factorial designs, are used in various appli-

cations. Hedayat, Sloane, and Stufken (1999) has a full account of the theory and

application of orthogonal arrays. The current research is inspired by the recent

developments in the study of nonregular fractional factorial designs; see Xu, Phoa,
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Table 3.1: Design and data of the antiviral drug experiment

Factor Readout
Run A B C D E Replicate 1 Replicate 2

1 1 −1 −1 −1 −1 69.8 72.0
2 −1 1 −1 −1 −1 66.4 67.4
3 −1 −1 1 −1 −1 83.0 68.6
4 −1 −1 −1 1 −1 16.2 23.4
5 −1 −1 −1 −1 1 46.1 33.6
6 1 1 1 −1 −1 68.6 65.5
7 1 1 −1 1 −1 6.8 7.2
8 1 1 −1 −1 1 15.6 19.1
9 1 −1 1 1 −1 11.1 7.0

10 1 −1 1 −1 1 19.8 20.3
11 1 −1 −1 1 1 3.7 4.7
12 −1 1 1 1 −1 5.8 3.9
13 −1 1 −1 1 1 2.6 4.0
14 −1 1 1 −1 1 42.2 23.2
15 −1 −1 1 1 1 1.8 5.2
16 1 1 1 1 1 3.1 3.4
17 −1 −1 −1 −1 −1 78.6 81.9
18 0 0 0 0 0 13.3 16.7
19 1 1 1 1 1 3.4 3.8
20 −1 −1 0 0 1 21.4 25.2
21 0 0 1 1 −1 8.6 4.4
22 1 1 −1 −1 0 18.0 27.3
23 −1 0 −1 1 0 7.3 2.4
24 0 1 0 −1 1 17.9 23.7
25 1 −1 1 0 −1 52.9 54.3
26 −1 1 1 0 0 13.2 8.8
27 0 −1 −1 1 1 2.1 4.5
28 1 0 0 −1 −1 73.4 73.9
29 −1 0 1 −1 1 19.6 14.6
30 0 1 −1 0 −1 59.1 41.7
31 1 −1 0 1 0 1.4 2.6
32 −1 1 0 1 −1 7.3 4.8
33 0 −1 1 −1 0 22.3 24.0
34 1 0 −1 0 1 14.1 18.3
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and Wong (2009) for a comprehensive review.

There are numerous applications using either 2-level factorial designs or 3-level

orthogonal arrays; see Box, Hunter and Hunter (2005), Dean and Voss (1999), Mee

(2009), Montgomery (2009), and Wu and Hamada (2009) for examples. However,

there are few published applications using both a 2-level factorial design and a

3-level orthogonal array in a single experiment. The goal here is to introduce the

idea of combining two- and three-level designs and to provoke future research in

the area. In Section 3.2 we formally introduce the concept of OACDs and explore

their properties. Advantages include the ability of using resolution IV designs for

factor screening, the ability of in-depth analyses, and the capability for sequential

experimentation. In Section 3.3 we study the construction of OACDs and present

a list of designs with 3 to 10 factors. In Section 3.4 we compare OACDs with other

composite designs in terms of such statistical properties as estimation efficiency

and projections. In Section 3.5 we consider blocking an OACD in a sequential

experiment and give conditions when an OACD can be orthogonally blocked. In

Section 3.6 we analyze the data from the antiviral drug experiments: fit three

models using different parts of the data and compare the results. Section 3.7

gives a summary.

3.2 Orthogonal-array composite designs

We first give a general definition of composite designs. For k factors, denoted by

x1, . . ., xk, a composite design consists of: (i) nc cube points (x1, . . . , xk) with

all xi = −1 or 1; (ii) na additional points with all xi = −α, 0 or α; (iii) n0

center points with all xi = 0. Note that the cube points have 2 levels and the

additional points have 3 levels. A composite design has a total of nc + na + n0

points and has three or five different levels depending on whether α = 1 or not.

Two-level factorial or fractional factorial designs are often used as the cube points

and referred to as the factorial portion. Box and Wilson (1951) and Box and
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Hunter (1957) originally proposed to use a full factorial or a fractional factorial

design of resolution V in a central composite design (CCD). This can lead to a

large number of runs when k > 5. To reduce the run sizes, Draper and Lin (1990)

proposed small composite designs (SCD) by using Plackett-Burman designs as the

factorial portion. In both CCD and SCD, na = 2k axial points (with one of xi = α

or −α and all other xi = 0) are chosen as the additional points. Morris (2000)

introduced the augmented pairs design (APD) by adding one point for each pair

of the cube points. An APD has na = nc(nc − 1)/2 additional points.

We propose to use runs of a 3-level orthogonal array as the additional points

and refer to the resulting design as an OACD: an OACD is a composite design

such that its na additional points form a 3-level orthogonal array. The design in

Table 3.1 is a 34-run OACD with nc = 16, na = 18, n0 = 0 and α = 1. The factorial

portion (the first 16 runs) is a 2-level fractional factorial design with resolution V

defined by I = ABCDE; the 18 additional runs form a 3-level orthogonal array

with a center point (run 18) and no extra center point. We can construct many

OACDs with different run sizes by combining readily available 2-level factorial

designs and 3-level orthogonal arrays.

Composite designs are often used to fit a second-order model. For k quantita-

tive factors, the second-order model is

y = β0 +
k�

i=1

βixi +
k�

i=1

βiix
2
i +

k−1�

i=1

k�

j=i+1

βijxixj + �, (3.1)

where β0, βi, βii and βij are the intercept, linear, quadratic and bilinear (or inter-

action) terms, respectively, and � ∼ N(0, σ2) is the error term. For the quadratic

terms βii to be estimatable, all factors must have at least 3 levels. A design is

called a second-order design if it allows all parameters in (3.1) to be estimated.

The 34-run OACD given in Table 3.1 is a second-order design: we can use the

2-level factorial portion to estimate the linear effects and two-factor interactions

among the factors, and use the 3-level orthogonal array to estimate linear and
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quadratic effects.

The OACD differs from the CCD or SCD in the way they choose the addi-

tional points. The CCD or SCD employs a one-factor-at-a-time approach for the

additional points because each axial point has only one nonzero component. As a

consequence, the axial points provide no information on bilinear (or interaction)

terms; resolution IV designs cannot be used as the two-level portion. For this

reason, the SCD must use a resolution III design as the factorial portion even if a

resolution IV design with the same size exists. In contrast, the additional points

in the OACD study the effects in a factorial fashion and provide new information

on bilinear terms as well as linear and quadratic terms. One immediate benefit is

that the OACD can use resolution IV designs as the two-level portion, important

in a sequential experiment because the OACD can use a better design than the

SCD in the initial stage. Thus, to study 6 factors in 16 runs, the OACD ap-

proach can use a resolution IV design while the SCD approach has to start with

an inferior resolution III design even though a resolution IV design with the same

size exists. A resolution IV design enables all linear effects to be estimated apart

from any bilinear effects, whereas in a resolution III design some linear effects are

fully aliased with bilinear effects. Resolution IV designs are generally preferred to

resolution III designs of the same size in the initial screening stage. In Section 3.4

we further demonstrate that using resolution IV designs instead of resolution III

designs as the factorial portion leads to more efficient estimation, particularly the

estimation of the linear effects.

Another reason for using an orthogonal array as the additional points is data

analysis. The analysis of the initial screening stage can suggest some useful,

but not conclusive, evidence on the significance of the effects. Even with the

added runs the results may not be conclusive due to possible mistakes or errors

in the experiment or variation of factors not used in the experiment. The OACD

allows one to perform multiple analyses with different parts of the data for cross
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validation. One can perform separate analyses for the two-level factorial portion

and the three-level orthogonal array (if both have at least 8 runs). For the two-

level portion, one can use standard analysis techniques and fit a model with linear

and bilinear terms. For the three-level orthogonal array, one can fit a model with

linear and quadratic effects. One can further use all of the data and fit a second-

order or other model to estimate linear, bilinear and quadratic terms. Then each

of the linear effects is estimated three times and each of the bilinear and quadratic

effects is estimated twice, and one can check the consistency of the estimations

from the three models. If the data are reliable and the models are appropriate,

we expect the estimates to be consistent across different models; a discrepancy

indicates possible problems with the models or potential outliers. The OACD

thus has the build-in ability to perform some cross validation on the data quality

and analysis results. We illustrate this in Section 3.6 with the antiviral drug

experiment.

Like the CCD, the OACD can be used in a single experiment or in a sequential

experiment. An OACD can be used in two ways in a sequential experiment. We

can use the 2-level factorial portion in the first stage for factor screening and

add the 3-level orthogonal array in the last stage for response surface modeling.

Alternatively, we can use the 3-level orthogonal array for screening linear and

quadratic effects in the initial stage and add the two-level portion for exploring

the bilinear effects in the last stage. This feature is particularly appealing in

practice as many industrial and engineering experiments use 3-level orthogonal

arrays under the name of the Taguchi method. For example, we can use the

popular OA(18, 37) to study 5 or 6 factors in the screening experiment and use a

8 or 16-run two-level factorial in a follow-up experiment. Cheng and Wu (2001)

and Xu, Cheng, and Wu (2004) previously studied methods of using a single 3-

level design for both factor screening and response surface exploration. Their

designs are not intended for sequential experiments.
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3.3 Construction of the OACD

To construct an OACD, we need to select a 2-level design and a 3-level orthogonal

array. In many cases, several 2-level and 3-level designs are available and the

choice of individual designs is important. A general guideline is that we use good

or optimal 2-level and 3-level designs, then properly align their columns so that

the resulting OACD has good or optimal properties with respect to some criterion

of interest.

For the 2-level design, we can choose a 2k full factorial (if k ≤ 4) or a regular

2k−p fractional factorial design. When choosing a regular fraction, we recommend

a minimum aberration design (which always has maximum resolution). Wu and

Hamada (2009) gave many minimum aberration designs, up to 128 runs. To have

a smaller design, we can use Plackett-Burman designs as the factorial portion,

see Draper and Lin (1990). We recommend the generalized minimum aberration

criterion (Tang and Deng (1999); Xu and Wu (2001)) to choose columns among

Plackett-Burman designs. The generalized minimum aberration criterion is an

extension of the minimum aberration criterion and can screen out poor designs

effectively. Generalized minimum aberration designs minimize the overall contam-

ination of nonnegligible interactions on the estimation of main effects (Tang and

Deng (1999); Xu and Wu (2001)) and tend to be model-robust under traditional

model-dependent efficiency criteria (Cheng, Deng and Tang (2002)).

For the 3-level portion, one can pick an orthogonal array that accommodates at

least k 3-level factors and choose the minimum aberration or generalized minimum

aberration subset. Once a 2-level and a 3-level design is chosen, they can be put

together to form an OACD. For example, the 34-run OACD given in Table 3.1

is a simple combination of a minimum aberration 25−1
V design, E = ABCD, and

a generalized minimum aberration five-column design that is a subdesign of the

commonly used OA(18, 37). The levels, −1, 0, and 1, in the 3-level orthogonal
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array can be rescaled to −α, 0 and α if necessary.

The properties of the resulting design may depend on which 2-level column

is aligned with which 3-level column. A naive approach that puts two designs

together works well and resulting designs often have good properties when we

combine optimal 2-level and 3-level designs. In some situations, one can improve

the properties of resulting designs by carefully aligning 2-level and 3-level columns.

Each OACD has a total k! different column alignments. One approach, when k is

small, is to search all k! alignments and find an optimal column alignment with

respect to some criterion. This exhaustive search can be time consuming and

often unnecessary for large k, say k > 10. A second more practical approach is to

try a number of random alignments and choose the best column alignment with

respect to some criterion.

A 3-level orthogonal array may contain a center point already and the number

of extra center points (n0) can be as small as 0. When α = 1, the 2-level design

and the 3-level orthogonal array may have some common runs so that the resulting

OACD has repeat runs; for example, runs 16 and 19 in Table 3.1 are the same. If

desirable one can avoid any repeat runs by permuting the levels in some columns

of the 2-level or 3-level design, but repeat runs are useful in estimating the pure

error and therefore we recommend keeping them. Furthermore, keeping them

allows separate analyses for the two-level and three-level data. In cases where the

run size is critical, one can delete the repeat runs.

For comparison purposes in Section 3.4, we list two OACDs for k = 3 and three

OACDs for k = 4, . . . , 10 in Table 3.2. The first column in Table 3.2 corresponds

to the number of factors, k. The next three columns correspond to the two-level

factorial portion: the specific design used, the number of cube points (nc), and

the design generators or columns. Here a 2k design is a full factorial and no

generators or columns are given. A 2k−p
r design is a regular fractional factorial

design with k factors, each at two levels, consisting of 2k−p runs, and of resolution
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r. The p generators are given in the fourth column. All the 2k−p designs used

in Table 3.2 have maximum resolution and minimum aberration. There are six

cases where Plackett-Burman designs with 12 or 20 runs are used, and the fourth

column shows the subset of the design. For convenience, the Plackett-Burman

designs are given in the Appendix. The last two columns in Table 3.2 specify the

3-level orthogonal array: the specific design and the column choice. We use four

commonly used orthogonal arrays of strength 2, namely OA(9, 34), OA(18, 37),

OA(27, 313), and OA(36, 313); see the Appendix. The OA(9, 34) and OA(27, 313)

are regular fractional factorial designs. For convenience, we arrange OA(27, 313)

according to Xu (2005) so that the first k columns form a minimum aberration

design. All 3-level columns in Table 3.2, with the exception of k = 6, are chosen

because they form a minimum aberration or generalized minimum aberration

design. For k = 6, the generalized minimum aberration design from OA(18, 37)

consists of the column choice (2−7); however, this choice does not lead to a second-

order design when it is combined with the 12-run Plackett-Burman design. For

this reason, we choose the first 6 columns.
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We arrange the 3-level columns in Table 3.2 so that when the 2-level and 3-level

designs are combined, the resulting OACD is optimal with respect to D-efficiency

(defined in Section 3.4.2) under the second-order model. For example, consider the

second design listed for k = 5 in Table 3.2. For the 2-level factorial portion we use

a subset of a 12-run Plackett-Burman design with columns (1-5) and for the 3-level

design we use an OA(18, 37) with columns (2,5,3,4,6). The resulting OACD has

maximum D-efficiency when columns (1,2,3,4,5) of the Plackett-Burman design

are aligned with columns (2,5,3,4,6) of the OA(18, 37), respectively.

We present two or three OACDs with different sizes in Table 3.2 for each k.

We call them OACD X, OACD Y, and OACD Z, corresponding to the largest,

the second largest, and the smallest run size, respectively. The three OACDs are

chosen based on popular existing designs and run size consideration. In particular,

for each k, the OACD X has a similar run size to the CCD and the OACD Z has

a comparable run size to the SCD. It is possible to construct other OACDs with

different sizes and properties, especially when k ≥ 6, if we combine different 2-

level or 3-level designs. In practice, one can choose or construct an OACD based

on the consideration of the run size or design efficiency, which is to be discussed

in the next session.

3.4 Comparisons with existing composite designs

We compare the OACDs given in Table 3.2 with three classes of composite designs:

the CCD, APD, and SCD. The factorial portion of the CCD is a minimal fractional

factorial design (or full factorial plan) of resolution V in all k factors. In all cases,

the CCD and OACD X have the same factorial portion. The factorial portion

used in the APD is the 8-run Plackett-Burman design for k = 4, . . . , 7, and the

12-run Plackett-Burman design for k = 8, . . . , 10; see Morris (2000). The factorial

portion in the SCD is taken from a Plackett-Burman design according to Table

4 of Draper and Lin (1990). In the study performed by Morris (2000), the SCD
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Table 3.3: Comparison of the number of runs and degrees of freedom, with n0 = 5

CCD APD SCD OACD X OACD Y OACD Z
k N df N df N df N df N df N df
3 19 4 15 4 15 4 22 7 18 4 - -
4 29 4 41 8 21 4 30 6 26 7 22 5
5 31 4 41 6 27 4 39 6 35 6 31 6
6 49 4 41 4 33 4 55 5 43 5 35 5
7 83 4 41 4 43 4 87 4 55 4 43 5
8 85 4 83 4 57 4 96 4 64 4 52 5
9 151 4 83 4 63 4 160 5 96 4 64 4
10 153 4 83 4 73 4 160 4 96 4 73 4

for k = 9 was omitted due to singularity. We believe that the reason for the

singularity is that Morris used a cyclical shift to the right when constructing

Plackett-Burman designs, whereas Draper and Lin (1990) performed a cyclical

shift to the left, which allows the SCD of 9 factors to be considered.

We need to specify the value of α and number of center points for comparison.

Following Morris (2000), we choose α = 1 so that all designs have 3 levels and

are comparable, and five center points (n0 = 5). Note that the number of center

points is arbitrarily chosen, and can vary depending on the experimental require-

ments. As pointed out by Morris (2000), the choice of the number of center points

can greatly influence the estimation efficiency of a design; however, the general

relationship between designs remains roughly the same.

3.4.1 Number of runs and degrees of freedom

An important concern in the construction of experimental design is the trade-

off between estimation efficiency and run size. Generally, a design with smaller

number of runs is favorable due to cost; however, designs with a larger number

of runs provide more efficiency. Table 3.3 compares the total number of runs, N ,

and the degrees of freedom, df, for replication for each design considered.

The CCD and OACD X have larger run sizes than other classes with the
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exception of k = 4 and 5, when the APDs have the largest run sizes. The SCD

and OACD Z have smaller run sizes than others with the exception of k = 3 and

7.

All designs have at least 4 degrees of freedom for pure error estimation, cor-

responding to the original 5 center point replicates taken. Generally, the OACD

X, Y, and Z have more degrees of freedom for error estimation than the other

designs, hence have a larger number of runs.

3.4.2 Model coefficient estimation

We compare design efficiencies in parameter estimation, D optimality the popular

choice in this. For an N -point design, if X is the model matrix of the second-order

model (3.1) with p = (k + 1)(k + 2)/2 parameters, the (overall) D-efficiency is

D = N−1|X �X|1/p, describing the information per run for the design. For s, a

subset of factors, the Ds-efficiency is

Ds = N−1|XT
s Xs −XT

s X(s)(X
T
(s)X(s))

−1XT
(s)Xs|1/q,

where Xs and X(s) are the submatrices of X corresponding to the parameters in

s and not in s, respectively, and q is the number of parameters in s.

We divide the model parameters into three groups: the k linear parameters

(βi, i = 1, . . . , k), the k(k − 1)/2 bilinear parameters (βij, 1 ≤ i < j ≤ k), and

the k pure quadratic parameters (βii, i = 1, . . . , k). For each subset of the model

parameters we compute the Ds-efficiency, DL, DB, and DQ, say.

Figure 3.1 shows a graphical representation of the D-efficiencies of the designs

under consideration for k = 3, . . . , 10. Figure 3.1(a) compares overall D-efficiency

for all designs. Generally, OACD X has the highest D-efficiency, followed by CCD

and OACD Y. The overall D-efficiency for OACD Z is higher than the APD and

SCD, except for k = 4. Figure 3.1(b) shows DL-efficiency. The general pattern is

similar to the overall D-efficiency considered in Figure 3.1(a): the OACD X has

40



Figure 3.1: Efficiencies of composite designs with n0 = 5: (a) D-efficiency; (b)
DL-efficiency; (c) DB-efficiency; (d) DQ-efficiency. Composite design (symbol):
APD (A), CCD (C), SCD (S), OACD-X (X), OACD-Y (Y) and OACD-Z (Z).
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the highest efficiency followed by the CCD and then the OACD Y. Figure 3.1(c)

shows DB-efficiency. The OACD X has slightly higher DB-efficiency than the

CCD, followed by the OACD Y; the OACD Z, APD, and SCD are similar in their

efficiencies. Figure 3.1(d) shows DQ-efficiency. For all k, the APD has the highest

efficiency, with the exception of k = 3, where the SCD performs just as well. The

other designs are all comparable.

For the OACDs in Table 3.2, the 2-level and 3-level columns are aligned to

maximize overall D-efficiency. For OACD X, the D-efficiency is invariant under

the column alignment since X �X does not depend on the 2-level design when it

is a full factorial or has resolution V. For OACD Y and Z, the D-efficiency could
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be reduced, often slightly, with a random alignment; however, a few alignments

could result in designs with D-efficiency of 0 for the OACD Y with k ≥ 8 and the

OACD Z with k ≥ 6 due to small run sizes.

Among the three types of OACDs in Table 3.2, OACD X has the highest

efficiency and largest run size, and OACD Z has the smallest run size and lowest

efficiency. If the primary goal is precise estimations OACD X is recommended; if

the runs are expensive and a small design is desirable, OACD Z is recommended.

The OACD Y design compromises on run size and design efficiency and could be

a better choice in other situations.

The original 34-run OACD used in the antiviral experiment was OACD X for

k = 5. The comparison in Figure 3.1 confirms that the 34-run OACD is more

effective than the CCD or other designs in estimating the parameters.

3.4.3 Projection properties

An OACD design has a simple and appealing structure when it is projected onto

any two factors. The two-level portion produces four corner points (±1,±1), each

replicated nc/4 times. When α = 1, the three-level orthogonal array generates

four corner points, four mid-side points (0,±1) or (±1, 0), and one center point

(0, 0), each replicated na/9 times.

Figure 3.2 gives a graphical representation of the projection properties for the

six designs for k = 4, with n0 = 0: CCD, APD, SCD, OACD X, OACD Y,

and OACD Z. Each plot shows the number of design points in each corner, mid-

side, and center, in a two-dimensional projection. Roughly speaking, more design

points located at the corners leads to higher D, DL and DB efficiency, while more

design points located at the mid-sides and center increases quadratic efficiency.

The OACDs have relatively more corner points and less center point replicates

than CCD, APD, and SCD. This is desirable for achieving high overall efficiency.

The APD has more mid-side points than any of the other designs, which explains
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why the estimates for the quadratic effects are more efficient.

3.5 Blocking the OACD

When OACDs are used in a sequential experiment, it is important to know how

blocking affects the design properties and efficiency. A second-order design is said

to block orthogonally if it is divided into blocks in such a manner that block effects

do not affect the usual estimates of the parameters of the second-order model.

Box and Hunter (1957) showed that, in general, for a second order composite

design to block orthogonally with N number of points assigned to b blocks with

nw points in the wth block, two conditions must hold.

1. Each block is a first-order orthogonal design, so,

nw�

u=1

xiuxju = 0, i �= j = 0, 1, . . . , k, for all w,

where xiu and xju are the levels of the ith and jth variables in the uth run

of the wth block with x0u = 1 for all u.

2. The fraction of the total sum of squares for each variable contributed by

every block is equal to the fraction of the total observations that occur in

the block, so,

nw�

u=1

x2
iu

N�

u=1

x2
iu

=
nw

N
i = 1, 2, . . . , k for all w.

These conditions can be used to orthogonally block an OACD. For simplicity,

we consider arranging an OACD in two blocks. The first block consists of a

two-level fractional factorial design (with nc runs) plus nc0 center points, and the

second block consists of a three-level orthogonal array (with na runs) plus na0

center points. The first condition is always valid because the fractional factorial
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Figure 3.2: Projection properties of composite designs in four factors, with n0=0

CCD (24 runs) OACD X (25 runs)

APD (36 runs) OACD Y (21 runs)

SCD (16 runs) OACD Z (17 runs)
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and additional points are orthogonal. The second condition is equivalent to

α =

�
3nc(na + na0)

2na(nc + nc0)
. (3.2)

We obtain orthogonal blocking if we choose α according to (3.2) and, in particular,

when na0 = nc0 = 0, the choice of α =
�

3/2 yields an orthogonal blocking.

3.6 Analysis of the antiviral drug experiment

Here we illustrate the analysis strategy for the OACD with the antiviral drug

experiment in Table 3.1. Following Ding et al. (2012b), in the analysis we use

the square root of the readout as the response so that the usual assumptions on

the error are reasonable. We include a blocking variable (replicate) in the model

to assess possible effects from the two researchers. It is coded as −1 for replicate

1 and 1 for replicate 2.

We began the analysis by fitting a standard second-order model plus the block-

ing variable using all of the data to estimate the linear, bilinear, and quadratic

effects. The model fit the data very well with R2 = 0.96. To verify that this is a

reasonable model, we broke the data into: the first 16 and the last 18 runs. For

the two-level 16-run design we fit a model containing all linear and bilinear effects.

For the 18-run orthogonal array we fit a model with all linear and pure quadratic

terms. To distinguish the three models, we use the run sizes and refer to them as

34-run, 16-run, 18-run models, respectively. Table 3.4 shows the estimates of the

parameters for the three models. Each linear effect is estimated three times and

each bilinear and quadratic effect is estimated twice. Among the three models, the

16-run model fits the 16-run data the best with R2 = 0.98 while the 18-run model

fits the worst with R2 = 0.92. Figure 3.3 compares the absolute values of the t

statistics for these three models, where the dashed and dotted lines correspond to

a t value of 2 and 3, respectively.
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Table 3.4: Estimates of parameters for the HSV-1 data

34-Run 16-Run 18-Run
Intercept 3.99 *** 4.61*** 3.62***

A −0.13 −0.27** 0.18
B −0.23** −0.28 ** −0.42*
C −0.20* −0.14 −0.39*
D −2.07*** −2.15*** −1.97***
E −1.22*** −1.11*** −1.31***

AB 0.12 0.14 -
AC 0.26** 0.16 -
AD 0.08 0.18 -
AE −0.13 −0.11 -
BC 0.14 0.27** -
BD −0.09 −0.07 -
BE 0.13 0.13 -
CD −0.11 −0.13 -
CE 0.05 0.07 -
DE 0.54*** 0.51*** -
A2 0.26 - 0.38
B2 0.09 - 0.22
C2 −0.01 - 0.11
D2 −1.17*** - −1.07***
E2 1.41*** - 1.47***

replicate −0.03 −0.05 −0.01
σ̂ 0.55 0.48 0.78
R2 0.96 0.98 0.92
df 46 15 24

NOTE: Significance levels are coded as 0 (***) 0.001 (**) 0.01 (*) 0.05.
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Figure 3.3: Analysis of the antiviral drug experiment

A B C D E A
2

B
2

C
2

D
2

E
2

AB AC AD AE BC BD BE CD CE DE

all 34 runs

first 16 runs

last 18 runs

|t
 s

ta
ti
s
ti
c
s
|

0
5

1
0

1
5

2
0

2
5

Figure 3.3 clearly shows that the linear effects D and E, the bilinear effect

DE, and the quadratic terms D2 and E2 are consistently the most significant (p

value < 0.001) terms. With, D, E, DE, D2, and E2 having estimates over the

three models of approximately, −2, −1.2, 0.5, −1.1, and 1.4, respectively; see

Table 3.4. The blocking variable (replicate) is not significant among all models,

indicating that there was no significant difference between the two researchers.

We also observed some discrepancy among the estimates from different models.

Among the bilinear effects, AC was significant (p value < 0.01) in the 34-run model

only and BC was significant (p value < 0.01) in the 16-run model only. This is

due to different data being used to fit different models with quite distinct aliasing

or correlation structure. Here AC and BC were highly correlated with the five

extremely significant effects (D, E, DE, D2, and E2) in the full second-order

model, whereas all estimates in the 16-run model were uncorrelated. Among the

linear effects, A, B and C were identified as significant at the 0.05 or 0.01 levels

in one or more models. The estimates of A are negative in the 34-run and 16-run

models but the estimate is positive in the 18-run model. This discrepancy is caused

by the significant bilinear terms not included in the 18-run model. When we fit
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a new model by adding the interaction DE in the 18-run model, the estimates of

D and E remain unchanged and the estimates of A, B, and C were −0.01, −0.23

and −0.20, respectively, closer in value to the estimates in the 34-run and 16-run

models. Further, the R2 value in the 18-run design with DE included increased

from 0.92 to 0.95 and the residual standard error (σ̂) decreased from 0.78 to 0.60.

We performed residual analysis and found that replicate 1 of run 14 was an

outlier. We refit the 34-run and 16-run models without it and found similar results

with the addition that AB was significant in the 34-run model at the 0.05 level

and AB and AC were significant in the 16-run model at the 0.05 level.

Overall, the data analysis identifies D and E as effective drugs, each having

nonlinear (quadratic) effects on HSV-1. Drugs A, B, and C have some, but much

smaller effects, than D and E. We further saw strong interaction between D

and E, and some mild significant interactions among A, B and C. This can

be explained by the fact that D and E are chemical drugs, while A, B, and C

are Interferon protein drugs. The data suggest that the interactions within the

Interferon and chemical drug groups are significant, which agrees with published

reports from clinical trials (Sainz and Halford (2002); Terzano, Petroianni and

(Ricci 2004)). The data further suggest that the interactions between the two

groups are small, implying possible distinct antiviral pathways between these two

drug categories.

3.7 Summary

We propose a class of new composite designs, OACDs, and study the construction

and properties. The OACD designs provide a good trade-off between estimation

efficiency and run size economy, and can be used as an alternative to the popular

CCD and other existing composite designs.

We provide a general guideline in the construction of OACDs and present a
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collection of OACDs based on popular 2-level and 3-level designs. Our use of

regular designs can be done with suitable nonregular designs. Nonregular designs

are flexible in terms of run sizes and have many appealing properties (Xu, Phoa,

and Wong (2009)), so we can construct a wide range of OACDs based on available

nonregular designs. We will further explore the properties and use of these OACDs

in the future.
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Appendix Tables

PB(12)
Run 1 2 3 4 5 6 7 8 9 10 11

1 + + − + + + − − − + −
2 − + + − + + + − − − +
3 + − + + − + + + − − −
4 − + − + + − + + + − −
5 − − + − + + − + + + −
6 − − − + − + + − + + +
7 + − − − + − + + − + +
8 + + − − − + − + + − +
9 + + + − − − + − + + −

10 − + + + − − − + − + +
11 + − + + + − − − + − +
12 − − − − − − − − − − −

PB(20)
Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 + + − − + + + + − + − + − − − − + + −
2 − + + − − + + + + − + − + − − − − + +
3 + − + + − − + + + + − + − + − − − − +
4 + + − + + − − + + + + − + − + − − − −
5 − + + − + + − − + + + + − + − + − − −
6 − − + + − + + − − + + + + − + − + − −
7 − − − + + − + + − − + + + + − + − + −
8 − − − − + + − + + − − + + + + − + − +
9 + − − − − + + − + + − − + + + + − + −

10 − + − − − − + + − + + − − + + + + − +
11 + − + − − − − + + − + + − − + + + + −
12 − + − + − − − − + + − + + − − + + + +
13 + − + − + − − − − + + − + + − − + + +
14 + + − + − + − − − − + + − + + − − + +
15 + + + − + − + − − − − + + − + + − − +
16 + + + + − + − + − − − − + + − + + − −
17 − + + + + − + − + − − − − + + − + + −
18 − − + + + + − + − + − − − − + + − + +
19 + − − + + + + − + − + − − − − + + − +
20 − − − − − − − − − − − − − − − − − − −
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OA(9)
Run 1 2 3 4

1 − − − −
2 − 0 0 +
3 − + + 0
4 0 − 0 0
5 0 0 + −
6 0 + − +
7 + − + +
8 + 0 − 0
9 + + 0 −

OA(18)
Run 1 2 3 4 5 6 7

1 − − − − − − −
2 − 0 0 0 0 0 0
3 − + + + + + +
4 0 − − 0 0 + +
5 0 0 0 + + − −
6 0 + + − − 0 0
7 + − 0 − + 0 +
8 + 0 + 0 − + −
9 + + − + 0 − 0

10 − − + + 0 0 −
11 − 0 − − + + 0
12 − + 0 0 − − +
13 0 − 0 + − + 0
14 0 0 + − 0 − +
15 0 + − 0 + 0 −
16 + − + 0 + − 0
17 + 0 − + − 0 +
18 + + 0 − 0 + −
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OA(27)
Run 1 2 3 4 5 6 7 8 9 10 11 12 13

1 − − − − − − − − − − − − −
2 − − 0 0 − + 0 + + − 0 0 +
3 − − + + − 0 + 0 0 − + + 0
4 − 0 − 0 + 0 − 0 + 0 0 + −
5 − 0 0 + + − 0 − 0 0 + − +
6 − 0 + − + + + + − 0 − 0 0
7 − + − + 0 + − + 0 + + 0 −
8 − + 0 − 0 0 0 0 − + − + +
9 − + + 0 0 − + − + + 0 − 0

10 0 − − 0 0 0 0 − 0 0 − 0 0
11 0 − 0 + 0 − + + − 0 0 + −
12 0 − + − 0 + − 0 + 0 + − +
13 0 0 − + − + 0 0 − + 0 − 0
14 0 0 0 − − 0 + − + + + 0 −
15 0 0 + 0 − − − + 0 + − + +
16 0 + − − + − 0 + + − + + 0
17 0 + 0 0 + + + 0 0 − − − −
18 0 + + + + 0 − − − − 0 0 +
19 + − − + + + + − + + − + +
20 + − 0 − + 0 − + 0 + 0 − 0
21 + − + 0 + − 0 0 − + + 0 −
22 + 0 − − 0 − + 0 0 − 0 0 +
23 + 0 0 0 0 + − − − − + + 0
24 + 0 + + 0 0 0 + + − − − −
25 + + − 0 − 0 + + − 0 + − +
26 + + 0 + − − − 0 + 0 − 0 0
27 + + + − − + 0 − 0 0 0 + −
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OA(36)
Run 1 2 3 4 5 6 7 8 9 10 11 12

1 − − − 0 0 − − 0 − + + −
2 − − − − + − + − + − − 0
3 − − 0 − − + 0 + − − 0 −
4 − − + + − 0 − − 0 0 − −
5 − 0 + + − − 0 0 + − + +
6 − 0 + 0 + 0 + + + + 0 −
7 − 0 − − + + − + 0 0 + +
8 − 0 0 + 0 + + − − + − +
9 − + 0 + 0 − − + + 0 0 0

10 − + 0 − − 0 + 0 0 + + 0
11 − + + 0 + + 0 0 − 0 − 0
12 − + − 0 0 0 0 − 0 − 0 +
13 0 0 0 + + 0 0 + 0 − − 0
14 0 0 0 0 − 0 − 0 − 0 0 +
15 0 0 + 0 0 − + − 0 0 + 0
16 0 0 − − 0 + 0 0 + + 0 0
17 0 + − − 0 0 + + − 0 − −
18 0 + − + − + − − − − + 0
19 0 + 0 0 − − 0 − + + − −
20 0 + + − + − − 0 0 − 0 −
21 0 − + − + 0 0 − − + + +
22 0 − + 0 0 + − + + − − +
23 0 − − + − − + + 0 + 0 +
24 0 − 0 + + + + 0 + 0 + −
25 + + + − − + + − + 0 0 +
26 + + + + 0 + 0 + 0 + + −
27 + + − + + 0 − 0 + + − +
28 + + 0 0 + − + + − − + +
29 + − 0 0 + + − − 0 + 0 0
30 + − 0 − 0 − 0 0 0 0 − +
31 + − + + 0 0 + 0 − − 0 0
32 + − − 0 − 0 0 + + 0 + 0
33 + 0 − 0 − + + 0 0 − − −
34 + 0 − + + − 0 − − 0 0 −
35 + 0 0 − 0 0 − − + − + −
36 + 0 + − − − − + − + − 0
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CHAPTER 4

Application of Blocked Fractional Factorial
Designs for Discrete Choice Experiments

A discrete choice experiment is an attribute based method that gives further in-

sight into how individuals develop preferences for particular attributes. They are

used in the traditional areas in health economics, transportation, marketing, and

increasingly beyond these areas. However, there is limited work on designs for such

studies to date. Motivated by the need for smaller optimal discrete choice exper-

iments, we propose a novel application of blocked factorial designs for designing

discrete choice experiments. Our method provides smaller choice experiments for

estimating main effects with 100% efficiency at lower costs and require a shorter

time to run. In addition, we propose the use of less commonly used resolution

IV designs for constructing discrete choice experiments. With these designs all

main effects are clear and thus unbiased and in many cases we have the added

advantage of some clear two-factor interactions that can be estimated as well.

An illustrative application involving consumer preference for trans-Atlantic flight

travel for estimating main effects and some two-factor interactions for binary at-

tributes is provided. We then demonstrate how these techniques can be extended

for three-level attributes as well as asymmetric attributes.
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4.1 Introduction

The process of making decisions is a daily activity. Decision making starts early

in the morning and continues throughout the day. Decisions can range from what

to eat for breakfast (based on nutrition, quality, price, or even quantity) to the

modes of transportation (personal vehicle, bus, taxi, subway - based on price, time,

or location). Hensher (1989) considered the valuation of travel timesavings from

various modes of transportation and Van der Waerden et al. (2006) studied the

transportation mode choice decisions. These are just a few examples of decisions

that we encounter on a daily basis. Decisions must also be made on important

and long-term issues, such as which healthcare provider to use or which medical

treatment to receive. Bryan et al. (2002) studied patient preference for particular

health care programs. Other researchers have studied patience preference for

certain medical treatments, such as McKenzie et al. (2001) studied methods to

assess patient preferences for Asthma medications and Ryan M et al. (2005)

considered patient preference for prenatal diagnostic testing for Down syndrome.

A Discrete choice experiment (DCE) can be used to give further insight into these

choices. It is an attribute based method for measuring a respondent’s preference

and is quickly on the rise in numerous fields of research. From academic researchers

to professional marketers in areas such as health economics, transportation, and

many others. A DCE presents respondents with several choice sets of hypothetical

scenarios, where each choice set is made up of 2 or more options.

Various techniques for constructing and analyzing discrete choice experiments

have been proposed in the literature. For example, Street and Burgess focus on

the construction of optimal DCEs and their research varies from experiments with

two-level attributes to mixed level designs, see among others, Street et al. (2001),
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Burgess and Street (2003), Street et al. (2005), and Burgess and Street (2005).

Grossmann et al. (2012) construct DCEs for paired designs, i.e., choice sets with

two options, for the estimation of first-order interactions for two-level attributes.

Grasshoff et al. (2012) derive locally optimal designs for DCEs to improve those

in the literature under the multinomial logit model. Recently, Li et al. (2012)

studied the voice of the customer by designing robust DCEs. A comprehensive

review on DCEs can be found in Louviere et al. (2003) and some unresolved

issues in designing and analyzing DCEs can be found in Louviere (2006). A more

focused review on DCEs in health economics can be found in Bekker-Grob et al.

(2010). In our paper, we focus on comparing our proposed construction technique

with the well established and widely accepted Street and Burgess (2007) method.

We call DCEs constructed by the Street and Burgess (2007) method, Street and

Burgess designs.

Published literature on DCEs primarily focuses on the parameter estimation

and there is limited publications on the construction techniques. Louviere (2006)

points out the importance of the design and states that “researchers should recog-

nize that the designs chosen for DCEs are at least as, if not more important than,

the models that one uses to analyze the resulting data.” Therefore, the design

itself should be provided within the publication for others to verify and replicate.

Current techniques for constructing DCEs predominately estimate main ef-

fects only, or main effects plus all two-factor interactions. Designs that estimate

main effects only are good because they present a small number of choice sets,

but assume that all two-factor interactions and higher are negligible. While this

assumption is commonly accepted for the construction of DCEs estimating main

effects, it is a strong assumption to make that may not always be correct to as-

sume. Designs that estimate main effects plus all two-factor interactions assume
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that all three-factor interactions and higher are negligible, a weaker and more

generally accepted assumption. However, these designs often present too many

choice sets for the respondents cognitive ability.

Motivated by the need for smaller optimal designs we propose the use of

blocked fractional factorial designs for constructing DCEs. The concept of block-

ing naturally extends itself to the area of DCEs. Each choice set, is an inherent

block. There are many recent studies on the optimal choices of blocking schemes

for fractional factorial designs; see, among others: Sun et al. (1997); Sitter et al.

(1997); Chen and Cheng (1999); Cheng and Wu (2002); Xu (2006); Xu and Lau

(2006); Xu and Mee (2010). However, the practitioners in DCEs do not seem to

be aware of the recent developments of blocked fractional factorial designs. We

demonstrate that by using blocked fractional factorial designs we have ability to

substantially decrease the number of choice sets posed to the respondent, while

estimating the same number of effects as previous construction techniques.

The goal of this paper is to introduce blocked factorial designs to the area

of DCEs providing smaller choice experiments for estimating main effects and

main effect plus some two-factor interactions with 100% efficiency. Paired DCEs

have been extensively studied and shown to be optimal or near-optimal for binary

attributes. However, there is less research on choice experiments with choice sets

of size 4 or larger, partially because the situation is more complicated than paired

designs. In this paper we focus on DCEs with choice sets of size 4. Burgess and

Street (2006) establish the D-optimal choice set size under the MNL model and

find that generally choice sets of size 2 are rarely the most efficient size to use.

Therefore, the size of the choice set should be as large as the respondent can

handle. The larger the choice set, the larger the value of the determinant of the

optimal design, and thus the more efficient the design (Burgess and Street 2006).
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The paper is organized as follows. Section 4.2 starts with a trans-Atlantic

airline example, which is used to illustrate various techniques, and then gives

background on DCEs and factorial designs. In Section 4.3, we describe in detail

how blocked factorial designs can be used for DCEs to estimate main effects, as

well as some two-factor interactions. We focus on DCEs with choice sets of size

4 and give examples to show that blocked fractional factorial designs produce

smaller numbers of choice sets, for estimating all main effects, than the Street

and Burgess designs. We also give examples to show that how blocked fractional

factorial designs can be used to estimate all main effects and some two-factor

interactions, under the weak assumption that all three-factor interactions and

higher are negligible. We give a table of blocked factorial designs for DCEs with

binary attributes and choice sets of size 4.4. The run sizes of these designs are in

general a half or one quarter of the size of the corresponding Street and Burgess

designs so that the number of choice sets posed to the respondent is reduced by

a half or three quarters. In Section 4.4, we explain how the methodology can be

extended to multi-level or mixed-level DCEs.

4.2 Background

4.2.1 The trans-Atlantic airline example

Consider the following scenario from Green (1974). In this example, we are con-

cerned with the consumer preference for trans-Atlantic travel and the effect of

various attributes. Green considers the effects of nine attributes with varying

levels. For the purpose of this paper, rather than using Green’s full example, we

consider a modified version and select 7 two-level attributes: departure time of

the airplane relative to the consumers most preferred time (within 4 hours and
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within 1 hour), the anticipated plan load (90% full and 50% full), the number of

stops enroute to the destination (one stop and non-stop), the price of the airline

ticket (full economy fare and 15% discount off full fare), the punctuality of ar-

rival time at the destination (within 2 hours of scheduled time and within 1/2 of

scheduled time), the quality of service offered to customers on the flight (average

and superior), and the meal variety (one entree and choice of two entrees). These

attributes and their levels are presented in Table 4.1. In this example, k = 7,

lj = 2, and j = 1, . . . , 7. These attributes are then combined to create choice sets,

which are then shown to the respondents who are asked to choose which option

they prefer. A sample choice set with m = 4 options is presented in Table 4.2.

Here the respondent must select one of the four options. In other words, the

respondent is forced to choose one of the options presented; this is known as a

forced choice experiment. This choice set can be represented by the four options

coded as (0011111, 0110000, 1000010, 1101101). This design is considered a sym-

metric design since all 7 attributes have the same number of levels. The responses

from these choice sets can then be used to estimate the effect each attribute has

on trans-Atlantic flight choice and possibly estimate the effect of the interaction

between any two of the attributes on trans-Atlantic flight choice.

4.2.2 Discrete choice experiments

The first step in the construction of a DCE is to define the problem of interest.

Once the problem of interest has been defined we then determine the relevant

attributes and their respective levels. Next, an appropriate experimental design

and model choice are chosen (Ryan et al. 2008). In this paper, we focus on the

construction of discrete choice experiments and the selection of the appropriate

experimental design, a critical part in the construction of a discrete choice exper-
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Table 4.1: Attributes and levels for trans-Atlantic travel

Attributes Attribute levels Coded levels
x1: Departure time Within 4 hours 0

Within 1 hour 1
x2: Anticipated plane load 90% full 0

50% full 1
x3: Number of stops enroute One stop 0

Non-stop 1
x4: Price Full economy fare 0

15% discount off full fare 1
x5: Arrival time punctuality Within 2 hours of scheduled time 0

Within 1/2 of scheduled time 1
x6: In-flight service Average 0

Superior 1
x7: Meal variety One entree 0

Choice of two entrees 1

Table 4.2: Which of the following 4 options do you prefer? Please only select one.

Attribute Option 1 Option 2 Option 3 Option 4
Departure time within 4 hrs within 4 hrs within 1 hr within 1 hr
Anticipated plan load 90% full 50% full 90% full 50% full
Number of stops non-stop non-stop one stop one stop
Price 15% discount full fare full fare 15% discount
Arrival time within 0.5 hr within 2 hrs within 2 hrs within 0.5 hr
In-flight service superior average superior average
Meal variety two one one two
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iment. We use techniques from traditional factorial designs to combine the given

attributes and their levels into treatment combinations, forming individual choice

sets. Each choice set is made up of m options (or alternatives). Each option is

then described by k attributes, denoted here as: x1, x2, . . . , xk. The jth attribute

has lj levels, j = 1, . . . , k (coded 0, 1, . . . , lj − 1). Respondents are then shown

these choice sets and asked which option they prefer.

Once the choice sets have been constructed, we then derive the information

matrix to determine the properties of the corresponding design. The information

matrix, C, is defined to be C = X �ΛX (Street and Burgess, 2007), where X is

the the matrix of contrasts for the effects to be estimated, i.e., the main effects

or main effects plus some two-factor interactions, and Λ is the matrix of second

derivatives of the likelihood function. Under the null hypothesis of no difference

between the effects of the levels of each attribute, the matrix of second derivatives

Λ can be evaluated by counting the occurrences of pairs of profiles (each profile is

a treatment combination) and dividing by m2n where n is the number of choice

sets. The diagonal entries are chosen so that the row and column sums of Λ are

0.

The DCE estimates and designs can be compared by using the form of the

information matrix. If the information matrix is diagonal, then all effects are

independently estimated. The generalized variance, or the determinant of the

variance-covariance matrix, det(C−1), can be used to compare different designs.

The determinant of the variance-covariance matrix needs to be as small as possible,

or equivalently to maximize the determinant of the information matrix, i.e., we

want det(C) to be as large as possible (Atkinson and Donev 1992). Therefore,

the design with the largest determinant of the information matrix, is said to be

the D-optimal design. The information matrix of the D-optimal design is defined
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as Copt. The D-efficiency for any design d with information matrix Cd can be

calculated as,

D-efficiency = [
det(Cd)

det(Copt)
]1/p, (4.1)

where p is the number of parameters to be estimated, i.e., number of columns in

X. When estimating main effects only p = k, and when estimating main effects

plus all two factor interactions p = k+k(k − 1)/2. The D-efficiency of the optimal

design is 100%.

There are various ways to analyze the results from a DCE and in this paper we

assume that the multinomial logit (MNL) model is used. The MNL model is used

to describe the attractiveness of each attribute on the product of interest. This

model has the benefit of simplicity of estimation and interpretation, but comes

at the cost of some restrictive assumptions. The MNL model assumes that the

random error is independently and identically distributed as an extreme value type

I random variable with a mean of zero. That is, we assume that the unobserved

attributes have the same variance for all options in each choice set and that these

attributes are uncorrelated over all options in each choice set (Train 2003). Given

the strict assumptions for the MNL model researchers in the area of DCEs are

currently working on other approaches with less restrictive assumptions. However,

the purpose of this paper is to demonstrate a new application of blocked fractional

factorial design to construct optimal DCEs with fewer choice sets.

4.2.3 Factorial designs

The idea of combining attributes and their levels into treatment combinations to

form a DCE corresponds directly to the use of factorial designs from the area
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of experimental design. Factorial designs are very efficient for studying two or

more factors, or attributes. In the area of experimental design the term factor is

used, while in the area of DCEs the term attribute is used, the two can be used

interchangeably. Consider a DCE described by k attributes each at two levels.

This class of designs then requires 2k combinations or runs of the k factors at the

two levels. This is referred to as a 2k full or complete factorial design. A full

factorial design has the advantage of being able to estimate all main effects plus

all interaction effects. However, in many experiments, we often find that higher

order interactions, such as three-factor and higher, are usually not important. In

addition, full factorial designs are often too large and costly to perform. Therefore,

using a full factorial design is quite wasteful.

A more practical and economical approach is to use a fractional factorial design

that allows the estimation of lower-order effects (Wu and Hamada 2009). Here,

the researcher selects a subset, or fraction, of the full factorial design. A (regular)

fractional factorial design with k factors in 2k−p runs is said to be a 2−pth fraction

of the full 2k design, with p defining words. A word is the numbers or letters used

to denote the attributes: traditionally denoted as A, B, . . . ; however, in this paper

we use x1, x2, . . . , xk or 1, 2, . . . , k. The group formed by these words is called

the treatment defining contrast subgroup (Wu and Hamda 2009). The length of

the shortest word is the resolution of the design. In order to obtain a smaller

number of runs by using a fractional factorial design, one willingly trades off the

measurement of possible interaction effects (Green 1974). That is, some attributes

may be aliased with other attributes, i.e, their estimates are not distinguishable

from another. The resolution of a design identifies which effects are estimable

(Ryan, Gerard, Amaya-Amaya 2008). Throughout the paper we consider regular

2k−p designs, where any two effects are either orthogonal or fully aliased.
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A main effect or two-factor interaction is said to be clear if none of its aliases

are main effects or two-factor interactions (Wu and Hamada 2009). We can esti-

mate clear main effects or two-factor interactions under the weak assumption that

all three-factor interactions and higher are negligible, without having to assume

negligibility on other two-factor interactions.

Current construction techniques for the estimation of main effects begin with

a starting design of at least resolution III. Resolution III designs are good because

of their smaller size; however, a resolution III design for the estimation of main

effects could be misleading because some main effects are correlated with the

unobserved interaction effects, leading to biased estimates of the main effects. On

the other hand, construction techniques for the estimation of main effects plus all

two-factor interactions begin with at least a resolution V design; however, these

designs expand rapidly with the number of attributes and levels and are often too

large and unnecessary.

In addition to using resolution III and V designs to construct DCEs, we pro-

pose the use of less commonly used resolution IV designs for constructing DCEs.

There are two advantages for considering a resolution IV design. With a resolu-

tion IV design all main effects are clear and can always be estimated unbiasedly.

Therefore, with a resolution IV design we do not need to assume any two-factor

interactions negligible to (clearly) estimate the main effects. Second, with many

resolution IV designs, in addition to being able to estimate all main effects, we

also can estimate some clear two-factor interactions.

Table 4.3 shows the corresponding run sizes for resolution III, IV, and V designs

for k = 4, . . . , 9 factors or attributes. The run sizes for resolution IV designs,

primarily fall between the resolution III and V designs. For k = 4 attributes, a

resolution III and IV design may have the same number of runs, but a resolution

64



Table 4.3: Run sizes for resolution III, IV, and V designs; k = 4, . . . , 9 attributes

k: 4 5 6 7 8 9
III 8 8 8 8 16 16
IV 8 16 16 16 16 32
V - 16 32 64 64 128

IV design has the added advantage that all main effects are clear. Comparing

resolution IV and V designs, all except for k = 5 attributes, resolution IV designs

have half, or even less than half, the runs of a resolution V design.

4.3 Blocked factorial designs for discrete choice experi-

ments

4.3.1 Blocked factorial designs

To construct a blocked fractional factorial design we deliberately confound, i.e.,

confuse, an interaction effect with a block effect, limiting the ability to estimate

the two effects separately in exchange for higher precision because the differences

associated between blocks are eliminated (Box, Hunter, and Hunter 2005). For a

blocked fractional factorial design, a main effect or two-factor interaction is said

to be clear if it is not aliased with any other main effects, two-factor interactions,

or confounded with any block effects (Wu and Hamada 2009). A clear effect can

be estimated under the weak assumption that all three-factor interactions and

higher are considered negligible.

To block a 2k−p fractional factorial design in 2q blocks defined by q indepen-

dent contrasts (blocking variables) we have two defining contrast subgroups: one

for defining the fraction and the other for the blocking scheme, known as the

treatment defining contrast subgroup and the block defining contrast subgroup,
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respectively. All effects, including any aliased effects, which are associated with

these blocking variables, are confounded with the blocks (Wu and Hamada 2009).

To illustrate the concept of blocked fractional factorial designs consider the

following example. Begin with a 24−1 = 8-run resolution IV (k = 4 and p = 1)

fractional factorial design in 22 blocks (q = 2). Each block is of size 2 (2k−p−q).

This design has 1 treatment generator: x4 = x1x2x3 and 2 block generators:

b1 = x1x2 and b2 = x1x3. The equation I = x1x2x3x4 is called the treatment

defining contrast subgroup, which consists of each treatment generator and the

product of the treatment generators. The block defining contrast subgroup is:

b1 = x1x2, b2 = x1x3, and b3 = b1b2 = x2x3. The block effect b1 is confounded

with the two-factor interaction x1x2. Additionally, b1 is confounded with the

two-factor interaction x3x4 because we multiply each word within the treatment

defining contrast subgroup by b1; denoted as b1 = x1x2 = x3x4. Similarly for

b2 and b3. In this design, all 4 main effects are clear. This blocked fractional

factorial design can then be used to construct a DCE. In this example each of

the 2q = 22 = 4 blocks corresponds to a choice set and the size of the block

2k−p−q = 24−1−2 = 2 represents the size of the choice set, i.e., the number of

options within each choice set.

We should point out that fractional factorial designs are constructed under the

usual general linear model y = Xβ + �, where the error � is normally distributed.

The design properties are determined by the usual information matrix X �X. As

mentioned earlier, for DCEs we employ a MNL model with an extreme value error

distribution and the information matrix is C = X �ΛX. Nevertheless, under the

null hypothesis of no difference between the treatments, there is a close connection

between X �X and C. For instance, consider a blocked 24−1 = 8-run resolution IV

(k = 4 and p = 1) fractional factorial design in 21 blocks (q = 1). This design has 1
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treatment generator: x4 = x1x2x3 and 1 block generator: b1 = x1x2. The defining

contrast subgroup is I = x1x2x3x4. Since this design is of resolution IV all 4 main

effects are clear; however, each two-factor interaction is aliased with another two-

factor interaction, i.e., x1x2 = x3x4, x1x3 = x2x4, and x1x4 = x2x3. The block

effect, b1, is confounded with the interactions x1x2 and x3x4, i.e., b1 = x1x2 =

x3x4. Table 4.4 shows the scaled information matrices X �X and C as an unblocked

design and blocked DCE design. Notice that both matrices are block diagonal and

the sub-matrices for the four main effects are diagonal so that the main effects

are clear and can be estimated independent of each other and any two-factor

interactions. The two matrices differ in rows and columns x1x2 and x3x4. As

an unblocked design, we can estimate x1x2 if x3x4 is negligible or vice verse. As

a blocked DCE design, we cannot estimate either x1x2 or x3x4 because they are

confounded with the block effect.
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In a blocked factorial design, any effect that is not confounded with a block

effect can be estimated in the usual way, i.e., an effect can be estimated if its alias

is assumed negligible. However, we cannot estimate an effect that is confounded

with a block effect. The following theorem illustrates this result for the general

2-level blocked fractional factorial design.

Theorem 1. A blocked 2k−p design in 2q blocks can be used to construct a DCE

experiment with n = 2q choice sets of m = 2k−p−q options, where each block forms

a choice set. An effect that is not confounded with any block effects is estimable

under the assumption that all of its alias are negligible.

The proof of Theorem 1 can be found in the Appendix. As a result, the concept

of aliasing and clear effects from the area of traditional fractional factorial designs

directly translates over to the area of DCEs. This founding was also reported

by Grossmann et al. (2002) for the paired DCEs with m = 2 options. Hence,

compared to other construction methods, by using blocked factorial designs we

have the advantage of knowing the precise aliasing structure for the entire DCE.

All DCEs constructed using a blocked factorial design for the estimation of the

clear effects are always D-optimal and 100% efficient.

4.3.2 Estimating main effects

Consider the modified trans-Atlantic airline example and we want to construct

a DCE with choice sets of size 4 for the estimation of the main effects using a

blocked factorial design.

Example 1. Begin with a blocked 27−3 (k = 7, p = 3) fractional factorial design

in 22 blocks (q = 2) of resolution IV. We have 4 blocks, or choice sets, and block

sizes of 4 (27−3−2), or 4 options for each choice set. This design has treatment
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Table 4.5: Blocked factorial design for main effects only and choice sets of size 4

Blocks x1 x2 x3 x4 x5 x6 x7

1 0 1 1 0 0 1 1

1 0 1 1 1 0 0 0

1 1 0 0 0 1 1 1

1 1 0 0 1 1 0 0

2 0 1 0 0 1 1 0

2 0 1 0 1 1 0 1

2 1 0 1 0 0 1 0

2 1 0 1 1 0 0 1

3 0 0 1 0 1 0 1

3 0 0 1 1 1 1 0

3 1 1 0 0 0 0 1

3 1 1 0 1 0 1 0

4 0 0 0 0 0 0 0

4 0 0 0 1 0 1 1

4 1 1 1 0 1 0 0

4 1 1 1 1 1 1 1

generators: x5 = x1x2x3, x6 = x1x2x4, and x7 = x1x3x4 and block generators:

b1 = x1x2 and b2 = x1x3 and is presented in Table 4.5. Blocks 1 through 4

correspond to the 4 choice sets, and the size of the blocks, 4, represents the number

of options within each choice set. For example, block 1, represents the first choice

set (0110011, 0111000, 1000111, 1001100). Since this design has resolution IV,

the main effects are not aliased with any two-factor interactions and thus all seven

main effects are clear and can be independently estimated.

In comparison, using the Street and Burgess method, to estimate main effects

begin with a starting design F of at least resolution III and a set of generators G.

Example 2. Let the starting design F be the 27−4 fractional factorial design in

8 runs, or choice sets. This design has treatment generators x4 = x1x2, x5 =
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Table 4.6: Street and Burgess design for main effects only and choice sets of size
4

F F+g2 F+g3 F+g4

0000000 0000111 1111000 1111111

1010101 1010010 0101101 0101010

0110011 0110100 1001011 1001100

1100110 1100001 0011110 0011001

0001111 0001000 1110111 1110000

1011010 1011101 0100010 0100101

0111100 0111011 1000100 1000011

1101001 1101110 0010001 0010110

x1x3, x6 = x2x3, and x7 = x1x2x3. Since the smallest word in the treatment

defining contrast subgroup is of length 3 this design is said to be of resolution

III. The 8 treatment combinations for this particular design are presented un-

der the column F of Table 4.6. This fraction then becomes the profiles presented

in option 1 for each choice set. To obtain choice sets each with 4 options we

need m = 4 generators: g1, g2, g3, g4, where g1 = (0000000). Let G be the set

of generators: G = (g1, g2, g3, g4), such that the differences in the difference vec-

tor sum to m2k
4 = 28 (Street and Burgess 2007). One such set of generators is

G = (0000000, 0000111, 1111000, 1111111) (Street and Burgess 2007, page 272).

Therefore, the 8 choice sets are constructed as (F, F + g2, F + g3, F + g4), where

the addition is performed modulo 2. These choice sets are presented in Table 4.6,

where each row represents a choice set and each column represents options 1

through 4. With this Street and Burgess design, we have the ability to estimate all

7 main effects under the assumption that all two-factor interactions are negligible.

Comparing these two examples, it is clear that the blocked factorial design in

Example 1 has half the number of choice sets as the Street and Burgess design in
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Example 2. The former has 4 choice sets each with 4 options, while the latter has

8 choice sets each with 4 options.

Now consider choice sets of size 2 for the estimation of main effects using a

blocked factorial design.

Example 3. Begin with the same blocked 27−3 factorial design used in Example

1, but now arrange it into 23 blocks (q = 3) with one additional block generator:

b3 = x1x4. The additional block generator splits the 4 blocks of size 4 into 8

blocks of size 2. Each of 8 blocks consists of a foldover pair. For example, one of

block consists of pair (0111000, 1000111); another block consists of pair (0110011,

1001100). All seven main effects are clear.

Similarly, we can construct a DCE using the Street and Burgess method for

choice sets of size 2.

Example 4. Using the same starting design F in Example 2, we can construct

a DCE for the estimation of main effects in choice sets of size 2 with a set of

generators G = (0000000, 1111111). That is, we pair each row with its foldover.

This DCE also has 8 choice sets each with 2 options.

Considering choice sets of size 2, Examples 3 and 4 are directly comparable in

terms of the number of choice sets. However, there are some exceptions where a

blocked factorial design may reduce the number of choice sets in comparison to

the Street and Burgess designs for choice sets of size 2. Consider the blocked 24−1

factorial design in 22 blocks presented in Section 4.3.1, this DCE has 4 choice sets

each of size 2. In comparison, the Street and Burgess method would require 8

choice sets each of size 2 if the starting design is a resolution III design. By using

the blocked factorial design, we reduce the number of choice sets by half, while
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still estimating the same number of effects. Other small optimal paired DCEs for

the estimation of main effects only can be found in Grasshoff et al. (2004).

4.3.3 Estimating main effects plus some two-factor interactions

Designs that consider the interactions between attributes allow the researcher to

see which attributes depend on the levels of other attributes. To illustrate, in the

trans-Atlantic airline example consumers might classify their airline choice based

on price, but it may also depend on the departure time, the planeload, or other

attributes. That is, the consumer may have a specific price set in their mind when

going to purchase their airfare, but also takes into account other factors, such as

the time in which their plane departs, etc.

However, more commonly, DCEs are designed for the estimation of main ef-

fects. While designs for the estimation of main effects plus all two-factor interac-

tions are available, these designs require a starting design of at least resolution V

and are often too large in terms of the number of choice sets and place a cognitive

burden on the respondent. Researchers are exploring various way to construct

DCEs that allow the estimation of main effects plus some pre-specified two-factor

interactions, while reducing the number of choice sets. For example, Chen and

Chitturi (2011) consider the estimation of subsets of interactions inclusive of one

factor for 2n and 3n plans based on Pareto optimal choice sets.

In this section we propose the use of blocked factorial designs of at least resolu-

tion IV to estimate main effects plus some selected two-factor interactions, while

reducing the number of choice sets. The use of designs of at least resolution IV

allow all main effects to be clear plus select two-factor interactions are also clear.

These designs present the respondent with either the same, or even less, choice

sets than current construction techniques.

73



Consider the 7 two-level attributes in the modified trans-Atlantic airline exam-

ple. To construct a DCE for the estimation of main effects plus some two-factor

interactions, with choice sets of size 4, we begin with a 27−2 = 32 run (k = 7, p = 2)

resolution IV fractional factorial design in 23 (q = 3) blocks each of size 4 (2k−p−q).

This design has treatment generators: x6 = x1x2x3 and x7 = x1x2x4x5 and block

generators: b1 = x2x3x4, b2 = x2x3x5, and b3 = x1x3x4x5. With this design

we have 8 choice sets each with 4 options, and seven clear main effects as well as

12 clear two-factor interactions: x1x4, x1x5, x1x7, x2x4, x2x5, x2x7, x3x4, x3x5, x3x7,

x4x6, x5x6, and x6x7. As a result of using the blocked factorial design we have the

ability to estimate each of the seven attributes presented in Table 4.1 as well as 12

of their interactions. When considering which flight to book the consumer would

typically focus on the interaction between the plane departure time and the price

of the airfare (x1x4), or the departure time and the arrival time (x1x5). With this

design we have the ability to clearly estimate these interaction effects.

The number of choice sets in this example, a blocked factorial design, is the

same as the number of choice sets in Example 2, a Street and Burgess design.

The Street and Burgess design in Example 2 is indeed identical to a blocked 27−2

fractional factorial design in 23 blocks with treatment generators x6 = x1x2x5 and

x7 = x1x3x5 and block generators b1 = x1x2, b2 = x1x3, b3 = x1x4. This identical

design is of resolution IV and all 7 main effects are clear plus 3 clear two-factor

interactions: x4x5, x4x6, and x4x7. However, the blocked factorial design presented

here has 9 more clear two-factor interactions than the identical Street and Burgess

design.

Hence, the number of clear two-factor interactions depends on the design gener-

ators and block generators or the starting design F and the generator G. Different

fractions and generators lead to different designs with different numbers of clear
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two-factor interactions. The blocked factorial designs we present in the next sub-

section are optimal in the sense that they always have the maximum number of

clear two-factor interactions.

4.3.4 Tables of blocked factorial designs for discrete choice experi-

ments

To construct a paired DCE design, a simple method exists (Xu 2006): use an

even design and pair each run with its foldover; see Example 5 in Section 4.3.2.

A design is called an even design if all words in its treatment defining contrast

subgroup have even lengths.

Table 4.7 presents blocked fractional factorial designs to construct DCEs for

choice sets of size 4 (m = 4) and k ≤ 9 attributes. Five sizes of choice experiments

each with 4 options are given in Table 4.7: 2 choice sets, 4 choice sets, 8 choice

sets, 16 choice sets, and 32 choice sets. Presented in Table 4.7 are: k - the

number of attributes, p - the number of treatment (or design) generators, q - the

number of block generators, design generators, block generators, and clear effects

— main effects and/or two-factor interactions. Note that the design generators

and block generators are in terms of single numbers rather than the subset x

notation previously being used, i.e., x1, x2, . . . . For example, instead of using

x1, x2, . . . , xk, to represent the attributes, we now use numbers: 1, 2, 3, 4, . . . to

define each attribute. Table 4.7 is adapted from Appendices 4A and 5B of Wu

and Hamada (2009). Blocked factorial designs with k > 9 attributes are available

in Xu and Lau (2006) and Xu and Mee (2010).
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Table 4.7: Blocked DCEs with m = 4 options.
Note: ME’s (main effects) and 2fi’s (two-factor interactions).

k p q Design generators Block generators Clear effects

2 choice sets

3 0 1 —– b1 = 123 all 3 ME’s plus all 3 2fi’s

4 1 1 4=123 b1 = 12 all 4 ME’s

5 2 1 4=12, 5=13 b1 = 23 none

6 3 1 4=12, 5=13, 6=23 b1 = 123 none

4 choice sets

4 0 2 —– b1 = 134, b2 = 234 all 4 ME’s plus all 2fi’s except: 12

5 1 2 5=1234 b1 = 12, b2 = 13 all 5 ME’s, 14, 15, 24, 25, 34, 35,45

6 2 2 5 = 12, 6 = 134 b1 = 13, b2 = 14 3, 4, 6, 23, 24, 26, 35, 45, 56

7 3 2 5 = 123, 6 = 124, 7 =

134

b1 = 12, b2 = 13 all 7 ME’s

8 4 2 5 = 123, 6 = 124, 7 =

134, 8 = 234

b1 = 12, b2 = 13 all 8 ME’s

9 5 2 5 = 12, 6 = 13, 7 =

14, 8 = 234, 9 = 1234

b1 = 23, b2 = 24 none

8 choice sets

5 0 3 —– b1 = 135, b2 = 235, b3 =

1234

all 5 ME’s plus all 2fi’s except: 12, 34

6 1 3 6=12345 b1 = 135, b2 = 235, b3 =

145

all 6 ME’s plus all 2fi’s except: 12, 34,

56

7 2 3 6=123, 7=1245 b1 = 234, b2 = 235, b3 =

1345

all 7 ME’s, 14, 15, 17, 24, 25, 27, 34,

35, 37, 46, 56, 67

8 3 3 6 = 123, 7 = 124, 8 =

1345

b1 = 13, b2 = 23, b3 = 14 all 8 ME’s, 15, 18, 25, 28, 35, 38, 45,

48, 56, 57, 58, 68, 78

9 4 3 6 = 123, 7 = 124, 8 =

134, 9 = 2345

b1 = 12, b2 = 13, b3 = 14 all 9 ME’s, 15, 19, 25, 29, 35, 39, 45,

49, 56, 57, 58, 59, 69, 79, 89

16 choice sets

6 0 4 —– b1 = 136, b2 = 1234, b3 =

3456, b4 = 123456

all 6 ME’s plus all 2fi’s except: 12, 34,

56

7 1 4 7=12345 b1 = 12, b2 = 34, b3 =

135, b4 = 16

all 7 ME’s plus all 2fi’s except: 12, 16,

26, 34, 57

8 2 4 7=1234, 8=1256 b1 = 13, b2 = 14, b3 = 25,

b4 = 26

all 8 ME’s plus 12, 15, 16, 17, 18, 23,

24, 27, 28, 35, 36, 37, 38, 45, 46, 47,

48, 57, 58, 67, 68

9 3 4 7 = 123, 8 = 1245, 9 =

1346

b1 = 12, b2 = 13, b3 = 14,

b4 = 56

all 9 ME’s plus 15, 16, 18, 19, 25, 26,

28, 29, 35, 36, 38, 39, 45, 46, 48, 49,

57, 58, 59, 67, 68, 69, 78, 79

32 choice sets

7 0 5 —– b1 = 1236, b2 = 12347,

b3 = 12456, b4 = 134567,

b5 = 234567

all 7 ME’s plus all 2fi’s except: 12, 13,

23, 45, 67

8 1 5 8=123456 b1 = 12, b2 = 13, b3 = 45,

b4 = 46, b5 = 147

all 8 ME’s plus all 2fi’s except: 12, 13,

23, 45, 46, 56, 78
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9 2 5 8=12345, 9=12367 b1 = 123, b2 = 14, b3 =

25, b4 = 16, b5 = 27

all 9 ME’s plus all 2fi’s except: 14, 16,

25, 27, 38, 39, 46, 67, 89

Consider an example and suppose that we have 9 attributes each with two lev-

els and we want choice sets of size 4. Using Table 4.7 we have 4 blocked fractional

factorial designs to choose from. The design choice can be made depending on the

problem of interest. First, consider the estimation of main effects only. For the es-

timation of main effects begin with a resolution III 29−5 fractional factorial design

in 22 blocks (k = 9, p = 5, q = 2). This design has 4 choice sets each with 4 options.

With treatment generators x5 = x1x2, x6 = x1x3, x7 = x1x4, x8 = x2x3x4, x9 =

x1x2x3x4, or using the new notation 5 = 12, 6 = 13, 7 = 14, 8 = 234, 9 = 1234, and

block generators b1 = 23 and b2 = 24. In this particular design none of the main

effects are clear and we can only estimate the main effects under the assumption

that all two-factor interactions aliased with the main effects are assumed to be

negligible. In comparison to a Street and Burgess design with 9 attributes and

choice sets of size 4 for the estimation of main effects, the smallest such starting de-

sign F of resolution III, is a 16-run fractional factorial design. This design requires

a DCE with 16 choice sets. Consequently by using a blocked fractional factorial

design to construct a DCE, we reduce the number of choice sets to one-quarter

of the size of a Street and Burgess design, while estimating the main effects with

the same amount of precision.

For each main effect to be clear for 9 attributes and choice sets of size 4, we

need to consider designs with at least resolution IV. To illustrate, using Table 4.7

we have 3 choice experiment sizes to consider. We may either construct a DCE

with 8 choice sets, 16 choice sets, or 32 choice sets. Since all 3 of these designs are

of at least resolution IV, then all main effects are clear. In addition these designs
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Table 4.8: Cost saving in terms of the number of choice sets

k Blocked factorial designs Street and Burgess designs
4 2 8
5 2 8
6 2 8
7 4 8
8 4 16
9 4 16

Note: For the estimation of main effects and m = 4 options.

have an added benefit of clearly estimating some two-factor interactions. The

8, 16, and 32 choice sets each have 15, 24, and 27 clear two-factor interactions,

respectively.

By using a blocked factorial design with choice sets of size 4, the number

of choice sets presented to the respondent is much smaller than previously con-

structed two-level choice experiments. Table 4.8 shows that for estimating main

effects only the number of choice sets presented to the respondent by using blocked

factorial designs is generally one-quarter of the size in comparison to the Street

and Burgess designs. Except for k = 7, where the number of choice for a blocked

factorial design is half the size of the number of choice sets for a Street and Burgess

design. Therefore, by using a blocked fractional factorial design to construct a

DCE, with 4 options, we have the ability to substantially decrease the number

of choice sets presented to the respondent, while estimating the same number of

effects with equal precision and 100% efficiency.

4.4 Extensions

In the previous section, we have focused on constructing discrete choice experi-

ments using blocked fractional factorial designs for binary attributes. The method-

ology and procedures described for binary attributes can easily be extended for
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three level attributes as well as asymmetric attributes.

To construct a blocked factorial design for three-level attributes is merely iden-

tical to the binary case. Appendix 6B of Wu and Hamada (2009) gives efficient

blocking schemes for 9-, 27-, and 81- run designs. These designs can then be

used to construct DCEs for three-level attributes and the estimation of main ef-

fects. For example, suppose that a researcher is interested in 9 attributes each

with three levels and wants to construct choice sets of size 3. We can find a

39−6 = 27-run design of resolution III in 32 = 9 blocks each of size 39−6−2 = 3.

This design has treatment generators: 4 = 12, 5 = 123, 6 = 1223, 7 = 132, 8 = 232,

and 9 = 12232 and block generators: b1 = 122 and b2 = 23. Here 9 = 12232 rep-

resents x9 = x1 + 2x2 + 2x3 (mod 3), see Wu and Hamada (2009) for generating

three-level blocked factorial designs. This design presents the respondent with 9

choice sets each of size 3. However, a comparable Street and Burgess design would

require 27 choice sets each of size 3, 3 times the blocked factorial design. Typi-

cally, for the estimation of main effects for three-level attributes and choice sets of

size 3, blocked factorial designs require only one-third of the Street and Burgess

designs. We shall point out that in Appendix 6B.2 of Wu and Hamada (2009)

there is a typo in the treatment generators. The generator should be G = AC2

not G = AB2 (or in our notation 7 = 132 not 7 = 122) for k = 8 and 9. The

correct generators can be found in Cheng and Wu (2002).

Now consider the estimation of main effects for asymmetric attributes. Mixed-

level orthogonal arrays (Wu and Hamada 2009, Chapter 8), with the addition of

the block effect, can be used for the construction of asymmetric DCEs because of

their run size economy and great flexibility. There are various methods for con-

structing mixed level orthogonal arrays, see Wu and Hamada (2009), Dey (1985),

Wang and Wu (1991), and Hedayat et al. (1999). To construct a mixed level or-
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thogonal array, with the addition of the block effect, for asymmetric attributes we

use the following notation: OA(N, B1sn1
1 sn2

2 . . . s
nj

j , t), where N is the total num-

ber of runs in the design, B1 is the total number of blocks/choice sets, sn1
1 , . . . , s

nj

j

are the levels of the k = n1 + · · · + nj attributes, and t is the strength of the

design. To estimate main effects only we use orthogonal arrays of strength 2,

equivalently designs of resolution III. To ensure that all main effects are clear,

orthogonal arrays of strength 3 are useful.

Consider the following example, suppose that we have 7 two-level attributes

and 2 four-level attributes and we want choice sets of size 4. A mixed level

orthogonal array can be constructed in 32 runs, with 8 blocks: OA(32, 814227, 2).

The first column from the orthogonal array is used to define the 8 blocks or choice

sets each of size 4 for the 9 mixed level attributes. For this mixed level orthogonal

array we present the respondent with 8 choice sets each of size 4 and all 9 main

effects can be estimated independently with 100% efficiency. Commonly, with the

use of mixed level orthogonal arrays, the number of choice sets and, or, the size

of the choice sets can increase quickly. In these situations we recommend the use

of nearly orthogonal arrays or orthogonal main-effect plans. Unlike the blocked

factorial designs we present in this paper, these designs are not 100% efficiency

for estimating the main effects.

4.5 Summary

We have provided a novel application of blocked fractional factorial designs for

designing smaller optimal discrete choice experiments. Our method provides 100%

efficiency for the estimation of all clear effects. An illustrative example for flight

preference was provided for binary attributes and we proposed the use of resolution
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IV designs to guarantee all main effects are clear and in some situations some

two-factor interactions are clear. There are some restraints on the construction

of DCEs using blocked factorial designs. For example, our approach relies on the

availability of previously constructed blocked factorial designs. However, given

the available blocked factorial designs we have shown that we can substantially

decrease the number of choice sets presented to the respondent. Overall, for binary

attributes and choice sets of size 4, we have the ability to reduce the number of

choice sets by one-half or three quarters, compared with the Street and Burgess

designs. In addition, we described how the approach for binary attributes can be

extended to three-level attributes; generally decreasing the number of choice sets

by two-thirds.

Appendix

Proof of Theorem 1. Let X be the model matrix of (some or all) effects that are

not confounded with any block effects. We can arrange X according to the choice

sets as X = (X �
1, . . . , X

�
n)�, where Xi is the corresponding model matrix for the

ith choice set. With this arrangement, the matrix of the second derivatives Λ is

a block diagonal matrix, i.e., Λ = (m2n)−1diag(mIm − Jm, . . . ,mIm − Jm), where

Im is the m × m identity matrix and Jm is an m × m matrix of 1. Then the

information matrix is

C = X �ΛX = (X �
1, . . . , X

�
n)Λ(X �

1, . . . , X
�
n)� = (m2n)−1

n�

i=1

X �
i(mIm − Jm)Xi.

Because none of the columns of X is confounded with any block effect, each

column of Xi is a contrast and JmXi = 0. Then C = (m2n)−1
�n

i=1 mX �
iXi =

(mn)−1X �X. In particular, if X contains at most one effect from each alias set,
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X �X is of full rank and so does C. This completes the proof.
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CHAPTER 5

Discussion

This dissertation has focused on the development of new methodologies moti-

vated by real world applications. With these real world applications arose new

challenges, and with new challenges emerged innovative construction techniques.

The goal of this dissertation was to construct efficient and optimal factorial designs

in the fields of biomedical science and marketing survey research. In Chapters 2

and 3, we motivated the need for the research by presenting current techniques for

drug combination determination using the feedback system control and discussed

their challenges to quantify drug contributions and drug interactions. We intro-

duced the sequential use of two- and three- level factorial designs to determine

potential optimal drug dosages. This lead to the construction of a new class of

composite designs effective for factor screening. These designs are shown be a

good trade-off between estimation efficiency and run size economy, and can be

used as an alternative to the popular and existing composite designs. In addition,

we presented an overview of discrete choice experiments and the application of

blocked fractional factorial designs for constructing smaller optimal choice sets.

While many of the developed methods offer significant improvements, there are

numerous extensions for the construction and application of factorial designs.

Continuing research on optimal drug combination determination, there is a

growing demand for identifying drug combinations for a large number of drugs,
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ranging from 10-50. Currently, we are working on determining optimal drug com-

binations with minimum additive dosages to treat KB oral caner. We consider

11 drugs based on prior pilot studies. Typically, high dosages of these individual

drugs are promising for treating KB oral cancer; however, high dosages of these

individual drugs can be very toxic to normal tissue cells. Rather than study the

individual drugs at high dosages, we study lower dosages of these individual drugs

and focus on the drug-drug interactions between these anti-cancer drugs. We

propose to study the 11 drugs, each with 3 dosage levels, in an 81-run blocked

fractional factorial design. With this design we can clearly estimate the drug

by drug interactions. By understanding the complex drug-drug interactions and

drug-cell interactions, we hope to identify optimal drug combinations with mini-

mum additive dosages in order to treat this oral cancer.

Additionally, further consideration should be given to the application of fac-

torial designs in the field of DCEs. Researchers in the area of DCEs have been

branching out and developing resources for practitioners in healthcare on the im-

plementation of a DCE. For example, Lancsar and Louviere (2008) develop a

user’s guide for conducting DCEs to inform healthcare decision making. The ob-

jective is to provide an overview of the basics of DCE principles and guidance

on the key factors to consider when undertaking and assessing the quality of a

DCE. A comprehensive review on DCEs in health economics can be found in De

Bekker-Grob et al. (2010). In this review, the current use of DCEs in the field

of health economics is illustrated. It also shows the limitations that exist within

their applications. Out of the 114 papers considered in the review, 37% (42) did

not report the source of the experimental design, and 28% (32) did not report

sufficient details on how choice sets were created. Additionally, the designs typ-

ically focused on the estimation of main effects (89%), and only 5% of designs
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stated main effects plus two-factor interactions were estimable. This provokes the

need for a resource on how to design DCEs for practitioners in field of healthcare.

In particular, this resource should outline details on how to construct an efficient

and optimal DCE, as well as focus on the identification of which model effects are

estimable; i.e., main effects, or main effects plus two-factor interactions. The goal

is to provide a resource for practitioners in the field of public health on the con-

struction, and design, of a DCE using blocked fractional factorial designs, for the

estimation of main effects and the estimation of main effects plus some two-factor

interactions.
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