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VI.,ulntroduction .

Various aspects of reinjection of cooled geothermal water into
the geothermal reservoir have been studied by many authors. One
‘question of practical relevance is:the calculation of reinjection
pPressures. required. These pressures on ‘the one ‘hand determine the
pumping requirements which are important inputs to the technical and
‘economical feasibilities of the project. On the other hand, they
may also be used as baseline data. .As time goes on, if the pressure
measured becomes much in excess of the calculated values, some kind
of plugging may be occurring and remedial action would have to be
taken. :

7 For isothermal cases where the injected water is at the same
‘temperature as the reservoir -water, the pressure change is simply given
by the Theis solution in terms of an exponential integral. The solution
shows that this pressure change is directly proportional to the
-viscosity. It turns -out that the viscosity is a strong function of
temperature. 'Over a range of temperatures from 100°C to 250° C, the
-viscosity changes by a factor of 3 (whereas the density of water changes
by about 202) This is illustrated in Figure 1.

B The injection of cold water into a hot reservoir is a moving
.boundary problem.: On the inside of a boundary enclosing the injection
“well, the ‘parameters correspond to that of the injected cold water;
and on the outside, the parameters correspond to that of the reservoir
hot water. . The. boundary is, of course, not sharp because of heat
. conduction between the hot and cold water. The width of the boundary
'depends ‘on the aquifer heat conductivity. and capacity, and it increases
" with time as the boundary (or cold temperature front) moves outward
from the injection well,

: There exist numerical models to aolve such a problem. In'an earlier

'»'f_work we made a simple study using numerical model "CCC" developed at

~the Lawrence. Berkeley Laboratory. A sample of calculated results is
shown in. Figure l.‘ ‘The present work is an analytic calculation of such

‘a problem when- several. approximations are applied. Solutions are

- obtained in terms of well-known functions or in terms of ome integral.
These calculations are checked against numerical model results.



Figure 1 also indicates that the temperature boundary effects
show up in the pressure change as a function of time. Thus, the
pressure data may be analyzed to obtain reservoir transmissivity,
storativity, and other reservoir parameters. For such purposes, the
numerical modeling approach is limited in its utility because of the
complexity of calculations. The present analytical approach will
prove more advantageous for such a well-test analysis.

Derivation of the governing equation, including temperature effects,
will be given in the following section where the permeability-viscosity
ratio is assumed to be an arbitrary function of r</t. In Section III,
this function will be represented by a Fermi-Dirac function, whose
parameters are determined based upon physical considerations. The
solution for the pressure change is analytic except for the final
step, where a numerical integration is called for. We discuss the
-results and implications of our calculations in Section IV. Summary
and concluding remarks are contained in Section V.

II. Derivation

We start with the three equations:

Eq. of continuity ’ é%(po) = -V o pv, ()
Darcy's law ve=- %1V P = -KVP, (2)
Eq. of state p = A(T)eBP, 3)

where the pertinent variables are p(demsity), ¢(porosity), v(velocity),
k(permeability), u(viscosity), B(compressibility) and P(pressure) A new
variable K is defined in terms of the permeability and viscosity (K = k/u).
The porosity and compressibility of the medium is assumed to be constant
in the following derivation. Working in the cylindrical coordinates

and combining equations (1), (2), and (3), one obtains:

2 2 :
3P alnA pK 9K\ 9P P e
pé ( ot ) (r "'a-) or + PBK (r) + PK ar2 (4

'For water, the percentage variation of density with temperature is much -
smaller than the corresponding viscosity variations over the same temperature
range. Under these conditions, we may consider 3{nA/3t to be small compared

with other terms in the equation. Furthermore, when the variation of
pressure is "smooth," it is customary to neglect the (3P/3r)2 term.

Then, Eq. (4) reduces to:

, : |
3P oK\ ap  _ 2%p o
Bo at'( "ar) ar'”(arz . - ()



Ideally, for incompressible fluid, the fluid front propagates as

~ r2/t, and it is therefore- expedient to apply the Boltzmann trans-

formation and change the variables from (r,t) to (z = r2/t,t).
- One obtains from (5) the final equation that governs the pressure
as a function of z = r /t‘ o : .

4Pl ¢ .dan(z) o8P _ ,
22¥*.(zf'4K<=_>f g ;),az} A e

vwhere the constant B¢ is now written as c. The boundary"conditions
for Eq. (6) are.‘. n o R

RO) f“i .P =P at‘rii‘w and t =0,
i.e., ° lim P(z’) =P . Sy D
e = °;_ o | e

, (ii) Incompressible fluid flow through a cylindrical surface
around a line. source implies » S _

lim(2wrh)v,=~f(fnrh5 K %%r‘ RN o (8)

wvhere Q 1s the pumping rate and h 1s the aquifer thickness.’ Apolying ’
" the Boltzmann transformation on. Eq. (8), ve. obtain, in the variable
z= T /t‘»' '

SRR P _Q_ el AT
: 11!!1 K(Z) P e R - e ; : (9)

We have now reduced the physical problem to the solving of a first—order,
_»_'differential equation for dP/dz, ‘provided- that the relevant permeability-
. viscosity function of ‘the system. is known Grouping equations (6). o

_ (7). and (9) together, we have:

2 2 L e atk@\NE . e
| d_P/dz + (—~+, e ;_45 - .)f‘_’z o (10a)
1im K(z)z -— - ; Q- - (10b)
20 @ Anh

~ 1im P(z) = P, ‘ SR B (10¢)

|z



JII. Solution

We assume that K(z) = k/u may be represented by a Fermi-Dirac
function given by:

(K, - K))

K(z) = —-m + K (11)

The function takes on the values of Ky, Kg, and (K + KR)IZ respec-
tively at z =0, z=o, and z = d (see Figure 2a). The function
varies appreciably only in the neighborhood of z = d; the parameter
a 'characterizes the range of z over which K(z) is appreciably
different from KI and Kg. The derivative dK/dz is a symmetrical -
function about z = d. The full-width half-maximum of dK/dz about
this point may be shown to be 3.52 a (see Figure 2b). This be-
havior of K(z) may be understood as follows: Near the wellbore
the function takes on the value of K = k/p = Ky, equal to that
of. 1njected water; and it takes on the value K, equal to that
of  the reservoir at large radial distances from the well. If
we assume a sharp temperature front between the cold injected
water and the hot reservoir water, then the location of this
transition from K1 to KR is given by:
2 P, C
Qt = 1mr'’h —— (12) -

pwcw

where py, Gy, Pa, C5 are the densities and heat capacities of water
and aquifer, respectively. Eq. (12) implies a constant value for
rZ/t = d, given by: ‘ ,

Qp, C
ww

d= T C (13)
a a

which is the same parameter d used in the Fermi-Dirac function. The fact
that the temperature front is not sharp is accounted for by the width of
variation from Ky to KR, given earlier by the parameter a.

Avdonin has solved the problem of the propagation of temperature
front with the injection of hot water into cold water in an aquifer.
In the limit, where there is no vertical heat loss, Avdonin's solution
is given by:

_ ‘ v vV Al )
T TR - erfc(o) (capa) EE 1 Capa r2 ds
T,~Tg T (v) [T t €XP |” %5 T« T w1 (14

0

"ve=Q prwléwhxa
where Tk = Inltial aquifer temperature
T; = temperature of injection fluid L.

K, = aquifer conductivity.



We note that in Eq. (14) the temperature again varies as r /t, -
as in-the case of K(z). Since the viscosity is a function of temp-
erature, one expects the variation of K(z) = k(z)/u(z) in Eq. (11)
to be intimately related to (T-T )/(TI'TR) here. In particular,
we may relate the widths of dK(z)/dz and (d/dz)(T-TR)/(T1-Tg). The
full-width half-maximum of the curve d/dz(T-Tg)/(T1~TR) is governed
by a transcendental equation. ‘However, in the limit of "marrow -~
width,"” the full-width half-maximum can be shown to be 4y2ka/(CaPa).
.Equating. the two full-width half-maxima, we arrive at the simple

expression. :
i ’Ka
| S L

B ¢ )

which relates the parameter a, in the cheoretical model for K(z), to
~7the physical property of the aquifer. ‘ :

Integrating Eq (103) and applying ‘the boundary conditions (10b),
- one gets ‘ .

: C z e : Ce S
_ RS 4 ‘ N v
.Integrating (16) and applying;the boondary oondition (10&);_ve get
- . oz
\’P\(Iz) =P = 4% K(z)z exp (- / K(i ) dz') dz . (17)

4 o

Given the Ferni-Dirao‘function:for K(z)‘(Eq. 11),,we’have’

- zfclfv' - ‘ 4+ c2 ca 1:;~;L::k; Kilekp(;(;‘dzla):+-KRi (18)
‘ ,'4K(z') 4 KR KR Ry K exp(d/a) + Ko v,_'

[¢]

Then, Eq. (17)'reduces to

(2) = p - 2 "1+ exp(‘?‘-(i -dj/a) .J:_ .
P(z) = P, - 4rh exP( ) KR + K; exp (- (z -d)/a) z' (19)
E B z B

1%4' K exp(-(z d)/ a)] (UK UKR)ca/a :
. e ’ — dz' .

exp( KR




Eq. (19) is integrated numerically. Figures 3 and 4 show the variation
of P(z) -~ P, with z for various values of d and a. Table 1 summarizes
the parameters used.

IV. Results and Discussion

The most interesting feature of these plots is that the curve
follows, for small values of t/r2, a Theis line with parameters corresponding -
to those of the native hot water, and for large t/r? 1t approaches & line
parallel to a Theis line with parameters corresponding to those of the
injqcted water. The transition occurs at z = d, or t/r2 = 1/d, where d may
be expressed in terms of the flowrate, heat capacities, and reservoir
thickness (see Eq. 13). Thus, injection well test data can yield the
transition point d and the separation A. These two additional parameters,
uhen coupled with the two which are normally obtained (transmissivity kh
and storativity ¢Bh) affords the possibility of determining the parameters
h ¢, and k separately, provided the heat capacities are known.

’ ' To make the solution more transparent, we break up the K function
into three sections as shown in Figure 2. Thus:

K = K z <d-w .
K= Km d-w <z <d+w } (20)
K= KR dtw <z,

Here, (d - w, d + w) detines the interval in z whére K changes from
Ky to Kg, and Kyp represents the Fermi-Dirac function given in Eq. (11).

Now Equation (17) gives the general pressure solution:
© z
= ——g— .l. - —.c—- \J
P= P %m Kz *P ( 4K(z') dz')dz .
o

With K given by Eq. (20), we have
. .
fz‘-:i-dz'=-l;%1—z for z <d-w
4 ,
z
-£_ ' —&_ a5t -
“(I (d-w) +f "Km dz d-w< z <ddw (21)
()

_ dw
gz—‘cq(d-W)-'-f"Kdez +—K—R(zd-w) z > diw .




rlThén; Ehe solution ié;éivéﬁ=for
';(a) 2 >ddw : 5 , : - :
B2 - - ® +__9._ , Ei(-—-—— TR (2

L R R

- i‘f"‘,e?f"_v[ > 3 ) s-"’-‘-(l_—
ﬂ_f‘ci-.{veéﬂ (KR+K‘exv<-i’4) SRR T

’)f = f :Km ) e

(23)

-

) dwszsaw

T P (z) = P (d+w) 'Z%{ ( (d v

ey e ed

P,(2) = P, (d-w) + —8— Ei (- 5 - (24)

bn KIh

For large z or small t/r » the solution behaves as a constant times’
‘the Theis solution using reservoir water parameters (Eq. 22). This con-
stant is approximately one, since w and a are "small" quantities des-
cribing the transition width from Kj to Kg. :

On the other hand, for small z or large t/r s pressure behaves as
the Theis solution with injected watér parameters, but with a constant
- shift, A, given by the firse term in Eq. (24), i.e.," :

A = Pz(d—w)-P° 

dtw

c | e '
14 1_ .
, e R (g ) e
- ] : . : e d-w | ‘
:- . _4 - T .z | - |
S *  exp (:/-Z'I-f dz) dz
| | _ - /. FD

where the second term may be obtained by numerical integration
(see Eq. 19) or by assuming the integrand to be approximately
constant over the interval (d - w, d + w).



In well-test analysis, Figures 3 and 4 may be used directly. The
early data may first be compared with the curve for t/r2 = 1/d yielding
kh and ¢Bh values. Matching of later data will give parameter d from
which h may be estimated (see Eq. 13).  Thus, k, ¢B, and h are evaluated.
Of course, in actual field-data analysis other possible effects (e.g.,
boundaries) may enter and great care has to be exercised.

V. Summary

A governing equation is obtained assuming temperature-dependent
viscosity. The solution is obtained by assuming the parameter k/u to
be a Fermi-Dirac function of r2/t. The constants in the function are
related to the cold water injection problem by a comparison with
Avdonin's solution. The result displays an interesting transient
pressure curve which initially (small t/r2 values) follows the Theis
solution with parameters corresponding to reservoir hot water and
"at large t/r2 values, turns and becomes parallel to the Theis
solution with cold water parameters. Use of these results for
cold water injection well-test analysis is briefly discussed.

Work performed under the auspices of the U.S. Department of Energy.
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Table_i,

: P&tgmétersiUsed in Calculations

Q = 80 kg/sec
" h = 150 m

1.2168*x'1o‘8'ms2/kg_
| 10

Le=08

5.4705 x 10710 n3s/kg

- o

RGOOD) = €300 ,
Oy o Ky o o 1 o7gs -10 3.

K(1007C) (u)100°C 1.7857 x 10 n" s/kg

4.2568 x 10 " m /s

fme
5.2566
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