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The greatest challenges of rigorously modeling coupled hydro-mechanical (HM) processes in fractured
geological media at different scales are associated with computational geometry. These challenges
include dynamic shearing and opening of intersecting fractures at discrete fracture scales as a result of
coupled processes, and contact alteration along rough fracture surfaces that triggers structural and
physical changes of fractures at micro-asperity scale. In this paper, these challenges are tackled by
developing a comprehensive modeling approach for coupled processes in fractured geological media
based on numerical manifold method (NMM) at multiple scales. Based on their distinct geometric fea-
tures, fractures are categorized into three different scales: dominant fracture, discrete fracture, and
discontinuum asperity scales. Here the scale is relative, that of the fracture relative to that of the research
interest or domain. Different geometric representations of fractures at different scales are used, and
different governing equations and constitutive relationships are applied. For dominant fractures, a finite
thickness zone model is developed to treat a fracture as a porous nonlinear domain. Nonlinear fracture
mechanical behavior is accurately modeled with an implicit approach based on strain energy. For
discrete fractures, a zero-dimensional model was developed for analyzing fluid flow and mechanics in
fractures that are geometrically treated as boundaries of the rock matrix. With the zero-dimensional
model, these fractures can be modeled with arbitrary orientations and intersections. They can be fluid
conduits or seals, and can be open, bonded or sliding. For the discontinuum asperity scale, the geometry
of rough fracture surfaces is explicitly represented and contacts involving dynamic alteration of contacts
among asperities are rigorously calculated. Using this approach, fracture alteration caused by deforma-
tion, re-arrangement and sliding of rough surfaces can be captured. Our comprehensive model is able to
handle the computational challenges with accurate representation of intersections and shearing of
fractures at the discrete fracture scale and rigorously treats contacts along rough fracture surfaces at the
discontinuum asperity scale. With future development of three-dimensional (3D) geometric represen-
tation of discrete fracture networks in porous rock and contacts among multi-body systems, this model is
promising as a basis of 3D fully coupled analysis of fractures at multiple scales, for advancing under-
standing and optimizing energy recovery and storage in fractured geological media.
© 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

these various subsurface energy activities (Rutqvist and
Stephansson, 2003). In subsurface energy recovery (e.g. hydrocar-

Fractures play key roles in subsurface energy recovery and
storage, including hydrocarbon and geothermal energy production,
and nuclear waste disposal. Fractures, with sizes ranging from
microns to kilometers, may act as conduits or seals for fluid flow in
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bon recovery and geothermal exploitation), effectively creating a
fracture network or making use of natural fractures is the key for
efficient production. In contrast, in subsurface energy storage sys-
tems (such as carbon sequestration and nuclear waste disposal),
fractures or faults may act as unfavorable flow conduits that may
compromise the seal integrity of the storage facility. In geological
systems involving fluid-filled fractures and porous media, complex
coupled hydro-mechanical (HM) and thermo-hydro-mechanical
(THM) processes can occur, including alteration of natural
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fractures and creation of new fractures that may intersect with
natural fractures. Because fractures play key roles in energy re-
covery and storage and because they can be created and altered as a
result of coupled processes, understanding coupled processes in
fractured geological media is essential.

At reservoir scale, fractures are often not isolated entities, but
form networks of interacting fractures. These fractures are usually
very thin (e.g. microns to millimeters) relative to their length
(meters). These fractures may dynamically alter in terms of their
dimensions and physical properties, and new fractures may be
created as a result of coupled processes. Since 1980s, a number of
numerical models have been developed for modeling coupled HM
processes in fractured rock, including equivalent continuum, dual-
continuum, and discontinuous models. As the arbitrarily oriented
fractures may influence the deformation and fluid distribution in a
complex way that cannot be simplified as a continuum, numerical
modeling considering discrete fractures with full coupling capa-
bility is of great importance. Noorishad et al. (1982, 1992) devel-
oped a finite element model for fully coupled HM and THM
processes in deformable fractured rock masses. After that,
increasing demands for engineering solutions have inspired
development of many computer codes capable of modeling HM and
THM behaviors of fractured rock at various levels of sophistication,
including those applied for the analysis of nuclear waste disposal
and geothermal energy recovery (Rutqvist et al., 2001). Most of the
aforementioned models were developed based on finite element
method (FEM). With the development of discontinuous methods,
fractures could be explicitly represented as a displacement
discontinuity, as they are modeled as interfaces between contacting
individual blocks. This includes models based on the distinct
element method (DEM), including the commercially available
universal distinct element code (UDEC) (Itasca, 2011) and 3DEC
(Itasca, 2013), and models based on discontinuous deformation
analysis (DDA) that treat coupled fluid flow and deformation in
discrete fractures, but with rock blocks being assumed imperme-
able (Kim et al,, 1999; Jing et al., 2001). Later, models based on
enriched FEM were developed (e.g. Silvestre et al., 2015) that
included simplified jump terms to capture the mechanical
displacement discontinuity and hydraulic pressure continuity
associated with fractures. In this method, however, the mechanical
effects on hydraulic properties were not considered.

Models where fractures are explicitly simulated can be catego-
rized depending on the geometric representation of the fractures
for fluid flow and mechanics. For fluid flow in fractures, there are
three types of models: n-dimensional (i.e. for two-dimensional
(2D) models, fractures are represented by 2D elements), n—1
dimensional (i.e. for 2D models, fractures are represented by one-
dimensional (1D) elements), and zero-dimensional models
recently developed by Hu et al. (2016, 2017b). As dimensions are
associated primarily with degrees of freedom (DOFs) to be solved in
the numerical modeling, the zero-dimensional model for discrete
fractures means that no additional DOFs are required for the frac-
tures because they are treated as discontinuous boundaries of rock
matrix. For mechanics of fractures, there are two types of models:
n-dimensional solid element models and discontinuous models
which treat fractures as discontinuities between contacting rock
blocks. The major disadvantage of n-dimensional fluid flow models
is the inaccuracy of representation of fracture apertures and the
changes they are subjected to, in spite of the high computational
efforts associated with the number of elements required to
approximate the real geometry of intersecting fractures. The
disadvantage of n—1 dimensional fluid flow models is that they
neglect fracture thickness and this results in additional required

DOFs that make them incompatible with mechanical models for
fractures (e.g. difficult to model initiation, shearing or re-opening of
fractures). Though discrete fracture network (DFN) models have
been widely developed, accurate and efficient modeling of inter-
action between fractures and rock matrix is lacking, especially
when geomechanics plays an important role. Mechanically, n-
dimensional solid element models (Rutqvist et al., 2009) are
excellent for representing fractures with certain apertures, but
when fracture apertures are far less than their lengths, the use of n-
dimensional solid elements becomes too computationally expen-
sive. Discontinuous mechanical models, on the other hand, are
promising for representing thin fractures where fracture surfaces
could be open, bonded or slip/shearing, but very few numerical
models rigorously consider all these mechanisms. Because of these
limitations, most models are not suitable for analyzing coupled
processes at discrete fracture scales without rigorous consideration
of intersections and shearing of the discrete fractures, particularly
those that may be evolving dynamically as a result of coupled
processes.

For single fractures, several models have been developed
recently for analyzing micro-scale coupled processes in fractures as
a part of the international DECOVALEX project (Bond et al., 2016).
The models were categorized into 2D simplified models, statistical
models, and homogenized (in which a rough fracture surface is
treated as a single entity) models. For example, McDermott et al.
(2015) presented a model that combined numerical (for flow) and
analytical (for chemo-mechanical) methods to simulate small-scale
coupled chemo-hydro-mechanical processes, but the model is
limited to parallel edge to edge surface contacts. Pan et al. (2016)
developed an elasto-plastic cellular automaton model for a single
fracture using grids with different apertures to represent contacts
and voids. In their model, flow and transport are calculated using
conventional numerical schemes. However, the mechanics and
contact alteration of the fracture are not considered in their anal-
ysis. In these models, geometric features (such as rough boundaries
along fractures, pores and grains) are either not represented
explicitly, or they are approximated by spheres or rectangular grids.
Thus, contacts along rough surfaces cannot be accurately captured.
Because of these limitations, numerical modeling of coupled pro-
cesses has to the author’s knowledge never been attempted at the
microscopic scale where discontinuities are important.

In this paper, numerical approaches are presented using nu-
merical manifold method (NMM) that is able to overcome the
limitations as discussed above, in order to simulate coupled pro-
cesses at multiple scales. In Section 2, fractures are categorized into
three different scales based on their geometric features: dominant
fracture, discrete fracture, and discontinuum asperity scales. The
analyses of the fundamentally different physical constitutive be-
haviors and coupled processes of fractures at each of these three
scales are presented. In Section 3, NMM is introduced that allows
simulating fractures as continuities as well as discontinuities. In
Section 4, three different models for these three scales of fractures
are presented. These are (1) a finite thickness zone model for
dominant porous fractures with nonlinear mechanical behavior; (2)
a zero-dimensional fracture model for fluid flow and mechanics in
fractures networks, where fractures are boundaries of the rock
matrix, and can be open, bonded, or sliding while being fluid
conduits or seals; and (3) explicit model for micro-scale fractures
with rigorous treatment of contacts between fracture asperities and
their dynamic alteration. In Section 5, differences among these
different models are summarized, and the challenges associated
with numerical modeling of coupled processes in fracture at mul-
tiple scales are concluded.
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2. Fracture across scales: Geometric and physical features
2.1. Three scales of fractures based on geometric features

Depending on multiple scales, fractures appear to have different
geometric and physical features. Fig. 1 shows discrete fractures at
reservoir (100 m-10 km), outcrop (1 m—100 m), and core (1 mm—1
cm, Ajo-Franklin et al., 2018) scales. Herein, it can be seen that at
the reservoir and outcrop scales, fractures appear in groups, arbi-
trarily oriented and intersecting with each other. At the core scale, a
dominant fracture appears, possibly filled with mineral fillings and
connected with smaller fractures at the surrounding rock. If looking
at the microscale (1 um—1 cm) or nanoscale, a single fracture ap-
pears to be quite rough and its tensile failure could be controlled by
failure of carbon nanotubes (Taloni et al., 2018). Therefore, the three
types of fractures can be geometrically summarized: dominant
fractures with a certain width, discrete thin fractures, and dis-
continuum fractures with asperities forming rough surfaces.

Note that the scale is relative, meaning that the scales of frac-
tures are relative to the scale of interest of the problem or domain.
For example, at 1 m-1 km scale, fractures/faults could also appear
with similar geometric features to that at core scale, and those
different sized fractures could be considered as dominant features
of their respective scale of interest. Another example is that fracture
networks could exist at micro-scale, such as micro-fractures in core
samples, micro-crack populations associated with subcritical crack
growth. Regardless of different formation mechanisms
(Voigtlander et al., 2018), micro-fractures in rock cores appear to
have similar geometric features to meter-scale discrete fractures at
reservoir. Based on this ‘relative scale’ concept, it is also possible to
label micro-crack populations as discrete fracture scale, which
makes it reasonable to use similar types of numerical models to
simulate discrete fracture networks at reservoir.

Corresponding to geometric features, physical features of frac-
tures at different scales can also differ. For a dominant fracture, it
can be porous, connected with small cracks, or filled with minerals;
across its width, compression of the fracture can be more difficult
for a given increment of stress, resulting potentially in a fracture
with a residual aperture. For discrete fractures, they may serve as
fluid conduits or seals depending on their connectivity and flux
exchange with the rock matrix. They may be mechanically open,
bonded, or shearing due to fluid pressure or stress. If looking at a
fracture at micro-scale, on the two sides of the rough surfaces, a
significant difference of the open fracture channel and rock matrix
can be identified. Fluid flow mostly occurs within the open channel,
while the mechanical deformation of the rock matrix impacts the
geometry of the open channel. Furthermore, the deformation of the

Reservoir (100m-10km)
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fracture surfaces can be significant, due to the lack of constraints
even though the surface-to-surface contacts exist.

2.2. General governing equations for coupled processes in porous
media

Regardless of the scales considered, in a fluid-saturated porous
system (e.g. rock matrix or a dominant fracture), coupled HM
processes satisfy conservation of momentum and mass, described
by Biot’s general theory of three-dimensional (3D) consolidation
(Biot, 1941):

Vea+f =0 (1)

(2)

where ¢ is the total stress tensor, f is the body force vector, v is the
fluid velocity vector, « is the Biot—Willis coefficient (usually ranges
between 0 and 1), ey is the volumetric strain of the porous media, M
is the Biot’s modulus, p is the fluid pressure, and t is time. The Biot—
Willis coefficient as a factor multiplied by fluid pressure in Eq. (1)
signifies a modification and generalization of Terzaghi’s effective
stress law to
o =0 —map (3)
where ¢’ is the effective stress tensor, m' = [1,1,1, 0, 0, 0] for three
dimensions or m" = [1, 1, 0] for two dimensions.

For mechanical analysis of linearly elastic porous media with
small-deformation, we have

o' = Ee (4)
e =Au (5)
T
x O
A= (6)
o 9
ay ox

where E is the elastic constitutive tensor, ¢ is the strain tensor, A is
the strain-displacement matrix, and u is the displacement vector.

For fluid flow in porous media, it is assumed that the fluid flow
satisfies Darcy’s law:

Core (mm-cm)

Fig. 1. Fractures at reservoir, outcrop, and core (Ajo-Franklin et al., 2018) scales.
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v= —KVh (7)

where K is the tensor of permeability coefficient, and h is the hy-
draulic head or the piezometric head (i.e. the sum of the pressure
head and the elevation head).

In the case of fractures, in contrast, different governing equa-
tions and constitutive relationships are applied for fluid flow and
mechanics. These will be presented in detail in Section 4. In general,
two types of couplings between fluid flow and mechanics exist:
direct and indirect couplings (see Fig. 2, as a concept presented by
Rutqvist and Stephansson (2003)). Direct couplings refer to as solid
deformation perturbing conservation of mass that impacts pore
fluid pressure (i.e. pore-volume coupling), while fluid pressure
impacts the effective stress. Direct couplings are included in Biot’s
general theory (Egs. (1)—(3)). When volumetric strain is very small,
however, direct coupling will be reduced to one way. Indirect
coupling means that hydraulic or mechanical properties change
with deformation and/or fluid pressure, where the fracture
permeability is very sensitive to deformation, and this requires
accurate calculation of this indirect coupling.

3. Fundamentals of NMM

NMM (Shi, 1991) is based on the concept of “manifold” in to-
pology. In NMM, independent meshes for interpolation and inte-
gration are defined separately. Based on this approach, an initially
one-time generated, non-conforming mesh (not necessarily con-
forming to the physical boundaries) can be used and flexible local
approximations can be constructed and averaged to establish global
approximations for both continuous and discontinuous analyses.

In NMM, independent mathematical and physical covers are
defined. A mathematical cover is a set of connected patches
covering the entire material domain. For example, a quadrilateral/
circular/rectangular patch can be used as a mathematical cover (see
A, B, Cin Fig. 3, respectively). Features such as density and shape of
these mathematical patches define the precision of the interpola-
tion. The physical patches are mathematical patches divided by
boundaries and discontinuities, determining the integration fields.
The union of all the physical patches forms a physical cover. For
example, physical patch C is the entire model domain, while
physical patch B is divided from mathematical patch B by bound-
aries. Physical patch A (divided from mathematical patch A by
boundaries) is further divided into physical patches A; and A, by
the inner discontinuity. The overlapping areas by multiple physical
patches are defined as elements. As a result, the model domain Q is
discretized into five elements: AiBC (the overlap of physical
patches A4, B and C), A1C, A,C, BC, and C. From Fig. 3, it can be seen

Mechanical solid
volume change

Hydraulic fluid
pressure change

Fig. 2. Hydro-mechanical direct (I) and indirect (II) couplings (Modified after Rutqvist
and Stephansson, 2003).

N

> T
BCl fad
: T 22 7

B ne) le | c

/

Fig. 3. NMM mathematical and physical meshes.

that the shape of the mathematical patches can be arbitrary; the
relative location of the mathematical patches to the model domain
can also be arbitrary (only if satisfying QcAUBUC), and the
number of physical patches on each element can be arbitrary.

On each physical patch, a local function is assigned, such as
constant one, linear one, or anyone that is able to capture the so-
lution behavior on the patch. The weighted average of the local
patch functions forms the global approximation. For example, if
using linear local functions, a global second-order approximation
could be constructed (Fig. 4a, Wang et al., 2016); if using a local
function with a jump of the first derivative, a material interface
crossing patches and elements could be simulated (Fig. 4b, Hu et al.,
2015b). Or most commonly, if using discontinuous local functions,
fractures can be simulated (Fig. 4c, Hu et al., 2016, 2017b). With this
dual-mesh concept, NMM is capable of simulating both continuum
and discontinuum problems with accurate geometric representa-
tion and flexible numerical approximation. With the advantages of
dual-mesh concept, NMM also has been successfully applied to
analyzing moving interface problems, such as free surface flow
(Wang et al., 2014, 2016; Zheng et al., 2015; Yang et al., 2019).

NMM with the concept of global approximation can be related
to other numerical methods, as shown in Fig. 5. If using a bilinear
weight function on rectangles with a constant local function, NMM
can be simplified to the FEM. If using a piecewise linear weight
function in each direction with a constant local function, NMM is
then simplified to the finite volume method (FVM, Hu and Rutqvist,
2020). If using a constant weight function with a constant local
function, NMM is simplified to the DEM. If using a constant weight
function with a linear patch function (resulting in a notable dif-
ference from DEM with constant patch function), NMM is simpli-
fied to DDA. Nevertheless, a comparison of various numerical
methods on all aspects is not attempted to be made herein,
including (1) interpolation/approximation, (2) construction of
global equilibrium (transforming differential to integral equations),
(3) approaches of integration, and (4) solving of linear or nonlinear
global equations. Only the first aspect is compared, i.e. interpola-
tion/approximation, as it defines fundamentals of a numerical
method. NMM provides a flexible and general approach to include
continuous and discontinuous methods in a unified form.

In this study, constant patch functions and linear weight
functions composed of shape functions of triangular mathe-
matical meshes are used to approximate temperature, fluid
pressure and displacements, which are generally expressed as
follows:

¢ = WT‘Ppc (8)

where ¢, w and ¢, are the field variables (such as hydraulic head
or fluid pressure and displacements), weight function, and physical
patch functions, respectively.
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Fig. 4. Flexible choice of local approximation functions: (a) linear function, (b) a jump junction for a weak discontinuity, (c) a discontinuous function for a fracture.

Finite volume
method (FVM)

Finite element
method (FEM)

Discontinuous
deformation analysis
(DDA)

Discrete element
method (DEM)

Weight
function

Cover/
patch
function

Fig. 5. Relating NMM to other numerical methods.

4. Modeling coupled processes in fractures at multiple scales:
numerical models and applications

4.1. A finite-thickness nonlinear poroelastic model for dominant
fractures

In fractured rock masses, it is common to see individual dominant
fractures or faults with asperities and mineral fillings that cannot be
easily simplified to parallel planes. The main flow feature may be a
complex geologic feature, consisting of multiple branching fractures
intermingled with mineral-filled sections and damaged host rocks
adjacent to fracture surfaces (Fig. 6a). Another related key property is
the nonlinear relationship between stress and fracture aperture.
Moreover, the flow feature is also associated with a mechanical
weakness that may allow for inelastic shear slip along its plane.

- (a)
P - =
— // Conceptual model

—

—

. - \ from field mapping
PR 2D

(b)
Simplified Model

Surrounding rock

Idv

Fig. 6. Schematic of the simplified porous fractured rock model.

In a study focusing on the larger scale (larger than a single fracture/
fault), a porous finite thickness zone was developed to deal with this
type of system (Hu et al., 2017a). This finite thickness zone is porous
and has strong nonlinear properties reflecting fracture flow and
fracture opening and/or shear behavior, in consideration of fracture
filling effects. The thickness of this equivalent porous media flow
feature in the model may far exceed the real fracture width including
open fracture parts and filling. It can include part of the host rocks on
each side of the flow feature, still retaining the key features of po-
tential fracture flow and nonlinear deformation behavior. The model
for such a feature is depicted in Fig. 6b. It is a porous medium of
thickness Iy that includes a dominant fracture flow path as well as
other materials such as fracture filling and part of the host rocks.

With the concept of the porous finite thickness zone that has
nonlinear flow and mechanical features, this section describes its

!

On

op = &/bi

\_k, = da../db,,
b, = O

me

Fig. 7. Nonlinear relationship between ¢}, and by, (Modified from Rutquvist et al., 2000).
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mathematical formulation, numerical implementation, and shows
an application with such a model.

4.1.1. Mathematical statement

In order to account for the nonlinear feature of the porous
fracture, a reformulation of Bandis et al. (1983)’s equation (Rutqvist
et al., 1998, 2000) is used to describe the nonlinear relationship of
the effective fracture normal stress o}, with the mechanical aperture
bm (as shown in Fig. 7):

£
0';1 = E + 0'{,10 (9)
where o7 is related to a Bandis’ parameter, which is user-defined;
and £ is a constant defined as

£ = bmi(0; — 0po) (10)

The following relationship describes the behavior of fracture
shear displacement under shear stress:

/ Aug
%s = 73 Yhus (1)
where { and ¥ are the constants; o7 is the shear stress; and Aus is
the shear displacement. Examining Eq. (11), it is concluded that
when ¥ = 0, the linear relation between shear stress and shear
displacement is retained.

For fluid flow in fractures, the hydraulic conductivity k; of a
fracture is related to a hydraulic fracture aperture by,, which can be
defined according to Witherspoon et al. (1980):

b2peg

k= o

(12)

where p; and pg are the fluid density and dynamic viscosity,
respectively; g is the gravitational acceleration; and by, is the hy-
draulic aperture assumed to be

by = by + fbm (13)

where by, is the residual hydraulic aperture when the fracture is
mechanically closed, and f is a factor that compensates for the
deviation of flow in a natural rough fracture from the ideal parallel
smooth fracture surfaces.

With the above concepts and equations, the aperture of the
dominant fracture flow path is used to calculate the hydraulic
conductivity as given in Eq. (12). The deformation behavior of the
finite thickness zone is contributed to two parts: the nonlinear
behavior of the fracture described in Eq. (9), and linear elastic
deformation of the solid fracture fillings and adjacent host rocks.
The HM coupling includes direct pore-volume coupling, as well as
indirect coupling with changes of mechanical and hydraulic prop-
erties induced by flow and deformation, respectively.

4.1.2. Numerical approach for the nonlinear constitutive behavior

As shown in Fig. 6, dominant fractures are represented as a finite
thickness zone with a given width and constitutive behavior
differing from rock matrix. Geometrically, the fracture zone has the
same dimension as the rock matrix (i.e. n-dimensional represen-
tation). Therefore, the geometric discretization for dominant frac-
tures is the same as that for the rock matrix. Here an approach is
described to model the nonlinear physical constitutive behavior of
this zone.

As the deformation of the finite thickness zones consists of
linear deformation of the mineral fillings and adjacent host rocks
and nonlinear deformation of the fracture, the normal strain is
expressed as the summation of the two:

. . b(ii> _ b(ii*)
el = mooy? M I(ﬁfl")“ (14)
d

where the superscript ii represents the ii-th time step, and 7 rep-

resents the compliance of fillings and adjacent host rock within the
fracture zone. Combined with Eq. (9), Eq. (14) becomes

oru'ijio_, - or(ii—])id,
n n0 n no
I(ii—]) ( 1 5)
d

egi) = néo’,ﬁii) +

In order to accurately account for the nonlinear behavior of the
finite thickness fracture zone, an implicit approach was developed
by Hu et al. (2017a). In this approach, instead of using an approx-
imation with linear segments to the nonlinear relationship, the
nonlinear mechanical behavior is fully incorporated using strain
energy for the material under deformation. Therefore, those
nonlinear relationships are directly introduced to strain energy as
described in the following subsections for normal and shear
deformations.

The normal constitutive model expressed in Eq. (15) can be
rewritten as

A L () + )

2n
(16)
(ii—1) 2 3
— ey —alg) +x" - A
d
where
i) 3
X=én + [ gy 1D (17)
n

The strain energy in the porous medium representing a fracture
zone I, is expressed as

(if)

M — / /0 EPIORRORT (18)
Combined with Eq. (16), Eq. (18) becomes

I = 21_17 / / Bxgm (egl)) n Xgu) eg”}dsdn (19)

where

; (ii—1) )
@) _ X /(ii—1)
X = (1) +77(Un
d

[ e+

/
+ UnO)

(20)

(i—1)
Iy

N——
(ii—1)
Id

X(iil):| 2 .4 3
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(ii—1 (ii-1)
- |t - ) 5]

ii—1 (ii-1)
et

(21)

2

£
(1;—17
Id

ii—1) _ g
= i), (22)
on -0l
Transforming coordinates from global x-y to local s-n coordinate
system yields

‘l s ‘l . T T s T
Moo =5, / / [jxg% CC"e + X CTe | Jdxdy (23)
os s
0x 9 i
where €T = {sinf, cos®f, —sinfcosf}, J = X Y and el =
C'e. on - on
ax ay

The shear constitutive model expressed by Eq. (11) can be
further expressed as

, i

- S
vl @
where

e’ = aul® /bl (25)

Similar to the approach for fracture normal mechanical
behavior, the associated strain energy using Eq. (11) can be written
as

(ii-1)
Mg = / {%egii) _Z/z_‘;‘m [€ /bl + el }dQ (26)

With Taylor expansion and coordinate system transformation,
we have

1 piE-v " A (i) T T (ii)
My = 57, / / AulPBTCTC'B AulJdxdy (27)
where
cT = {— sinfcosd, sinfcosd, cos20, — sinzﬁ} (28)
T
a_ax 0 aﬂ 0
B - y (29)
0 0 o 0
ay x

Fluid flow in the fracture zone is governed by Eq. (2), where the
volumetric strain perturbs conservation of mass (direct coupling).
In addition, the hydraulic conductivity of the fracture zone is
expressed by Egs. (12) and (13), where hydraulic aperture should be
updated dynamically as a result of the deformation of the fracture
zone (indirect coupling).

As the fracture zones are modeled in this approach as porous
media with nonlinear properties that differ from the surrounding
rock, the boundaries of the fracture zones are regarded as material

interfaces. The displacement continuity across these material in-
terfaces is realized by the penalty method (Shi, 1991) combined
with the continuity of hydraulic head, and the normal flux is ful-
filled by the Lagrange multiplier method developed by Hu et al.
(2015a).

With the energy-work based theorem (Wang et al., 2014), work
and energy associated with fluid flow and mechanical deformation
are implicitly constructed and updated at each time step. Minimi-
zation of the total energy at each time step leads to the global
equilibrium equations.

4.1.3. Example: Coupled processes at a single dominant fracture

In order to demonstrate the formulation in consideration of both
direct and indirect coupled HM processes in rock with fractures, a
rectangular rock domain is simulated, which contains a fracture
zone subjected to instantaneous vertical load and a constant
pressure fluid injection. The simulated domain is 1 m wide and 2 m
high, with a 1 m x 0.1 m horizontal fracture zone at the vertical
center (Fig. 8). The mechanical fracture aperture for the assumed
dominant fracture is 1 x 10~% m (0.1 mm) with an equivalent hy-
draulic aperture of 5 x 10~> m (50 pm). For the rock matrix, the
Young’s modulus is 4 GPa, the Poisson’s ratio is 0.2, and the
permeability coefficient is 5 x 10~° my/s. For the fracture zone,
Bandis’ parameter o7, is 5 MPa, the shear constants {is 101 pa!
and y is 0, and the factor f is 0.5. Initially, the total vertical stress
is —8 MPa (compressive stress) and fluid pressure is 0.

First, an instantaneous 10 MPa vertical downward load is
applied on the top of the domain. A mechanical analysis without
fluid injection was conducted. This results in an instantaneous
closure of the fracture as a result of its nonlinear normal closure
behavior with changing normal stiffness. The simulation indicates a
mechanical fracture aperture of 6 x 107> m (60 pm) at the final
steady state, which is accurate according to Eq. (9). Then a simu-
lation was conducted considering only indirect coupling, i.e. the
fluid—solid interaction terms for direct coupling is deactivated. In
this case, the coupling occurs only in one way, i.e. mechanical
deformation affects permeability but there is no influence of fluid
pressure on the mechanical field. The changes of mechanical and
hydraulic properties of the fracture under load and injection with
constant pressure of 8 MPa at the left end of the fracture zone and
the pressure at the right end of the fracture zone are fixed at zero.
Finally, the full package is run, considering both direct and indirect
couplings with results shown in Fig. 8.

The distribution of fluid pressure in the following three cases is
compared: (1) without considering coupling, (2) only considering
indirect coupling, and (3) considering both direct and indirect
couplings in Fig. 8. The difference of fluid pressure distribution in
Fig. 8a and b is not obvious, indicating that a steady state is reached
for the case of indirect coupling only after 30-d injection. However,
in Fig. 8¢, a steady state has not been reached and fluid continues to
dissipate from the left to right. This difference can be explained by
the fact that in Fig. 8b (with only indirect coupling), a steady state is
reached when mechanical deformation no longer occurs, whereas
in the case for Fig. 8c, the final steady state will be reached only
after the interaction between the mechanical and fluid flow fields is
balanced. The slower convergence to steady state shown in Fig. 8c is
caused primarily by pore-volume direct coupling in the relatively
low permeability rock matrix. As observed in the simulation, fluid
flow reaches steady state much earlier in the fracture zone (see
Fig. 8c). Overall, the effect of pressure on solid deformation is not
obvious, which is also reflected by the rapid convergence of fracture
aperture to its final values for both cases (2) and (3). Further, the
aperture change is compared with time at the injection point under
these two conditions. The aperture at the final stage reduces to
6 x 107> m (60 pm) when only considering indirect coupling. This
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Fig. 8. Distribution of fluid pressure (MPa) for (a) flow analysis without considering coupled effects, 30 d after injection; (b) only considering indirect coupling; and (c) considering

both direct and indirect couplings. The dimensions of the simulated domain are in meter.

value is the same as the one in the case of pure mechanical analysis,
proving its verification. However, when considering both direct and
indirect couplings, the aperture remains steady at 6.5 x 107> m
(65 um) under the effect of fluid pressure on the solid skeleton.
Based on this simple example, it is known that pore-volume direct
coupling may play a significant role for dominant fractures, there-
fore n-dimensional models which consider the direct coupling and
nonlinear behavior of the fracture zone are necessary for analyzing
coupled processes for this type of fractures.

4.2. Zero-dimensional model for discrete fractures

At discrete fracture scales where fractures may be oriented and
intersecting arbitrarily, n-dimensional and n-1 dimensional
models have limitations. A zero-dimensional model was developed
to simulate fluid flow, geomechanics, and their couplings. In this
section, the general mathematical formulation, geometric
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@4s)
bu(s) . ®As)
®'(s,n) TTibb

@'(s,n)

Fig. 9. Fluid flow (a) along fracture and (b) normal to fracture directions in zero-
dimensional model.

representation, and numerical implementation are summarized
and an example is given to demonstrate its efficiency and
capability.

4.2.1. General mathematical formulation

The basic idea of a zero-dimensional fracture model is to use the
surrounding elements of a fracture to represent the fracture,
avoiding the need for additional dimensions or DOFs for the frac-
tures themselves. Since the fractures are treated as discontinuous
boundaries of the rock matrix, no additional DOFs are required to
represent them. For fluid flow and mechanics in porous media, Egs.
(1)—(7) are still applicable. As for fractures, flux occurs both along
fracture and normal to fracture directions. Fig. 9 shows how this is
accomplished numerically for the two flow directions (where ¢
represents variables, i.e. hydraulic head for flow and temperature
for heat transfer).

Fig. 9a shows fluid flow along fractures. Because the fractures in
this case are very thin relative to their length (e.g. microns to
millimeters aperture for meter-sized fractures), it can be assumed
that hydraulic head within the fracture is uniform across its
thickness:

@(s) = or(s) = ¢'(5) (30)

where ¢ and ¢’ denote the field variables on different elements that
are divided by the fracture, ¢¢(s) is field variable within a fracture,
and s represents local coordinate along the fracture. Thereby, fluid
along a very thin fracture is represented by flow along its two
surfaces:
!

af = —arg = —ar (31)
where ar is the permeability coefficient for Darcy flow, and gf is the
flux. Here parallel plate flow in fractures is assumed as given in Eq.
(12).

Fig. 9b shows the fracture-matrix interaction, i.e. fluid or heat
exchange normal to a fracture. A fracture that is bounded by its two
surfaces from the surrounding rock is explicitly represented by
these two surfaces, which belongs to different elements. As the
fractures are assumed to be thin and unfilled, the distribution of the
field variable on each surface of a fracture and within a fracture is
uniform in the direction normal to the fracture surfaces. Therefore,
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Fig. 10. Mechanical states of each segment of a fracture in networks: open, bonded and sliding.

these two fracture surfaces are considered to consist of two
Dirichlet boundaries:

@o(s) = @' (s)Ng(s) = ¢(s)

The Eqgs. (30)—(32) include all the possibilities of fluid flow in a
fracture, which may act as a fluid conduit or seal. In contrast, the
mechanical state of a fracture is more complicated. A fracture may
have several segments and each of the segments could be open,
bonded, or sliding, as shown in Fig. 10. The contact state is impacted
by fluid flow and mechanical deformation, and may be dynamically
changing. In view of the mechanical states, these three states have
different boundary constraints.

When the segment of a fracture is open, it is considered that it
has a linear constitutive behavior:

00(5) = 0(5)Ns(s) = /() } (32)

oot = ki [[ug]] (33)

where o} denotes a tensor of effective stress in both normal and
tangential directions of a segment of a fracture, k; is the stiffness
tensor of the segment, and [[u¢]] is the jump of displacements in
both normal and tangential directions of the fracture segment.

When a segment of a fracture is bonded, the distances between
the two sides of the segment should be zero:

di =0 (34)

where d; is the vector of distance, including the normal distance
dr , between the two surfaces of the fracture segment, and relative
distance d; 5 along the two surfaces. d; is calculated by accounting
for original distances, and the relative displacements of the two
surfaces while they are moving and deforming.

When a segment of a fracture is sliding, the Coulomb’s law of
friction is satisfied in the tangential direction, while the normal
distance between the two surfaces of the fracture segment should
be zero:

Fr = F} tan <psgn<df_,s) Ndgp, =0 (35)

4.2.2. Implementation of zero-dimensional model in NMM

The key issues for modeling coupled processes in discrete
fractures are how to handle (1) the geometrical representation of
intersecting fractures, (2) fracture flow and fracture-matrix flow
interaction, (3) deformation and dynamic contacts involving slip
and opening of the fractures, and (4) couplings between flow and
mechanics.

(1) Geometric representation

In order to explicitly simulate fluid flow and mechanics of
discrete fractures as well as their interactions (flux exchange with
rock matrix), both fractures and rock matrix need to be

geometrically represented. In NMM, a triangular mathematical
mesh is used to overlap the entire simulation domain. Once the
mathematical mesh is generated, the same tree-cutting algorithm
could be used (Shi, 1991; Hu et al., 2017b) to generate the physical
covers and elements, divided by fractures and boundaries,
considering locations of triangle edges. Fig. 11 shows different
meshes for fractured porous rock domains with 20, 60 and 150
fractures. The triangular mathematical meshes are independent
from the fracture geometry. Indeed, fractures and boundaries
divide mathematical meshes into arbitrarily shaped physical covers
and elements. By using two coincided lines to represent a fracture,
all fractures are accounted for in the calculation, including isolated
fractures that do not intersect with other fractures where their
interaction with the rock matrix cannot be ignored. It is also
interesting that with the tree-cutting algorithm, cases of fluid flow
in porous media with sealed fractures are readily modeled.

Corresponding to the mechanical states of fractures described
by Egs. (33)—(35), each fracture is discretized into several line
segments and these segments may have different contact states.
Thus, it is possible to consider complicated behaviors such as shear
dilation or uneven opening of a fracture. The density of fracture
discretization is consistent with the global meshing density (see
Fig. 11), which can be selected flexibly.

An important issue for calculating discrete fractures is how to
simulate intersections of fractures. Fig. 12 demonstrates a geo-
metric representation of two fractures that intersect with each
other as well as with one triangular mathematical mesh. As can be
seen, the two intersecting fractures divide the triangle into four
different parts (A, B, C, D). Then fluid flow and contact states
(satisfying constraints described by Eqgs. (33)—(35)) will be applied
on the four pairs of parallel interfaces (interfaces between A and B,
Cand D, B and C, and A and D) to account for the opening, bonded
and sliding states of the surfaces of each fracture.

Fractures in open and bonded states or alteration between these
two states are easier to simulate because this does not require
changes of contact pairs. Zero-dimensional fracture model assumes
that at the initial stage, a fracture is approximated by two surfaces
parallel with each other at the beginning, but these two surfaces
can be non-parallel after deformation and motion, or opening of the
fracture caused by fluid pressure. This capability is included in the
algorithm.

A significant challenge for modeling coupled processes in frac-
ture network is to simulate shearing along fractures, as this leads to
dynamic changes of contacts between different elements. As shown
in Fig. 13, when the four blocks A, B, C and D are in contact (when
the fractures are completely bonded), the contact pairs are A and B,
B and C, Cand D, and A and D. But when sliding (slip) occurs at one
of the fractures, the contact pairs become A and B, B and C, B and D,
Cand D, and D and A. By using a rigorous contact algorithm that
updates contact pairs at each time step, sliding along fractures can
be rigorously and explicitly represented.
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Fig. 11. NMM mesh generated for fractured porous rock with (a) 20, (b) 60, and (c) 150 fractures.

Fig. 12. Geometric representation of an element with one intersection by two
fractures.

The concept of a zero-dimensional fracture model was proposed
by Hu et al. (2016) for the first time and it is a practical method to
simulate discrete fracture networks. The zero-dimensional fracture
model is distinct from zero-thickness models, as the zero-
dimensional model considers the thickness of a fracture and its
change under deformation (i.e. the fractures have a width). With no
need to introduce additional DOFs for fractures, such an approach is
very flexible to model existing and initiated fractures as well as
shearing and re-opening of fractures.

(2) Zero-dimensional model for coupled fluid flow and me-
chanics in discrete fractures

The explicit geometric representation of discrete fractures with
no need to introduce additional DOFs lays the basis for the zero-
dimensional model for fluid flow and mechanics of discrete frac-
tures embedded in a porous rock matrix. By using a zero-
dimensional fluid model, both along-fracture flow and fracture-
matrix interaction can be handled. In this model, effect of a resid-
ual hydraulic aperture on fluid conduction is considered even when
the fractures are mechanically closed. When the mechanical aper-
ture of a fracture is changing due to continuous opening or the
change of contact state, its hydraulic aperture and hydraulic con-
ductivity are updated. Moreover, as a result of deformation, fluid
flow and their coupling, the contact state may change dynamically,
and the corresponding constitutive behavior should be described
differently. Such a stringent scheme that guarantees the accuracy of

the results when considering complex fractured rock and HM
coupling is important. The scheme also accounts for indirect cou-
plings. Thus, coupled HM responses are able to be modeled in a
complex intersecting fracture network.

An energy-work based formulation for flow is used to establish
the global equilibrium equations by minimizing the total potential
energy associated with each component of work. The work asso-
ciated with along-fracture flow st is represented as

1 oh
stziﬁ’bh/(vgg

where vf represents flux in the direction along a fracture; h and i’
are hydraulic heads on the two surfaces of a fracture.
Combining with Eqgs. (7) and (36) yields

1 oh\? oh\ 2
wi — zybh/{kf<&) +kf(g) }ds

The work associated with fracture-matrix interaction flow W{ is

ol’
+ vgg) ds (36)

(37)

oh

: W
wi = 77/ Kt o B—n(h’—h)Jr%(h—h’)}ds (38)

where ds denotes integration on each discretized segment of a
fracture; and k¢, is the permeability coefficient in the direction
normal to the fracture.

For calculation of the contact between two fracture surfaces,
there are different terms of potential energy associated with
different contact states described in Eqs. (33)—(35).

When a fracture segment is open, the linear fracture constitutive
behavior (Eq. (33)) is represented by its corresponding strain
energy:

1
Miopen = [ oiderd = 5 [ [flk )i (39)
When a segment of a fracture is bonded, the continuity of
relative distance described as Eq. (36) is enforced by using the
penalty method:

Fig. 13. Geometric representation of open, bonded and sliding contact states for elements divided by intersecting fractures.



M. Hu, J. Rutqvist / Journal of Rock Mechanics and Geotechnical Engineering 12 (2020) 667—681 677

1
1Tt josed = jdggfdf (40)

where g; represents the stiffness of penalty springs in normal and
tangential directions.

When the two surfaces of a fracture segment are sliding, the
continuity of displacement in the normal direction should be
satisfied and this is realized with normal component of Eq. (40). In
the tangential direction, potential energy associated with sliding
state for the two surfaces corresponding to Eq. (35) is

IT¢ giiding = & ndf nSEN (df,s) taneds (41)

where the vector signs of II¢ gjiging and d s represent the two sides
of one fracture segment that may have different shearing dis-
placements. By accounting for this together with geometric rep-
resentation as shown in Fig. 13, sliding (slip) along fracture surfaces
can be accurately simulated.

4.2.3. Example: Coupled processes in discrete fractured porous rock

The zero-dimensional fracture model is applied to a rather soft
100 m x 100 m porous domain containing 25 arbitrary fractures.
The domain is subjected to a 10 kPa traction on the top surface with
a hydraulic head of 0 m. The other three boundaries are imper-
meable. The initial hydraulic head is assumed to be h = 100 m over
the entire domain. For the rock matrix, the Young’s modulus is
4 MPa, the Poisson’s ratio is 0, and permeability coefficient is
25 x 1078 m/s. For the discrete fractures, the initial mechanical
aperture is 0, the shear and normal stiffnesses are both 1 x 10 Pa/
m, the factor fis 0.5, and the residual aperture by is 10 um.

In this example, only the major responses to the load are presented
as a demonstration of the zero-dimensional fracture model. The
simulation ran for 1000 d with the results shown in Fig. 14. The
traction load from the top has caused a significant vertical compaction
of the fracture porous media (Fig. 14b). Complex hydromechanical
responses in the fractured porous media result in heterogeneous
vertical compaction, with subsidence of the top surface varying from
about 0.3 m to 0.8 m. This vertical compaction does not occur
instantaneously, but gradually as water needs to be squeezed from the
fully saturated porous fractured media and out through the top sur-
face. The heterogeneously and dynamically changing hydraulic
properties along with strong hydromechanical pore-volume coupling
are reflected in the heterogeneous pressure field (see Fig. 14c). Finally,
Fig. 14a indicates the locations of fracture opening marked with red
circles. Thus, this application demonstrates a case of load and

drainage of a saturated fractured media that may lead to long-term
large and heterogeneous ground surface subsidence.

4.3. Explicit modeling of contacting rough fracture surfaces at
discontinuum asperity scales

In order to understand how fractures respond to coupled pro-
cesses and thereby derive reasonable mechanical and hydraulic
constitutive laws, it is necessary to model coupled processes with a
detailed representation of surface geometry. In this context, two
challenges are settled. First, fractures with asperities (for example
at a microscale) have more complicated geometric features that
cannot be simplified easily; therefore, these geometric features lead
to discontinuities in each physical field (flow, transport, me-
chanics). Second, pore-scale processes are described by a different
set of governing equations for flow, transport, and mechanics. In
this section, a discontinuum asperity model with explicit repre-
sentation of geometric features is developed for accurate modeling
of coupled processes in fractures. This approach can be used for
micro-scale analysis.

4.3.1. Mathematical statement

At micro-scale, Darcy’s law is insufficient to describe flow in the
open channels of fractures, and the Navier—Stokes equation in
combination with mass conservation equation are required:

%+(V~V)V+Vp = vAv (42)
dey 1 0p
v VAt e = 0 (43)

where v is the fluid velocity.

In addition to the force balance, small-strain assumption, and
continuum constitutive equations, translational and rotational
displacements need to be considered. These processes are
described by the following equations:

0’u
u:u1:r+ur+/€d€ (45)

In addition, the force is a result of not only the internal or
external load, but also the interactive forces between elements (i.e.
the contact force):
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Fig. 14. Simulated (a) horizontal and (b) vertical displacements (m), and (c) pore pressure (Pa) at t = 1000 d.
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F = Fcontact + Fipt + Fext (46)

Correspondingly, continuum constitutive laws (Eq. (4), (9) and
(11)) are not sufficient to describe the stress—strain/stress—
displacement relationships. Instead, contact forces are the func-
tions of displacements/location discontinuity:

o = g(e), Feontact = h([[u]]) (47)

Depending on the states of contact, different constitutive re-
lationships may apply, such as Eqs. (33)—(35). The most challenging
additional equations involve calculation of contact forces between
multiple blocks. Different from discrete fracture analysis where
fractures are initially assumed as combinations of parallel surfaces’
segments, rough fractures often contain multiple asperities with
arbitrary shapes. The challenge of computing contacts is to identify
when and where contacts occur among many blocks, which is
made complicated by the fact that these blocks are moving,
deforming, and in some cases breaking apart. In turn, motion,
deformation and breakage of blocks are impacted by contact forces,
which constitute a serial process. Thus, inaccurate contact calcu-
lation may lead to a completely different overall system behavior.

In order to carry out contact calculation, simplifications are
generally made, by either assuming contact pairs are fixed, or using
simple shapes such as spheres or rectangles to approximate them.
The mechanisms involved as well as the errors caused by these
geometric approximations are shown in Fig. 15.

The coupling between fluid flow and geomechanics within open
channels (pores, channels of fractures) is mostly in one way: me-
chanical deformation leads to boundary changes of these fluid
channels. The coupling between fluid flow and mechanics in rock
matrix and open channels is carried out by ensuring the continuity

i

(a) (b)

Fig. 15. Simplified contact calculation using (a) spheres and (b) predefined rectangles
for contacts.
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Fig. 16. Schematic of contact calculation for micro-scale mechanical analysis.

of pore pressure at the fracture surfaces between the channel
Navier—Stokes flow and the porous Darcy’s flow through flux
terms. Therefore, fluid impact on mechanics in the rock matrix is
considered using the Biot’s equation.

4.3.2. Numerical implementation

In NMM (Shi, 1991), an algorithm was developed that rigorously
incorporates contact detection, contact enforcement and open-
close iteration. As shown in Fig. 16, among a number of moving
and deforming blocks, NMM first computes the possible contact
blocks. This involves certain estimation because the motion and
deformation of blocks may occur at any time. Setting a range of
possibilities enables precise and complete detection of all possible
contact blocks. Between each two potentially contacting blocks,
there are many possibilities where exact contact occurs. All of these
possibilities are accounted in the code. They are categorized into
three possibilities: vertex-to-vertex, vertex-to-edge, and edge-to-
edge contacts. Edge-to-edge contact is a special case where the
surfaces of two contacting blocks are parallel (e.g. discrete fractures
where the surfaces are parallel). Vertex-to-vertex contacts can be
transformed to vertex-to-edge contact with the possible contact
pairs in Fig. 16. Criteria for identifying the contact pairs from all
these possible contact pairs are included in the code. After contact
pairs are identified, the contact pairs may be open, bonded or
sliding, as described by Egs. (33)—(35). For bonded and sliding
states, Egs. (34) and (35) can be used to calculate the contact forces.
For the open state, however, it is assumed that there is no inter-
action between contact pairs (i.e. complete open space between
boundaries). Therefore, there are no constraints applied.

At each time step, open-close iteration may be carried out
several times until the enforced contacts reach convergence. As a
result of the coupled processes, contact pairs may change; for the
same contact pairs, these three states may transfer dynamically.
Thus, the iterations involving detection, enforcement of contact
constraints, and open-close iteration need to be executed to ensure
convergence.

4.3.3. Example: Calculation of rough fractures with explicit
geometric representation

By using the contact model with explicit geometric represen-
tation of the fracture asperities, an example of contact alteration
along rough surfaces under the impact of load is given. In this
example, a single fracture partially contacting along their rough
surfaces is laterally confined with two plates and fixed on the
bottom. It is assumed that there is no flux exchange between the
fracture channel and the rock matrix on the top and bottom, and
fluid dissipates from both sides. Therefore, only one-way coupling
exists: the deformation and contacts of fracture asperities impact
the geometry of the fluid channel. Such an assumption allows us to
decouple the problem. Fig. 17 shows a mechanical simulation of the
fracture alteration impacted by load. When load is applied
(Fig. 17a), the upper rough surface deforms and moves toward the
bottom rough surface until they fully contact (Fig. 17b). This
example involves large deformation (the upper surface), dynamic
change of contact pairs (such as contact pairs alteration between
the left plate and the upper surface), and contact states transferring
(such as the contact state transferring from open to bonded be-
tween the upper and bottom surfaces).

Fig. 18a—c show results of vertical displacement, vertical stress,
and shear stress at the steady state. Stress concentration occurs at
both contacting asperities, which can lead to different responses
depending on the materials, such as plasticity, growth of new
fractures, or coupled thermal and chemical responses. Such an
extreme case demonstrates the capability of NMM for tackling
problems of contacts between multiple bodies and/or asperities.



M. Hu, J. Rutqvist / Journal of Rock Mechanics and Geotechnical Engineering 12 (2020) 667—681 679

Bonded

Open Bonded

(a)

Sliding

Bonded ~Bonded

(b)

Fig. 17. Modeling of a rough fracture: (a) before load and (b) after load reaching steady state.
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Fig. 18. Results of (a) vertical displacement, (b) vertical stress, and (c) shear stress at the steady state.

Table 1
Overview of NMM modeling of coupled processes in fractures at multiple scales.

Modeling Dominant fractures Discrete fractures Discontinuum asperity scale
Governing equations Mechanics: V-a+f,. = 0 Mechanics: V-a+f. = 0 . 2%u
Fluid flow: vev+ a2 L _ g Fluid flow: vev+ a2+ Lo _ g Mechanics: V-0 +f = mo
ot M ot ot M ot Fluid flow:
%Jr (V-V)Vv+ Vp = vAv
dey 1 0p
V-v+ a¥+ Mat = 0
Fracture constitutive behavior Mechanics: (i) p(i-1) Mechanics: Mechanics:
W) _ pagltil , bm —bm Open: 60" —
£n N00y~ + @) pen: 0o¢ ke [[u¢]]
o) Iy Closed: df = 0 U = U+ U+ [ede
= 57(”) Sliding: Fy = F tan psgn(dgs)Nd, = 0 F = Feontact + Fing + Fext
C/ -1 + Yes Fracture flow: Feontact = h(u)
D peg Open: d0; = krug
Fracture flow: ke = 1“2; Closed: d; = 0
f dine: Fo — F/ _
- bﬁpfg Sliding: Fy = F| tan psgn(dgs)Ndg, = 0
t 7 T2

Two-way direct coupling: rock matrix
and fractures;
Two-way indirection coupling: fractures

HM coupling

Geometric representations of
fracture, intersection, and
shearing

C

Solid element

Two-way direct coupling: rock matrix;
Two-way indirect coupling: fractures

Zero-dimensional elements

Two-way direct coupling: rock matrix;
One-way indirect coupling: fracture channels

Explicit geometric representation

From this example, it can be seen that contact alteration could lead
to dramatic structural changes of fractures, which further impacts
upscale physical (mechanical and flow) features of the fractures. On
the other hand, localized stress concentration can lead to further
geometric and geophysical changes of the fracture. Therefore, this
modeling capability is essential for understanding fundamental
behavior of fractures at micro-scale.

5. Discussion
It is quite challenging to rigorously simulate coupled HM pro-

cesses in fractured geological media because of computational ge-
ometry associated with fractures at different scales. Because of

limitations in the current models, there is a gap insofar, as coupled
processes at discrete fracture scales could not be analyzed without
consideration of intersections and shearing of the discrete fractures
that might be dynamically evolving as a result of coupled processes.
In addition, numerical modeling of coupled processes has never
been attempted at micro-scale when the contact evolution of dis-
continuities is important. In this study, these computational chal-
lenges are tackled by developing a comprehensive numerical
model with NMM for analyzing coupled processes in fractures
embedded in porous geological media at multiple scales. Depend-
ing on the ‘relative scale’ of fractures (the scale of fractures relative
to the scale of interest of the problem or research), the fractures are
categorized into three different scales: dominant fracture, discrete
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fracture, and discontinuum asperity scales. For these different
scales, different governing equations as well as fracture constitutive
behaviors are applied in terms of HM coupling. Correspondingly,
numerical implementation varies between different scales,
including implementation of those different governing equations,
constitutive relationships, and HM couplings. With all these com-
ponents, the NMM model presented herein is able to simulate
fractures ranging from micro-scale to reservoir scale (summarized
in Table 1).

For dominant fractures, Biot's equation in combination with
nonlinear constitutive relationships is used. Such a system involves
both direct coupling in rock matrix and fractures, and indirect
coupling in fractures. As fractures are geometrically represented by
solid elements, intersections of fractures are intersections of solid
elements, which is straightforward to treat. Shearing of fractures
can be implicitly realized with different nonlinear laws (Eq. (11)).
The most important requirement of a numerical model for domi-
nant fractures is to accurately represent their nonlinear behavior.
To accomplish this, an implicit approach that accounts for their
strain energy was developed and verified.

For discrete fractures, Biot’s equation can be used for describing
fluid mass conservation and balance of force in the rock matrix,
and the associated direct coupling. However, the fractures, which
may be oriented or intersected arbitrarily, are very thin and may
be open, bonded or sliding dynamically. These fractures have flux
exchange with rock matrix. Fluid flow in these fractures, which is
described by a reformulated cubic law, is highly sensitive to me-
chanical changes (open, bonded or sliding). Similarly, the me-
chanical changes are highly sensitive to the fluid flow, thus a two-
way indirect coupling should be considered. In order to account
for such complex behavior, a zero-dimensional fracture model was
developed by considering fractures as boundaries of solid rock
matrix. Fluid flow in fractures and real-time flux exchange with
the rock matrix are implicitly considered. Permeability is updated
each time as a function of mechanical aperture, depending on the
mechanical states. The mechanical states of each fracture seg-
ments are rigorously considered in three types: open, bonded and
sliding with different constraints and constitutive behaviors. Such
a complex system is complicated further with fracture in-
tersections and shearing. By using a tree-cutting algorithm with
discontinuous surfaces approximating each fracture, each fracture
intersection is able to be calculated considering contacts between
each two sides around the intersection. As each contact pair (two
surfaces of each fracture segment) is updated at each time step,
shearing along a fracture segment can be explicitly calculated. As
each fracture is discretized into several line segments and these
segments may have different contact states, complex behaviors
such as shear dilation or uneven opening of a fracture can be
calculated.

For fractures where the geometry of asperities cannot be
simplified (e.g. at a microscale), a discontinuum asperity model is
developed that explicitly represents the boundaries of asperities.
For matrix of fractures, Biot’s equation is used. But for the open
channel bounded by the rough surfaces of a fracture, Navier—Stokes
equation in combination with conservation of mass is recom-
mended to calculate fluid flow. Direct coupling occurs at the rock
matrix. However, in the fluid channel, the coupling is majorly in one
way: mechanical deformation and contacts impact the geometry of
the fluid channel and thus the flow. In this situation, it is more
reasonable to treat the hydrological and mechanical process as
decoupled. Intersections of fractures are explicitly represented as
for a single fracture. As for shearing in fractures, it occurs mostly at
the asperity scale rather than at the scale of a single fracture. The
challenge of modeling this micro-scale behavior is to capture when
and where contacts occur. By using a rigorous contact detection

algorithm, fracture alteration and shearing due to severe contact
alteration are able to be simulated.

6. Summary and perspectives

In summary, modeling at different scales requires a different set
of governing equations, constitutive behaviors, and geometric
representations. By defining relative scales, it is possible to use the
same type of model at different scales as long as the physical be-
haviors are described well. Between those differences for different
relative scales, computational geometry plays an important role
and provides the basis for numerical modeling, determining dis-
cretization to be used, accuracy for modeling of fracture in-
tersections, and capability to treat complex behaviors such as
shearing, or multi-body contacts. To date, due to the limitations of
computational geometry for describing 3D fracture networks in
porous rock and the limitations of geometric representation of
contacts among multi-body systems, 3D computation of fracture
modeling at discrete fracture or micro-scale is still rare. Develop-
ment of 3D computational geometry targeting at these two prob-
lems will be essential and promising for 3D fully coupled analysis of
fractures at multiple scales for advancing fundamental under-
standing and optimized control of energy recovery from fractured
geological systems.
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