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Rational and Semi-Rational Explanations of the Conjunction Fallacy:  
A Polycausal Approach 

 

Momme von Sydow (momme.von-sydow@urz.uni-münchen.de) 
University of Munich (LMU), Munich Center for Mathematical Philosophy (MCMP),  

Ludwigstr. 31, D-80539 München, Germany 
 

Abstract 
Conjunction fallacies (CF) have not only been a major 
obstacle in justifying the rationality of a Bayesian theory of 
belief update; they have also inspired a variety of theories on 
probability judgment and logical predication. Here we provide 
an overview of Bayesian logic (BL) as rational formulation of 
a pattern-based class of conjunction fallacies. BL is described 
here as a generalization of Bayesian Occam’s razor. BL 
captures the idea that probabilities are sometimes used not 
extensionally but intensionally, determining the probabilistic 
adequacy of ideal logical patterns. It is emphasized that BL is 
a class of models that depend on representations and the mea-
nings of logical connectives. We discuss open questions and 
limits of BL. We also briefly discuss whether other theories of 
the CF may be good supplementary theories of CFs (and 
predication) as well, if linked to functional explanations.  
 
Keywords: probability judgments; biases; conjunction 
fallacy; inclusion fallacy; inductive logics; intensional logics; 
Bayesian logics; predication; strong sampling; categories; 
Lockean Thesis; rationality debate; Bayesian Occam’s razor 

Extensional vs. Intensional Probabilities 

Extension vs. Intension 

Figure 1: (A) Extensions as elements and intensions demar-
cated by set boundaries. (B) Characterization of extensional 

and (C) intensional probabilities (cf. McKay, 2003, 28). 
 
Although less known to the psychologist than to the 
philosopher or logician, the notions of extension  and inten-
sion (≠ “intention”) have a tradition going back to Leibniz, 
Carnap, and Stegmüller; with several analogous terms 
proposed by others, such as ‘meaning’ and ‘denotation’ 
(Russell) or ‘Sinn’ and ‘Bedeutung’ (Frege). Extension 
refers to the elements of a set, and intension to the meaning, 
which may be symbolized by the area determined by the set 
boundaries (Figure 1A). Correspondingly, a set can be 
described extensionally by specifying its elements or 
intensionally by specifying one or several defining features.  

Extensional narrow norms of predication 
Extensional approaches have long dominated set theory 
(Zermelo–Fraenkel set theory), logic (propositional logic), 

and probability theory (Kolmogorov’s axiomatization). 
According to these extensional approaches, two sets are 
identical if they have the same elements (the same exten-
sion). Such an approach entails that any logically stronger 
(more specific) proposition implies any more general propo-
sition (e.g., A∧B => A∨B); and that any more specific hypo-
thesis can never be more probable than a more general one.  

Extensional logic and extensional probabilities have been 
proposed to provide universal criteria of rational pre-
dication. Predication attributes a predicate or logical combi-
nation of predicates to a subject. First, valid (assertive) pre-
dication of general logical relationships has traditionally 
often been linked to a logical truth-table definition of con-
nectives (Frege, Russell, Whitehead, and Wittgenstein) 
(Table 1). Accordingly, if a conjunction A∧B is true in a 
universe of discourse (X), no cases in X fall outside of the 
corresponding set (the intersection) and the truth of the con-
junction implies, for instance, the truth of the affirmation A 
as well as of the disjunction A∨B (Table 1).  

 
Table 1: Truth tables of some dyadic logical connectives: 
conjunctions, exclusive disjunctions, affirmations, and 

inclusive disjunctions 

 
Assertive, contingent sentences, such as “Members of 

Species X are aggressive (A) AND curious (B)” (von Sydow 
& Fiedler, 2012) (in predicate logic: ∀x A(x) ∧ B(x)), can 
thus be falsified by a single observation (Popper, 1934; but 
see Oaksford & Chater, 2007). One problem in using (exten-
sional) logic as adequacy criterion of contingent general 
predications is that they often involve exceptions (von 
Sydow, 2013). The problem of exception refers to the 
phenomenon that we seem to employ general sentences, like 
ravens are black, even if there are known exceptions, such 
as albino ravens. One solution to this problem is to replace 
the logical criterion of adequate predication by a high-pro-
bability criterion (P(Assertion) > ϕ > .5) (Schurz, 2001; cf. 
Adams, 1986; Oaksford & Chater, 2007, Pfeiffer, 2013; BL 
makes use of this idea, but for intensional probabilities).  

Second, Kahneman & Tversky (1983) argued that any 
deviation from the probabilistic extensional conjunction 
rule, P(A∧B) ≤ P(A), involves a conjunction ‘fallacy’, even 
in the context of predication.  It is argued that extensional 
logic and extensional probability are narrow norms (cf. 
Gigerenzer, 1996; Fiedler & von Sydow, 2013) if applied as 

    

A B A ∧ B A >-< B A A ∨ B
T T T F T T
T F F T T T
F T F T F T
F F F F F F
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adequacy criterion for rational predication (von Sydow, 
2011, 2016). One problem of a direct application of an 
extensional probability criterion to predication is sample 
size. That is, (extensional) relative frequencies do not 
distinguish between 1/1 and 1000/1000 confirmative ravens.  

However, the main problem with extensional probability 
is that predicates referring to subsets can never yield a 
higher probability than those referring to supersets. 
However, it should be possible do deem more specific hypo-
theses to be more adequate; otherwise one could never pre-
fer a more specific hypothesis. And it seems absurd, if, for 
instance, “X are aggressive AND curious” (A∧B) could 
never be more probable and hence more adequate than “X 
are aggressive OR curious or both” (A∨B). Likewise, the 
tautology (or ‘verum’) “X are aggressive or not, and they are 
curious or not” (ATB) by definition (with a maximal exten-
sional probability of 1) could never be less adequate than a 
more suitable, specific hypothesis, independent of empirical 
evidence. Therefore a universal extensional high-probability 
criterion fails the requirement to be empirically informative.  

Intensional Probabilities of Bayesian Logic  

Bayesian Occam’s Razor 
The basic idea of a Bayesian Occam’s razor already offers a 
partial solution to the problem of inclusion (Jeffreys & 
Berger, 1992; Tenenbaum & Griffiths, 2001; McKay, 2003; 
cf. Navarro et al., 2012).  If a consequential region of hypo-
theses H1 is a subset of a consequential region of a hypo-
thesis H2 (Figure 1C), even a subjective Bayesian account 
may be extensional in the sense of requiring that the more 
specific hypothesis can never be more probable than a more 
general one (this is sometimes called ‘weak sampling’). 
However, if one treats the nested hypotheses nonetheless as 
alternative explanatory patterns (hypotheses) whose conse-
quence regions may each have produced the data, the size of 
the consequential regions matters (sometimes called ‘strong 
sampling’). In this case, data coherent with the specific (and 
also the general) hypothesis (cf. Figure 1C) is more likely to 
occur based on the more specific hypothesis:  P(data|H1) > 
P(data|H2). If one additionally assigns an equal prior to 
these alternative hypotheses, P(H1) = P(H2), one can indeed 
get a higher posterior for the more specific hypothesis, 
P(H1) > P(H2). For extensional probabilities, by contrast, a 
more specific hypothesis could never obtain a higher 
probability than a more general one (inclusion rule). We 
even treat this rule as the defining feature of extensional 
probabilities. Since Bayesian Occam’s razor (strong sam-
pling) violates this rule, we may thus call it an ‘intensional’ 
probability. For intensional probabilities, actually both the 
size of the extension and that of the intension matter. 

However, such a basic application of Bayesian Occam’s 
razor does not allow for exceptions. A hypothesis is still 
falsified by a single disconfirmatory instance. But predica-
tions about contingent facts often allow for exceptions (von 
Sydow, 2013b). Otherwise one still could never prefer a 
more specific predication over a tautology. This problem of 

applying basic Bayesian Occam’s razor (without noise) to 
real predications presumably explains why the predominant 
view holds that Bayesian accounts cannot rationally account 
for CFs (Fisk, 1996; Gigerenzer, 1998; Neace et al., 2008). 

BL as Generalized Bayesian Occam’s Razor 
Bayesian logic (BL, von Sydow, 2011, 2016; cf. von 
Sydow, 2013; von Sydow & Fiedler, 2012) addresses the 
problem of exception together with the problem of 
inclusion. Thus BL can be understood as using the ‘natural’ 
implications of Bayesian Occam’s Razor together with the 
assumption that people are not interested in deterministic 
logical hypotheses but rather in noisy-logical hypotheses 
that are still similar to the deterministic hypotheses.  

 
Figure 2: BL model sketch in 5 steps (cf. main text) 

 
Step 1 of the model (Figure 2) turns deterministic truth 

tables into ideal (and still in some sense deterministic) 
probability tables (PTs). In the PTs above dark shadings 
represent a high probability (up to 1) and light shadings a 
low probability (down to 0). Step 1 only constructs PTs with 
noise level r = 0. Here, cells of a PT that correspond to 
logically false truth values (F) are assigned the value 0. 
Logically confirmatory cells (T) in these ideal 
representations, however, are assumed to be equi-probable 
(Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Caverni, 
1999). Step 1 (combined with Steps 3 and 4) already 
provides a basic Occam’s razor solution. However, here, 
connectives are still falsified by single disconfirmatory 
events.  

Step 2 addresses the problem of exceptions and constructs 
ideal noisy PTs (with r  > 0) by adding noise to each cell of 
the ideal patterns from Step 1 and then renormalizing the 
PTs.  There may be alternatives for modelling 
noise/acceptance levels (e.g., von Sydow, 2014), but as long 
as they yield similar results and address the problems of 
inclusion and exception simultaneously this seems a 
predominantly technical issue, and they should be seen as 
variants of the same computation model class of BL. Note 
that the PTs here are still ideal explanatory hypotheses 
composed of four cell probabilities adding up to 1 and a 
(second order) probability representing the belief in this PT-
hypothesis (also adding up to 1, but now over all PT-
hypotheses). We normally assume a flat prior distribution 
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over all PTs (implying a flat prior distribution for both 
connectives and noise levels). 

Step 3. The likelihood of each explanatory 2×2 PT (for i×j 
PTs, with i modelled connectives and j modelled equidistant 
noise levels) given the data, P(PT |D), can be calculated by 
a multinomial distribution. The data are i.i.d. observations in 
a 2×2 contingency matrix (A vs. non-A, B vs. non-B). 

Step 4 uses Bayes’ theorem to derive the posterior proba-
bilities PI(PT|D) from the likelihoods P(D|PT) and priors.  

Step 5 sums up the posterior probabilities of all PTs 
created based on a particular logical hypothesis (over all j 
noise levels). This results in (intensional and noise-tolerant) 
posterior probabilities for each of the i connectives.  

Figure 3. Intensional probabilities of logical hypotheses for 
11  noise levels for a given 2× 2 data contingency matrix 
with the cells a, b, c, d, here [7, 3, 2, 0], and a flat prior. 

 
Figure 3 shows resulting intensional probabilities for all 

modeled connectives at different noise levels (Step 4). If 
one assumes no additional weighting for particular noise-
levels (Step 5) the marginal probabilities provide the inten-
sional posteriors for the connectives. In the example, 
Pi(A∧B), Pi(A), and Pi(A∨B) have the highest overall pro-
bability. The intensional probabilities entail Pi(A∧B) > 
Pi(B), although the extensional conjunction rule requires 
PE(A∧B) > PE(B). ‘A or B (or both)’ (A∨B) is (intensionally) 
most probable at low levels of noise, but ‘A and B’ is most 
likely at higher levels of noise. Thus noise priors – for 
instance a belief in deterministic relationships – may change 
the intensional probability assessment. 

Findings Corroborating Standard Dyadic BL 
Bayesian Logic, in its outlined main version, is an inductive 
logic providing intensional probabilities of dyadic logical 
connectives. The connectives relate two dichotomous 
events, and the model input are priors or frequencies (or 
equivalent Dirichlet-distributed, degrees of belief). BL 
provides a rational reconstruction of a class of pattern-based 
conjunction fallacies in line with Bayesian updating (cf. 
Hartmann, & Meijs, 2012, for another rational Bayesian 
model of CFs, based on source reliability). BL in a way 

detects the noisy-logical pattern that is most ‘similar’ to the 
data (actually P(PT|D)).  

Some comments may be appropriate: First, if participants 
must rank the probability of two nested logical connectives 
(e.g., a conjunction and one of its conjuncts; Tversky & 
Kahneman, 1983), using intensional probabilities, PI, instead 
of extensional ones, PE, is not fallacious; both are proba-
bilities. We here continue to speak of conjunction ‘fallacies’ 
only for reasons of convenience. If the previous argument is 
correct, it is even reasonable, in the context of predication 
and looking for the most adequate connective, to apply 
intensional probability, since it serves a reasonable function 
(providing an empirically informative probabilistic ade-
quacy criterion for predication). Second, the intensional pro-
babilities only supplement extensional probabilities. BL is 
likewise based on the standard extensional axioms of 
probability (Kolmogorov’s axioms), but applies these 
axioms not on the level of extensions, but on that of 
probabilities of alternative logical hypotheses. (Similarly, in 
Bayes nets one may apply hypotheses probabilities to 
graphs without invalidating the underlying joint probability 
matrix.1) Third, BL is formulated not only as a normative 
but also as a descriptive (computational-level) theory of 
probability judgments concerning logical predications. 
However, the claim is, of course, not that people have a 
deliberate analytic understanding of BL. Their judgments 
may be roughly reasonable, as our perception system makes 
reasonable inferences without requiring conscious calcu-
lations. Moreover, people may merely be using something 
similar to intensional probabilities; and it needs to be 
explored whether they perhaps use some roughly related 
heuristic that only approximates BL.  

One major finding that seems unique to pattern-based CFs 
advocated by BL, was BL’s various predictions for con-
junction fallacies. For instance, von Sydow (2011) showed 
that CFs occurred even with clearly defined subsets, clear 
logical hypothesis formulations, and data transparently 
presented in a contingency table (cf. Sloman et al., 2003). 
Moreover, the results confirmed predicted conditions of a 
dominant occurrence of a high proportion of double CFs, 
sample-size effects, and the results for negated propositions.  

A second group of corroborations of BL concerns the 
generalization of (pattern-based) conjunction fallacies to 
other logical inclusion fallacies (von Sydow, 2009, 2013b, 
2016; von Sydow & Fiedler, 2012). Figure 4 illustrates that 
logically there are many more logical inclusion relations 
than those involved in CFs, and thus many possible 
inclusion ‘fallacies’. For instance, von Sydow (2016) corro-
borated that there is a more general system of inclusion 
fallacies broadly in line with BL, and that this system could 
not be explained by other major theories. Von Sydow & 
Fiedler (2012) applied this idea to sequential learning and 
repeated judgments, and von Sydow (2013b) has shown the 

                                                           
1 Actually an analogous model of subjective belief update of the 

cell probabilities (using Dirichlet distributions) which is then com-
pared to ideal patterns yields the same results (not elaborated here). 
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applicability of a pattern account even if numbers were not 
provided explicitly. 

 

 
Figure 4. Inclusion relations between all 16 

combinatorically possible dyadic logical connectives.   
 

BL as Model Class and  
Future Avenues of Research 

Monadic Dichotomous BL and Conjunctions as 
Combination of Marginals 

This section supports the view that polysemous meanings 
of ordinary-language connectives play an important role in 
the CF debate, that this is compatible with BL, and that in-
tensional BL even offers additional differentiations. 

The intensional idea of BL (or the ‘pattern idea’) can also 
be applied to the simpler representation of monadic logic 
(thereby linking to the literature on generics). Whereas 
standard dyadic logic concerns all possible bivariate, two-
valued (T, F) patterns in a 2 × 2 matrix (cf. Fig. 4), monadic 
logic concerns a single event only (a 2 × 1 matrix). The for-
malized intensional monadic BL (von Sydow, 2014, cf 
Tessler, & Goodman, 2016) predicts inclusion ‘fallacies’: 
e.g., our example (Figure 5, Panel A), PI(A) > PI(A Tauto-
logy non-A), or formulated as P(People in this group are 
artists) > P(… are artists or non-artists) (von Sydow, 2015). 

 

 
Figure 5. Illustration of representations modelled in 

(dichotomous) monadic BL and (polytomous) monadic BL 
 
The model starts with a Beta prior, a binomial 

likelihood, and therefore continues with a Beta posterior 
(Figure 6). We pursued a slightly different approach of 
modelling noise levels here (without changing the pattern 
idea). We used integrals of the same size over parts of the 

posterior belief-distribution extending from 0, .5, or 1, in 
order to formalize the alternative hypotheses ‘A’, ‘A or 
non-A’, and ‘non-A’ (Figure 6, red marks).  

 

 
Figure 6. Monadic BL and example for prior, likelihood, 

posterior, and the red integrals. 
 

Based on monadic BL (Figure 5A, 6) a new meaning of 
the AND-connective based on two marginal probabilities 
has been proposed (Figure 7B, von Sydow, 2014). 

 

 
Figure 7. Dyadic and marginal meaning of ‘AND’. 

 
This meaning is in line with the approach that the 

ordinary language “and” is logically polysemous and may 
refer to the dyadic conjunction, the disjunction or the sum 
(Hertwig et al., 2008; von Sydow, 2015). The conjunction of 
monadic affirmations (von Sydow, 2014a) actually refers to 
the same cells as the inclusive-disjunction interpretation 
proposed earlier, whereas this proposal intensionally makes 
different predictions. Note that it seems possible to link the 
dyadic and marginal interpretation (Figure 7) to different 
formulations favouring a more dyadic (“the pub is visited by 
people who are young and (also) male”) or a more marginal 
interpretation (“the pub is visited by young people and is 
visited by male people”). Additionally, we supported 
already known usages of AND as an addition of classes in 
an intensional polytomous context (von Sydow, 2015).  

Polytomous Monadic BL 
Figure 5 (Panel B) points to a further interesting perspective 
suggested by an approach that looks at not only (relative) 
cardinality of extensions (e.g., relative frequencies) but also 
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the size of the (represented) intension. For the data shown in 
Panel B, both extensional and here also intensional (dichoto-
mous) monadic BL would not allow to predict P(… are A) > 
P(are Non-A). However, polytomous monadic BL, which 
here assumes polytomous representations for the negation, 
predicts even this. Moreover, it predicts, for instance, P(… 
are A) > P(are A∨D∨E). Von Sydow (2015) elaborated a 
model in other regards analogous to standard BL,  tested 
many patterns, and contrasted the predictions of BL with a 
confirmation account (Tentori et al., 2013). The results 
clearly corroborated BL (in some examples even inde-
pendently of the various measures of confirmation). More 
generally, this account emphasizes that BL assigns high in-
tensional probabilities to patterns most adequately des-
cribing a situation, in the sense of having a relatively high 
probability while taking intension-size into account. 

Some Further Open Questions 
(1) Variants of BL. The relation of two kinds of variants 

of BL needs further elaboration and scrutiny. First, BL has 
been shown to be an intensional model class for logical 
predication that depends on dyadic versus monadic, and 
dichotomous versus polytomous representations. Second, 
we actually used different model variants to model noise (cf. 
von Sydow, 2007 (cf. 2011), 2014, 2016; and there may be 
further variants). Despite impressive fits of all models (and, 
as far as I can see, only minor differences between them), 
one may design experiments to differentiate between these 
second kinds of model variants as well.   

(2) BL and Conditionals: One may apply the idea of BL 
to further representations. For instance, von Sydow (2014) 
proposed an intensional model of conditionals, building on 
additional representational assumptions about conditionals. 
Inspired by mental model theory, it was suggested to 
differentiate between basic conditionals based on 
conditional probability alone, and full models based on 
Delta p (or causal Power). In an intensional setting, when 
the probability of conditionals is compared with the 
probability of other logical connectives, the intensional 
version of this model requires testing. The Bayesian logic of 
conditionals may also throw light on the paradoxes of 
implication (cf. von Sydow, 2009). 

(3) BL and Reasoning: Here BL is presented as an 
inductive logic only, not directly applicable to reasoning 
without further assumptions. However, only a few assump-
tions may be needed to make BL fruitful in this field as 
well. Extensional or intensional premises may simply 
change the joint probability matrix (or frequency matrix), 
and the update may be based on standard conditionalization, 
Jeffry conditionalisation, or Kullback-Leibler distance-
reduction. Based on resultant joint probability distribution 
(or the equivalent frequency distribution), one may infer 
intensional probabilities for resulting connectives using BL. 
The inferences would be based on prior beliefs and on the 
logical form of the added premise (cf. dual process theories; 
e.g., Singermann, Klauer, & Beller., 2016). The variety of 
advocated representations (extensional, intensional; dyadic, 

monadic; dichotomous and polytomous, etc.) and 
alternations between these modes needs future attention. For 
instance, one may intensionally believe in the dyadic hypo-
thesis “(normally) A and B”. In line with Foley (1992; cf.  
the Lockean thesis) this does not need to imply a high pro-
bability of the composing single (dyadic) hypotheses A (“A 
and B or A and non-B”). In contrast, the monadic hypothesis 
A, in such situations, would always have a high probability 
as well (cf. von Sydow, 2014).  

These suggestions demand further elaboration, but the 
prior confirmation of the BL and its variants suggests that 
they may be helpful in this domain as well. 

Other Theories of CFs:  
Polycausal Semi-Rational Suggestions 

It has been shown repeatedly that the results confirming BL 
could not be explained by other major theories of the CF 
(von Sydow, 2011, 2015, 2016). This does not entail that 
these theories do not have a reasonable domain of applica-
tion. There may well be several causes of CFs or, more 
generally, of inclusion fallacies (IFs; cf. von Sydow, 2016).  

BL itself is ‘polycausal’ in the sense that the modelling 
depends on the representation. One should use different 
formalizations for different scales and sampling 
assumptions (von Sydow, 2015, cf. Tessler & Nelson, 
2016). In particular, representation of classes matters due to 
intensionality, with different results for dichotomous and 
polytomous events. Moreover, BL is consistent with various 
interpretations, for instance, of the ordinary conjunctions 
(Hertwig et al., 2008; von Sydow, 2015) and even adds new 
candidates to this list (von Sydow, 2014).  

There are further theories of CFs claiming that the target 
measure P(H|D) is substituted by other measures, such as 
inverse probability, confirmation, or averaging (cf. also 
Costello & Watts, 2014). The predictions of these theories 
are thus more difficult to defend from a rational point of 
view. BL’s substitution of P(H|D) by intensional PI(H|D) 
rather than by extensional PE(H|D) involves no substitution 
at all, only a specific interpretation, and, as outlined before, 
a reasonable one. In contrast, replacing P(H|D) by P(D|H), 
as suggested by an inverse-probability account,  or by, for 
instance, P(H|D)-P(H|D), as in a confirmation account 
(Lagnado & Shanks, 2003; Tentori et al., 2013), seems less 
rational, since this involves an illicit replacement. 
Nonetheless, if this replacement would be linked to a 
functional explanation why and when this replacement 
should occur, this may be seen as semi-rational as well. An 
interest in adequately describing a logical relationship 
between given features, provides a BL context. An interest 
in a particularly high probability of a feature given a class 
may provide a context for inverse probabilities (or an 
inverse pattern account). And an interest in the surprising-
ness of a feature may be a context for a confirmation 
account (or a pattern-confirmation account). Although 
functional explanations and application conditions are 
currently still often missing in these theory presentations, 
they may be reformulated as semi-rational accounts of the 
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CF as well. These theories may exist in unproblematic 
cohabitation with the even more rational account of BL and, 
perhaps, like BL, with an extensional usage of probabilities.  

Summary 
Whereas previous presentations of BL were mainly 
concerned with presenting specific empirical findings, the 
present account tries to provide more of an overview. BL is 
presented here in an overview as an intensional account that 
generalizes Bayesian Occam’s razor in the field of logical 
predications. BL is posited not as a specific model but rather 
as a model class sensitive to representation, open to further 
extensions, and predicting many still unexplored effects. 
Furthermore, it was emphasized that BL is in line with 
theories assuming various meanings of connectives while 
fostering new proposals and opening up many new avenues 
of research. Finally, it was argued that the disconfirmation 
of other theories when testing BL does not at all rule out the 
adequacy of other accounts of CFs. It was suggested that 
some other accounts, if they would more clearly specify 
functional explanations, may count as semi-rational theories 
of CFs. Theories that pretend to provide a single algorithmic 
account of CFs underestimate the contextuality and goal de-
pendence of such judgments. In the future, a polycausal 
theory of CFs needs to be elaborated, including rational 
accounts, involving BL in its various versions (relating to 
different representations), the mentioned semi-rational 
accounts (as well as a noise + probability account), and, 
perhaps, completely irrational accounts. 
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