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Predicting Mortality in Critical Care Patients with Fungemia 
Using Structured and Unstructured Data

Sally L. Baxter, Adam R. Klie, Bharanidharan Radha Saseendrakumar, Gordon Y. Ye, 
Michael Hogarth, Shamim Nemati [Member, IEEE]
University of California San Diego (UCSD), La Jolla, CA 92093, USA

Abstract

Fungemia is a life-threatening infection, but predictive models of in-patient mortality in this 

infection are few. In this study, we developed models predicting all-cause in-hospital mortality 

among 265 fungemic patients in the Medical Information Mart for Intensive Care (MIMIC-III) 

database using both structured and unstructured data. Structured data models included 

multivariable logistic regression, extreme gradient boosting, and stacked ensemble models. 

Unstructured data models were developed using Amazon Comprehend Medical and BioWordVec 

embeddings in logistic regression, convolutional neural networks (CNNs), and recurrent neural 

networks (RNNs). We evaluated models trained on all notes, notes from only the first three days of 

hospitalization, and models trained on only physician notes. The best-performing structured data 

model was a multivariable logistic regression model that achieved an accuracy of 0.74 and AUC of 

0.76. Liver disease, acute renal failure, and intubation were some of the top features driving 

prediction in multiple models. CNNs using unstructured data achieved similar performance even 

when trained with notes from only the first three days of hospitalization. The best-performing 

unstructured data models used the Amazon Comprehend Medical document classifier and CNNs, 

achieving accuracy ranging from 0.99–1.00, and AUCs of 1.00. Therefore, unstructured data - 

particularly notes composed by physicians - offer added predictive value over models based on 

structured data alone.

Clinical Relevance—Unstructured data may help identify which patients are at high risk of 

death and need more aggressive treatment or closer monitoring. This is critically important since 

mortality rates from fungemia are very high.

I. Introduction

Fungal bloodstream infections (fungemia) rank among the top five hospital-acquired 

infections in many countries [1], [2]. Despites advances in anti-fungal therapies, fungemia is 

still associated with high mortality, which ranges from 35–75% [3]. Furthermore, it is 

associated with prolonged hospitalizations and high costs of care [4], [5]. Numerous models 

have been developed to predict which patients are at highest risk of developing fungemia 

[6]–[9]. These studies have identified risk factors such as immune suppression, recent major 

surgery, intravenous drug use, hyperalimentation, and indwelling central catheters. However, 

models predicting downstream end-organ damage and death among fungemic patients are 
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less common. Previously published models have utilized primarily multivariable logistic 

regression of structured data such as discrete clinical and laboratory variables [10]–[13]. 

However, despite significant advances in natural language processing (NLP) methods in 

recent years, to our knowledge no models predicting death in fungemic patients using 

unstructured data from free-text clinical notes have been published thus far.

To address this gap, we developed models predicting mortality among critical care patients 

with fungemia using both structured and unstructured data, hypothesizing that unstructured 

data would provide additional predictive value.

II. Methods

A. Study Population

The study population consisted of all patients with blood cultures positive for any fungal 

organisms in the most recent version of the Medical Information Mart for Intensive Care 

(MIMIC-III), a database of critical care patients at the Beth Israel Deaconess Medical Center 

(Boston, MA) [14]. This resulted in a cohort of 265 unique patients. MIMIC-III includes 

data from over 46,000 critical care patients (adults and neonates) from 2001–2012 [14]. 

Besides structured data such as demographics, laboratory values, diagnosis and procedure 

codes, microbiology data, medications, and physiologic measurements, it also includes de-

identified unstructured data such as daily provider notes and imaging reports. The UCSD 

Institutional Review Board (IRB) determined that this project was non-human subjects 

research and would not require full IRB review. The research adhered to the tenets of the 

Declaration of Helsinki.

B. Data Curation and Processing

The outcome used in this study was all-cause in-hospital mortality during the hospitalization 

where positive fungal blood culture was documented. The following categories of structured 

data were extracted: demographics, comorbidities, procedures, lab values, fungal species 

identified in culture, and other risk factors known to be associated with fungemia. For 

unstructured data, free-text clinical notes were extracted. In addition to the text itself, we 

extracted the date and time of note creation as well as the category of note. We created one 

dataset containing all categories of notes (physician notes, nursing and other provider notes, 

imaging reports, etc.) and encompassed the entire hospitalization, from initial admission 

until discharge or death. This totaled 26,830 notes spanning the entire hospitalization. We 

also curated datasets containing subsets of the notes to evaluate differences in model 

performance based on timing and type of notes. Regarding note timing, we created the 

following note groups: (1) all notes from the first day of hospitalization (859 notes), (2) all 

notes from the first 2 days (i.e. notes from day 1 and day 2 combined, totaling 2137 notes), 

and (3) all notes from the first 3 days (3183 notes). Finally, we created a fifth dataset that 

included all notes labeled as physician notes in the entire hospitalization (1548 notes). For 

all models, training and testing were performed using a 90%/10% split of the data.
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C. Predictive Modeling Using Structured Data

First, structured data were used as features for multivariable logistic regression models. An 

Automated Machine Learning (AutoML) framework (h2o) [15] was then used to perform to 

test alternative models. Hyperparameter tuning was performed through randomized grid 

search for Generalized Linear Models (GLMs), eXtreme Gradient Boosting (XG Boost), 

Gradient Boosting Machine (GBM), and deep learning models. Model performance ranking 

was determined through five-fold cross validation during the model tuning stage.

D. Predictive Modeling Using Unstructured Data

All five unstructured datasets (all notes, 3 subsets of notes based on timing, and all physician 

notes) were used to train the various models described below.

Amazon Comprehend Medical: Amazon Comprehend Medical is an NLP service 

offered by Amazon Web Services (AWS) that leverages machine learning techniques to 

extract relevant medical information from unstructured text [16]. The service uses a pre-

trained model offered as a document classifier to examine and analyze unstructured data. We 

used Amazon Comprehend Medical’s document classifier to create a binary classification 

model with in-hospital mortality as the label and clinical notes as input documents. Before 

feeding the documents to the classifier, punctuations were removed. The clinical notes were 

grouped by patient and concatenated to build a single document per patient, except for 

physician notes which remained ungrouped.

Models Utilizing BioWordVec Embeddings: In order to build mortality classification 

models that take the five aforementioned unstructured datasets as input, numerical vector 

representations of clinical notes were obtained using a pre-trained model. Clinical notes 

extracted from MIMIC-III were first tokenized using the NLTK (v3.4.4) Python package 

[17], and stop words and punctuation were removed. Tokens for each note were vectorized 

into 200-dimensional vectors using the BioWordVec subword embedding model from Zhang 

et al. [18]. The BioWordVec model utilizes a skip-gram approach that represents each word 

as a sum of its character n-grams [19]. The BioWordVec model was pre-trained on over 

28,000,000 PubMed documents and over 2,000,000 clinical notes from MIMIC-III. As input 

to a logistic regression model, token vectors for a given note were averaged to produce a 

mean 200-dimensional embedding vector. These mean embedding vectors were used as 

input to train logistic regression models from python’s Scikit-learn (v0.22) package [20]. 

CNNs and RNNs were trained on each dataset using a max length of 400 and 100 

respectively. The neural nets were implemented with Python’s Keras (v2.3.1) API [21]. All 

CNNs included a 1D convolutional layer with 16 filters, a global max pooling layer, a dense 

250-dimensional hidden layer and a dropout rate of 0.5. The RNNs included a simple 

recurrent layer with 50 neurons and a dropout rate of 0.2. All neural networks were trained 

using 10 epochs and a batch size of 32.

E. Performance Metrics

For all models, the following were used to evaluate performance: area under the receiver 

operating characteristic curve (AUC), accuracy, precision, recall, and F1 score. Receiver 

operating characteristic curves could not be generated using the Amazon Comprehend 
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Medical platform, so confusion matrices were generated instead to evaluate performance. Of 

note, the metrics provided by Amazon Comprehend Medical are macro averages, i.e., 

accuracy, precision, recall and F1-score are averaged over both labels rather than on only the 

positive label.

F. Masking Assessment of Unstructured Data Models

To identify which concepts may be driving predictive performance in the unstructured data 

models, particularly for physician notes, masked datasets were created. Each masked dataset 

had terms removed related to the following concepts hypothesized to influence prediction: 

central catheterization, diabetes, cancer, chemotherapy, steroids, intravenous drug use, 

hyperalimentation, acute renal failure, hemodialysis, liver disease, and intubation. For 

example, the dataset masking the significant co-morbidity of diabetes had the following 

terms removed: “diabetes”, “dm”, “dm1”, “dm2”, “t1dm”, “t2dm”, “diabetic”, “dka”, 

“insulin”, “metformin”, “glipizide”, “glyburide”, “lantus”, and “humalog.” The masked 

datasets were then each used to train models using the Amazon Comprehend Medical 

classifier, logistic regression, CNNs, and RNNs. Concepts masked from datasets resulting in 

models with reduced performance were inferred to be important for prediction.

In addition, to ensure that predictions were not simply based on physician notes expressing 

imminent death of the patient (particularly at the end of the hospitalization immediately 

preceding death), a final masked dataset was created where terms related to death were 

removed. These included “dying”, “death”, “die”, “mortality”, “dnr”, “dni”, and “palliative”.

III. Results

A. General Features of the Study Population

A total of 265 patients were identified from the MIMIC-III database as having fungemia, 

with documented blood cultures positive for fungal organisms. The mean (SD) age was 62.3 

(16.8) years. There was a slight male predominance (154/265, 58%), and the cohort was 

majority white (199/265, 75%). The mean (SD) length of stay was 24.6 (27) days. The most 

common fungal species found on blood cultures were Candida albicans (43%), Candida 
glabrata (28%), Candida parapsilosis (12%) and Candida tropicalis (8%). Of the 265 

patients, 121 died during the hospitalization, constituting an in-hospital mortality rate of 

46%. Table 1 describes selected features among fungemic patients included in the study.

B. Performance of Structured Data Models

Multivariable Logistic Regression Models: The multivariable logistic regression (LR) 

model included structured data features chosen based on existing literature. This model had 

an AUC of 0.76 and accuracy of 0.74 (Table 2). The top features driving prediction were 

liver disease, acute renal failure, intubation, treatment with amphotericin B, cancer, infection 

with Candida parapsilosis, indwelling central catheter placement, recent major abdominal 

surgery, and treatment with micafungin.

AutoML Framework Models: Out of the various models trained using the AutoML 

framework, the two best-performing models were a Stacked Ensemble of binomial GLMs 
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and an XGBoost model. Both the Stacked Ensemble model and the XGBoost model 

demonstrated similar AUCs, at 0.67. The Stacked Ensemble demonstrated superior accuracy 

at 0.74, compared with XGBoost at 0.67 (Table 2). The top features driving prediction in the 

XGBoost model were age, renal function, acute renal failure, intubation, liver disease, 

female gender, infection with Candida albicans, diabetes, infection with Candida glabrata, 

and fluconazole. Due to technical limitations of the h2o AutoML framework, the best 

performing model (Stacked Ensemble) was not interpretable, and factors driving prediction 

for that specific model could not be determined.

C. Performance of Unstructured Data Models

Unstructured Datasets: The dataset containing all notes from the entire hospitalization 

of patients in our cohort consisted of 26,830 notes. Unsurprisingly, the dataset limited to the 

first day of hospitalization was the smallest (859 notes), and as subsequent datasets included 

more hospital days, the number of notes also increased. There were 1548 notes categorized 

as physician notes. Notes were evenly balanced between patients who died and those who 

survived in all datasets.

Results of Amazon Comprehend Medical Classifier: Amazon Comprehend 

Medical’s classifier performed poorly on the grouped clinical notes from day 1 of 

hospitalization (Table 3). Although the accuracy on test data is within reasonable limits 

compared to the dataset with notes on days 1 and 2 of hospitalization, the model reports no 

true positives (0% TPR - True Positive Rate). The model built on notes from day 1 and 2 of 

hospitalization reports more false positives than true positives from test data (27% TPR). 

With notes from the first 3 days of hospitalization, the reports higher percentage of true 

positives on the test data compared to the previous dataset (36% TPR). In general, TPR 

increases as more days of hospitalization (and hence greater document size) are included. 

However, the model built on physician notes, although not the biggest dataset, outperforms 

all the other datasets, reporting 100% on all metrics and 100% TPR.

Results of Models using BioWordVec Embeddings: Word embeddings generated 

from the unstructured clinical notes and the BioWordVec model were used to train and test a 

logistic regression, a CNN and an RNN for each dataset (Table 3, Figs. 1 and 2). CNNs 

achieved the highest F1 and AUC across all five datasets. The CNN trained on notes from 

only the first 3 days of hospitalization achieved comparable performance metrics (Table 3) 

to the best structured data model (Table 2) and much better performance than the Amazon 

Comprehend Medical document classifier on the same dataset (Table 3). Including all notes 

available for fungemic patients resulted in boosted performance for all three model types, 

with the CNN showing significantly better performance than the best structured data model 

and comparable performance to the Amazon Comprehend Medical document classifier. 

Furthermore, the overall trend of increasing performance with increasing data size observed 

with the Amazon Comprehend Medical document classifier was recapitulated for 

BioWordVec based models. Performance on notes from the first 2 days of hospitalizations 

was relatively poor, with the CNN trained on notes from within 2 days of hospitalization 

being the only model with classification performance comparable to the structured data 

models. These results suggest the potential of using clinical notes and sequential predictive 
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models, especially CNNs, for predicting mortality among fungemic patients, even when 

limiting notes to the first 2–3 days of hospitalization. As seen with the Amazon Comprehend 

Medical document classifier, physician notes resulted in almost perfect classification 

accuracy and AUC in both the CNN and RNN (Fig. 1), and a very high accuracy of 0.87 

when using logistic regression (Table 3). These results indicate that physician notes may 

offer better predictive power than other note types available in MIMIC-III.

D. Masking Assessment of Unstructured Data Models

The performance of Amazon Comprehend Medical’s document classifier remained excellent 

across all masked models (accuracy of 1.00 and F1 of 1.00), despite removal of terms related 

to concepts describing risk factors or death. CNNs still performed impressively, with 

accuracy ranging from 0.97–0.99 and F1 ranging from 0.98–0.99 even with masking. Only 

RNNs showed some decreased performance with masking, with accuracy decreasing to 0.91 

when the terms related to intubation, hemodialysis, and cancer were removed. Even when 

terms directly related to death were removed from the physician notes, performance of all 

models were comparable to those using the original unmasked physician notes as inputs 

(accuracy of 0.84 for logistic regression, 0.98 for CNNs, and 0.95 for RNNs).

IV. Discussion and Future Directions

Here we describe multiple models predicting mortality in critical care patients with 

fungemia, using both structured and unstructured data. The overall best-performing 

structured data model was a multivariable logistic regression model achieving an accuracy of 

0.74 and an AUC of 0.76. Out of prior models examining mortality in fungemic patients 

[10–13], only one study [11] reported AUC, which was 0.74 in a historical dataset. We used 

static data rather than physiologic time-series data for ease of comparison to existing models 

that utilized static data. Incorporation of structured time-series data represents an interesting 

area of future study. However, structured data still comprise only a small fraction of 

information regarding a patient’s hospitalization, so we also trained several models using 

unstructured data and achieved superior predictive performance. To our knowledge, this is 

the first time natural language processing of unstructured notes has been used alongside 

structured data in a machine-learning based mortality prediction model for patients with 

fungemia.

The Amazon Comprehend Medical classifier was an easy-to-use, “off-the-shelf” clinical 

NLP system that performed well with all categories of notes from the hospitalization and 

also achieved high performance across all metrics when using all physician notes. A key 

advantage was rapid implementation without the need for custom programming. Another 

advantage of the service was the availability of a scalable environment to train models. The 

model trained with the largest dataset (all 26,830 notes from the hospitalization for patients 

in the cohort) took a run time (train + test) of 45 minutes. However, one of the system’s 

current limitations is the lack of direct access to the classifier’s model. As a result, we were 

unable to evaluate the parameters used to develop the model. Although Amazon did provide 

performance metrics and confusion matrices, there was not enough information provided to 
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generate receiver operating characteristic curves to allow comparisons of AUCs against 

other models.

In contrast, we manually developed logistic regression models, CNNs, and RNNs using 

BioWordVec embedding. Though the design and implementation of these approaches were 

not as straightforward as Amazon Comprehend Medical, open-source programming 

packages such as keras and sci-kit learn allowed for a relatively straightforward model 

building and testing pipeline. Furthermore, training and testing the sequential neural network 

models took <30 minutes on a 1.6 GHz Intel Core i5 processor for RNNs and CNNs on the 

largest dataset and <5 minutes for the CNN on physician notes. Logistic regression models 

trained with unstructured data performed poorly, whereas CNNs generally performed the 

best. Even when only including unstructured data from the first three days of hospitalization, 

the CNN performed reasonably well (accuracy of 0.68, AUC of 0.75) at predicting whether a 

fungemic patient would ultimately die during the admission. This was comparable to the 

best-performing structured data models, which utilized data from the entire hospitalization. 

Looking at data from the first three days of hospitalization, the CNN also substantially 

outperformed the Amazon Comprehend Medical document classifier. This is interesting 

given that fungal cultures typically take days to become positive, so the unstructured notes in 

the first 3 days may not even mention fungemia or anti-fungal therapeutics. The predictive 

power of CNNs using data from only the first three days of hospitalization is also significant 

from the standpoint of clinical decision support. For clinical decision support tools aimed at 

identifying which fungemic patients are at highest risk of death, it would not be useful to 

provide a prediction at the end of the hospitalization. Rather, estimation of risk early in the 

hospitalization is far more helpful.

Physician notes were associated with the best predictive performance across all model types. 

We performed several follow-up analyses to ensure the validity of this finding. First, we 

determined that these results were not simply due to class imbalance, as the outcome labels 

for the physician notes dataset was divided equally between those who died (50%) and those 

who survived (50%). Additionally, to counter the fact that some physician notes might 

explicitly mention an impending death, we trained models using a dataset where terms 

describing or directly related to death were removed. Even with these terms removed, 

models trained with physician notes still achieved high performance. The performance of 

models based on RNNs decreased when terms related to intubation, hemodialysis, and 

cancer were removed, implying that these entities were relatively more important in driving 

the prediction of death compared to other entities. Interestingly, for the Amazon 

Comprehend Medical document classifier and CNNs, performance remained robust despite 

masking a wide array of terms. Currently, structured data analyses still offer superior 

interpretability, but future studies to enhance interpretability of the unstructured data models 

may improve the understanding of which unstructured features are driving prediction and 

provide additional clinical insights.

V. Conclusion

Predictive models using unstructured, free-text clinical notes provide superior performance 

for predicting mortality among critical care patients with fungemia compared with models 
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trained with only structured data. Applying natural language processing methods to 

physician notes offers a high-performing and efficient approach for mortality prediction in 

fungemia. Ultimately, using these models, clinical decision support tools could be developed 

to reliably predict which patients with fungemia are at risk of dying during the 

hospitalization. These tools could help better inform their management, enabling a precision 

medicine approach to treating patients with fungemia.
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Fig 1. 
Receiver operating characteristic curves for models predicting mortality trained on 

unstructured data of fungemic patients from the first day of hospitalization (HD1), the first 2 

days of hospitalization (HD2), the first three days of hospitalization (HD3), and all notes 

(ALL).
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Fig 2. 
Receiver operating characteristic curves for models predicting mortality trained on all notes 

(left) and physician notes only (right).
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TABLE I.

Patients with Fungemia in MIMIC-III.

Survived (n=144) Died (n=121) Overall (n=265)

GENDER

 Female 57 (39.6%) 54 (44.6%) 111 (41.9%)

 Male 87 (60.4%) 67 (55.4%) 154 (58.1%)

ETHNICITY

 White 111 (77.1%) 88 (72.7%) 199 (75.1%)

 Asian 4 (2.8%) 2 (1.7%) 6 (2.3%)

 Black/African American 12 (8.3%) 10 (8.3%) 22 (8.3%)

 Hispanic or Latino 3 (2.1%) 2 (1.7%) 5 (1.9%)

 Other 2 (1.4%) 1 (0.8%) 3 (1.1%)

 Patient declined or unknown 12 (8.3%) 18 (14.9%) 30 (11.3%)

MEAN (SD) AGE 60.1 (17.3) 65.0 (15.9) 62.3 (16.8)

CLINICAL FEATURES

 Indwelling Central Catheter 45 (31.2%) 51 (42.1%) 96 (36.2%)

 Diabetes 35 (24.3%) 34 (28.1%) 69 (26.0%)

 Cancer 8 (5.6%) 11 (9.1%) 19 (7.2%)

 Chemotherapy 3 (2.1%) 1 (0.8%) 4 (1.5%)

 Steroids 4 (2.8%) 3 (2.5%) 7 (2.6%)

 Intravenous drug use 8 (5.6%) 3 (2.5%) 11 (4.2%)

 Hyperalimentation 1 (0.7%) 1 (0.8%) 2 (0.8%)

 Acute renal failure 67 (46.5%) 87 (71.9%) 154 (58.1%)

 Hemodialysis 2 (1.4%) 2 (1.7%) 4 (1.5%)

 Liver Disease 14 (9.7%) 29 (24.0%) 43 (16.2%)

 Intubation 90 (62.5%) 94 (77.7%) 184 (69.4%)
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TABLE II.

Performance of structured data models.

Model Accuracy Precision Recall F1 AUC

Multivariable Logistic Regression 0.74 0.73 0.67 0.70 0.76

Stacked Ensemble 0.74 0.83 0.67 0.36 0.67

XG Boost 0.67 0.92 0.58 0.36 0.67
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TABLE III.

Performance of unstructured data models.

Model Accuracy Precision Recall F1 AUC

Amazon Comprehend Medical

 Hospital Day 1 0.57 0.28 0.50 0.36 -

 Hospital Days 1–2 0.56 0.54 0.53 0.5 -

 Hospital Days 1–3 0.48 0.47 0.47 0.46 -

 All Notes 0.80 0.80 0.80 0.79 -

 Physician Notes 1.00 1.00 1.00 1.00 -

Logistic Regression

 Hospital Day 1 0.58 0.48 0.35 0.41 0.43

 Hospital Days 1–2 0.60 0.61 0.48 0.54 0.43

 Hospital Days 1–3 0.57 0.55 0.52 0.54 0.43

 All Notes 0.70 0.65 0.52 0.58 0.38

 Physician Notes 0.87 0.85 0.91 0.88 0.57

Convolutional Neural Network (CNN)

 Hospital Day 1 0.53 0.44 0.48 0.46 0.59

 Hospital Days 1–2 0.63 0.63 0.60 0.61 0.71

 Hospital Days 1–3 0.68 0.66 0.65 0.66 0.75

 All Notes 0.79 0.74 0.72 0.73 0.87

 Physician Notes 0.99 1.00 1.00 0.99 1.00

Recurrent Neural Network (RNN)

 Hospital Day 1 0.55 0.46 0.44 0.45 0.58

 Hospital Days 1–2 0.57 0.56 0.53 0.55 0.60

 Hospital Days 1–3 0.57 0.55 0.51 0.53 0.61

 All Notes 0.68 0.62 0.52 0.57 0.71

 Physician Notes 0.96 0.96 0.96 0.96 0.99
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