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ABSTRACT OF THE DISSERTATION

Parameter Estimation in Differential Equation Based Models

by

Zhen Xiao

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2014

Dr. Xinping Cui, Chairperson

There is a long history for differential equations to be utilized to model dynamic pro-

cesses in many disciplines such as physics, engineering, computer science, Finance, Biology, etc..

Most original efforts have been devoted to simulating the dynamic process for given parame-

ters that characterize the differential equations. In recent years, more and more attention has

been given by scientists, especially statisticians who considered the problem inversely, that is,

using the experimental data to recover the values of parameters that specifically describe the

experimental process trajectory.

In this dissertation, we introduced a general Integro-ordinary differential equation

that describes a reaction diffusion process for the tip growth of pollen tubes and proposed a

constrained nonlinear mixed effects model for the dynamic response. Accordingly, we developed

two estimation procedures to estimate this model, Constrained Method of Moments (CMM) and

Constrained Restricted Maximum Likelihood (CREML). The advantages and disadvantages of

the two procedures were investigated. Simulation studies and a real data analysis demonstrated

that both estimation procedures could provide accurate estimates for the parameters.

As an extension, the parameter estimation for Integro-partial differential equation of

multiple dimension would also be discussed.
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Chapter 1

Introduction

1.1 Tip growth of pollen tube, a motivating example

Tip growth is an extreme form of polarized growth of living cells that results in

an elongated cylindrical cell morphology with a rounded tip where the growth activity

takes place. Tip growth occurs in many organisms such as fungi (hyphae) [32], neuron

axon (animal) [53] and plants (e.g. root hairs and pollen tube) [3, 85]. One common

theme of tip growth is the formation of the polar cap on plasma membrane via polarized

Cdc42/Rho-family GTPase localization, determining the growing site and coordinating

multiple signaling events including cytoskeleton organization, vesicle trafficking (includ-

ing exocytosis) and ion dynamics [32,53,85]. Another related theme is the localized cell

surface extension via cell wall material renewal [17, 25]. To understand the tip growth

mechanism, it’s crucial to study the coupling mechanism that links the two common

themes.

Pollen tube, which demonstrates the importance of tip growth for the plant

fertilization, provides us an ideal model to study the tip growth mechanism for the for-

mation of the polar cap and how the dynamics of the polar cap modulates tip growth.
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Specifically, when a pollen tube receives a certain internal or external stimulus, it will

enter the first stage of ROP1 Rho GTPase polarity establishment, where through exocy-

tosis mediated positive feedback loop, exocytosis mediated negative feedback loop and

lateral diffusion of ROP1 GTPase on plasma membrane, active ROP1 GTPases polarity

can be established and maintained on the plasma membrane. Once maintained, the ac-

tive ROP1 triggers and regulates the exocytosis of a cell surface material called Pectin,

via which controls the cell wall mechanics and eventually determines the shape of pollen

tubes. Many previous theoretical biomechanical modeling attempts had been made to

simulate the tip growth of pollen tube [18, 25, 47]. These models focused more on the

cell wall mechanics and shape formation of pollen tubes. However, they found out at the

end of the first stage, the activated ROP1 GTPases on the membrane are not uniformly

distributed but rather appear in clusters, and these asymmetrically distributed ROP1

GTPases are the one that leads to a polarized growth of the cell, which results in an

elongated cylindrical cell morphology. Therefore, modeling the distribution of ROP1s

on the membrane is the key to understand the tip growth of pollen tube.

To understand the ROP1 GTPase polarity establishment, Yang et.al. proposed

a model based on two versatile functions of exocytosis. First, they hypothesized that

exocytosis participates positive feedback regulations of polarized ROP1 GTPase at tip

growing domain. The following evidence supports that exocytosis mediated postive

feedback of ROP1 GTPase

1. it has been observed that exocytosis is essential for pollen tube growth and renewal

of plasma membrane proteins [28,48]. Given that ROP1 and its activator complex

GEF/PRK2 is PM associated [1,7,27,39], it is believed that exocytosis is important

for activation of ROP1 at apex of pollen tubes.
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2. it has been shown recently that active ROP1 locally direct exocytosis at pollen tube

tip region via control of F-actin dynamics [ref], thus forming a positive feedback

loop.

Second, they hypothesized that exocytosis participates negative feedback regulation of

polarized ROP1 GTPase cap. REN1 RopGAP is an important negative regulator of

ROP1 activity and the phenotype of RopGAP weak knock down mutant is greatly en-

hanced by further inhibition of F-actin dependent exocytosis [46], supporting the exis-

tence of an exocytosis mediated negative regulation.

Based on the two key functions of exocytosis, Yang et.al. proposed a Intrego-

Partial Differential Equation (IPDE) model (1.1), in which the redistribution of ROP1

GTPase is determined by the rates of four fundamental transport mechanisms includ-

ing (1) positive feedback regulation, i.e., recruitment of cytoplasmic molecules to the

location of the signaling molecules on the membrane with rate kpf ; (2) the negative

feedback regulation, i.e., random disassociation of signaling molecules from the mem-

brane with rate knf ; (3) lateral diffusion of molecules along the membrane with rate D;

(4) spontaneous association of cytoplasmic molecules to random locations on the mem-

brane with rate kon. The spontaneous association is too weak to be considered, therefore

they assume that the first three processes together lead to ROP1 polarity formation.

∂R(x,t)
∂t = kpfR(x, t)α(1−

∫
xR(x,t)dx

Rtot
)− knfR(x, t) +D d2R(x,t)

dx2

where {x, t} ∈ [−L0, L0]× [0,∞]

R(−L0, t) = R(L0, t) = 0

(1.1)

In model (1.1), R(x, t) denotes the ROP1 intensity in position x on the membrane at

time t, and Rtot denotes the total free ROP1. Throughout this paper, Rtot, D and α > 1

are assumed to be known constants. This model is similar as the PDE model described

in [4] except in their model spontaneous association is included and α is assumed to be 1,
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and the integral of R(x, t) is considered as a unknown function of t that doesn’t involve

R(x, t).

At static time t0, the ROP1 density won’t change with respect to time. That is,

∂R(x,t)
∂t |t=t0 = 0. Let’s denote R(x, t0) as R(x), the IPDE model (1.1) then degenerates

to the following IDE model
D d2R

dx2
= knfR− kpfRα(1−

∫
xRdx

Rtot
) x ∈ [−L0, L0]

R(−L0) = R(L0) = 0

(1.2)

Therefore, in order to recover the OP1 Rho GTPase polarity establishment and further

the tip growth, we have to establish the related statistical methodology based on the IDE

model (1.2) and estimate the parameter in the IDE model (1.2). This is the ultimate

goal of this dissertation work. In the next section, several types of DEs will be reviewed.

1.2 A review of Differential Equations

A differential equation is a mathematical equation relating some function of

one or more variables with its derivatives. It arises when a deterministic relation of

some continuously varying variables (modeled by functions) and their rates of change in

space and/or time (modeled by derivatives) is known or postulated. Such relations are

so general and commonly observed that differential equations play an important role in

disciplines including physics and engineering. Moreover, in recent years we have seen

a dramatic increase in using differential equations in disciplines such as biology, chem-

istry, economics and computer sciences particularly that is related to image processing.

Throughout this section, we are going to introduce several types of differential equations

that are widely used in practice.
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1.2.1 Ordinary Differential Equation

An ordinary differential equation (ODE) is a differential equation in which the

dependent variable is a function of a single independent variable. Let u be a dependent

variable and x be an independent variable, so that u = u(x) is a function of x. From now

on, we are going to use two distinct notations for differentiation. One is the Leibniz’s

notation (dudx ,
d2u
dx2

, · · · , dnudxn ) for one dimension case and (∂u∂x ,
∂2u
∂x2

, · · · ) for high dimension

case. The other is Newton’s and Lagrange’s notation (u′, u′′, · · · , u(n)) for one dimen-

sion case and (ux, uxx, uxy, · · · ) or (∇x,4x, · · · ) for high dimension case. The general

definition of an ODE can be as follows.

Definition 1 Let F be a given function of x, u and derivatives of u. Then an equation

of the form u(n) = F (x, u, u′, · · · , u(n−1)) is called an explicit ODE. On the other hand,

an equation of the form F (x, u, u′, · · · , u(n−1), u(n)) = 0 is called an implicit ODE.

ODE can be further classified according to the order of an ODE, which is defined

to be the order of the highest derivative of the dependent variable with respect to the

independent variable appearing in the equation. For example, the equation du
dx = u2 + x

is a first-order ODE, and d2u
dx2

= du
dx + u2 + x is a second-order ODE. An ODE is said to

be linear if F can be written as a linear combination of the derivatives of u as follows,

u(n) =

n−1∑
i=0

ai(x)u(i)(x) + r(x)

where ai(x) and r(x) are continuous functions in x. Otherwise, the ODE is nonlinear.

The function r(x) that is called the source term leads to a further classification. When

r(x) = 0, the ODE is homogeneous. Consequently it has a zero solution u(x) = 0,

and its nonzero solution is called a complementary function, denoted by uc(x). When

r(x) 6= 0, the ODE is non homogeneous. A particular solution to the non homogeneous
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ODE is denoted by up(x). The general solution to the non homogeneous ODE is u(x) =

uc(x) + up(x).

The nth-order ODE u(n) = F (x, u, u′, ..., u(n−1)) can be expressed as a system

of n 1st-order ODEs. Defining a set of dependent variables ui(x) = u(i−1)(x) for i =

1, 2, · · · , n, the nth-order ODE can be transformed into the following

u′1(x) = u2(x)

u′2(x) = u3(x)

· · ·

u′n−1(x) = un(x)

u′n(x) = F (x, u1(x), u2(x), · · · , un(x))

or in a vector form as follows

u(x) = F (x,u)

where u(x) = (u1(x), · · · , un(x))T and F (x, u1, · · · , un) = (u2, u3, ..., F (x, u1, ..., un−1))

1.2.2 Partial Differential Equation

A partial differential equation (PDE) is a differential equation in which the

dependent variable is a function of multiple independent variables. The general definition

of a PDE can be as follows.

Definition 2 A PDE for the function u(x1, x2, ..., xn) is an equation of the form

F (x1, · · · , xn,
∂u

∂x1
, · · · , ∂u

∂xn
,

∂2u

∂x1∂x1
, · · · , ∂2u

∂x1∂xn
, · · · ) = 0

The order is defined similarly to the case of ODE. If F is a linear function of u

and it’s derivatives, then the PDE is linear. Otherwise, the PDE is nonlinear. Common

examples of linear PDEs include the heat equation

∂u

∂t
− α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= 0

7



the wave equation,

∂2u

∂t2
− c2∂

2u

∂x2
= 0

Laplace’s equation,

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0

Poisson’s equation

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= f(x, y, z)

Euler-Tricomi equation, etc..

∂2u

∂x2
− ∂2u

∂y2
= 0

The second-order linear PDE in two independent variables that is of utmost

importance in practice has the following form

L[u] = Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G (1.3)

where the coefficients A, B, C, D, E, F and G are given functions that may depend

on x and y, and A2 + B2 + C2 > 0 over a region of the x − y plane. The operator

L0[u] = Auxx + 2Buxy + Cuyy is called the principal part of L. It turns out that many

fundamental properties of the solution of (1.3) are determined by its principal part, and

more precisely, by the sign of the discriminant δL of the PDE given by B2 − AC. We

classify the equation according to the sign of δL.

Definition 3 Equation (1.3) is said to be hyperbolic at a point (x, y) if δL(x, y) =

B(x, y)2 − A(x, y)C(x, y) > 0. It is said to be parabolic at (x, y) if δL(x, y) = 0, and

it is said to be elliptic at (x, y) if δL(x, y) < 0. Let Ω be a domain in <2, the equation

is hyperbolic (parabolic, elliptic) in Ω, if it is hyperbolic (parabolic, elliptic) at all points

(x, y) ∈ Ω.
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It deserves to emphasis that when a transformation of coordinates (ξ, η) =

(ξ(x, y), η(x, y)) is such that the Jacobian J = ξxηy − ξyηx of the transformation does

not vanish at any point (x, y) in Ω, the type of a second-order linear PDE won’t change.

In the previous examples, it is easy to tell that the wave equation is hyperbolic, the

heat equation is parabolic and the Laplace equation is elliptic. When A,B,C are not

constant, it is possible that the PDE will not belong to any of the these categories but

rather be of mixed type. The simple example is the Euler-Tricomi equtaion, which is

elliptic in the region of x < 0, hyperbolic in the region of x > 0, and parabolic on the

line of x = 0. If there are n independent variables x1, x2, · · · , xn, a general linear PDE

of second order has the form

L[u] =
n∑
i=1

n∑
j=1

Aij
∂2u

∂xi∂xj
+ lower order term = 0

The classification depends on the signature of the eigenvalues of the coefficient matrix of

Aij . When the eigenvalues are all positive or all negative, the PDE is elliptic. When the

eigenvalues are all positive or all negative except that one is zero, the PDE is parabolic.

When the eigenvalues are all postive except one is negative, or the eigenvalues are all

negative except one is positive, the PDE is hyperbolic. Otherwise, the PDE is ultrahy-

perbolic. A ultrahyperbolic example is

∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

− ∂2u

∂y2
1

− · · · − ∂2u

∂y2
n

= 0

1.2.3 Other types of Differential Equation

In practice, there are many other types of differential equations that are widely

used, including Stochastic Differential Equation (SDE), Delayed Differential Equation

(DDE), Integro-Differential Equation (IDE).
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A SDE is a differential equation in which at least one term is a stochastic

process so that its solution is also a stochastic process. The general form of a linear SDE

is

du(t)

dt
= A(t, u(t)) +B(t, u(t))

W (t)

dt

where W (t) is a known stochastic process such as Brownian motion, Wiener process,

jump process etc.. SDEs were utilized to model diverse system such as fluctuating stock

price, physical system subject to thermal fluctuation and so on.

A DDE is a differential equation for a function of a single variable usually called

time, in which the derivative of the known function at a certain time is given in terms

of the values of the function at earlier times. A general form of a DDE is

du(t)

dt
= f(t, u(t), u(t− τ))

Examples of using DDE are the time related dynamic processes with delayed effects.

An IDE is a differential equation that involves not only the derivatives of the

dependent variable, but also the integral of the dependent variable. The equations (1.1)

and (1.2) in section 1.1 are all examples of IDE.

1.3 Application of Differential Equation

Differential equations are widely used to describe the dynamic processes in a

broad scientific fields such as physics, biology, chemistry, engineering, economics and

computer sciences. In this section, we are going to review some typical examples.

1.3.1 Differential Equation in Physics

A very simple but famous example of differential equation in physics is the

Newton’s second law of motion which describes the relationship between the position u

10



and the time t of the object of constant mass m under the force F for the motion of a

particle of constant mass m. In general, F depends on the position u(t) of the particle

at time t, and so the unknown function x(t) appears on both sides of the differential

equation, as is indicated in the notation F (u(t)).

m
d2u(t)

dt2
= F (u(t))

Another famous example is the heat equation which is used to model the dy-

namic change in the temperature function u(x, y, z) over time t. Where u(x, y, z) is a

function of location (x, y, z) that change over time as heat spreads throughout space.

The equation is

∂u

∂t
− α(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) = 0

where α is a positive constant representing the rate of heat diffusion. Such equation

suggests that the maximum value of u(x, y, z) is either earlier in time in the region of

concern or on the edge of the region of concern.

The heat equation is of utmost importance in diverse areas. Firstly, it is a

typical parabolic partial differential equation in mathematics. Secondly, it is connected

to the Brownian motion by the Kolmogorov forward equation in probability theory.

Thirdly, it can be used to solve the Black-Scholes partial differential equation in financial

mathematics. Last, it can be generalized to the diffusion equation, which can be used to

study the chemical diffusion process in chemistry.
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1.3.2 Differential Equation in Neurology

FitzHugh [33] and Nagumo et.al. [57] proposed a ODE based model to capture

the behavior of spike potentials in the giant axon of squid neurons

dV (t)
dt = α(V − V 3

3 +R) + u(t)

dR(t)
dt = − 1

α(V − β + γR)

The above ODE describe the reciprocal dependences between the voltage V on

an exon membrane and an outward current R as time goes by. An extra variable u(t) is

included to represent some other external effects.

1.3.3 Differential Equation in Ecology

Differential equation is widely used to model the population growth process of

many organisms in population ecology. Based on the assumption that organisms have

Brownian random motion, the rate of which is invariant in time and space, Okubo [60]

proposed a diffusion model

∂u(x, y, t)

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)

where, u(x, y, z) is the population density of organisms at spatial coordinates x, y at

time t, and D is the diffusion coefficient that measures the dispersal rate when animals

disperse at any two-dimensional coordinates. Furthermore, incorporating the fact that

the external stimuli like the wind, sunshine, water etc. will guide the animal’s travelling

orientation, Helland et.al. [41] proposed a model by adding some terms of outside stimuli

effects into the diffusion model

∂u(x, y, t)

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
− wx

∂u

∂x
− wy

∂u

∂y
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where wx and wy are the effect of the outside stimuli. Similarly, Skellam [71] proposed

a reaction diffusion model to study the expansion of muskrat in Europe

∂u(x, y, t)

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ru

(
1− u

k

)
Where r is the intrinsic rate of growth of muskrat and k is the carrying capacity. More

complicated ODE models have been built in order to capture certain properties like

spatial correlation, multiple species competition etc., see [43] for more details.

1.3.4 Differential Equation in Finance

Bernt Oksendal [59] introduced an optimal portfolio problem. Suppose that

one has two possible investments

1. A risky investment such as a stock investment, where the price function u1(t)

follows a SDE

du1(t)

dt
= (α+ σ

dW (t)

dt
)u1(t) (1.4)

where α and σ are positive constants. dW (t)
dt denotes a noise stochastic process.

2. A safe investment such as a bond investment, where the price function u2(t) follows

a ODE

du2(t)

dt
= βu2(t) (1.5)

where β is a positive constant with 0 < β < α.

At time instant t, the person can place a portion p(t) of his total fortune X(t) into

the risky investment, and therefore place the other portion (1 − p(t))X(t) into the safe

investment. Given an utility function U(t) and a terminal time T , the problem is to

find the optimal portfolio p(t) that maximizes the expected utility of the corresponding

terminal fortune X(T ), i.e., maxp(t)∈[0,1]E[(X(T )].
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Chapter 2

Literature Review of Paramter

Estimation in ODE models

As discussed in Chapter 1, differential equations have been widely used to model

physical system, engineering phenomenon, economic dynamics, and biological processes.

Great effort has been made to simulating the results of output or state or dependent

variables for a given differential equation with given parameters, which is known as a

forward problem. However, little effort has been made to estimating the parameters in

a differential equation by using the measurements of the output or state or dependent

variables, which is known as an inverse problem. Especially for nonlinear ODE models

without closed form solutions, the parameter estimation problem is a virgin. Since 2008,

however, this parameter estimation problem began to receive attention from statistical

perspective and several statistical estimation procedures were proposed to solve it. In

this chapter, we are going to review those procedures and discuss their advantages and

disadvantages. Since a higher order ODE can be degenerated to a system of first order
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ODEs, it does not lose generality to focus on the first order ODE as follows

x′(t) = F (t,x(t),u(t),θ)

x(0) = x0

z(t) = h(t,x(t),u(t),θ)

(2.1)

where, x(t) = (x1(t), · · · , xp(t))T is a vector of p state variables ( or dependent variables)

with initial value x0. z(t) is the measurement or output vector, u(t) ∈ <p is a known

input vector, and θ ∈ Θ ⊂ Rq is the parameter vector. F is a vector field from <p to

<p, Θ is a subset of the q dimensional Euclidean space. In most cases in practice where

x(t) can be observed directly, h(t,x(t),u(t),θ) = x(t) and (2.1) can be simplified to be
x′(t) = F (t,x(t),u(t),θ)

x(0) = x0

(2.2)

The inverse problem is to estimate θ based on the observed data y1,y2, · · · ,yn collected

at n distinct time instants t1, t2, · · · , tn, where yi = x(ti) + ε(ti) and x(t) satisfies (2.2),

and {ε(ti)}ni=1 follow a certain distribution.

In the following sections, we are going to review all the estimation approaches in

details. Those estimation approaches can be roughly divided into two groups, parametric

approaches including numerical nonlinear least square approach and numerical maximum

likelihood approach, and nonparametric approaches including smoothing approach, two

step approach and orthogonal condition approach.

2.1 Identifiability of ODE models

Before tackling the parameter estimation problem, we have to make sure the

ODE in model (2.1) or (2.2) has at least one solution, ideally an unique solution for

given parameters. This is known as an identifiability problem. Normally, solution to
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the identifiability problem will provide answers to the following questions. (1), Are the

parameters in the ODE models identifiable based on the experimental measurements of

dependent variables or their functions? (2), If not all parameters are identifiable, are

some of them identifiable? (3), How many measurements in total are necessary in order

to identify the parameters? In general, the concept of identifiability is defined as follows.

Definition 4 The dynamic system modeled by ODEs (2.1) and (2.2) is identifiable if θ

in the ODEs can be uniquely determined by the measurable system output y(t) for any

admissible system input u(t). Otherwise, it is said to be unidentifiable.

Many other relevant concepts of identifiability were also proposed such as global

identifiability and local identifiability by Ljung and Glad [52], locally strongly identifia-

bility (or x0-identifiable) by Tunali and Tarn [74], and structurally identifiability by Xia

and Moog [84].

Definition 5 Globally identifiable: A system structure is said to be globally identifiable if

for any admissible input u(t) and any two parameter vectors θ1 and θ2 in the parameter

space Θ, y(u,θ1) = y(u,θ2) holds if and only if θ1 = θ2.

Definition 6 Locally identifiable: A system structure is said to be locally identifiable

if for any θ within an open neighborhood of some point θ∗ in the parameter space,

y(u,θ1) = y(u,θ2) holds if and only if θ1 = θ2.

Definition 7 Locally strongly identifiable (or x0-identifiable): For an admissible input

function u(t) in the studied time interval [t0, T ] and a given initial state x0 = x(t0)

which is independent of θ and not a static point, if there exists an open set Θ0 ⊂ Θ such

that for any θ1 6= θ2 ∈ Θ0, the solutions x(u,θ) exist on [t0, t0 + ε] (0 < ε < T − t0) for

both θ1 and θ2, and y(u,θ1) 6= y(u,θ2) on [t0, t0 + ε], the system structure is said to be

locally strongly identifiable.
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Definition 8 Structurally identifiable: denote CN [t0,T ]
u to be the function space expanded

by all input functions on [t0, T ] which are differentiable up to the order N , and let M

denote an open set of initial values of the state vector. The system structure is said to

be structurally identifiable if there exist open and dense subsets M0 ⊂ M , Θ0 ⊂ Θ, and

U0 ⊂ C
N [t0,T ]
u such that the system is locally strongly identifiable at θ given u for any

x0 ∈M0, θ ∈ Θ0, and u ∈ U0.

The concept of structural identifiability was initially introduced by Bellman and

Astrom [10]. The structural identifiability problem for linear ODE has been well solved

by many techniques such as Laplace transformation method of Ballman and Astrom [10],

power series expansion method of Pohjanpalo [65], and similarity transformation method

of Walter and Lecourtier [81]. Some of these approaches have been extended by Vajda

[75], Chappel and Godfrey [21] to nonlinear ODE models. However, the extension only

works for a few simple nonlinear ODE models. For general nonlinear ODE models, the

identifiability problem can be solved by direct test method by Denis and Blanchard [24]

andWalter [80], differential algebra method by Ljung and Glad [52], and implicit function

theorem method of Xia and Moog [84]. A good review of these methods can be found in

Wu [56]. It should be pointed out that the identifiability problem will be simple when

we have the analytical solution whereas complicate when we don’t have the analytical

solution. In practice, when the parameter θ is time varying or of high dimension, the

identifiability problem will be very difficult and several methods may have to be combined

to solve it.

Once the ODE models are identifiabile, we can formally tackle the parameter

estimation problem. In the next session, we are going to review the data fitting criteria

based which several parametric estimation approaches were proposed.
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2.2 Estimation (Data Fitting) Criteria

Suppose {ε(ti)}ni=1 are independent distributed with mean zero and variance

covariance matrix Σi, then the estimation criterion can be the error sum of squares

C(θ,Σi|y) =

n∑
i=1

ε(ti)
TΣ−1

i ε(ti) =

n∑
i=1

[yi − x(ti)]
TΣ−1

i [yi − x(ti)] (2.3)

where Σ−1
i is the normalizing weight that rescales the observation yi.

Suppose {ε(ti)}ni=1 are independent distributed from a distribution G(·), then

the estimation criterion can be the negative log likelihood

C(θ,Σi|y) = −
n∑
i=1

logG(ε(ti)|θ,Σi) = −
n∑
i=1

logG(yi − x(ti)|θ,Σi) (2.4)

The estimation of the parameter θ can be obtained by solving the following

ODE constrained minimization problem

θ̂ = argminθ,ΣC(θ,Σi|y)

s.t.


x′(t) = F (t,x(t),u(t),θ)

x(0) = x0

(2.5)

If the error sum of squares (2.3) is used, the corresponding estimators are called least

square estimators. On the other hand, if the negative log likelihood (2.4) is used, the

corresponding estimators are called maximum likelihood estimators. When G(·) is a

normal distribution function, the two estimation criteria are the same. In the following,

we illustrate the use of these criteria through a simple example as follows.

Example 9 Suppose we have independent observations 2.95, 6.84, 20.65, 54.57 for the

state variable x(t) at time instant 1, 2, 3, 4 from a normal distribution with standard

deviation 1, where x(t) is such that
x′(t) = θx(t)

x(0) = 1

(2.6)
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Provide an estimation of θ.

Solution 10 First, let us find the solution of (2.6)

x′(t) = θx(t)

dx(t)
x(t) = θdt

logx(t) = c1 + θt

x(t) = ceθt

Since x(0) = ce0t = c = 1, the solution of (2.6) is x(t) = eθt. Then applying the least

square criterion, the estimation of θ is

θ̂ = argmin
θ

n∑
i=1

[yi − x(ti)]
T [yi − x(ti)]

= argmin
θ

(2.95− eθ)2 + (6.84− e2θ)2 + (20.65− e3θ)2 + (54.57− e3θ)2

= 1.00038

2.3 Numerical Approaches

In the subsection 2.2, the estimation criteria indicate that a general parameter

estimation procedure involves two steps.

1. Given a set of parameter values and an initial conditions, the ODE is solved for a

solution.

2. The solution given by the first step is plugged in (2.3) or (2.4) and minimizing

which will lead to the estimations.

If a closed form solution to (2.3) or (2.4) is available, the problem in step 2 is essentially

a standard nonlinear regression, which can be solved by many standard statistical tools.

However, in practice most of ODEs, especially with a nonlinear function F do not have
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a closed form solution. In this case, numerical methods such as the Euler method,

the trapezoidal rule, the first order exponential integrator method, the Runge-Kutta

algorithm, the shooting methods have to be used to approximate the solution of the

ODEs. A good review of these methods can be found in the textbook of Gordon C.

Everstine [29]. Consequently, the two criteria (2.3) or (2.4) can be minimized for the

estimates of the unknown parameters θ. Specifically, let t0 < t1 < · · · < tn−1 = T

be a set of time instants on the interval [t0, T ], hj = tj − tj−1 be the mesh size and

h = max1≤j≤m−1 hj , the numerical solution of x(t) at (t1, · · · , tn−1) can be obtained by

xj+1 = xj + hjΦ(tj ,xj ,xj+1, h) (2.7)

where the specific form of Φ depends on the specific numerical method used.

The numerical approach was first proposed by mathematicians in 1970s in-

cluding Bard [9], Van Domselaar and Hemker [76], and Benson [11]. Xue et.al. [40]

established the asymptotical properties for the numerical estimates of using the nonlin-

ear least square criterion (2.3) as follows.

Theorem 11 Let’s assume

A1. θ ∈ Θ, where Θ is a compact subset of <p with a finite diameter Rθ

A2. Ω = {x(t,θ) : t ∈ (t0, T ),θ ∈ Θ} is a closed and bounded convex subset of <p

A3. There exist two constants −∞ < c1 < c2 < +∞ such that y(t,θ).

A4. All partial derivatives of F with respect to t and x up to order p exist and are

continuous.

A5. The numerical method for solving ODEs is of order p.

A6. For any θ ∈ Θ, Et[x(t,θ − x(t,θ0)]2 = 0 if and only if θ = θ0.

A7. The first and second partial derivatives, ∂x(t,θ)
∂θ and ∂2x(t,θ)

∂θ∂θT
exist and are continous

and uniformly bounded for all t ∈ (t0, T ) and θ ∈ Θ.

20



A8. For the ODE numerical solution satisfies the same condition in A7.

A9. For random design points, t1, · · · , tn are i.i.d.. The joint density function of t and

y, f(t,y) is bounded for all t ∈ (t0, T ) and y ∈ (c1, c2).

A10. The true value of parameter θ, θ0 is interior in Θ.

A11. θ̃ = argminE0[(y − x̃(t,θ))T (y − x̃(t,θ))] is interior in Θ, where x̃(t,θ) is the

numerical solution of x(t,θ) and E0 is the expectation with respect to the joint probability

distribution of (t,y) at the true value θ0.

A12. The matrix V1 =
[
E( ∂x∂θ0

∂x
∂θT0

)
]−1

E( ∂x∂θ0
∂x
∂θT0

)
[
E( ∂x∂θ0

∂x
∂θT0

)
]−1

is positive definite,

where E is expectation with respect to t.

A13. The matrix Ṽ =
[
E(∂x̃

∂θ̃
∂x̃
∂θ̃T

)
]−1

E0

[
∂x̃
∂θ̃

(y − x̃(t,θ))
]⊗2

∂x̃
∂θ̃

[
E(∂x̃

∂θ̃
∂x̃
∂θ̃T

)
]−1

is posi-

tive definite.

Under the above assumptions, We can conclude that

1. Under the assumptions A1 − A10, if there exist a λ > 0 such that h = O(n−λ),

then θ converges to θ0 almost surely.

2. For h = O(n−λ) with 0 < λ ≤ 1
min(p,4) where p is the order of the numerical method,

under assumptions A1−A10 and A12, we have that
√
n(θ̂ − θ0)

d→ N(0,V1).

3. For h = O(n−λ) with 0 < λ ≤ 1
max(p,4) , under assumption A1−A9, A11 and A13,

we have that
√
n(θ̂− θ̃)

d→ N(0, Ṽ1) with ‖θ̃−θ0‖ = O(h
min(p,4)

2 ) and ‖Ṽ1−V1‖ =

O(h
min(p,4)

2 )

A detailed proof is given by Xue et.al. [40]. Though the numerical estimates are

proved to have a good asymptotic property, it has many drawbacks in practice. Firstly,

this approach is computationally prohibitive since it requires to solve the ODE numeri-

cally repeatedly for each update of parameters. Secondly, it has a strict requirement on

the step size for the appropriate convergence, which results in a much longer computing
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time. Moreover, the asymptotical variance of the numerical estimators has no closed

form which prevents their usage in further statistical inferences. Thirdly, the accuracy

of the numerical approximation in step 1 is questionable, especially when the depen-

dent vector cannot be observed continuously. Last, the minimization involved in this

approach is always problematic, where the conventional gradient based methods such

as Gauss-Newton method and quasi-Newton may fail to converge or converge to local

minima if the iteration starts from a badly chosen initial values. Moreover, Ascher [6]

pointed out this NLS approach can not deal with a case where the fundamental matrix

of the ODE (2.2) has exponentially increasing and decreasing modes or, more generally,

has non-trivial dichotomy.

An alternative solution is the embedding approach proposed by Bock [12]. How-

ever, Osborne [61] pointed out the embedding approach requires additional information

about the solution structure and suitable boundary conditions. Also, the embedding

approach has to choose an appropriate embedding which can be difficult if no prior in-

formation about the dynamical system is known, and sometimes the embedding may not

be available. Moreover, like the NLS approach, embedding approach requires the i.i.d.

assumption of data, which is too strong to be satisfied in real application since the data

in time series always depend on time t.

Gelman [35] proposed a Bayesian approach which avoids the problems of local

minima in the numerical approaches. The author modeled observations yi by a density

centered on the numerical solution, xi = x(ti|θ), for example, yi ∼ N
[
x(ti|θ), σ2

]
.

Then a posterior likelihood of θ given yi can be obtained based on the Bayesian equation.

And since the posterior likelihood has no closed form, MCMC techniques such as Gibbs

sampler or Metropolis-Hastings sampler or other sampler have to be used to estimate
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the parameter θ. However, the Bayesian approach also encounters other problems of the

numerical approaches.

In the aforementioned numerical methods, the initial values of the state vector

x(t0) have to be known. Li [86] proposed a simultaneous approach in order to handle the

unknown initial condition x(t0). His approach breaks the ODE constraint in (2.5) into

a fixed number of equality constraints by transforming the ODE into some difference

equations, and moreover, it treats both the parameters θ and the state vector x(ti)

as unknown parameters. Specifically, it discretizes the ODE (2.2) into the following

difference equalities

xi+1 − xi = hiF

(
ti+ 1

2
,u(ti+ 1

2
),
xi + xi+1

2
,θ

)
i = 1, 2, · · · , n− 1

As a result, the ODE constrained minimization problem is converted into

minm(x1, · · · ,xn) =
∑n

i=1[yi − xi]T [yi − xi]

s.t. xi+1 − xi = hiF
(
ti+ 1

2
,u(ti+ 1

2
), xi+xi+1

2 ,θ
)

i = 1, 2, · · · , n− 1

(2.8)

Define

z = (xT1 ,x
T
2 , · · · ,xTn ,θ)T

Ci(xi,xi+1,θ) = xi+1 − xi − hiF
(
ti+ 1

2
,u(ti+ 1

2
),
xi + xi+1

2
,θ

)
C(z,θ) = (C1(x1,x2,θ), · · · ,Cn−1(xn−1,xn,θ))T

then the Langrangian function associated with (2.8) is

l(z,θ,λ) = m(z) + λTC(z,θ)

where λ = (λ1, · · · ,λn−1)T . Li developed a new algorithm that combines the the se-

quential quadratic programming (SQP) Gauss-Newton approximation and SQP Newton

approximation together to approximate the Hessian information of the Lagrangian func-

tion and finally solve the estimation problem. The contribution of Li’s approach is that
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it breaks the ODE into some pieces of difference equations. However, it also encounters

many problems in practice. First of all, the discretization of ODE will decrease the

accuracy of the estimates. Second, the discretization will bring in too many unknown

parameters and too many constraints on the least square minimization, which results in

numerous local minima and an intensive computation. When the sample size n gets big,

the two problems become very troublesome, since the number of parameters as well as

that of constraints increase linearly as n increases.

2.4 Smoothing Approaches

Ramsay et.al. [66] proposed an estimation approach to solve ODEs model (2.1)

or (2.2) which is based on a data smoothing technique along with a generalization of

profile estimation method.

On one hand, Ramsay expressed the jth(j = 1, · · · , p) state variable xj(t) in

x(t) in terms of a basis function expansion

xj(t) =

Kj∑
k=1

βjkφjk(t) = βTj φj(t) (2.9)

where the number Kj of basis functions are chosen so that we have the flexibility to

capture the variation in xj(t) and its derivative x′j(t), and βj stands for the only un-

known part of xj(t). The problem of obtaining xj(t) is then transformed into that of

estimating the coefficients βj . Let β = (β1, · · · ,βp)T be the vector of length K =∑p
j=1Kj . Let Φj = (φj(t1)T ,φj(t2)T , · · · ,φj(tn)T )T be a Nj by Kj matrix, and let

Φ = Diag{Φ1, · · · ,Φp} be the N =
∑n

j=1Nj by K matrix. Based on this notation, x(t)

can be expressed as

x(t) = Φ(t)β (2.10)
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The expression (2.9) or (2.10) of x(t) is then used to replace the state vector x(t) in the

estimation criteria (2.3) or (2.4) for minimization.

On the other hand, Ramsay expressed each equation in (2.2) as a differential

operator equation

Lj,θ(xj) =
dxj(t)

dt
− fj(t,x,u,θ) = 0 j = 1, · · · , p

Therefore, the goodness of fit to (2.2) for any given estimating function xj can be mea-

sured under Euclidean norm by

PENj(x) =

∫ T

t0

[Lj,θ(xj(t))]
2dt

or under other norm such as L1 by

PENj(x) =

∫ T

t0

|Lj,θ(xj(t))|dt

And the overall goodness of fit for any given estimating function x can be measured by

PEN(x,θ,λ) =

p∑
j=1

λjPENj(x) (2.11)

where the multipliers λj > 0 are weights that control the relative emphasis on the data

fitting for each state variable. As a result, the ODE constraint is converted into a

penalty term that can be added into the estimation criteria (2.3) or (2.4), so that the

ODE constrained minimization problem (2.5) is converted to the following penalized

minimization problem (2.12) which includes three classes of parameters: (1) the system

structural parameters θ,Σ, (2) the coefficients β defining the basis functions and (3) the

tuning parameter λ defining the weights in the penalty term.

θ̂ = argmin
θ,Σ,β,λ

J(θ,Σ,β,λ|y) = argmin
θ,Σ,β,λ

C(θ,Σi|y) + PEN(x,θ,λ) (2.12)

Then, fixing the value of λ, Ramsay proposed a profile approach to estimate

θ,Σ and β which works as follows. First, for any given value θ,Σ, we minimize (2.12) to
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get the estimation of β in terms of θ,Σ, say β̂(θ,Σ) . After that, we plug β̂(θ,Σ) into

(2.3) or (2.4), by minimizing which we obtain the estimation of θ and Σ. In general, the

first minimization in the profile approach will require numerical solvers, but in the least

square case and linear ODEs, Ramsay addressed that it is possible to express β̂(θ,Σ)

analytically. Moreover, Ramsay has also discussed the choice of the tuning parameter λ,

and investigated the large sample behavior of the parameter estimates as λ→∞.

Further, Cao and Xu [44] proposed a robust smoothing approach which ex-

tends Ramsay’s method to deal with outliers. In his approach, he defined a new residual

measurement f(r) = exp(−ρ(r)) rather than the square residual, where ρ(r) is a convex

function and symmetrical about zero, quadratic in the neighborhood of zero and increas-

ing at a rate slower than r2. Accordingly, the estimation criteria (2.3) and (2.12) will

be

C∗(θ,Σi|y) = −
p∑

k=1

n∑
i=1

ρ(
yk(tki)− xk(tki)

σi
) (2.13)

J(θ,Σ,β,λ|y) = argmin
θ,Σ,β,λ

C∗(θ,Σi|y) + PEN(x,θ,λ) (2.14)

The advantage of using the new residual measurement f(r) is that it will downweight the

extreme residuals in comparison with squared residuals. In practice, a common choice

of ρ(r) could be the family of Huber functions

ρ(r) =


r2 if |r| ≤ κ

2κ|r| − κ2 if |r| > κ

(2.15)

Ramsay’s smoothing approach brings a new idea to convert the ODE constraint

into a penalty term so that the ODE constrained minimization problem is converted

into a penalized minimization problem. Moreover, this approach avoids numerically

solving the ODE and does not require to know the initial value of the state vector

x. However, this approach encounters several problems. First of all, this approach
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introduces numerical errors which reduce the accuracy of the estimates, since it cannot

compute the integration in the penalty analytically. Second, β̂(θ,Σ) has no close form

and cannot be expressed analytically in the maximum likelihood case or nonlinear ODEs

case, which indicates the profile approach can only be helpful in the linear least square

case. Last, this approach does not provide a feasible way to choose the tuning parameter

λ.

2.5 Two step Approach

An alternative approach that also does not require to solve the ODE was called

“Two Step (TS) approach” proposed by Brunel [13]. Unlike the previous approaches that

estimate the parameter directly via a parametric constrained minimization or penalized

minimization process, the Two Step approach essentially divides the estimation problem

into a nonparametric estimation step and a least square minimization step as described

below

1. Consistent estimations of the state vector x(t) as well as its derivative x′(t), say

x̂(t) and x̂′(t) are obtained by fitting the observations with flexible methods.

2. An estimation criterion can be defined by plugging x̂(t) and x̂′(t) into the ODE

and then taking the difference between the two sides of the ODE

Rqn,w(θ) = ‖x′(t)− F (t,x(t),u(t),θ)‖q,w (2.16)

where ‖f(t)‖q,w =
(∫ T

t0
|f(t)|qw(t)dt

)
is a measure on Lq(w) for any function f(t)

on [t0, T ] w.r.t. the weight function w(t), which is continuous and positive on

[t0, T ]. Moreover, q = 2 and equation weight function w(ti) = 1
n will lead to the

standard nonlinear least square criterion of L2 norm.
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3. The TS estimators are such that the estimation criterion (2.16) is minimized.

θ̂ = argmin
θ

Rqn,w(θ) (2.17)

The principle of the TS estimators is motivated by the fact that it is rather easy to

construct consistent estimators of x(t) and x′(t) based on the observed data than solving

them directly from the ODE. This approach was initialized by Varah [77] who suggested

to use the least square splines in the first step. Other smoothing techniques were also

suggested such as cubic splines by Madar [55], local polynomial regression by S. Ellner [15]

and Wu [83]. or neural networks by E.O. Voit [78].

Brunel [13] established the asymptotic properties for the TS estimators when

using least square splines in the first step, where he proved that under certain conditions,

the TS estimators will be
√
n consistent and asymptotically normal. Besides, Wu [22]

established the large sample properties for the TS estimators when using local polyno-

mial regression in the first step. With the asymptotic distribution, the interval estimates

for θ can be obtained and statistical inference can be further conducted. The TS ap-

proach provides new direction for ODE modeling since it is conceptually straightforward

and doesn’t require to know the solution to the ODE as well as the initial conditions.

However, it has its own problem. First of all, the performance of TS approach heavily

depends on the goodness of the nonparametric estimates x̂(t) and x̂′(t). However, in

practice it’s very hard to obtain such good estimates when the data are of small size or of

bad local quality. In other words, the TS approach is very sensitive to the local behavior

of the experimental data. The accuracy of TS estimator will be reduced dramatically

with small change of data. Second, the TS estimator achieves the optimal
√
n consis-

tency only if the weight function w(t) in the second step satisfies certain constraints.

With a bad w(t), the TS estimator may converge much slower. Therefore, the choice of
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weight function is crucial. However, in practice there is no principle that guides how to

choose it.

Motivated by a viral dynamics model for infectious disease, Chen and Wu [22]

studied the following ODE models characterized by time-varying parameters
x′(t) = F (t,x(t),θ(t))

x(0) = x0

(2.18)

He extended the TS approach to estimate the time-varying parameters as follows

1. A local polynomial regression is utilized to estimate the state vector x(t) as well

as its derivative x′(t), say x̂(t) and x̂′(t). Specifically, the state vector can be

approximated around a studied point t∗

xk(ti) ≈ xk(t∗) + (ti − t∗)x(1)
k (t∗) + · · ·+

(ti − t∗)Ax(A)
k (t∗)

A!
= zTi,Aβk,A(t∗) (2.19)

where βk,v(t∗) =
x
(v)
k (t∗)
v! , v = 0, . . . , A, and zi,m = [1, (ti − t∗), . . . , (ti − t∗)m]T ,

and A is the order of the local polynomial. Then, the estimation x̂A(t∗) =

[β̂1,0(t∗), . . . , β̂A,0(t∗)]T and x̂′A(t∗) = [β̂1,1(t∗), . . . , β̂A,1(t∗)]T can be obtained by

minimizing the locally weighted least square criterion,

p∑
k=1

n∑
i=0

(yk(ti)− zTi,Aβk,A(t∗))2Khk(ti − t∗) (2.20)

with respect to β’s. Here Khk(·) = K(·/hk)/hk is a re-scaling function based on a

kernel function K(·) with bandwidth hk > 0.

2. A local linear method is used to approximate the parameter vector θ(t) around t∗

θh(ti) = αh,0(t∗) + αh,1(t∗)(ti − t∗) h = 1, · · · , q (2.21)

3. Then, the parameter θ(t) at time instant t∗, θ(t∗) = (θ1(t∗), · · · , θq(t∗))T can be

estimated via minimizing the locally weighted least square criterion

p∑
k=1

n∑
i=0

(x̂′k,A(ti)− fk(x̂A(ti), (Im ⊗ zTi,1)α(t∗)))2Kb(ti − t∗)
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where ⊗ denotes the Kronecker product, Im denotes an m-dimensional identity

matrix, and α(t∗) = (αT1 (t∗), · · · ,αTq (t∗))T with αj(t∗) = (αj,0(t∗), αj,1(t∗))T .

Kb(·) is a kernel function with b being a properly selected bandwidth. Then, the

local estimator of θ(t∗) is θ̂(t∗) = (α̂1,0(t∗), · · · , α̂q,0(t∗))T .

Chen and Wu [22] also established the asymptotical results for the proposed

estimators and obtained closed form asymptotical biases and variances under certain

conditions, where the bandwidth selection was suggested by the asymptotical results.

2.6 Orthogonal Condition Approach

To overcome the drawback of TS approach, Brunel [14] proposed an alternative

approach called “Orthogonal Condition” (OC) approach. On one hand, the OC approach

preserves all the advantages of the TS approach. On the other hand, it can not only avoid

the choice of the weight function w(t) but also achieve the
√
n consistency. The most

markable feature of the OC approach is the usage of orthogonal condition to characterize

the solution of the ODE. The way of the characterization is so general that it does not

impose any constraints into the estimation process. In this section, we review this

approach in detail and demonstrated its usage in our own pollen tube growth example.

However, it can be simply extended into other linear or nonlinear differential equations.

Recall that the ODE (1.2) in the pollen tube growth example is
D d2R

dx2
= knfR− kpfRα(1−

∫
xRdx

Rtot
) x ∈ [−L0, L0]

R(−L0) = R(L0) = 0

The OC estimation approach involves three main stages as follows.
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2.6.1 OC Estimation Procedure

Stage I: nonparametric estimation of the state variable and its derivatives

In stage I, a nonparametric model is fitted to estimate the state variable R(x)

as well as its derivatives R′(x) and R′′(x). In this dissertation, regression spline linear

model is used in order to obtain closed form bias and variance estimates. Further, B-

spline basis functions is used. Specifically, a set of l = k +m B-spline basis functions of

order m, denoted by Bl(x) = (B1(x), B2(x), · · · , Bl(x))T , is firstly created with a proper

chosen set of knots {t0, t1, · · · , tk+1 = T} that partitions [t0, T ]. These basises are then

used to fit the data Y = (y(x1), y(x2), · · · , y(xn))T to a simple linear regression model

as follows

y(x1)

y(x2)

...

y(xn)


=



B1(x1) B2(x1) · · · Bl(x1)

B1(x2) B2(x2) · · · Bl(x2)

...
...

. . .
...

B1(xn) B2(xn)
... Bl(xn)





c1

c2

...

cl


+



ε1

ε2

...

εn


that is, Y = Bn×lc + ε, where ε is the vector of measurement error with mean 0 and

variance matrix σ2In×n. Hence,the estimated coefficients based on this model are

ĉ =
(
BT
n×lBn×l

)−1 BT
n×lY

And the estimated state variable as well as its ith order derivative are

for i = 0, 1, 2, R̂(i)(x) = B(i)
l (x)T ĉ = B(i)

l (x)T
(
BT
n×lBn×l

)−1 BT
n×lY (2.22)

where B(i)
l (x) = (B

(i)
1 (x), B

(i)
2 (x), · · · , B(i)

l (x))T .

We now recall the asymptotic properties of the estimator R̂(i)(x) derived by S.

Zhou and Douglas A. Wolfe [87]:
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Condition 12 (Condition on the Knots)

max
1≤j≤k

|hj+1

hj
− 1| = o(1) and

h

min1≤j≤k+1 hj
≤ d1

where hj = tj − tj−1 is the mesh size, h = max1≤j≤k+1 hj, o(1)→ 0 as k → 0, and d1 is

a pre-determined constant.

Condition 13 (Condition on design points)

sup
x∈X
|Qn(x)−Q(x)| = o(

1

k
)

where Qn(x) is the empirical distribution function for the design points {xj}nj=1 and Q(x)

is the corresponding distribution with density q(x). Furthermore, if {xj}nj=1 and q(x) are

such that

for j = 1, 2, · · · , n,
∫ xj+1

xj

q(x)dx =
1

n

then (12) holds if k
n → 0.

Theorem 14 Under Conditions (12) and (13), if R ∈ Cm[0, 1] with m > 2 and k
n → 0,

and suppose ~ε is the vector of measurement error with mean 0 and variance matrix

σ2In×n, then

R̂(i)(x)−R(i)(x)− bi(x)√
Var(R̂(i)(x))

d→ N(0, 1)

where the bias is

bi(x) =
g(m)(x)hm−ij+1

(m− i)
Bm−i(

x− tj
hj+1

), iftj < x < tj+1, j = 0, . . . , k,

with Bm−i(·) being a Bernoulli polynomial,

and the variance is

Var(R̂(i)) =
σ2

n
BT
n×l−iG

−1(q)(D(i))TBn×(l−i) + o(h−2i−1n−1)
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with

G(q) =

∫ b

a
Bn×(l−i)BT

n×(l−i)q(x)dx

and Bn×(l−i) consisting of basis functions of order m− i.

Based on Theorem 14, the bias of R̂(i)(x) is O(hm−i) and the variance is

O(h
1

2i−1n−1). As a result, the optimal mesh size hopt = O(n
1

2m+1 ) gives rise to the

minimum square error MSE(R̂(i)(x)) = b2i (x) + Var(R̂(i)(x)) = O(n
2(m−i)
2m+1 ). Therefore,

under the conditions (12) and (13), and suppose h = hopt, the nonparamtric estimates

can achieve their optimal
√
n convergence and thus are

√
n consistent when m→∞.

Stage II: Construction of Orthogonal Conditions

In stage II, we construct orthogonal conditions to characterize the fidelity of

estimates R̂(x) to the IDE. Notice that R(x) can be uniquely identified by the condition

that for any integrable function ϕ(x) where x ∈ [a, b],∫ b

a
D
d2R

dx2
ϕ(x)dx+

∫ b

a
(−knfR+ kpfR

1.2(1−
∫
xRdx

Rtotal
))ϕ(x)dx = 0

we define a weak solution of the IDE by relaxing the above requirement only upon the

following set of functions.

Condition 15 Let (ϕ`)`≥1 be a sequence of functions that are second continuously dif-

ferentiable where x ∈ [a, b] and satisfy the boundary conditions ϕ`(a) = ϕ`(b) = 0 and

ϕ′`(a) = ϕ′`(b) = 0. The space spanned by (ϕ`)`≥1 is denoted by F .

Statement 2.1(a) A weak solution of the IDE is a function R(x) such that for any

function ϕ`(x) in Condition (15),∫ b

a
D
d2R

dx2
ϕ`(x)dx+

∫ b

a
(−knfR+ kpfR

1.2(1−
∫
xRdx

Rtotal
))ϕ`(x)dx = 0
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Thanks to the nice boundary property of ϕ`(x), the first term vanishes when we integrate∫ b
a D

d2R
dx2

ϕ`(x)dx by parts, that is,

∫ b

a
R′′(x)ϕ`(x)dx = R′(b)ϕ`(b)−R′(a)ϕ`(a)−

∫ b

a
R′(x)ϕ′`(x)dx = −

∫ b

a
R′(x)ϕ′`(x)dx

= −(R(b)ϕ′`(b)−R(a)ϕ′`(a)) +

∫ b

a
R(x)ϕ′′` (x)dx =

∫ b

a
R(x)ϕ′′` (x)dx

As a result, we have an equivalent statement as follows.

Statement 2.1(b) A weak solution of the ODE is a function R(x) such that for any

function ϕ`(x) in Condition (15),

∫ b

a
DRϕ′′` (x)dx+

∫ b

a
(knfR− kpfR1.2(1−

∫
xRdx

Rtotal
))ϕ`(x)dx = 0

Denote ~θ = (knf , kpf )T , we then define a condition e`(R̂, ~θ) for each ϕ`(x) as follows

e`(R̂, ~θ) =

∫ b

a
DR̂ϕ′′` (x)dx+

∫ b

a
(knf R̂− kpf R̂1.2(1−

∫
x R̂dx

Rtotal
))ϕ`(x)dx

And we call the conditions e1(R̂, ~θ) and e2(R̂, ~θ) are orthogonal with each other, if ϕ1(x)

and ϕ2(x) are orthogonal functions, that is,
∫ b
a ϕ1(x)ϕ2(x)dx = 0. Obviously, a reason-

able estimate of ~θ will minimize e`(R̂, ~θ) for (ϕ`)`≥1.

Stage III: least square optimization

In stage III, we choose sufficient orthogonal conditions to identify the estimate

of ~θ. Recall in stage II, it’s possible to obtain an infinite number of conditions. In such

a case, there will be far more conditions than parameters so that the parameters will be

over identified. One possible way to solve this problem is to use a set of sufficient good

conditions instead of all the conditions for parameter identification. In this paper, we

used a fixed number L (L > 2) conditions, where the magnitude of L is related to the

statistical property of the final OC estimators. By “good”, we mean all the conditions
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should be orthogonal with each other, that is, they are constructed from a number of

orthogonal functions (ϕ`(x))L`=1. For the second order DE, B-spline basis functions are a

good choice for (ϕ`(x))L`=1 since they are nearly orthogonal. Other basis functions, such

as polynomial basis, sine basis can also be used as (ϕ`(x))L`=1 in many other DEs.

Let eL(R̂, ~θ) be the vector of L orthogonal conditions (e`(R̂, ~θ))
L
`=1, where L

is sufficiently large, then the orthogonal condition (OC) estimate of ~θ is defined by

minimizing a least square criterion Qn,L(~θ) as follows

~̂θn,L = argmin
~θ
Qn,L(~θ) = argmin

~θ

∥∥∥eL(R̂, ~θ)
∥∥∥2

(2.23)

As mentioned above, we only use a portion of an infinite number of conditions

to estimate ~θ, which may cause a loss of certain information. Nevertheless, we expect

the OC estimate can also minimize all the orthogonal conditions, which gives rise to the

next condition.

Condition 16 ~̂θn,L is also a global minimizer of Qn(~θ) =
∥∥∥eF (R̂, ~θ)

∥∥∥2
, where eF (R̂, ~θ)

is the vector consisting of all the infinite orthogonal conditions (e`(R̂, ~θ))
∞
`=1.

2.6.2 Asymptotic Properties of OC estimators

In this section we derive the asymptotical representation for the OC estimator

~̂θn,L, and linked its asymptotic property with that of R̂(x) through the orthogonal con-

dition vector eL(R̂, ~θ). We further derive the closed form for the asymptotical variance

of ~̂θn,L when using B-spline regression linear model in the first stage. The asymptotic

property provides guidance of choosing the best L in stage III.
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Asymptotical Representation

Denote ~θ∗ to be the true value of ~θ. Then the linearizaiton of Qn,L(~θ) gives rise

to an asymptotical representation of the OC estimator, ~̂θn,L, as follows:

~̂θn,L − ~θ∗ = −M∗LeL(R̂, ~θ∗) + op(1) (2.24)

whereM∗L = [J~θ,L(R̂, ~θ∗)TJ~θ,L(R̂, ~θ∗)]−1J~θ,L(R̂, ~θ∗)T , and J~θ,L = ∂eL(R̂,~θ∗)

∂~θ∗
is the jacobian

matrix of eL(R̂, ~θ∗) with respected to ~θ∗.

Proof. Recall eL(R̂, ~θ) = (e1(R̂, ~θ), e2(R̂, ~θ), · · · , eL(R̂, ~θ))T . The OC estimator ~̂θn,L is

defined by minimizing Q2
n,L(~θ) as follows:

Q2
n,L(~θ) = eL(R̂, ~θ)TeL(R̂, ~θ) =

∥∥∥eL(R̂, ~θ)
∥∥∥2

~̂θn,L = argmin
~θ
Q2
n,L(~θ)

By tylor expansion, linearizing Q2
n,L(~θ) around ~θ∗ yields

Q2
n,L(~θ) = Q2

n,L(~θ∗) +
dQ2

n,L(θ)

d~θT
|~θ=~θ∗(~θ − ~θ

∗)

+
1

2
(~θ − ~θ∗)T

d2Q2
n,L(~θ)

d~θd~θT
|~θ=~θ∗(~θ − ~θ

∗) + o(
∥∥∥~θ − ~θ∗∥∥∥2

)

= Q2
n,L(~θ∗) + 2Jn,L(R̂, ~θ∗)TeL(~θ − ~θ∗) +

1

2
× 2(~θ − ~θ∗)T

[(Jn,L(R̂, ~θ∗)TJn,L(R̂, ~θ∗) +Hn,L(R̂, ~θ∗)TeL](~θ − ~θ∗) + o(
∥∥∥~θ − ~θ∗∥∥∥2

)

where Hn,L(R̂, ~θ∗) = ∂2eL(R̂,~θ∗)

∂~θ∗∂[~θ∗]T
is the hessian matrix of eL(R̂, ~θ∗) with respected to

~θ∗. Therefore, to achieve the first order optimality, we require
dQ2

n,L(θ)

d~θT
|~θ=~θ∗ = 0, and

d2Q2
n,L(~θ)

d~θd~θT
> 0, which is equivalent to the next condition

Condition 17 The L orthogonal conditions are such that Hn,L(R̂, ~θ∗)TeL = 0 and

Jn,L(R̂, ~θ∗) is of full rank around ~θ∗.
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Under condition (17), the derivative on both sides of the above equation with

respected to ~θ at ~̂θn,L yields,

0 = 2Jn,L(R̂, ~θ∗)TeL + 2× 1

2
× 2[Jn,L(R̂, ~θ∗)TJn,L(R̂, ~θ∗)](~̂θn,L − ~θ∗) + op(1)

Therefore,

~̂θn,L − ~θ∗ = −M∗LeL(x̂, ~θ∗) + op(1)

This completes the proof.

The asymptotical representation of the OC estimator provides an insight of its

asymtotics, which will be studied in the following two subsections.

Asymptotical Consistency and Normality

From subsection 4.1, θ̂n,L can be asymptotically represented by:

~̂θn,L = ~θ∗ −M∗LeL(R̂, ~θ∗) + op(1)

Thus, the asymptotics of θ̂n,L is related to the behavior of eL(R̂, ~θ∗), which is a contin-

uous function of the estimate R̂. By delta method, θ̂n,L will be asymptotical normal.

Such results were proven under an appropriate condition by Brunel [14].

Asymptotical Variance and Interval Estimate

In this subsection we describe in detail about the steps of computing the asymp-

totical variance of ~̂θn,L and further use it to construct interval estimates. We start the

description by considering the problem of computing the variance of eL(R̂, ~θ∗). Since

eL(R̂, ~θ∗) is a function of R̂, the variance of eL(x̂, ~θ∗) can be obtained by multivariate

delta method as follows.
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For any functions f1(x) and f2(x), denote< f1(x), f2(x) > to be
∫ b
a f1(x)f2(x)dx.

Then, eL(R̂, ~θ∗) is

eL(R̂, ~θ∗) =



e1(R̂, ~θ∗)

e2(R̂, ~θ∗)

...

eL(R̂, ~θ∗)


where 

e1(R̂, ~θ∗) =< DR̂′′, ϕ1 > − < k∗nf R̂− k∗pf R̂1.2(1−
∫
x R̂dx

Rtotal
), ϕ1 >

e2(R̂, ~θ∗) =< DR̂′′, ϕ2 > − < k∗nf R̂− k∗nf R̂1.2(1−
∫
x R̂dx

Rtotal
), ϕ2 >

...

eL(R̂, ~θ∗) =< DR̂′′, ϕL > − < k∗nf R̂− k∗pf R̂1.2(1−
∫
x R̂dx

Rtotal
), ϕL >

which is equal to

e1(R̂, ~θ∗) =< R̂,Dϕ′′1 − k∗nfϕ1 > + < R̂1.2, k∗pf (1−
∫
x R̂dx

Rtotal
)ϕ1 >

e2(R̂, ~θ∗) =< R̂,Dϕ′′2 − k∗nfϕ2 > + < R̂1.2, k∗pf (1−
∫
x R̂dx

Rtotal
)ϕ2 >

...

eL(R̂, ~θ∗) =< R̂,Dϕ′′L − k∗nfϕ2 > + < R̂1.2, k∗pf (1−
∫
x R̂dx

Rtotal
)ϕL >

Recall in stage I of the OC estimation procedure, R̂(x) = B(t)T ĉ, where the variance of

ĉ is

V ar(ĉ) = σ2(BT
n×lBn×l)

−1

and the variance of R̂(x) is

V ar(R̂(x)) = σ2B(x)T (BT
n×lBn×l)

−1B(x)
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Now denote a`(x) , Dϕ̈` − k∗nfϕ` and b`(x) , k∗pfϕ`. Rewrite e`(R̂, θ) as

e`(R̂, ~θ
∗) =< R̂,Dϕ̈` − k∗nfϕ` > + < R̂1.2, k∗pf (1−

∫
x R̂dx

Rtotal
)ϕ` >

=< R̂, a`(x) > + < R̂1.2, b`(x)(1−
∫
x R̂dx

Rtotal
) >

=

∫
R̂(x)a`(x)dx+

∫
R̂1.2(x)b`(x)dx

(
1− 1

Rtotal

∫
R̂(x)dx

)

Since R̂(x) = B(t)T ĉ,

e`(R̂, ~θ
∗) , f`(ĉ) =

(∫
B(x)Ta`(x)dx

)
ĉ+

∫
(B(x)T ĉ)1.2b`(x)dx

(
1− 1

Rtotal

∫
B(x)T ĉdx

)

Then, the derivative f ′`(ĉ) = df`
dĉ is

f ′`(ĉ) =

∫
B(x)a`(x)dx+

∫
1.2× (B(x)T ĉ)0.2B(x)b`(x)dx

(
(1− 1

Rtotal
)

∫
B(x)T ĉdx)

)
+

∫
(B(x)T ĉ)1.2(x)b`(x)dx

(
(− 1

Rtotal
)

∫
B(x)dx

)
=

∫
B(x)a`(x)dx+

∫
1.2× R̂(x)0.2B(x)b`(x)dx

(
(1− 1

Rtotal

∫
R̂(x)dx)

)
− 1

Rtotal

(∫
R̂1.2(x)b`(x)dx

)∫
B(x)dx

By univariate delta method, the variance of e`(R, ~θ∗) = f`(ĉ) is

V ar(e`(R̂, ~θ
∗)) = (f ′`(ĉ)V ar(ĉ)(f ′`(ĉ))T (2.25)

Further, Let

f′(ĉ) =
df
dĉT

=



f ′1(ĉ)

f ′2(ĉ)

...

f ′L(ĉ)


By multivariate delta method, the variance of eL(R̂, ~θ∗) is

V ar(eL(R̂, ~θ∗)) = (f′(ĉ)V ar(ĉ)(f′(ĉ))T (2.26)
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In the next step, we compute the variance of ~̂θn,L. Based on the asymptotical

representation ~̂θn,L = ~θ∗ −M∗LeL(R̂, ~θ∗) + op(1), the asymptotical variance of ~̂θn,L is

V ar(~̂θn,L) = M∗LV ar(eL(R̂, ~θ∗))M∗L
T (2.27)

Finally, let’s construct an interval estimate for ~θ. As mentioned above, ~̂θn,L is

asymptotical normally distributed with mean ~θ∗ and variance V ar(~̂θn,L). Therefore, a

100(1− α)% confidence interval for ~θ will be

for any i = 1, 2, C.I.(θi, 1− α) =

[
θ̂i ± zα

2

(
V ar(~̂θn,L)

) 1
2

ii

]

Notice that ~θ∗ in V ar(~̂θn,L) is unknown, thus in practice ~̂θn,L will be used to obtain an

useable interval estimates. Therefore, the final interval estimate will be

for any i = 1, 2, C.I.(θi, 1− α) =

θ̂i ± zα
2

̂(
V ar(~̂θn,L)

) 1
2

ii

 (2.28)
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Chapter 3

Literature Review of Mixed Effects

Model

In the pollen tube example introduced in Chapter 1, the experimental data

are observed upon multiple positions of multiple pollen tubes. Such data is known as

“repeated measures data” in Statistics. The multiple measurements per pollen tube

generally result in the correlated errors that are not negligible. Mixed effects model that

allows a wide variety of error correlation pattern to be modeled provides a general and

flexible estimation approach in this situation. Later in Chapter 4, we will see that our

ODE model will eventually be transformed into a constrained nonlinear mixed effects

model. In this section, we are going to review mixed effects model and the relevant

estimation approaches.
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3.1 Linear Mixed Effects Model

A general form of linear mixed effect model can be written under the individual

level as follows

Yij =β0 + β1Xij1 + · · ·+ βpXijp

+ bi1Zij1 + · · ·+ biqZijq + εij

bik ∼N(0, gkk), Cov(bk, b
′
k) = gkk′

εij ∼N(0, rijj), Cov(εij , εij′) = rijj′

where

• Yij is the response variable for the jth observation (j = 1, · · · , ni) on the ith of m

subjects.

• β1, · · · , βp are the fixed effect coefficients, which are identical for all subjects.

Xij1, · · · , Xijp are the corresponding design matrices.

• bi1, · · · , biq are the random effect coefficients for the ith subject that are assumed

to follow a multivariate normal distribution. Zij1, · · · , Zijq are the corresponding

design matrices.

• εij is the error for the observation in ith subject, which is assumed to follow a

multivariate normal distribution, and uncorrelated with the random effect bi’s.

Alternatively but equivalently, the linear mixed model can be written in the matrix form

under the subject level as follows

Yi =Xiβ +Zibi + εi (3.1)

bi ∼Nq(0, G)

εi ∼Nni(0, Ri)
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where

• Yi = (Yi1, · · · , Yini)T is response vector for the observations in the ith subject with

variance Vi = var(Yi) = Ri +ZiGZ
T
i .

• β = (β1, · · · , βp)T is the p×1 vector of the fixed effects. Xi is the ni×p coefficient

matrix for the fixed effects for observation in the ith subject. The (k1, k2)th element

of Xi is Xik1k2 .

• bi = (bi1, · · · , biq)T is the q × 1 vector of the random effects associated with the

ith subject. Zi is the ni × q coefficient matrix associated with bi. The (k1, k3)th

element of Zi is Xik1k3 .

• εi is the error for the observation in the ith subject, which is assumed to follow a

multivariate normal distribution, and uncorrelated with the random effect bi’s.

• G is the covariance matrix for the random effects, and R is the covariance matrix

for the error.

Let Y = (Y T
1 , · · · ,Y T

m )T , X = (XT
1 , · · · ,XT

m)T , b = (bT1 , · · · , bTm)T , Z =

diag{Z1, · · · ,Zm} and ε = (εT1 , · · · , εTm)T , the linear mixed model can be further written

in a matrix form under the population level as follows

Y =Xβ +Zb+ ε (3.2)

b ∼Nq(0,Σ)

ε ∼Nn(0, R)

where Σ = diag{G, · · · , G} and R = diag{R1, · · · , Rm}, and the variance of Y is V =

Cov(Y ) = ZΣZT +R
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Common approaches to estimate the linear mixed effects model (3.2) include

Maximum Likelihood (ML) method, REstricted Maximum Likelihood (REML) method

and Expectation-Maximization (EM) algorithm.

3.1.1 Maximum Likelihood method

In the Maximum Likelihood (ML) method, the fixed effect β and variance

components Σ and R are estimated simultaneously by maximizing the log likelihood

function of model (3.2)

l =
n

2
log(2π)− 1

2
|V | − 1

2
(Y −Xβ)TV −1(Y −Xβ) (3.3)

Therefore, the estimations are solutions to

∂L

∂V
= −1

2
V −1 − 1

2
(V −1(Y −Xβ)(Y −Xβ)TV −1) = 0

∂L

∂β
= −2XV −1(Y −Xβ)TV −1) = 0

or equivalently,

V̂ = (Y −Xβ̂)(Y −Xβ̂)T

β̂ = (XT V̂ −1X)−1XT V̂ −1Y

β̂ in this equation is called the best linear unbiased estimate (BLUE) of β. The random

effects vector b can be predicted by the best linear unbiased predictor (BLUP)

b̂ = GZT V̂ −1(Y −Xβ̂)

Henderson [42] overcame the difficulty of solving the inverse of V in the ML

approach by proposing the mixed model equation (3.4) XT R̂−1X XT R̂−1Z

ZT R̂−1X ZT R̂−1Z + Ĝ−1


 β̂
b̂

 =

 XT R̂−1Y

ZT R̂−1Y

 (3.4)
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which only requires to solve the inverse of G and R. Further, he proved that the solution

to these mixed model equations are exactly the BLUE for β and BLUP for b. Indeed,

the inverse of R and G is easier to obtain than the inverse of V so that less iterations

are needed to numerically solving (3.4) for β̂ and b̂.

3.1.2 Restricted Maximum Likelihood method

Patterson and Thompson [62] proposed a REstricted Maximum Likelihood

(REML) approach to estimate the model (3.2). After appropriate linear transforma-

tions, the data are divided into two parts, with distinct log likelihood l1 and l2.

l1 =− n

2
log(2π)− 1

2
log|ATV A| − 1

2
(ATY )T (ATV A)−1ATY (3.5)

=− n

2
log(2π)− 1

2
log|V | − 1

2
log|XTV −1X| − 1

2
Y T (V −1 − V −1X(XTV −1X)−1XTV −1)Y

l2 =− n

2
log(2π)− 1

2
log|BTV B| − 1

2
(BTY −BXβ)T (BTV B)−1(BY −BXβ)

=− n

2
log(2π)− 1

2
log|XTV −1X| − 1

2
(TY −Xβ)TV −1X(XTV −1X)−1XTV −1(Y −Xβ)

where l1 is the log likelihood of the transformed data ATY with A = I−X(XTX)−1XT

and l2 is the log likelihood of the transformed data BTY with B = XTV −1. The

estimates of the variance component V is such that l1 is maximized, and the BLUE of

β is such that l2 is maximized. Therefore,

∂l2
∂β

= 2(XTMTXβ −XTMTY ) = 0

where M = V −1X(XTV −1X)−1XTV −1. As a result,

β̂ = (XT M̂X)−1XTV −1Y

= (XTV −1X(XTV −1X)−1XTV −1X)−1XTV −1X(XTV −1X)−1XTV −1Y

= (XTV −1X)−1XTV −1Y
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3.1.3 Expectation-Maximization algorithm

Lindstorm and Bates [50] applied the Expectation-Maximization (EM) algo-

rithm to estimate the model (3.2) by treating the random effects b as missing values.

Let θ .
= {β, G,R} be the parameter vector. The Expectation (E) step creates a Q func-

tion as the expectation of the log likelihood with respect to b evaluated at the current

estimates of the parameters θ and the observed data Y . The Maximization (M) step

computes the parameters by maximizing the Q function defined on the E step and uses

them to update the parameters for the next E step. The estimates of θ will be obtained

after a desired number of iterations between E step and M step. In this subsection, we

are going to review the EM algorithm in detail. For simplicity, the error variance are

assumed to be R = σ2I and the number of observations on all the subjects are assumed

same, i.e., n1 = · · · = nm = n.

Instead of the likelihood of Y , the EM algorithm focuses on the joint likelihood

of the observable data Y and the missing values b (sometimes called latent variables)

L =
m∏
i=1

L(Yi|bi;β, σ2)L(bi;G) (3.6)

where

L(Yi|bi;β, σ2) =

(
1√
2π

)n( 1

σ2

)n
2

exp

{
− 1

2σ2
(Yi −Xiβ −Zibi)T (Yi −Xiβ −Zibi)

}
L(bi;G) =

(
1√
2π

)q
|G|−

1
2 exp{−1

2
bTi G

−1bi}

Therefore, the joint log likelihood is

l = logL =
m∑
i=1

(logL(Yi|bi;β, σ2)) + logL(bi;G) =
m∑
i=1

(l1 + l2)
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where

l1 = const− mn

2
log(σ2)− 1

2σ2

m∑
i=1

(Yi −Xiβ −Zibi)T (Yi −Xiβ −Zibi)

l2 = const− mn

2
log|G| − 1

2

m∑
i=1

bTi G
−1bi

E-Step

At the E step, the Q function is defined as the expectation of l with respect to b given

Y and current estimates of θ, say θ0. That is, Q(θ|Y ;θ0) = E(l) = E(l1)+E(l2). Since

bi and Yi are jointly normally distributed with mean and variance

E

 bi

Yi

 =

 0

Xiβ

 and V ar

 bi

Yi

 =

 G GZT
i

ZiG Vi


Then  I GZT

i V
−1
i

0 I


 bi

Yi −Xiβ

 =

 bi −GZT
i V
−1
i (Yi −Xiβ)

Yi −Xiβ)


is normally distributed with

mean

 0

0

 and variance

 G+GZT
i V
−1
i ZiG 0

0 Vi


As a result, bi−GZT

i V
−1
i (Yi−Xiβ) and Yi−Xiβ are mutually independent. Therefore,

the conditional expectation and conditional variance of bi given Yi and θ0 are

b̂i = E(bi|Yi;θ) = G0Z
T
i V
−1

0 (Yi −Xiβ0)

Ŝi = var(bi|Yi;θ0) = G0 −G0Z
T
i V
−1

0 ZiG0
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Therefore,

E(l1) =const− mn

2
log(σ2)− 1

2σ2

m∑
i=1

E[(Yi −Xiβ −Zibi)T (Yi −Xiβ −Zibi)|Yi;θ0]

=const− mn

2
log(σ2)− 1

2σ2

m∑
i=1

Tr(var(Yi −Xiβ −Zibi|Yi;θ0))

− 1

2σ2

m∑
i=1

(E(Yi −Xiβ −Zibi|Yi;θ0))T (E(Yi −Xiβ −Zibi|Yi;θ0))

=const− mn

2
log(σ2)− 1

2σ2

m∑
i=1

Tr(Zvar(bi|Yi;θ0)ZT )

− 1

2σ2

∑
i=1

(Yi −Xiβ −ZiE(bi|Yi;θ0))T (Yi −Xiβ −ZiE(bi|Yi;θ0))

=const− mn

2
log(σ2)− 1

2σ2

∑
i=1

[Tr(ZiŜiZ
T
i ) + (Yi −Xiβ −Zib̂i)T (Yi −Xiβ −Zib̂i)]

and

E(l2) =const− mn

2
log|G| − 1

2

m∑
i=1

E(bTi G
−1bi|Yi;θ0)

=const− mn

2
log|G| − 1

2

m∑
i=1

E(Tr(bTi G
−1bi)|Yi;θ0)

=const− mn

2
log|G| − 1

2

m∑
i=1

E(Tr(G−1bib
T
i )|Yi;θ0)

=const− mn

2
log|G| − 1

2

m∑
i=1

Tr(G−1E(bib
T
i |Yi;θ0))

=const− mn

2
log|G| − 1

2

m∑
i=1

[Tr(G−1(var(bi|Yi;θ0) + E(bi|Yi;θ0)TE(bi|Yi;θ0)))]

=const− mn

2
log|G| − 1

2

m∑
i=1

[Tr(G−1(Ŝi + b̂Ti b̂i))]

Therefore, the Q function Q(θ|Y ;θ0) = E(l) = E(l1) + E(l2) is

Q(θ|Y ;θ0) =const− 1

2σ2

∑
i=1

[Tr(ZiŜiZ
T
i ) + (Yi −Xiβ −Zib̂i)T (Yi −Xiβ −Zib̂i)]

− mn

2
log(σ2)− mn

2
log|G| − 1

2

m∑
i=1

[Tr(G−1(Ŝi + b̂Ti b̂i))]

M-Step

At M step, the Q function is maximized over θ in order to update the estimate of θ.
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To estimate β, one have to solve the derivative of Q with respect to β. Therefore,

∂Q

∂β
= − 1

2σ2

m∑
i=1

2(Yi −Xiβ −Zib̂i)T (−Xi) = 0

⇔
m∑
i=1

(Yi −Xiβ −Zib̂i)TXi = 0

⇔
m∑
i=1

(Yi −Zib̂i)TXi = βT
m∑
i=1

XT
i Xi

⇔ βT =
m∑
i=1

(Yi −Zib̂i)TXi(
m∑
i=1

XT
i Xi)

−1

⇔ β̂ = (
m∑
i=1

XT
i Xi)

−1
m∑
i=1

XT
i (Yi −Zib̂i)

To estimate G, one have to solve the derivative of Q with respect to G. Therefore,

∂Q

∂G
= −mn

2
G−1 − 1

2

m∑
i=1

∂

∂G
[Tr(G−1(Ŝi + b̂Ti b̂i))]

= −mn
2
G−1 − 1

2

m∑
i=1

(−G−1(Ŝi + b̂Ti b̂i)G
−1) = 0

⇔ mnG−1 = G−1
m∑
i=1

(Ŝi + b̂Ti b̂i)G
−1

⇔ Ĝ =
1

mn

m∑
i=1

(Ŝi + b̂Ti b̂i)

To estimate σ2, one have to solve the derivative of Q with respect to σ2. Therefore,

∂Q

∂σ2
= −mn

2σ2
+

1

2(σ2)2

m∑
i=1

[Tr(ZiŜiZ
T
i ) + (Yi −Xiβ −Zib̂i)T (Yi −Xiβ −Zib̂i)] = 0

σ̂2 =
1

mn

m∑
i=1

[Tr(ZiŜiZ
T
i ) + (Yi −Xiβ −Zib̂i)T (Yi −Xiβ −Zib̂i)]

At the end of M step, θ̂ = {β̂, Ĝ, σ̂2} is used to update θ0 in the next E step

so that the EM algorithm can iterate between the two steps until the convergency of θ̂.
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3.2 Nonlinear Mixed Effects Model

A general form of nonlinear mixed effects model is

Yi =f(Xiβ,Zibi) + εi (3.7)

bi ∼Nq(0, G)

εi ∼Nni(0, Ri)

where f is a real-valued nonlinear function of the fix factors β and the random factors

bi.

The literature on the estimation of nonlinear mixed effects models is very ex-

tensive. The important references include Sheiner and Beal [67–69], Lindstrom and

Bates [49], Al-Zaid [2], Lu and Meeker [54] and Walker [79]. Specifically, Sheiner and

Beal [67–69] proposed a NONMEM approach which first linearizes f with Taylor approx-

imation at the current estimates of the fixed effects and zero of the random effects, and

then fits the resulting linearized mixed effects model by maximum likelihood approach.

Lindstrom and Bates [49] proposed a more accurate approximation to f with Taylor

expansion at the current estimates of the fixed effects and current predictors of random

effects, and they used Newton’s method to maximize the restricted likelihood associ-

ated with the linearized mixed effects model. Al-Zaid [2] modified the Lindstrom and

Bates’ approach by suggesting EM algorithm instead of Newton’s method to estimate

the linearized mixed effects model. Moreover, Lu and Meeker [54] proposed a two-stage

estimation approach which is essentially a method of moments approach. Walker [79]

utilized the EM algorithm to estimate the nonlinear mixed effects model directly, where

he applied Monte Carlo simulation to evaluate the integrals involved in the E-step. In

the following subsections, we are going to review some of these procedures in detail.
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3.2.1 Lu and Meeker’s approach

Lu and Meeker [54] proposed the method of moments (MM) approach to esti-

mate the nonlinear mixed effects model (3.7) as follows.

1. For each subject i, obtain the estimates β̂i and b̂i by minimizing the least square

{β̂i, b̂i} = arg min
{β,bi}

ni∑
j=1

(Yij − f(Xiβ,Zibi))
2

2. Estimate the fixed effects β by

β̂ =
1

m

m∑
i=1

β̂i

3. Estimate σ2 by

σ̂2 =

∑m
i=1

∑ni
j=1 (Yij − f(Xiβ,Zibi))

2∑m
i=1 ni −m(p+ q)

4. Let

b̄ =
1

m

m∑
i=1

b̂i and Ti =

[
∂f(Xiβ,Zibi)

∂(β, bi)T

]T [∂f(Xiβ,Zibi)

∂(β, bi)T

] ∣∣∣∣
β=β̂,bi=b̂i

Then, estimate G by

Ĝ =
1

m− 1

m∑
i=1

(b̂i − b̄)(b̂i − b̄)T −
σ̂2

m

m∑
i=1

A−1
i

where Ai is the lower right (q × q) submatrix of Ti .

5. Noticed Ĝ is not always positive definite, Amermiya [5] suggested a modification

of Ĝ for the estimate of G

G̃ =


Ĝ if Ĝ is positive definite

Ĝ+ if Ĝ is not positive definite

where Ĝ+ = EΨ+E
′, in which Ψ+ is a diagonal matrix whose diagonal elements

Ψii = max(ψi, 0) where ψi is the eigenvalue of G, and E is a q × q matrix whose

ith columns is the eigenvector ei associated with ψi.
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Luke and Meeker [54] also established the asymptotic properties for the MM

approach, where the estimators were proven to be consistent and asymptotically normally

distributed. However, Al-Zaid [2] addressed that in practice when the sample size is

small, the MM approach performs badly. And even when the sample size is fairly large,

the MM approach is still not very accurate.

3.2.2 Lindstrom and Bates’ approach

Lindstrom and Bates [49] proposed an iterative two step approach to fit the

nonlinear mixed effects model (3.7) which essentially works as follows

1. Given current estimates (β(t), b
(t)
i ) for (β, bi) and let Xij = (Xij1, ·, Xijp)

T and

Zij = (Zij1, ·, Zijq)T , use Taylor expansion to linearize f(XT
ijβ,Z

T
ijbi)

f(XT
ijβ,Z

T
ijbi) = f(Xijβ

(t),Zijb
(t)
i )

+
∂f

∂β
|
β=β(t),bi=b

(t)
i

(β − β(t)) +
∂f

∂bi
|
β=β(t),bi=b

(t)
i

(bi − b(t)
i )

As a result, the original data Yij = f(XT
ijβ,Z

T
ijbi) + εij can be expressed in terms

of Y ∗ij as

Y ∗ij =
∂f

∂β
|
β=β(t),bi=b

(t)
i

(β) +
∂f

∂bi
|
β=β(t),bi=b

(t)
i

(bi) (3.8)

where, Y ∗ij = Yij − f(Xijβ
(t),Zijb

(t)
i ) + ∂f

∂β |β=β(t),bi=b
(t)
i

β(t) + ∂f
∂bi
|
β=β(t),bi=b

(t)
i

b
(t)
i .

Therefore, the original nonlinear mixed effects model (3.7) becomes a linear mixed

effects model (LMM).

2. Fit the LMM (3.8) and update (β(t), b
(t)
i ) by the BLUE of β and the BLUP of bi.

3. Iterate the above two steps until convergence.

To fit the LMM (3.8), Lindstrom and Bates applied the Newton’s method to conduct

the maximization of the restricted likelihood of Y ∗ij . On the other hand, Al-Zaid [2]
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suggested to use EM algorithm, since via simulation he observed that by using EM

algorithm one can obtain more accurate estimates. Since Bate’s approach is an iterative

approach, the choice of initial values is crucial. Al-Zaid [2] suggested the estimates of the

MM approach to be the initial values. A necessary convergence criterion can be defined

as the differences between the current estimates and the previous estimates being less

than some prespecified cutoff. The asymptotic properties of the estimators based on this

approach were discussed very briefly by Lindstrom and Bates.

3.2.3 Walker’s approach

Walker [79] utilized the EM algorithm to fit a general nonlinear random effects

model, where he proved that the estimates in the M step have analytical forms and the Q

function in the E step can be evaluated by Monte Carlo integration. In this subsection,

we are going to review it in detail.

Consider a general nonlinear random effects model

Yi =f(Xi, bi) + εi (3.9)

bi ∼Nq(b, G)

εi ∼Nni(0, σ
2Ini)

where f(Xi, bi) = (f(Xi1, bi), · · · , f(Xini , bi))
T is a known ni × 1 vector. When bi =

Aib+ ηi with Ai a known design matrix and ηi i.i.d. ∼ N(0, G), the nonlinear random

effects model (3.9) will become the nonlinear mixed effects model (3.7).

Like in linear mixed effects model, the EM algorithm in nonlinear mixed effects

model works in two steps alternatively. Let θ = (b, G, σ2)T . In the E step, the Q function

at the current estimates θ0 is

Q(θ|θ0) = E[l(Y , b;θ)|Y ,θ0]
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where

l(Y , b;θ) =const−
∑m

i=1 ni
2

log(σ2)− 1

2σ2

m∑
i=1

‖Yi − f(Xi, bi)‖2

− 1

2

m∑
i=1

(bi − b)TG−1(bi − b)−
m

2
log|G|

In the M step, the estimates θ̂ is such that

Q(θ̂|θ0) ≥ Q(θ|θ0) for all θ ∈ Ω

where Ω is the feasible region of θ. Or equivalently,

∂

∂θ
Q(θ̂|θ0)|θ=θ̂ = 0 (3.10)

The solutions to (3.10) have analytical forms

b̂ =
1

m

m∑
i=1

E(bi|Y ,θ0)

Ĝ =
1

m

m∑
i=1

E{(bi − b̂)(bi − b̂)T |Y ,θ0}

σ̂2 =
1∑m
i=1 ni

m∑
i=1

E{‖Yi − f(Xi, bi)‖2|Y ,θ0}

Introducing the notation b̄i = E(bi|Y ,θ0), Θi = var(bi|Y ,θ0), f̄i = E(f(bi)|Y ,θ0) and

Ψi = var(f(bi)|Y ,θ0), then

b̂ =
1

m

m∑
i=1

b̄i

Ĝ =
1

m

m∑
i=1

{(b̄i − b̂)(b̄i − b̂)T + Θi}

σ̂2 =
1∑m
i=1 ni

m∑
i=1

{‖Yi − f̄i‖2 + tr(Ψi)}

Therefore, in order to obtain the values of b̂i, Ĝ and σ̂2, the quantities b̄i, Θi, f̄i and Ψi

have to be evaluated at each iterations. Walker suggested to use Monte Carlo simulation

technique. Specifically, to obtain b̄i = E(bi|Y ,θ0) =
∫
bip(bi|Yi,θ0)dbi, where

p(bi|Yi,θ0) =
p(Yi|bi,θ0)p(bi|θ0)∫
p(Yi|bi,θ0)p(bi|θ0)dbi
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and then,

b̄i =

∫
bip(Yi|bi,θ0)p(bidbi|θ0)∫
p(Yi|bi,θ0)p(bi|θ0)dbi

Therefore, by Monte Carlo simulation b̄i is

b̄i =

∑T
l=1 b

lp(Yi|bl,θ0)∑T
l=1 p(Yi|bl,θ0)

where b1, · · · , bT is i.i.d generated from N(b0, G0). Θi, f̄i and Ψi are obtained by

Θi =

∑T
l=1 b

l(bl)T p(Yi|bl, σ2
0)∑T

l=1 p(Yi|bl, σ2
0)

− b̄ib̄Ti

f̄i =

∑T
l=1 f(bl,Xi)p(Yi|bl, σ2

0)∑T
l=1 p(Yi|bl, σ2

0)

Ψi =

∑T
l=1 f(bl,Xi)f(bl,Xi)

T p(Yi|bl, σ2
0)∑T

l=1 p(Yi|bl, σ2
0)

− f̄if̄Ti

Once b̂, Ĝ, σ̂2 are obtained, they can be used to update θ̂0 in the next E step. Walker

also discussed the time of computation for this method via simulations. More details

about the simulation results can be found in his paper.

3.3 Constrained Mixed Effects Model

In many practical settings, the fixed effect β in linear mixed effects model (3.2)

or nonlinear mixed effects model (3.7) or the nonlinear random effects model (3.9) may

have to satisfy certain constraints. These constraints typically reflect the prior knowledge

about the values of β that people have. For example, if the response variable is known

to be increasing with one explanatory variable by fixing the other, then the regression

coefficient of the fixed effect associated with that particular variable must be positive.

Formally, the constraints can be written as c(β) = (c1(β), · · · , ck(β)) ≥ 0.

When c(β) = Aβ, the constraints are linear. Otherwise, the constraints are nonlinear.

The constraints are inequality constraints unless the sign ‘>’ doesn’t hold at all.
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Accordingly, the estimation procedure for the constrained mixed effects models

has to incorporate the constraints. In essence, we have to maximize the likelihood (3.3) in

ML approach or restricted likelihood (3.5) in the REML approach or the joint likelihood

(3.6) in EM algorithm under the constraints. Literature for the constrained linear mixed

effects model includes Shin [70], Edward [26], Peddada [63], Pilla [64], Fang [31], Cai [16]

and Rosen [23]. However, all these references are only applicable to linear mixed model

with linear constraints. To the best of our knowledge, the estimation problem of linear

mixed effects model with nonlinear constraints and nonlinear mixed effects model with

linear/nonlinear constraints haven’t been solved yet. In the next chapter, we will discuss

this problem with a particular example and propose several approaches accordingly.
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Chapter 4

A Constrained Mixed Effects Model

based on Differential Equation for

Cell Polarity Signaling in Tip

Growth of Pollen Tube

In chapter 2, we reviewed all the existing estimation approaches that can be

utilized to estimate the parameters in ordinary differential equations. All these methods

can be applied to the parameter estimation problem in the example of tip growth of

pollen tube introduced in chapter 1. Nevertheless, after exploration of the ordinary

differential equation relevant to this particular example, we in this chapter will propose

several new estimation methods which are based on constrained maximum likelihood or

constrained maximum restricted likelihood. Such methods will be demonstrated to have

better performances than the existing methods via simulation studies and real pollen tube

data analysis. Specially, we will first establish the results for the existence and uniqueness
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of solution to IDE (1.2) and derive the solution over an admissible parameter space. As

a result, the IDE model for multiple pollen tubes can be reparametrized into a nonlinear

mixed effects model with linear constraints whose estimation problem was discussed in

chapter 3. Then, we will propose a new method by extending REML estimation approach

to embrace the constraints. Alternatively, we will modify the Method of Moments (MM)

approach of Lu and Meeker [54] by minimizing the moment criterion under constraints.

This chapter is organized as follows. In section 4.1, we give sufficient and neces-

sary conditions for existence and uniqueness of a positive solution to the IDE model, and

derive a tractable generic expression for solutions of the IDE. In section 4.2, we intro-

duce the IDE based nonlinear statistical model with linear constraint for a single subject

and the adapted Constrained Nonlinear Least Square (CNLS) estimation procedure. In

section 4.3, we will extend the Two Step estimation approach and Orthogonal Condition

estimation approach to fit the IDE model nonparametrically. In section 4.4, we extend

the statistical IDE model to multiple subjects as a nonlinear mixed effects model (with

linear constraints). We propose two estimators in this setting: the Constrained Method

of Moments (CMM) and Constrained REML(CREML). The asymptotic properties of

these estimators are also discussed in their own sections. We examine the performance

of the proposed estimation procedures through simulation studies in section 4.5 as well

as real pollen tube data analysis in section 4.6. We summarize this chapter in section

4.7.
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4.1 Existence and Uniqueness of Solution for Second Order

Semilinear Integro Differential Equation

In this section, we first introduce the semilinear elliptic equation (4.1) and prove

in Proposition 1 that it has an unique solution σ0(x).
−∂2

xu = −u+ uα x ∈ [−c, c]

u(−c) = u(c) = 0

(4.1)

We then link it to the semlinear elliptic equation (4.2) and prove in Proposition 2 that

the equation (4.2) has an unique solution Rλ′(x).
−D∂2

xu = −knfu+ λ′kpfu
α x ∈ [−L0, L0]

u(−L0) = u(L0) = 0

(4.2)

Proposition 18 For all c ∈ (0,∞], there exists an unique position solution σ0(x) to

(4.1) with Dirichlet conditions on [−c, c]. Moreover, σ0(x) is positive, even and increas-

ing at [−c, 0] and decreasing at [0, c].

Proposition 19 For all λ′ > 0, there exists an unique positive solution Rλ′(x) to (4.2)

with Dirichlet conditions on Ω = [−L0, L0], where L0 > 0 can be +∞ . Moreover, if

σ0(x) is the unique positive solution to (4.1) defined on Ω′ =

[
−L0

√
knf
D , L0

√
knf
D

]
, then

Rλ′(x) =

(
kpf
knf

λ′
) 1

1−α
σ0(

√
knf
D
x)

.
= Rλ,µ(x) = λσ0(µx). (4.3)

Where λ = (
kpf
knf

λ
′
)

1
1−α , and µ =

√
knf
D .

It is easy to see that if there exists an unique positive solution Rλ′(x) to equation

(4.2) such that λ′ = 1−
∫
xRλ′ (x)dx

Rtot
, then Rλ′(x) is also a solution to equation (1.2). In

the following, Theorem 20 provides a sufficient condition under which certain solutions

to equation (4.2) can also be solutions to equation (1.2), Theorem 21 provides necessary
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conditions that all the solutions to equation (1.2) must also be solutions to equation

(4.2).

Theorem 20 Let σ0 be the positive solution to (4.1) defined on Ω′ =

[
−L0

√
knf
D , L0

√
knf
D

]
.

Consider the family of function Rλ,µ(x) = λσ0(

√
knf
D x) as defined in (4.3), for the dis-

criminant function

Λ(knf , kpf , D,Rtot, σ0) =
knf
kpf
− 1

α

(
α− 1

α

√
knf
D

Rtot
‖σ0‖1

)α−1

(4.4)

1. If Λ(knf , kpf , D,Rtot, σ0) > 0, then there is no solution to (1.2) that can be found

in the family of function Rλ,µ(x).

2. If Λ(knf , kpf , D,Rtot, σ0) = 0, then there is one solution to (1.2) that can be found

in the family of function Rλ,µ(x).

3. If Λ(knf , kpf , D,Rtot, σ0) < 0, then there are two solutions to (1.2) that can be

found in the family of function Rλ,µ(x).

Proof. Recall from equation (4.3), Rλ′(x) = Rλ,µ(x) = λσ0(

√
knf
D x) is a solu-

tion to (4.2), where σ0 is the positive solution to (4.1) defined on Ω′ =

[
−L0

√
knf
D , L0

√
knf
D

]
.

Rλ′(x) is also a solution to (1.2) if

λ′ =
knf
kpf

λ1−α =

(
1− 1

Rtot
‖Rλ′‖1

)
.

where

‖Rλ′‖1 =

∫ L0

−L0

Rλ,µ(x)dx

=
λ

µ

∫ µL0

−µL0

σ0(y)dy

= λ

√
D

knf
‖σ0‖1
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Denote g(λ)
.
=

knf
kpf
− λα−1 + 1

Rtot
λα
√

D
knf
‖σ0‖1, then

g′(λ) = λα−2
(
−(α− 1) + α

Rtot

√
D
knf
‖σ0‖1 λ

)
. The root λc of g′(λ) is λc = α−1

α

√
knf
D

Rtot
‖σ0‖1

.

And g(λ) is decreasing in [0, λc] and increasing in [λc,+∞]. Notice that g(0) =
knf
kpf

,

lim+∞ g = +∞, and

g(λc) =
knf
kpf
−

(
α− 1

α

√
knf
D

Rtot
‖σ0‖1

)α−1

+

√
D

knf

‖σ0‖1
Rtot

(
α− 1

α

√
knf
D

Rtot
‖σ0‖1

)α

=
knf
kpf
− 1

α

(
α− 1

α

√
knf
D

Rtot
‖σ0‖1

)α−1

1. When g(λc) > 0, g(λ) > 0, no solution to (1.2) can be found from the family of

solutions to (4.2).

2. When g(λc) = 0, g(λ) > 0 for λ 6= λc, therefore one solution Rλc,µ(x) to (1.2) can

be found from the family of solutions to (4.2).

3. When g(λc) < 0, there exist λ1 ∈ [0, λc] and λ2 ∈ [λc,∞] such that g(λ1) = 0

and g(λ2) = 0, therefore two solutions Rλ1,µ(x) and Rλ2,µ(x) to (1.2) can be found

from the family of solutions to (4.2).

Theorem 21 Any solution to (1.2) can be written in the form Rλ,µ(x) = λσ0(µx).

Proof. To prove Theorem 21, it’s only necessary to show that for any solution

R of (1.2) on [−L0, L0], there exist λ, µ > 0 such that σ0(x) = 1
λR(xµ) is a solution to

(4.1) on [−L0/µ, L0/µ]. Denote λ̄ = 1
λ , µ̄ = 1

µ , we have

∂σ0(x)
∂x = λ̄µ̄∂R(µ̄x)

∂(µ̄x) and ∂2σ0(x)
∂x2

= λ̄µ̄2 ∂
2R(µ̄x)
∂(µ̄x)2

. σ0(x) is a solution to (4) on [−L0µ̄, L0µ̄]
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if and only if

−∂
2σ0(x)

∂x2
= −σ0(x) + σα0 (x)

−λ̄µ̄2R′′(µ̄x) = −λ̄R(µ̄x) + λ̄αRα(µ̄x)

−λ̄µ̄2knfR(µ̄x)

D
+ λ̄µ̄2kpfR

α(µ̄x)

D

(
1−

∫ L0

−L0
R(x)dx

Rtot

)
= −λ̄R(µ̄x) + λ̄αRα(µ̄x)

−µ̄2knfR(µ̄x)

D
+ µ̄2kpfR

α(µ̄x)

D

(
1−

∫ L0

−L0
R(x)dx

Rtot

)
= −R(µ̄x) + λ̄α−1Rα(µ̄x)

when µ̄ =
√

D
knf

, λ̄ can be obtained by solving the following equality:

kpf
knf

Rα(µ̄x)

(
1−

∫ L0

−L0
R(x)dx

Rtot

)
= λ̄α−1Rα(µ̄x)

for which

λ̄ = [
kpf
knf

(
1−

∫ L0

−L0
R(x)dx

Rtot

)
]

1
α−1

Remark 22 Theorem 20 and Theorem 21 provide a way to obtain the solution R(x) of

(1.2) as following when the values of (knf and kpf ) are given

1. Solve the semilinear elliptic equation (4.1) on Ω′ =

[
−L0

√
knf
D , L0

√
knf
D

]

2. Compute ‖σ0‖1 and the discriminant function Λ(knf , kpf , D,Rtot, σ0)

3. If Λ(knf , kpf , D,Rtot, σ0) = 0, find the positive roots λ∗ of g(λ) and compute the

solution Rλ∗.µ(x) = λ∗σ0(

√
knf
D x)

4. If Λ(knf , kpf , D,Rtot, σ0) = 0, find the positive roots λ∗1 and λ∗2 of g(λ), and com-

pute the solutions Rλ∗1.µ(x) = λ∗1σ0(

√
knf
D x) and Rλ∗2.µ(x) = λ∗2σ0(

√
knf
D x)

In practice, when there exist two solutions, we should choose the one that is closer to the

experimental data.
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Remark 23 For λ > 0, the solution Rλ,µ(x) to (1.2) is a positive and even function.

Moreover, it increases at [−L0, 0] and decreases at [0, L0], and the maximum Rλ,µ(0) =

maxx∈ΩRλ,µ(x) > λ. The proof is provided in the Appendix. It will be shown later in

section 4.6 that the ROP data reflect the above qualitative properties.

Remark 24 From Theorem 20, we see that the solution of (1.2) is parametrized by µ

and λ. Hence, (1.2) is not over parametrized by knf and kpf .

4.2 Single subject and constrained nonlinear fixed effects

model

Suppose for a single subject, an observation of ROP1 intensity in position Xj

(Xj is randomly selected from known distribution F (x)) on the membrane at static time

is denoted by

Yj = R(Xj ; knf , kpf ) + εj j = 1, 2, · · · , n. (4.5)

where R(X; ·) is the solution of (1.2) and εj are iid from a certain distribution f with

mean 0 and variance σ2. As shown in Theorem 20 and Theorem 21 of section 4.1, R(X; ·)

exists if and only if the discriminant function Λ(·) is non-positive. Therefore, the above

IDE based model is subject to the constraint

Λ(knf , kpf , D,Rtot, σ0) =
knf
kpf
− 1

α(α−1
α

√
knf
D

Rtot
‖σ0‖1

)α−1 ≤ 0

knf > 0

kpf > 0

(4.6)

Theorem 25 The above constrained nonlinear model can be reparametrized into the

following model

Yj = λσ0(µXj) + εj . (4.7)
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with µ and λ subject to the constraint

Λ∗(µ, λ) = µRtot − λ ‖σ0‖1 > 0

µ > 0

λ > 0

where µ =

√
knf
D and λ is the root of g(λ) defined in section 4.1. The choice of λ is

guided in Remark 22.

Based on the observations {yj}nj=1 at positions {xj}nj=1 in the biological experiment,

we propose a nonparametric estimation procedure called Constrained Nonlinear Least

Square (CNLS) as follows

1. Compute σ0(x) from DE (4.1)

2. Estimate µ and λ by minimizing least squares

(λ̂, µ̂) = arg min
λ,µ

n∑
j=1

(yj − λσ0(µxj))
2

under the constraint 

Λ∗(µ, λ) > 0

µ > 0

λ > 0

3. Convert µ̂ and λ̂ to k̂nf and k̂pf
k̂nf = Dµ̂2

k̂pf = Dµ̂2

λ̂α−1− λ̂
α‖σ0‖1
µ̂Rtot

4. Estimate σ2 by σ̂2 = 1
n

∑n
j=1

(
yj − λ̂σ0(µ̂xj)

)2
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In the first step of CNLS, the solution of σ0 involves a boundary value problem in an

ordinary differential equation, which can be solved by many methods including shoot-

ing method [72], [73], mono-implicit Runge-Kutta (MIRK) method [19] and collocation

method [8] in R package “bvpSolve”. The optimization in the second step is subject to

one linear constraint and two box constraints. When there is no constraint, the opti-

mization can be tackled by many gradient based methods such as the Newton method,

the BFGS method, the Gauss-Newton method, etc. which require the objective func-

tion to be differentiable. On the other hand, the simplex method of Nelder, J. A. and

Mead, R. [58] that directly searches the optimum allows the objective function to be not

differentiable. To apply simplex method, we first incorporate the constraints into the

objective function by defining

f(µ, λ) =


∑n

j=1 (yj − λσ0(µxj))
2 if Λ∗(µ, λ) > 0 and µ > 0 and λ > 0

+∞ o.w.

For the general Nonlinear Least Square (NLS) estimator, the asymptotic properties

has been established by Jennrich in 1969 [45]. For the general Constrained NLS (CNLS)

estimator, the asymptotic properties has been established by Wang in 1996 [82]. Below

we present the asymptotic property of the CNLS estimator proposed in this paper. The

proof is provided in the Appendix.

Theorem 26 Denote θ = (µ, λ)T to be the parameter, θ0 to be the true value of the

parameter, and θ̂n to be the CNLS estimator with n sample points. Let R(X;θ) =

λσ0(µX), then

√
n(θ̂n − θ0)

d→ σK−
1
2Z

where Z ∼ N(0, I2) is a bivariate normal vector, K = EX [∇θR(X;θ0)∇θR(X;θ0)T ],

and ∇θR(X;θ0) is the gradient vector of R(X;θ) with respect to θ at θ = θ0. Moreover,

65



σ̂2 proposed in the above procedure is a consistent estimator of σ2, therefore by slutsky’s

Theorem
√
n(θ̂n − θ0)

σ̂

d→ K−
1
2Z

4.3 Single subject and nonparametric estimation approaches

As we discussed in section 4.2, the problem is to estimate the parameters knf

and kpf in IDE model (1.2)
D d2R

dx2
= knfR− kpfRα(1−

∫
xRdx

Rtot
) x ∈ [−L0, L0]

R(−L0) = R(L0) = 0

under the constraint (4.6) based on the observations of {Yj}nj=1 in model (4.5). In

this section, we pretend we don’t know the form of the solution R(x) and apply the

TS estimation approach and OC estimation approach to estimate the two parameters

nonparametrically.

Recall that both TS approach and OC approach firstly obtain the estimates of

the response variable in model (1.2) as well as its derivatives by fitting a nonparametric

model to the data {Yj}nj=1. The estimates are denoted to be R̂(x) and R̂′′(x) respectively,

which are then used to develop the parameter estimation criteria (2.16) or (2.23) in the

least square sense as follows

for TS approach criterion,

Rqn,w(knf , kpf ) = ‖DR̂′′(x)− knf R̂+ kpf R̂
α(1−

∫ L0

−L0
R̂dx

Rtot
)‖q,w

for OC approach criterion,

Qn,L(~θ) =
∥∥∥eL(R̂, ~θ)

∥∥∥2
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where eL(R̂, ~θ) was defined in section 2. By minimizing the criteria over the parameters,

k̂nf and k̂pf are obtained.

However in order for the IDE (1.2) to have a solution, the parameters must

satisfy the constraint (4.6). As a result, the minimization in TS or OC approach must

be conducted under such a constraint. Furthermore, from Remark 23 we know that R(x)

is a positive and even function which is increasing at [−L0, 0] and decreasing at [0, L0].

Therefore, we need to impose several constraints onto the nonparametric model involved

in the TS or OC approach so that the estimates R̂(x), R̂′′(x) can preserve the nice shape.

This is very helpful and highly recommended in practice because the constraints on the

shape can help correct the potentially bad local behavior of the nonparametric model,

especially when the data is of bad local quality. As a result, the estimates R̂(x), R̂′′(x)

and further k̂nf , k̂pf will be robust against the local behavior of the data. From these

two points of view, the new estimation approaches is called constrained TS approach

and constrained OC approach.

There is one problem has not been solved yet, i.e., how to impose the constraints

onto the nonparametric model in order for R̂(x)to keep the proper shape. Recall that

in the nonparametric model introduced in section 2.6, we first created a set of B-spline

basis functions Bl(x) = (B1(x), B2(x), · · · , Bl(x))T and then used these B-spline basis

functions to run a regression against the response {Yj}nj=1, based on which the estimates

R̂(x) = ĉ1B1(x) + ĉ2B2(x) + · · ·+ ĉlBl(x) and R̂′(x) = ĉ1B
′
1(x) + ĉ2B

′
2(x) + · · ·+ ĉlB

′
l(x)

are obtained. Now suppose we purposely create a symmetrical set of B-spline basis

functions by choosing a symmetrical set of knots and further control the regression
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coefficients c1, · · · , cn to be symmetrically positive. That is, if l is even, we let

B1(x) = Bl(−x) c1 = cl ≥ 0

B2(x) = Bl−1(−x) c2 = cl−1 ≥ 0

...
...

B l
2
(x) = B l

2
+1(−x) c l

2
= c l

2
+1 ≥ 0

(4.8)

and if l is odd, we let

B1(x) = Bl(−x) c1 = cl ≥ 0

B2(x) = Bl−1(−x) c2 = cl−1 ≥ 0

...
...

B l−1
2

(x) = B l+1
2

(−x) c l−1
2

= c l+1
2
≥ 0

(4.9)

Then, the resulting estimate R̂(x) will be positive and symmetrical about the origin.

Therefore, in the first step of our constrained approaches, we have to estimate the fol-

lowing model under constraints (4.8) or (4.9)

y(x1)

y(x2)

...

y(xn)


=



B1(x1) B2(x1) · · · Bl(x1)

B1(x2) B2(x2) · · · Bl(x2)

...
...

. . .
...

B1(xn) B2(xn)
... Bl(xn)





c1

c2

...

cl


+



ε1

ε2

...

εn


or equivalently in a vector form,

Y = Bn×lc + ~ε

The fit to such a constrained linear model can be naturally transformed into a constrained

least square minimization problem which can be solved by the simplex method in section

4.2 or by the dual method of Goldfarb and Idnani [37,38] in R packages “quadprog”.
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4.4 Multiple subjects and constrained nonlinear random ef-

fect model

Suppose for multiple subjects, ROP1 intensity observed for subject i at position

Xij on the membrane at static time can be described by

Yij = Ri(Xij) + εij i = 1, 2, · · · ,m; j = 1, 2, · · · , ni (4.10)

where i indexes the subject, and j indexes the position. εij are iid from a certain

distribution f with mean 0 and variance σ2. Ri(x) is the solution of IDE (1.2) for the

ith subject. Following section 4.3, we have

Ri(Xij) = λiσ0(µiXij)

µi =

√
knfi
D

λi = root of g(·)

(4.11)

We further assume that  µi

λi

 ∼ NID


 µ

λ

 ,Σ

 (4.12)

As a result, σ2 measures within subject variation and Σ measures between subject vari-

ation. As mentioned before, the paramters are subject to three constraints. This is a

nonlinear mixed model with parameters subject to linear inequality constraints.

Denote θi = (µi, λi)
T and θ = (µ, λ)T , with the experimental data {yij}i=m,j=ni=1,j=1

and {xij}i=m,j=nii=1,j=1 we first extend the CNLS procedure and propose a new estimation

procedure called Constrained Method of Moment (CMM), which works as follows:

1. Compute σ0(x) from equation (4.1)

2. For each subject i, estimate θi by minimizing least squares

θ̂i = arg min
θi

ni∑
j=1

(yij − λiσ0(µixij))
2
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under the constraint

Λ∗(θi) > 0 and θi > 0

3. Estimate θ by θ̂ =
∑m
i=1 θ̂i
m

4. Estimate σ2 by σ̂2 =
∑m
i=1

∑ni
j=1(yij−λ̂iσ0(µ̂ixij))

2∑m
i=1 ni−2

5. Estimate Σ by Σ̂ =
∑m

i=1
(θ̂i−θ̂)(θ̂i−θ̂)T

m−1 −σ̂2
∑m

i=1
T−1
i
m , where Ti =

[
∂Ri
∂θTi

]T [
∂Ri
∂θTi

] ∣∣∣∣
θi=θ̂i

and Ri = (R(xi1;θi), R(xi2;θi), · · · , R(xini ;θi))
T

6. Modify the estimator of Σ by

Σ̃ =


Σ̂ if Σ̂ is positive definite

Σ̂+ if Σ̂ is not positive definite

where Σ̂+ = QΨ+Q
′, in which Ψ+ is a diagonal matrix whose diagonal elements

Ψii = max(ψi, 0) where ψi is the eigenvalue of Σ, and Q is a 2 × 2 matrix whose

ith columns is the eigenvector qi associated with ψi.

7. Convert θ̂ to k̂nf and k̂pf

This procedure is motivated by the Method of Moment (MM) proposed by Lu and

Meeker [54] in attempt to fit a general nonlinear mixed model. Our contribution is to

extend it to constrained case by adding a constraint in the second step. The CMM

procedure is a natural extension of the CNLS procedure, because θ is estimated by the

average of θi of CNLS procedure.

The asymptotic property of the MM estimator was discussed by Lu and Meeker [54].

Here, we extend to the case of constraint and show through the following theorem that the

proposed CMM estimators also have good asymptotic properties. The proof is provided

in the Appendix.
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Theorem 27 Assume that

1. the sample size from each subjects are equal, i.e., n1 = n2 = · · · = nm = n

2. both n and m tend to +∞

Then, we have the following large sample properties for θ̂

1. θ̂ p→ θ

2.
√
mΣ̃−

1
2 (θ̂ − θ)

d→ Z, where Z ∼ N(0, I2), and Σ̃ = Σ + σ2Eθ[(nKi)
−1] with

Ki = EX [∇θiR(X;θi)∇θiR(X;θi)
T ].

Moreover, if σ̂2 is a consistent estimator of σ2, then

1. Σ̂
p→ Σ

2.
√
m ˆ̃Σ−

1
2 (θ̂ − θ)

d→ Z, where ˆ̃Σ = Σ̂ + σ̂2Eθ[(nKi)
−1].

If εij are iid normal, we can convert the nonlinear mixed model to a linear mixed model

by Taylor expansion, and thereafter propose an alterative procedure called Constrained

Restricted Maximum Likelihood method (CREML), which works as follows:

1. Given current Best Linear Unbiased Predictors (BLUP) (µ̂
(t)
i , λ̂

(t)
i ) for (µi, λi), use

Taylor expansion to express Ri(µi, λi;x) as

Ri(µi, λi;x) ≈ Ri(µ̂(t)
i , λ̂

(t)
i ;x) +

∂Ri
∂µi
|
µi=µ̂

(t)
i

(µi − µ̂(t)
i ) +

∂Ri
∂λi
|
λi=λ̂

(t)
i

(λi − λ̂(t)
i )

As a result, the original expression of data yij = Ri(µi, λi, xij) + εij can be re-

written as

y∗ij =
∂Ri
∂µi
|
µi=µ̂

(t)
i

µi +
∂Ri
∂λi
|
λi=λ̂

(t)
i

λi. (4.13)

where, y∗ij = yij − Ri(µ̂
(t)
i , λ̂

(t)
i ;xij) + ∂Ri

∂µi
|
µi=µ̂

(t)
i

µ̂
(t)
i + ∂Ri

∂λi
|
λi=λ̂

(t)
i

λ̂
(t)
i . And our

original model becomes a Constrained Linear Mixed Effect Model (CLMM).
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2. Fit the CLMM (4.13) under the constraint of Λ∗(µ, λ) > 0, µ > 0 and λ > 0. Such

a constraint at the population level can be easily embranced by the existing LMM

fitting techniques.

3. Update (µ̂
(t)
i , λ̂

(t)
i ) by the Best Linear Unbiased Predictors (BLUP) based on the

Best Linear Unbiased Estiamtes (BLUE) (µ̂, λ̂, Σ̂, σ̂2) of the CLMM (4.13) obtained

from step 2.

4. Iterate the above three steps until convergence.

This procedure is motivated by the iterative procedure of Lindstrom and Bates [49]. Our

contribution is to extend it to constrained case by adding a constraint on Step 2 and to

use a simple way to update (µ̂
(t)
i , λ̂

(t)
i ) in the iteration process.

The convergence behavior of the CREML procedure depends on the starting value.

With a bad starting value, a bad approximation will occur at the second step, so that the

resulting CLMM will be hard to fit. The singularity of the variance convariance matrix

will imply such a problem. On the other hand, with a good starting value the procedure

converges quite fast. A good choice of starting value could be the estimates obtained

from the CMM procedure. The convergence rule can be set as the difference of estimates

in current step from that in previous step being smaller than a prespecified positive

threshold. The model in step 2 is a CLMM. When there is no constraint, the model can

be fitted by many existing approaches such as Maximum Likelihood (ML), Restricted

Maximum Likelihood (REML) and Expectation-Maximization (EM) algorithm. In this

paper, we consider REML and extend it to fit the model with constraint. Note that the

likelihood in the first step of REML only involves in the variance component parameters

Σ and σ2, therefore their estimates won’t be affected by the constraint. On the other
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hand, the likelihood in the second step of REML involves the population parameters

µ and λ. So their estimates should be obtained by maximizing the reduced likelihood

under the constraint. And this constrained optimization problem was discussed in the

previous section of single subject case.

It deserves to point out the CMM procedure controls the constraints at the individual

level whereas the CREML procedure controls at the population level. Since constraints

satisfied at the individual level will be automatically satisfied at the population level, the

former is more strict than the latter. In many cases of real world application especially

when the number of subjects, m is large, constraint at the population level is enough

and more desirable.

4.5 Simulation study

In this section, simulation studies were conducted for the single subject case and

the multiple subject case respectively. All the estimation procedures were implemented

in R. From the proof of Remark 23, we know σ0(x) is an positive and even function that

achieves its maximum at 0. Further, we know σ0(x) is ∼ 1
2 when |x| = 5 and ∼ 0 when

|x| ≥ 15. Therefore, when µ = 1, R(x) = λσ0(µx) is ∼ 0 when |x| ≥ 15. Therefore, in

the simulation the data of R(x) when µ = 1 were generated from |x| < 15. The values

of α, D and Rtot used in the simulations were set to be 1.2, 0.1 and 797 respectively,

which were obtained empirically from real data.

4.5.1 Single subject

The first simulation example is presented below to evaluate the performance

of the CNLS procedure. The data were generated based on Remark 22, where the true
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values used for the simulation were knf = 0.1, kpf = 0.1125, σ = 4, 8, 16. Therefore,

µ = 1 and λ = 34.1883. For different σ, we generated 10000 data sets of size n = 301,

and applied the CNLS procedure on each of them. Estimates of the parameters knf

and kpf were obtained for each of the 10000 data sets, based on which the relative bias,

standard deviation and mean square error (MSE) were computed. From Table 4.1, we

could see the CNLS procedure works quite well and it’s quite robust against noise when

the size of data is fairly large.

k̂nf k̂pf
σ bias sd MSE bias sd MSE
4 7.4× 10−5 0.0028 7.8× 10−6 7.9× 10−5 0.0023 5.2× 10−6

8 1.2× 10−4 0.0057 3.2× 10−5 2.2× 10−4 0.0047 2.2× 10−5

16 7.7× 10−4 0.0114 1.3× 10−4 0.0008 0.0093 8.7× 10−5

Table 4.1: The estimates of the CNLS procedure for single subject data set

The second simulation example is presented below to compare the performance

of the CNLS procedure and the constrained OC procedure. Specifically, we impose the

constraints on OC procedure in three different ways: constraints of positiveness only

(ci ≥ 0), constraints of symmetry only (ci = cl−i) or constraints of both (ci = cl−i ≥ 0).

The parameter setting and data generation process are same as that in the first simulation

example. The results are shown in Table 4.2, 4.3 and 4.4. From these tables, we can see

that the CNLS procedure outperforms the OC procedure with or without constraints,

and adding constraints improves the OC procedure a lot.
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k̂nf k̂pf
σ = 4 bias sd MSE bias sd MSE
CNLS 7.4× 10−5 0.0028 7.8× 10−6 7.9× 10−5 0.0023 5.2× 10−6

OC 3.0× 10−3 0.0058 4.3× 10−5 −3.2× 10−3 0.0063 5.0× 10−5

OC1 −3.3× 10−5 0.0038 1.5× 10−5 9.7× 10−4 0.0031 1.1× 10−5

OC2 −8.3× 10−4 0.0046 2.2× 10−5 8.8× 10−4 0.0047 2.3× 10−5

OC3 3.9× 10−4 0.0039 1.5× 10−5 1.1× 10−3 0.0031 1.1× 10−5

Table 4.2: The estimates for single subject data set based on procedures of CNLS,
OC without constraint, OC1 with positiveness constraints only, OC2 with symmetry
constraint only and OC3 with both constraints when σ = 4

k̂nf k̂pf
σ = 8 bias sd MSE bias sd MSE
CNLS 1.2× 10−4 0.0057 3.2× 10−5 2.2× 10−4 0.0047 2.2× 10−5

OC −1.5× 10−2 0.0178 5.5× 10−4 −1.6× 10−3 0.0199 6.6× 10−4

OC1 −1.4× 10−3 0.0073 5.6× 10−5 6.9× 10−4 0.0062 3.9× 10−5

OC2 −6.5× 10−3 0.014 2.3× 10−4 −6.9× 10−3 0.015 2.7× 10−4

OC3 2.3× 10−4 0.0075 5.6× 10−5 1.2× 10−3 0.0061 3.9× 10−5

Table 4.3: The estimates for single subject data set based on procedures of CNLS,
OC without constraint, OC1 with positiveness constraints only, OC2 with symmetry
constraints only and OC3 with both constraints when σ = 8

4.5.2 Multiple subject

The aim of the simulation study in this subsection is to evaluate and compare

the performance of the CMM procedure and the CREML procedure. The data for each

of m subjects were generated based on Remark 22 after the assocaited (µi, λi) were

simulated from the normal distribution (4.12). The true values of parameters used for

the simulation were µ = 1, λ = 34.1883, σµ = 0.6, σλ = 0.2 and σ = 4. We generated

3000 data sets and fit each of them with both procedures to obtain the estimates of µ,

λ, σµ, σλ and σ. The relative bias, standard deviation and MSE for these estimates

were computed. We assumed m = 10 and considered different n by simulating data at
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k̂nf k̂pf
σ = 16 bias sd MSE bias sd MSE
CNLS 7.7× 10−4 0.0114 1.3× 10−4 0.0008 0.0093 8.7× 10−5

OC −4.6× 10−2 0.0350 3.4× 10−3 −4.9× 10−2 0.0393 4.0× 10−3

OC1 −4.7× 10−3 0.0131 1.9× 10−4 −1.3× 10−4 0.0114 1.3× 10−4

OC2 −2.5× 10−3 0.0325 1.6× 10−3 −2.5× 10−2 0.0359 1.9× 10−3

OC3 −1.8× 10−3 0.0140 2.0× 10−4 1.3× 10−3 0.0117 1.4× 10−4

Table 4.4: The estimates for single subject data set based on procedures of CNLS,
OC without constraint, OC1 with positiveness constraints only, OC2 with symmetry
constraints only and OC3 with both constraints when σ = 16

µ̂ λ̂ σ̂µ σ̂λ σ̂

bias 0.0052 0.0109 -0.0101 -0.0688 -0.0046
CMM sd 0.0617 0.2711 0.0451 0.2981 0.1294

MSE 0.0038 0.0736 0.0021 0.0936 0.0168
bias 0.00712 0.0079 -0.0228 -0.1432 -0.0008

CREML sd 0.0610 0.2698 0.0412 0.3035 0.1267
MSE 0.0038 0.0728 0.0022 0.1126 0.0160

Table 4.5: Comparison of the estimation procedures in Case 1 where x is equally spaced
between −5 and 5 with increament 0.2 and m = 10, n = 51

different x. In case 1, x = (−5,−4.8, · · · ,−0.2, 0, 0.2, · · · , 4.8, 5) and n = 51. Whereas

in case 2, x = (−5,−1,−0.2, 0.2, 1, 5) and n = 6.

From Table 4.5, we can see that when n is large, the estimates of µ, λ, σµ,

σλ and σ are about the same for the CMM procedure and the CREML procedure. It

indicates that both procedures perform equally well when the sample size is large. When

n is small, Table 4.6 shows a slightly better performance of the CREML procedure than

the CMM procedure. Similar results were also observed by Munther Al-Zaid (2001)

[2]. Furthermore, CMM sometimes can produce non-positive definite estimates for the

variance components if data are taken from inappropriate x. As a result, the estimates

will be much worse than that of the CREML procedure. In Table 4.7 where σµ = 0.6

and no data were taken from −1 < x < 1, ∼ 150 out of 3000 simulations had the above
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µ̂ λ̂ σ̂µ σ̂λ σ̂

bias 0.0158 0.0394 0.0103 0.0281 0.0126
CMM sd 0.0715 0.4809 0.0795 0.6271 0.6231

MSE 0.0054 0.2328 0.0064 0.3940 0.3884
bias -0.0050 -0.0167 -0.0333 -0.1806 -0.0796

CREML sd 0.0641 0.4554 0.0496 0.5013 0.4086
MSE 0.0041 0.2077 0.0036 0.2839 0.1733

Table 4.6: Comparison of the estimation procedures in Case 2 where x =
(−5,−1,−0.2, 0.2, 1, 5) and m = 10, n = 6

µ̂ λ̂ σ̂µ σ̂λ σ̂

bias 0.245 -0.146 0.762 0.122 -0.024
CMM sd 0.146 2.974 2.796 0.797 0.449

MSE 0.082 8.868 8.400 0.650 0.202
bias 0.224 -0.062 -0.205 -0.060 -0.100

CREML sd 0.140 0.657 0.101 0.713 0.420
MSE 0.070 0.436 0.052 0.512 0.186

Table 4.7: Comparison of the estimation procedures in Case 3 where x =
(−5,−3,−1, 1, 3, 5) and m = 10, n = 6

issue. This is because when n is small, λ̂i can be 0 and µ̂i can be very large, which make

Ti in the CMM procedure non-invertible.

4.6 Pollen tube data study

The real data of ROP1 intensities R(x) were collected from 12 pollen tubes of

Arabidopsis. For each pollen tube, data were taken from one of its oblique planes at

positions every 0.1205 µm from−10 µm to 10 µm. Therefore,m = 12 and n = 173. Each

data point consists of two items, the position x and the associated observed intensity

value y(x). The ROP1 intensities in different pollen tubes are believed to have identical

distributions. Therefore, it was necessary to first normalize the raw data. In this paper,

quantile normalization method was utilized. Furthermore, the data were standardized

into a fixed range by regression based method described below. Outliers contained in
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the data sets were removed before estimation procedures were executed. The values for

D, Rtot and α used in the study were 0.2, 30 and 1.2, respectively.

We first pooled the data sets together and fit the CNLS procedure described in

section 4.2 and the constrained OC procedure described in section 4.3. We also fit these

three procedures to each individual data set. We then fit the CMM procedure described

in section 4.4 and the CREML procedure described in section 4.5. In a summary, the

data analysis were executed in the following steps:

1. Use quantile normalization method to normalize the ROP1 intensities of different

tubes, and remove possible outliers

2. Pool the data sets together and fit the pooled data nonparametrically to obtain

R̂(x), and set the background noise to be the smallest value of R̂(x)

3. Subtract the background noise from R̂(x) and all the data points

4. Standardize R̂(x) to range from 0 to 1. All the data points would be standardized

accordingly.

5. Fit the CNLS procedure and constrained OC procedure to the pooled data sets

and the individual data set respectively

6. Fit the CMM procedure and the CREML procedure to the data sets

Figure 4.1 and Figure 4.2 display the scatter plot of data of 12 tubes w/o normalization.

Figure 4.3 displays the scatter plot of pooled data w/o outliers after normalization.

Figure 4.4 displays the fitted curve R̂(x) based on pooled dataset after background noise

deduction and further after standardization. Table 4.8 displays the estimates of knf and

kpf for the CNLS procedure, OC procedure with constraints and without constraints.
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Table 4.9 displays the estimates of (µ, λ,Σ, σ) as well as that of (knf , kpf ) for the CMM

procedure and the CREML procedure.

In Table 4.8, estimates of knf and kpf based on CNLS from individual tube and

pooled tubes are pretty close to each other. This is because that the sample size of

each individual is sufficiently large (n = 175). This also indicates that the variation

between tubes is not too large for the CNLS procedure to handle. On the other hand,

estimates of knf and kpf based on OC procedure vary among different tubes, especially

when the constraints on the shape of R(x) are not imposed. This is what we expect

since the OC procedure depends more heavily on the data quality in comparison to the

CNLS procedure. Nevertheless, when pooling the data together, both two procedures

provide similar estimates which indicates that pooling the data can help recover the

shape of R(x). Especially for the OC procedure, pooling the data will greatly improve

the local quality of the data so that the estimates are more accurate and closer to that

of CNLS procedure. In Table 4.9, estimates of all parameters are close between the

CMM procedure and the CREML procedure. This is also because the data size is large

enough (m = 12, n = 175). The estimates of knf and kpf are consistent among the three

procedures. Moreover, there is a large positive correlation among µ and λ, which can be

explained by the fact that the positive feedback process and negative feedback process

in the first stage of tip growth process has an intrinsic connection since the strength of

them both depend on the intensities of active ROP1 on the plasmic membrane. The

standard deviation of the parameters µ and λ are smaller in the CREML procedure than

in the CMM procedure, which implies the CREML procedure provides more accuracy.
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k̂nf k̂pf
CNLS OC OC3 CNLS OC OC3

Tube 1 0.1866 0.1920 0.2328 0.2925 0.2975 0.3602

Tube 2 0.2278 0.5411 0.2963 0.3337 0.9001 0.4335

Tube 4 0.1814 0.1523 0.1532 0.2854 0.2399 0.2425

Tube 5 0.2205 0.1638 0.2573 0.3265 0.2526 0.3801

Tube 6 0.1788 0.1552 0.1278 0.2748 0.2526 0.2077

Tube 7 0.1892 0.2114 0.1622 0.2925 0.3263 0.2498

Tube 8 0.1917 0.1975 0.2085 0.2977 0.3022 0.3204

Tube 9 0.2121 0.1780 0.1969 0.3188 0.2719 0.2978

Tube10 0.1976 0.2019 0.2094 0.3053 0.3071 0.3218

Tube11 0.1939 0.1787 0.1804 0.3011 0.2692 0.2715

Tube14 0.1694 0.1748 0.2331 0.2766 0.2812 0.3702

Tube15 0.1809 0.1399 0.1474 0.2810 0.2230 0.2333

pooled 0.1930 0.1872 0.1940 0.2979 0.2867 0.2969

Table 4.8: Estiamtes of knf and kpf of CNLS procedure, OC procedure without constraint
and OC3 procedure with both constraints. And D = 0.2, Rtot = 30 and α = 1.2.

4.7 Summary

In this chapter, we have studied the parameter estimation problem for a partic-

ular example of tip growth of pollen tubes. We proposed a constrained nonlinear model

with one estimation procedure, CNLS to fit single pollen tube data set and a constrained

nonlinear mixed effect model with two estimation procedures, CMM and CREML to fit

multiple pollen tubes data sets. We also proposed a Constrained OC approach by im-

posing two different types of constraints on the original OC approach. We evaluated

the performance of all the estimation procedures via simulations and a pollen tube data

analysis, and found out that in single pollen tube case, the CNLS approach outperforms

the Constrained OC approach which outperforms the original OC approach without any

constraint, especially when the data have a bad local quality. In multiple pollen tubes

case, the CMM approach and CREML approach perform equally well when the sample

size is sufficiently large, whereas CREML outperforms CMM when the sample size is

small. We used a simple strategy to incorporate the constraint into the objective func-

80



tion before applying the simplex method to solve the constrained optimization problem

in the estimation procedures, which works quite well. Other optimization methods such

as dual method of Goldfarb and Idnani [37, 38] can be utilized. It deserves to mention

that the simplex method after the modification we did can also tackle the constrained op-

timization problem with a nonlinear constraints, which could also be solved by methods

such as Sequential Quadratic Programming (SQP).
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Figure 4.1: The figure is the scatterplot of the ROP1 intensities from 12 tubes of ara-
bidopsis before normalization.

CMM CREML
µ̂ 0.9708 0.9648

λ̂ 0.6477 0.6487

σ̂µ 0.0789 0.0709

σ̂λ 0.0393 0.0258

ρ̂ 0.737 0.838

σ̂ 0.2064 0.2267

k̂nf 0.1942 0.1862

k̂pf 0.2987 0.2873

Table 4.9: Estimations of µ, λ, Σ and σ of CMM and CREML procedures with D = 0.2,
Rtot = 30 and α = 1.2.
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Figure 4.2: The figure is the scatterplot of the ROP1 intensities from 12 tubes of ara-
bidopsis after normalization.
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Figure 4.3: The two plots in the figure from left to right are the scatterplots of the pooled
dataset of arabidopsis with and without removing outliers, respectively.
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Figure 4.4: The three plots in the figure from left to right display R̂(x) that is before
background noise deduction, after background noise deduction, and further after stan-
dardization, respectively. The black line in the leftmost plot denotes the background
noise, which is 70.
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Chapter 5

Parameter Estimation in PDE

models

In chapter 4, we have studied the parameter estimation problem in the example

of tip growth of pollen tube based on the observed ROP1 density at static time, R(x),

which is a solution to ODE (1.2)
D d2R

dx2
= knfR− kpfRα(1−

∫
xRdx

Rtot
) x ∈ [−L0, L0]

R(−L0) = R(L0) = 0

Specifically, we proved the ODE (1.2) has a solution R(x) = λσ0(µx) under the con-

straints of Λ∗(knf , kpf ) < 0, knf > 0 and kpf > 0. As a result, the ODE model was

transformed into a Constrained Nonlinear Model for single pollen tube and a Constrained

Nonlinear Mixed Effects Model for multiple pollen tubes based on which knf and kpf

were estimated.
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In recent years, with more advanced technology and more sophisticated equip-

ments, the ROP density R(x, t) to the PDE (1.1) can be measured over time t.

∂R(x,t)
∂t = kpfR(x, t)α(1−

∫
xR(x,t)dx

Rtot
)− knfR(x, t) +D d2R(x,t)

dx2

where {x, t} ∈ [−L0, L0]× [0,∞]

R(−L0, t) = R(L0, t) = 0

R(x, 0) = f(x)

(5.1)

As a result, one might want to consider the estimation problem based on the PDE (1.1)

model rather than the ODE (1.2). Indeed, it deserves to study such a PDE model since

with more observations, more accurate estimates for knf and kpf can be obtained. In

this chapter, we are going to focus on the PDE model and study the corresponding

estimation problem.

5.1 Numerical solution to PDE (1.1)

Before devoting efforts to finding the solution to the PDE (1.1), one thing has

to be made sure is that the PDE (1.1) has solutions, which is known as the identifiability

problem introduced in section 2.1 of chapter 2. The identifiability problem in a general

PDE was discussed by Avner Friedman [34]. Regarding to the PDE (1.1), we have

established the following results.

1. for any knf and kpf , the PDE (1.1) has a local solution at [0, t∗], where t∗ will

depend on the values of knf and kpf .

2. for some knf and kpf , the PDE (1.1) may have a global solution at [0, T ], where T

denotes the static time.

However, until now we are not able to identify
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1. the feasible set of knf and kpf analytically that can provide a global solution to

the PDE (1.1) at [0, T ]

2. the analytical form of the solution to the PDE (1.1)

Since there is no closed form solution available so far, a numerical solution to

the PDE (1.1) for given values of knf and kpf will be needed. In general, numerical

methods for solving PDE were discussed in the book of Gordon C. Everstine [30]. As

introduced in section 1.2.2 of chapter 1, the second-order PDE (1.3)

Auxx + 2Buxy + Cuyy +Dux + Euy + Fu = G

can be divided into three main types Parabolic, Elliptic, and Hyperbolic, depending on

the sign of the discriminant B2 −AC. For different types of PDE, Gordon C. Everstine

suggested different numerical methods. By checking the discriminant, the PDE (1.1)

belongs to the Parabolic type. Therefore according to the suggestion of Gordon C. Ever-

stine, the appropriate numerical methods include the Explicit Finite Difference Method

and the Crank-Nicolson Implicit Method. In the following, we are going to apply them

to the PDE (1.1).

Explicit Finite Difference Method

Suppose the PDE (1.1) has a solution at [0, T ], let 0 = t0 < t1 < · · · < tnt−1 = T

be a set of time instants on the interval [0, T ] with mesh size ∆tj = tj+1 − tj . Let

−L0 = x0 < x1 < · · · < xnx−1 = L0 be a set of positions on the interval [−L0, L0] with

mesh size ∆xi = xi+1−xi. Let Ri,j be the numerical approximation to R(xi, tj).
∂R(x,t)
∂t

is approximated with the forward finite difference

∂R(x, t)

∂t
=
Ri,j+1 −Ri,j

∆tj
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and d2R
dx2

is approximated with the central finite difference

d2R

dx2
=
Ri+1,j − 2Ri,j +Ri−1,j

(∆xi)2

and
∫ L0

−L0
R(x, t)dx is approximated with the numerical integration

∫ L0

−L0

R(x, t)dx =

nx∑
i=1

Ri,j∆xi

The finite difference approximation to the PDE (1.1) is then

Ri,j+1 −Ri,j
∆tj

= kpfR
α
i,j(1−

∑nx
i Ri,j∆xi
Rtot

)− knfRi,j +D
Ri+1,j − 2Ri,j +Ri−1,j

(∆xi)2

Therefore, the PDE (1.1) becomes

Ri,j+1 = Ri,j + ∆tj

(
kpfR

α
i,j(1−

∑
iRi,j∆xi
Rtot

)− knfRi,j +D
Ri+1,j − 2Ri,j +Ri−1,j

(∆xi)2

)

This method is referred to as an explicit method since based on the above formula one

unknown value Ri,j+1 at later time can be found directly in terms of the known values

{Ri,j}nx;nt
i=1;j=1 at earlier time.

Crank-Nicolson Implicit Method

The key for the Crank-Nicolson Implicit method is to write the finite difference

equation at a mid-level in time tj+ 1
2
. The finite difference x derivative at time tj+ 1

2
is

computed as the average of the central difference x derivatives at time tj and tj+1.

d2R

dx2
=

1

2
(
Ri+1,j − 2Ri,j +Ri−1,j

(∆xi)2
+
Ri+1,j+1 − 2Ri,j+1 +Ri−1,j+1

(∆xi)2
)

And the finite difference t derivative at position xi is computed in the same way as in

the Explicit Finite Difference Method.

∂R(x, t)

∂t
=
Ri,j+1 −Ri,j

∆tj
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As a result, the PDE (1.1) is numerically approximated by

Ri,j+1 −Ri,j
∆tj

=kpfR
α
i,j(1−

∑nx
i=1Ri,j∆xi
Rtot

)− knfRi,j

+
D

2

(
Ri+1,j − 2Ri,j +Ri−1,j

(∆xi)2
+
Ri+1,j+1 − 2Ri,j+1 +Ri−1,j+1

(∆xi)2

)

After putting all j + 1 terms in the above equation on the left hand side, we get

Ri,j+1

∆tj
− D

2

(
Ri+1,j+1 − 2Ri,j+1 +Ri−1,j+1

(∆xi)2

)
=
Ri,j
∆tj

+ kpfR
α
i,j(1−

∑nx
i=1Ri,j∆xi
Rtot

)− knfRi,j +
D

2

(
Ri+1,j − 2Ri,j +Ri−1,j

(∆xi)2

)

This formula is called the Crank-Nicolson equation.

The Crank-Nicolson scheme starts at the bottom of t0 with j = 0 and move up

to t1 with j = 1. Then the right side of the Crank-Nicolson equation is known, whereas

the left side of the Crank-Nicolson equation is unknown. To solve for R(x, tj+1), one write

the Crank-Nicolson equation for all the positions i = 1, 2, · · · , nx and therefore obtain

nx equations in a row. Then the implicit algorithm can be used to solve these equations

simultaneously. Notice that the coefficient matrix of the Crank-Nicolson equation is a

tridiagonal matrix and remains the same step by step, it is suggested to compute and

save the LU factors of the coefficient matrix so that we don’t have to repeat it at each

new time step, and thereafter speed up the computation. This speedup is very significant

when the PDE is of high dimension in which the coefficient matrix is not tridiagonal any

more.

In this dissertation, we have implemented the Explicit Finite Difference Method

in R software to solve for R(x, t) and confirmed that for some knf and kpf , such as

knf = 0.1 and kpf = 0.1125, the PDE (1.1) has a global solution of R(x, t), whereas

for many other knf and kpf , R(x, t) only exists at the first couple of numeration steps.
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Further, based on the numerical solution, we have identified the feasible region shown in

figure 5.1 in which the PDE (1.1) has a global solution at [0, T ].

0 1 2 3 4 5

0
2

4
6

8
10

aa

bb

the box is the region where global solution to PDE exist

Figure 5.1: The figure whose x-axis represents knf and y-axis represents kpf shows a
polygon surrounded by the lines in which the PDE (1.1) has a global solution at [0, T ].

5.2 Parameter Estimation in PDE model

Suppose the observation of ROP1 density R(x, t) at position Xi ∈ [−L0, L0]

and time Tj ∈ [0, T ] for single pollen tube can be written as

Yij = R(Xi, Tj ; knf , kpf ) + εij j = 1, 2, · · · , n. (5.2)

where R(x, t) is a solution to the PDE (1.1), and εij is independently identically dis-

tributed from a distribution F with common mean 0 and variance σ2. To estimate the
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PDE model for k̂nf and k̂pf , a natural approach can be proposed based on the idea of

least square minimization which works as follows.

1. for given values of knf and kpf , use the methods described in section 5.1 to numer-

ically solve the PDE (1.1) for R(x, t) at [0, T ]. Notice that such a solution may not

exist.

2. define an estimation criterion Qnx,nt(knf , kpf ) to be the sum of squared differences

between R(x, t) and y(x, t) at all positions and time instants. If R(x, t) does not

exist, then set the sum of squared differences to be +∞

Qnx,nt =


∑nx;nt

i=1;j=1(Yij −R(Xi, Tj ; knf , kpf ))2 if R(x,t) exists at [0,T]

+∞ if R(x,t) does not exist at [0,T]

3. minimize the estimation criterion Qnx,nt to obtain k̂nf and k̂pf

The estimation approach involves a two dimensional minimization problem which gener-

ally can be solved by many optimization methods such as the simplex method of Nelder

and Mead [58] described in section 4.

If Qnx,nt is a convex function of knf and kpf over the feasible region, the mini-

mization process will eventually reach to the true solution. Otherwise, the minimization

process will probably converge to a wrong place or won’t converge at all. Therefore, it’s

helpful to check the shape of Qnx,nt before conducting the minimization process. In our

simulation study, we first set knf = 0.3 and kpf = 1 and solved the PDE for R(x, t).

The data of R(x, t) were then generated by adding an i.i.d. N(0, σ2 = 1) noise. Based

on these simulated data, we first fixed knf = 0.3 and changed kpf so that Qnx,nt is a

function of kpf . Such a function is shown in figure 5.2. Likewise, we fixed kpf = 1 and

changed knf so that Qnx,nt is a function of knf . Such a function is shown in figure 5.3.

From these two figures, it’s clear to see that when fixing knf or kpf , Qnx,nt is a convex
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function of the other variable, which indicates that the minimization over one variable

will have a good convergence behavior. Indeed, this was observed in the following simula-

tion results. However, it was also observed that the minimization over both two variables

simultaneously would converge to a wrong place with an inappropriate initial value.

1. fixing knf = 0.3 and treating Qnx,nt as a function of kpf , the estimation procedure

will converge to 1 starting at 5.

2. fixing kpf = 1 and treating Qnx,nt as a function of knf , the estimation procedure

will converge to 0.3 starting at 1.

3. treating the target function as a function of both knf and kpf , the estimation

procedure will converge to (0.3, 1) starting at (0.2, 0.2) or (2, 6) or (3, 5). On the

other hand, the procedure will converge to wrong places if starting at (5, 6) or (4, 7)

or (3, 7) or (2, 7).

1 2 3 4 5
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7
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Figure 5.2: The figure shows that Qnx,nt is a convex function of kpf in (0,5).
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Figure 5.3: The figure shows that Qnx,nt is a convex function of knf in (0,1).

In order to overcome the challenge of convergency due to the bad choice of

initial value, we considered to conduct the minimization process with multiple initial

values. And accordingly, we proposed the following minimization strategy

1. partition the feasible region into multiple lattices and for each lattice, randomly

choose a point in it to be an initial value

2. conduct the minimization process with all the initial values chosen in step 1

3. identify the initial value that presents the smallest value of Qnx,nt . The corre-

sponding minimization solutions are the estimates we look for.

In our simulation, it was observed that this strategy successfully provided the right

solution.
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5.3 Future Work

So far, we specified the estimation problem for PDE models, and accordingly

proposed an estimation procedure in the sense of least square minimization. We further

found out that the minimization problem in the proposed estimation procedure often

encounters a challenge of convergency. Without good initial values, the minimization

process will either converge to a wrong place or won’t converge at all. To overcome this

challenge, we developed a new way to conduct the minimization process by starting it

from multiple initial values simultaneously. The simulation studies showed that the new

optimization strategy works well. However, there are many work left in order to solve

the estimation problem completely.

First of all, more mathematical efforts should be devoted to finding the ana-

lytical solution to the PDE (1.1), or finding an accurate approximated solution, if the

analytical solution does not exist. This is crucial since our estimation criterion greatly

depends on the solution so that if the solution is not accurate enough, the criterion will

lead to bad estimations for knf and kpf .

Secondly, from our empirical experience, the minimization process for PDE

models is more often to encounter the problem of convergency in comparison with the

ODE model case. This problem becomes severe when the parameter dimension is high.

The new optimization strategy we developed can solve this problem in principle. How-

ever, it is computationally intensive since the optimization process must be repeatedly

conducted with multiple initial values. Therefore, a computationally easier optimization

strategy should be discovered.

Thirdly, statistical efforts can be put to comparing the numerical methods with

other nonparametric methods such as TS or OC methods in terms of their estimation
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performances. This work can help identify the merits and shortcomings for each estima-

tion methods, so that we can determine whether it deserves to focus on our numerical

method or it is better to use the nonparametric methods. Besides, the large sample

properties should also be established for all the methods.

Last, when the ROP1 density can be observed on multiple pollen tubes and the

tube to tube variation is nonnegligible, then a PDE based mixed effects model should

be formulated to incorporate such a variation, and statistical efforts can be devoted to

estimating the mixed effects model.

96



Bibliography

[1] A. Wittinghofer A. Berken, C. Thomas. A new family of RhoGEFs activates the
Rop molecular switch in plants. Nature, 436:1176–1180, 2005.

[2] Munther Al-Zaid and Shie-Shien Yang. An approximate em algorithm for nonlinear
mixed effects models. Biometrical Journal, 43(7):881–893, 2001.

[3] Hen-Ming Wu Alice Y. Cheung. Structural and signaling networks for the polar cell
growth machinery in pollen tubes. nnu Rev Plant Biol., 59:547–572, 2008.

[4] Steven J. Altschuler, Sigurd B. Angenent, Yanqin Wang, and Lani F. Wu. On the
spontaneous emergence of cell polarity. Nature, 454(7206):886–889, August 2008.

[5] Y. Amemiya. What Should be Done When an Estimated Between Group Covariance
Matrix is not Nonnegative Definite? The American Statistician, 39:112–117, 1985.

[6] Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell. Numerical Solu-
tion of Boundary Value Problems for Ordinary Differential Equations. Society for
Industrial and Applied Mathematics, 1995.

[7] Kost B., Lemichez E., Spielhofer P., Hong Y., and Carpenter C. Tolias K. Rac
Homologues and Compartmentalized Phosphatidylinositol 4, 5-Bisphosphate Act in
a Common Pathway to Regulate Polar Pollen Tube Growth. J Cell Biol., 145:317–
330, 1999.

[8] G. Bader and U. Ascher. A new basis implementation for a mixed order boundary
value ode solver. SIAM J. Sci. Stat. Comput., 8(4):483–500, July 1987.

[9] Yonathan Bard. Nonlinear parameter estimation. Academic Press [A subsidiary of
Harcourt Brace Jovanovich, Publishers], New York-London, 1974.

[10] R. Bellman and K.J. Astrom. On structural identifiability. Mathematical Bio-
sciences, 7(3â4):329 – 339, 1970.

[11] M. Benson. Parameter fitting in dynamic models. Ecological Modelling, 6(2):97 –
115, 1979.

[12] H.G. Bock. Recent advances in parameteridentification techniques for o.d.e. In Peter
Deuflhard and Ernst Hairer, editors, Numerical Treatment of Inverse Problems in
Differential and Integral Equations, volume 2 of Progress in Scientific Computing,
pages 95–121. BirkhÃuser Boston, 1983.

97



[13] Nicolas J. B. Brunel. Parameter estimation of ODE’s via nonparametric estimators.
December 2008.

[14] Nicolas J.B. Brunel, Quentin Clairon, and DAlche-Buc Florence. Parametric Esti-
mation of Ordinary Differential Equations with Orthogonality Conditions. Journal
of American Statistics Association, page (to appear), 2013.

[15] Jost C and Ellner SP. Testing for predator dependence in predator-prey dynamics:
a non-parametric approach. Proc Biol Sci, 267(1453):1611–1620, 2000.

[16] B. Cai and D. B. Dunson. Bayesian multivariate isotonic regression splines: appli-
cations to carcino- genicity studies. Journal of the American Statistical Association,
102:1158–1171, 2007.

[17] Otger Campàs and L. Mahadevan. Shape and Dynamics of Tip-Growing Cells. Curr
Biol, 19(24):2102–2107, December 2009.

[18] Otger Campas1 and L. Mahadevan. Shape and Dynamics of Tip-Growing Cells.
Current Biology, 19:2102–2107, 2009.

[19] J.R. Cash and F. Mazzia. A new mesh selection algorithm, based on condition-
ing, for two-point boundary value codes. Journal of Computational and Applied
Mathematics, 184(2):362 – 381, 2005.

[20] Thierry Cazenave and Alain Haraux. An introduction to semilinear evolution equa-
tions, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The
Clarendon Press Oxford University Press, New York, 1998.

[21] Michael J. Chappell and Keith R. Godfrey. Structural identifiability of the parame-
ters of a nonlinear batch reactor model. Mathematical Biosciences, 108(2):241–251,
1992.

[22] Jianwei Chen and Hulin Wu. Estimation of time-varying parameters in deterministic
dynamic models. Statistica Sinica, 18:987–1006, 2008.

[23] Ori Davidov and Sophia Rosen. Constrained inference in mixed-effects models for
longitudinal data with application to hearing loss. Biostatistics, 12:327–340, 2011.

[24] L. Denis-Vidal and G. Joly-Blanchard. An easy to check criterion for
(un)indentifiability of uncontrolled systems and its applications. Automatic Control,
IEEE Transactions on, 45(4):768–771, Apr 2000.

[25] Jacques Dumais, Sidney L. Shaw, Charles R. Steele, Sharon R. Long, and Peter M.
Ray. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth.
The International journal of developmental biology, 50(2-3):209–222, 2006.

[26] Lloyd J. Edwards, Paul W. Stewart, Keith E. Muller, and Ronald W. Helms. Linear
Equality Constraints in the General Linear Mixed Model. Biometrics, 57:1185–1190,
2001.

[27] Y. Gu et. al. A Rho family GTPase controls actin dynamics and tip growth via
two counteracting downstream pathways in pollen tubes. J Cell Biol., 169:127–138,
2005.

98



[28] Sylvester T. McKenna et.al. Exocytosis Precedes and Predicts the Increase in
Growth in Oscillating Pollen Tubes. The Plant Cell, 21:3026–3040, 2009.

[29] Gordon C Everstine. Numerical solution of.

[30] Gordon C. Everstine. Numerical Solution of Partial Dif- ferential Equations. 2010.

[31] H. B. Fang, G. L. Tian, X. Xiong, and M. Tan. A multivariate random-effects
model with restricted parameters: application to assessing radiation therapy for
brain tumors. Statistics in Medicine, 25:1948–1959, 2006.

[32] Reinhard Fischer, Nadine Zekert, and Norio Takeshita. Polarized growth in fungi
- interplay between the cytoskeleton, positional markers and membrane domains.
Molecular Microbiology, 68(4):813–826, May 2008.

[33] Richard FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve
Membrane. Biophys J., 1:445–466, 1961.

[34] Avner Friedman. Partial differential equations of parabolic type. R.E. Krieger Pub.
Co., 1983.

[35] A. Gelman, Carlin J. B., Stern H. S., and Rubin D. B. Bayesian Data Analysis.
2005.

[36] B. Gidas, Wei M. Ni, and L. Nirenberg. Symmetry and related properties via the
maximum principle. Comm. Math. Phys., 68(3):209–243, 1979.

[37] D. Goldfarb and A. Idnani. Dual and primal-dual methods for solving strictly
convex quadratic programs. In J.P. Hennart, editor, Numerical Analysis, volume
909 of Lecture Notes in Mathematics, pages 226–239. Springer Berlin Heidelberg,
1982.

[38] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly
convex quadratic programs. Mathematical Programming, 27(1):1–33, 1983.

[39] Li H, Lin Y, Heath RM, Zhu MX, and Yang Z. Control of pollen tube tip growth by
a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant
Cell, 11:1731–1742, 1999.

[40] Xue H., Miao H., and Wu H. Sieve Estimation of Constant and Time-Varying Co-
efficients in Nonlinear Ordinary Differential Equation Models by Considering Both
Numerical Error and Measurement Error, volume 38. 2010.

[41] Hoff JM Helland IS and Anderbrant O. Attraction of bark beetles (Coleoptera:
Scolytidae) to a pheromone trap : Experiment and mathematical models. J Chem
Ecol., 10:723–752, 1984.

[42] C.R. Henderson, Oscar Kempthorne, S. R. Searle, and C. M. von Krosigk. The
Estimation of Environmental and Genetic Trends from Records Subject to Culling.
Biometrics, 15:192–218, 1959.

[43] E. E. Holmes, M. A. Lewis, J. E. Banks, and R. R. Veit. Partial differential equations
in ecology: Spatial interactions and population dynamics. Ecology, 75(1):pp. 17–29,
1994.

99



[44] L. Wang J. Cao and J. Xu. Parameter estimation in ordinary differential equations.
Biometrics, 67:1305–1313, 2011.

[45] Robert I. Jennrich. Asymptotic Properties of Non-Linear Least Squares Estimators.
The Annals of Mathematical Statistics, 40(2):633–643, April 1969.

[46] Hwang JU, Vernoud V, Szumlanski A, Nielsen E, and Yang Z. A tip-localized
RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex.
Curr Biol., 18:1907–1916, 2008.

[47] Grant M Kroeger JH, Geitmann A. Model for calcium dependent oscillatory growth
in pollen tubes. . Journal of Theoretical Biology, 253:363–374, 2008.

[48] YJ. Lee, A. Szumlanski, E. Nielsen, and Z. Yang. Rho-GTPase-dependent filamen-
tous actin dynamics coordinate vesicle targeting and exocytosis during tip growth.
Cell Biol., 181:1155–1168, 2008.

[49] M. J. Lindstrom and D. M. Bates. Nonlinear Mixed Effects Models for Repeated
Measures Data. Biometrics, 46:673–687, 1990.

[50] Mary J. Lindstrom and Douglas M. Bates. Newton-Raphson and EM Algorithms for
Linear Mixed-Effects Models for Repeated-Measures Data. Journal of the American
Statistical Association, 83:1014–1022, 1988.

[51] P. L. Lions. On the existence of positive solutions of semilinear elliptic equations.
SIAM Review, 24(4):441–467, 1982.

[52] Lennart Ljung and Torkel Glad. On global identifiability for arbitrary model
parametrizations. Automatica, 30(2):265 – 276, 1994.

[53] Van Vactor D. Lowery LA. The trip of the tip: understanding the growth cone
machinery. Nat Rev Mol Cell Biol., 10:332–43, 2009.

[54] J. C. Lu and W. Q. Meeker. Using Degradation Measures to Estimate a Time-to-
Failure Distribution. Technometrics, 35:161–174, 1993.

[55] Madar, Janos, Abonyi, Janos, Roubos, Hans, Szeifert, and Ferenc. Incorporating
prior knowledge in a cubic spline approximationapplication to the identification of
reaction kinetic models. Industrial Engineering Chemistry Research, 42(17):4043–
4049, 2003.

[56] Hongyu Miao, Xiaohua Xia, Alan S. Perelson, and Hulin Wu. On identifiability of
nonlinear ode models and applications in viral dynamics. SIAM Rev., 53(1):3–39,
February 2011.

[57] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simu-
lating nerve axon. Proceedings of the IRE, 50(10):2061–2070, Oct 1962.

[58] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The
Computer Journal, 7(4):308–313, January 1965.

[59] Bernt Øksendal. Stochastic Differential Equations: An Introduction with Applica-
tions (Universitext). Springer, 6th edition, January 2014.

100



[60] A. Okubo, P. K. Maini, M. H. Williamson, and J. D. Murray. On the spatial spread
of the grey squirrel in britain. Proceedings of the Royal Society of London. Series
B, Biological Sciences, 238(1291):pp. 113–125, 1989.

[61] M.R. Osborne. Cyclic reduction, dichotomy, and the estimation of differential equa-
tions. Journal of Computational and Applied Mathematics, 86(1):271 – 286, 1997.
Dedicated to William B. Gragg on the ocassion of his 60th Birthday.

[62] H.D. Patterson and R. Thompson. Recovery of inter-block information when block
sizes are unequal. Biometrika, 58:545, 1971.

[63] S. D. Peddada, D. B. Dunson, and X. Tan. Estimation of order-restricted means
from correlated data. Biometrika, 93:703–715, 2005.

[64] S. R. Pilla, A. Qu, and C. Loader. Testing for order-restricted hypotheses in longi-
tudinal data. Journal of the Royal Statistical Society, Series B, 68:437–455, 2006.

[65] H. Pohjanpalo. System identifiability based on the power series expansion of the
solution. Mathematical Biosciences, 41(1â2):21 – 33, 1978.

[66] J. O. Ramsay, G. Hooker, D. Campbell, and J. Cao. Parameter estimation for
differential equations: A generalized smoothing approach. JOURNAL OF THE
ROYAL STATISTICAL SOCIETY, SERIES B, 2007.

[67] L. B. Sheiner and S. L. Beal. Evaluation of Methods for Estimating Population
Pharmacokinetic Parameters, I. Michaelis-Menten Model: Routine Clinical Phar-
macokinetic Data. Journal of Pharmacokinetics and Biopharmaceutics, 8:553–571,
1980.

[68] L. B. Sheiner and S. L. Beal. Evaluation of Methods for Estimating Population
Pharmacokinetic Parameters, I. Michaelis-Menten Model: Routine Clinical Phar-
macokinetic Data. Journal of Pharmacokinetics and Biopharmaceutics, 9:635–651,
1981.

[69] L. B. Sheiner and S. L. Beal. Evaluation of Methods for Estimating Population
Pharmacokinetic Parameters, I. Michaelis-Menten Model: Routine Clinical Phar-
macokinetic Data. Journal of Pharmacokinetics and Biopharmaceutics, 11:303–319,
1983.

[70] D. W. Shin, C. G. Park, and T. Park. Testing for ordered group effects with repeated
measurements. Biometrika, 83:688–694, 1996.

[71] J. G. Skellam. Random dispersal in theoretical population. Biometrika, 38:196–218,
1951.

[72] Karline Soetaert. rootSolve: Nonlinear root finding, equilibrium and steady-state
analysis of ordinary differential equations, 2009. R package 1.6.

[73] Karline Soetaert, Thomas Petzoldt, and R. Woodrow Setzer. Solving differential
equations in r: Package desolve. Journal of Statistical Software, 33(9):1–25, 2 2010.

[74] E. Tunali and T. Tarn. New results for identifiability of nonlinear systems. Auto-
matic Control, IEEE Transactions on, 32(2):146–154, Feb 1987.

101



[75] S. VAJDA, H. RABITZ, E. WALTER, and Y. LECOURTIER. Qualitative and
quantitative identifiability analysis of nonlinear chemical kinetic models. Chemical
Engineering Communications, 83(1):191–219, 1989.

[76] B. van Domselaar and P.W. Hemker. Nonlinear parameter estimation in initial
value problems. MC. NW. Stichting Math. Centrum, 1977.

[77] J. Varah. A spline least squares method for numerical parameter estimation in differ-
ential equations. SIAM Journal on Scientific and Statistical Computing, 3(1):28–46,
1982.

[78] E.O. Voit and J. Almeida. Decoupling dynamical systems for pathway identification
from metabolic profiles. Bioinformatics, 20(11):1670–1681, 2004.

[79] S. Walker. An EM Algorithm for Nonlinear Random Effects Models. Biometrics,
52:934–944, 1996.

[80] Eric Walter, Isabelle Braems, Luc Jaulin, and Michel Kieffer. Guaranteed numerical
computation as an alternative to computer algebra for testing models for identifia-
bility. In RenÃ c© Alt, Andreas Frommer, R.Baker Kearfott, and Wolfram Luther,
editors, Numerical Software with Result Verification, volume 2991 of Lecture Notes
in Computer Science, pages 124–131. Springer Berlin Heidelberg, 2004.

[81] Eric Walter and Yves Lecourtier. Unidentifiable compartmental models: what to
do? Mathematical Biosciences, 56(1-2):1 – 25, 1981.

[82] Jinde Wang. Asymptotics of Least-Squares Estimators for Constrained Nonlinear
Regression. The Annals of Statistics, 24(3):1316–1326, 1996.

[83] Hulin Wu and Jin Ting Zhang. Local polynomial mixed-effects models for lon-
gitudinal data. Journal of the American Statistical Association, 97(459):883–897,
2002.

[84] X. Xia and C.H. Moog. Identifiability of nonlinear systems with application to
hiv/aids models. Automatic Control, IEEE Transactions on, 48(2):330–336, Feb
2003.

[85] Zhenbiao Yang Yong Jik Lee. Tip growth: Signaling in the apical dome. Curr Opin
Plant Biol., 11:662–671, 2008.

[86] Michael R. Osborne Zhengfeng Li and Tania Prvan. Parameter estimation in ordi-
nary differential equations. IMA J Numer Anal, 25:264–285, 2005.

[87] Shanggang Zhou and Douglas A. Wolfe. On derivative estimation in spline regres-
sion. Statistica Sinica, 10:93–108, 2000.

102



Chapter 6

Appendix

6.1 Proof of Proposition 18

Based on the classical theory of differential equation, there are potentially two

solutions to the semilinear elliptical equation (4.1). As the function u = 0 is a solution,

there is at most one non-null solution. Therefore, we have to show there exist a non-null

solution σ0 to (4.1), and further σ0 > 0 on [−c, c].

The existence of a positive solution to the semilinear elliptic equation −∂2
xu =

f(u) is discussed thoroughly in [51]. In our case, f(u) = uα − u is such that f(0) = 0,

f ′(0) = −1 < 0, and is superlinear1 because f(x)
x −→ ∞. From theorem 1.1 in [51],

we obtain the existence (and then uniqueness) of a positive function σ0 in C2 ([−c, c])

satisfying (4.1). Furthermore, when c = ∞, the existence and uniqueness of solution of

(4.1) is also true by theorem 1.1.3 in [20], where u0 = (α+1
2 )

1
α−1 guarantees that all the

conditions are satisfied in that theorem.
1If λ1 is the first eigenvalue of the operator (−∆) = − ∂2

∂u2
on Ω = [−c, c], then f is superlinear if

lim
+∞

f(u)u−1 > λ1. In this case, it is known that the eigenvalues are λk =
(
πk
2c

)2
, k = 1, . . . with eigen

functions ϕk(u) = sin
(
πk
2c

(u+ c)
)
. In our case, we have f(u)

u
= uα−1 − 1.
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From [36], we know that σ0 is a positive and even function that increases at

[−c, 0] and decreases at [0, c].

6.2 Proof of Proposition 19

We consider a family of transformed solutions Rλ,µ(x) = λσ0(µx) where λ, µ >

0, and σ0 is the solution to (4.2) for c = µL0. We have ∂xRλ,µ = λµ∂xσ0(µx) and

∂2
xRλ,µ = λµ2∂2

xσ0(µx). From (4.2) , we get

−∂2
xRλ,µ = λµ2 (σα0 (µx)− σ0(µx))

= λ1−αµ2Rαλ,µ − µ2Rλ,µ

Therefore, Rλ,µ satisfies the equation −D∂2
xRλ,µ + Dµ2Rλ,µ = Dλ1−αµ2Rαλ,µ. Since

µ, knf , kpf , D > 0, we can take µ =

√
knf
D and λ =

(
kpf
knf

λ′
) 1

1−α , then

−D∂2
xRλ,µ + knfRλ,µ = λ′kpfRλ,µ

Therefore, Rλ,µ is the unique positive solution to (4.2) .

6.3 Proof of Remark 23

From Proposition 18, we know that σ0 is a positive and even function that

increases at [−c, 0] and decreases at [0, c]. Therfore, Rλ,µ(x) = λσ0(µx) has the same

properties. Moreover from the proof of proposition 18, we have defined f(x) = xα − x,

that satisfies f(1) = 0, and f(x) > 0 for x > 1. By theorem 3.1 of [51], maxσ0 > 1 .

Therefore, maxRλ,µ(x) = λ×maxσ0 > λ.

6.4 Proof of Theorem 25

First, let’s prove the following Lemma.
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Lemma 28 for any µ > 0 and λ > 0, the function h(µ, λ) = λα−1 − λα
‖σ0‖1
Rtotµ

−

1
α

(
α−1
α

Rtotµ
‖σ0‖1

)α−1
is always non-positive.

Proof. For any fixed µ > 0, h is a function of λ. And

∂h(λ)

∂λ
= (α− 1)λα−2 − αλα−1 ‖σ0‖1

Rtotµ

Therefore, ∂h(λ)
∂λ = 0 when λ .

= λc = α−1
α

Rtotµ
‖σ0‖1

. Then, we have

h(λc) = λα−1
c − λαc

‖σ0‖1
Rtotµ

− 1

α

(
α− 1

α

Rtotµ

‖σ0‖1

)α−1

= 0

h(0) = − 1

α

(
α− 1

α

Rtotµ

‖σ0‖1

)α−1

< 0

h(+∞) = −∞ < 0

Notice that h(λ) is a continuous function of λ, we conclude that h(λ) ≤ 0 based on the

above equations. Therefore, Lemma 28 holds.

In order to prove Theorem 25, we need to show the constraints in model 4.5 are

equivalent to that in model 4.7. On one hand, if constraints in model 4.5 are satisfied,

then g(λ) =
knf
kpf
− λα−1 + 1

Rtot
λα
√

D
knf
‖σ0‖1 has at least one solution. As a result,

knf
kpf

= λα−1 − 1
Rtot

λα 1
µ ‖σ0‖1 > 0, and µ > 0 and λ > 0. Therfore, Λ∗(µ, λ) > 0. On

the other hand, if constraints in model 4.7 are satisfied, we can convert µ and λ to

knf and kpf by solving knf = Dµ2 and knf
kpf

= λα−1 − 1
Rtot

λα 1
µ ‖σ0‖1. The solution of

knf and kpf is such that knf > 0, kpf > 0 and by Lemma (1), Λ(knf , kpf , D,Rtot, σ0) =

knf
kpf
− 1
α(α−1

α

√
knf
D

Rtot
‖σ0‖1

)α−1 = λα−1−λα ‖σ0‖1Rtotµ
− 1
α

(
α−1
α

Rtotµ
‖σ0‖1

)α−1
is always non-positive.

6.5 Proof of Theorem 26

First, let’s prove the following Lemmas.

Lemma 29 Denote A = (aij)2×2 to be a 2× 2 symmetrical matrix. Suppose all the four

elements, a11, a12, a21, a22, are bounded in [−B,B] for some B > 0, then A ≤ 2BI2.
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Proof. For any given vector X = (X1, X2)T ,

XTAX = a11X
2
1 + 2a12X1X2 + a22X

2
2

≤ BX2
1 +BX2

2 + 2|a12X1X2|

≤ BX2
1 +BX2

2 + 2|a12|(
1

2
(X2

1 +X2
2 ))

≤ 2BX2
1 + 2BX2

2

= 2BXTX

Therefore, A ≤ 2BI2 and Lemma 29 holds.

Lemma 30 Let R(X;θ) = λσ0(µX) with θ = (µ, λ)T , thenK = EX [∇θR(X;θ0)∇θR(X;θ0)T ]

is a positive definite matrix, where ∇θR(X;θ0) is the gradient vector of R(X;θ) with

respect to θ at θ = θ0.

Proof. Since λ, µ, and σ0(X) are positive, the diagonal elements in the matrix

K = EX [∇θR(X;θ0)∇θR(x;θ0)T ] =

 EX [λ2
0X

2σ′0(µ0X)2] EX [λ0Xσ0(µ0X)σ′0(µ0X)]

EX [λ0Xσ0(µ0X)σ′0(µ0X)] EX [σ0(µ0X)2]


are both positive, which indicates the sum of the eigenvalues of K is greater than 0.

Therefore, to prove the positive definiteness of K, we only need to show that the product

of the two eigenvalues of K, i.e., the determinant of K is positive. That is,

EX [λ2
0X

2σ′0(µ0X)2]EX [σ0(µ0X)2] > (EX [λ0Xσ0(µ0X)σ′0(µ0X)])2

Indeed, since X is a random variable with distribution F (x), by the Cauchy-Schwarz

inequality,

(EX [λ0Xσ0(µ0X)σ′0(µ0X)])2 = (

∫ +∞

−∞
λ0Xxσ0(µ0x)σ′0(µ0x)dF (x))2

≤
∫ +∞

−∞
(λ0xσ

′
0(µ0x))2dF (x)

∫ +∞

−∞
(σ0(µ0x))2dF (x)

= EX [λ2
0X

2σ′0(µ0X)2]EX [σ0(µ0X)2]
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The equality holds if and only if the two functions λ0xσ
′
0(µ0x) and σ0(µ0x) are linearly

dependent. However, since the Wronskian of such two functions,

W =

∣∣∣∣∣∣∣∣
λ0xσ

′
0(µ0x) σ0(µ0x)

λ0µ0xσ
′
0(µ0x) + λ0σ0(µ0x) µ0σ

′
0(µ0x)

∣∣∣∣∣∣∣∣
= λ0µ0xσ

′
0(µ0x)2 − λ0σ0(µ0x)[µ0xσ

′
0(µ0x) + σ0(µ0x)]

is not always zero over x ∈ [−∞,+∞], the two functions are linear independent. There-

fore, the equality won’t be achieved, which completes our proof.

Following Theorem 1-6 of Wang (1996) [82], we can derive the asymptotic

property of the proposed CNLS estimator. First, we need to verify that the following

conditions are satisfied in our constrained model.

1. ε1, ε2, . . . , εn are iid with E(εi) = 0 and V ar(εi) = 1

2. R(Xi;θ), i = 1, . . . , n, are differentiable in θ and there is a neighborhood W of θ0

such that for θ in W it holds that

R(Xi;θ) = R(Xi;θ0) +∇θR(Xi;θ0)T (θ − θ0) + ri(θ)(‖θ − θ0‖2)

And ri(θ) satisfies

lim
n→∞

1

n

n∑
i=1

r2
i (θ) <∞

uniformly in W .

3.

lim
n→∞

1

n

n∑
i=1

∇θR(Xi;θ0)∇θR(Xi;θ0)T = K

exists and K is a positive definite matrix.

4. The inequality constraints gi, i = 1, . . . , p; and the equality constraints hj , j =

p+ 1, . . . , q, are all continuously differentiable in W.
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5. Let I = {i : gi(θ0) = 0, i = 1, . . . , p}, then the vectors ∇θgi(θ0), i ∈ I; ∇θhj(θ0),

j = p+ 1, . . . , q are linearly independent.

6. For each value of ξ ∼ N(0,K), the minimization of

minz z′Kz − 2z′ξ

s.t. ∇θgj(θ0)Tz ≤ 0 i ∈ I

∇θhj(θ0)Tz = 0 j = p+ 1, . . . , q

has an unique solution at B(M) = {z : ‖z‖ < M} for any large M.

Based on the assumptions of our constrained model, Condition 1 is true for

σ2 = 1. For Conditions 2, since σ0(X) is differentiable in X, R(Xi;θ) = λσ0(µXi) is

differentiable in θ. By Taylor expansion,

R(Xi;θ) = R(Xi;θ0)+∇θR(Xi;θ0)T (θ−θ0)+
1

2
(θ−θ0)T∆θR(Xi;θ0)(θ−θ0)+o(‖θ−θ0‖2)

where

∇θR(Xi;θ0) =

 λ0Xiσ
′
0(µ0Xi)

σ0(µ0Xi)



∆θR(Xi;θ0) =

 λ0X
2
i σ
′′
0(µ0Xi) Xiσ

′
0(µ0Xi)

Xiσ
′
0(µ0Xi) 0


It’s easy to check that both the functions X2σ′′0(X) and Xσ0(X) are bounded. So there

exists a constant B > 0 such that all the elements in ∆θR(Xi;θ0) are within [−B,B].

By Lemma 29 , we have ∆θR(Xi;θ0) < 2BI2. As a result,

1

2
(θ−θ0)T∆θR(Xi;θ0)(θ−θ0) + o(‖θ−θ0‖2) ≤ 1

2
(θ−θ0)T 2BI2(θ−θ0) = B‖θ−θ0‖2
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Therefore, ri(θ) ≤ B and limn→∞
1
n

∑n
i=1 r

2
i (θ) ≤ B2 <∞ holds in the whole parameter

space.

For Condition 3, we can compute ∇θR(Xi;θ0) =

 λ0Xiσ
′
0(µ0Xi)

σ0(µ0Xi)



∇θR(Xi;θ0)∇θR(Xi;θ0)T =

 λ2
0X

2
i σ
′
0(µ0Xi)

2 λ0Xiσ0(µ0Xi)σ
′
0(µ0Xi)

λ0Xiσ0(µ0Xi)σ
′
0(µ0Xi) σ0(µ0Xi)

2


1

n

n∑
i=1

∇θR∇θRT =

 1
n

∑n
i=1 λ

2
0X

2
i σ
′
0(µ0Xi)

2 1
n

∑n
i=1 λ0Xiσ0(µ0Xi)σ

′
0(µ0Xi)

1
n

∑n
i=1 λ0Xiσ0(µ0Xi)σ

′
0(µ0Xi)

1
n

∑n
i=1 σ0(µ0Xi)

2


It’s easy to check that all the functions X2σ′0(X)2, Xσ0(X)σ′0(X) and σ0(X)2 are

bounded. By Kolmogorov’s Strong Law of Large Numbers (SLLN),

1

n

n∑
i=1

∇θR∇θRT
a.s.→ K =

 Ex[λ2
0X

2σ′0(µ0X)2] EX [λ0Xσ0(µ0X)σ′0(µ0X)]

EX [λ0Xσ0(µ0X)σ′0(µ0X)] EX [σ0(µ0X)2]


That is,

lim
n→∞

1

n

n∑
i=1

∇θR(Xi;θ0)∇θR(Xi;θ0)T = K = EX [∇θR(X;θ0)∇θR(X;θ0)T ]

By Lemma 30 , we know that K is positive definite.

In our model, there are none equality constraint and three inequality constraints

as follows

g1(θ) = −λα−1 + λα
‖σ0‖1
µRtot

< 0

g2(θ) = −µ < 0

g3(θ) = −λ < 0

Therefore, p = q = 3, I = {i : gi(θ0) = 0, i = 1, . . . , p} = ∅. Obviously, the three

constraint functions are all continuously differentiable in θ in the whole parameter space,
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so Condition 4 holds. Since I is an empty set and there is no equality constraints with

hj in our model, Condition 5 holds for sure and the minimization problem in Condition

6 in our case is

min
z

z′Kz − 2z′ξ

which for any value of ξ, has an unique solution ẑ = K−1ξ at B(M) for any large

M > ‖K−1ξ‖
1
2 .

So far we have proved all the conditions hold when σ2 = 1, so we follow Theorem

6 of Wang (1996) [82] and reach our Theorem 26. In fact, we can prove that Theorem

26 holds generally for any known σ2 > 0. As we can see in [82], σ2 = 1 is such that

n−
1
2
∑n

i=1∇θR(Xi;θ0)εi
d→ N(0,K). More generally, based on Theorem 4 and 5 of

Jennrich (1969) [45], n−
1
2
∑n

i=1∇θR(Xi;θ0)εi
d→ N(0, σ2K) for any σ2 > 0. As a result,

Fn(εi, z) will converge in distribution to z′Kz − 2z′ξ where ξ now is a random vector

of N(0, σ2K). The rest of the proof are all same except now ξ ∼ N(0, σ2K) instead of

N(0,K). Further, we observed that Theorem 1-6 of Wang (1996) [82] does not necessarily

require σ2 to be known. They still holds even if σ2 is unknown based on Theorem 1-5

of Jennrich (1969) [45].

Next, we are going to prove the consistency of σ̂2
n. Before it, let’s prove the

following lemma

Lemma 31 The estimator θ̂ is such that

1

n

n∑
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)2 p→ 0

1

n

n∑
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)
εi

p→ 0
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Proof. By Taylor expansion of R(X;θ) in the neighborhood of θ0, we have

R(X;θ) = R(X;θ0) +∇θR(X;θ0)T (θ − θ0) + o(‖θ − θ0‖)

As proved earlier,
√
n(θ̂n − θ0)

d→ σK−
1
2Z. As a result, θ̂n

p→ θ0. Therefore,

1

n

n∑
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)2

= (R(Xi; θ̂n)−R(Xi;θ0))T [
1

n

n∑
i=1

∇θR(Xi;θ0)∇θR(Xi;θ0)T ](R(Xi; θ̂n)−R(Xi;θ0))

+ o(‖θ − θ0‖2)

and

1

n

n∑
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)
εi

= (R(Xi; θ̂n)−R(Xi;θ0))T
1

n

n∑
i=1

∇θR(Xi;θ0)εi + o(‖θ − θ0‖)

It has been proved that limn→∞
1
n

∑n
i=1∇θR(Xi;θ0)∇θR(Xi;θ0)T = K is a positive

definite matrix. Therefore,

1

n

n∑
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)2

→ (R(Xi; θ̂n)−R(Xi;θ0))TK(R(Xi; θ̂n)−R(Xi;θ0))
p→ 0

By Theorem 4 of Jennrich 1969 [45], 1
n

∑n
i=1∇θR(Xi;θ0)εi

p→ 0. Therefore,

1
n

∑n
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)
εi

p→ 0, which completes the proof of lemma 31.

With lemma 31, let’s prove the consistency of σ̂2
n. In the CNLS procedure,

σ̂2 =
1

n

n∑
i=1

(
Yi −R(Xi; θ̂n)

)2

=
1

n

n∑
i=1

(
R(Xi;θ0) + εi −R(Xi; θ̂n)

)2

=
1

n

n∑
i=1

(
R(xi; θ̂n)−R(Xi;θ0)

)2
− 2

n

n∑
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)
εi +

1

n

n∑
i=1

ε2i
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By lemma 31, 1
n

∑n
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)2 p→ 0 and

2
n

∑n
i=1

(
R(Xi; θ̂n)−R(Xi;θ0)

)
εi

p→ 0. And by SLLN , 1
n

∑n
i=1 ε

2
i

p→ σ2 Therefore,

σ̂2 p→ σ2.

6.6 Proof of Theorem 27

Let θi = (µi, λi)
′, θ = (µ, λ)′. By Theorem 26, we can easily conclude that

for large ni = n, the estimators θ̂i in step 2 has the following asymptotic distribution,

conditional on θi,

√
n(θ̂i − θi)

d→MVN
(
0, σ2(Ki)

−1
)

where Ki = EX [∇θiR(X;θi)∇θiR(X;θi)
T ]. Furthermore, {θ̂i : i = 1, · · · ,m} are mu-

tually independent since they were estimated from sample of different subjects.

From above, the conditional asymptotic mean and variance for θ̂i are as follows.

Eε(θ̂i|θi) = θi

V arε(θ̂i|θi) = σ2(nKi)
−1

Then taking the variability of the random effects θi into account, the unconditional

asymptotic mean and variance θ̂i are as follows:

E(θ̂i) = Eθ[Eε(θ̂i|θi)] = Eθ(θi) = θ

V ar(θ̂i) = V arθ[Eε(θ̂i|θi)] + Eθ[V arε(θ̂i|θi)]

= V arθ[θi] + Eθ[V arε(θ̂i|θi)]

= Σ + σ2Eθ[(nKi)
−1]

.
= Σ̃
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Since {θi : i = 1, · · · ,m} are i.i.d and R(X; ·) is smooth, Eθ[σ2(nKi)
−1] are same

for all the subject. In other words, Eθ[σ2(nKi)
−1] is independent on i. Therefore,

{θ̂i : i = 1, · · · ,m} are i.i.d. with common mean and variance.

Note that in the above equations, Eθ(·) is referred to taking expectation with

respected to θ at the population level, and Eε(·|θi) is referred to taking expectation with

respected to ε at the individual level. Same rule was applied in the variance calculation.

The CMM estimators, µ̂ and λ̂ in step 3 can be expressed in a vector form as

follows

θ̂ =
1

m

m∑
i=1

θ̂i

Notice that {θi : i = 1, · · · ,m} are i.i.d. with common mean θ and variance Σ̃, then

when m goes to ∞, by SLLN we have θ̂ p→ θ. Furthermore, by Central Limit Theorem

(CLT) we have
√
m(θ̂ − θ)

d→ Σ̃
1
2Z with Z ∼ N(0, I2).

The CMM estimator of Σ, Σ̂ in step 5 is

Σ̂ =
1

m− 1

m∑
i=1

(θ̂i − θ̂)(θ̂i − θ̂)T − σ̂2 1

m

m∑
i=1

T−1
i

with Ti =

[
∂Ri

∂θTi

]T [∂Ri

∂θTi

]
|θi=θ̂i

Ri = (R(Xi1;θi), R(Xi2;θi), · · · , R(Xini ;θi))
T

One one hand, since {θi : i = 1, · · · ,m} are i.i.d. with common mean θ and variance Σ̃,

by SLLN we have

1

m− 1

m∑
i=1

(θ̂i − θ̂)(θ̂i − θ̂)T
p→ Σ̃
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On the other hand, Ti is such that

E(T−1
i ) = Eθ[Eε(T

−1
i |θi)] = Eθ[Eε(

([
∂Ri

∂θTi

]T [∂Ri

∂θTi

]
|θi=θ̂i

)−1

|θi)]

p→ Eθ

([∂Ri

∂θTi

]T [∂Ri

∂θTi

])−1


= Eθ

 n∑
j=1

[
∂R(Xij ;θi)

∂θTi

] [
∂R(Xij ;θi)

∂θTi

]T−1
p→ Eθ[

(
nEX [∇θiR(X;θi)∇θiR(X;θi)

T ]
)−1

] = Eθ[(nKi)
−1]

The first “ p→” in the above equation holds since θ̂i
p→ θi. The second “ p→” holds by SLLN

of X. Therefore, {T−1
i : i = 1, · · · ,m} are i.i.d. r.v’s with the same mean, by SLLN we

have

1

m

m∑
i=1

T−1
i

p→ Eθ[(nKi)
−1]

In addition, it’s assumed that σ̂2 p→ σ2. Therefore, by slutsky’s Theorem, Σ̂
p→ Σ̃ −

σ2Eθ[(nKi)
−1] = Σ.

Let ˆ̃Σ = Σ̂ + σ̂2Eθ[(nKi)
−1], then based on the asymptotical result of Σ̂, we

know that ˆ̃Σ
p→ Σ̃. We also have the asymptotical result of θ̂,

√
m(θ̂ − θ)

d→ Σ̃
1
2Z. By

slutsky’s Theorem, we have
√
m ˆ̃Σ−

1
2 (θ̂ − θ)

d→ Z. Therefore, the Theorem 27 holds.
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